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Abstract—A complete characterization of the extremal subsets of Hilbert spaces, which is
an infinite-dimensional generalization of the classical Jung theorem, is given. The behavior of
the set of points near the Chebyshev sphere of such a subset with respect to the Kuratowski
and Hausdorff measures of noncompactness is investigated.
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1. INTRODUCTION

Let (X, ‖ · ‖) be a Banach space. For a nonempty bounded subset A in X and a nonempty
subset B in X, we use the following notation: d(A) := sup{‖x − y‖ : x, y ∈ A} for the diameter
of A;

rB(A) := inf
y∈B

sup
x∈A

‖x − y‖

is the relative Chebyshev radius of A in B; r(A) := rcoA(A), where coA denotes the closed convex
hull of A; and

CB(A) :=
{

y ∈ B : sup
x∈A

‖x − y‖ = rB(A)
}

is the set of Chebyshev centers of A in B.
The Jung constant of the space X is defined as

J(X) := sup{rX(A) : A ⊂ X, d(A) = 1}.

In studying uniformly normal structures, another important geometric constant, the relative Jung
constant of X, is also considered (see [1]); it is defined as

Js(X) := sup{r(A) : A ⊂ X, d(A) = 1}.

It is known that if X is a Hilbert space, then CX(A) consists of only one point, which belongs
to the closed convex hull coA of A (see [2]). Therefore, in this case, we have J(X) = Js(X). The
classical Jung theorem asserts that

J(En) = Js(En) =
√

n

2(n + 1)

for Euclidean n-space X = En [3], [4]. The Jung constant J(H) of a Hilbert space (in the
infinite-dimensional case) was calculated in [5] (cf. [6], [1], [7]):

J(H) = Js(H) =
1√
2
.
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Definition. We say that a bounded subset A of X consisting of more than one point is extremal
(relatively extremal) if rX(A) = J(X)d(A) (respectively, r(A) = Js(X)d(A)).

Note that if X is a Hilbert space, then these two notions coincide; thus, in this case, we consider
only extremal subsets. It follows from the second part of the Jung theorem cited above that a
bounded subset A in En is extremal if and only if A contains a regular n-simplex with edges of
length d(A). In the infinite-dimensional case (X = H), Gulevich [8] obtained the following partial
result: If A is a relatively compact subset in a Hilbert space and d(A) > 0, then

r(A) <
1√
2
d(A).

In other words, an extremal subset of a Hilbert space cannot be relatively compact.
The objective of this paper is to completely characterize the extremal subsets of Hilbert spaces,

that is, to obtain an infinite-dimensional generalization of the second part of the classical Jung
theorem.

Main theorem. If A is an extremal subset in a Hilbert space H and d(A) =
√

2, then χ(A) = 1.
Moreover, for each ε ∈ (0,

√
2) and any positive integer p, there exists a p-simplex Δ(ε, p) with

vertices in A and edges of length at least
√

2 − ε.
Conversely, if d(A) =

√
2 and, for each ε ∈ (0,

√
2) and any positive integer p, there exists a

p-simplex Δ(ε, p) with vertices in A and edges of length at least
√

2 − ε, then A is an extremal
subset.

In the statement of the main theorem, χ(A) denotes the Hausdorff noncompactness measure
of A, i.e., the greatest lower bound of positive numbers r for which A can be covered by finitely
many balls of radius r centered on H. Using an observation from [7] (the mushroom lemma), we
also obtain a result concerning the set of points near the Chebyshev sphere of an extremal subset
with respect to the noncompactness measure. This result shows that the main contribution to the
noncompactness measure is made by these points of the extremal subset.

2. NONCOMPACTNESS MEASURES OF EXTREMAL SUBSETS

Theorem 1. If A in an extremal subset in a Hilbert space H and r(A) = 1, then α(A) =
√

2.

Here α(A) denotes the Kuratowski measure of noncompactness, which is defined as the greatest
lower bound of the positive numbers d for which A can be covered by finitely many subsets of
diameter d.

First proof of Theorem 1. The condition r(A) = 1 implies

⋂
x∈A

B

(
x, 1 − 1

n

)
= ∅

for any integer n ≥ 2; here B(x, r) denotes the closed ball of radius r centered at x, which is weakly
compact, because H is reflexive. Therefore, there exist points

xpn−1+1, xpn−1+2, . . . , xpn

in A for which
pn⋂

i=pn−1+1

B

(
xi, 1 − 1

n

)
= ∅

(we assume that p1 = 0).
We set

An := {xpn−1+1, xpn−1+2, . . . , xpn
},
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take a Chebyshev center cn of each An in H, and let rn := r(An); then rn > 1 − 1/n.
Let S(c, r) denote the sphere of radius r centered at c. We know from the proof of the clas-

sical Jung theorem that A ∩ S(cn, rn) �= ∅ and cn ∈ co(An ∩ S(cn, rn)). Thus, there exist
yqn−1+1, yqn−1+2, . . . , yqn

in An ∩ S(cn, rn) (where q1 = 0) and positive numbers

tqn−1+1, tqn−1+2, . . . , tqn

such that
cn =

∑
qn−1<i≤qn

tiyi,
∑

qn−1<i≤qn

ti = 1.

We claim that
α
(
{yqn−1+1, yqn−1+2, . . . , yqn

}∞n=2

)
=

√
2.

Suppose that, on the contrary,

α
(
{yqn−1+1, yqn−1+2, . . . , yqn

}∞n=2

)
<

√
2.

Then we can choose an ε0 ∈ (0,
√

2 ) so that

α
(
{yqn−1+1, yqn−1+2, . . . , yqn

}∞n=2

)
≤

√
2 − ε0;

hence there exist sets D1,D2, . . . ,Dm in H for which

d(Di) ≤
√

2 − ε0, i = 1, 2, . . . ,m,

and

{yqn−1+1, yqn−1+2, . . . , yqn
}∞n=2 ⊂

m⋃
i=1

Di.

For at least one set among D1,D2, . . . ,Dm (say, D1), there exist infinitely many n such that∑
i∈Jn

ti ≥
1
m

, where Jn := {i ∈ [qn−1 + 1, qn] : yi ∈ D1}. (1)

For every n satisfying (1) and any j ∈ Jn, we have∑
qn−1<i≤qn

ti‖yi − yj‖2 =
∑

qn−1<i≤qn

ti‖yi − cn + cn − yj‖2

=
∑

qn−1<i≤qn

ti
(
‖yi − cn‖2 + ‖yj − cn‖2 − 2(yi − cn, yj − cn)

)

= 2r2
n − 2

( ∑
qn−1<i≤qn

tiyi − cn, yj − cn

)

= 2r2
n > 2

(
1 − 1

n

)2

> 2 − 4
n

,

where ( · , · ) denotes the inner product in H.
On the other hand, we have∑

qn−1<i≤qn

ti‖yi − yj‖2 =
∑
i∈Jn

ti‖yi − yj‖2 +
∑

qn−1<i≤qn,i/∈Jn

ti‖yi − yj‖2

≤ (
√

2 − ε0)2
∑
i∈Jn

ti + 2
(

1 −
∑
i∈Jn

ti

)

= 2 − [2 − (2 − ε0)2]
( ∑

i∈Jn

ti

)
≤ 2 − [2 − (2 − ε0)2]

1
m

.
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Hence
2 − [2 − (2 − ε0)2]

1
m

> 2 − 4
n

for the given numbers ε0 and m and for all n satisfying (1). This contradiction shows that
α({yqn−1+1, yqn−1+2, . . . , yqn

}∞n=2) =
√

2. Since d(A) =
√

2, it follows that α(A) =
√

2.

The second proof uses the following lemma, which is a modification of Lemma 4 (the mushroom
lemma) from [7].

Lemma 2. Let A be a nonempty bounded subset of the Hilbert space H , and let r and c denote
the Chebyshev radius of A with respect to H and a Chebyshev center of A in H , respectively. Then
c ∈ co Aε and r = r(Aε) for any ε ∈ (0, r), where Aε := A \ B(c, r − ε).

Proof of Lemma 2. Suppose that, on the contrary, c is not a Chebyshev center of Aε in H; then
r1 := r(Aε) < r. Choose a Chebyshev center c1 of Aε in H and let c′ = αc1 + (1 − α)c, where
α ∈ (0, 1) and 0 < ‖c − c′‖ < ε.

Take a point x ∈ A. If x ∈ Aε, then

‖x − c′‖ ≤ α‖x − c1‖ + (1 − α)‖x − c‖ ≤ αr1 + (1 − α)r < r.

If x ∈ A \ Aε, then

‖x − c′‖ ≤ ‖x − c‖ + ‖c − c′‖ < r − ε + ‖c − c′‖ < r.

In any case, we have A ⊂ B(c′, r′) for r′ < r. This contradiction completes the proof of the
lemma.

Second proof of Theorem 1. Using Lemma 2 with ε = 1/n for each integer n ≥ 2, we obtain
c ∈ co(A \ B(c, 1 − 1/n)). Hence there exist points xpn−1+1, xpn−1+2, . . . , xpn

in A \ B(c, 1 − 1/n)
and positive numbers

tpn−1+1, tpn−1+2, . . . , tpn

(where p1 = 0) for which

∑
pn−1<i≤pn

ti = 1,
∥∥∥∥ ∑

pn−1<i≤pn

tixi − c

∥∥∥∥ <
1
n

.

Let us show that
α
(
{xpn−1+1, xpn−1+2, . . . , xpn

}∞n=2

)
=

√
2.

Again we argue by contradiction. Suppose that

α
(
{xpn−1+1, xpn−1+2, . . . , xpn

}∞n=2

)
<

√
2.

Then there exists an ε0 ∈ (0,
√

2) for which

α
(
{xpn−1+1, xpn−1+2, . . . , xpn

}∞n=2

)
≤

√
2 − ε0;

hence we can find subsets D1,D2, . . . ,Dm in H such that d(Di) ≤
√

2 − ε0 for i = 1, 2, . . . ,m and

{xpn−1+1, xpn−1+2, . . . , xpn
}∞n=2 ⊂

m⋃
i=1

Di.

As in the first proof, there is a set (say, D1) among D1,D2, . . . ,Dm such that

∑
i∈In

ti ≥
1
m

(2)
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for infinitely many n; here
In := {i ∈ [pn−1 + 1, pn] : xi ∈ D1}.

Similarly, for each n satisfying (2) and any j ∈ In, we have∑
pn−1<i≤pn

ti‖xi − xj‖2 =
∑

pn−1<i≤pn

ti‖xi − c + c − xj‖2

=
∑

pn−1<i≤pn

ti
(
‖xi − c‖2 + ‖xj − c‖2 − 2(xi − c, xj − c)

)

> 2
(

1 − 1
n

)2

− 2
( ∑

pn−1<i≤pn

tixi − c, xj − c

)

≥
(

1 − 1
n

)2

− 2
1
n

> 2 − 6
n

;

moreover, ∑
pn−1<i≤pn

ti‖xi − xj‖2 ≤ 2 − [2 − (
√

2 − ε0)2]
1
m

.

Therefore,

2 − [2 − (2 − ε0)2]
1
m

> 2 − 6
n

for all n satisfying (2). This contradiction shows that

α
(
{xpn−1+1, xpn−1+2, . . . , xpn

}∞n=2

)
=

√
2,

which implies α(A) =
√

2.

An immediate corollary of Theorem 1 is Gulevich’s result mentioned in the Introduction.

Corollary [8]. If A is a relatively compact subset of a Hilbert space H and d(A) > 0, then the
inequality r(A) < (1/

√
2 )d(A) holds.

Remark 1. In [7], another proof of the equality J(H) = Js(H) = 1/
√

2 was suggested, which is
essentially due to Steinlein. It is somewhat deeper; namely, it is based on the interesting inequality
κ0(X) ≤ (Js(X))−1, where κ0(X) is the Lifshits characteristic and Js(X) is the relative Jung
constant of the Banach space X (cf. [9]). We shall return to this inequality elsewhere; in this
paper, we only mention that it can be generalized to metric spaces with convexity structures.

Remark 2. It follows from Lemma 2 that Aε is an extremal subset as well, and α(Aε) =
√

2 for
ε ∈ (0, 1).

Remark 3. Although α(Aε) =
√

2 for ε ∈ (0, 1), it may happen that coA ∩ S(c, 1) = ∅ (cf. [7]).
The following question arises: What can be said about α(A∩S(c, 1)) provided that A∩S(c, 1) �= ∅?
The answer is: α(A ∩ S(c, 1)) can take any values in [0,

√
2 ]. Below, we give some examples.

Example 1. Let {en}∞n=1 be an infinite sequence of orthonormal vectors in a Hilbert space H. We
set

A1 :=
{(

1 − 1
n

)
en

}∞

n=1

and A2 := {x1, x2, . . . , xn, . . . }, where

x1 :=
1√
2
e1 +

1√
2
e2, x2 :=

1√
2
e1 +

1
2
e2 +

1
2
e3,

xn :=
1√
2
e1 +

1√
22

e2 + · · · + 1√
2n

en +
1√
2n

en+1, . . . .
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It is easy to see that r(A1) = 1, d(A1) =
√

2, and 0 is a Chebyshev center of the subset A1 in H.
Moreover, ‖xn‖ = 1 for each n,∥∥∥∥xm −

(
1 − 1

n

)
en

∥∥∥∥ ≤
√

2 for any m and n,

and
‖xn+p − xn‖2 =

1
2n

→ 0 as n → ∞.

Therefore, {xn} is a Cauchy sequence, and α(A2)= 0.
For the set A := A1 ∪ A2, we have r(A) = 1 and d(A) =

√
2, and 0 is a Chebyshev center of A

in H. Obviously,
A ∩ S(0, 1) = co A ∩ S(0, 1) = A2.

Example 2. Suppose that {en}∞n=1 and A1 are the same as in Example 1. For each γ ∈ (0,
√

2] such
that β := γ/

√
2 ∈ (0, 1], we choose λ ∈ [0, 1) so that λ2 + β2 = 1. Let A2 := {y1, y2, . . . , yn, . . . },

where
y1 := λe1 + βe2, y2 := λe1 + βe3, . . . , yn := λe1 + βen+1, . . . .

Obviously, ‖yn‖ = 1 for each n and ‖yn − ym‖ =
√

2β = γ for all m �= n. For A := A1 ∩ A2, we
have r(A) = 1 and d(A) =

√
2; moreover, 0 is a Chebyshev center of A in H, and we have

A ∩ S(0, 1) = coA ∩ S(0, 1) = A2,

as well as α(A2) = γ.

3. PROOF OF THE MAIN THEOREM

In the first proof of Theorem 1, we have defined a sequence yqn−1+1, yqn−1+2, . . . , yqn
(where

q1 = 0) in An ∩S(cn, rn) and positive numbers tqn−1+1, tqn−1+2, . . . , tqn
for all n ≥ 2 satisfying the

conditions
cn =

∑
qn−1<i≤qn

tiyi,
∑

qn−1<i≤qn

ti = 1.

We claim that
χ
(
{yqn−1+1, yqn−1+2, . . . , yqn

}∞n=2

)
= 1.

To prove this, suppose that A can be covered by finitely many balls B1, B2, . . . , Bm of radius r.
Then there is a ball (say, B1) among B1, B2, . . . , Bm such that, for infinitely many n,

∑
i∈Jn

ti ≥
1
m

, (3)

where
Jn := {i ∈ [qn−1 + 1, qn] : yi ∈ B1}.

As in the proof of Theorem 1, we have

∑
qn−1<i≤qn

ti‖yi − yj‖2 = 2r2
n > 2 − 4

n
(4)

for each j ∈ [qn−1 + 1, qn].
It follows from (4) that ∑

i∈Inj

ti <
1√
n

, (5)
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where

Inj :=
{

i ∈ [qn−1 + 1, qn] : ‖yi − yj‖2 < 2 − 4√
n

}
, j ∈ [qn−1 + 1, qn],

2(1 − tj) ≥
∑

qn−1<i≤qn

ti‖yi − yj‖2 = 2r2
n > 2 − 4

n
.

This implies tj < 2/n for each j ∈ [qn−1 + 1, qn]. Therefore, if n satisfies (3), then

|Jn|(2/n) >
1
m

,

or, equivalently,
|Jn| >

n

2m

(here |Jn| denotes the cardinality of Jn).
For each n satisfying (3) and any j ∈ Jn, we set

Jn(yj) :=
{

i ∈ Jn : ‖yi − yj‖2 ≥ 2 − 4√
n

}
,

Ĵn(yj) := {yi : i ∈ Jn(yj)}.

Obviously, (5) implies

∑
i∈Jn\Jn(yj)

ti <
1√
n

, (6)

∑
i∈Jn(yj)

ti >
1
m

− 1√
n

. (7)

For every positive integer p, we choose n satisfying (3) and so large that (p + 1)/
√

n ≤ 1/
√

m.
We claim that

p⋂
k=1

Jn(yik
) �= ∅ (8)

for any i1, i2, . . . , ip ∈ Jn. Indeed, otherwise, the relation
⋂p

k=1 Jn(yik
) = ∅ would imply

Jn(yi1) ⊂ Jn \
( p⋂

k=2

Jn(yik
)
)

=
p⋃

k=2

(Jn \ Jn(yik
)).

By virtue of (6) and (7), we would have

1
m

− 1√
n

<
∑

α∈Jn(yi1 )

tα ≤
p∑

k=2

∑
α∈Jn\Jn(yik

)

tα < (p − 1)
1√
n

and 1/m < p/
√

n, which would contradict the choice of n and p.
It follows from (8) that if 1 ≤ k ≤ p and i1, i2, . . . , ik ∈ Jn, then

k⋂
α=1

Ĵn(yiα
) �= ∅.
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Take j ∈ Jn for the same n and p as above. Setting z1 := yj , we successively define

z2 ∈ Ĵn(z1), z3 ∈ Ĵn(z1) ∩ Ĵn(z2), . . . , zp+1 ∈
p⋂

i=1

Ĵn(zi).

Obviously,

‖zi − zj‖2 ≥ 2 − 4√
n

for all i �= j from {1, 2, . . . , p + 1}. Now, given ε ∈ (0,
√

2), we choose n as above so large that

2 − 4√
n

≥ (
√

2 − ε)2.

We see that the points z1, z2, . . . , zp+1 form a p-simplex Δ(ε, p) with edges of length at least
√

2−ε.
Now, let us show that r ≥ 1 (r is the radius of the balls B1, B2, . . . , Bm). Let c′ and r′ denote a

Chebyshev center of the simplex Δ(ε, p) in H and the Chebyshev radius of this simplex with respect
to H, respectively. The proof of the classical Jung theorem implies the existence of nonnegative
numbers α1, α2, . . . , αp+1 for which

p+1∑
i=1

αi = 1 and c′ =
p+1∑
i=1

αizi.

For every j ∈ {1, 2, . . . , p + 1}, we have

(
2 − 4√

n

)
(1 − αj) ≤

p+1∑
i=1

αi‖zi − zj‖2 =
p+1∑
i=1

αi‖zi − c′ + c′ − zj‖2

=
p+1∑
i=1

αi

(
‖zi − c′‖2 + ‖zj − c′‖2

)
−

( p+1∑
i=1

αi(zi − c′), zj − c′
)

≤ 2(p′)2.

Thus, (
2 − 4√

n

) p+1∑
j=1

(1 − αj) ≤ 2(p + 1)(r′)2,

or, equivalently,

r′ ≥

√(
2 − 4/

√
n
)
p

2(p + 1)
. (9)

The right-hand side of (9) tends to 1 as p → ∞. Obviously, r ≥ r′, because Δ(ε, p) ⊂ B1. This
implies r ≥ 1, as required. Therefore, χ(A) = 1.

Conversely, if d(A) =
√

2 and A contains a p-simplex Δ(ε, p) with edge lengths at least ≥
√

2−ε
for each ε ∈ (0,

√
2) and any positive integer p, then A is an extremal subset by definition.
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