
Windows Undocumented
File Formats

Pete Davis and Mike Wallace

R&D Books
Lawrence, KS 66046

Acknowledgments
Pete Davis
There are so many people to thank. I must start immediately with Andrew Schulman
(of "Undocumented Windows" fame) and Ron Burk (editor of Windows Developer's
Journal). Andrew got me started writing professionally, so all blame should really go
to him. Ron helped immensely with the reverse-engineering work on WinHelp and I
would hazard a guess that he did more than half of it. But more importantly, he has
helped me out in more ways than I can count since we first met. He has published sev-
eral of my articles and been a valuable help in my writing and my understanding of
Windows. Thank you both so much, for everything.

The following people provided extra special help. I don't mean to leave anyone
out, and there were so many people involved, I'm sure I will, but these are the ones
that come to mind right away. Wolfgang Beyer, Carl Burke, Stefan Olson, and Lou
Grinzo provided lots of help on the WinHelp . H L P file format. Clive Turvey provided
all the information on the W4 file format and also helped out with the LE and W3 file
formats. Skip Key provided great insights on the LE file format, making up for my
lack of understanding of executable files.

The long list begins: Dave Bakin, Kevin Burrows, Jon Erickson (Dr. Dobb's Jour-
nal), Mike Floyd (Dr. Dobb's Journal), Jim Hague, Dale Lucas, Nico Mak (of WinZip
fame), Duncan Murdoch, Andrew Pargeter, Matt Pietrek, Steve Scanzoni, and Brian
Walker. All of these people have contributed in one way or another to making this
book happen. Most provided information or checked my information to make sure it
was correct. Thank you all so much.

iii

Windows Undocumented File Formats

There are a few people who made considerable contributions but, unfortunately,
must remain anonymous. Most of them are people who are working on projects that
they don't want certain companies to know about. None of these people had anything
to gain by providing me with their hard-earned information, but simply did it out of
the idea that people should have access to this information.

I'd like to thank Steve Wexler, Julianne Sharer, Brett Foster, Ted Epstein, and all
the others I've worked with at WexTech Systems, Inc. They provided me with a job
that gave me time to write a majority of this book.

I'd like to thank everyone I work with (or have worked with) at Moffet, Larson,
and Johnson, my current employer. They've continued to provide me with a challeng-
ing and exciting work environment that has continued to feed my brain. In particular,
Enrique Lenz, Dan Cox, Gyuri Grell, Alex Reyes, Carol Kelly, Garri Yackobson, Walt
Constantine, Paul Modzelowski, and Theresa Alford.

I'd like to thank my roommate and buddy, Mike Wallace, for putting up with me
quitting my regular job to write and not being able to help pay the rent as timely as he'd
like. I'm really glad you worked on the book with me. You've been a good friend and
made it possible for me to pursue some of my dreams. Wow, we finally finished it, huh!

I'd like to thank my parents, who have always pushed me to do what I love and
believed in me when I didn't. They've been an incredible support in every way.

I'd also like to thank my grandmother, who thought I'd been famous since I wrote
my first article. She's been such an ardent supporter and read all my writings, even
though she didn't understand a word.

And finally, I'd like to thank Berney Williams, our patient (oh, how patient) and
understanding editor, and Robert Ward, our patient and understanding publisher, for
making this book happen. Thanks for putting up with the delays (and delays, and
delays, and delays).

Other acknowledgments: I must thank Jake (my cat) and Naoise (Mike's cat: pro-
nounced "Neesha") for keeping me company while working on the book. Naoise has
been a quick study at the art of stomp-typing and paper shuffling. Jake, as always, an
expert at playing dead all day long, every day. The vet claims he's alive, so I guess I'll
keep him.

We'd like to thank the crew at Bardo Rodeo, who let us blow off steam playing
pool and drinking their fine home-brewed beer 'til the wee hours of the night.

And finally, thanks to all the fine musicians and bands who gave me something to
listen to while I wrote this book.

IV

Acknowledgments

Mike Wallace
The person I want to thank the most is Pete Davis. This book was entirely his idea,
and he is more than capable of writing the entire thing by himself. It was my good
luck to have him for such a good friend when he decided to tackle this project. He
gave me my first exposure to the joys of writing professionally. There were times I
thought I would never get some of the programs working, but Pete had the patience to
let me work at my own schedule. He was far more understanding than I think most
co-authors would be.

Next, I want to thank my family. My parents always let me pursue my own inter-
ests and never discouraged me when things didn't work out as planned. I also couldn't
have asked for two nicer sisters, plus the coolest nephews, nieces, and brothers-in-law
anyone could hope to have.

I'd like to thank the friends who helped me get through the last several months: Ed
Reyes, Robin Carey, Carol Kelly, Jennifer Campbell, and the fine employees of Bardo
Rodeo for letting me play pool long after they closed more than once, when I was in
danger of burning out. If there's anyone I forgot, I'm sorry. I'm too forgetful to
remember more than a handful of names at any given time!

I want to thank our editor and publisher for being so patient with us, and not say-
ing anything when we missed our deadline.

Finally, there's the people I've never met, but provided inspiration in one form or
another: Neil Young, Robert Pirsig, Henry David Thoreau, Toad the Wet Sprocket,
Bela Fleck and Steve Howe.

v

Table of Contents
Acknowledgments.. iii

Chapter 1 Introduction and Overview 7
How It B e g a n . 1
What's in This Book? . 2
Why All the Undocumented File Formats? 3
Why Are We Picking on Microsoft? . 3
The Future . 4
How to Reverse-Engineer File F o r m a t s . 4
DUMP and S E T V A L . 5
Getting in Touch with U s . 7

Chapter 2 Multiresolution Bitmap (.MRB) File Format...... 13
. M R B F o r m a t . 14
.MRB Compression . 23
Where Do I Go from Here? . 25

Chapter 3 Segmented Hypergraphic (.SHG) File Format..... 27
H o t s p o t s . 29
Where Do I Go from Here? . 31

vii

Windows Undocumented File Formats

Chapter 4 Windows Help File Format.................... 41
O v e r v i e w . 41
WinHelp B-Trees . 4 2
Help File H e a d e r . 4 4
The Help File System (H F S) . 4 4
A Note on Object-Oriented Programming 50
. H L P File Organization . 51
WinHelp Compression . 51
Topic O f f s e t s . 63
Compression in | T O P I C . 6 5
Bitmaps and M e t a f i l e s . 70
C o n c l u s i o n . 71
Where Do I Go from H e r e ? . 72

Chapter 5 Annotation (.ANN) and Bookmark (.BMK)
File Formats............................... 103
Annotation Files . 103
Bookmark F i l e s . 104
Where Do I Go from H e r e ? . 105

Chapter 6 Compression Algorithm and File Formats....... 107
The A l g o r i t h m . 107
Compressing . 1 1 1
Decompressing . 112
Where Do I Go from H e r e ? . 112

Chapter 7 Resource (.RES) File Format................. 125
The Format . 126
The Program . 128
String T a b l e s . 135
Fonts and Font Directories . 135
Accelerator T a b l e s . 136
R C D A T A . 136
Name Tables . 137
Version Information . 137
User-Defined D a t a . 139
Where Do I Go from H e r e ? . 139

viii

Table of Contents

Chapter 8 PIF File Format............................ 209
The Format . 210
The P r o g r a m . 211
Where Do I Go from Here? . 212

Chapter 9 W3 and W4 File Formats 229
Overview . 229
The W3 File F o r m a t . 231
How to Unmangle the VxDs . 231
S U C K W 3 . 232
The W4 File F o r m a t . 237
The W4/Double Space Compression Algorithm 239
Shannon-Fano T a b l e s . 240
Where Do I Go from Here? . 241

Chapter 10 LE File Format 251
Overview . 251
General Layout. 253
Object T a b l e . 260
Object Page Table . 261
Resident or Nonresident Name T a b l e s . 262
Entry T a b l e . 262
Fixup Page Table . 263
Fixup Record Table . 264
LE Dump . 265
Where Do I Go from Here? . 266

Appendix A Contents of the Companion Code Disk.......... 275

Annotated Bibliography.................................. 277

Index .. 281

ix

Chapter 1

Introduction and Overview
How It Began
This book, we feel, is a long time in coming. Before we started reverse-engineering
file formats, we would go through bookstores looking for just this book. We never
found it, obviously. The reason we began reverse-engineering file formats had less to
do with a need for the information as it had to do with a curiosity about them. We're
just the kind of people that like to know how everything works.

The works in this book began with a plea from Andrew Schulman (of Undocu-
mented Windows fame) and Ron Burk (editor of Windows Developer's Journal) for
someone to reverse-engineer the WinHelp . H L P file format. At the time, my interest in
professional writing had just begun. I decided, "How hard can it be?" It seemed like a
perfect opportunity to get my name in print. My initial idea was just to help Ron Burk
out and hopefully get my name mentioned in his article when it was written.

Well, the .HLP file format turned out to be much more complex than I could have
imagined. Although I did take my initial work to Ron and we did end up doing the
entire project together (Ron probably did more than half the work), Ron left the arti-
cles to me (published in Andrew Schulman's "Undocumented Corner" column, Dr.
Dobb's Journal, September and October 1993). I am to blame for all of the mistakes
and the incomplete nature of the work.

At this point, I think it's important to make one thing clear. Although the original
articles for the . H L P file format were printed in his column, and despite my thanks to
him, Andrew Schulman was not directly involved in any aspect of this book. I men-
tion this not to take any due credit from him, but because Andrew published the
"Undocumented ..." series of books with Addison-Wesley, and this book is not con-
nected with that series at all.

1

2 — Windows Undocumented File Formats

What's in This Book?
This book is partially based on previous work, which I will briefly mention here and in
a more detailed bibliography at the end of this book. In particular, there was a two-part
article on the WinHelp . H L P file format I wrote for Dr. Dobb's Journal, an article in
Windows Developer's Journal (WDJ) on the .SHG and . M R B file formats, and another
article in WDJ on the file format and LZ77 algorithm used by C O M P R E S S . E X E . The
. A N N file format appeared in PC Magazine (Volume 14, No. 15) in an article I
co-wrote with Jim Mischel on advanced WinHelp techniques.

Two chapters in this book came from work done by other people. The . RES file for-
mat was originally uncovered by Dmitry M. Rogatkin and Alex G. Fedorov and pub-
lished in Dr. Dobb's Journal in August 1993. The . P I F file format was
reverse-engineered by Michael P. Maurice and was also published in Dr. Dobb's Jour-
nal in July 1993.

The W4 file format presented in Chapter 9 was provided by Clive Turvey. He and
several other people figured out the format, and Clive, as far as I know, was the one
that figured out the compression algorithm. He was the first I heard of to write his own
routines for decompressing W4 files, whereas other people were calling directly into
the Double Space decompression routines.

The rest of the files covered in this book were solved by Mike and I and have not
been previously published.

Information on the . H L P file format in this book has been completely revised
from the original articles. A lot of corrections and pieces of missing information
have been filled in.

In total, 10 file formats are covered in this book (actually, considering all the vari-
ations, it's more like 13 or 14). The next 8 chapters are organized as follows:
• SECTION 1

• Chapter 1 you're reading now, if you didn't know.
• Chapter 2 describes the multiresolution bitmap (.MRB) file format.
• Chapter 3 continues from Chapter 2 with the SHED (.SHG) file format, which

is an extension of the .MRB file format.
• Chapter 4, describes the complex WinHelp . H L P file format.
• Chapter 5 discusses the Annotation (. A N N) and Bookmark (. B M K) file formats

used by WinHelp.
• SECTION 2

• Chapter 6 lays out the file format used by C O M P R E S S . E X E , E X P A N D . EXE, and
the L Z E X P A N D . D L L library for file compression.

• Chapter 7 is adapted from Dmitry M. Rogatkin and Alex G. Fedorov's arti-
cles to describe the .RES file format.

Introduction and Overview — 3

• Chapter 8 uses information from Michael P. Maurice's article and talks about
the . P I F file format.

• Chapter 9 explains the W3 and W4 file formats used by Windows 3.x and
Windows 95.

• Chapter 10 provides an in-depth description of the LE (linear executable) file
format used by VxDs.

Why All the Undocumented File Formats ?
This is a common question. Why doesn't Microsoft document this stuff? I think there
are different reasons for different file formats.

With SHED and MRBC (Multiresolution Bitmap Compiler), I'm not really sure
what the problem is, exactly. Microsoft has released documentation for the .SHG file
format, but it is completely inaccurate and misleading. I honestly believe this was an
error and not intentional, because I was asked by someone at Microsoft to write cor-
rect documentation for them to release to the public. However, due to some disagree-
ments, that never happened.

I have a pretty good idea why the WinHelp file formats were never released. For
one thing, the formats have changed drastically with every version of Windows.
Microsoft probably doesn't want to be restricted by having to maintain backward
compatibility. More importantly, though, I think it's because the file format is a com-
plete mess. The problem is that WinHelp has changed hands at Microsoft quite a few
times. A lot of the people who maintained it in the past failed to pass down documen-
tation to the new people. From what I hear, maintenance of WinHelp is a nightmare.
For a while it was a solo project, so only one programmer at a time worked on it and
no consistent group decisions were made. This could also account for the major
changes between versions. Luckily, Windows 4.0 did not introduce major changes in
the file format. Most of the changes involve additional internal files, but not many
changes in the format itself.

As for the formats used by the compression utilities, I can't imagine why Microsoft
would hide the documentation. It's certainly not to discourage competitors. Microsoft
doesn't make any money off of the compression software, and L Z E X P A N D . D L L is redis-
tributable. And it's not like they have the best compression algorithm out there. So
again, I think it's just a matter of not feeling that the general public "needs" to know.

Why Are We Picking on Microsoft?
It may seem that we're picking on Microsoft. After all, every file we cover in this
book is a Microsoft file. This was not the intention. Plenty of other companies have
their own proprietary formats for their files, after all, but the main difference is that

4 — Windows Undocumented File Formats

many of the Microsoft files are pieces of Windows itself. Everyone has these files. If
we were going to cover other undocumented file formats, we might go after WordPer-
fect for Windows, Lotus, and others. We decided to stick to the files that we believe
have the largest user base and therefore will be most useful to developers. Our hope is
that other file formats, from Microsoft and others, will be included in later editions of
this book. A lot of that will depend on demand.

The Future
We have every intention of keeping this book up-to-date and releasing revised edi-
tions when a significant number of changes have been made to the existing formats.
We may also find that we want to cover formats not discussed in this edition in later
editions. Either way, we want this book to remain current, so that you, the ordinary
developer, will have access to the information you need and deserve.

Because we plan to keep this book up-to-date, we'd love some feedback. We want
to know what you like about it, what you don't like about it, what files you think we
should cover in future editions, and so on. What we need most is reports of errors or
updates to any unknown fields in the formats we've provided. We feel we've done a
really good job of covering the file formats that appear in this book. We've bent over
backwards to find every field we can, and we've talked to a lot of people who have
used this information to help us get it as accurate as possible.

Still, this is all "undocumented". We don't have access to source code; we can't be
positive about some of the fields and structures. For example, in the .SHG and . M R B
files, we have come up with what we think are the structures. It's possible that
Microsoft's structures differ. What we might consider one structure, Microsoft might
consider two or vice versa. We've done the best we can to see that structures are as
logical as possible. Sometimes Microsoft doesn't afford us that luxury by the nature
of the files, but we've done what we can.

There are already files we'd like to consider adding to future versions, including the
Word for Windows 2.0 and 6.0 formats, the Paradox file formats, and the OLE 2.0 Doc-
file format. The work in this book is the best we could accomplish in a reasonable time
period. These other file formats are complex and will require a lot of time, but if demand
for this book is high enough, we will put out future editions. At some point, it would be
nice if this book was considered "The Encyclopedia" of undocumented file formats.

How to Reverse-Engineer File Formats
Basically, you need to have two things to reverse-engineer file formats: good eyes and
a good pair of glasses. That may seem like a contradiction, but let me elaborate. First,
you need good eyes; when you're done, you will need a good pair of glasses. Nothing
will strain your eyes and brain like staring at hex dumps for 8 hours straight.

Introduction and Overview — 5

Begin by just staring at hex dumps of the file, and if you're not making progress,
stop thinking and keep staring. After about 8 hours, leave it and don't think about it.
The next day, go back to it, but this time it will start to make sense. Why? I think the
subconscious mind is a bit keener than the conscious mind. So without doing much
more than staring when you're stuck, your brain starts running a background task (to
use geek speak), trying to figure it out, so that you don't have to worry yourself about it.

Does this always work? Not always, but it certainly does a lot of times. The rest of
the time, you add, divide, multiply, subtract, left-shift, right-shift and so on until num-
bers start to mean something. Sometimes things get worse and you break the hex
numbers down to bit streams (ugh).

None of it is a particularly enjoyable experience. Unlike most programming jobs,
there's very little satisfaction 95% of the time. The last 5% of the time is when things
start to fall in place and you start to feel good about it. Getting through the first 95% is
the hard part.

DUMP and SETVAL
DUMP will give you a simple hex dump of a file. I usually pipe the output to a file and
then print it. There's nothing special about DUMP. It's as simple as they come and
about as complex as you need. Staring at hex dumps is the best way to reverse-engi-
neer a file format.

Take a look at an example. Figure 1.1 shows a simple text file. Figure 1.2 shows a
hex dump of the text file compressed with Microsoft's C O M P R E S S . E X E .

Figure 1.2 Results of DUMP of compressed TEST.TXT

Offset

0x00000000:
0x00000010:
0x00000020:
0x00000030:
0x00000040:

Hex Values

53
68
6F
69
DF

5A
69
6E
6D
61

44
73
DB
70
74

44
20
6C
6F
69

88
F2
79
72
6F

F0
F0
F7
74
6E

27
61
F5
FB
13

33
20
0D
61
00

41
DF
0A
6E
0D

00
74
F0
20
0A

4C
65
F5
00

00
73
6E
6E

00
74
6F
66

00
2E
FF
6F

DF
EF
74
72

54
F6
20
6D

Ascii

S Z D D ^ . ' 3 A . L T
his ..a .test...
on . l y no . t
import.an .nform
.at ion.. . .

Figure 1.1 TEST.TXT text file.

This is a test. This is only a test.
This is not important information.

6 — Windows Undocumented File Formats

A first look shows a few things of interest. The first 4 bytes produce the letters
SZDD. This can be seen in all files compressed by C O M P R E S S . E X E . It's usually a safe
assumption that the first few bytes are some sort of magic number or header that iden-
tifies the file type. This is especially true if they represent letters. What does SZDD
mean? It is probably the initials of the people who wrote the compression software;
two people, I'd guess in this case. Again, it's speculation and you rarely find out the
truth on something like that.

Look for more important information, though. Nothing really sticks out until bytes
11 to 14. The 0x4C followed by three zeros happens to be the same as the file size of
TEST.TXT. This is something you'd look for, because it's pretty safe to assume that an
original file size is going to be in there somewhere. After that, it appears that some of
the original text is intact but mangled a bit here and there. This is where the hard work
begins.

I'll skip ahead a few days into my work and look at the byte immediately after the
file size, 0xDF. If I convert that to binary, I get 11011111. I don't see a correlation here
yet, but if I turn it around, I get 11111011; that is, five 1's, followed by a 0, then two
1's. Here's something odd: The first five characters from our text file are fine, but then
the word "is" (with the space following it) is missing, with 2 bytes, 0xF2 and 0xF0,
instead, followed by two more characters from the text file. So, it seems that the
binary 1's mean a normal character, whereas the binary 0's mean a 2-byte code. As I
said, this occurred to me a few days after I had begun the project. These things don't
just pop out at you immediately all the time.

I won't go into the format here; I'll save that for Chapter 6, but this is how you get
started. You start looking for numbers you expect, look for patterns, break bytes down
to bits, and do a lot of staring.

Sometimes you need more, though. I've included another program called
S E T V A L . E X E . It will change a byte value in a file. Simply pass the offset and byte
value (both in hex), and it will change the byte at a given offset to the new value.
I usually use this when I'm down to a few unknown fields. I can change those
values and see what effect the change has. Sometimes the changes cause GP
Faults and sometimes memory allocation errors, but sometimes they lead you to
exactly what the field does. Between these two utilities, you're armed and ready
to tackle some serious file formats.

The next thing to do is to create lots of samples. The best way to do this is take a
single small file and make minor modifications. Get dumps of each change and see
what values change. For example, with the .SHG and . M R B file formats, change the
image size a little and see which values change, or move a hotspot over a bit and see
what changes there.

Introduction and Overview — 7

Usually you just need to try every option the program has available and see what
those options change in the file. This is very tedious work, because you only want to
change one thing at a time and you need to save it and get a dump each time. If you
change more than one thing between dumps, you don't know which of the changes
caused which values to change.

It would be nice if there was an easier way than this, but there really isn't. Some-
times, once you've gotten started, you can build custom tools for specific files. When
working on the WinHelp file format, Ron Burk and I wrote a program called HELP-
DUMP (a variation by the same name was released with my article on the . H L P file
format). HELPDUMP started out as a custom hex-dump program. Instead of
hex-dumping an entire . H L P file, though, once we figured out the internal . H L P file
system, we could dump individual internal files within the . H L P file. Then as we fig-
ured out each of those internal files, we wrote a piece of code to handle them. If we
had unknown fields, we'd have it print the values so that we could test specific fields
of different test files.

It really helps to have a good knowledge of data structures and algorithms. I didn't
have as good a knowledge as I originally thought. I certainly didn't know anything
about compression when I started working on the different compression file formats,
and I didn't remember much about b-trees when I started on the . H L P file format. So,
I read up on them (see the annotated bibliography).

To sum up, you need good eyes, good glasses, lots of time, D U M P . E X E , S E T V A L . E X E ,
and a good library of data structures and algorithm books. Now you're really armed to
the teeth.

Listing 1.1 is the code for DUMP. The program is pretty straight forward. What I
usually do is pipe the results to a file, so I can either print the file or examine it from
an editor.

Listing 1.2 is the source code for SETVAL. Again, it's a very simple program but
is invaluable in the art of reverse-engineering file formats.

Getting in Touch with Us
If we've screwed something up or you've figured out an unknown field, or if you have
suggestions about how we can improve future editions of this book, we'd really like to
hear from you. As far as we're concerned, this book is a living document and will con-
tinue to evolve as new information comes our way.

To contact us, send e-mail to peted@mnsinc.com or mwal l ace@ml j . com.
A lot of work has gone into producing this book. We really hope you find it useful.

We look forward to hearing your comments, suggestions, and yes, even complaints (if
you've paid for the book, you're entitled to them).

8 — Windows Undocumented File Formats

Listing 1.1 DUMP.C — Produces a simple hex dump of a
file.

Introduction and Overview — 9

Listing 1.1 (continued)

10 — Windows Undocumented File Formats

Listing 1.2 SETVAL.C — Modifies a byte in a file.

Introduction and Overview — 11

Listing 1.2 (continued)

Chapter 2

Multiresolution Bitmap
(.MRB)FileFormat
My second published article was on the .SHG and .MRB file formats. The original work
was in the February 1993 issue of Windows Developer's Journal. In the original arti-
cle, I handled both formats together, because both file formats are very similar. In fact,
the formats are virtually identical, except that each has aspects the other one doesn't
have.

More clearly, a SHED file can have hotspots, but an .MRB file can't. An .MRB file
can have multiple bitmaps, but a SHED file can't. However, you can combine them. If
you create several SHED files for monitors of different resolutions, you can combine
them into one .MRB file using the Multiresolution Bitmap Compiler (MRBC).

A magazine article is usually very limited in length. Because I wanted to cover
both formats, and because the formats were so similar, it made sense to cover them in
the same article. However, because of space limitations, I couldn't reveal as much
about the formats as I would have liked to. A book, on the other hand, usually doesn't
suffer from the same limitations. To help better separate the issues, we felt it would be
best to treat .MRB and .SHG files separately.

Because of the similarity, however, I had to choose a single naming convention for
the structures. I chose to use the .SHG naming convention, mainly because my original
work was on the .SHG file format.

13

14 — Windows Undocumented File Formats

.MRB Format
Figure 2.1 shows the layout of a . M R B file. Notice that I'm using the .SHG notation for
the data structures. .MRB files are laid out in three basic sections. Section 1 is the SHG
file header. Every . M R B file has only one. Section 2 is the image header. Basically, it
tells you whether the image is a bitmap or a metafile. Section 3 combines the SHG
Bitmap or SHG Metafile header and the bitmap or metafile data. The SHG Bitmap
and SHG Metafile headers should not be confused with bitmap headers or metafile
headers. The structures are distinctly different.

You're probably thinking, "What's this metafile business? Who puts metafiles
through the MRB compiler?" Good questions. Ever try it? The MRB compiler verifies
that the file is a metafile, compresses it, and stores it as a .MRB file. I can't really give
an explanation as to why the MRB compiler would support metafiles, especially since
they're resolution independent, but there you have it. Now, for those of you familiar
with SHED, you know why metafiles are supported by the SHG file format. SHG files
can have bitmaps or metafiles. Whichever you import, MRBC and SHED keep them
in their natural (bitmap or metafile), but slightly altered, form. You'll understand
when you get to section 3. I suppose that metafiles are supported by the MRB com-
piler simply because they have to be supported by SHED.

With a .MRB file, sections 2 and 3 are repeated for each image. So if a . M R B file has
three bitmaps in it, there will be three copies of sections 2 and 3.

Figure 2.1 . MRB layout.

. S H G File Header

. S H G Image Header

. S H G Bitmap Header
or . S H G Metafile Header

Bitmap/Metafile Data

Section 1

Section 2

Section 3

Multiresolution Bitmap (.MRB) File Format — 15

SHGFILEHEADER
Each .MRB file begins with a S H G F I L E H E A D E R (Table 2.1) structure. This structure has
a type, or magic number field, a count of the number of images in the file, and offsets
to the image header structure for each image. So if there are three images in the . M R B
file, there will be three offsets to image headers. Notice that there are two magic num-
bers. The magic number lets you know who created the .MRB/ .SHG file and which
form of compression is used in the .MRB/ .SHG file. The 0x706C magic number indi-
cates the file was created with MRBC or SHED. I'll discuss this later in this chapter.

For now though, I need to bring up a topic I haven't talked about yet. The purpose
of .MRB and .SHG files, obviously, is to include them in WinHelp. What isn't apparent
is that every bitmap or metafile included in WinHelp is actually converted to the
.MRB/.SHG format. WinHelp adds another layer of compression, LZ77 compression.
WinHelp checks to see if the LZ77 compression is actually going to reduce the size of
the image. If it does, then WinHelp will use the LZ77 algorithm, and the magic num-
ber for the .MRB/.SHG image will be 0x506C. I'll discuss this again later in this chap-
ter, and the WinHelp aspects will be discussed more in Chapter 4.

SHGIMAGEHEADER
Each individual image in the . M R B file has a S H G I M A G E H E A D E R record (Table 2.2). The
SHGIMAGEHEADER tells you three things about the image. It tells you whether the
image is a metafile or a bitmap (IT_WMF or IT_BMP respectively), whether the data in
the image is compressed, and the resolution in dots per inch (for metafiles, DPI is
unused and is set to 0x10).

Two values are currently supported for the si ImageType field:

#define IT_BMP 0x06
#define IT_WMF 0x08

Table 2.1 SHGFILEHEADER record.
Field Name
sfType[2]
sfNumObjects
sfObjectOff[]

Data Type
char
in t
DWORD

Comments
l p (0x706C) or l P (0x506C)
Number of images in file
Array of offsets to images

16 — Windows Undocumented File Formats

Four values are supported for the s iCompression field:

#define IC_NONE 0x00
#define IC_RLE 0x01
#define IC_LZ77 0x02
#define IC_BOTH 0x03

I'll discuss the compression algorithms later in this chapter, but notice that the last
compression option, IC_BOTH indicates that the bitmap or metafile was first com-
pressed with the RLE compression algorithm, then the results of that compression
were compressed further with the LZ77 algorithm.

You'll notice that the value for dots per inch (si DPI field) is multiplied by 2. It's
also listed as a BYTE or WORD, although in most cases it will only appear as a BYTE in
the file. This is something you'll see over and over in other structures, apparently to
save some space. How would you be saving space? Well, it's a really bizarre concept
that doesn't make much sense, but it works like this: If the value is odd, then you dou-
ble the size of the field. To read in the s i D P I field, you'd read only a single byte
instead of a word. If the value is odd, 0x21 for example, then you'd read a second byte
and divide the total word value by two, discarding the remainder. This seems to be
some sort of attempt to save a few bytes and seems to me to be a lot more trouble than
it's really worth.

I wrote four short routines, W r i t e W o r d V a l () , W r i t e D W o r d V a l () , R e a d W o r d V a 1 () ,
and R e a d D W o r d V a l () (Listing 2.1). These routines read and write the fields properly,
which is a lot of work, because instead of reading or writing the structure as a whole,
you have to handle it field by field.

Table 2.2 SHGIMAGEHEADER record.
Field Name
s i ImageType

siCompression

s i D P I

Data Type
BYTE

BYTE

BYTE or WORD

Comments
0x06 = BMP
0x08 = WMF
0x00 = No compression
0x01 = RLE compression
0x02 = LZ77 compression
Dots per inch x 2
(0x10 for metafiles)

Multiresolution Bitmap (.MRB) File Format — 17

SHGBITMAPHEADER
The SHGBITMAPHEADER structure (Table 2.3) follows the S H G I M A G E H E A D E R structure if
the image is a bitmap (IT_BMP). Notice how most of the fields are multiplied by two,
so most of the WORDs will be read in only as BYTEs, and most of the DWORDs will be
read in as WORDs.

Two fields, sbIsZero and sbTwoHund, appear to be constant values. sbunk1 is
simply an unknown field.

Table 2.3 SHGBITMAPHEADER record.

Field Name
sblsZero
sbDPI
sbTwoHnd
sbNumBits
sbWidth
sbHeight
sbNumQuads
sbNumlmp
sbCDataSize
sbSizeHS
sbunk1;
sbSizelmage

Data Type
BYTE

BYTE or WORD
WORD
BYTE or WORD

WORD or DWORD

WORD or DWORD

WORD or DWORD
WORD

WORD or DWORD

WORD or DWORD
DWORD

WORD or DWORD

Comments
Always 0x00
Dots per inch x 2
0x200
Bits per pixel x 2
Width x 2
Height x 2
Number of RGBQUADS x 2
Number of "important" RGBQUADS
Size of bitmap data x 2
Size of hotspot data area (used only by SHED)
Unknown
(ImageHdr + BitmapHdr + sbCDataSize) x 2

Listing 2.1 WriteWordVal(), WriteDWordVal()
ReadWordVal(), and ReadDWordVal().

18 — Windows Undocumented File Formats

The sbDPI field should match the s iDPI field in the S H G I M A G E H E A D E R . The
sbNumBi t s field is the number of bits per pixel. sbWidth and sbHeight have the
dimensions of the bitmap. sbNumQuads and sbNumImp are the number of RGBQUADS
listed and the number of RGBQUADS required to render the image properly, respec-
tively. The sbCmpSize field is the size of the compressed bitmap data. sbSizeImage
is the size of the S H G I M A G E H E A D E R + the S H G B I T M A P H E A D E R + the image data.

The sbSizeHS field is the size of the hotspot data area in BYTEs. This is used only
by SHED and is 0 in an . M R B file. However, this field would be used in an . M R B file
created from .SHG files. I'll discuss this information in more detail in the next chapter.

To give you an idea of how to read this structure, take a look at R e a d B M H e a d e r ()
(Listing 2.2). Notice how, instead of one simple f r e a d () call, we have to resort to five
f r ead () s and seven calls to R e a d W o r d V a l () or R e a d D W o r d V a l () , each of which will
make one or two calls to f r ead () . This is certainly a lot of overhead to save a couple
bytes here and there and a lot more work than it should be.

Listing 2.1 (continued)

Multiresolution Bitmap (.MRB) File Format — 19

SHGMETAFILEHEADER
The S H G M E T A F I L E H E A D E R (Table2.4) follows the S H G I M A G E H E A D E R structure if the
siImageType field is IT_WMF. This structure is essentially a scaled down version of the
SHGBITMAPHEADER. All smXXXXX fields are the same as their sbXXXXX equiva-
lents. The only difference is the s m X W i d t h and smYHeight . These values are given in
metafile units and are not multiplied by two.

Table 2.4 SHGMETAFILEHEADER record.
Field Name
smXWidth
smYHeight
smUDataSize
smCDataSize
smSizeHS

s m u n k 1
smSizeImage

Data Type
WORD
WORD
WORD or DWORD
WORD or DWORD
WORD or DWORD

DWORD
WORD or DWORD

Comments
Width of image in metafile units
Height of image in metafile units
Size of metafile data x 2 (uncompressed)
Size of metafile data x 2 (compressed)
Size of hotspot data area x 2 (used only by
SHED)
Unknown
(ImageHdr + WMFHdr + smCDataSize) x 2

Listing 2.2 ReadBMHeader().

20 — Windows Undocumented File Formats

Bitmaps
Following the SHGBITMAPHEADER is a list of RGBQUADS. These provide the color values
used by the bitmap. Immediately following the RGBQUADS is the actual bitmap data. If
the compression flag is set in the SHGIMAGEHEADER, then this data will be compressed
(but the RGBQuad information will not be compressed). This is a fairly simple RLE
compression algorithm, which I'll describe shortly.

Metafiles
Metafiles, as I said earlier, don't go through quite as drastic a change as bitmaps. The
structure for a metafile can be seen in Figure 2.2.

MRBC and SHED only accept placeable metafiles. Placeable metafiles are meta-
files that are preceded by the M E T A F I L E H E A D E R structure (Table 2.5). Microsoft docu-
ments this in the API references (Volume 4, Chapter 3 of Microsoft Windows 3.1
Programmer's Reference) and API help files, but it doesn't provide the structure in
W I N D O W S . H .

The key field is the value 0x9AC6CDD7L. This of course has a deep cosmic meaning
that only Bill Gates is aware of, or maybe it's his phone number in hex.

The hmf and reserved fields are unused and must be set to 0. The bbox field has the
bounding box rectangle for the image. The values are in metafile units. The inch field
tells how many metafile units there are to an inch. This value is usually 576 or 1000. It
should definitely be less than 1440.

Listing 2.2 (continued)
void ReadBMHeader(FILE *SHGFile, SHGBITMAPHEADER *SHGBM) {

fread(&(SHGBM->sbIsZero), 1, 1, SHGFile);
SHGBM->sbDPI = ReadWordVal(SHGFile);
fread(&(SHGBM->sbTwoHund), 2, 1, SHGFile);
SHGBM->sbNumBits = ReadWordVal(SHGFile);
SHGBM->sbWidth = ReadDWordVal(SHGFile);
SHGBM->sbHeight = ReadDWordVal(SHGFile);
SHGBM->sbNumQuads = ReadDWordVal(SHGFile);
fread(&(SHGBM->sbNumImp), 2, 1, SHGFile);
SHGBM->sbCmpSize = ReadDWordVal(SHGFile);
SHGBM->sbSizeHS = ReadDWordVal(SHGFile);
fread(&(SHGBM->sbunk1), 4, 1, SHGFile);
fread(&(SHGBM->sbSizeImage), 4, 1, SHGFile);

)

Multiresolution Bitmap (.MRB) File Format — 21

The checksum field is an XORed sum of the first 10 words of the M E T A F I L E H E A D E R
structure. There's a safety feature! In case you were reading a text file by mistake that
begins with 0x9AC6CDD7L, this is where you can be sure it's really a metafile.

METAFILEHEADER

METAHEADER

Metafile record

Metafile record

• • •

• • •

Table 2.5 METAFILEHEADER record.
Field Name
key
hmf
bbox
inch
reserved
checksum

Data Type
DWORD
HANDLE
RECT
WORD
DWORD
WORD

Comments
0x9AC6CDD7L
unused; must be 0
Bounding rectangle for image
Metafile units per inch
Unused; must be 0
XORed sum of first 10 WORDs of structure.

Figure 2.2 Placeable metafile layout.

22 — Windows Undocumented File Formats

This is followed immediately by the M E T A H E A D E R record (Table 2.6). This header is
described in the Microsoft Windows 3.1 Programmer's Reference, Volumes 3 and 4.
The only field that should change in this record when you create a .MRB or .SHG is the
mtSize field. MRBC or SHED will make two modifications to a metafile. First, it will
discard the M E T A F I L E H E A D E R record and add Se tWindowOrg() and Se tWindowExt ()
functions to the metafile. I'll discuss why this is done later. For now, though, you need
to know that the mtSize field is changed because of this.

This is immediately followed by a string of metafile records (Table 2.7). The
rdSize field contains the size of the metafile record, which varies depending on the
number of parameters in rdParm. rdFunct ion can be any of the metafile-supported
GDI functions.

When MRBC or SHED reads a metafile, it discards the M E T A F I L E H E A D E R structure
(but it is required to be in the original metafile). The information from the bbox field is
used to add two metafile records to the beginning of the metafile itself. The first record is
a 0x020B [SetWindowOrg()] function and the second is a 0x020C [SetWindowExt()] .
These provide the dimensions of the metafile. There is an exception. If the metafile

Table 2.6 METAHEADER record.
Field Name
mtType
mtHeaderSize
mtVers ion
mtSize
mtNoObjects

mtMaxRecord

mtNoParameters

Data Type
U I N T
UINT
U I N T
DWORD
UINT

DWORD

U I N T

Comments
Always 1 for .MRBs and .SHGs
Size of this header in WORDs (9 WORDs)
0x300 if it contains DIBs, else 0x100
Size of metafile in WORDs
Maximum number of objects that exist in
the metafile simultaneously
Size in WORDs of the largest record in the
metafile
Reserved

Table 2.7 Typical metafile record.
Field Name
rdSize
rdFunction
rdParm[]

Data Type
DWORD
WORD
WORD

Comments
Size of metafile record
GDI function
Parameters for GDI function

Multiresolution Bitmap (.MRB) File Format — 23

already has a SetWindowExt() function in it, MRBC or SHED simply ignores
the M E T A F I L E H E A D E R structure altogether. If there is a S e t W i n d o w E x t () but no
SetWindowOrg() , Se tWindowOrg() is assumed to be at 0,0.

Other than this alteration, the metafile remains more or less intact. The only other
change is that it is usually compressed.

.MRB Compression
MRBC and SHED use a simple RLE (Run Length Encoding) compression algorithm
to compress data. The help compiler, when importing bitmaps and converting them to
the .MRB/.SHG images, sometimes uses an LZ77 compression algorithm. I'll show the
code as it would apply to these images, but Chapter 7 will have a much more in-depth
discussion of the LZ77 algorithm in general, and Chapter 4 will talk more about the
implementation specific to WinHelp. Because this only occurs with WinHelp, I will
save most of the discussion about how bitmaps are handled in WinHelp for Chapter 4.

Compression is applied to both bitmaps and metafiles. With bitmaps, the compres-
sion begins on the data immediately following the RGBQuad list and continues
through all of the bitmap data. With metafiles, the compression begins immediately
after the S H G M E T A F I L E H E A D E R and continues through the entire metafile.

RLE compression basically works as follows: When you get a series, or "Run", of
bytes that are identical, say 20 zeros, instead of keeping those 20 zeros, you put in a
flag, a 20, and a zero. So instead of writing 20 bytes of zeros, you're writing three
pieces of information: A flag that indicates compression, the character that's repeated,
and the number of times that character is repeated. That's the theory; the implementa-
tions vary. In this case, there are seven simple steps to the decompression algorithm:
1. If not at the end of the data, read 1 byte into count, else quit.
2. If bit 8 of count is set, goto step 5.
3. Copy next input byte count times to the output file.
4. Goto step 1.
5. Subtract 0x80 from count (unset bit 8).
6. Copy next count bytes from the input file to the output file.
7. Go to step 2.

24 — Windows Undocumented File Formats

Listing 2.3 shows the code for the routine doRLE() , which decompresses data
from an input file to an output file. d o R L E () has three parameters: the input file, the
output file, and the number of bytes to decompress in the input file. It then returns the
size of the data after it's expanded.

Listing 2.3 doRLE().

Multiresolution Bitmap (.MRB) File Format — 25

The LZ77 algorithm is quite a bit more complex. Again, we'll discuss it more
in-depth in Chapter 7, but for now, the code here shows how we handle it. Listing 2.4
shows the doLZ77V3() routine. This is the version of LZ77 used by WinHelp. (Two
other versions, much like this routine, are supported by C O M P R E S S . E X E and L Z E X -
PAND.DLL See Chapter 7 for more details.)

Where Do I Go from Here?
Clearly, the .MRB file format isn't used quite as much anymore. Mainly because
almost everyone has Super VGA monitors. However, for those that are disassembling
old help files (see Chapter 4), you can remove the .MRB files and extract the bitmaps
from them. And because the SHED file format is still being used extensively, you'll
need this knowledge to deal with SHED files.

Listing 2.4 doLZ77V3().

26 — Windows Undocumented File Formats

Listing 2.4 (continued)

Chapter 3

Segmented Hypergraphic
(.SHG) FileFormat
Chapter 2 discussed the Multiresolution Bitmap (.MRB) file format. The Segmented
Hypergraphic (.SHG) file format is almost identical. It provides a few key differences
and some additional structures not normally found in a . M R B file. I say not normally,
because the Multiresolution Bitmap Compiler (MRBC) is capable of taking .SHG files
as input and retaining all hotspot data. Figure 3.1 shows a normal .SHG file. In a .MRB
file with multiple .SHG files (hereafter referred to as a multi-image .SHG file), sections
3 and 4 are repeated instead of section 3 only.

The primary difference between the .SHG file and the .MRB file is the support for
hotspots. Hotspots are rectangular areas you can define in a .SHG to produce an event
in WinHelp. Three events are supported by WinHelp 3.1, including a topic jump, a
topic popup, and macro execution.

SHED doesn't support multiple images within a .SHG file, but WinHelp does. As
far as WinHelp is concerned, a multi-image .SHG file is the same as a .MRB with
hotspots. My guess is that WinHelp doesn't really distinguish between .SHG files and
.MRB files. MRBC and SHED do distinguish between them. MRBC will take a .SHG
file as input, but it will truncate an input . M R B file to one image. SHED too will trun-
cate a .MRB file to one image.

27

28 — Windows Undocumented File Formats

. S H G File Header

.SHG Image Header

.SHG Bitmap Header
or .SHG Metafile Header

Bitmap/Metafile Data

Hotspot Header

Hotspot Records

Macro Strings (Optional)

Pairs of Context IDs and
Context Strings

Figure 3.1 .SHG file layout.

Section 1

Section 2

Section 3

Section 4

Segmented Hypergraphic (.SHG) File Format — 29

Hotspots
As stated earlier, the difference between .MRB and .SHG files is hotspots. Hotspots are
kept in the last section (section 4 and see Figure 3.2) of a .SHG file. They too are bro-
ken into four general sections: hotspot header, hotspot records, macro strings, and
pairs of context IDs and context strings.

The HOTSPOTHEADER (Table 3.1) has three fields. The hhVers ion field is the ver-
sion of hotspot records you are dealing with. The h h N u m H S field tells you how many
hotspots are defined in this .SHG file. hhContextOffset has the offset to the list of
context strings and context IDs relative to the end of the array of HOTSPOTRECORDs
(see below).

Figure 3.2 Hotspot Attributes dialog box.

Table 3.1 HOTSPOTHEADER record.
Field Name
hhVers ion
hhNumHS
hhContextOffset

Data Type
BYTE
WORD
DWORD

Comments
Always 0x01
Number of hotspots
Offset to context strings and context IDs

30 — Windows Undocumented File Formats

The HOTSPOTHEADER is followed by an array of HOTSPOTRECORDs (Table 3.2), one
for each hotspot. Figure 3.2 shows the hotspot Attributes dialog box from SHED.
These values are reflected in the HOTSPOTRECORD.

Valid hrType values are:
• 0x0042 = visible popup
• 0x0043 = visible jump
• 0x00C8 = visible macro
• 0x04E6 = invisible popup
• 0x04E7 = invisible jump
• 0x04CC = invisible macro

hrBox contains the bounding rectangle of the hotspot. The values contain the left,
top, right, and bottom sides of the rectangle relative to the upper left corner of the
image in pixels.

The hrMacOffset field contains the offset to the macro string, if this hotspot is a
macro. If it is not a macro, this value can be ignored. As shown in Figure 3.1, the
list of macros immediately follows the array of HOTSPOTRECORDs. The offsets in
hrMacOffsets are relative to the start of the macro list, so the offset to the first
macro would be 0. Each macro is a null-terminated string, so if the first macro was
Next () , for example, this string would be null-terminated and the second macro, if
there was one, would start at an offset of 6.

Immediately following the macro list is an array of context IDs (called hotspot
IDs by SHED, Figure 3.2) and context strings. Because the context string is also the
macro string for macros, macros are essentially listed twice, once in the macro string
list following the HOTSPOTRECORDs and again in this list. Each context ID and context
string is a null-terminated string.

We've included the source code for SHGDUMP, an MS-DOS program that will read
an .SHG or .MRB file. This program is meant only to illustrate reading hotspots from
such files, and could be used as a starting point for a more elaborate program, such as
a graphics editor.

Table 3.2 HOTSPOTRECORD record.
Field Name
hrType
hrZero
hrBox
hrMacOffset

Data Type
WORD
BYTE
RECT
DWORD

Comments
Hotspot type
Always 0
Bounding box of hotspot
Offset to macro data

Segmented Hypergraphic (.SHG) File Format — 31

Where Do I Go from Here?
.SHG files are used quite a bit in WinHelp files. Utilities for working with .SHG files
could easily be created using the information in this chapter. For example, a program
to modify the tab order of the hotspots in an .SHG file could be quickly built using the
source code in this chapter. You could also extract the bitmaps from an existing .SHG
file so you can modify them with your favorite graphics editor. You could even write a
converter to create image maps and graphics for your HTML documents, which is one
step of an . H L P to HTML converter.

Listing 3.1 SHEDEDIT.H.

32 — Windows Undocumented File Formats

Listing 3.1 (continued)

Segmented Hypergraphic (.SHG) File Format — 33

Listing 3.1 (continued)

34 — Windows Undocumented File Formats

Listing 3.2 SHGDUMP.C.

Segmented Hypergraphic (.SHG) File Format — 35

Listing 3.2 (continued)

36 — Windows Undocumented File Formats

Listing 3.2 (continued)

Segmented Hypergraphic (.SHG) File Format — 37

Listing 3.2 (continued)

38 — Windows Undocumented File Formats

Listing 3.2 (continued)

Segmented Hypergraphic (.SHG) File Format — 39

Listing 3.2 (continued)

Chapter 4

Windows Help File Format
Since this information was first published in Dr. Dobb's Journal, many mistakes have
been corrected and a lot of information has been added. In addition to many internal
HFS files that were intentionally omitted due to space considerations, the |TOPIC file
is described in much greater detail and is now complete.

Because of all of these changes, some structures have been modified or renamed.
Although my articles in Dr. Dobb's Journal were a good start, the information in this
book is much more accurate and up-to-date.

It should be clear that this description applies only to WinHelp 3.1 and WinHelp
4.0. WinHelp 3.0 was significantly different and is, for all intents and purposes, a
dead product. Although a lot of the information here will apply to WinHelp 3.0, some
key areas differ, including the layout of the internal |TOPIC file, which is where the
actual topic text and layout information is kept.

In this chapter, I'll lay out the different parts of the WinHelp . H L P file and then
provide a dump program that lets you view internal WinHelp files.

Overview
WinHelp, on the surface, may not seem all that complex, and unless you've actually
developed WinHelp . H L P files, it wouldn't occur to you how incredibly complex they
can get. This format has been able to easily handle incredibly large and complex files
like the MSDN-CD, Cinemania, and so on which get as large as 300Mb-400Mb. Obvi-
ously Microsoft had some forethought in developing the format in the sense that they

41

42 — Windows Undocumented File Formats

knew it should be able to handle very large files. On the other hand, there are many
instances where the structures and fields in structures don't make a lot of sense. After
talking with various people about the format (though no one at Microsoft who would
know), it appears that the WinHelp file format was probably developed by a single per-
son who, in the process of developing it, made ad hoc modifications to handle new fea-
tures. Because of this, WinHelp . H L P files can be very complex and messy. I would
hazard a guess that this is the main reason Microsoft never released the file format.

The basic structure of . H L P files is that of multiple files. A . H L P file has an internal
structure called the Help File System (HFS). The HFS is like a single directory in
DOS and contains, simply, a list of filenames and pointers to where those files are in
relation to the beginning of the help file. Each of these files, in one way or another
contributes something to the help file, such as keywords, context strings, font infor-
mation, and so on. All of these are then used together to render the help file on-screen.
It's not that all of these files are terribly complex, but that the combination of them all,
and using them all together, is very complex. As I discuss the different parts of the
.HLP file format, I'll try to give insights into how Microsoft uses these files and ways
you can use them to enhance WinHelp.

WinHelp B-Trees
A WinHelp . H L P file is a combination of many files. These files are kept internally in
what is called the Help File System (discussed later). The HFS and some of the data
files kept internally in WinHelp files are organized into b-trees. B-trees may be famil-
iar to those of you who didn't sleep through your data structures classes in school.
Until I started working on the WinHelp file, I didn't really know much about b-trees, I
think I slept in class that day. To refresh my memory, I went back to some old data
structures books that use phrases like "branching factor", and they calculate disk
accesses with logarithms. Not exactly my cup of tea, so I'm going to try to explain
them in English.

A b-tree is a structure made up of nodes or pages. There are two types of nodes,
index nodes and leaf nodes (Figure 4.1). Index nodes contain a list of "keys" and links
to other nodes. All of the keys are in alphabetical order. In Figure 4.1, Level-0 and
Level-1 nodes are all index nodes. Say you're looking for the word "Beast". To find it,
search Node 1 first. You don't find it there, but "Beast" alphabetically comes before
"Example", our first key, so you know to go to Node 2 because there is a link pointer
to Node 2 before "Example". From Node 2 you see that, again, "Beast" comes before
"Blow Fish", so you go on to Node 5. Node 5 is a leaf node. All nodes on the highest
level, in this case, Level 2, are leaf nodes. Leaf nodes contain the data you're searching
for. From Node 5, simply perform a linear search to find the word you're looking for.

Windows Help File Format — 43

The b-tree format is very efficient in WinHelp. The reason is this: If a WinHelp file
has 3,000 internal files, it will need about 15 to 18, 1Kb nodes to store the list of files.
If you have to search this file in a linear search, you'd average about 7 node-sized disk
reads. On the other hand, if the file list is in a b-tree format, 3,000 files could be kept
in 15 to 18 nodes of a two-level b-tree, meaning you'd have to read exactly two
node-sized pages from disk before you had the node with your data. From there, a
simple linear search of the node would provide the filename quickly. Although b-trees
save little time for small files (100Kb or less), for larger files, it can provide a tremen-
dous boost in performance. Microsoft was obviously looking ahead to the days of
300Mb help files.

These large numbers can come up in other places too, such as the Topic Titles
b-tree, KeyWord b-trees, and so on. These are all kept in internal files and can grow
quite large with large .HLP files.

Figure 4.1 B-tree structure made up of index nodes and
leaf nodes.

Node 2

Example

Node 3

Test

Node 4

Node 1

Node 2

Node 5

Blow Fish

Node 6

Dandruff

Node 7

Node 5

Answer
Ask

Baby

Battle

Beast
Bicycle

Blow Fish

Root Level
or Level 0

Level 1

To Node 4

To Node 3 To Node 7

Level 2

To Node 6

44 — Windows Undocumented File Formats

Help File Header
Each . H L P file begins with a H E L P H E A D E R (Table 4.1). This header simply has a magic
number that identifies this file as a WinHelp .HLP file, a pointer to the WHIFS (dis-
cussed below), and a FileSize field. There is also a reserved field, which should
always be set to -1. The F i leSize is really only useful as a sanity check and should
match the size of the file displayed by DOS. I suppose it could be useful if you wanted
to read the entire file into memory, but there's really no reason to do that.

The HFSLoc field contains the offset to the beginning of the Help File System
inside the . H L P file.

The Help File System (HFS)
WinHelp files are based on a structure called the HFS, or Help File System. In my
article in Dr. Dobb's Journal, I referred to this as the WHIFS (WinHelp Internal File
System). It turns out that Microsoft has provided some documentation on this (not
much, though), so I thought it would be less confusing (and two characters shorter) to
adopt their naming convention.

The HFS is a directory, much like a DOS directory, that contains a list of filenames
and offsets to those files within the help file. All of these "files" are actually inside the
WinHelp file. When the help compiler generates a . H L P file, it builds temporary files,
in the form of true DOS files, that contain various types of information. When it has
finished building all of these temporary files, it then combines them into a single .HLP
file and generates the HFS, which has pointers to these different internal files.

The help compiler also allows you to import "baggage" files into your WinHelp
file. This essentially brings a DOS file into a WinHelp file and provides a pointer in
the HFS to this file. WinHelp exports several functions for dealing with baggage files.
These functions can also be used to access other HFS files.

Table 4.1 HELPHEADER record.
Field Name
MagicNumber
HFSOff
Reserved
Fi leS ize

Data Type
DWORD
long
long
long

Comments
0x00035F3F
Offset to HFS
-1
Size of entire . H L P file

Windows Help File Format — 45

The following is a list of the internal files you are going to run into with a short
description of each one. Notice that most of the internal files generated by WinHelp
begin with a "|" (pipe) character. All filenames in the HFS are case sensitive.

|CONTEXT Contains a list of hash values, generated from context words, and offsets
into the |CTXOMAP file.

|CTXOMAP Lists all the topics from the [MAP] section of the Help Project File (.HPJ)
with a Map number (from the .HPJ file), and an offset to the actual topic data.

|FONT Contains a list of fonts and font descriptors. These are used to display text in
the proper fonts within the topics.

|KWBTREE, |KWDATA, |KWMAP (as well as |AWBTREE and |AWDATA, discussed later)
These three files provide access to the keyword list and the topics associated with the

keywords. Using the Multikey option will get you another set of files. For example, using
the Multikey option with the letter "L" will add |LWBTREE, |LWDATA, and |LWMAP.

|Phrases Contains a list of phrases that WinHelp uses to provide extra compression
of topic text. This list may also be compressed with LZ77 compression.

|PhrImage and |PhrIndex These are used by Hall compression. As discussed later,
we were unable to decipher the formats used here.

|SYSTEM This contains various pieces of information about the help file, including
the date the file was generated, the version of the compiler, the type of compression,
etc. It also contains a lot of information that was listed in the Help Project File (.HPJ),
such as copyright notice, secondary window information, etc.

|TOPIC This is the biggest and most complex of all the internal files. This file con-
tains all of the actual text from the topics, including formatting information.

|TTLBTREE Contains a list of topic titles with their associated offsets into the
|TOPIC file.

|bmx These are bitmap files referred to by the topics. "x" is a sequential whole num-
ber beginning at zero. If you have three bitmaps, they'd be referred to as |bm0, |bm1,
and |bm2. As a side note, in version 3.0 help files, these filenames are the same except
the "|" (pipe) character did not precede the name.

Baggage files Baggage files retain their case-sensitive filenames and extensions
exactly as they were specified in the .HPJ file (any path information is discarded). If

46 — Windows Undocumented File Formats

in the .HPJ you refer to a file as C : \ M Y P A T H \ F i L e N a M e . E x T , it will be stored in the
help file with the same case, leaving you with an internal file called F iLeNaMe.ExT.

The first 9 bytes of every file in a WinHelp file is the H F S F I L E H E A D E R record
(Table 4.2). The HFS itself is considered a file (although it doesn't list itself in the
HFS directory), so even the HFS has an H F S F I L E H E A D E R record. This record contains
three fields. The F i l e P l u s H e a d e r field is the size of the file plus the 9 bytes of the
header. The second field, FileSize, is the size of the file without the header. Why are
both values included? Beats me. The first is always 9 bytes larger than the second. I
suppose it was to allow for the possibility of having a different H F S F I L E H E A D E R
record, although I haven't come across one yet.

Table 4.2 HFSFILEHEADER record.
Field Name
Fi l eP lusHeade r
Fi leSize
FileType

Data Type
long
long
char

Comments
Size of HFS file in bytes + 9-byte header
Size of file without header
1-byte file type

Table 4.3 HFSBTREEHEADER record.
Field Name
Signature
Unknown1
FileType
PageSize
SortOrder[16]
FirstLeaf
N S p l i t s
RootPage
FirstFree
TotalPages
NLeve l s
Tota lHFSEntr ies

Data Type
WORD
char
char
in t
char
in t
int
int
in t
int
int
DWORD

Comment
Signature for header, always 0x293B
Always 0x02
Same as in F I L E H E A D E R record
Size of the b-tree pages
Describes sort order
First leaf page number
Number of splits in b-tree
Page number of root page
First free page
Total number of pages in tree
Number of levels in tree
Total number of entries in HFS b-tree

Windows Help File Format — 47

The last field is FileType, which takes one of two values: FT_NORMAL (0x00),
which is any normal file, and FT_HFS (0x04), which is used in the H F S F I L E H E A D E R
record for the HFS.

#define FT_NORMAL 0x00
#define FT_HFS 0x04

The first 9 bytes of the HFS, therefore, will be an H F S F I L E H E A D E R record. The
Fi leSize and F i l e P l u s H e a d e r fields will tell you how large the entire HFS is. The
FileType field should always be FT_HFS. This is the only time I'll really describe the
H F S F I L E H E A D E R record. From now on, when I discuss the first record of a file, I will
mean the first record following the H F S F I L E H E A D E R record. For example, if I'm talk-
ing about the |TTLBTREE file, I will say that the first record is the B T R E E H E A D E R
record. It is assumed that the file header record has already been read.

As mentioned earlier, the HFS is organized into a b-tree. So, the first record in the HFS
(following the HFSFILEHEADER record, of course), is the BTREEHEADER record (Table 4.3).

The FileType byte is the same as the byte in the H F S F I L E H E A D E R record, and they
should always match. (As you will see, this sort of redundant information pops up in
WinHelp quite often.)

The next field, PageSize, tells how large the individual pages of the b-tree are. For
the HFS, this always appears to be 1Kb for help files, but it's probably best to use this
field and be able to handle different-sized b-tree pages. In fact, as you'll see in Chap-
ter 5, Annotation and Bookmark files use a different page size. For those of you that
go on to write your own help compiler, I would suggest trying to come up with an
algorithm that optimizes the HFS b-tree page size, not only for speed, but for size.
This is one area where a few kilobytes of file space can be saved, especially with
smaller help files.

The PageSize field is followed by 17 characters that I call SortOrder here. This
is just a guess, but it appears that different language versions of the help compiler pro-
duce different values for this field. Sometimes only part of the field is used. I can only
assume that it, somehow, describes the sorting order for different languages. I have
not been able to figure out how it is used.

The code in Listing 4.1 traverses the HFS b-tree to find an HFS filename. This
code is from H L P D U M P 2 . C , which comes on the companion diskette. Since
HLPDUMP2 isn't really concerned with speed or efficiency, actual traversal of the
b-tree wasn't necessary. I felt it was important to show how it's actually done, how-
ever, so I added this function for that reason.

The first section, encompassed by the if (HFSHeade r .To ta lPages > 1), is
where you search the index pages and follow the keys down to the leaf page. The way
this works is simple. Read the first index page, or root page (provided in the b-tree
header record described later). Search through the list of keys on this page to find out
which page the next key is on. Continue this process until you're down to the leaf

48 — Windows Undocumented File Formats

Listing 4.1 B-tree traversal.

Windows Help File Format — 49

pages, and do a simple sequential search to find the string or value you're searching
for. (This code is found in the second half of the function, after the comment "Loop
through all files on this page".) If it's not found on this leaf page, it's not in the tree. If
it is found, then whatever data is associated with it will follow. For example, in the
leaf pages of the HFS b-tree, each key is a string with an HFS filename. Each string is
followed by an offset to where that file is located in the help file.

Although this code is specific to the HFS b-tree, similar code could be used to
traverse the KWBTREE, TTLBTREE, and other b-tree structures in a .HLP file.

Listing 4.1 (continued)

50 — Windows Undocumented File Formats

A Note on Object-Oriented Programming
The C language is used for code in this book. We feel C is still the best known lan-
guage and is better as a demonstration tool, at least at this point. We both normally
use C++ for our work and that's why I feel it's important to point out a few things for
those who might want to implement code in C++ for dealing with help files. One
place where C++, or any object-oriented language, would be really helpful is dealing
with b-trees. The problem with coding for WinHelp b-trees in C is that there's no easy
way to have a single piece of code deal with the different data types held in Winhelp
b-trees. On the other hand, in C++, if you have a b-tree abstract base class, you could
share much of the functionality of traversing, or even building, a b-tree in one base
class. All functionality dependent on the individual files could be broken down into
the individual derived classes for those files.

Listing 4.1 (continued)

Windows Help File Format — 51

Another place that C++ would come in very handy is supporting both the Win-
dows 3.1 and Windows 95 version of the help file. If certain things are handled differ-
ently, you can easily override that specific behavior much easier in C++ than in C.

.HLP File Organization
Before we start getting into the nuts and bolts of . H L P files, we wanted to give a brief
overview of the organization of help files and how they work. The center point of all
help files is the |TOPIC file. This is where the text for the actual help topics is kept.
When WinHelp reads a topic, it must then refer to at least one other file, and possibly
others, to produce the text. When WinHelp reads data for a topic, it must first figure
out which font is being used. A reference to the font number is in the |TOPIC file.
From there WinHelp goes to the |FONT file to get the information on the font. If the
text is compressed, WinHelp must go to the | Phrases file to extract phrases to insert
into the topic text.

These are just some of the interdependencies of WinHelp's internal files. When
developing software for WinHelp, you need to think about these things beforehand. If
you're planning on extracting topic text, for example, it's a good idea to keep the
entire |Phrases file in memory so you don't have to extract the text from the files
every time you locate a phrase replacement. You'll also want to keep the |FONT file in
memory, if you're using fonts, to keep disk activity to a minimum.

Other interdependencies include the |KWBTREE, |KWDATA, and |KWMAP files. All of
these files work together to perform one function — keyword lookup.

Getting a handle on these interdependencies is crucial to understanding how Win-
Help works as a whole. As I discuss the different files, I'll discuss how they interact
with other files. In some places I'll point out how WinHelp performs tasks that aren't
obvious from a simple look at the file formats. Armed with this knowledge, you
should be able to do everything from writing your own WinHelp viewer to writing
your own WinHelp compiler.

WinHelp Compression
The help compiler (H C . E X E) for Windows 3.0 provided a method of compression
called "phrase replacement" compression, during which, while scanning through text
from the help file, the compiler put together a list of phrases. As it encountered dupli-
cates of these phrases, it built a table of the most common ones. In the last pass of the
compile, it then removed these phrases from the actual text and inserted a reference
number in its place. This reference number pointed to a phrase in the phrase table
which then could be inserted whenever the topic text was displayed.

52 — Windows Undocumented File Formats

This compression was activated by adding the command COMPRESSION=TRUE in
the [C O N F I G] section of the Help Project File (.HPJ).

When Windows 3.1 came out, a new WinHelp and help compiler were released.
One of the improvements was an additional level of compression. This was activated
by either COMPRESSION = TRUE or COMPRESSION = H I G H (the new command COM-
PRESSION = M E D I U M replaced the old COMPRESSION = TRUE). This new level of com-
pression added an LZ77 compression algorithm (called Zeck compression), which is
identical to the compression used by C O M P R E S S . E X E (see Chapter 6), although the
actual implementation of the algorithm is slightly different. This compression was
implemented in two places — the |TOPIC file and the |Phrases file. The compression
of the |Phrases file starts after the PHRASEHDR (discussed later) and encompasses the
rest of the |Phrases file. For the |TOPIC file, the compression is done in increments
of 2Kb blocks. This is necessary to allow one to get to topics without having to
decompress every preceding topic. At the most, a preceding 2Kb would need to be
decompressed to get to the beginning of a topic.

Because I've already discussed the LZ77 compression used by COMPRESS.EXE, I
will simply mention the areas in which the compression is different. The changes are
rather subtle and the code changes for the decompression are fairly moderate. Specif-
ically, in the LZ77 implementation used by COMPRESS.EXE, compression codes and
uncompressed data are thought of as "terms". For every 8 "terms", a flag BYTE pre-
cedes those terms. Each bit in the flag BYTE tells you if the corresponding "term" is a
BYTE of uncompressed data or a 2-BYTE compression code. In COMPRESS.EXE, a set bit
(or a 1) means that the term is uncompressed data, whereas a cleared bit (or a 0) indi-
cates a compression code. In WinHelp, this same format is used; however, the mean-
ings of set bits and cleared bits is reversed.

Table 4.4 SYSTEMHEADER record.
Field Name
Magic
Version
Revis ionf
Always0
Always1
GenDate
Flags

Data Type
BYTE
BYTE
BYTE
BYTE
WORD
DWORD
WORD

Comment
0x6C
0x03
0x0F, 0x15, 0x21
Always 0
Always 0x0001
Time/date stamp help file created
See the discussion of Flags in the section
"|SYSTEM"

Windows Help File Format — 53

With the release of WinHelp 4.0, a further level of compression was added —
H a l l Compression. Sadly, we have been unable to come up with the exact format of
the Hall compression. It seems to operate completely differently from the |Phrases
and LZ77 algorithms that we have managed to reverse engineer.

|SYSTEM
The |SYSTEM file is probably the single most important source of general information
within a .HLP file. The |SYSTEM file contains a lot of information kept in the Help
Project file and if you want to decompile a .HLP file, this is where you get the infor-
mation for that file.

Following the HFSFGLEHEADER record (which is at the beginning of all HFS
files, remember?) is the SYSTEMHEADER record (Table 4.4). The SYSTEMHEADER record
contains the version of WinHelp needed to use the .HLP file (in a rather vague num-
bering scheme), the date the file was generated, and a Flags WORD.

If F lags = 0x04, then the help file implements Zeck compression, which leads to
the question, how does one know which compression algorithm is used if it isn't
Zeck? Fairly simply. If a |Phrases file exists, then Phrase compression is used. If
|Phr Image and |Ph r Index files exist, then Hall compression is used. And finally, if
this flag is set to 0x04, then Zeck compression is used.

Following the SYSTEMHEADER records is a list of SYSTEMREC records (Table4.5).
These contain the juicy information. The SYSTEMREC structure is very simple.

The RecordType field identifies the type of information in the SYSTEMREC record.
This can be a macro, copyright information, icon data, etc. The valid values are listed
in the following code fragment:

Table 4.5 SYSTEMREC record.
Field Name
RecordType

DataSize
RData

Data Type
WORD

WORD
void *

Comment
Type of data in record (see the dis-
cussion of RecordType in the section
"|SYSTEM".)
Size of Rdata
Record data

54 — Windows Undocumented File Formats

#define HPJ_TITLE 0x0001
#define HPJ_COPYRIGHT 0x0002
#define HPJ_CONTENTS 0x0003
#define HPJ_MACRO 0x0004
#define HPJ_ICON 0x0005
#define HPJ_SECWINDOW 0x0006
#define HPJ_CITATION 0x0008
#define HPJ_CONTENTS_FILE 0x000A

The DataSize field is the number of bytes to read into RData.
RData is defined as a void * because it can contain anything from the text of a

macro to the data of the icon associated with the help file.
HPJ_TITLE, HPJ_COPYRIGHT, HPJ_CONTENT, and HPJ_CITATION simply contain a

string (not null-terminated) for the TITLE=, COPYRIGHT=, CONTENT=, and CITATION=
lines of the .HPJ file. The only odd ball in the group is HPJ_COPYRIGHT, which seems
to appear in all help file compiles, regardless of whether or not a COPYRIGHT= line is
in the .HPJ. In the case where there is no COPYRIGHT= line, the DataSize field is 1
and RData is simply a single null byte (0x00).

HPJ_MACRO is also just text. It contains the text of each macro call listed in the
.HPJ. You'll notice that the macros are kept in the same format as they are in the .HPJ,
meaning that if you use "RR" instead of RegisterRoutine, the HPJ_MACRO record will
contain RR. These are then read and parsed at run time by WinHelp.

Table 4.6 SECWINDOW record.
Field Name
F l a g
Type[10]
Name[9]
Caption[15]
X
Y
W i d t h
Height
M a x i m i z e
SR_RGB
NSR_RGB

Data Type
WORD
char
char
char
int
int
int
int
WORD
RGBQUAD
RGBQUAD

Comment
Valid fields
Type of secondary window
Name of secondary window
Caption for secondary window
Starting x-coordinate
Starting y-coordinate
Width of secondary window
Height of secondary window
Maximize flag
Scrolling region background color
Nonscrolling region background color

Windows Help File Format — 55

HPJ_ICON is the actual data of the icon for the help file (generated from an ICON=
statement in the .HPJ). This format is exactly the same as the standard ICON format.
You can find a description of this format in the SDK documentation.

HPJ_SECWINDOW is slightly more complicated than the others, because it contains a
S E C W I N D O W structure (Table 4.6).

The F lag WORD contains a flag that basically describes which fields of the
SECWINDOW record are valid. Because a secondary window definition in the .HPJ
includes many optional fields, some of these may be invalid. The following values
describe the valid fields:

#define WSYSFLAG_TYPE 0x0001
#define WSYSFLAG_NAME 0x0002
#define WSYSFLAG_CAPTION 0x0004
#define WSYSFLAG_X 0x0008
#define WSYSFLAG_Y 0x0010
#define WSYSFLAG_WIDTH 0x0020
#define WSYSFLAG_HEIGHT 0x0040
#define WSYSFLAG_MAXIMIZE 0x0080
#define WSYSFLAG_SRRGB 0x0100
#define WSYSFLAG_NSRRGB 0x0200
#define WSYSFLAG_ONTOP 0x0400

The Type field contains the null-terminated word "Secondary". Presumably this
was to allow for different classes of secondary windows; however, I have only seen
this one used.

The Name field contains the name of the window as it is referred to in jumps. For
example, mywindow>mytopic would show mytopic in the mywindow secondary win-
dow.

Caption contains the text of the window title bar.
X, Y, Wid th , and Height contain the location and dimensions of the window (very

cryptic, isn't it?).
The Max imize field is either a 0 or 1. A 0x0000 indicates that the window is set to

the dimensions specified in X, Y, W i d t h , and Height (or whatever defaults WinHelp
uses if these aren't specified). A 0x0001 tells WinHelp to maximize the secondary
window and to disregard the dimensions for initially showing the window. (If the user
hits the Restore button after WinHelp has displayed the window maximized, it will
return to specified dimensions.)

SR_RGB and NSR_RGB contain the default RGB values for the background of the
scrolling region and nonscrolling region, respectively.

56 — Windows Undocumented File Formats

|Phrases
The |Phrases file (remember, HFS filenames are case sensitive) is used as part of the
compression in WinHelp. When you use the COMPRESSION=HIGH or C O M P R E S -
S I O N = M E D I U M statement in your .HPJ, the help compiler generates a |Phrases file.
This file contains a list of the most common "phrases" in a help file.

A phrase is actually any series of characters. For example, "Their help file" could
be a phrase, but so could ". Their he". Then, in the topic text, instead of actually stor-
ing the text, a pointer to the phrase is given allowing WinHelp to use 2 bytes instead
of however many bytes it takes to store the phrase. This provides a significant space
savings in larger help files. Because help files tend to be topic specific, many words
and phrases tend to be reused. For example, in the help file for the solitaire game that
comes with Windows, the word "card" is used repeatedly. If you were to replace every
occurrence of "card" with a 2-byte code, you'd save 2 bytes for every occurrence.
Usually, though, the phrases are longer than four letters, so the space savings can be
tremendous.

There are two possible layouts of the |Phrases file, depending on the level of
compression used. For COMPRESSION=MEDIUM, the PHRASEHDR record doesn't contain
the PhrasesSize field. For COMPRESSION=HIGH, the phrases file is compressed with
an LZ77 algorithm. The reason for this is that the |Phrases file can grow quite large
with long phrases and a large number of phrases (as many as 1,024). The actual
implementation of the LZ77 algorithm was discussed earlier in this chapter. The com-
pression begins immediately following the PHRASEHDR record and continues to the end
of the file.

The PhrasesSize field in the PHRASEHDR record contains the size of the |Phrases
file (minus the size of the PHRASEHDR record) after it has been decompressed. The
main purpose is that it tells you how much space you'll need to allocate to hold all the
phrases after decompression.

Once loaded (or decompressed and loaded), the |Phrases file consists of two sec-
tions: Offsets and Phrases. The Offsets section is a list of offsets (of WORD data type) to
the beginning of phrases in the Phrases section. For example, if there are 10 phrases,
there will be 11 offsets, one for the beginning of each phrase and one for the end of
the last phrase. The first phrase will begin immediately after the offsets, that is, 22
bytes after the first offset. To find the length of the first phrase, subtract the first offset
(22) from the second offset, which points to the beginning of the second phrase.

|KWBTREE, |KWDATA, and |KWMAP

As mentioned earlier, in ".HLP File Organization", there are a lot of interdependen-
cies in WinHelp. That is the case with these three files, and that is why they are
grouped into one topic. |KWBTREE is a simple b-tree of keywords with a pointer to a
list of topic offsets in |KWDATA. This is necessary because a single keyword can be

Windows Help File Format — 57

associated with more than one topic. The |KWMAP file is used to provide quick access
back into the | K W B T R E E file based on a keyword number.

In WinHelp 4.0, two other files were introduced: |AWBTREE and |AWDATA. These
files mimic the |KWBTREE and |KWDATA files, except they work with the new A-type
keywords in WinHelp 4.0 instead of the regular keywords. This, however, is along the
same lines of the Multikey option in WinHelp. WinHelp has always allowed for key-
words based on different letters by adding the line MULTIKEY=x to the help project file,
where x is a letter from A to Z. In each of these cases, a new set of keyword files are
created. For example, with MULTIKEY=V, you will have the files | V W B T R E E , and
|VWDATA. Also notice that there is no equivalent of |KWMAP. The reason is that |KWMAP
appears to be used specifically for the keyword search facility in WinHelp, which
does not work for non-"K" keyword lists. This will become clearer later on as I dis-
cuss the |KWMAP file and how it helps the WinHelp search engine.

As I said, the |KWBTREE file is another simple b-tree. It contains a list of KWBTREEREC
structures (Table 4.7) in the leaf pages. The Keyword, of course, is the key in the index
pages. I have defined Keyword as char[80] for simplicity. It is a variable-length string
that is null-terminated and should be read in that way, but it is limited to 80 characters.
The Count field contains the number of occurrences of the keyword in the |TOPIC file
and the number of topic offsets you'll find in the |KWDATA file. KWDataOffset, obvi-
ously, is the offset to the list of topic offsets in the |KWDATA file.

The |KWDATA file is very simple. It has a list of topic offsets (DWORDs), which are
referenced from the |KWBTREE file. For example, if you traverse the |KWBTREE file for
the keyword "Flower", you could find six occurrences. The KWDataOffset field tells
you that the first offset is located in |KWBTREE at 24h. From there, you would go to
byte 24h in |KWDATA and the next six long data types would be the topic offsets for
the occurrences of the word "Flower". When WinHelp displays the keyword lists, it
provides a list of topic titles associated with the keywords. How does it pull that off?
Well, it's actually simple, but it's another example of the interdependencies of the
internal files. WinHelp reads through the keyword topic offsets and then goes to the
|TTLBTREE file (topic titles) and matches the keyword offsets with topic title offsets,
giving it the information it needs to display the topics with the keywords.

Table 4.7 KWBTREEREC record.
Field Name
Keyword
count
KWDataOffset

Data Type
char[80]
int
long

Comments
Keyword
No. of keyword occurrences
Offset into |KWDATA file

58 — Windows Undocumented File Formats

The | K W M A P file is used as a shortcut method for avoiding traversal of the | K W B -
T R E E file. WinHelp probably uses this file for the following situation: You select the
Search button from WinHelp. WinHelp goes through the | K W B T R E E file and reads the
entire list of keywords. When you go through this list, you pick a keyword to retrieve
a list of associated topics. At this point, instead of retraversing the b-tree to find the
proper KWBTREEREC, WinHelp takes the index number of the keyword and then goes to
the |KWMAP file. The |KWMAP file has a l ong data type that gives the number of
KWMAPREC records (Table 4.8) in the file. This is immediately followed by a list of
KWMAPREC structures. The first field, FirstRec, contains the index number of the first
keyword on a given leaf page. This is followed by PageNum, which has the page num-
ber this keyword is located on. This allows WinHelp to find the proper b-tree leaf
page, just by knowing the number of the keyword.

|TTLBTREE
| TTLBTREE contains a list of the titles for all the topics in a . H L P file along with an off-
set to the topics the titles are associated with. As the name implies, this list is kept in
the form of a b-tree. As with the | K W B T R E E file, this b-tree uses a 2Kb page size and
uses the same BTREENODEHEADER and B T R E E I N D E X H E A D E R records. The key used in the
index pages is the topic title itself.

The data on the leaf pages consists of a topic offset, followed by a null-terminated
string containing the topic title. If you look through a |TTLBTREE, you'll notice a lot
of offsets without any actual titles. The reason for this is that not all topics necessarily
have a title. When this is the case, there will be no title in |TTLBTREE, but the offset to
the topic will appear.

|FONT
The |FONT file is where .HLP files keep all of their information about fonts used in the
topic text (big surprise!). . H L P files actually maintain very specific font information,
not just the name and point size. The reason is that when WinHelp encounters a font
that isn't available on the system, with very specific information, it can find a much
closer match than it could by name alone. This is important in maintaining the consis-
tency of viewed text.

Table 4.8 KWMAPREC record.
Field Name
FirstRec
PageNum

Data Type
long
int

Comments
Index number of first keyword
Page number of leaf with keyword

Windows Help File Format — 59

. H L P files keep two lists of fonts. One is a simple list of font names followed by
the font descriptor table. The font descriptor table provides information about point
size (in half point increments), color in the scrolling region, color in the nonscrolling
region, font family, and attributes (such as bold, italics, etc.).

The layout of the |FONT file is quite simple. It begins with the FONTHEADER
(Table 4.9).

The DescriptorsOffset has the distance to the beginning of the descriptor table
relative to the end of the FONTHEADER record. In between the FONTHEADER and the
descriptor list is the list of font names. This list is simply fixed-length, null-terminated
font names. For WinHelp 3.1, font names are 20 characters, and in WinHelp 4.0, font
names are 32 characters (a quick check of the system record will, of course, tell you
which version you're working with). Because the font names are null-terminated, one
character must be the NULL, allowing 19 or 31 characters per font name.

The font list is immediately followed by an array of FONTDESCRIPTOR records
(Table 4.10), which should not be confused with LOGFONT structures, which are com-
pletely different (so there shouldn't be any confusion anyway, just making sure). The
Attributes field is the bitwise ORed sum of font attributes such as bold, italic, etc.
The H a l f P o i n t s field is the size of the text in half points. The FontFami ly field tells
WinHelp the general variety of font. This is useful in determining close matches if the
existing font is not available. FontName is an index into the font list that preceded the
font descriptors. This is followed by two RGBQUADs, one for the color of the font when
it is in the scrolling region and one for when the font is displayed in the nonscrolling
region. The idea behind this is to prevent repeating the same font descriptor simply
because the font is in the nonscrolling region.

Table 4.9 FONTHEADER record.
Field Name
NumFonts
NumDescr ip tors
DefDescriptor
DescriptorsOffset

Data Type
WORD
WORD
WORD
WORD

Comments
Number of fonts in font list
Number of font descriptors
Default font descriptor
Offset to descriptor list

60 — Windows Undocumented File Formats

/* Font Attribute Values */
#define FONT_NORM 0x00 /* Normal */
#define FONT_BOLD 0x01 /* Bold */
#define FONT_ITAL 0x02 /* Italics */
#define FONT_UNDR 0x04 /* Underline */
#define FONT_STRK 0x08 /* Strike Through */
#define FONT_DBUN 0x10 /* Dbl Underline */
#define FONT_SMCP 0x20 /* Small Caps */

/*Font Family Values */
#define FAM_MODERN 0x01
#define FAM_ROMAN 0x02
#define FAM_SWISS 0x03
#define FAM_TECH 0x03
#define FAM_NIL 0x03
#define FAM_SCRIPT 0x04
#define FAM_DECOR 0x05

Font descriptors are created for every variation of a font in the help file. For exam-
ple, if you have 16-point Helvetica Bold in a title and follow that with 12-point Hel-
vetica in the text, you'd have two font descriptors. If you bold a word in the 12-point
Helvetica text, that would create a third font descriptor. If you italicize a word, you
would then have a fourth font descriptor, and so on. As you can see, it's easy to accu-
mulate a lot of font descriptors.

Table 4.10 FONTDESCRIPTOR record.
Field Name
Attributes

H a l f P o i n t s
FontFamily

FontName
Unknown
SRRGB
NSRRGB

Data Type
BYTE

BYTE
BYTE

BYTE
BYTE
R G B T R I P L E
R G B T R I P L E

Comments
Font attributes (See the discussion of font
descriptors in the section "|FONT".)
Point size x 2
Font family (see the discussion of font
families in the section "|Font".)
Font name (refers to font list no.)
Unknown but always seems to be 0
Scrolling region color
Nonscrolling region color

Windows Help File Format — 61

|CTXOMAP
|CTXOMAP (Table 4.11) is the simplest of the WinHelp internal files. In the Help
Project (.HPJ) file, you can create a list, under the [MAP] section, of context strings
(created in the help file with a context string footnote) and assign unique identification
numbers to these topics. These IDs, in turn, can be used from the W i n H e l p () API call
to display a topic.

The first WORD of the |CTXOMAP file is a count of the number of CTXOMAPREC
records to follow. The CTXOMAPREC has two fields. The M a p I D field is the map ID
assigned in the .HPJ. The second field is the offset of the topic.

|CONTEXT
Like many of the other files, |CONTEXT is a b-tree structure. The leaf nodes consist of
a list of hash values and topic offsets. The key in the index nodes is the hash value.
The hash values are generated from a list of keywords and context strings. The pur-
pose appears to be to allow a user to type a keyword or context string and to quickly
locate that with a minimum amount of space. In other words, if the key was the actual
keyword or context string instead of a hash table, the space required for the text would
take up too much space. The hash values are calculated using a hashing algorithm
(Listing 4.2) that Ron Burk was able to reverse-engineer. Following is a sample pro-
gram that calculates a hash value, given a string. As with all hash functions, there is
no way to determine the string, given a hash value.

The actual data in the leaf pages of the |CONTEXT file is simply one hash value fol-
lowed by a topic offset. The hash value is a DWORD. Although it's not really important,
it is known that the hash values are treated as signed long integers in WinHelp,
because they are sorted in that fashion.

|TOPIC
The |TOPIC file format is, by far, the most complex of all the HFS files. The |TOPIC
file, as its name would imply, contains all of the information for individual topics. It
contains paragraph formatting options, paragraph text, pointers to phrases in
|Phrases (if it exists), and so on.

Table 4.11 CTXOMAP record.
Field Name
M a p I D
TopicOffset

Data Type
long
long

Comments
Map ID from HPJ
Offset to topic in |TOPIC file

62 — Windows Undocumented File Formats

To add one small layer of additional complexity, when the help file is compiled
with COMPRESS=HIGH, the |TOPIC file is compressed with the LZ77 compression.

The main complexity of the |TOPIC file involves two things: topic offsets and
multiple layers. I'll discuss the topic offsets later. The multiple layers can get a little

Listing 4.2 WinHelp hashing function.

Windows Help File Format — 63

confusing. The |TOPIC file has two layers, really: the paragraph layer and the topic
layer. The topic layer is embedded within the paragraph layer. So when you first start
traversing the |TOPIC file, you do it one paragraph at a time. The paragraphs are con-
nected via a doubly linked list. There are three different types of paragraph records:
topic headers, paragraph data, and table data. The topic headers, in turn, create the
topic layer. These topic headers create another doubly linked list of topic records. I'll
discuss all of these later in greater depth.

Topic Offsets
Most of us are familiar with offsets. Offsets are used in many aspects of program-
ming. Because of the complex nature of WinHelp, direct offsets to a location in the
|TOPIC file are inadequate for many jobs. For example, when finding the exact loca-
tion of a keyword, you can't simply say that it's 85 bytes into the |TOPIC file. Why
not? One reason is compression. if you're looking for the keyword "Carthage", what
do you do if it is part of a phrase being used in phrase replacement? You could replace
all the phrases and then use a direct offset, right? That works fine if your help file is
tiny, but what if you have a 2Mb |TOPIC file? To use a direct offset to a word near the
end of the file, you'd have to replace all the phrases of the previous information in the
|TOPIC file just to get the correct offset.

Listing 4.2 (continued)

64 — Windows Undocumented File Formats

To avoid this problem, offsets in WinHelp are broken into two pieces: a block
number and a block offset. The entire |TOPIC file is then broken into 4Kb blocks.
Unfortunately, it's a little more complex than this. Two types of these broken offsets
are used: one called Extended Offsets and the other Character Offsets.

Extended Offset

Extended offsets are simply a block number and a block offset. Each offset is a
DWORD with the upper 18 bits used as the block number and the lower 14 bits as the
offset within that block. Extended offsets are used only within the |TOPIC file in
TOPICBLOCKHEADER and T O P I C H E A D E R (discussed later) records.

Character Offset

Character offsets are, obviously, very similar to extended offsets. The only differ-
ence is an additional bit for calculating the block offset and one less bit for calculating
the block number. Why the difference? Beats me. I've always thought that either
would do, and I still think that's the case, but who knows what's going through the
heads at Microsoft.

Character offsets are used as references to the |TOPIC file by files external to
|TOPIC. Offsets in |TTLBTREE, |KWDATA, |CONTEXT, and so on use character offsets.

If you're only using 4Kb blocks, you might wonder why the block offsets for
extended offsets (see the following paragraph) are 14 bits (0 to 16Kb) and character
offsets are 15 bits (0 to 32Kb). This allows for the compression of the 4Kb blocks. If a
4Kb block is decompressed to 5 or 6Kb, then you need more than 12 bits (0 to 4Kb) to
find the offset within the block.

On top of the block number/block offset split of character offsets, there is one
additional difference between character offsets and extended offsets. Where extended
offsets always point to a direct offset within a block, character offsets point to a spe-

3 1
1 4 0
+-------------------------------------+
| Block Number | Block Offset |
+----------------------------------+

3 1
1 3 0
+-----------------------------------+
| Block Number | Block Offset |
+-----------------------------------+

Windows Help File Format — 65

cific character within the text. What you essentially have to do, once you've loaded
the 4Kb block and decompressed it, if necessary, is to go through and count all of the
characters of displayable text to get the character offset. For example, a character off-
set with a block number of 1 and a block offset of 124 would point to the first block
and the 124th displayable character within the block. Fortunately, to make this easier,
each paragraph has a character count. So if the first paragraph has 110 characters, and
the second paragraph has 165 characters, your character offset would point to the 14th
character in the second paragraph.

On the other hand, if you had an extended offset with a block number of 1 and a
block offset of 124, you would go directly to the 124th byte in the first 4Kb block
(after decompression and/or phrase replacement, if necessary).

Later in this chapter I'll show examples of how to find a topic using extended off-
sets and character offsets.

Compression in | T O P I C
Compression in the |TOPIC file is handled in two ways. The first is that common
phrases are removed and placed in the |Phrases file. In place of the actual phrases,
references are placed in the topic text to point to these phrases. After this, the actual
topic text is then compressed with the LZ77 (Zeck) algorithm. This happens in 4Kb
blocks as described in the following text.

TOPICBLOCKHEADER
As I said earlier, the |TOPIC file is broken into 4Kb blocks. Each of these blocks has a
TOPICBLOCKHEADER record (Table 4.12).

The Las tParagraph field is an extended offset to the last PARAGRAPH record (see
the section "TOPICHEADER") of the previous 4Kb topic block. Topic data is an extended
offset to the first paragraph record of this block. LastTopicHeader is an extended off-
set to the beginning of the last TOPICHEADER record (see below) in this block.

Table 4.12 TOPICBLOCKHEADER record.
Field Name
LastParagraph
TopicData
LastTopicHeader

Data Type
long
long
long

Comments
Last paragraph in this block
First paragraph in this block
Last topic in this block

66 — Windows Undocumented File Formats

PARAGRAPH
The name PARAGRAPH is a bit misleading for this structure. It doesn't necessarily mean
an actual paragraph, though, in most cases, it is, and it seems like the most logical
name for the structure for that reason. PARAGRAPH records (Table 4.13) are where the
actual "meat" of the |TOPIC file is stored. PARAGRAPH records contain the text of the
topic, hotspot markers, font markers, etc.

The key piece of information is the RecordType field. There are three different
record types: topic headers (0x02), text records (0x20), and table records (0x23). Then
the actual data is kept in the L i n k D a t a 1 and L i n k D a t a 2 fields. For topic headers, a
TOPICHEADER record (see later) is stored in the LinkData2 field. For text records, the
L i n k D a t a 1 field contains formatting information (fonts, hotspot markers, etc.) for the
paragraph, and the L i n k D a t a 2 field contains the text, phrase pointers, and so on, for
the paragraph.

TOPICHEADER (0x02 Paragraph Records)
TOPICHEADER records (Table 4.14) are kept in the LinkData2 field of PARAGRAPH
records with a RecordType of 0x02. TopicHeader records precede every topic.

Text Records (0x20 Paragraph Records)
PARAGRAPH records of type 0x20 contain actual text and other displayable information
for the topic. PARAGRAPH records are one of the more complex aspects of WinHelp,
because there are quite a few paragraph features, and if you plan on displaying help
text, you have to make use of all the formatting information.

Table 4.13 PARAGRAPH record.
Field Name
BlockSize
DataLen2
PrevPara
NextPara
DataLen1
RecordType
LinkData1
L inkDa ta2

Data Type
long
long
long
long
long
BYTE
char*
char*

Comments
Size of this record + link data 1 & 2
Length of L inkDa ta2
Offset of previous paragraph
Offset of next paragraph
Length of L i n k D a t a 1 + 11 bytes
Type of paragraph record
Data set one for this paragraph
Data set two for this paragraph

Windows Help File Format — 67

Two types of paragraph breaks are used by the help compiler: \par and \pard.
\pard creates a new PARAGRAPH record, whereas \par breaks are considered part of a
single paragraph. This is important for several reasons, \pard is meant to create a new
paragraph and start new defaults for the paragraph. This allows you to break a para-
graph with \par and keep all the previous formatting information. To manage this, it's
all kept as part of the same PARAGRAPH record within WinHelp.

Understand that, in terms of the PARAGRAPH record, I don't necessarily mean a
physical paragraph of text, but text with like formatting information. Every time the
formatting information changes, a new PARAGRAPH record is created.

Type 0x20 PARAGRAPH records have two data links, D a t a L i n k 1 and Da taLink2 .
D a t a L i n k 1 primarily contains paragraph formatting information and begins with a
FORMATHEADER record (Table 4.15). The FormatSize and DataSize fields are doubled
values. Simply read a byte. If the lsb in these fields is set, then a second byte is read as
the high byte to create a WORD value. Then this total is divided by two. This is like many
fields in the .SHG/.MRB file formats. As with those, you can use the R e a d W o r d V a l ()
functions provided in Chapter 2 to read these fields.

Table 4.14 TOPICHEADER record.
Field Name
BlockSize
BrowseBck
BrowseFor
TopicNum
NonScroll
Scroll
NextTopic

Data Type
long
TOPICOFFSET
TOPICOFFSET
DWORD
TOPICOFFSET
TOPICOFFSET
TOPICOFFSET

Comments
Size of block
Previous topic in browse sequence
Next topic in browse sequence
Topic number
Start of nonscrolling region
Start of scrolling region
Start of next topic

Table 4.15 FORMATHEADER record.
Field Name
FormatSize

Flags
DataSize

Data Type
BYTE or WORD

BYTE
BYTE or WORD

Comment
2x the no. of bytes of formatting
information
Flag byte (unknown values)
2x the no. of bytes of text

68 — Windows Undocumented File Formats

Another slightly stupid thing about the FORMATHEADER is that this information is
duplicated in the PARAGRAPH record's DataLen1 and DataLen2 fields. The only real
difference is that the size given in FormatSize doesn't include the FORMATHEADER
record, whereas the DataLen1 value does.

Following the FORMATHEADER record is a single N U L L byte.
The next section is a list of paragraph attribute strings. The list is terminated by a

N U L L (0x00) byte. It starts with a DWORD paragraph set-up attribute. The following val-
ues have the following meanings:

0x00020000 Space before
0x00040000 Space after
0x00080000 Line spacing before
0x00100000 Left margin indent
0x00200000 Right margin indent
0x00400000 First line indent
0x01000000 Paragraph border
0x02000000 Tab setting information
0x04000000 Right justify
0x08000000 Center justify
0x10000000 Don't wrap lines in paragraph

This value may be followed by a 3-byte paragraph border setting, if there is a bor-
der. The first byte is 0x01, indicating a border setting. This is followed by the border
description byte. The third byte is always 0x51. The following values are valid border
descriptions. They can be ORed together.

0x80 Dotted border
0x40 Double border
0x20 Thick border
0x10 Right border
0x08 Bottom border
0x04 Left border
0x02 Top border
0x01 Boxed border

After the paragraph set-up attribute and, if it exists, the border setting, a N U L L byte
indicates the end of the paragraph set-up.

This is followed by a string of bytes that consist of format codes and parameters
for the format codes. The L i n k D a t a 2 field contains the text for the paragraph. Within
the text will be N U L L (0x00) bytes. For each null byte there is a formatting code in the
L i n k D a t a 1 field. So obviously, these fields need to be handled together. Each time
you run into a N U L L byte in the L i n k D a t a 2 field, you need to pull in the appropriate
formatting code from the L i n k D a t a 1 field.

Windows Help File Format — 69

Figure 4.2 shows a dump of a P A R A G R A P H record. The area labeled PARAGRAPH
Rec is actually all of the fields except L i n k D a t a 1 and L i n k D a t a 2 , whereas FORMAT-
HEADER Rec is part of the L i n k D a t a 1 field.

Formatting codes are variable length. Basically, there's a 1-byte code, and depend-
ing on what that code is, a variable number of parameters follow it. For example, the
format code 0x80 specifies a font change. It is followed by one word that tells you the
font descriptor for the font. The following is a list of codes and their meanings. Below
each code is a list of parameters for that code.

0x80: Font change. Specifies that a new font starts here.
WORD. Font descriptor for font to insert

0x81: Newline. Caused by the \ l i n e RTF command.
No parameters

0x82: New paragraph. Caused by the \ p a r RTF command, but not the \ p a r d com-
mand, which starts a new P A R A G R A P H record.

No parameters

0x83: Tab. Caused by the \ t a b RTF command.
No parameters

0x86: Bitmap current. Caused by the \bmc RTF command. For \bmc, \ b m l , and
\bmr, there is a second case of each. If you use \bmcwd, \ b m l w d , or \bmrwd, the actual
bitmap data follows instead of a reference to the |bmxxx file. So in each case where
the second parameter is 0x92 instead of 0x08, the \bmxwd version of the function is
used, and the final word, the bitmap number, is not provided. Instead, the actual bit-
map or metafile is included. See the following section, "Bitmaps and Metafiles", for a
description of the format.

Figure 4.2 PARAGRAPH Record Dump
PARAGRAPH rec FORMATHEADER rec

0x00000100:
0x00000110:
0x00000120:
0x00000130:
0x00000140:

L i n k D a t a 2

70 — Windows Undocumented File Formats

BYTE. 0x22
BYTE. 0x08 or 0x92 (\bmcwd)
BYTE. 0x80 or 0x83 (\bmcwd)
BYTE. 0x02
WORD. 0x0000 or 0x0001 (\bmcwd)
WORD. Bitmap number (HSF file = |bmxxx, \bmc only)

0x87: Bitmap left. Caused by the \bml RTF command.
BYTE. 0x22
BYTE. 0x08 or 0x92 (\bmlwd)
BYTE. 0x80 or 0x83 (\bmlwd)
BYTE. 0x02
WORD. 0x0000 or 0x0001 (\bmlwd)
WORD. Bitmap number (HSF file = |bmxxx, \bml only)

0x88: Bitmap right. Caused by the \bmr RTF command.
BYTE. 0x22
BYTE. 0x08 or 0x92 (\bmrwd)
BYTE. 0x80 or 0x83 (\bmrwd)
BYTE. 0x02
WORD. 0x0000 or 0x0001 (\bmrwd)
WORD. Bitmap number (HSF file = |bmxxx, \bmr only)

0x89: End of hotspot. Follows a hotspot code.

0xE2: Popup hotspot. Hotspot caused by \ul RTF command
DWORD. Context hash value for topic title (use |CONTEXT to find topic)

0xE3: Jump hotspot. Hotspot caused by \uldb RTF command
DWORD. Context hash value for topic title

0xFF: End attributes. Always the last byte of LinkData1.
No parameters

Bitmaps and Metafiles
When you insert bitmaps and metafiles by reference (meaning you use the RTF bml,
bmc, or bmr command to insert the bitmap), the bitmap or metafile is stored within the
HFS under the name |bmX (where X is a sequential number starting at 0 or 1).
Embedded bitmaps and metafiles are also stored in separate HFS files and treated as if
they were inserted by reference with a \bmc command. In addition to this change, the
actual format of the bitmap or metafile is changed. In fact, it's changed to a .SHG/ .MRB
file. (See chapters 2 and 3 for information about the . M R B and .SHG file formats.)

Windows Help File Format — 71

Essentially, it gets converted to a .MRB file with only one image. The help compiler
does a few things that MRBC and SHED never do, though.

When the help compiler converts the bitmap, it tests two different compression
methods on the data: RLE and LZ77 (the WinHelp version). Whichever is more effi-
cient, no compression, RLE, or LZ77, is the format the image uses. SHED and
MRBC never use LZ77 compression, only RLE. In addition, if the help compiler uses
LZ77 compression, it changes the first 2 bytes of the image to "lP" instead of the stan-
dard "lp" used by SHED and MRBC.

The images are given names like |bm0, |bm1, and so on, which causes one of the
biggest annoyances for reversing a help file back into RTF source: the original bitmap
filenames are lost.

Conclusion
That pretty much wraps up the WinHelp file format. To be sure, this is obviously not
the complete format. There are unknown fields and entirely unknown files, such as the
| V I O L A file. Most embarrassing is the . G I D file, which contains the HFS file called
|Pete. This was clearly left for me as a joke, and unfortunately the joke is on me,
because I have yet to figure out the contents of the file. I believe that, to some degree,
a bit of a challenge was placed specifically for me by giving these files names that
have no real meanings. (I know the head of WinHelp development. It's like a game to
him.)

Speaking of the . G I D file, you may have noticed that it has gone totally unad-
dressed. Some of you may not even know what the . G I D file is. The . G I D file is a hid-
den file that WinHelp creates every time you open a new .HLP file. It is created in the
same directory as the help file. Most of the information in this file is a binary version
of your .CNT file. Because there is already a text version of the .CNT file (the .CNT file
itself, obviously), it has never seemed particularly important to get into the nuts and
bolts of the . G I D file. Among other things, it includes additional information on the
last position of the . H L P file on the screen.

In addition, you'll notice a | K W B T R E E and a |KWMAP file in the . G I D file. Whereas
the | K W M A P file is the same format as |KWMAP in a help file, the format for the | K W B T R E E
file is different in a . G I D file than in a help file. In the .CNT file, you can associate mul-
tiple help files with a single help file. This |KWBTREE file provides a place where | K W B -
TREE files can be merged together from all the . H L P files. The difference between the
| K W B T R E E file of a regular help file and that of the . G I D file is in the additional informa-
tion that tells which help file the keywords reference.

72 — Windows Undocumented File Formats

Where Do I Go from Here?
There's really so much you can do with this information, it's hard to know where to
begin. I've seen . H L P to .DOC converters, . H L P to .RTF converters, and a group over at
Sun Microsystems even wrote a program to read . H L P files under UNIX. I believe the
most useful tool someone could create with this information now, however, would be
a . H L P to HTML program. This might not be too difficult if you have the source for
your . H L P file, but what if you want to take a . H L P file that you didn't create, and cre-
ate an HTML document from that?

Windows Help File Format — 73

Listing 4.3 WINHELP.H.

74 — Windows Undocumented File Formats

Listing 4.3 (continued)

Windows Help File Format — 75

Listing 4.3 (continued)

76 — Windows Undocumented File Formats

Listing 4.3 (continued)

Windows Help File Format — 77

Listing 4.3 (continued)

78 — Windows Undocumented File Formats

Listing 4.3 (continued)

Windows Help File Format — 79

Listing 4.3 (continued)

80 — Windows Undocumented File Formats

Listing 4.4 HLPDUMP2.H.

Windows Help File Format — 81

Listing 4.5 HLPDUMP2.C.

82 — Windows Undocumented File Formats

Listing 4.5 (continued)

Windows Help File Format — 83

Listing 4.5 (continued)

84 — Windows Undocumented File Formats

Listing 4.5 (continued)

Windows Help File Format — 85

Listing 4.5 (continued)

86 — Windows Undocumented File Formats

Listing 4.5 (continued)

Windows Help File Format — 87

Listing 4.5 (continued)

88 — Windows Undocumented File Formats

Listing 4.5 (continued)

Windows Help File Format — 89

Listing 4.5 (continued)

90 — Windows Undocumented File Formats

Listing 4.5 (continued)

Windows Help File Format — 91

Listing 4.5 (continued)

92 — Windows Undocumented File Formats

Listing 4.5 (continued)

Windows Help File Format — 93

Listing 4.5 (continued)

94 — Windows Undocumented File Formats

Listing 4.5 (continued)

Windows Help File Format — 95

Listing 4.5 (continued)

96 — Windows Undocumented File Formats

Listing 4.5 (continued)

Windows Help File Format — 97

Listing 4.5 (continued)

98 — Windows Undocumented File Formats

Listing 4.5 (continued)

Windows Help File Format — 99

Listing 4.5 (continued)

100 — Windows Undocumented File Formats

Listing 4.5 (continued)

Windows Help File Format — 101

Listing 4.5 (continued)

Chapter 5

Annotation (.ANN) and
Bookmark (.BMK)
File Formats
WinHelp provides Annotation and Bookmark files that users can create while viewing
a help file. Like many of the WinHelp files, Annotation and Bookmark files are stored
with a Help File System (HFS) described in Chapter 4.

Annotation Files
Annotation (. A N N) files are the simpler of the two file formats. As I said earlier, . A N N
files are based on the HFS, so I'll be speaking in terms of the internal files and ignore
the HFS aspect altogether. Each .ANN file automatically contains two files; @ L I N K
and @VERSION. In addition to these two files is one file for each annotation.

The @VERSION file is static and identical in all .ANN files that I've seen. It simply
contains the following string of 6 bytes: 0x08 0x62 0x6D 0x66 0x01 0x00 (or 8
bytes in WinHelp 4.0: 0x08 0x62 0x6D 0x66 0x01 0x00 0x00 0x00). The meaning
behind this has me stumped. 0x62 0x6D 0x66 spell out bmf (BookMark File?), but
other than that, we could not come up with a meaning.

103

104 — Windows Undocumented File Formats

The @LINK file is slightly more complex, though still fairly simple. The file begins
with a single WORD that contains a count of the annotations in the .ANN file. It is then
followed by a record for each annotation (Table 5.1).

As I said, it's fairly simple. The rest of the . A N N file contains a single HFS file for
each annotation. These files are named based on the topic offsets of the annotation.
For the sake of simplicity, assume you have an annotation for a topic located at offset
0x100. 0x100 in decimal is 256, of course, so the name of the HFS file within the
.ANN file for that annotation would be 256!0. Each file basically consists of the deci-
mal equivalent of the offset followed by an exclamation point and a zero. The contents
of each of these files is simply the text of the annotation itself.

That's it; that's all there is to an Annotation file.

Bookmark Files
Bookmark files, on the other hand, are actually a little more complex. Again, they are
based on the Help File System (HFS). There is only one WinHelp Bookmark file. It is
shared by all help files, and is named, appropriately, W I N H E L P . B M K . All bookmarks for
all help files are kept in the W I N H E L P . B M K file.

One HFS file per help file has bookmarks. That is to say, that when a user creates
the first bookmark in a help file, an HFS file is added to the W I N H E L P . B M K file. This
HFS file will contain all bookmarks ever made with this help file. The name of the
HFS file in the Bookmark file is based on two things: the name and the generation
date of the help file. The generation date can be found in the |SYSTEM HFS file found
in the help file. See Chapter 4 for more information on this. The HFS file in the Book-
mark file, therefore, contains the name (without the extension) of the help file, and
eight characters that represent the hex DWORD value of the generation date.

Assume on December 9th, 1994, at exactly 11:09:30am, you generated the help
file TEST.HLP. The generation date in hex would be 2EE8AB6A. If a user were to create
a bookmark with this file, the name of the HFS file to contain the bookmark would be
TEST2ee8ab6a. Notice that the help file name is all capitals, whereas the hex digits
that are letters are all lowercase. This is important because HFS filenames are case
sensitive. But things are still fairly simple at this point.

Table 5.1 ANNLINKRECORD record.
Field Name
TopOffset
Reserved1
Reserved2

Data Type
DWORD
DWORD
DWORD

Comments
Offset to topic associated with the annotation
Probably reserved for future use
Probably reserved for future use

Annotation (.ANN) and Bookmark (.BMK) File Formats — 105

The Bookmark file itself has a bookmark header (Table 5.2).
This is followed by bookmark entries for each bookmark (Table 5.3).
I'm not sure why, but all offsets of bookmarks are associated with the beginning of

the scrolling region of the topic instead of the beginning of the topic itself. I don't see
why it would matter either way, though.

Where Do I Go from Here?
Surprisingly, quite a bit could be done with Bookmark and Annotation files that
Microsoft has neglected to do. First of all, there is currently no utility for upgrading a
Bookmark or Annotation file when a help file gets updated. Instead, your annotations
and bookmarks just get lost completely when a new version of the help file comes out.
That makes them almost entirely useless when you have a help file that is updated on
a periodic basis.

Another utility that would be very useful is an expanded annotation editor. Why not
have one that supports embedded graphics and maybe RTF text? It would be easy
enough to take an existing Annotation file and add new files to it to hold your particular
data types. For example, if your annotation's HFS filename is 1242!0, make another
one called 1242!x that holds data that your annotation editor program reads. It could

Table 5.2 BOOKMARKHEADER record.
Field Name
Magic
GenDate
NumBookmarks
Fi leLen

Data Type
int
DWORD
WORD
WORD

Comment
Always 0x0015
Same date that is part of the HFS filename
Number of bookmarks in this HFS file
Contains the length of this HFS file in bytes

Table 5.3 BOOKMARKENTRY record.
Field Name
TopOffset

Reserved
BkmrkText[]

Data Type
DWORD

DWORD
char

Comment
Offset to scrolling region of topic this
bookmark is associated with
Reserved for future use
Null-terminated string of bookmark text

106 — Windows Undocumented File Formats

use both files and keep straight text in the 1242!0 file (so that WinHelp's built-in anno-
tation code could read it), and you could keep your special data in 1242!x. Simply cre-
ate a DLL that attaches to WinHelp. (See the Bibliography for an article I wrote for PC
Magazine with Jim Michel on how to force WinHelp to load your DLL.) This DLL
could monitor topic jumps and the annotation menu item (via window subclassing) and
know when to show annotations. (This is, in fact, a utility Jim Michel and I were think-
ing of writing quite some time ago, but never got around to.)

Chapter 6

Compression Algorithm and
File Formats
The Microsoft compression algorithm is implemented in COMPRESS.EXE,
E X P A N D . E X E , and the L Z E X P A N D . D L L library. The most common use of these rou-
tines is for application install programs. Compressing the files on a set of installation
disks results in the need for fewer disks. When a user is installing a Microsoft pro-
gram, E X P A N D . E X E is used to uncompress the files, writing the output to the hard
drive. L Z E X P A N D . D L L is a collection of routines that allows a Windows program to
expand files compressed with COMPRESS.EXE. This chapter covers version 2.0 of
COMPRESS.EXE and E X P A N D . E X E .

The Algorithm
The algorithm used by Microsoft is based on the LZ77 algorithm developed by Abra-
ham Lempel and Jacob Ziv in a paper published in 1977. LZ77 is called a dictio-
nary-based, sliding window algorithm. "Dictionary-based" means the compression is
accomplished by replacing repeating character strings with a pointer to the first occur-
rence of the string, where the pointer is a pair of numbers indicating the offset and the
length of the repeating string. For example, the string "abcdefabcd" would be com-
pressed into "abcdef[0,4]", where "0" is the offset of the original string ("abcd") and

107

108 — Windows Undocumented File Formats

"4" is the length. This approach raises the following question: How many bytes
should be reserved for storing the offset and length parameters? Assuming a maxi-
mum file size of 4Gb, you would have to use 4 bytes for the offset and 4 bytes for the
length, for a total of 8 bytes, each time a repeating occurrence of a string is found. In
practice, this would not produce a good compression ratio. If the average length of
repeating strings in the input file is fewer than 8 bytes, the compressed file will be
larger than the original file. This is considered bad compression.

This observation led to the concept of "sliding window" compression. Instead of
searching the entire file (up to the character currently being read), use only the last n
characters, where n is an integer denoting the size of the window. This is how it
works: an array of the last n characters (from the input file) is maintained in memory
(the "window"). When the next character in the input file is read, search the window
for strings starting with the same character. After this step is done, the current charac-
ter is added to the window, which means the character read n bytes ago is discarded.
Only the previous n characters are in memory, so a window continuously slides
through the input file. This approach has the advantage of decreasing the number of
bytes required to store the [offset, length] pair of integers that denote a repeating
string. The smaller the window, the fewer bytes needed to store the necessary infor-
mation. The size of the window varies with the implementation. It should be small
enough to reduce the size of the [offset, length] pair, but large enough that there
is a high probability that a previous occurrence of the current string will be found in
the window. It is important to find the longest match you can in order to improve the
compression ratio.

Microsoft's Implementation
Microsoft uses a window of 4,096 bytes in their scheme. Such a window size would
need 12 bits for an offset (212 = 4,096). A compression code of 2 bytes (to minimize
the number of bytes needed to code the offset and length) would leave 4 bits for the
length. This means the maximum length of a repeating string that could be encoded in
the compressed file is 15 bytes, but this can be improved. Because 2 bytes are needed
for a compression code, repeating strings of fewer than 3 bytes can be stored uncom-
pressed, because nothing would be gained by using a 2-byte compression code in
place of a 2-byte string or, even worse, a 1-byte character. So a length of either zero,
one, or two would never be found in the length field. You can take advantage of this
by subtracting three from the length of the string when encoding it in the compressed
file, thus allowing for a maximum length of 18 bytes. When the decompression rou-
tine encounters a compression code ([offset, length]), it adds three to obtain the
actual length.

Compression Algorithm and File Formats — 109

For reasons known only to Microsoft, the offset in a compression code is biased
by 16 bytes. Before an offset is encoded in the compressed file, 16 is subtracted. The
least significant bits of the offset are stored in the first byte of the 2-byte code; the
most significant bits are stored in the upper 4 bits of the second byte. The length is
stored in the lower 4 bits of the second byte. As an example, a compression code of
offset = 36 and length = 15 would be processed as follows:
1. Subtract three from the length and 16 from the offset;
2. Offset = 20, so the 12 bits are 0000 0001 0100;
3. Length = 12, so the 4 bits are 1100;
4. Byte 1 is 0001 0100 (the lower 8 bits of the offset);
5. Byte 2 is 0000 1100 (remainder of the offset, length).

The Details
A problem with implementing this algorithm is distinguishing between uncompressed
data and a 2-byte compression code. C O M P R E S S . E X E uses the following approach: data
is stored in blocks of eight terms, where each term is either 1 byte of uncompressed
data, or a 2-byte compression code. Each block is preceded by a 1-byte header, where
each bit in the header is set to "1" if the corresponding term is uncompressed data, or
"0" if it is a compression code (hence the eight-term size of the block). For example, a
header byte of 0xC7 translates into 11000111 binary, which is read as follows: the first
3 bits are set, so the first three terms are single, uncompressed bytes and should be
treated as literals; the following 3 bits are clear, so each of the next three terms are
2-byte compression codes; finally, the last two terms are literals. The data block
immediately following the header, incidentally, would be 11 bytes (5 bytes of literals
and 6 bytes of compression codes).

The following macro determines the compression code:

#define COMP_CODE(len, off) ((((l e n - 3) & 0x0F) « 8) + \\
(((o f f - 0x10) & 0x0F00) « 4) + ((off - 0x10) & 0x00FF))

The following macros extract the length and offset from the compression code:

#define LENGTH(x) ((((x) & 0x0F)) + 3)
#define OFFSET(x1, x2) ((((((x2 & 0xF0) » 4) * 0x0100) + x1) & \\

0x0FFF)+ 0x0010)

110 — Windows Undocumented File Formats

Now for a concrete example. Say you have a file that only contains four words,
each separated by a space. The words, in order, are "Plenty", "Plentiful", "Plenteous",
and "lentic". When compressed with Microsoft's COMPRESS.EXE, the output file looks
like Figure 6.1.

The first ten characters aren't related to the compression, so you can ignore them
for the purposes of this discussion (see Table 6.1 for details on the header structure).
The next field (a long integer) is the size of the data when decompressed: 0x21 bytes,
or 33 characters. The data follows. The first block header is 0xBF, which is 10111111
binary. This means the first six terms in the block are 1-byte literals and can be written
directly to the output file. The seventh term is a 2-byte compression code (0xEF 0xF3),
and the eighth term is a 1-byte literal.

To fill in the string referenced by the seventh term in the first block, you have to
decipher 0xEF 0xF3. The length of the replacement string is found in the lower 4 bits
of 0xF3, which is three. Add three to this to obtain the true length, for a total of six.
The offset (into the window) of the string is the upper 4 bits of 0xF3 (0x0F) and all of
0xEF, which is 0x0FEF. Add 16 to this, for a total of 0x0FFF, which is 4,095 in deci-
mal. So the string starts with the last character in the window (index number 4,095)
and is 6 bytes long. Are you wondering how the string could start with the 4,095th let-
ter after only reading six characters? This occurs because the window must first be
initialized with 0x20 (spaces). Because the words in the input file are separated by

Table 6.1 COMPHEADER record.
Field Name
Magic1
M a g i c 2
Is41
Fi leFix
DecompSize

Data Type
long
long
char
char
long

Comments
0x44445A53
0x3327F088
0x41
Last character in uncompressed file's name
Size of the uncompressed file

Figure 6.1 Sample output of COMPRESS.EXE.

Offset

0x00000000:
0x00000010:
0x00000020:

0

53
6C
75

1

5A
65
73

2

44
6E
05

3

44
74
20

4

88
79
F8

5

F0
EF
F2

6

27
F3
63

7

33
69

8

41
F7

9

00
66

A

21
75

B

00
6C

C

00
EF

D

00
F3

E

BF
65

F

50
6F

0123456789ABCDEF

S Z D D ^ . ' 3 A . ! P
lenty..i.ful..eo
us. ..c

Compression Algorithm and File Formats — 111

spaces and the first five characters of the first two words are the same, C O M P R E S S . E X E
was able to start the replacement string with the last character in the window, a space.
So far, by processing the first seven terms in the block, you have "Plenty Plent". The
remainder of the file is processed in the same manner.

The Header
Each compressed file begins with a COMPHEADER (Table 6.1) structure. This structure
has two magic number fields, a single-character constant, the last character of the
name of the uncompressed file, and the size of the file when decompressed. The first
three fields are always the same. The fourth field is used when the "-r" option is
passed to COMPRESS.EXE, instructing it to store the last character of the uncompressed
file's name, to be used when it is uncompressed.

Compressing
One of the programs included with this chapter is C O M P . E X E . This DOS program will
compress a file using Microsoft's implementation, so it can be decompressed using
E X P A N D . E X E . This section will detail how C O M P . E X E works.

Once C O M P . E X E has written the header described above, it starts compressing the
data. Each character read is inserted into an array of 4,096 bytes. The array is initially
filled with 0x20's (spaces). Once this array has been filled (i.e., 4,096 characters have
been read from the input file), C O M P . E X E returns to the beginning of the array and con-
tinues filling it in from there. As described in "Details" previously, data is written in
blocks, where each block starts with a single character describing the remainder of the
block. The remainder of the block is data from the input file (in compressed or
uncompressed format). At this point, C O M P . E X E begins reading the input file. When a
new character is read, C O M P . E X E searches the array containing the previous 4,095
characters. Each time a matching character is found, C O M P . E X E continues to read to
determine how many characters match. Once this step is completed, C O M P . E X E moves
through the window again, finding the next match, and the process is repeated. This
method will produce the longest matching string in the previous 4,095 characters.

If no match is found or if the match is fewer than three characters, the data is written
to the output file uncompressed. Also, the corresponding bit in the header character for
the block is set. If a match of three or more characters is found, the offset of the match-
ing string in the 4,096-byte window and the length of the match are used to create a
2-byte code. The code is written to the output file, and the corresponding bit in the block
header is cleared. This process is repeated until the entire input file has been read.

112 — Windows Undocumented File Formats

Decompressing
Another program included with this chapter is D E C O M P . E X E , which will decompress a
file produced by either C O M P R E S S . E X E or C O M P . E X E .

The D E C O M P . E X E program decompresses a file by doing the opposite job of
C O M P . E X E . After it skips the header, it reads the 2-byte compression code that begins
each block. If a bit is set, the corresponding character is written to the output file and
inserted into the sliding window (array of 4,096 bytes). If a bit is not set, D E C O M P . E X E
gets the offset and size of the string from the corresponding 2-byte compression code in
the block. Next it will retrieve that string from the window and write it to the output file.

If the sum of the offset and length (in a 2-byte compression code) is greater than
the size of the window, it means the string wraps around from the end to the beginning
of the array. After the byte at the end of the array is read, D E C O M P . E X E jumps to the
first byte in the array and continues reading.

The source code for C O M P . E X E and D E C O M P . E X E are shown in Listings 6.1 and 6.2
respectively. Each program has been tested extensively, and both seem to produce out-
put compatible with the corresponding program from Microsoft, so any file com-
pressed with either compression program can be decompressed using either
decompression program. It is interesting to note that our version of the compression
program will always achieve at least the same amount of compression as Microsoft's,
but if the input file is larger than a few hundred bytes, C O M P . E X E achieves a better
compression ratio. It appears that Microsoft's implementation of the algorithm will
only allow for a maximum length of 16 bytes when compressing a string, whereas our
version allows for 18 bytes.

Where Do I Go from Here?
The code in Listing 6.1 could be used for a variety of purposes. Anyone interested in
writing a quicker compressor or decompressor than those provided by L Z E X P A N D . D L L
should study the code accompanying this chapter. If you're curious to see how one
company implemented the LZ77 algorithm and want to attempt to improve the overall
compression ratio, this code will serve as a good starting point.

Compression Algorithm and File Formats — 113

Listing 6.1 COMP.C — Compression program
compatible with EXPAND.EXE.

114 — Windows Undocumented File Formats

Listing 6.1 (continued)

Compression Algorithm and File Formats — 115

Listing 6.1 (continued)

116 — Windows Undocumented File Formats

Listing 6.1 (continued)

Compression Algorithm and File Formats — 117

Listing 6.1 (continued)

118 — Windows Undocumented File Formats

Listing 6.1 (continued)

Compression Algorithm and File Formats — 119

Listing 6.1 (continued)

120 — Windows Undocumented File Formats

Listing 6.1 (continued)

Compression Algorithm and File Formats — 121

Listing 6.2 DECOMP.C — Decompression program.

122 — Windows Undocumented File Formats

Listing 6.2 (continued)

Compression Algorithm and File Formats — 123

Listing 6.2 (continued)

124 — Windows Undocumented File Formats

Listing 6.2 (continued)

Chapter 7

Resource (.RES) File Format
In this chapter, I'll take a look a look at the format of .RES files. Our thanks go to Alex
Fedorov and Dmitry Rogatkin for their work on this topic originally published in
Andrew Schulman's "Undocumented Corner," Dr. Dobb's Journal, August 1993.
We'd also like to thank Jonathan Erickson, DDJ editor, for allowing us to use the
information in that article. After describing the file format, I'll present a program for
decompiling .RES files into .RC files. This chapter references the resource compiler
(R C . E X E) supplied with the Windows 3.1 SDK.

An .RC file contains information on the resources used by a Windows executable,
such as bitmaps, buttons, and dialog boxes. These files must be compiled by
Microsoft's resource compiler (R C . E X E) before they can be added to the executable.
The output of this compiler is a .RES file. The format of resources in the executable
has been documented by Microsoft, but never the format of the .RES file. If you have
a copy of the Microsoft Windows 3.1 Programmer's Reference, Volume 4 (Resources),
you already have this documentation. Chapter 7 in that reference is titled "Resource
Formats Within Executable Files", and covers the format of each resource type.
Although this information was helpful in writing a program described later in this
chapter, it doesn't mention the . R E S file format.

As it turns out, each type of resource is stored in a .RES file in the same format as
it would appear in a Windows executable. The difference is the existence of a descrip-
tive header before each resource. A .RES file is nothing more than a collection of pairs
of resources and their respective headers. You can confirm this by writing a simple

125

126 — Windows Undocumented File Formats

.RC file and compiling it with R C . E X E . Take a look at the .RES file; strings from the

.RC file are practically jumping off the page. What we'll do here is fill in the blanks
and describe the format of the header.

The Format
Resource headers are type independent; that is, regardless of the type of resource, the
header always has the same format. The first field in the header is the name or type of
the resource. If the first character is 0xFF, it is immediately followed by a number (a
WORD) which maps to a specific resource type (either predefined or defined by the
user). A quick look in W I N D O W S . H and V E R . H (the header file required to include ver-
sion information in a resource file) produces the list of predefined resource types in
Table 7.1.

Any other number after 0xFF indicates a user-defined resource.
If the first character is not 0xFF, it is a null-terminated string naming the resource

type (as defined by the user). This is different than a name given to an instance of a
resource. If you're unfamiliar with defining your own type of resource, read Program-
mer's Reference, Volume 4, pp. 212-213.

Table 7.1 Numeric values for resource types.
Resource Type
Cursor
Bitmap
Icon
Menu
Dialog box
String table
Font directory
Font
Accelerator
RCDATA (user defined)
Group cursor
Group icon
Name table (obsolete with v3.1)
Version information

Identification Number (from WINDOWS.H)
RT_CURSOR (1)
RT_BITMAP (2)
RT_ICON (3)
RT_MENU (4)
RT_DIALOG (5)
RT_STRING (6)
RT_FONTDIR (7)
RT_FONT (8)
RT_ACCELERATOR (9)
RT_RCDATA (10)
RT_GROUP_CURSOR (12)
RT_GROUP_ICON (14)
15
16

Resource (.RES) File Format — 127

The next field in the header is a number or name identifying an instance of a
resource. Similar to the format of the resource type field, if the first byte is 0xFF, it is
followed by a numeric value (also a WORD). Otherwise, the field is a null-terminated
string naming the resource.

This is followed by a WORD value storing memory flags. A memory flag describes
how the resource should be loaded, discarded, and moved around in memory. Because
each flag (e.g., MOVEABLE, DISCARDABLE) is a WORD and doesn't overlap (at the bit
level) with the other flags, they can be ORed together to produce a single WORD value.
This ORed value of the individual memory flags is what appears in this field. These
values are summarized in Table 7.2.

If the resource in question is a cursor or an icon, the table changes slightly. The
value for "Discardable" is 0x20, and "Pure" appears to have no meaning in relation to
these two types of resources.

The next (and final) field in the header is a DWORD containing the total length of the
resource data, not including the header. This is followed by the resource data, whose
format is documented in Programmer's Reference, Volume 4.

Look at the following example. Suppose you come across a resource header in a
.RES file that consists of the following characters (in hexadecimal):

FF 05 00 46 4F 4F 42 41 52 00 30 10 9A 00 00 00

Because the first character is 0xFF, this resource type is identified by the number
immediately following it, which, in this case, is 0x05. Using Table7.1, you know
this is the header for a dialog box. The next field is the name of the dialog box, and
since it does not start with 0xFF, it is a null-terminated string. Converting the hex
string 46 4F 4F 42 41 52 to alphabetic letters, you get "FOOBAR". Next is the
memory flag for this dialog, which is 0x1030. Using Table 7.2, you know this dialog
box is discardable, pure, moveable, and loaded on call (this last aspect can be
deduced because 0x1030 does not contain 0x40). Finally, the length of the dialog box
resource data is 0x0000009A.

Table 7.2 Memory flags ORed values.
Value
0x1000
0x40
0x20
0x10

Meaning
Discardable
Preload (otherwise, load on call)
Pure
Moveable (otherwise, fixed)

128 — Windows Undocumented File Formats

One shortcoming of this file format is the absence of a signature at the start of the
. R E S file. This prevents any utility that reads a .RES file as input from knowing if the
input file is indeed a .RES file. When we were testing the program that decompiles
.RES files into .RC files (RES2RC), sometimes we accidentally gave it an . R C file as
input. The results were unpredictable, but demonstrated how sensitive utility pro-
grams must be to non- .RES files. When Microsoft wanted to distinguish a 32-bit
.RES file from a 16-bit .RES file, they evaded this shortcoming by starting all 32-bit
.RES files with an entry illegal in a 16-bit . R E S file: 0. Because this value is not 0xFF,
it must be a character string naming the resource type, but because it begins with
zero, the length of the string must be zero, which is illegal. This is documented in the
R E S F M T . T X T file on Microsoft's Win32 CD-ROM.

The Program
This chapter describes a DOS program called RES2RC (Listing 7.1, see page 140)
which decompiles an .RES file into an .RC file. It requires two arguments: an input
filename (a .RES file) and an output filename. Because each resource has its own for-
mat, we had to write code to handle each type of resource. As you may guess this
made for a lot of code — roughly 3,200 lines of C. This section will detail how the
program works.

Before processing any resources in the input file, the program will verify that it is
not a Win32 resource file by checking the first byte. If that test succeeds, the program
rewinds the input file and enters a small loop to read the first byte of each resource
header. If it is 0xFF, it is a resource listed in Table 7.1, and must be processed accord-
ingly; otherwise, it is a user-defined resource, in which case the program saves the
data to a uniquely named external file of the format UR###.USR. An entry is added to
the output file referencing this file.

Resources with a header starting with 0xFF are those predefined by Windows or
the user and include resources typically used in a Windows program (e.g., dialog
boxes, cursors). The bulk of the code was written to handle these types of resources
for which the program reads the number (integer) following the 0xFF, and compares it
against the list of types defined in W I N D O W S . H and V E R . H (the latter exclusively for a
version resource). Once the program determines the type, it jumps to the code written
for that resource.

Nearly everything described so far is handled in under 200 lines of code. The
remainder of the code is needed to handle each resource type. The rest of this section
will describe the format of each of these types. I will also point out any discrepancies
between the format and Microsoft's documentation.

All of the tables in the remainder of this chapter were either defined in V E R H or
W I N D O W S . H or described in the Microsoft Windows 3.1 Programmer's Reference.

Resource (.RES) File Format — 129

Table 7.3 CURSORHEADER record.
Field Name
cdReserved
cdType
cdCount

Data Type
WORD
WORD
WORD

Comments
Must be zero
Resource type; must be 2
Number of cursors in the file

Table 7.4 CURSORDIRENTRY record.
Field Name
w W i d t h
wHeigh t
wPlanes
w B i t C o u n t
dwBytesInRes
wImageOffset

Data Type
WORD
WORD
WORD
WORD
DWORD
WORD

Comments
Width, in pixels
Height, in pixels
Number of color planes; set to 1
Number of bits in cursor; set to 1
Size of resource in bytes
Image number

Cursors and Group Cursors
Each cursor file (. C U R) included in an .RC file starts with a header, called C U R S O R -
H E A D E R (Table 7.3). The only interesting field in the header is cdCount, which is the
number of cursors in the . C U R file. The header is followed (in the .RES file) by a C U R -
S O R D I R E N T R Y structure for each cursor (Table 7.4). The number of these structures in
the file will be the same as cdCount. After the array of these structures, the . C U R file
contains the data for each of its cursors. It is important to note that the C U R S O R D I R E N -
TRY structure in the . R E S file is different than the structure of the same name defined
in the Microsoft Windows 3.1 Programmer's Reference, Volume 4, Chapter 1; rather,
it matches the format described in Chapter 7 of the same Reference. The structure
used in Table 7.4 is the one used in RES2RC.

In the .RES file, the data is arranged somewhat differently. The data for each of the
cursors (excluding the headers) appears first. In the .RES file, each cursor is listed sep-
arately and successively. These will be followed by a group cursor resource, which
contains the data described previously.

When RES2RC encounters cursor data in the .RES file, it does a bit of jumping
about, so it's important to describe what it is doing. RES2RC skips over the cursor
resources when they first appear, since the header has to be written first, and that
doesn't appear until later. The next resource to appear should be a group cursor. At
this point, RES2RC will generate a uniquely named filename of the form CU###.CUR,

130 — Windows Undocumented File Formats

Table 7.5 CURSORRESENTRY record.
Field Name
b W i d t h
bHeigh t
bColorCount
bReserved
wXHotSpot
wYHotSpot
dwBytesInRes
dwImageOffset

Data Type
BYTE
BYTE
BYTE
BYTE
WORD
WORD
DWORD
DWORD

Comments
Width, in pixels
Height, in pixels
Must be zero
Must be zero
X-coordinate of hotspot, in pixels
Y-coordinate of hotspot, in pixels
Size of the resource, in bytes
Offset to image

Table 7.6 BITMAPFILEHEADER record.
Field Name
bfType
bfSize
bfReserved1
bfReserved2
bfOffBi t s

Data Type
U I N T
DWORD
U I N T
U I N T
DWORD

Comments
0x4D42
Size of the bitmap
Zero
Zero
0x76

which will hold the cursor data, including headers. It will then add an entry to the out-
put file for the cursor data, using this filename. Next, it reads the header, which starts
the group cursor resource and writes it to the data file. It then makes two passes
through the C U R S O R D I R E N T R Y fields. The first time, it reads each occurrence of the
structure so it can write the data to the data file. However, it is stored in the data file in
a slightly different format, which is described in Table 7.5.

Next, RES2RC runs through the array again, this time using the wImageOffset
field to find the cursor data in the .RES file. The wImageOffset field isn't the offset
into the . R E S file of the image; each image in the . R E S file is numbered (e.g., 1, 2, 3)
in the first field in its respective header, and this is the number RES2RC searches to
find a match against the wImageOffset field. Once it finds a match, it writes the data
for that particular image to the data file.

The Microsoft documentation on cursors (in the .RC file) says the default is LOAD-
ONCALL, MOVEABLE, and DISCARDABLE. This does not appear to be the case. It seems
DISCARDABLE must be specified explicitly for the resource compiler to mark it as such.

Resource (.RES) File Format — 131

Bitmaps
Bitmap files (.BMP) are composed of two distinct parts: header and data. The header is
defined in W I N D O W S . H and described in Table 7.6.

Most of the fields in the header are constants; the exception is bfSize, which is
computed as the sum of the size of the header and the size of the data. In the .RES file,
only the data is included because the header can be computed. When RES2RC finds a
bitmap resource, it generates a unique filename of the form BM###.BMP and writes a
reference to this filename to the output file. It then calculates bfSize, writes the
header, and then writes the data in the bitmap resource (in the . R E S file).

Icons and Group Icons
Each icon file (. ICO) included in an .RC file starts with a header, called I C O N H E A D E R
(Table 7.7). The only interesting field in the header is idCount, which is the number
of icons in the . I C O file. The header is followed (in the .RES file) by an I C O N D I R -
ENTRY structure (Table 7.8) for each icon (the number of these structures in the file
will be the same as idCount). After the array of these structures, the . I C O file contains
the data for each of its icons.

In the .RES file, the data is arranged somewhat differently. The data for each of the
icons (excluding the headers) appears first. In the .RES file, each icon in the . I C O file

Table 7.7 ICONHEADER record.
Field Name
idReserved
idType
idCount

Data Type
WORD
WORD
WORD

Comments
Must be zero
Resource type; set to 1
Number of entries in directory

Table 7.8 ICONDIRENTRY record.
Field Name
bWid th
bHeight
bColorCount
bReserved
wPlanes
wBi tCount
dwBytesInRes
wImageOffset

Data Type
BYTE
BYTE
BYTE
BYTE
WORD
WORD
DWORD
WORD

Comments
Width, in pixels (16, 32, or 64)
Height, in pixels (16, 32, or 64)
Number of colors in icon (2, 8, or 16)
Must be zero
Number of color planes
Number of bits in the icon bitmap
Size of the resource, in bytes
Image number

132 — Windows Undocumented File Formats

has a separate resource, each of which is listed successively. These will be followed
by a group icon resource, which contains the data described previously.

When RES2RC encounters icon data in the . R E S file, it does a bit of jumping about,
so it's important that I describe what it is doing. RES2RC skips over the icon resources
when they first appear, because the header has to be written first, and it doesn't appear
until later. The next resource to appear should be a group icon. At this point, RES2RC
generates a uniquely named filename of the form IC###.ICO, which holds the icon data,
including headers. It then adds an entry to the output file for the icon data, using this
filename. Next, it reads the header that starts the group icon resource and writes it to the
data file. It then makes two passes through the I C O N D I R E N T R Y fields. The first time, it
reads each occurrence of the structure so it can write the data to the data file. However, it
is stored in the data file in a slightly different format, which is described in Table 7.9.

Next, RES2RC runs through the array again, this time using the wImageOffse t
field to find the icon data in the .RES file. The wImageOffse t field isn't the offset into
the . R E S file of the image; each image in the .RES file is numbered (e.g., 1, 2, 3) in the
first field in its respective header, and this is the number RES2RC searches to find a
match against the wImageOffse t field. Once it finds a match, it writes the data for that
particular image to the data file.

The Microsoft documentation on icons (in the .RC file) says the default is L O A D O N C A L L ,
M O V E A B L E , and DISCARDABLE. This does not appear to be the case. It seems D I S C A R D A B L E
must be specified explicitly for the resource compiler to mark it as such.

Table 7.10 MenuHeader record.
Field Name
w V e r s i o n
wReserved

Data Type
W O R D
WORD

Comments
For Windows 3.0 and later, zero
Must be zero

Table 7.9 I CON RES ENTRY record.
Field Name
b W i d t h
bHeigh t
bColorCount
bReserved
w P l a n e s
wBitCount
dwBytesInRes
dwImageOffset

Data Type
BYTE
BYTE
BYTE
BYTE
WORD
WORD
DWORD
DWORD

Comments
Width, in pixels (16, 32, or 64)
Height, in pixels (16, 32, or 64)
No. of colors (2, 8, or 16)
Must be zero
Number of color planes
Number of bits in icon bitmap
Size of the resource, in bytes
Offset to start of icon data

Resource (.RES) File Format — 133

Menus
Menu resources begin with a header, followed by the data for the menu. The format of
the header is described in Table 7.10.

The remainder of the header contains data describing the menu. The data is really
a series of small blocks describing each menu item. The first field in the block is a
WORD, containing flags that describe how the menu item is displayed. The possible val-
ues for this field depend on whether the item is a popup or normal menu item, but they
have several values in common. Valid flag values for both types are MF_GRAYED,
MF_DISABLED, MF_CHECKED, MF_MENUBARBREAK, M F _ M E N U B R E A K , and MF_END (any
combination). In addition to these possible values, popup items must have a flag value
of MF_POPUP. Another possible value for normal menu items is the undocumented
MF_HELP attribute. If the menu item has the MF_POPUP attribute, it is immediately fol-
lowed by a null-terminated string containing the text of the menu item. Otherwise, it
is followed by a WORD containing the menu ID and the text of the item.

The code in RES2RC for processing menu resources is fairly straightforward. For
each menu item, it checks the possible values for the flag field and prints the corre-
sponding attribute. Whenever it encounters a popup menu item, it starts a new sub-
menu. When an item has an attribute of MF_END, it prints a "}" to end the block. This
continues until it has processed the entire resource.

Dialog Boxes
Dialog box resources are stored in a . R E S file beginning with a dialog box header,
which is then followed by the data for each control in the dialog box. The header is
described in Table 7.11.

Table 7.11 DIALOGHEADER record.
Field Name
lStyle
bNumberofI tems
X

y
w i d t h
h e i g h t
szMenuName
s z C l a s s N a m e
szCap t ion
w P o i n t S i z e
szFaceName

Data Type
DWORD
BYTE
WORD
WORD
WORD
WORD
cha r []
cha r []
c h a r []
WORD
cha r []

Comments
Style of dialog box
Number of controls
X-coordinate of dialog box
Y-coordinate of dialog box
Width of dialog box
Height of dialog box
Name of any associated menu
Name of class of dialog box
Caption of dialog box
Only if lS ty le has DS_SETFONT
Only if lS ty le has DS_SETFONT

134 — Windows Undocumented File Formats

The last two fields only exist if the lStyle field has a value of DS_SETFONT. This
structure is declared in R E S T Y P E S . H , but in a slightly different format. Everything
after the he igh t field is dropped, because of the way variable strings are processed.
RES2RC does not store those strings in memory; it will read the string one character
at a time and immediately write it to the output file, repeating this process until it hits
the null character; this is done partly because most strings in a compiled resource file
have no length restrictions.

After reading the resource header for the dialog box, RES2RC reads the DIALOG-
H E A D E R structure and writes the appropriate strings to the output file.

The resource compiler stores information for each control in the format described
in Table 7.12.

As declared in R E S T Y P E S . H , this structure contains only the first six fields, since
the remainder can consist of variable-length strings. If the class field contains 0x80,
it is a predefined control type: button, edit control, static control, listbox, scroll bar, or
combo box; otherwise, it is the first character in a string naming the resource type.
RES2RC will process the CONTROLDATA structure differently for each control type.
The bulk of this code consists of checking for each possible value of the lStyle field
(which differs with the control type) and writing the appropriate string to the output
file. For example, if the control is a combo box, the program will check lStyle for
any of 14 possible values, such as CBS_HASSTRINGS and WS_TABSTOP.

If the class field does not contain 0x80, the program does not process the lStyle
field, because it has no prior knowledge of the resource, such as how to interpret lStyle.

Table 7.12 CONTROLDATA record.
Field Name
X

y
wid th
he igh t
id
lS ty le
c lass / szClass (union)
szText

Data Type
WORD
WORD
WORD
WORD
WORD
DWORD
BYTE/char []
cha r []

Comments
X-coordinate of control
Y-coordinate of control
Width of control
Height of control
Numeric ID of control
Style of control
Type/name of control
Text in the control

Resource (.RES) File Format — 135

String Tables
String tables allow a programmer to group strings used by a program into a single
area in the resource file. The documentation says each table is composed of 16 strings.
However, something it doesn't make clear is that the resource compiler will read any
string table defined in a resource file and group them into sets of 16, regardless of how
they were originally declared. Each string is stored in a compiled resource file as a
separate resource, but they can't be treated as such. RES2RC maintains a record of the
number of consecutive string table entries it has processed, starting a new table in the
output file after every 16 strings. If fewer than 16 strings are specified in the resource
file, the compiler fills out the table with zero-length strings. These zero-length strings
are skipped by RES2RC. After the standard resource header, string resources contain
two fields: length of the string and the string itself. Because the string can contain null
characters, the length is required.

The code in RES2RC to handle string resources is very short — roughly 50 lines.
You should keep in mind that a table produced by RES2RC may not appear as it was
originally defined, but it is functionally the same. For example, if you define two
string tables, each containing three strings, the compiler will merge them into one
table of six strings. RES2RC will use this format when writing it to the output file. If
you compile the RES2RC output, the resulting .RES file will be identical to the origi-
nal .RES file you used as input to RES2RC.

Fonts and Font Directories
Fonts and font directories are closely related resources. For each font file (.FON) refer-
enced in your .RC file, the resource compiler will add a font resource, containing all
of the data in the original . F O N file. For each unique font directory, the compiler will
add a font directory resource. Related fonts are grouped into font directories; a direc-
tory contains a table of metrics for each of its fonts. Because all the information the
resource compiler needs is contained within the .FON file, RES2RC skips all font
directory resources it finds in the input file. When it finds a font resource, it will save
the data to an external and uniquely named file of the format FO###.FON. A reference
to this file is added to the output file. This .FON file will be identical to the original
font file.

136 — Windows Undocumented File Formats

Accelerator Tables
Accelerator resources are very straightforward to process. All of the accelerators
grouped into a single table in the resource file are grouped likewise in the .RES file as
a single resource. The resource header contains the name of the table. The resource
data itself contains a sequence of small structure(s) for each accelerator in the table.
The format of this structure is described in Table 7.13.

The fF lags field describes whether the accelerator uses any combination of the
Alt, Shift, and Ctrl keys, and whether the top-level menu item is highlighted when the
key is pressed. Each of these values is unique (at the bit level), and are ORed together
to produce the final value. The Microsoft documentation describes the possible values
of fFlags, but they left one out: if it contains 0x01, the accelerator is a virtual key.
This is transparent to the user, but is important to RES2RC. The wEvent field contains
the key used in the accelerator, and w I D is the numeric value passed to the window
procedure when the accelerator is pressed.

The code in RES2RC that handles these tables isn't complicated at all; it should
be easy to follow. The longest part of the code is the processing for the wEvent field;
we attempted to make the output as easy to read as possible. If the field is a virtual
key, a string describing the key is printed (e.g., "VK_TAB", "VK_HOME"). Other-
wise, the character is ASCII and printed as a letter. If it is a control character, it is
printed as a caret ("^") followed by the letter, all within quotes. After that, the wId
field is printed, followed by f F l a g s processing. Each possible value is checked for,
and if TRUE, the appropriate string is written to the output file.

RCDATA
An RCDATA resource allows a raw data resource to be included in a resource file, and
ultimately, the executable. This type of resource can include binary data. RES2RC
processes this type of resource by running through the data, one character at a time,

Table 7.13 AccelTableEntry record.
Field Name
f F l a g s
wEven t
wId

Data Type
BYTE
WORD
WORD

Comments
Shows Alt, Ctrl, Shift, highlighted, virtual
Key used in the accelerator
Value passed to window

Resource (.RES) File Format — 137

and printing it to the output file. We attempted to make the data as readable as possi-
ble; the characters are grouped into lines of 60 characters each. If a character has an
ASCII value between 32 and 126 (inclusive), it is printed as a character. Otherwise, it
is printed in octal, with a leading backslash ("\"), so the resource compiler will inter-
pret it as octal. As with the other resources, RES2RC knows the length of the data
from the resource header, the last field of which is the length of the resource data.

Name Tables
Name tables were once used under Windows 3.0, but are now obsolete. If RES2RC
comes across a name table, it will add a three-line comment to the output file saying
one was found, but the table is otherwise ignored.

Version Information
The V e r s i o n I n f o resource allows a programmer to specify information such as the
version number and intended operating system for a program. This information is
used by the File Installation library functions (V E R . D L L) . This resource is stored in a
compiled resource file as a sequence of blocks. Each block has the same format and is
described in Table 7.14. The a b V a l u e field is always aligned on 32-bit boundaries.

The data is stored starting with a root block, which contains the fixed information
(specified immediately after V E R S I O N I N F O in the .RC file), such as F I L E V E R S I O N and
FILEOS. The documentation contains some discrepancies about the FILEOS field. It
says two possible values for this field are VOS_WINDOWS16 and VOS_WINDOWS32. We
couldn't find references to these in V E R . H ; furthermore, we found definitions for
VOS_OS216, VOS_OS232, VOS_OS216_PM16, and VOS_OS232_PM32. We assume the first
two are for 16-bit and 32-bit OS/2 programs, respectively; the last two are for 16-bit
and 32-bit OS/2 Presentation Manager programs, respectively. All of the fields in the

Table 7.14 VERSIONINFO block header record.
Field Name
cbBlock
c b V a l u e
szKey[]
a b V a l u e

Data Type
WORD
WORD
char
BYTE

Comments
Complete size of the block
Size of the a b V a l u e field
Name of the block
Either an array of WORDs or a string

138 — Windows Undocumented File Formats

root block are processed by RES2RC by reading the a b V a l u e field into the
V S _ F I X E D F I L E I N F O structure, which is defined in V E R . H . The fields are described in
Table 7.15. The program then checks each field against the list of possible values
defined in V E R . H , and writes the appropriate string to the output file.

In an .RC file, a V e r s i o n I n f o block can have two types of information blocks:
string and variable. String information blocks allow a programmer to specify different
string information (e.g., "CompanyName", "InternalName") in different languages.
For example, you could set up a block of this type of information, label the block as
U.S. English — 7-bit ASCII, and Windows would use that information when install-
ing onto the appropriate set-up. These blocks are stored in a . R E S file using the same
format as the root block, with an szKey field starting with "S", so RES2RC runs
through the a b V a l u e field (for the next cbBlock number of bytes) and processes each
nested block of resource data.

A similar algorithm is used for variable information blocks. When RES2RC
encounters a block with an szKey field starting with "V", the block is treated as a vari-
able block. These are different than string blocks, in that variable blocks cannot be
nested, and each line defines the languages and character sets supported by the exe-
cutable. Each variable block is immediately followed by one or more "Translation"

Table 7.15 VS_FIXEDFILEINFO record.
Field Name
dwSignature
dwStrucVersion
d w F i l e V e r s i o n M S
d w F i l e V e r s i o n L S
dwProductVersionMS

dwProductVers ionLS

d w F i l e F l a g s M a s k

d w F i l e F l a g s
dwFi leOS
dwFileType
dwFi leSubtype
d w F i l e D a t e M S
dwFi l eDa teLS

Data Type
DWORD
DWORD
DWORD
DWORD
DWORD

DWORD

DWORD

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

Comments
0XFEEF04BD
Binary version number of this structure.
High 32 bits of the file's version number
Low 32 bits of the file's version number
High 32 bits of the product's version
number
Low 32 bits of the product's version
number
Specifies which bits in d w F i l e F l a g s are
valid
Describes various attributes of the file
Intended operating system of the file
Type of file
Specifies the function of the file
High 32 bits of the file's time stamp
Low 32-bits of the file's time stamp.

Resource (.RES) File Format — 139

blocks, because each line in a variable information block has the form 'Value "Trans-
lation", lang-ID, charset-ID'. RES2RC processes these blocks by reading each trans-
lation block and writing out the appropriate information, one block at a time.

One of the first things RES2RC does when it encounters a V e r s i o n I n f o block is
to check whether it is the first resource of this type found in the input file. If so,
RES2RC will write the line "#include <ver.h>" to ensure that the version strings
listed in V E R . H (and used by RES2RC) will be defined if the user attempts to compile
the output of RES2RC with the resource compiler.

User-Defined Data
If a resource header begins with 0xFF followed by a number not found in Table 7.1,
RES2RC considers it data defined by the user. It will save the data in an external and
uniquely named file of the format UR###.USR. An entry is put in the output file con-
taining a reference to this file. Some of the code for this case is shared by the case of a
resource header starting with a character other than 0xFF (which signifies a name for
the resource, rather than numeric identification).

In order to use RES2RC, all you need is a .RES file (such as that produced by
R C . E X E , Microsoft's resource compiler). RES2RC will convert it to an .RC file.
RES2RC requires two arguments: input filename and output filename. It will write
any bitmaps, cursors, icons, or user-defined data to external files, generating unique
filenames when needed. The line "#include <windows.h>" is always written to the
output file; if any version resources are defined, the line "#include <ver.h>" is also
written. In order to compile the output from RES2RC into a .RES file (which should
be identical to the original input to RES2RC), you will need to include the path for
W I N D O W S . H . This can be done with a command of the form rc -r - i < p a t h > < i n p u t
f i l e> . r c . Substitute the directory name containing W I N D O W S . H for <path>, and the
name of the input file for < inpu t f i l e> . rc . For example, on my computer, I use rc
-r - i \ m s v c \ i n c l u d e xyz.rc. The -r means produce only a .RES file. The -i means
to include the following directory in the search path for header files.

Where Do I Go from Here?

An adventurous soul could use this code to write a program that would extract the
resources from an executable and produce the corresponding .RC file, sort of an
"Exe2Rc". The resource data itself is stored in an . E X E file in the same format as in a
.RES file. The latter includes a header before each resource. An executable uses a
resource table to maintain a list of resources.

140 — Windows Undocumented File Formats

Listing 7.1 RES2RC.C — Converts a .RES file
to an .RC file.

Resource (.RES) File Format — 141

Listing 7.1 (continued)

142 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 143

Listing 7.1 (continued)

144 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 145

Listing 7.1 (continued)

146 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 147

Listing 7.1 (continued)

148 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 149

Listing 7.1 (continued)

150 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 151

Listing 7.1 (continued)

152 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 153

Listing 7.1 (continued)

154 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 155

Listing 7.1 (continued)

156 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 157

Listing 7.1 (continued)

158 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 159

Listing 7.1 (continued)

160 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 161

Listing 7.1 (continued)

162 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 163

Listing 7.1 (continued)

164 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 165

Listing 7.1 (continued)

166 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 167

Listing 7.1 (continued)

168 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 169

Listing 7.1 (continued)

170 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 171

Listing 7.1 (continued)

172 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 173

Listing 7.1 (continued)

174 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 175

Listing 7.1 (continued)

176 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 177

Listing 7.1 (continued)

178 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 179

Listing 7.1 (continued)

180 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 181

Listing 7.1 (continued)

182 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 183

Listing 7.1 (continued)

184 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 185

Listing 7.1 (continued)

186 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 187

Listing 7.1 (continued)

188 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 189

Listing 7.1 (continued)

190 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 191

Listing 7.1 (continued)

192 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 193

Listing 7.1 (continued)

194 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 195

Listing 7.1 (continued)

196 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 197

listing 7.1 (continued)

198 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 199

Listing 7.1 (continued)

200 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 201

Listing 7.1 (continued)

202 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 203

Listing 7.1 (continued)

204 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 205

Listing 7.1 (continued)

206 — Windows Undocumented File Formats

Listing 7.1 (continued)

Resource (.RES) File Format — 207

Listing 7.1 (continued)

208 — Windows Undocumented File Formats

Listing 7.1 (continued)

Chapter 8

PIF File Format
In this chapter, I'll take a look a look at the format of . P I F files. Our thanks go to Mike
Maurice for his original work on this topic, published in Andrew Schulman's "Undoc-
umented Corner", Dr. Dobb's Journal, July 1993. We'd also like to thank Jonathan
Erickson, DDJ editor, for allowing us to use the information in that article. After
describing the file format, I'll present a DOS program that retrieves data, which can be
set through Microsoft's PIF Editor (included with Windows 3.1), from a PIF file.

As operating systems go, DOS is old. In the rapidly evolving world of computers,
most software starts to show its age within a few years. Software that's still in use
after more than 12 years is almost unheard of, but you can't ignore it — DOS is still
around. Forget the version numbers; if you want your software to maintain backward
compatibility (and DOS does), you soon realize that all you can really do is tack on
bells and whistles. Same face, more makeup. DOS should have died years ago, but
traces of it can even be found in Windows 95, and speaking of Windows...

When Microsoft introduced Windows, they realized it needed the ability to run
DOS applications; otherwise, they would have lost a huge software base. So they
introduced Program Information Files (PIFs), which allow a user to run DOS executa-
bles from within Windows. Microsoft includes a program called PIF Editor with each
and every copy of Windows, just so you can run DOS and Windows programs alike all
day long without leaving your comfortable GUI. PIF files contain information such as
how much memory to use, background priority, and what type of graphics mode to
use. The need for PIF files is rooted in the difference between DOS and the Windows
operating environment. Windows executables contain a lot more information than

209

210 — Windows Undocumented File Formats

their DOS counterparts. DOS executables start off with a relatively small header
(0x3C bytes) that contains all the information it needs, such as the file size and signa-
ture word, before it runs the program. But this header is too small for Windows. The
header for each executable is designed so that if the word value at 0x18 is 0x40 or
greater, the word value at 0x3C is an offset to a Windows header. This second header
includes such information as the segment table and resource table. In order for Win-
dows to run DOS programs, it needs more information than is provided in the DOS
header. This information is provided through a PIF file. Because there are some differ-
ences between Standard Mode and Enhanced Mode in Windows, PIF files allow you
to specify different values for the two modes for some fields (but not all). For more
detailed information on DOS and Windows executables, see Chapter 6, "Execut-
able-File Header Format" of the Microsoft Windows 3.1 Programmer's Reference,
Volume 4, Resource.

The Format
You can think of PIF files as series of blocks, where each block contains five pieces of
information. The first is a 16-byte string, containing the title of the block. This is fol-
lowed by three WORDs: offset to the next block and the offset and size of the current
block. This is followed by the data record for the block. The only exception to this
structure is the first block in the file, in which the data record comes first.

The known acceptable values for the title of a block are "MICROSOFT PIFEX",
"WINDOWS 286 3.0", "WINDOWS 386 3.0" and "WINDOWS NT 3.1". The first
block in the PIF file is always labeled "MICROSOFT PIFEX", and always occurs in
the same place. This allows a program to verify that the file is a PIF. As mentioned
previously, this block is slightly different than the rest, in that the data record comes
first (at the beginning of the PIF). The size of this block is 0x171 (369) bytes. It con-
tains all the information common to Standard Mode and Enhanced Mode in Windows,
plus several fields specific to Standard Mode. If you run PIF Editor, you will notice
several fields must be the same between the two modes, such as "Window Title". This
is the type of information stored in the "MICROSOFT PIFEX" block.

The block labeled "WINDOWS 286 3.0" contains only information relevant to
Standard Mode operation of Windows, such as whether the program directly modifies
the keyboard. The size of the data record for this block is 6 bytes. Sometimes more than
one block in the PIF file will have a similar title, but the first "W" will be zeroed out.
These appear to be unused; there will be a block that does not have the "W" zeroed.

Another block type is labeled "WINDOWS 386 3.0", and is specific to Enhanced
Mode in Windows. The size of this data record is 0x68 (104) bytes. If this or the 286
structure seems small, it is because both structures store much of their information as
single bits. Both this structure and the 286 structure are documented in P I F S T R U C . H .

PIF File Format — 211

Windows NT has its own block, labeled "WINDOWS NT 3.1" (note the two
spaces between NT and 3.1). The format of the data record for this block is currently
unknown but appears to be 0x8C (140) bytes long.

Another type of block supported by PIF Editor is the "COMMENT" block. If you
add the appropriate offsets and size, you can create a block containing comments
about the PIF file.

Several new types of blocks have been found in Windows 95 . P I F files since the
original article appeared in Dr. Dobb's Journal. These have appeared in various prer-
eleases, so some may now be obsolete. These include "WINDOWS PIF.403" (with a
length of 0x180 bytes), "WINDOWS PIF.402" (0x17A bytes), "WINDOWS ICO.001"
(0x2A0 bytes) and "WINDOWS VMM 4.0" (0x1AC bytes). The formats of the data
record for these blocks are unknown at this time.

The Program
We've written the DOS program PIFDUMP (Listing 8.1), which you can use to exam-
ine all of the fields in a PIF file. You can change the PIF fields with Microsoft's PIF
Editor. PIFDUMP requires two arguments:
1. either -2 or -3, for information relevant to Standard Mode or Enhanced Mode,

respectively (information common to both modes is always presented), and
2. the name of the input PIF file.

We tried to make the format of the output mimic the order of appearance of the
data in PIF Editor as closely as possible, but this was strictly an arbitrary decision. For
example, if you want all information relevant to Enhanced mode for a file called
doom.pif , you would enter

PIFDUMP -3 doom.pif

The code is fairly straightforward. All of the information relevant to the format of
the PIF file is contained in P I F S T R U C . H . You might notice several structures appear to
be declared twice. As mentioned before, much of the data in a PIF file is encoded at
the bit level. Some compilers complained when we passed these bits around, so we
commented out the original declaration of these structures and added another struc-
ture (with the same name) that used BYTEs instead of bits. Also, when these struc-
tures were later referenced in P I F S T R U C . H as part of the declaration of a larger
structure, we substituted the appropriate number of BYTEs. For example, a structure
call HOTKEY contains hotkey information. If you look at the original declaration (in
the comments), it uses 16 bits, or 2 bytes. Immediately after the comment in which
the declaration appears, there is a declaration for a structure called HOTKEY that uses
16 bytes. The latter is used in P I F D U M P . C . The HOTKEY structure was originally apart

212 — Windows Undocumented File Formats

of the DATA386 structure. It was replaced with 2 bytes to hold the data; in P I F D U M P . C ,
there is a function that uses those 2 bytes to fill in the HOTKEY structure. Similar func-
tions exist for the other structures containing bit-level information.

Where Do I Go from Here?
An interesting use of the information in this chapter would be to write a Windows
program for running DOS applications, but allowing the user to specify PIF settings.
The program could then create and write a PIF file on-the-fly and then run the applica-
tion in a manner reflecting the user's preferences.

Listing 8.1 PIFDUMP.C — Extracts information from a
Windows PIF file.

PIF File Format — 213

Listing 8.1 (continued)

214 — Windows Undocumented File Formats

Listing 8.1 (continued)

PIF File Format — 215

Listing 8.1 (continued)

216 — Windows Undocumented File Formats

Listing 8.1 (continued)

PIF File Format — 217

Listing 8.1 (continued)

218 — Windows Undocumented File Formats

Listing 8.1 (continued)

PIF File Format — 219

Listing 8.1 (continued)

220 — Windows Undocumented File Formats

Listing 8.1 (continued)

PIF File Format — 221

Listing 8.1 (continued)

222 — Windows Undocumented File Formats

Listing 8.1 (continued)

PIF File Format — 223

Listing 8.1 (continued)

224 — Windows Undocumented File Formats

Listing 8.1 (continued)

PIF File Format — 225

Listing 8.1 (continued)

226 — Windows Undocumented File Formats

Listing 8.1 (continued)

PIF File Format — 227

Listing 8.1 (continued)

228 — Windows Undocumented File Formats

Listing 8.1 (continued)

Chapter 9

W3 and W4 File Formats
Overview
Unless you follow the literature on undocumented Windows features, you might not
even know what a "W3" or "W4" file is. The W3 file is the file format used by
W I N 3 8 6 . E X E in Windows 3.x and is actually quite simple. The W4 file is used by
V M M 3 2 . V X D in Windows 95 and is a little more complex than the W3 file.

W3 and W4 files aren't really executable files, in the common sense of the term.
They are more like a library. They contain a series of VxDs (LE files), and they're
basically a way of packaging together a bunch of the core VxDs for Windows. Essen-
tially, the W3 file contains a directory of all the LE files (by name), with offsets to
their locations, and the length of each one.

Like NE, PE, and LE executables, the W3 and W4 have an MZ (MS-DOS compat-
ible executable) stub program, with the W3 or W4 file immediately following it. I'm
not really going to get into the details of the MZ stub program. All you really need is
a very small piece of the header. Listing 9.1 shows the M Z H E A D E R structure and a short
routine, S k i p M Z () , that allows you to seek to the "next" executable in the file. This
same routine would work for LE, PE, and NE files, as well.

229

230 — Windows Undocumented File Formats

Listing 9.1 SkipMZ code sample — allows you to seek
to the "next" executable in the file.

W3 and W4 File Formats — 231

The W3 File Format
After the MZ stub, you're basically just concerned with the W3 section of the file. The
W3 file itself consists of a header, the VxD directory, and then the VxDs themselves.
The header for the W3 file is shown in Table 9.1.

The W3 header is immediately followed by the list of VxDs. The list contains
V x D R E C O R D structures (Table 9.2).

VxDName is simply the eight-character name of the VxD. If the name is fewer than
eight characters, it's padded with spaces (0x20). There is no null-terminator. The start-
ing location of the VxD is based on the beginning of the WIN386 .EXE file, not the begin-
ning of the W3HEADER record. The VxDHdrS ize field provides the size of the VxD header
in bytes. Actually, VxDHdrSize includes not only the LEHEADER structure, but every-
thing in the Loader and Fixup sections of the LE file. So for our purposes, VxDHdrSize
includes everything from the "LE" signature to the end of the import procedure name
table. For more information on the LE file format, see Chapter 10.

How to Unmangle the VxDs
Unfortunately, VxDs within a W3 file are somewhat mangled, although the mangling
is fairly minor and easy to rectify. First of all, the DataPages value of L E H E A D E R is
changed to be relative to the beginning of the MZ header for the W3 file. Normally this
is relative to the beginning of the MZ header of the LE file. Of course, in a W3 file, the

Table 9.1 W3HEADER record.
Field Name
W3Magic
W i n V e r
NumVxDs
Reserved

Data Type
char[2]
WORD
WORD
BYTE[10]

Comments
Contains the characters "W3"
Version of Windows (0x30A = Windows 3.1)
Number of VxDs in the directory
Basically filler

Table 9.2 VxDRECORD structure.
Field Name
VxDName
VxDStar t
V x D H d r S i z e

Data Type
char[8]
long
long

Comments
Name of VxD, padded at the end with blanks
Starting location of VxD in W3 file
Size of LE header in VxD

232 — Windows Undocumented File Formats

stubs for VxDs have been stripped to save space. The changing of the DataPages value
is weird though, because none of the other offset fields are changed at all.

The other mangling has to do with the nonresident name table. The nonresident
name table is usually the last section of an LE file. In the case of W3 files, however,
all nonresident name tables have been removed, so if you extract the LE files, you'll
need to build one for it. This is a fairly simple process, however.

SUCKW3
Okay, the name sounds a little strange, but basically SUCKW3 (Listings 9.2 and 9.3)
extracts VxDs from a W3 file. Running SUCKW3 with just the name of the W3 file
gives you a listing of all the VxDs in the W3 file. Passing a second parameter, the
name of a VxD, extracts the VxD into a separate .386 file. You need to make sure you
have a STUB.EXE program in the same directory, because the LE file will require its
own stub program.

Listing 9.2 SUCKW3.H.

W3 and W4 File Formats — 233

Listing 9.2 (continued)

234 — Windows Undocumented File Formats

Listing 9.2 (continued)

Listing 9.3 SUCKW3.C.

W3 and W4 File Formats — 235

The P u l l V x D () function in SUCKW3 performs all the patching of the LEHEADER
structure and adds the nonresident name table. Again, for more information on the LE
file format, see Chapter 10.

Listing 9.3 (continued)

236 — Windows Undocumented File Formats

Listing 9.3 (continued)

W3 and W4 File Formats — 237

The W4 File Format
The W4 file format is very similar to the W3 file format, except for one major differ-
ence: it uses compression. In fact, the compression used in the W4 file is exactly the
same as the Double Space compression used in double-space drives. There's code
reuse for you. In fact, in the first stories I heard of people working on the W4 file for-
mat, everyone was calling directly into the Double Space decompression routines to
decompress the W4 files. A very ingenious method, but for our purposes, we needed
to know the compression algorithm, which Clive Turvey was nice enough to provide.
In fact, Clive Turvey, in addition to providing help with the W3 file format, provided

Listing 9.3 (continued)

238 — Windows Undocumented File Formats

everything we know about the W4 format. He was even nice enough to provide source
code for decompressing a W4 file. Although we've rewritten this code from scratch, it
is still similar to his and it wouldn't have been possible without his assistance.

The W4 compression algorithm is called a Lempel/Ziv/Welch compression algo-
rithm, named after the three people who contributed to its design. The W4 file, when
decompressed, actually contains a W3 file inside, so once you've decompressed the
W4 file, you can traverse the W3 file structure described earlier.

The W4 file begins with the W4HEADER record (Table 9.3).

Listing 9.3 (continued)

W3 and W4 File Formats — 239

W4Magic must be W4. Always0 is an unknown value, but appears to always be zero.
C h u n k S i z e is the size of "chunks" of data that need to be decompressed (discussed
later). It's important to keep in mind that C h u n k S i z e is the maximum size of the data,
compressed or decompressed. This means that two buffers of C h u n k S i z e bytes will be
sufficient to hold one chunk of compressed data and one chunk of decompressed data.
C h u n k S i z e is followed by the number of "chunks" in the W4 file. DSMagic is simply
the letters "DS" to indicate that this is DriveSpace compression. The Unknown field is
just six N U L L bytes, probably reserved for future use.

Following the W4HEADER record is a list of offsets to the "chunks"; there will be
W 4 H E A D E R . N u m C h u n k s offsets (say that 10 times really fast). Each offset is a DWORD
and is an offset to the beginning of an 8Kb chunk of compressed data. The offsets are
relative to the beginning of the file (in other words, the beginning of the MZ file, not
the W4 file). Each 8Kb chunk is just a block of compressed data that you'll decom-
press to recreate the W3 file.

The W4/Double Space Compression Algorithm
I am not an expert on compression algorithms. I understand the basics enough to
reverse-engineer simple ones, like LZ77. This algorithm is quite a bit different in
many ways than the LZ77 derivative used in WinHelp and C O M P R E S S . E X E (which I'll
refer to as Zeck). I would recommend reading the chapter on C O M P R E S S . E X E first,
however, because it will give you the basics.

This algorithm, although based in the Double Space algorithm, does not encom-
pass the entire Double Space format. Due to time constraints, we were unable to
tackle the entire Double Space algorithm for this book.

The W4 compression algorithm is also a Lempel-Ziv algorithm, but unlike the
Zeck, this one is bit based. In other words, in the Zeck algorithm, all of the com-
pressed data is held a BYTE at a time and everything is on BYTE boundaries. This algo-
rithm has only a bit boundary, which can make it difficult to work with, but as you
start to take it apart, I think you'll see that it's not as bad as it may appear.

Table 9.3 W4HEADER record.
Field Name
W 4 M a g i c
A l w a y s 0
C h u n k S i z e
N u m C h u n k s
DSMagic
U n k n o w n

Data Type
char[2]
W O R D
WORD
WORD
char[2]
cha r [6]

Comments
Contains the characters "W4"
Always zero
Size of a "chunk"; should always be 8Kb
Number of "chunks"; must be less than 1Kb
Contains characters "DS" for "Double Space"
These are all N U L L s

240 — Windows Undocumented File Formats

Shannon-Fano Tables
As I mentioned before, I'm not an expert in compression, nor is it within the scope of
this book to discuss LZW compression algorithms in general. So, instead of explain-
ing what a Shannon-Fano table is, I will only go into how it specifically affects W4
files. At its most basic, the Shannon-Fano table provides codes that give the depth and
count of repeated data in the compressed data.

The Shannon-Fano table for the W4 compression algorithm is shown in
Figure 9.1.

Figure 9.1 Shannon-Fano table for W4 compression.
MSB..................................LSB

xxxxxxx01
xxxxxxx10

Meaning
1xxxxxxx - Uncompressed byte
0xxxxxxx - Uncompressed byte

Depth
00000000
xxxxxx00
11111100

xxxxxxxx011
xxxxxxxxxxxx111
111111111111111

Quit code
xxxxxx = 1 - 63
63
64 + xxxxxxxx = 64 - 319
320 + xxxxxxxxxxxx = 320 - 4414
(4415) = Check Buffer

Count
1

010
110

xx100
xxx1000

xxxx10000
xxxxx100000

xxxxxx1000000
xxxxxxx10000000

xxxxxxxx100000000
000000000

2
3
4
5 + xx = 5 - 8
9 + xxx = 9 - 16
17 + xxxx = 17 - 32
33 + xxxxx = 33 - 64
65 + xxxxxx = 65 - 128
129 + xxxxxxx = 129 - 256
257 + xxxxxxxx = 257 - 512
Done

W3 and W4 File Formats — 241

The idea of how the Shannon-Fano table works is quite simple. At this point, it's
probably best just to examine the code in W4Decomp; in particular, W4Decompress ()
and L o a d M i n i B u f f e r () . Notice that W4Decompress() pulls only as many bits from
d w M i n i B u f f e r as it needs. After pulling a depth value, it calls L o a d M i n i B u f f e r () to
shift in some new bits. Then it looks for the count value, again pulling only as many
bits as it needs, and then calling L o a d M i n i B u f f e r () to fill up d w M i n i B u f f e r again.
The rest of the code should be very straight forward. This code is not optimized for
speed. It has been written for clarity so that it's easy to understand. I'll leave the opti-
mized version as an exercise for the reader. (I've always wanted to say that.)

Where Do I Go from Here?
I can see two major uses for this information. The first is to have a utility to extract the
VxDs, like the one I wrote. Then, using a disassembler based on the information in
Chapter 10, you could disassemble the VxDs in the W3 and W4 files (left as an exer-
cise for the reader) for whatever purpose you may need.

The other use I can think of is to write your own utility to create and append to W3
and W4 files (again, left as an exercise for the reader), so that you can add your own
VxDs to the W3 and W4 files.

242 — Windows Undocumented File Formats

Listing 9.4 W4DECOMP.H — Header file for W4DECOMP.C.

W3 and W4 File Formats — 243

Listing 9.5 W4DECOMP.C — Decompresses a W4 file
into a W3 file.

244 — Windows Undocumented File Formats

Listing 9.5 (continued)

W3 and W4 File Formats — 245

Listing 9.5 (continued)

246 — Windows Undocumented File Formats

Listing 9.5 (continued)

W3 and W4 File Formats — 247

Listing 9.5 (continued)

248 — Windows Undocumented File Formats

Listing 9.5 (continued)

W3 and W4 File Formats — 249

Listing 9.5 (continued)

250 — Windows Undocumented File Formats

Listing 9.5 (continued)

Chapter 10

LE File Format
Overview
Those of you who have been writing VxDs have probably been tied to Microsoft's
tools for writing VxDs. Although I'm not really picky when it comes to assemblers
and linkers, some people are. Beyond that, the information in Linear Executables
(LE) can be useful. Microsoft has usually been pretty good about documenting exe-
cutable file formats. They've provided information on the standard DOS executable
(MZ), Windows 16-bit (NE), and Windows 32-bit (PE) file formats, among others.
For some reason, Microsoft chose not to do the same with the LE format.

The LE format is actually based on, or at least very similar to, the LX file format
used by OS/2 executables. In fact, all of the work in reverse-engineering the LE format
was based on information available on the LX format. I have never written a linker or
assembler, so I can't say that I'm absolutely positive about all of the information here.
For models, I examined the MZ, NE, PE, and LX formats to give me as good an under-
standing of executable file formats as I could get. However, as I said, I haven't written
an LE linker or an LE assembler, so it's possible that some of this information is not
correct. As with all undocumented information, use it at your own risk.

The most useful tool that could probably be written with this material would be a
linker (or possibly an assembler), but in the interest of time, space, and most impor-
tantly, my sanity, I've chosen to write an LE Dump utility modeled loosely on Andrew
Schulman's EXEDUMP included with Undocumented Windows (see the Bibliogra-
phy for more information).

LEDUMP simply goes through the linear executable and gives you some informa-
tion about it, including global header information, relocations, and exports. This
should be suitable to demonstrate how to get to the information.

251

252 — Windows Undocumented File Formats

Figure 10.2 LE module layout.

Figure 10.1 Overview of LE file layout.

LE File Format — 253

General Layout
The general layout of an LE file is similar to the NE, PE, and LX file formats, in that
the very first section is actually a stub MZ program that tells you that you can't run
this program in DOS, or whatever MZ stub was attached. Following the stub program
is the actual LE file. I won't go into a complete description of the MZ file format,
because that isn't my purpose here, but I will give you enough information to maneu-
ver around the MZ file and get to the LE file.

Figure 10.1 shows the basic layout of an LE file with the MZ stub. Offset 3Ch in
the MZ file contains an offset to the LE file header.

The LE File itself is broken into several sections, as shown in Figure 10.2. Imme-
diately following the header is the loader section. The loader section is everything that
must be kept resident in memory while the program is running. This is followed by
the fixup section. The fixup section contains everything required to resolve addresses
within the code and to resolve dynamic links to other modules; although, as I'll dis-
cuss later, this isn't supported by Windows. The fixup section is followed by the non-
resident section, which contains the export table and debugging information and does
not need to be kept in memory while the VxD is running.

The simple code shown in Listing 10.1 can be used to jump to the LE header. This
code reads a portion of the MZ header. You're really only interested in two fields:
MZMagic, which lets you make sure this is an MZ executable file, and the offset to the
LE header, which is located at offset 3Ch in the MZ header. Actually, this is just an
offset to whatever executable might follow the MZ stub. NE executables, for example,
are pointed to by the same offset.

Listing 10.1 SkipMZ code sample.

254 — Windows Undocumented File Formats

The code in Listing 10.1 jumps to the beginning of the LE file, where the LE file
header resides. The LE file header is shown in Table 10.1.

I'll be the first to admit that this is not a small header, but a lot of things need to be
kept track of in an executable file. Some of the fields may not make all that much
sense, so I'll go into more detail about them.

First of all, I'll talk about what fields aren't used and get them out of the way. All
of the checksum fields are zero, so it appears that no checksum is done by the linker.
The resource table will never exist because a VxD cannot have resources. So the
ResourceTbl and NumResources fields will always be zero. The ModDirectTable
and NumModDirect will also be zero. The module format directive table is used to
extend the LE or LX executables. These are unused by VxDs and will therefore always
be zero. NumInstPreload and NumInstDemand are not used by Windows or Win95.
Preload and Demand pages are handled entirely by the loader in Win95. This is simply
a carry over from OS/2. The ESPObjNum and ESP fields are both unused, as well.

Listing 10.1 (continued)

LE File Format — 255

Table 10.1 LEFileHeader record.
Field Name
L E M a g i c
Byte0rder
Word0rder
FormatLevel
CPUType
OSType
ModuleVer
M o d u l e F l a g s
NumPages
E I P O b j N u m
E I P
ESPObjNum
ESP
PageSize
LastPageSize
F ixupSize
F i x u p C h e c k s u m
LoaderSize
LoaderChecksum
ObjTblOffset
Num0bjects
ObjPageTbl
ObjI te rPage
ResourceTbl
NumResources
ResNameTab le
Ent ryTable
ModDirec tTab le
NumModDi rec t
F ixUpPageTab le

Data Type
char [2]
BYTE
BYTE
DWORD
WORD
WORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

Comment
Must be LE
Byte ordering (big-/little-endian)
Word ordering (big-/little-endian)
Version of LE file
Type of CPU required
Type of OS required
Version of this module
Global flags for this module
Number of physical pages in entire module
Object no. to which EIP register is relative
Starting instruction pointer (EIP) address
Object no. to which ESP register is relative
Starting stack (ESP) address
Size of a page (usually 4Kb)
Used to read object page table entries
Total size of the fixup information
Checksum for fixup information
Size of loader section
Checksum for loader information
Offset to object table
Number of objects in object table
Offset to object page table
Offset to object iterated pages
Offset to resource table
Number of entries in resource table
Resident name table offset
Entry table offset
Module directive table
Number of module directives
Offset to fixup page table

256 — Windows Undocumented File Formats

Although the import module and import procedure tables may exist, you'll find
them empty because VxDs don't import functions dynamically. Therefore both tables
are almost always empty (single N U L L byte) and NumImpor t s is almost always zero. I
say "almost always" because it is "possible" to add imports. If you add an IMPORTS
section to the .DEF file for the VxD, you will, in fact, populate these tables. There is no
way of actually using these imports, because Windows has no dynamic-link support
for VxDs.

Now I'll discuss the fields you will use.

LEMagic Contains the letters LE. They are, of course, quite magical, so be careful
with them.

ByteOrder and WordOrder These flags let you know if the data in the file is stored
in little-endian (0x00) or big-endian (0x01) format. ByteOrder indicates how a WORD
is stored internally. For example, the WORD 0x1234 in little-endian notation would be
stored internally with the byte order 0x34 0x12. In big-endian notation, it would be

Table 10.1 (continued)
Field Name
FixUpRecTable
ImportModTable
NumImpor t s
ImportProcTable
PerPageChecksum
DataPages
N u m P r e l o a d P a g e s
NonResTab le
NonResS ize
NonResChecksum
AutoDSObj
DebugInfoOff
D e b u g I n f o L e n
N u m I n s t P r e l o a d
N u m I n s t D e m a n d
HeapS ize

Data Type
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

Comment
Offset to fixup record table
Import module table offset
Number of entries in import module table
Offset to import procedure name table
Offset to per-page checksum table
Offset to data pages
Number of pages to preload
Nonresident name table
Size, in BYTEs, of nonresident name table
Checksum for nonresident name table
Object no. of automatic data segment
Offset to debug information
Size of debug information area in BYTEs
Instance pages in preload section
Instance pages in demand section
No. BYTEs to add to auto-data segment
for heap

LE File Format — 257

stored with the byte order 0x12 0x34. WordOrder works the same way. The DWORD
0x12345678 in little-endian notation would be stored as 0x5678 0x1234. ByteOrder
and WordOrder let us know how the data is stored in the file. Because Intel uses lit-
tle-endian notation exclusively, you'll find that the ByteOrder and WordOrder fields
are always set to little-endian.

FormatLevel This should always be zero. If it's not zero, then the LE format itself
has been modified in an incompatible format (i.e., the LE format has been changed).

CPUType This indicates the minimum CPU required. Valid values are:
0x01 80286
0x02 80386
0x03 80486

The first value is a carry-over from the LX file format used by OS/2. You won't find
any VxDs that require less than a 386. I haven't seen one that's specific to the 486 yet.

OSType This tells us what OS is required to run this executable. Valid values are:
0x00 Unknown
0x01 OS/2
0x02 Windows
0x03 DOS 4.x
0x04 Windows 386 Enhanced mode

Obviously, Windows 386 Enhanced Mode is the only valid value you'll see. I list
the others simply because they are defined in the LX file format specifications.

ModuleVer This is the version data for this particular module. According to the LX
specifications, this value is specified at link time by the user. Any DWORD value would
be valid. I've seen only 0x0000.

ModuleFlags These flags globally define aspects of the VxD. I will only cover those
flags used by VxDs.

0x00000010 Module uses internal fixups. This means that each object has a pre-
ferred load address. ("Object", in the case of the LE file format, means segment. I'll
discuss this later.) If the object can be loaded at that address, then no fixups need be
applied. If it must be moved to another address, then fixups should be applied.

258 — Windows Undocumented File Formats

0x00000020 Module uses external fixups. This just means that there are no internal
fixups, so the fixups must be applied at load time. I have never seen a VxD that used
internal fixups, but because the internal fixups flag is specified, I'll assume it's possi-
ble to have external fixups.

0x00008000 Library module.

0x00028000 Virtual device driver module.

0x00038000 Physical device driver module.
The M o d u l e F l a g s value in Windows 3.x VxDs always seems to be 0x00008020.

This means it has the Library Module attribute and uses external fixups.
Windows 95 VxDs, on the other hand, seem to have one of two values,

0x00028000 (virtual device driver) or 0x00038000 (physical device driver). I've seen
the latter for network cards, but most VxDs in Windows 95 appear to have the virtual
device driver flag.

NumPages The NumPages field specifies the number of pages contained in the VxD
module.

EIPObjNum This provides the object (or segment) with which to initialize EIP.

E IP This is the offset within the object (segment) with which to initialize EIP.

PageSize This is the size of the page, in bytes, within this module. Where page
counts are given, they are multiplied by this number to get the size in bytes. Page size
is usually 4Kb. I've never seen a different value used.

LastPageSize This is the size of the last page in the module. This keeps the module
from having to be an exact multiple of PageSize and saves a little space.

FixupSize This is the size of the fixup section. The fixup section includes the fixup
page table, the fixup record table, import module name table, and import procedure
name table. The fixup page table and fixup record table are used to map unresolved
addresses in the code to the proper locations after the code has been loaded. The
import module name and import procedure name tables are used to resolve calls to
external functions. Of course, as mentioned before, Windows doesn't support
dynamic linking for VxDs.

LoaderSize This is the size of all the objects (segments) that need to remain resi-
dent in memory while the program is resident in memory. It includes everything from
the object table down to and including the entry table.

ObjTblOffset This is the offset to the object table. The object table is described
below in greater detail. Objects, as mentioned earlier, are segments within the execut-
able and contain code or data.

NumObjects Contains a count with the number of entries in the object table.

ObjPageTbl This is the offset to the object page table (described in greater detail in
the section "Object Page Table").

ResNameTable This contains the offset to the resident name table (again, described
in greater detail in the section "Resident or Nonresident Name Tables").

EntryTable Contains the offset to the entry table.

FixUpPageTable Offset to the fixup page table.

FixUpRecTable Offset to the fixup record table.

ImportModTable Offset to the import module table.

NumImports Number of imports in the import module table. This should always be
zero.

ImportProcTable Offset to the import procedure name table.

DataPages Data pages offset.

NumPreloadPages Number of preload pages.

NonResTable Offset to the nonresident name table.

NonResSize Size of the nonresident name table.
That's pretty much it for the fields you're going to use from the header. As you

start to look at the different areas of the LE file, you'll see that it's really just a large
collection of parts, and parts of the header are all that are needed for parts of the LE
file. It's really not quite as overwhelming as it may first appear.

LE File Format — 259

260 — Windows Undocumented File Formats

Object Table
Again, "Objects" are really just segments. The object table just provides some basic
information about each segment in the executable. Table 10.2 shows the OBJECTENTRY
structure.

The Vi r tua lS ize field is the amount of space that Windows needs to allocate for
the segment in memory.

The RelocAddr field is the base address to which the object is currently relocated.
If the internal fixups for the module have been removed, this is the address at which
the object will be allocated by the loader.

The ObjectFlags field may have the following bit values:
0x0001h
0x0002h
0x0004h
0x0008h
0x0010h
0x0020h
0x0040h
0x0080h
0x0100h
0x0200h
0x0300h
0x0400h
0x0800h
0x1000h

Readable
Writable
Executable
Resource object
Discardable object
Object is shared
Object has preload pages
Object has invalid pages
Object has zero-filled pages
Object is resident
Object is resident and contiguous
Object is resident and "long lockable"
Reserved for system use
16:16 alias required

Table 10.2 OBJECTENTRY record.
Field Name
V i r t u a l S i z e

RelocAddr
ObjectFlags
PageTbl Idx

N u m P g T b l E n t r i e s
Reserved

Data Type
DWORD

DWORD
DWORD
DWORD

DWORD
DWORD

Comments
Amount of space to allocate
object

for the

Relocation base address for the object
See below for a list.
First object page table entry
object

for the

No. of entries in object page table
Must be set to 0

LE File Format — 261

0x2000h

0x4000h
0x8000h

Big/Default bit setting (see the following paragraph on
bit settings)
Object is conforming for code
Object I/O privilege level (used for 16:16 alias objects)

The Big/Default bit setting, for data segments, controls the setting of the Big bit in
the segment descriptor. (The Big bit, or B-bit, determines whether ESP or SP is used as
the stack pointer.) For code segments, this bit controls the setting of the Default bit in
the segment descriptor. (The Default bit, or D-bit, determines whether the default word
size is 32 bits or 16 bits. It also affects the interpretation of the instruction stream.)

The PageTbl Idx field specifies the number of the first entry for this object in the
object page table. I'll discuss the object page table later.

The N u m P g T b l E n t r i e s field is the number of entries in the object page table for
this object.

Object Page Table
The Object Page Table (OPT) provides information about logical pages in an object.
A page can be either a pseudo-page, an enumerated page, or an iterated page.

The OPTENTRY structure (Table 10.3) shows the format for each page table entry.
The PageDataOff field has the offset to the page data in the .EXE. This field may

be zero if the flags specify that it is a zero-filled page.
The DataSize field specifies the number of bytes that the page actually takes up.

If it is smaller than the page size specified in the module header, then the remaining
bytes in the page are filled with zeros.

The OPTFlags field has five possible flag values:
0x00h

0x01h
0x02h
0x03h
0x04h

Legal physical page in the module (offset from preload
page section)
Iterated data page (offset from iterated data pages section)
Invalid page
Zero-filled page
Range of pages

Table 10.3 OPTENTRY record.
Field Name
PageDataOff
DataSize
O P T F l a g s

Data Type
DWORD
WORD
WORD

Comments
Offset to page data in . E X E
Number of bytes for this page
Flags for the OPT entry

262 — Windows Undocumented File Formats

Resident or Nonresident Name Tables
The structure of the resident and nonresident name tables is identical. Again, this is a
place where I am adapting the names from the LX file format.

These tables aren't really the resident and nonresident name tables, per se. The
resident name table, for example, contains a single entry, which is the name given in
the .DEF file for the L I B R A R Y parameter. The nonresident name table contains two
entries. The first entry is the description provided in the D E S C R I P T I O N parameter of
the .DEF file. The second entry is the single export specified in the .DEF file, usually the
module name with _DDB appended to it.

The actual format for these tables is very simple. Each entry consists of a single
byte with the length of the string. This is followed by the string (which is not null-ter-
minated). The string is, in turn, followed by an ordinal number. The ordinal number is
an index into the entry table (described in the following section).

Entry Table
The entry table contains information to resolve fixups to entry points within the mod-
ule. There appears to only be one entry point within VxDs. This is the
"vxdname_DDB" area defined in the EXPORTS section of the .DEF file. An ordinal
number is used as an index into the entry table. Entry table items are numbered start-
ing with one. There should only be one entry in this table and that entry will be 1.

Objects in the entry table are grouped in bundles. The E N T R Y T A B L E R E C is seen in
Table 10.4.

Count is the number of entries in the "bundle".
The Type field describes the type of data that's contained in the bundle. Valid val-

ues are:
0x01
0x02
0x03
0x04

16-bit entry
286 callgate entry
32-bit entry
Forwarder entry

Table 10.4 ENTRYTABLEREC record.
Field Name
Count
Type
Bundle

Data Type
BYTE
BYTE
BYTE[]

Contents
No. entries in this bundle
Type of entries in this bundle
Bundle data

LE File Format — 263

The type of data in the B u n d l e field depends on the Type field. Only the 32-bit
entry type is used, so it's the only one I'll look at. For the 32-bit entry, the bundle data
contains an object number in the form of a WORD followed by an array of 32BITENTRY
records (Table 10.5). The size of the array depends on the value of Count in
E N T R Y T A B L E R E C :

The only value for F l ags is 0x01, which simply means it's an exported entry. Of f -
set is the offset of the entry within the object defined for this bundle.

Fixup Page Table
The fixup page table is simply a list of offsets into the fixup record table (described in
the following section). The offsets are to the beginning of the fixup data for a given
page. Each entry in the object page table has one entry, plus one additional entry that
points to the end of the fixup record table. Each offset is simply a DWORD that is added
to the offset of the fixup record table. This provides you with the first entry in the
fixup record table for a specific page number (or segment). Figure 10.3 shows how
this works.

Table 10.5 32BITENTRY record.
Field Name
Flags
Offset

Data Type
BYTE
DWORD

Comments
Flags
Offset in the object for this entry

Figure 10.3 Layout of the fixup page table.

Page #1
Offset for page 1 in fixup record table
Page #2
Offset for page 2 in fixup record table

Page #n
Offset for page n in fixup record table
Offset to end of fixup record table

264 — Windows Undocumented File Formats

Fixup Record Table
The fixup record table contains a list of all fixups for the VxD. Entries in this table are
grouped by page number. This allows the fixup page table to point to a group of fixup
records for an individual page.

Each entry consists of a F I X U P record (Table 10.6).
Valid Type values are:

0x00
0x02
0x03
0x05
0x06
0x07
0x08
0x0F
0x10
0x20

Byte fixup (8 bits)
16-bit selector (16 bits)
16:16 pointer (32 bits)
16-bit offset (16 bits)
16:32 pointer (48 bits)
32-bit offset (32 bits)
32-bit self-relative offset (32 bits)
Type mask
Fixup to alias flag
List flag

Although the linker (L I N K 3 8 6 . E X E) supports all of these fixup types, the VxD
loader itself only supports 32-bit offsets and 32-bit self-relative offsets, types 0x07
and 0x08, respectively.

The two types that really require a description are 0x10 (fixup to alias flag) and
0x20 (list flag). The fixup to alias flag occurs for some entries of type 0x02, 0x03, and
0x06. In these cases, the fixup refers to the 16:16 alias for the object. For the list flag,
the F ixup field contains a byte that says how many offsets are listed. The offsets then
follow the end of the F I X U P record.

Valid F lags values are:
0x00
0x01
0x02

Internal reference
Imported reference by ordinal
Imported reference by name

Table 10.6 FIXUP record.
Field Name
Type
Flags
Fixup

Data Type
BYTE
BYTE
BYTE[]

Comment
Type of fixup
Specifies how the fixup is interpreted
Fixup information. Size and format depend on Type

LE File Format — 265

0x03
0x04
0x10
0x20
0x40
0x80

Internal reference via entry table
Additive fixup
32-bit offset
32-bit additive fixup
16-bit object number/module ordinal flag
8-bit ordinal

The contents of the Fixup field depend on whether or not the list flag in the Type
field is set. If the list flag isn't set, the Fixup field simply contains the value for the
fixup; otherwise, the Fixup field begins with the number of fixups, in the form of a
WORD, to follow. This is followed by an array of fixups.

LE Dump
Dump (Listings 10.2 and 10.3) is a fairly simple program. It basically provides vari-
ous pieces of information from the LE Header and several of the internal structures,
such as the object table, resident name table, and nonresident name table.

The idea is just to show you how to get around the LE file itself. If you actually
want to write a disassembler, assembler, or linker, you're going to have a bit more
work to do, but you'll be able to do it from the information given in this chapter.

Listing 10.2 LEDUMP.H — Header file for LEDUMP.C.

266 — Windows Undocumented File Formats

Where Do I Go from Here?
What can you do with this information? Well, I've already mentioned this, but disas-
semblers, assemblers, and linkers are the main tools that come to mind. A VxD disas-
sembler is probably the most useful tool, in my mind, but then again I like to reverse
engineer stuff, if you haven't noticed.

Listing 10.2 (continued)

LE File Format — 267

Listing 10.2 (continued)

268 — Windows Undocumented File Formats

Listing 10.2 (continued)

LE File Format — 269

Listing 10.2 (continued)

Listing 10.3 LEDUMP.C — Extract information from the
LE header.

270 — Windows Undocumented File Formats

Listing 10.3 (continued)

LE File Format — 271

Listing 10.3 (continued)

272 — Windows Undocumented File Formats

Listing 10.3 (continued)

LE File Format — 273

Listing 10.3 (continued)

274 — Windows Undocumented File Formats

Listing 10.3 (continued)

Appendix A

Contents of the
Companion Code Disk
The included code disk contains all of the source code mentioned in the book, as well
as make files for Microsoft's and Borland's compilers. The files are organized by
chapter with all the files for each chapter sorted in the same directory, except when
there was a clear delineation in functionality. In such cases, we provided separate
directories beneath the chapter directory. We will also keep the source code updated
on the Internet at h t t p : / / w w w . m n s i n c . c o m / p e t e d / . The executables will also be
available on the web site. The following page contains a list of the companion code
disk contents.

275

276 — Windows Undocumented File Formats

FILEFORMATS
CHAP1

CHAP3

CHAP4

CHAP6

CHAP7

CHAP8

CHAP9

CHAP10

SETVAL

DUMP

MAKEFILE.BOR
MAKEFILE.MS
SHGDUMP.C
SHEDEDIT.H

HLPDUMP2.H
HLPDUMP2.C
WINHELP.H
MAKEFILE.BOR
MAKEFILE.MS

TOPICDMP

COMP.C
DECOMP.H
DECOMP.C
MAKEFILE.BOR
MAKEFILE.MS

RESTYPES.H
MAKEFILE.BOR
RES2RC.C
MAKEFILE.MS

PIFDUMP.C
PIFSTRUC.H
MAKEFILE.MS
MAKEFILE.BOR

SUCKW3

W4DECOMP

LEDUMP.C
LEDUMP.H
MAKEFILE.MS
MAKEFILE.BOR

SETVAL.C
MAKEFILE.BOR
MAKEFILE.MS

DUMP.C
MAKEFILE.BOR
MAKEFILE.MS

TOPICDMP.C
WHSTRUCT.H
MAKEFILE.BOR
MAKEFILE.MS

SUCKW3.C
SUCKW3.H
MAKEFILE.BOR
MAKEFILE.MS

W4DECOMP.C
W4DECOMP.H
MAKEFILE.BOR
MAKEFILE.MS

Annotated Bibliography
1. Pete Davis, ".mrb and .shg File Formats", Windows/DOS Developer's Joumal,

February 1994.
A true work of art. I recommend all of his articles as required reading. Actu-

ally, I admit, it's a bit out of date. Most of the information was accurate. Enough
so that many people were actually able to put it to good use.

2. Pete Davis, "Microsoft's Compression File Format", Windows/DOS Developer's
Journal, July 1994.

This article just covered the "SZDD" variation of the compression format.
Two days after this article was available in stores, I found out about the older "SZ"
and newer "KWAJ" algorithms from, as Dave Barry would say, "Alert Readers".
I was pretty bummed.

3. Pete Davis, "Documenting Documentation: The Windows . H L P File Format,
Part1", Dr. Dobb's Journal, September 1993.

4. Pete Davis, "Documenting Documentation: The Windows . H L P File Format,
Part2", Dr. Dobb's Journal, October 1993.

As with the other file formats I wrote articles about, this one is out of date and
incomplete. It was a good start, I think.

5. Microsoft Corporation, SHDFMT.DOC.
This file has a R E A D M E . 1 S T from Rick Segal at Microsoft. The R E A D M E . 1 S T

warns that "This [the SHED file format] is gonna change. I promise." Well, he

277

278 — Windows Undocumented File Formats

kept his word. They changed it quite a bit between when this document was writ-
ten and the SHED editor came out. I say that because it's completely inaccurate.
It's possible it was just inaccurate to begin with but hey, Microsoft wrote it, so I'm
sure it was originally entirely accurate (or at least as much as they thought we
deserved). I actually found this after I had done most of the reverse-engineering,
so it wasn't really a great help. The only thing I could have done was try to adopt
their naming convention, but I couldn't find many names that matched the func-
tion of the fields in my structures.

6. Charles Petzold, Programming Windows 3.1, Third Edition, Redmond WA :
Microsoft Press, 1990.

How do you write anything about Windows without in some way owing some
of your knowledge to this book?

7. Alex Fedorov and Dmitry Rogatkin, "The Windows .RES File Format", Dr.
Dobb's Journal, August 1993.

This is the first public description of the .RES file format. Alex and Dmitry did
a great job. I knew Alex before he wrote the article and he has sent me two issues
of ComputerPress, a Russian magazine of which he is executive editor in Mos-
cow. Can someone please translate this to English for me?

8. Mike Maurice, "The PIF File Format, or Topview (sort of) Lives!", Dr. Dobb's
Journal, July 1993.

Like several other file formats, I've never understood why Microsoft didn't
just document it. On the other hand, I'm surprised it took so long for someone to
do it. Thanks to Mike Maurice for doing a stand-up job.

9. Jim Mischel, The Developer's Guide to WINHELP.EXE, NewYork NY : John Wiley
& Sons, Inc, 1994.

This is the only really good book that covers almost all the major aspects of
WinHelp. It's a necessity for any serious WinHelp authors or DLL developers. It's
either this or use 20 different articles, books, etc., as your source of WinHelp
information. Also a good source of undocumented WinHelp information.

10. Microsoft Windows Software Development Kit v3.1, 1992.
If you don't know what this is, you probably bought the wrong book. In partic-

ular, Volume 3 "Message, Structures, and Macros", and Volume 4 "Resources".
Some of the undocumented file formats are related to the documented file formats
in some way or another, and this book is a good source for the documented ones.

11. Mark Nelson, The Data Compression Book, San Mateo CA : M&T Books, 1992.
This is the best book I've ever read on data compression. (Okay, it's the only

one I've ever read.) As much as data compression can be explained in English, it's
done in this book. Data compression can be very complex, and most explanations

Annotated Bibliography — 279

have been cryptic to me. Mark Nelson did a really great job of making it under-
standable by your average programmer.

12. Matt Pietrek, "Peering Inside the PE: A Tour of the Win32 Portable Executable
File Format", Microsoft Systems Journal, Vol. 9 No. 3, March 1994.

This is a really good description of the Portable Executable (PE) file format
and gave some insights into the LE file format.

13. IBM Boca Programming Center, "IBM OS/2 32 bit Object Module Format (OMF)
and Linear eXecutable Module Format(LX): Revision 6".

This was passed along to me by Clive Turvey who also provided most of the
information on the W4 file format. As the title declares, this is a description of
both the OMF and the LX file formats for OS/2. It contains a fairly detailed
description of the LX file format, upon which the LE file format was based. It's
not exactly light reading material, but it appears to be very complete and gave me
enough information to provide the LE file format.

14. Author Unknown (believed to be IBM), "LX - Linear eXecutable Module Format
Description", June 3, 1992.

I found this file on the Internet as L X E X E . Z I P (f tp .wa tcom.on .ca in the
/pub/bbs /genera l directory). There was no credit as to the author, but it's
almost identical to the IBM document sited above, so my guess is that it's either
an earlier or later edit. This version has only the LX file format and not the OMF.
The postmaster of the site informed me that the file had been obtained much ear-
lier from a site he couldn't remember, so there's no real record of where it origi-
nated.

Index

A
accelerator 126, 136, 172, 178, 179
AccelTableEntry 136
. A N N 2
Annotation 2, 47

B
bitmap 2, 13-25, 27, 31, 45, 69-70,

122, 126, 130, 131, 139, 150
.BMK 2
Bookmark 2, 47

c
COMPHEADER 110-111
C O M P R E S S . E X E 2, 5, 6, 25, 52, 107-

112, 121, 239
|CONTEXT 45, 61, 64, 70, 79, 89
CONTROLDATA 134
|CTXOMAP 45, 61, 79
cursor 126-130, 139, 148, 149, 183,

185
C U R S O R D I R E N T R Y 129-130
CURSORHEADER 129
CURSORRESENTRY 130

D
dialog box 126-127, 133-134, 154-166
D I A L O G H E A D E R 133-134
Dr. Dobb's Journal 1, 2, 41, 44, 125,

209, 211, 277, 278

E
Erickson, Jonathan 125, 209
E X P A N D . E X E 2, 107, 111, 113, 121

F
Fedorov, Alex 2, 125, 278
|FONT 45, 51, 58-60, 75, 87
font 42, 51, 58-60, 66, 69, 87, 126,

135, 171, 192
font directory 126, 135, 171

G
. G I D 71
group cursor 126, 129-130, 184
group icon 126, 131-132, 187

H
. H L P 1, 2, 7, 31, 41-43, 49, 51, 53, 56-

58, 62, 71, 74, 98, 277

I

icon 53, 126-127, 131-132, 139, 148,
154, 186

I C O N D I R E N T R Y 131
I C O N H E A D E R 131
I C O N R E S E N T R Y 132

281

282 — Windows Undocumented File Formats

K
KWAJ 277
| K W B T R E E 45, 51, 56-58, 71, 78
|KWDATA 45, 51, 56-57, 64, 78
| K W M A P 45, 51, 56-58, 71

L
Lempel, Abraham 107
Lempel/Ziv/Welch

compression algorithm 238
Lempel-Ziv algorithm 239
LZ77 2, 15, 16, 23, 25, 45, 52, 56, 62,

65, 71, 82, 107, 112, 113,
116, 122, 239

L Z E X P A N D . D L L 2, 25, 107, 112

M
Maurice, Mike 209, 278
memory flag 127, 148-149, 184, 187,

203
menu 126, 133, 136, 151-153, 156
MenuHeader 132
.MRB 2, 4, 6, 13-15, 18, 22-25, 30, 67,

70, 277
MRBC 3, 13-15, 20-23, 27, 71

N

name table 126, 137, 190, 205, 231-
236, 255-259, 262, 265, 273

P

|Phrases 45, 51, 52-53, 56, 61, 65,
75, 93, 97

. P I F 2, 3, 209, 211
PIF Editor 209-211

R
.RC 125-132, 135, 137-140
RCDATA 126, 136-137, 180
R C . E X E 125, 139
.RES 2, 125-140, 278
RESFMT.TXT 128
resource 125-139, 143-146, 210,

254-255, 260
Rogatkin, Dmitry 2, 125, 278

s
Schulman, Andrew 1, 125, 209, 251
SHED 2, 3, 13-15, 18, 20-25, 27, 30,

71, 277, 278
.SHG 2-4, 6, 13, 18, 22-23, 27-29, 30,

67, 70, 277
sliding window 107-108, 112
string table 126, 135, 204
|SYSTEM 45, 53-55, 76, 84, 93
SZ 277
SZDD 6, 277

T
|TOPIC 41, 45, 51, 52, 57, 61-??, 61,

??-70, 78, 97
|TTLBTREE 45, 47, 58, 64

V
V E R . D L L 137
V E R . H 126, 128, 137-139, 190
version information 126, 137-139,

193, 203
VERSIONINFO 137
V e r s i o n I n f o 137-139
VS_FIXEDFILEINFO 138

Index — 283

w
W I N D O W S . H 20, 33, 126, 128, 131, 139
WinHelp 3, 7, 15, 23, 25, 27, 31, 41-

71, 239, 278

z
Zeck 116, 119, 239
Ziv, Jacob 107

