v1

ProjectOZ

9 October 2006
Singapore

Dave Probert, Ph.D.

Architect, Windows Kernel Group
Windows Core Operating Systems Division
Microsoft Corporation

© Microsoft Corporation 2006

ProjectOZ Experimental Environment

An OS project environment using the native NT API
— Runs on Windows
— Uses NT features designed for OS personality support

Provides simple, user-mode abstractions of the
— CPU, MMU, trap mechanism, and physical memory

Experiments in OS principles, not computer organization
Use real OS features rather than a ‘toy’ simulation

Encourage ‘out-of-the-box’ thinking by students
Based on SPACE project at UCSB (Probert & Bruno)

v1 © Microsoft Corporation 2006 2

v1

ProjectOZ

Workloads, tests,

workloads instrumentation
ProjectOZ |e— — Student projects and
experiments
BasicOZ \
Initial OS implementation

SPACE.exe
NT native API

NT Kernel SPACE abstractions of

CPU, MMU, Traps

© Microsoft Corporation 2006

BasicOZ Functionality

Process/thread

— CreateProcess/Thread, Exit, Wait/Signal, Yield
Virtual Memory

— Allocate/Free virtual addresses

— Allocate backing memory
Files

— Get/Put file
Namespace

— Allocate/Free NS, Bind/Release names
Inter-process communication

— Send/receive
v1 © Microsoft Corporation 2006

BasicOZ Device Model

Device emulators load in SPACE
— Implement access to device registers

— Call on SPACE to do DMA (background copies)
— Post interrupts at a specific IRQL

BasicOZ device access
— Access device registers
— Specify mapping of interrupts to handlers
— Control CPU IRQLs

v1 © Microsoft Corporation 2006

ProjectOZ

ProjectOZ refers to the projects students build

Projects take areas of BasicOZ with limited or missing
functionality, poor algorithms, performance problems,
etc, and extend the system

Examples
— Use timer to make threads preemptive
— Write a priority-based scheduler
— Implement open/read/write/code operations
— Add clock algorithm for pageout

v1 © Microsoft Corporation 2006

ProjectOZ Multicomputer

workloads workloads workloads

BasicOZ BasicOZ BasicOZ

SPACE.exe SPACE.exe SPACE.exe

Simulated or real network

NT native API

NT Kernel

© Microsoft Corporation 2006

Workloads, Instrumentation, Community

Workloads

Projects need a significant set of programs to exercise
functionality, both for testing and evaluation

Instrumentation

Still investigating how to appropriately instrument
SPACE with measurements of CPU times and event
counters to use for relative evaluation of projects

Community

ProjectOZ is successful if-and-only-if it proves valuable,
In which case an academic community grows up around
it — in which case Microsoft will assume a secondary role

v1 © Microsoft Corporation 2006 8

v1

SPACE

© Microsoft Corporation 2006

v1

RETI

SPACE CPU Model

External
interrupts

CPU = TRAP—— handler

!

MMU OS can only control:
1 MMU (memory management unit)
trap vector
MEMORY scheduling of external interrupts

when it does an RETI (Return from Interrupt)

OS only regains control through trap/interrupt

© Microsoft Corporation 2006 10

SPACE Abstractions

CPU - sequences instructions until interrupted

— traps, exceptions, interrupts, faults

— CPU executes in a specific MMU context and CPU mode
MMU — maps virtual to physical addresses

— invalid mapping/access causes a fault

— each MMU context defines an (address) space

— access for each mapping determined by CPU mode
PORTAL - specifies what to do when CPU is interrupted

— portals specify new context, mode, and program counter

— previous execution state preserved in a proc control blk

— access to portals depends on mode

v1 © Microsoft Corporation 2006 11

Primary SPACE Operations

Manage MMU and Trapvector
MapMemory(ctx, virtual, phys, modeaccess)
MapPortal(ctx, trap, pctx, pmode, ppc, modeaccess)

Portal Operations
Resume() — resumes at top entry on PCB chain
token = Suspend() — breaks current PCB chain, assigns token
Unsuspend(token) — like resume, but uses suspended chain

Portals generalize traps to multiple protection domains
Processor context (PCB) implicitly managed

v1 © Microsoft Corporation 2006 12

CPUO

Domain a

Following the CPU

alb

Cc

Domain b ™ Domain ¢ Domain d

RS
.0' TO l

‘— Domain d

Domain ¢

Domain f

<+ Domain e

v1

© Microsoft Corporation 2006

13

Redrawing the picture

SCHEDULER

wakeup,

.
.
.
.
4
.
e
IS

Domain ¢ Domain f Domain ¢ Domain f

f]
Domain b %Domain e @

|

Domain a

Domain b

v1 © Microsoft Corporation 2006 14

The General SPACE case vs kernel

v © Microsoft Corporation 2006 15

v1

SPACE using native NTAPI

© Microsoft Corporation 2006

16

NT Facilities used for SPACE

Objects

Threads — NT unit of CPU scheduling
Processes — NT virtual address space container
Sections — NT sharable memory objects

Exception port — NT mechanism for subsystem fault handling

Functions
MapView — Map process addresses to section offsets
Wait/Reply port — Receive/Send message to port

v1 © Microsoft Corporation 2006 17

ProjectOZ using NT

SPACE.exe
NT Proc| X NT Proc | X | NT Proc E
NT Thread| :|NT Thread| |NT Thread| :|NT Thread| |NT Thread| :|NT Thread
v v v
NT Views NT Views NT Views
.»0 :,’0 '-.:::-‘:,‘.“_._:::.-..-----"::“u‘,:"‘ :
:0 ."-.:::'.':’:0:_.-.--l“ '-‘.:“‘. :0 “‘
» h | PRI B Tt 1 N A‘“‘ .’. “
NT Shared Memory Section
v1 © Microsoft Corporation 2006 18

ProjectOZ using NT

/SPAiE.exe\

trapvec trapvec trapvec

CPU ;| CPU CPU ;1 CPU CPU :

v v v
MMU MMU MMU

.0’ e, T L Ll ",3"

“ 0’ ---.l.‘."-'-:: -------- *
.’0 .“ ':::::'.':’:QE--I.-I‘ :::“‘.’0
3 < PRPTL LI [IRLITR a i | SLLTIN
Physical Memory
v1 © Microsoft Corporation 2006

domains == overlaid VA spaces

12

11

10

domains

mode 0, 3

Y » paddr
vaddr< i

mode 1, 2

v1

vaddr—paddr

spaces

vaddr—p fault

vaddr—fault vaddr—s paddr

© Microsoft Corporation 2006 20

Kernels: special case of SPACE

Kernel-mode memory mappings (mostly) shared in all spaces

v1

kernel-mode kernel-mode kernel-mode
domain O domain O domain 1

user-mode user-mode user-mode
domain 1 domain 1 domain 1
space 0 space 1 space 2

spaces used to build processes

© Microsoft Corporation 2006

21

Process A

Process B

v1

CPUO CPU 1

Space.exe uses baton passing so only one NT
thread per CPU runs at a time

Two NT processes with same
mappings, different protections

Building CPUs
out of NT
threads

© Microsoft Corporation 2006 22

Limitations

« Some artifacts of NT still exist within spaces

— Certain parts of address space have been claimed beyond our
control

— Ntdll — Mapped into every NT process
« Unavoidable
« Required for Exception port trampoline anyway

— Lower 4MB of address space reserved
— Additional space used by PEB/TEB

« Shared view granularity on a section is 64kb, restricting us
to a 64kb page/frame size

« Unable to query dirty & reference bits
— NtWriteWatch doesn’t work on shared sections

v1 © Microsoft Corporation 2006 23

Space.exe Control Flow

K | — Active NT
U — o th(r;e;g gor Exceptions Interrupts (messages)
K |— " —
[0 —
K _|——> 1> ActiveNT S "
- — thread for = !
CPU 1 Q3 . Device Models
X 3 n
\ w O .
N 0%
~ o
N
N
NT thread ¥ .
operations

v1 © Microsoft Corporation 2006 24

SPACE Device Model

Running inside SPACE.exe. Device models:

Export function to emulate device access

Call StartDMA function to emulate DMA between ‘physical
memory’ and ‘device memory’

SendInterrupt to a CPU
Respect IOMMU and IRQL emulated for each processor
‘Software’ interrupts can be used to defer processing

Advanced devices

v1

Alternate interrupt schemes (mapping, preferred CPU, ...) by
modifying SPACE

Add instrumentation and physical simulation (e.g. seek
times, packet loss, errors)

Can build ‘smart’ devices — it is all just software anyway
Memory-mapping of device registers (fault handling)
Per-device IOMMU, mask-based interrupts

© Microsoft Corporation 2006 25

v1

BasicOZ

© Microsoft Corporation 2006

26

v1

BasicOZ elements

Kernel Object Management
Name Space Management
Address Space Management
Paging

Threading

Processes

Interrupts, Traps, System calls
Driver model

Booting & Initialization
User-mode model

© Microsoft Corporation 2006

27

Kernel Object Management

* Objects allocated from static pools
* Object states:

— Free — available to be allocated

— Allocated — assigned to thread, has refs

— Activated - in-service

— Shutting-down — no new access

Managed by references

Separation of storage allocation from object use

* Object instances have IDs
— Lookup by thread or type

v1 © Microsoft Corporation 2006

28

v1

Name Space Management

Name Spaces:
— (ns, name) -> object
Recursive: objects can be Name Spaces

Lookup within a Name Space or recursively search
reachable Name Spaces

Name Space can be extended to persistent stores
No central root

Each process has starts with two Name Spaces

— Shared - finds objects passed from parent

— Private — not shared with parent

— New Name Spaces can be readily created

© Microsoft Corporation 2006 29

v1

Address Space Management

Main data structures
— AddrSpace, Mapping, PageDescr (with PageRefs)

activateaddrspace(as, hwspaceid)

— binds AS to a ‘hardware’ context
activatemapping(map, npages, prot, PDlist)
— binds map to PageDescr, sets protection
linkmapping(as, map, vpage)

— links map to as at vpage (no sharing)

Main operations

— findmap(as, vpage) and findpageref(map, vpage)
Special operations for I/0 mapping

© Microsoft Corporation 2006 30

Address Space Structures

APLlAdd rSpace |

iMapping |—>|‘Mapping [=—b>coe

PageDescr

PageRefs[]

v1

PageFrames

PageDescr XY

PageRefs[]

Iﬁ
: Paging FiD
© Microsoft Corporation 2006 31

Paging

Allocate memory pageframes

Allocate pageframes within pagefile
— uses simple linked list of free pages
Page-in, page-out, handle faults

— Working-set based

— Waits for pages in transition
— No soft-faults

Reference counts lock pages
— E.g. for I/O operations

v1 © Microsoft Corporation 2006

Threading

« activatethread(thread, process, waitvalue, startinfo)
— Queues thread for run/wait
— First time run starts at kernel routine
— Kernel routine may enter user-mode through a portal

* Block by calling await(value)
— Uses portal traversal to capture state

- signal(value) makes thread awaiting value runnable
« threads exit by returning (i.e. to scheduler)

 yield is await(0)

« preemption is involuntary yield()

v1 © Microsoft Corporation 2006

Processes

Programs are NT executables
BasicOZ allocates resources and loads

Two initial Name Spaces

— Shared: get parameters, arguments, files, and
other objects from creating process

— Private: private object directory
Capability-based
— Control of portal mappings controls access

« SPACE_* hardware emulation
« System Calls

v1 © Microsoft Corporation 2006

34

Address Space Structures

APLlAddrSpace |

iMapping |—>|‘Mapping [=—b>coe

PageDescr

PageRefs[]

v1

PageFrames

PageDescr XY

PageRefs[]

Iﬁ
: Paging FiD
© Microsoft Corporation 2006 35

Process & Thread Structures
process [===p>eee

process

AddrSpace |

Ready List |

thread
token
waitval

objlist
schedlink

thread

|_obihdr == objnar

v1 © Microsoft Corporation 2006 36

Interrupts, Traps, et al
* Implemented using SPACE portals

— Traps map to Portals
— Portals specify (space,prot) [aka (ctx,mode)]
— Stacks are dynamically allocated

— Traps generalized
« UDZ2 trap augmented with parameter (syscall number)
« Different portals can map to different pagefaults

— SPACE_* ‘instructions’ execute in SPACE.exe

« Errors in SPACE_* => illegal instruction exceptions
» Other traps, execeptions, interrupts => portal traversal

— Glue code is Bootstrap.asm and Machine.asm

v1 © Microsoft Corporation 2006

37

Driver Model

Device Models link with SPACE.exe
— Devices register SPACE by ‘device ID’
— Device models implement device registers & memory

— StartDMA transfers between device memory &
physical memory through the IOMMU

— Devices can interrupt a CPU at a specified IRQL

SPACE_MaplO()

— Supports IOMMU access from drivers in BasicOZ
SPACE_AccessDevice()

— Provides access to device registers from BasicOZ
Trap/Portals provide interrupt mechanism

v1 © Microsoft Corporation 2006 38

Booting & Initialization

« SPACE.exe %rundir%

— Creates new domains via bootstrap.exe
— Loads BasicOZ.boz and invokes boot()

— SPACEOps.c and %arch%\Machine.asm invoke
SPACE_* emulation instructions by executing
illegal instructions

 SPACE uses native NT functionality
« BasicOZ uses only SPACE (& syslib)

v1 © Microsoft Corporation 2006

39

Status

 Code for SPACE.exe v1 available July 2006

« SPACE v2 and BasicOZ v1 available soon
— Watch community forums or MSDNAA

« Work ahead
— Documentation
— NCPUS > 1
— Multicomputer support
— X64 support
— Instrumentation and Workloads

— Projects, community involvement
— WRK-enhancements, Rotor, C#, VisualStudio

v1 © Microsoft Corporation 2006

40

Questions & Discussion

© Microso ft Corporation 2006

41

