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ProjectOZ Experimental Environment

• An OS project environment using the native NT API
– Runs on Windows
– Uses NT features designed for OS personality support

• Provides simple, user-mode abstractions of the
– CPU, MMU, trap mechanism, and physical memory  

• Experiments in OS principles, not computer organization

• Use real OS features rather than a ‘toy’ simulation

• Encourage ‘out-of-the-box’ thinking by students

• Based on SPACE project at UCSB (Probert & Bruno)
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BasicOZ Functionality

Process/thread

– CreateProcess/Thread, Exit, Wait/Signal, Yield

Virtual Memory

– Allocate/Free virtual addresses

– Allocate backing memory

Files

– Get/Put file

Namespace

– Allocate/Free NS, Bind/Release names

Inter-process communication

– Send/receive
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BasicOZ Device Model

Device emulators load in SPACE

– Implement access to device registers

– Call on SPACE to do DMA (background copies)

– Post interrupts at a specific IRQL

BasicOZ device access

– Access device registers

– Specify mapping of interrupts to handlers

– Control CPU IRQLs
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ProjectOZ

ProjectOZ refers to the projects students build

Projects take areas of BasicOZ with limited or missing 
functionality, poor algorithms, performance problems, 
etc, and extend the system

Examples

– Use timer to make threads preemptive

– Write a priority-based scheduler

– Implement open/read/write/code operations

– Add clock algorithm for pageout



v1 © Microsoft Corporation 2006 7

ProjectOZ Multicomputer
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Workloads, Instrumentation, Community

Workloads

Projects need a significant set of programs to exercise 
functionality, both for testing and evaluation

Instrumentation

Still investigating how to appropriately instrument 
SPACE with measurements of CPU times and event 
counters to use for relative evaluation of projects

Community

ProjectOZ is successful if-and-only-if it proves valuable, 
in which case an academic community grows up around 
it – in which case Microsoft will assume a secondary role
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SPACE
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SPACE CPU Model

OS can only control:

MMU (memory management unit)

trap vector

scheduling of external interrupts

when it does an RETI (Return from Interrupt)

OS only regains control through trap/interrupt

CPU

MMU

MEMORY

TRAP handler

RETI
External 

interrupts
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SPACE Abstractions

CPU – sequences instructions until interrupted

– traps, exceptions, interrupts, faults

– CPU executes in a specific MMU context and CPU mode

MMU – maps virtual to physical addresses

– invalid mapping/access causes a fault

– each MMU context defines an (address) space

– access for each mapping determined by CPU mode

PORTAL – specifies what to do when CPU is interrupted

– portals specify new context, mode, and program counter

– previous execution state preserved in a proc control blk

– access to portals depends on mode
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Primary SPACE Operations

Manage MMU and Trapvector

MapMemory(ctx, virtual, phys, modeaccess)

MapPortal(ctx, trap, pctx, pmode, ppc, modeaccess)

Portal Operations

Resume() – resumes at top entry on PCB chain

token = Suspend() – breaks current PCB chain, assigns token

Unsuspend(token) – like resume, but uses suspended chain

Portals generalize traps to multiple protection domains

Processor context (PCB) implicitly managed
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Following the CPU
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Redrawing the picture
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The General SPACE case vs kernel
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service

service
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SPACE using native NTAPI
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NT Facilities used for SPACE

Objects

Threads – NT unit of CPU scheduling

Processes – NT virtual address space container

Sections – NT sharable memory objects

Exception port – NT mechanism for subsystem fault handling

Functions

MapView – Map process addresses to section offsets

Wait/Reply port – Receive/Send message to port
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ProjectOZ using NT

SPACE.exe

NT Proc NT Proc NT Proc

NT Thread NT Thread NT Thread NT Thread NT Thread NT Thread

NT Views NT Views NT Views

NT Shared Memory Section

X X X
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ProjectOZ using NT

SPACE.exe

trapvec trapvec trapvec

CPU CPU CPU CPU CPU CPU

MMU MMU MMU

Physical Memory
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domains == overlaid VA spaces
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Kernels: special case of SPACE

kernel-mode

domain 0

user-mode

domain 1

kernel-mode

domain 0

user-mode

domain 1

kernel-mode

domain 1

user-mode

domain 1

space 0 space 1 space 2

Kernel-mode memory mappings (mostly) shared in all spaces

spaces used to build processes



v1 © Microsoft Corporation 2006 22

Building CPUs 

out of NT 

threads
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Limitations

• Some artifacts of NT still exist within spaces

– Certain parts of address space have been claimed beyond our 

control

– Ntdll – Mapped into every NT process

• Unavoidable

• Required for Exception port trampoline anyway

– Lower 4MB of address space reserved

– Additional space used by PEB/TEB

• Shared view granularity on a section is 64kb, restricting us 

to a 64kb page/frame size

• Unable to query dirty & reference bits

– NtWriteWatch doesn’t work on shared sections
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Space.exe Control Flow
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SPACE Device Model

Running inside SPACE.exe.  Device models:
– Export function to emulate device access

– Call StartDMA function to emulate DMA between ‘physical 
memory’ and ‘device memory’

– SendInterrupt to a CPU

– Respect IOMMU and IRQL emulated for each processor

– ‘Software’ interrupts can be used to defer processing

Advanced devices
– Alternate interrupt schemes (mapping, preferred CPU, …) by 

modifying SPACE

– Add instrumentation and physical simulation (e.g. seek 
times, packet loss, errors)

– Can build ‘smart’ devices – it is all just software anyway

– Memory-mapping of device registers (fault handling)

– Per-device IOMMU, mask-based interrupts
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BasicOZ
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BasicOZ elements

• Kernel Object Management

• Name Space Management

• Address Space Management

• Paging

• Threading

• Processes

• Interrupts, Traps, System calls

• Driver model

• Booting & Initialization

• User-mode model
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Kernel Object Management

• Objects allocated from static pools

• Object states:
– Free – available to be allocated

– Allocated – assigned to thread, has refs

– Activated – in-service

– Shutting-down – no new access

Managed by references

Separation of storage allocation from object use

• Object instances have IDs
– Lookup by thread or type
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Name Space Management

• Name Spaces:

– (ns, name) -> object

• Recursive:  objects can be Name Spaces

• Lookup within a Name Space or recursively search 
reachable Name Spaces

• Name Space can be extended to persistent stores

• No central root

• Each process has starts with two Name Spaces

– Shared – finds objects passed from parent

– Private – not shared with parent

– New Name Spaces can be readily created
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Address Space Management

• Main data structures

– AddrSpace, Mapping, PageDescr (with PageRefs)

• activateaddrspace(as, hwspaceid)

– binds AS to a ‘hardware’ context

• activatemapping(map, npages, prot, PDlist)

– binds map to PageDescr, sets protection

• linkmapping(as, map, vpage)

– links map to as at vpage (no sharing)

• Main operations

– findmap(as, vpage) and findpageref(map, vpage)

• Special operations for I/O mapping



v1 © Microsoft Corporation 2006 31

Address Space Structures

AddrSpace

Mapping Mapping

PageDescr

PageRefs[]

PageDescr

PageRefs[]

Paging File

PageFrames
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Paging

• Allocate memory pageframes

• Allocate pageframes within pagefile

– uses simple linked list of free pages

• Page-in, page-out, handle faults

– Working-set based

– Waits for pages in transition

– No soft-faults

• Reference counts lock pages

– E.g. for I/O operations
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Threading

• activatethread(thread, process, waitvalue, startinfo)

– Queues thread for run/wait

– First time run starts at kernel routine

– Kernel routine may enter user-mode through a portal

• Block by calling await(value)

– Uses portal traversal to capture state

• signal(value) makes thread awaiting value runnable

• threads exit by returning (i.e. to scheduler)

• yield is await(0)

• preemption is involuntary yield()
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Processes

• Programs are NT executables

• BasicOZ allocates resources and loads

• Two initial Name Spaces
– Shared: get parameters, arguments, files, and 

other objects from creating process

– Private: private object directory

• Capability-based
– Control of portal mappings controls access

• SPACE_* hardware emulation

• System Calls
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Address Space Structures

AddrSpace

Mapping Mapping

PageDescr

PageRefs[]

PageDescr
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Process & Thread Structures

process process

AddrSpace

thread

token

waitval

objlist objhdr objhdr

schedlink

thread

Ready List

Wait List
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Interrupts, Traps, et al

• Implemented using SPACE portals

– Traps map to Portals

– Portals specify (space,prot) [aka (ctx,mode)]

– Stacks are dynamically allocated

– Traps generalized

• UD2 trap augmented with parameter (syscall number)

• Different portals can map to different pagefaults

– SPACE_* ‘instructions’ execute in SPACE.exe

• Errors in SPACE_* => illegal instruction exceptions

• Other traps, execeptions, interrupts => portal traversal

– Glue code is Bootstrap.asm and Machine.asm
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Driver Model

• Device Models link with SPACE.exe
– Devices register  SPACE by ‘device ID’

– Device models implement device registers & memory

– StartDMA transfers between device memory & 
physical memory through the IOMMU

– Devices can interrupt a CPU at a specified IRQL

• SPACE_MapIO()
– Supports IOMMU access from drivers in BasicOZ

• SPACE_AccessDevice()
– Provides access to device registers from BasicOZ

• Trap/Portals provide interrupt mechanism
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Booting & Initialization

• SPACE.exe %rundir%

– Creates new domains via bootstrap.exe

– Loads BasicOZ.boz and invokes boot()

– SPACEOps.c and %arch%\Machine.asm invoke 

SPACE_* emulation instructions by executing 

illegal instructions

• SPACE uses native NT functionality

• BasicOZ uses only SPACE (& syslib)
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Status
• Code for SPACE.exe v1 available July 2006

• SPACE v2 and BasicOZ v1 available soon

– Watch community forums or MSDNAA

• Work ahead

– Documentation

– NCPUS > 1

– Multicomputer support

– x64 support

– Instrumentation and Workloads

– Projects, community involvement

– WRK-enhancements, Rotor, C#, VisualStudio
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Questions & Discussion


