Windows Kernel Internals
Overview

9 October 2006
Singapore

Dave Probert, Ph.D.

Architect, Windows Kernel Group
Windows Core Operating Systems Division
Microsoft Corporation

v3 © Microsoft Corporation 2006

History of NT/OS2

« 1988: Bill Gates recruits VMS Architect Dave Cutler
« Business goals:

 an advanced commercial OS for desktops/servers

compatible with OS/2
Technical goals:

scalable on symmetric multiprocessors

secure, reliable, performant

portable

v3 © Microsoft Corporation 2006

v3

NT Timeline first 17 years

2/1989
7/1993
9/1994
5/1995
7/1996
12/1999
8/2001
3/2003
8/2004
4/2005
2006

Coding Begins

NT 3.1

NT 3.5

NT 3.51

NT 4.0

NT 5.0 Windows 2000

NT 5.1 Windows XP

NT 5.2 Server 2003

NT 5.2 Windows XP SP2

NT 5.2 Windows XP 64 Bit Edition (& WS03SP1)
NT 6.0 Windows Vista (client)

© Microsoft Corporation 2006

Important NT kernel features

Highly multi-threaded
Completely asynchronous I/0O model
Thread-based scheduling

Object-manager provides unified management of
kernel data structures

kernel references

user references (handles)

namespace

synchronization objects

resource charging

cross-process sharing

Centralized ACL-based security reference monitor
« Configuration store decoupled from file system

v3 © Microsoft Corporation 2006

Important NT kernel features o

« Extensible filter-based I/O model with driver layering,
standard device models, notifications, tracing, journaling,
namespace, services/subsystems

« Virtual address space managed separately from memory
objects

« Advanced VM features for databases (app management
of virtual addresses, physical memory, I/O, dirty bits, and
large pages)

* Plug-and-play, power-management

« System library mapped in every process provides trusted
entrypoints

v3 © Microsoft Corporation 2006 5

Major Kernel Functions

 Manage naming & security » 0B, SE

 Manage address spaces > PS, MM
 Manage physical memory » MM, CACHE
« Manage CPU > KE

 Provide I/O & net abstractions > 10, drivers
* Implement cross-domain calls » LPC

* Abstract low-level hardware > HAL
Internal support functions » EX, RTL
Internal configuration mgmt > CONFIG

v3 © Microsoft Corporation 2006

Major NT Kernel Components

» OB — Object Manager

» SE — Security Reference Monitor

» PS — Process/Thread management

» MM — Memory Manager

» CACHE - Cache Manager

» KE — Scheduler

» 10 - 1/0 manager, PnP, device power mgmt, GUI
» Drivers — devices, file systems, volumes, network
» LPC - Local Procedure Calls

» HAL — Hardware Abstraction Layer

» EX — Executive functions

» RTL — Run-Time Library

» CONFIG - Persistent configuration state (registry)

v3 © Microsoft Corporation 2006

Major Kernel Services

Object Manager

Naming, referencing, synchronizing
Process management

Process/thread creation
Security reference monitor

Access checks, token management
Memory manager

Virtual address mgmt, physical memory mgmt, paging, Services
for sharing, copy-on-write, mapped files, GC support, large apps

Lightweight Procedure Call (LPC)
Native transport for RPC and user-mode system services.
/0 manager (& plug-and-play & power)

Maps user requests into IRP requests, configures/manages 1/0
devices, implements services for drivers

Cache manager

Provides file-based caching to buffer file system 1/0
Scheduler (aka 'kernel’)

Schedules thread execution on each processor
v3 © Microsoft Corporation 2006

Windows Architecture

Applications
DLLs System Services Login/GINA
Subsystem
AN Kernel32 Critical services User32 / GDI
User-mode ntdll / run-time library
Kernel-mode Trap interface / LPC
Security refmon I/O Manager Memory Manger || Procs & threads Win32 GUI
Net devices File filters
Net protocols File systems Filesys run-time Scheduler
Net Interfaces| | Volume mgrs Synchronization

Device stacks

Cache mgr

Object Manager / Configuration Management (registry)

Kernel run-time / Hardware Abstraction Layer

v3

© Microsoft Corporation 2006

Windows Kernel Organization

Kernel-mode organized into

NTOS (kernel-mode services)

« Run-time Library, Scheduling, Executive services, object
manager, services for 1/0, memory, processes, ...

(hardware-adaptation layer)

* Insulates NTOS & drivers from hardware details
 Providers facilities, such as device access, timers, interrupt
servicing, clocks, spinlocks

Drivers
« Kernel extensions (devices, file systems, network)

v3 © Microsoft Corporation 2006

10

10

Namespace
Components

Manage naming and security

Manage references to kernel data structures
Extensible mechanisms, scalable

Provides general synchronization

v3 © Microso ft Corporation 2006 11

v3

NT Object Manager

— Provides underlying NT namespace

— Unifies kernel data structure referencing

— Unifies user-mode referencing via handles
— Simplifies resource charging

— Central facility for security protection

— Other namespaces ‘mount’ on OB nodes
— Provides device & |/O support

© Microsoft Corporation 2006

12

L“\”

L“\”

L.

v3

>

<directory>

<directory>

L“Global??”

il

L*C:”

\Global??\C:

l

<symbolic link>

\Device\HarddiskVolume1

\Device\HarddiskVolume1

<directory>

il

L“Device”

<directory>

<device>

[

L“HarddiskVVolume1”

implemented

by I/0O

© Microsoft Corporation 2006

manager

13

Security Reference Monitor

« Based on discretionary access controls
— Single module for access checks

— Implements Security Descriptors, System and
Discretionary ACLs, Privileges, and Tokens

— Collaborates with Local Security Authority
Service to obtain authenticated credentials

— Provides auditing and fulfills other Common
Criteria requirements

v3 © Microsoft Corporation 2006 14

Object Mgr and Sec Monitor

Kernel
Code

Security
Ref Monitor

Access checks

Name lookup

—

Object
Manager

v3

*e, Returns refd ptr

0O 0000000000000 00000000000 0 0
, . Data Object
Ref'd ptr used until deref

© Microsoft Corporation 2006 15

OB Namespace: objdir\

ArcName

BaseNamedObjects

Callback
Cdfs
Device

Dfs
DosDevices
Driver

ErrorLogPort

FileSystem
GLOBAL??

18042PortAccessMutex
KernelObjects

KnownDl1ls

LanmanServerAnnounceEvent
LsaAuthenticationPort

NETLOGON_SERVICE_STARTED
NLAPrivatePort

NLAPublicPort

v3

SymbolicLink

Directory
Directory
Directory
Device
Directory
Device

- \?2?
Directory
Port
Directory

Directory

Event
Directory
Directory
Event
Port

Event
WaitablePort
WaitablePort

NLS Directory
Ntfs Device
ObjectTypes Directory
REGISTRY Key
RPC Control Directory
SAM SERVICE STARTED Event
Security Directory
SeLsaCommandPort Port
SeLsaInitEvent Event
SeRmCommandPort Port
Sessions Directory
SmApiPort Port
SmSsWinStationApiPort Port
SystemRoot SymbolicLink -
\Device\HarddiskO\Partitionl\WIN
DOWS
ThemeApiPort Port
UniqueSessionIdEvent Event
Windows Directory
XactSrvLpcPort Port

© Microsoft Corporation 2006 16

OB Extensibility: Object Methods

Note that the methods are unrelated to actual
operations on the underlying objects:

OPEN: Create/Open/Dup/Inherit handle

CLOSE: Ca
DELETE: Ca
PARSE: Ca

ed when each handle closed
ed on last dereference
ed looking up objects by name

SECURITY: Usually SeDefaultObjectMethod
QUERYNAME: Return object-specific name

v3 © Microsoft Corporation 2006 17

v3

OB Extensibility: \ObjectTypes

Adapter File Semaphore
Callback loCompletion SymbolicLink
Controller Job Thread
DebugObject Key Timer

Desktop KeyedEvent Token

Device Mutant Type

Directory Port WaitablePort
Driver Process WindowsStation
Event Profile WMIGuid
EventPair Section

© Microsoft Corporation 2006

18

OB Extensibility: \ObjectTypes

Adapter File Semaphore
loCompletion SymbolicLink

Controller Job Thread

DebugObject Key Timer
KeyedEvent Token

Device Mutant Type

Directory Port WaitablePort

Driver Process

Event Profile WMIGuid

EventPair Section

© Microsoft Corporation 2006

Object referencing: Handles

General mechanism: shorthand for referencing an opaque

data structure

e.g. a kernel structure (file, process, ...)

user

kernel

| handle |}

v3

Mapping

: |mechanism

© Microsoft Corporation 2006

!

Data
structure

20

Process/Thread structure

Any Handle Object .| Process
Table Manager Object

B Thread
T // / Thread

Files i
Process’ A\Q;trl;asls Thread
Events Handle Table Descriptors l Thread
Devices Memory Thread

: Manager
D

vers read(handle) Structures Thread

user-mode execution

v3

© Microsoft Corporation 2006

Handle Table

— NT handles allow user code to reference
kernel data structures (similar, but more
general than UNIX file descriptors)

— NT APIs use explicit handles to refer to
objects (simplifying cross-process operations)

— Handles can be used for synchronization,
including WaitMultiple

— Implementation is highly scalable

v3 © Microsoft Corporation 2006 22

v3

Handle Table Requirements

Perform well (time & memory) across a broad range of
handle table sizes

Handles can’t change as table expands
Efficient allocate, duplicate, free operations
Scalable performance on high-MP systems

© Microsoft Corporation 2006 23

One level: (to 512 handles)

Handle Table A: Handle Table Entries [512]

TableCode| +——

* Object
— " Object

Object

© Microsoft Corporation 2006

Two levels: (to 512K handles)

Handle Table B: Handle Table Pointers [1024]
TableCode

A: Handle Table Entries [512]

Object

Ir

Object

MC: Handle Table Entries [512]

© Microsoft Corporation 2006

Object

Three levels: (to 16M handles)

Handle Table

TableCode

D: Handle Table Pointers [32]

>

B: Handle Table Pointers [1024]

L

E: Handle Table P«

A: Handle Table Entries [512]J

>

v3

\ 4

I F: Handle Table Entries
Object '

— 1 Object

L

bject

L C: Handle Table Entries [512]

© Microsoft Corporation 2006 26

Kernel Handles

: EPROCESS
—>| object
- object
Handle Table +— pHandleTable
Kernel Handles
System
Process
pHandleTable || Handle Table
' » object
— object

v3

© Microsoft Corporation 2006 27

|O Support: lopParseDevice

Returns handle to File object

. user
ees| Trap Mechanism feueeeeeerecsnsnsrineesst sttt
l kernel
: ; | Access Security
‘ NtCreateFile() ‘ lopParseDevice() [——— RefMon
context i i
l evObj, File lobject
‘ ObjMgr Lookup [context Access

Dev Stack check

File Sys

File System Fills in File object

v3 © Microsoft Corporation 2006 28

Object Manager Implementation

* Implements standard operations
— Open, close, delete, parse, security, query

* Dynamic definition of OB types, including
callbacks for standard ops and allocation

* Implements a unified API
— OpenByName, reference, dereference
— Namespace and synchronization functions

* Relies on Security Reference Monitor
* Every object has standard OBJECT HEADER

v3 © Microsoft Corporation 2006 29

v3

OBJECT_HEADER

PointerCount

HandleCount

pObjectType

oNamelnfo

oHandlelnfo

oQuotalnfo

Flags

pQuotaBlockCharged

pSecurityDescriptor

Createlnfo + Namelnfo + Handlelnfo + Quotalnfo

OBJECT BODY
[with optional DISPATCHER HEADER]

© Microsoft Corporation 2006

30

Uniform Synchronization:
DISPATCHER_HEADER

Fundamental kernel synchronization mechanism
Equivalent to a KEVENT at front of dispatcher objects

Object Body —

v3

Inserted Size | Absolute | Type

SignalState

WaitListHead.flink

WaitListHead.blink

© Microsoft Corporation 2006 31

v3

KPRCB Thread Thread
WaitListHead WaitListEntry «—»| WaitListEntry
WaitBlockList WaitBlockList
Object->Header WaitBlock |: WaitBlock
WaitListHead WaitListEntry [« WaitListEntry
Signaled NextWaitBlock NextWaitBlock
Object->Header WaitBlock I: WaitBlock
WaitListHead WaitListEntry [«—» WaitListEntry
Signaled NextWaitBlock NextWaitBlock
Object->Header I: WaitBlock
WaitListHead » WaitListEntry
Signaled | NextWaitBlock
Object->Header WaitBlock
WaitListHead WaitListEntr
Signaled NextWaitBIo:k Structure used by

© Microsoft Corporation 2006

WaitMultiple

32

Address Spaces
Memory Mgmt

Virtual Address management, processes

« Shared memory, cache management

* Virtual Address Translation, page tables

* Physical pageframe (& pagefile) management
« Large app support

v3 © Microsoft Corporation 2006 33

Address Space Layout (2GB mode)

Shared User Data

OX7FFFFFFF
0x7FFE1000
Ox7FFE0000

Module images
Stacks

Unused

OxQRQOFFFF
0x00000000

34

Process/Thread structure

Any Handle Object .| Process
Table Manager Object
B Thread
T // / Thread
Files :
Process’ A\Q;trl;asls Thread
Events Handle Table DeSCI‘iptorS l Thread
Devices Memory Thread
: Manager

Drivers Structures Thread

v3 © Microsoft Corporation 2006

Processes

* An environment for program execution
(conceptually)

* Binds
— namespaces
— virtual address mappings
— ports (debug, exceptions)
—threads

* Not a virtualization of a processor

v3 © Microsoft Corporation 2006

36

Virtual Address Descriptors

* Tree representation of an address space
* Types of VAD nodes

— invalid

— reserved

— committed

— committed to backing store

— app-managed (large pages, AWE, physical)
» Backing store represented by section

objects

v3 © Microsoft Corporation 2006

37

Shared Memory Data Structures

File Object Segment
Handle

\Control Area
Section
/ page Object
Handle Directory Proto
Shared PTEs
Cache Map (Subsection
Subsection
Process Page
Page
= Directory > Tat?le 1

v3 © Microsoft Corporation 2006

38

v3

Cache Manager Summary

Virtual block cache for files not logical block cache for
disks

Memory manager is the ACTUAL cache manager
Cache Manager context integrated into FileObjects

Cache Manager manages views on files in kernel virtual
address space

I/O has special fast path for cached accesses
The Lazy Writer periodically flushes dirty data to disk
Filesystems need two interfaces to CC: map and pin

© Microsoft Corporation 2006 39

The Big Block Diagram

Fast IO Read/Write g Cached 10 IRP-based Read/Write
Cache Manager [« Filesystem
< P
Access, D R— Page i S R— Noncached
Flush, Fault : IO
Purge : ! :
v v /;1\
Memory Manager Storage Drivers S—
Disk
~

v3 © Microsoft Corporation 2006 40

Filesystem & Cache Manager

« 3 basic types of I/O: cached, noncached and “paging”
« Paging I/O is |/O generated by Mm — flushing or faulting

— the data section implies the file is big enough
— can never extend a file

* A filesystem will recurse on the same callstack as Mm
dispatches cache pagefaults
— This makes things exciting! (ERESOURCES)

Three File Sizes

* FileSize — normal length expected by the user
 AllocationSize — backing store allocated on the volume
— multiple of cluster size, which is 2" * sector size

« ValidDatalLength — size written so far

— ValidDatalLength <= FileSize <= AllocationSize
v3 © Microsoft Corporation 2006 41

Letting the Filesystem Into The Cache

« Two distinct access interfaces
— Map — given File+FileOffset, return a cache address

— Pin — same, but acquires synchronization — this is a
range lock on the stream

« Lazy writer acquires synchronization, allowing it to serialize
metadata production with metadata writing

* Pinning also allows setting of a log sequence
number (LSN) on the update, for transactional
FS

— FS receives an LSN callback from the lazy writer prior
to range flush

v3 © Microsoft Corporation 2006 42

CR3

v3

Virtual Address Translation

0000 0000 0000 0000 0000

© Microsoft Corporation 2006

43

v3

Self-mapping page tables

Page Table Entries (PTEs) and Page Directory Entries

(PDEs) contain Physical Frame Numbers (PFNs)
— But Kernel runs with Virtual Addresses

To access PDE/PTE from kernel use the self-
map for the current process:

PageDirectory[0x300] uses PageDirectory as
PageTable

— GetPdeAddress(va): 0xc0300000[va>>20]
— GetPteAddress(va): 0xc0000000[va>>10]

PDE/PTE formats are compatible!
Access another process VA via thread ‘attach’

© Microsoft Corporation 2006

44

v3

Self-mapping page tables
Virtual Access to PageDirectory[0x300]

CR3

Phys: PD[0xc0300000>>22] = PD
Virt: *((0xc0300¢00) ==PD

PD

1100 0000 0011 0000 0000

© Microsoft Corporation 2006 45

Self-mapping page tables

Virtual Access to PTE for va 0xe4321000

GetPteAddress:
0xe4321000
PD PT => (xc0390c84

0x300 0x321
0x390 ' PTE

1100 0000 0011 1001 0000 00

v3 © Microsoft Corporation 2006

46

Writing Cached Data

* There are three basic sets of threads involved,
only one of which is Cc's
— Mm’s modified page writer (paging file)
— Mm’s mapped page writer (mapped file)
— Cc's lazy writer pool (cleans data in cache)

v3 © Microsoft Corporation 2006

47

The Lazy Writer

Name is misleading, its really delayed

All files with dirty data have been queued onto
CcDirtySharedCacheMapList

Work queueing — CcLazyWriteScan()

— Once per second, queues work to arrive at writing 1/8" of dirty data
given current dirty and production rates

— Fairness considerations are interesting

CcLazyWriterCursor rotated around the list, pointing at the
next file to operate on (fairness)
— 16" pass rule for user and metadata streams

Work issuing — CcWriteBehind()
— Uses a special mode of CcFlushCache() which flushes front to back

v3 © Microsoft Corporation 2006 48

Physical Frame Management

« Table of PFN data structures
— represent all pageable pages
— synchronize page-ins
— linked to management lists

 Page Tables

— hierarchical index of page directories and tables
— leaf-node is page table entry (PTE)
— PTE states:

* Active/valid

* Transition
Modified-no-write
Demand zero
Page file
Mapped file

v3 © Microsoft Corporation 2006

49

Paging Overview

Working Sets: list of valid pages for each process
(and the kernel)

Pages ‘trimmed’ from working set on lists
Standby list: pages backed by disk
Modified list: dirty pages to push to disk
Free list: pages not associated with disk
Zero list: supply of demand-zero pages

Modify/standby pages can be faulted back into a
working set w/o disk activity (soft fault)

Background system threads trim working sets,
write modified pages and produce zero pages
based on memory state and config parameters

v3 © Microsoft Corporation 2006 50

Physical Frame Management

Process/System
Working Set

Modified
List

writer

Physical Page State
Changes

Hardfault
(DISK)

Zerofault
(FILL)

Zero
Thread

v3 © Microsoft Corporation 2006 51

Managing Working Sets

Aging pages: Increment age counts for pages
which haven't been accessed

Estimate unused pages: count in working set and
keep a global count of estimate

When getting tight on memory: replace rather
than add pages when a fault occurs in a working
set with significant unused pages

When memory is tight: reduce (trim) working sets
which are above their maximum

Balance Set Manager: periodically runs Working
Set Trimmer, also swaps out kernel stacks of
long-waiting threads

v3 © Microsoft Corporation 2006 52

Bypassing Memory Management

Working-set list

<—| Working-set Manager

VAD tree

Application

v3

Sections
Image ooooooooooooooooooo) EXXxxl XX
C-0-W %)
.................. H.. LN NN) .1_]“
Data = 0
a o

Phys

File |...... !
Data

ISI7] pE

[7Y

Data coo| P [coo MOdIfled
L Page Writer

© Microsoft Corporation 2006

9|ljelep

a|iyebed

CPU

Processes versus Threads
Lighterweight multi-threading
CPU scheduling
CPU mechanisms:
APCs, ISRs/DPCs, system worker threads

v3 © Microsoft Corporation 2006 54

Process

Container for an address space and threads

Associated User-mode Process Environment Block (PEB)
Primary Access Token

Quota, Debug port, Handle Table etc

Unique process ID

Queued to the Job, global process list and Session list
MM structures like the WorkingSet, VAD tree, AWE etc

v3 © Microsoft Corporation 2006 55

Thread

Fundamental schedulable entity in the system
Represented by ETHREAD that includes a KTHREAD
Queued to the process (both E and K thread)

IRP list

Impersonation Access Token

Unique thread ID

Associated User-mode Thread Environment Block (TEB)
User-mode stack

Kernel-mode stack

Processor Control Block (in KTHREAD) for cpu state when
not running

v3 © Microsoft Corporation 2006 56

Process/Thread structure

Any Handle
Table

ﬁ

Object
Manager

...’

Process
Object

L

Files

Events

Devices

Drivers

v3

, Virtual
Process Address
Handle Table :
Descriptors

© Microsoft Corporation 2006

Thread

Thread

Thread

Thread

Thread

Thread

Mitigating thread costs

Thread pools

* Driven by work items

« User-mode thread pool

« Kernel-mode worker threads

Fibers
* user-mode threads
 allows user-mode control of scheduling

« better performance for certain apps, but generally
discouraged

* has most of the usual user vs. kernel thread issues

v3 © Microsoft Corporation 2006

58

Thread latencies

Scheduling introduces bad latencies

— Preemption
* introduces fairness and responsiveness
* creates priority inversion if holding locks/resources

— Scheduling

« allows prioritized sharing Boost priority

» defeats RPC
block

‘caller| I IPC |\>

ready

scheduler
ready »

ready \I IPC |_1 Callee‘
59

v3 © Microsoft Corporation 2006

Scheduling

Windows schedules threads, not processes

Scheduling is preemptive, priority-based, and round-robin at the
highest-priority

16 real-time priorities above 16 normal priorities

Scheduler tries to keep a thread on its ideal processor/node to
avoid perf degradation of cache/NUMA-memory

Threads can specify affinity mask to run only on certain processors

Each thread has a current & base priority
Base priority initialized from process
Non-realtime threads have priority boost/decay from base
Boosts for GUI foreground, waking for event

Priority decays, particularly if thread is CPU bound (running at
quantum end)

Scheduler is state-driven by timer, setting thread priority,
thread block/exit, etc

Priority inversions can lead to starvation
balance manager periodically boosts non-running runnable threads
v3 © Microsoft Corporation 2006 60

Initialized

KelnitThread

0 Transition PspCreateThread
$ k stack KiReadyThread
% swapped KilnsertDeferredReadyList

Deferred
Ready

Ready

process
swapped

KiRetireDpcList/KiSway
KiExitDispatche

KiProcessDeférredRez dyList
KiDeferredReadyThre

hread/ KiSetAffinityThread
KiSetpriorityThrez

no qvail.
procassor

Ready

A

KiSelectNextT,

Idl
processor
or Standby preemption
preemptic
Affinity
ok
KiQuantumEnd
dleSchedule
KiSwapThread
KiExitDispatcher
NtYieldExecution

Blocked

Terminated |«

KeTerminateThread Running priiemption

Running

Kernel Thread Transition Diagram
DavePr@Microsoft.com
2003/04/06 v0.4b

v3 © Microsoft Corporation 2006

Scheduler

61

v3

Thread scheduling states

Main quasi-states:

— Ready — able to run (queued on Prcb ReadyList)
— Running — current thread (Prcb CurrentThread)
— Waiting — waiting an event

For scalability Ready is three real states:

— DeferredReady — queued on any processor

— Standby — will be imminently start Running

— Ready — queue on target processor by priority

Goal is granular locking of thread priority queues
Red states related to swapped stacks and processes

© Microsoft Corporation 2006 62

worker

threads

MmO —|

v3

I Z2x034

NT thread priorities

|00 =]

EXOZ+

= |

critical

normal
(dynamic)

idle

zero thread

© Microsoft Corporation 2006

31

real-time
(fixed)

63

CPU Control-flow

Thread scheduling occurs at PASSIVE or APC level
(IRQL < 2)
APCs (Asynchronous Procedure Calls) deliver 1/O
completions, thread/process termination, etc (IRQL == 1)

Not a general mechanism like unix signals (user-mode code must
explicitly block pending APC delivery)

Interrupt Service Routines run at IRL > 2

ISRs defer most processing to run at IRQL==2 (DISPATCH
level) by queuing a DPC to their current processor

A pool of worker threads available for kernel components to
run in a normal thread context when user-mode thread is
unavailable or inappropriate

Normal thread scheduling is round-robin among priority

levels, with priority adjustments (except for fixed priority
real-time threads)

v3 © Microsoft Corporation 2006 64

Asynchronous Procedure Calls

APCs execute routine in thread context
not as general as UNIX signals
user-mode APCs run when blocked & alertable

kernel-mode APCs used extensively: timers,
notifications, swapping stacks, debugging, set
thread ctx, I/O completion, error reporting,
creating & destroying processes & threads, ...

APCs generally blocked in critical sections
e.g. don't want thread to exit holding resources

v3 © Microsoft Corporation 2006 65

Deferred Procedure Calls

DPCs run a routine on a particular processor
DPCs are higher priority than threads
common usage is deferred interrupt processing

ISR queues DPC to do bulk of work

» long DPCs harm perf, by blocking threads

» Drivers must be careful to flush DPCs before unloading
also used by scheduler & timers (e.g. at quantum end)

kernel-mode APCs used extensively: timers,
notifications, swapping stacks, debugging, set thread
ctx, I/O completion, error reporting, creating &
destroying processes & threads, ...

High-priority routines use IPI (inter-processor intr)
used by MM to flush TLB in other processors

v3 © Microsoft Corporation 2006 66

System Threads

System threads have no user-mode context
Run in ‘'system’ context, use system handle table

System thread examples

Dedicated threads

Lazy writer, modified page writer, balance set manager,
mapped pager writer, other housekeeping functions

General worker threads
Used to move work out of context of user thread
Must be freed before drivers unload
Sometimes used to avoid kernel stack overflows

Driver worker threads

Extends pool of worker threads for heavy hitters, like file server
v3 © Microsoft Corporation 2006 67

Synchronization

Multiple tailored mechanisms for synchronization
and resource sharing

Examples:

PushlLocks
Fast Referencing

v3 © Microsoft Corporation 2006 68

Kernel synchronization mechanisms

Pushlocks DISPATCHER _HEADER

Fastref KQUEUEs

Rundown protection KEVENTSs

Spinlocks Guarded mutexes

Queued spinlocks Mutants

IPI Semaphores

SLISTs EventPairs
ERESOURCEs

Critical Sections

v3 © Microsoft Corporation 2006 69

Push Locks

* Acquired shared or exclusive

 NOT recursive

* Locks granted in order of arrival

» Fast non-contended / Slow contended

» Sizeof(pushlock) == Sizeof(void*)

« Pageable

* Acquire/release are lock-free

» Contended case blocks using local stack

v3 © Microsoft Corporation 2006 70

v3

Pushlock format

Normal case
Share Count Excl W=0
Contended case
Ptr to stack-local waitblock chain W =
> Share Count|Excl| |Share Count|Exc
Next —p Next
Previous — Previous

© Microsoft Corporation 2006

71

Fast Referencing

« Used to protect rarely changing reference
counted data

« Small pageable structure that's the size of
a pointer

» Scalable since it requires no lock acquires
in over 99% of calls

v3 © Microsoft Corporation 2006 72

v3

Fast Referencing Internals

Obiject Poin{er R

\

N\
Object: RefCnt: R+ 1 + N

© Microsoft Corporation 2006

73

v3

Obtaining a Fast Reference

Object Pointer 3
Reference l Dereference ‘
Object Pointer 2

© Microsoft Corporation 2006 74

/A0

Driver stacks

/O Request Packets

Synchronous vs Asynchronous I/O
/O completion ports

File Systems

v3 © Microsoft Corporation 2006 75

thCreateFile File o IRP
; A
Object™
I/O Manager :
—(FS filter drivers
ObOpenObjectByN
l P RIEETEYINEmE lIoCaIIDriver
Object Manager NTES
l IopParseDevice.-.w“v | loCallDrive!
/O Manager volmelvan
loCallDriver loCallDrive!
Result: File Object) Disk Driver
filled in by NTFS -
v3 © Microsoft Corporation 2006 76

Layering Drivers

Device objects attach one on top of another using
loAttachDevice* APIls creating device stacks

— |O manager sends IRP to top of the stack

— drivers store next lower device object in their private
data structure

— stack tear down done using loDetachDevice and
loDeleteDevice

Device objects point to driver objects
— driver represent driver state, including dispatch table
File objects point to open files

File systems are drivers which manage file objects for
volumes (described by VolumeParameterBlocks)

v3 © Microsoft Corporation 2006 77

v3

|O Request Packet (IRP)

|O operations encapsulated in IRPs.
|O requests travel down a driver stack in an IRP.

Each driver gets a stack location which contains
parameters for that 10 request.

IRP has major and minor codes to describe IO
operations.

Major codes include create, read, write, PNP,
devioctl, cleanup and close.

Irps are associated with a thread that made the
|O request.

© Microsoft Corporation 2006 78

IRP Fields

Flags

System «

Buffer Pointers

User <

MDL Chain

__ MDL

Thread’s IRPs

Thread

AN

v3

Completion/Cancel Info

Driver
Completion

APC block

Queuing
& Comm.

© Microsoft Corporation 2006

79

Each IRP Stack Location

v3

Major/Minor Function Codes

Flags & Control

MDL Chain

Create: security, options

Parameters: 3.4 len, key, offset

DeviceObject

\y

FileObject

!

DrvrODbj

DevODbj

Completion Routine & Parameter

FileObj

N\

© Microsoft Corporation 2006

80

IRP flow of control (synchronous)

IOMgr (e.g. lopParseDevice) creates IRP, fills in top
stack location, calls loCallDriver to pass to stack

driver determined by top device object on device stack
driver passed the device object and IRP
loCallDriver
copies stack location for next driver
driver routine determined by major function in drvobj
Each driver in turn
does work on IRP, if desired

keeps track in the device object of the next stack device

Calls loCallDriver on next device
Eventually bottom driver completes IO and returns on callstack

v3 © Microsoft Corporation 2006 81

IRP flow of control (asynch)

Eventually a driver decides to be asynchronous
driver queues IRP for further processing

driver returns STATUS_PENDING up call stack

higher drivers may return all the way to user, or may
wait for |O to complete (synchronizing the stack)

Eventually a driver decides 10 is complete
usually due to an interrupt/DPC completing 10

each completion routine in device stack is called,
possibly at DPC or in arbitrary thread context

IRP turned into APC request delivered to original thread
APC runs final completion, accessing process memory

v3 © Microsoft Corporation 2006 82

v3

Asychronous |/O

Applications can issue asynchronous |O requests to files
opened with FILE_ FLAG_OVERLAPPED and passing
an LPOVERLAPPED parameter to the 10 API (e.g.,
ReadFile(...))

Five methods available to wait for IO completion,
— Wait on the file handle

— Wait on an event handle passed in the overlapped
structure (e.g., GetOverlappedResult(...))

— Specify a routine to be called on 10O completion
— Use completion ports
— Poll status variable

© Microsoft Corporation 2006 83

/O Completion Ports

* Five methods to receive notification of completion for
asynchronous |/O:

— poll status variable

— wait for the file handle to be signalled

— wait for an explicitly passed event to be signalled

— specify a routine to be called on the originating ports
— use and |/O completion port

v3 © Microsoft Corporation 2006 84

Completing Asynchronous 1/O

anun ?92“.?.'?16. =« nap{ /O Completion

/O /O /O

gl gl 81+ sl 3l 32 o

C C C C C C

(O] (O] D (O] D D -

2| 2| 2| = 2| 2| 2| =)
> > > > > - Q|| =
- - - - - - o
@ @ @ @ @ @ o
Q Q Q Q Q Q O
o o o o o o o

normal completion I/O completion ports

v3 © Microsoft Corporation 2006 85

File System DeV|Ce Stack

Application

—— g
I Kernel32/ntdll
user EAsssssmsEssEsmpEEssmenmnnnnnal
kernel !
I NT 1/O Manager ‘
File System Filters
r R —— I --------------- _.l D|Sk CIaSS Manager‘
File System Driver ‘ —
Cache Manage T ‘ Disk Driver ‘
Partition/Volume

Virtual Memory Storage Manager

Manager

v3 © Microsoft Corporation 2006 86

v3

Discussion

© Microsoft Corporation 2006

87

