Windows Undocumented
Hle Formats

PeteDavisandMikeWallace

R&D Books
Lawrence, KS 66046

Acknowledgments
Pete Davis

There are so many people to thank. | must start immediately with Andrew Schulman
(of "Undocumented Windows' fame) and Ron Burk (editor of Windows Developer's
Journal). Andrew got me started writing professionally, so al blame should really go
to him. Ron helped immensely with the reverse-engineering work on WinHelp and |
would hazard a guess that he did more than half of it. But more importantly, he has
helped me out in more ways than | can count since we first met. He has published sev-
erd of my articles and been a valuable help in my writing and my understanding of
Windows. Thank you both so much, for everything.

The following people provided extra specia help. | don't mean to leave anyone
out, and there were so many people involved, I'm sure | will, but these are the ones
that come to mind right away. Wolfgang Beyer, Carl Burke, Stefan Olson, and Lou
Grinzo provided lots of help on the WinHelp . HL Pfile format. Clive Turvey provided
al the information on the W4 file format and aso helped out with the LE and W3 file
formats. Skip Key provided great insights on the LE file format, making up for my
lack of understanding of executable files.

The long list begins: Dave Bakin, Kevin Burrows, Jon Erickson (Dr. Dobb's Jour-
nal), Mike Floyd (Dr. Dobb's Journal), Jim Hague, Dale Lucas, Nico Mak (of WinZip
fame), Duncan Murdoch, Andrew Pargeter, Matt Pietrek, Steve Scanzoni, and Brian
Walker. All of these people have contributed in one way or another to making this
book happen. Most provided information or checked my information to make sure it
was correct. Thank you al so much.

Windows Undocumented File Formats

There are afew people who made considerable contributions but, unfortunately,
must remain anonymous. Most of them are people who are working on projects that
they don't want certain companies to know about. None of these people had anything
to gain by providing me with their hard-earned information, but simply did it out of
the idea that people should have access to this information.

I'd like to thank Steve Wexler, Julianne Sharer, Brett Foster, Ted Epstein, and dl
the others I've worked with a WexTech Systems, Inc. They provided me with ajob
that gave me time to write amgjority of this book.

I'd like to thank everyone | work with (or have worked with) at Moffet, Larson,
and Johnson, my current employer. They've continued to provide me with a challeng-
ing and exciting work environment that has continued to feed my brain. In particular,
Enrique Lenz, Dan Cox, Gyuri Grell, Alex Reyes, Carol Kelly, Garri Y ackobson, Walt
Constantine, Paul Modzelowski, and Theresa Alford.

I'd like to thank my roommate and buddy, Mike Wallace, for putting up with me
quitting my regular job to write and not being ableto help pay therent astimely asheld
like. I'm redlly glad you worked on the book with me. Y ou've been a good friend and
made it possible for me to pursue some of my dreams. Wow, we finally finished it, huh!

I'd like to thank my parents, who have always pushed me to do what | love and
believed in me when | didn't. They've been an incredible support in every way.

I'd dso like to thank my grandmother, who thought I'd been famous since | wrote
my first article. She's been such an ardent supporter and read dl my writings, even
though she didn't understand a word.

And finally, I'd like to thank Berney Williams, our patient (oh, how patient) and
understanding editor, and Robert Ward, our patient and understanding publisher, for
making this book happen. Thanks for putting up with the delays (and delays, and
delays, and delays).

Other acknowledgments: | must thank Jake (my cat) and Naoise (Mike's cat: pro-
nounced "Neesha") for keeping me company while working on the book. Naoise has
been a quick study at the art of stomp-typing and paper shuffling. Jake, as always, an
expert at playing dead al day long, every day. The vet clams he's dive, so | guess I'll
keephim.

We'd like to thank the crew at Bardo Rodeo, who let us blow off steam playing
pool and drinking their fine home-brewed beer 'til the wee hours of the night.

And finaly, thanks to dl the fine musicians and bands who gave me something to
listen to while | wrote this book.

Acknowledgments

Mike Wallace

The person | want to thank the most is Pete Davis. This book was entirely his idea,
and he is more than capable of writing the entire thing by himself. It was my good
luck to have him for such a good friend when he decided to tackle this project. He
gave me my first exposure to the joys of writing professionally. There were times |
thought | would never get some of the programs working, but Pete had the patience to
let me work at my own schedule. He was far more understanding than | think most
co-authors would be.

Next, | want to thank my family. My parents always let me pursue my own inter-
ests and never discouraged me when things didn't work out as planned. | dso couldn't
have asked for two nicer ssters, plus the coolest nephews, nieces, and brothers-in-law
anyone could hope to have.

I'd like to thank the friends who helped me get through the last severa months: Ed
Reyes, Robin Carey, Caral Kdly, Jennifer Campbell, and the fine employees of Bardo
Rodeo for letting me play pool long after they closed more than once, when | was in
danger of burning out. If there's anyone | forgot, I'm sorry. I'm too forgetful to
remember more than a handful of names at any given time!

| want to thank our editor and publisher for being so patient with us, and not say-
ing anything when we missed our deadline.

Finally, there's the people |'ve never met, but provided inspiration in one form or
another: Neil Young, Robert Pirsig, Henry David Thoreau, Toad the Wet Sprocket,
BelaFeck and Steve Howe.

Table of Contents

Acknowledgments. i
Chapter 1 IntroductionandOverview 7
HowltBegan. ..o 1
What'sinThisBook? i, 2

Why All the Undocumented File Formats?.................. 3

Why Are We Picking on Microsoft? 3

The FUtUre 4
How to Reverse-Engineer FileFormats..................... 4

DUMP and SETV AL ..o 5

Getting in Touch with Us..........oooiiiiiii it 7

Chapter 2 Multiresolution Bitmap (.MRB) File Format...... 13
MRBFoOrmat. ... 14
.MRBCOMPIreSSIONottt it 23

WhereDo | GofromHere? ... 25

Chapter 3 Segmented Hypergraphic (.SHG) File Format..... 27
HOtSpOtS. ..o 29

WhereDol GofromHere?, 31

vii

Windows Undocumented File Formats

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Vi

Windows Help File Format.................... 41
OV VI BW . o e 11
WinHelp B-Trees ... 42
Help File Header...........oooiiiiiii i, 44
The Help File System (HFS).........oooviiiiiiiii..t, 44
A Note on Object-Oriented Programming 50
.HLPFile Organizationcccoviiiiiiiiiinnn... 51
WinHelp Compression coviiiiiiiiiiiiiiaann., 51
Topic Offsets. ... 63
Compressionin [TOPIC........cooiiiiiiiiiiiinn. 65
Bitmaps and Metafiles............coiiiiiiii . 70
ConclusSion. ... 71
Where Do | Go from Here?..........coooviiiiiiiiin.. 72

Annotation (.LANN) and Bookmark (.BMK)

FileFormats......coovvieiiiiiiiiieaaannn 103
Annotation FIlesot e 103
Bookmark Files.......ccoiiiiiiiii it 104
Where Do | Go from Here?..........ooovviiiiinnnnn.. 105
Compression Algorithm and File Formats....... 107
TheAlgorithm... ... 107
COMPIESSING oevet it eeieaes 111
DECOMPIESSING .« ot ittt e i e e 112
Where Do | Go from Here?.......ooviiiiiiiiiinnn.. 112
Resource (.RES) File Format................. 125
The Format ... e e 126
The Program ...t 128
String Tables......coooii i 135
Fonts and Font Directoriescc.ccvvvininnnn.. 135
Accelerator Tables............coiiiiii i 136
RC D AT A 136
Name Tables ... e 137
Version Information ... 137
User-Defined Data........ovviiiiiii it 139
Where Do | Go from Here?.........ooviviiiiinnninn. 139

Table of Contents

Chapter 8 PIFFileFormat...........coooviviaaaaaa... 209
TheFormat...... ..o 210
TheProgram.coooviiiii e 211
WhereDo |l GofromHere? ...l 212
Chapter 9 W3 andWA4FileFormatscoeeeeooaana.-- 229
OVEIVIBIV e 229
The W3 FileFormat..........coooiiiiiiiiiii.. 231
How to Unmanglethe VXDsccovivvnnn... 231
SUCKW 3. 232
The W4 File Format...........cooiiiiiiiiiiint, 237
The W4/Double Space Compression Algorithm 239
Shannon-Fano Tables..............coiiiiiiin. 240
WhereDo | GofromHere? ...l 241
Chapter 10 LEFileFormato o 251
OVEIVIBIW e 251
General Layout.ccoiiiiiiiiiiiiiii i 253
Object Table.......coiiiiii s 260
Object Page Table ...t 261
Resident or Nonresident Name Tables.................... 262
Entry Table.......ooiiiii e 262
Fixup Page Table ... 263
Fixup Record Tableccoiviiiiiiiint, 264
LE DUMP o 265
Where Dol GofromHere?o 266
Appendix A Contents ofthe Companion Code Disk.......... 275
Annotated Bibliography..........ccoeeiiiiiiiiiianao... 277
INdEX e 281

Chapter 1

|ntroduction and Overview
How It Began

This book, we fedl, is along time in coming. Before we started reverse-engineering
file formats, we would go through bookstores looking for just this book. We never
found it, obviously. The reason we began reverse-engineering file formats had less to
do with a need for the information as it had to do with a curiosity about them. We're
just the kind of people that like to know how everything works.

The works in this book began with a plea from Andrew Schulman (of Undocu-
mented Windows fame) and Ron Burk (editor of Windows Developer's Journal) for
someone to reverse-engineer the WinHelp .HL Pfileformat. At thetime, my interestin
professional writing hadjust begun. | decided, "How hard can it be?" It seemed like a
perfect opportunity to get my namein print. My initial ideawasjust to help Ron Burk
out and hopefully get my name mentioned in his article when it was written.

Will, the .HL P file format turned out to be much more complex than | could have
imagined. Although | did take my initial work to Ron and we did end up doing the
entire project together (Ron probably did more than haf the work), Ron left the arti-
cles to me (published in Andrew Schulman's "Undocumented Corner" column, Dr.
Dobb's Journal, September and October 1993). | am to blame for al of the mistakes
and the incomplete nature of the work.

At this point, | think it's important to make one thing clear. Although the original
articles for the . H L Pfile format were printed in his column, and despite my thanks to
him, Andrew Schulman was not directly involved in any aspect of this book. | men-
tion this not to take any due credit from him, but because Andrew published the
"Undocumented ..." series of books with Addison-Wesley, and this book is not con-
nected with that series at al.

2 — Windows Undocumented File Formats

What's in This Book?

This book is partialy based on previous work, which | will briefly mention hereand in

amore detailed bibliography at the end of this book. In particular, there was atwo-part
article on the WinHelp .HL P file format | wrote for Dr. Dobb's Journal, an article in
Windows Developer's Journal (WDJ) on the .SHG and .M RB file formats, and another
article in WDJ on the file format and LZ77 agorithm used by COMPRESS.EXE. The
.ANN file format appeared in PC Magazine (Volume 14, No. 15) in an article |
co-wrote with Jim Mischel on advanced WinHelp techniques.

Two chapters in this book came from work done by other people. The . RESfilefor-
mat was originally uncovered by Dmitry M. Rogatkin and Alex G. Fedorov and pub-
lished in Dr. Dobb's Journal in August 1993 The .PIF file format was
reverse-engineered by Michael P. Maurice and was aso published in Dr. Dobb's Jour-
nal in July 1993,

The W4 file format presented in Chapter 9 was provided by Clive Turvey. He and
severa other people figured out the format, and Clive, as far as | know, was the one
that figured out the compression agorithm. He was thefirst | heard of to write his own
routines for decompressing W4 files, whereas other people were caling directly into
the Double Space decompression routines.

The rest of the files covered in this book were solved by Mike and | and have not
been previously published.

Information on the .HL P file format in this book has been completely revised
from the original articles. A lot of corrections and pieces of missing information
have been filled in.

In total, 10 file formats are covered in this book (actually, considering al the vari-
ations, it'smore like 13 or 14). The next 8 chapters are organized as follows:

* SECTION1
* Chapter 1 you're reading now, if you didn't know.
* Chapter 2 describes the multiresolution bitmap (.MRB) file format.

¢ Chapter 3 continues from Chapter 2 with the SHED (.SHG) file format, which
isan extension of the .M RB file format.

» Chapter 4, describes the complex WinHelp . H L Pfile format.
+ Chapter 5 discusses the Annotation (.ANN) and Bookmark (.BMK) file formats
used by WinHelp.
* SECTION2

* Chapter 6 lays out the file format used by COMPRESS.EXE, EXPAND. EXE, and
the LZEXPAND.DLL library for file compression.

* Chapter 7 is adapted from Dmitry M. Rogatkin and Alex G. Fedorov's arti-
clesto describe the .RESfileformat.

Introduction and Overview — 3

» Chapter 8 usesinformation from Michael P. Maurice's article and talks about
the .PIF file format.

o Chapter 9 explains the W3 and W4 file formats used by Windows 3x and
Windows 95.

* Chapter 10 provides an in-depth description of the LE (linear executable) file
format used by VxDs.

Why All the Undocumented File Formats?

This is a common question. Why doesn't Microsoft document this stuff? | think there
are different reasons for different file formats.

With SHED and MRBC (Multiresolution Bitmap Compiler), I'm not realy sure
what the problem is, exactly. Microsoft has released documentation for the .SHG file
format, but it is completely inaccurate and misleading. | honestly believe this was an
error and not intentional, because | was asked by someone at Microsoft to write cor-
rect documentation for them to release to the public. However, due to some disagree-
ments, that never happened.

| have a pretty good idea why the WinHelp file formats were never released. For
one thing, the formats have changed drastically with every version of Windows.
Microsoft probably doesn't want to be restricted by having to maintain backward
compatibility. More importantly, though, | think it's because the file format is a com-
plete mess. The problem is that WinHelp has changed hands at Microsoft quite afew
times. A lot of the people who maintained it in the past failed to pass down documen-
tation to the new people. From what | hear, maintenance of WinHelp is a nightmare.
For awhile it was a solo project, so only one programmer at atime worked on it and
no consistent group decisions were made. This could also account for the major
changes between versions. Luckily, Windows 4.0 did not introduce major changes in
the file format. Most of the changes involve additional internal files, but not many
changes in the format itself.

Asfor the formats used by the compression utilities, | can't imagine why Microsoft
would hide the documentation. It's certainly not to discourage competitors. Microsoft
doesn't make any money off of the compression software, and LZEXPAND.DLL is redis-
tributable. And it's not like they have the best compression agorithm out there. So
again, | think it'sjust a matter of not feeling that the general public "needs’ to know.

Why Are We Picking on Microsoft?

It may seem that we're picking on Microsoft. After al, every file we cover in this
book is a Microsoft file. This was not the intention. Plenty of other companies have
their own proprietary formats for their files, after al, but the main difference is that

4 — Windows Undocumented File Formats

many of the Microsoft files are pieces of Windows itself. Everyone has these files. If

we were going to cover other undocumented file formats, we might go after WordPer-
fect for Windows, Lotus, and others. We decided to stick to the files that we believe
have the largest user base and therefore will be most useful to developers. Our hopeis
that other file formats, from Microsoft and others, will be included in later editions of

this book. A lot of that will depend on demand.

The Future

We have every intention of keeping this book up-to-date and releasing revised edi-
tions when a significant number of changes have been made to the existing formats.
We may dso find that we want to cover formats not discussed in this edition in later
editions. Either way, we want this book to remain current, so that you, the ordinary
developer, will have access to the information you need and deserve.

Because we plan to keep this book up-to-date, we'd love some feedback. We want
to know what you like about it, what you don't like about it, what files you think we
should cover in future editions, and so on. What we need most is reports of errors or
updates to any unknown fields in the formats we've provided. We feel we've done a
really good job of covering the file formats that appear in this book. We've bent over
backwards to find every field we can, and we've talked to a lot of people who have
used this information to help us get it as accurate as possible.

Stll, thisisall "undocumented”. We don't have access to source code; we can't be
positive about some of the fields and structures. For example, inthe .SHGand .M RB
files, we have come up with what we think are the structures. It's possible that
Microsoft's structures differ. What we might consider one structure, Microsoft might
consider two or vice versa. We've done the best we can to see that structures are as
logical as possible. Sometimes Microsoft doesn't afford us that luxury by the nature
of the files, but we've done what we can.

There are dready files we'd like to consider adding to future versions, including the
Word for Windows 2.0 and 6.0 formats, the Paradox file formats, and the OLE 2.0 Doc-
file format. The work in this book is the best we could accomplish in areasonable time
period. These other file formats are complex and will require alot of time, but if demand
for this book is high enough, we will put out future editions. At some point, it would be
nice if this book was considered "The Encyclopedia’ of undocumented file formats.

How to Reverse-Engineer File Formats

Basicdly, you need to have two things to reverse-engineer file formats: good eyes and
agood pair of glasses. That may seem like a contradiction, but let me elaborate. First,
you need good eyes;, when you're done, you will need a good pair of glasses. Nothing
will strain your eyes and brain like staring a hex dumps for 8 hours straight.

Introduction and Overview —5

Begin by just staring at hex dumps of the file, and if you're not making progress,
stop thinking and keep staring. After about 8 hours, leave it and don't think about it.
The next day, go back to it, but this time it will start to make sense. Why? | think the
subconscious mind is a bit keener than the conscious mind. So without doing much
more than staring when you're stuck, your brain starts running a background task (to
use geek speak), trying to figureit out, so that you don't have to worry yourself about it.

Does this always work? Not always, but it certainly does alot of times. The rest of
the time, you add, divide, multiply, subtract, left-shift, right-shift and so on until num-
bers start to mean something. Sometimes things get worse and you break the hex
numbers down to bit streams (ugh).

None of it is a particularly enjoyable experience. Unlike most programming jobs,
there's very little satisfaction 95% of the time. The last 5% of the time is when things
start to fall in place and you start to feel good about it. Getting through the first 95% is
the hard part.

DUMP and SETVAL

DUMP will give you asimple hex dump of afile. | usually pipe the output to afile and
then print it. There's nothing specid about DUMP. It's as simple as they come and
about as complex as you need. Staring a hex dumps is the best way to reverse-engi-
neer afile format.

Take alook at an example. Figure 1.1 shows asimple text file. Figure 1.2 shows a
hex dump of the text file compressed with Microsoft's COMPRESS.EXE.

Figure 1.1 TEST.TXTtextfile.

Thisisatest. Thisisonly atest.
This is not important information.

Figure 1.2 Results of DUMP of compressed TEST.TXT

Offset Hex Values Ascii

0x00000000: 53 5A 44 44 88 FO 27 33 41 00 4C 00 00 00 DF 54 SZDD”."3A.L....T
0x00000010: 68 69 73 20 F2 FO 61 20 DF 74 65 73 74 2E EF F6 his ..a .test...
0x00000020: 6F 6E DB 6C 79 F7 F5 0D OA FO F5 6E 6F FF 74 20 on.ly...... no.t
0x00000030: 69 6D 70 6F 72 74 FB 61 6E 20 00 6E 66 6F 72 6D import.an .nform
0x00000040: DF 61 74 69 6F 6E 13 00 0D 0A .ation....

6 — Windows Undocumented File Formats

A first look shows a few things of interest. The first 4 bytes produce the letters
SZDD. This can be seen in al files compressed by COMPRESS.EXE. It's usually a safe
assumption that the first few bytes are some sort of magic number or header that iden-
tifies the file type. This is especidly true if they represent letters. What does SZDD
mean? It is probably the initials of the people who wrote the compression software;
two people, I'd guess in this case. Again, it's speculation and you rarely find out the
truth on something like that.

Look for more important information, though. Nothing really sticks out until bytes
11 to 14. The 0x4C followed by three zeros happens to be the same as the file size of
TEST.TXT. Thisis something you'd look for, because it's pretty safe to assume that an
original file size is going to be in there somewhere. After that, it appears that some of
the original text isintact but mangled abit here and there. Thisis where the hard work
begins.

I'll skip ahead afew days into my work and look at the byte immediately after the
file size, OXxDF. If | convert that to binary, | get 11011111. | don't see acorrelation here
yet, but if | turn it around, | get 11111011; that is, five 1's, followed by a0, then two
1's. Here's something odd: The first five characters from our text file are fine, but then
the word "is" (with the space following it) is missing, with 2 bytes, 0xF2 and 0xFO,
instead, followed by two more characters from the text file. So, it seems that the
binary 1's mean anormal character, whereas the binary 0's mean a 2-byte code. As |
said, this occurred to me afew days after | had begun the project. These things don't
just pop out & you immediately dl the time.

| won't go into the format here; I'll save that for Chapter 6, but this is how you get
started. You start looking for numbers you expect, look for patterns, break bytes down
to bits, and do alot of staring.

Sometimes you need more, though. I've included another program called
SETVAL.EXE. It will change a byte value in afile. Simply pass the offset and byte
value (both in hex), and it will change the byte at a given offset to the new value.
| usually use this when I'm down to a few unknown fields. | can change those
values and see what effect the change has. Sometimes the changes cause GP
Faults and sometimes memory allocation errors, but sometimes they lead you to
exactly what the field does. Between these two utilities, you're armed and ready
to tackle some serious file formats.

The next thing to do is to create lots of samples. The best way to do this is take a
single small file and make minor modifications. Get dumps of each change and see
what values change. For example, with the .SHG and .M RB file formats, change the
image size alittle and see which values change, or move a hotspot over abit and see
what changes there.

Introduction and Overview —7

Usually you just need to try every option the program has available and see what
those options change in the file. This is very tedious work, because you only want to
change one thing a atime and you need to save it and get a dump each time. If you
change more than one thing between dumps, you don't know which of the changes
caused which values to change.

It would be nice if there was an easier way than this, but there really isn't. Some-
times, once you've gotten started, you can build custom tools for specific files. When
working on the WinHelp file format, Ron Burk and | wrote a program called HELP-
DUMP (avariation by the same name was released with my article on the .HL P file
format). HELPDUMP darted out as a custom hex-dump program. Instead of
hex-dumping an entire .HL P file, though, once we figured out the internal .HL P file
system, we could dump individual internal files within the .HL P file. Then as we fig-
ured out each of those internal files, we wrote a piece of code to handle them. If we
had unknown fields, we'd have it print the values so that we could test specific fields
of different test files.

It really helpsto have a good knowledge of data structures and algorithms. | didn't
have as good a knowledge as | originally thought. | certainly didn't know anything
about compression when | started working on the different compression file formats,
and | didn't remember much about b-trees when | started on the .H L P file format. So,
| read up on them (see the annotated bibliography).

To sum up, you need good eyes, good glasses, lots of time, DUMP.EXE, SETVAL.EXE,
and a good library of data structures and agorithm books. Now you're redly armed to
the teeth.

Listing 1.1 is the code for DUMP. The program is pretty straight forward. What |
usually do is pipe the results to afile, so | can either print the file or examine it from
an editor.

Ligting 1.2 is the source code for SETVAL. Again, it's avery simple program but
is invaluable in the art of reverse-engineering file formats.

Getting in Touch with Us

If we've screwed something up or you've figured out an unknown field, or if you have
suggestions about how we can improve future editions of this book, we'd realy like to
hear from you. As far as we're concerned, this book is aliving document and will con-
tinue to evolve as new information comes our way.

Tocontactus, sende-mail topeted@mnsinc.comormwal lace@mlj.com.

A lot of work has gone into producing this book. We really hope you find it useful.
We look forward to hearing your comments, suggestions, and yes, even complaints (if
you've paid for the book, you're entitled to them).

8 —Windows Undocumented File Formats

Listing 1.1 DUMP.C— Produces a smple hex dump of a
file.

JHkdekdk ko kk gk dekokkokkokdkdkokkokkkkkkkkkdkhkkkkdkdkdhdkkdokkhdkkkkokdkhk ki hkkk
*

* PROGRAM: DUMP.C

*

* PURPOSE: Produces a simple hex dump of a file.

*

* Copyright 1997, Mike Wallace and Pete Davis

Chapter 1, Introduction and Overview, from Undocumented Windows
File Formats, published by R&D Books, an imprint of Miller Freeman, Inc.

& o % *

**/

fHinclude <ctype.h>

fHinclude <stdio.h>

#include <stdlib.h>

#include <string.h>

typedef unsigned char BYTE;

Jrrhkdkkkkdkdhddkikhdhdhiddhhddokdkddokdhoddkiodok ik kdoh ik

Performs a Hex/ASCII dump of a file.

**f

void HexDump(FILE *File) [

char Buffer[16];
long counter, FileSize;
int BytesToPrint, Index;

fseek{File, 0, 2};
FileSize = ftell(File);
fseek(Fite, 0, O};

printf(*)ffset Hex Values™};
printf(” Asciivn");
printf(*-------com-eoee e i H
Printf(m-reesmrmommrer e \n");

for (counter = 0; counter < FileSize; counter+=16) {

printf(*0x%081X: ", counter);
BytesToPrint = fread(Buffer, 1, 16, File);
for (Index=0; Index < BytesToPrint; Index++)
printf("202X ", (BYTE} Buffer[Index})
for (Index=0; Index < 16-BytesToPrint: Index++)
printf(* ");
for (Index=0; Index < BytesToPrint; Index++)
putchar{ isprint{ BufferfIndex]) ? Buffer[Index] : '.");
putchar(*\n');

Introduction and Overview — 9

Listing 1.1 (continued)

/***

Show usage.
******t***/

void Usage() (

printf{"Usage:\n");
printf(* DUMP filename\n\n"):
printf(* filename - Name of file to dump\n");

}

/***

Open the file and dump it,

**/

int main(int argc, char *argv{]1) (

char filename[40];
FELE *File;

if (arge = 2) {
Usage();
return EXIT_FAILURE;
1

strepy{filename, argv[1]);
_strupr(filename);

if ((File = fopen{filename, "rb"}) — NULL) {
printf{"%s does not exist!". filename}:
return EXIT_FALELURE;

}

HexDump(File};
fclose(File);

return EXIT_SUCCESS;

10 — Windows Undocumented File Formats

Listing 1.2 SETVAL.C — Modifies a byte in afile.

/***w******************
*

PROGRAM: SETVAL.C

PURPOSE: Modifies a byte in a file.

Chapter 1, Introduction and Overview, from Undocumented Windows

*

*

*

*

* Copyright 1997, Mike Wallace and Pete Davis

*

*

* File Formats, published by R&D Books, an imprint of Miller Freeman, Inc.
*

**************k***************************************tt**************/

#Hinclude <stdio.h>

void usage()

{
printf("Usage: SETVAL fn addr valin");
printf(" Where addr is the hex Jocation of the byte\n”);
printf(" 1in the file to medify and val is the byte (in hex)\n");
printf(® to set at that location.\n\n");
printf(" Example: SETVAL LIST.TXT 4B3 FFin\n");

i

int main(int argc, char *argv[])
{
char filename[256];
char address{10], val[l0];
fong nAddr = 0, n¥al = (;
FILE *fp;

if (argc != 4)
{
usage();
return 0;
}
strepy(filename, argv[1]);

if ((fp = fopen(filename, "r+b")) == NULL)
{
printf("Bad filename supplied\n”);
return 0;
1

Introduction and Overview — 11

Listing 1.2 (continued)

strcpy(address, argv[2]};
strepy(val, argv[31);

sscanf(address, "%1x", &nAddr);
sscanf(val, "Z1x", &nval}:

if (n¥at < 0 || nVal > 25%)
{
usage{);
printf{"Error: Supply a val between D and 255\n");

]

fseek(fp, 0, SEEK_END);

if (ftell{fp} < nAddr)

{
printf("The address supplied is beyond the end of this file.\n");
printf{“Please supply a value within the scope of this file.\n"};
fclose{fp);
return Q;

}

fseek(fp, nAddr + 1, SEEK_SET):
fwrite(&nVal, 1, 1, fp):
felose(fp):

printf("File modified successfully.\n"};
return Q;

Chapter 2

Multiresolution Bitmap
(.MRB)FileFormat

My second published articlewasonthe .SHG and . M RB fileformats. Theorigina work
was in the February 1993 issue of Windows Developer's Journal. In the origina arti-
de, | handled both formats together, because both file formats are very similar. In fact,
the formats are virtually identical, except that each has aspects the other one doesn't
have.

More clearly, a SHED file can have hotspots, but an .M RB filecan't. An .MRB file
can have multiple bitmaps, but a SHED file can't. However, you can combine them. If
you cregte severd SHED files for monitors of different resolutions, you can combine
theminto one .M RB fileusing the Multiresolution Bitmap Compiler (MRBC).

A magazine article is usually very limited in length. Because | wanted to cover
both formats, and because the formats were so Smilar, it made sense to cover themin
the same article. However, because of space limitations, | couldn't reveal as much
about the formats as | would have liked to. A book, on the other hand, usually doesn't
suffer from the same limitations. To help better separate the issues, we felt it would be
besttotreat.M RBand. SH Gfilesseparately.

Because of the smilarity, however, | had to choose a single naming convention for
thestructures. | choseto usethe . SHG naming convention, mainly becausemy original
work was on the .SHG file format.

13

14 — Windows Undocumented File Formats

MRB Format

Figure 2.1 showsthelayout of a .M RB file. Notice that I'm using the . SHG notation for
thedatastructures. .M RB filesarelaid out in three basic sections. Section 1 isthe SHG
file header. Every .M RB file has only one. Section 2 is the image header. Basically, it
tells you whether the image is a bitmap or a metafile. Section 3 combines the SHG
Bitmap or SHG Metafile header and the bitmap or metafile data. The SHG Bitmap
and SHG Metafile headers should not be confused with bitmap headers or metafile
headers. The structures are distinctly different.

You're probably thinking, "What's this metafile business? Who puts metafiles
through the MRB compiler?' Good questions. Ever try it? The MRB compiler verifies
that the fileis ametafile, compresses it, and storesit asa .M RB file. | can't redly give
an explanation as to why the MRB compiler would support metafiles, especialy since
they're resolution independent, but there you have it. Now, for those of you familiar
with SHED, you know why metafiles are supported by the SHG file format. SHG files
can have bitmaps or metafiles. Whichever you import, MRBC and SHED keep them
in their natural (bitmap or metafile), but slightly altered, form. You'll understand
when you get to section 3. | suppose that metafiles are supported by the MRB com-
piler simply because they have to be supported by SHED.

Witha .M RB file, sections 2 and 3 are repeated for eachimage. Soifa.M RB filehas
three bitmapsin it, there will be three copies of sections 2 and 3.

Figure2.1 .MRBlayout.

.SHG File Header Section 1

.SHG Image Header Section 2

.SHG Bitmap Header
or.SHGMetafileHeader

> Section 3

Bitmap/Metafile Data

Multiresolution Bitmap (.MRB) File Format — 15

SHGFILEHEADER

Each .MRB file begins with a SHGFILEHEADER (Table 2.1) structure. This structure has
atype, or magic number field, a count of the number of images in the file, and offsets
to the image header structure for each image. Soif there arethreeimagesinthe .M RB
file, there will be three offsets to image headers. Notice that there are two magic num-
bers. The magic number lets you know who created the .MRB/.SHG file and which
form of compression is used in the .MRB/.SHG file. The 0x706C magic number indi-
cates the file was created with MRBC or SHED. I'll discuss this later in this chapter.

For now though, | need to bring up atopic | haven't talked about yet. The purpose
of .MRB and .SHGfiles, obvioudly, istoincludethemin WinHelp. What i sn't apparent
is that every bitmap or metafile included in WinHelp is actually converted to the
.MRB/.SHG format. WinHelp adds another layer of compression, LZ77 compression.
WinHelp checks to see if the LZ77 compression is actually going to reduce the size of
the image. If it does, then WinHelp will use the LZ77 algorithm, and the magic num-
ber for the .MRB/.SHG image will be 0x506C. I'll discuss this again later in this chap-
ter, and the WinHelp aspects will be discussed more in Chapter 4.

SHGIMAGEHEADER

Each individual image in the .MRB file has a SHGIMAGEHEADER record (Table 2.2). The
SHGIMAGEHEADER tells you three things about the image. It tells you whether the
image is a metafile or a bitmap (IT_WMF or IT_BMP respectively), whether the data in
the image is compressed, and the resolution in dots per inch (for metafiles, DI is
unused and is set to 0x10).

Two values are currently supported for the si ImageType field:

#define IT_BMP 0x06
#define IT_WMF 0x08

Table 21 SHGFILEHEADER record.

Field Name Data Type Comments

sfType[2] char Ip (0x706C) or | P (0x506C)
sfNumObjects int Number of images in file
sfObjectOff]] DWORD Array of offsets to images

16 — Windows Undocumented File Formats

Four values are supported for the siCompression field:

#define |C_NONE Ox00
#define 1CRLE 0x01
#define ICLZ77 0x02
#define ICBOTH 0x03

I'll discuss the compression algorithms later in this chapter, but notice that the last
compression option, IC BOTH indicates that the bitmap or metafile was first com-
pressed with the RLE compression algorithm, then the results of that compression
were compressed further with the LZ77 algorithm.

You'll notice that the value for dots per inch (si DPI field) is multiplied by 2. It's
also listed as a BYTE or WORD, although in most cases it will only appear as a BYTE in
the file. This is something you'll see over and over in other structures, apparently to
save some space. How would you be saving space? Well, it's areally bizarre concept
that doesn't make much sense, but it works like this: If the value is odd, then you dou-
ble the size of the field. To read in the siDPI field, you'd read only a single byte
instead of aword. If the value is odd, 0x21 for example, then you'd read a second byte
and divide the total word value by two, discarding the remainder. This seems to be
some sort of attempt to save afew bytes and seems to me to be alot more trouble than
it's redly worth.

| wrote four short routines, WriteWordVal(), WriteDWordVal(), ReadWordVal(),
and ReadDWordVal() (Listing 2.1). These routines read and write the fields properly,
which is alot of work, because instead of reading or writing the structure as awhole,
you have to handle it field by field.

Table 2.2 HGIMAGEHEADER record.

Field Name Data Type Comments
silmageType BYTE 0x06 = BMP

0x08 = WMF
siCompression BYTE 0x00 = No compression

0x01 = RLE compression
0x02 = LZ77 compression
SiDPI BYTE or WORD Dots per inch x 2

(0x10 for metafiles)

Multiresolution Bitmap (.MRB) File Format — 17

SHGBITMAPHEADER

The SHGBITMAPHEADER structure (Table 2.3) follows the SHGIMAGEHEADER gructure if
theimageis abitmap (IT_BMP). Notice how mos of the fields are multiplied by two,
s0 most of the WORDs will be read in only as BYTEs, and most of the DWORDs will be
read in as WORDs.

Two fields, shlisZero and sbTwoHund, appear to be constant values. sbunk1l is
smply an unknown field.

Table 2.3 SHGBITMAPHEADER record.

Field Name Data Type Comments

shlsZero BYTE Always 0x00

sbDPI BYTE or WORD Dots per inch x 2

shTwoHnd WORD 0x200

sbNumBits BYTE or WORD Bits per pixel x 2

sbWidth WORD or DWORD Width x 2

sbHeight WORD or DWORD Height x 2

sbNumQuads WORD or DWORD Number of RGBQUADS x 2

sbNumimp WORD Number of "important’ RGBQUADS
shCDataSize | WORD or DWORD Size of bitmap data x 2

sbSizeHS WORD or DWORD Size of hotspot data area (used only by SHED)
sbunkl; DWORD Unknown

sbSizelmage | WORD or DWORD | (ImageHdr + BitmapHdr + sbCDataSize) x 2

Listing 2.1 WriteWordVal(), WriteDWordVal()
ReadWordVal(), and ReadDWordVal().

%% * * * *hrhhkk

~
‘

PROGRAM: WriteWordval(), WriteDWordVal(), ReadWordVal(), and ReadDWordVal()

PURPOSE: Routines to read and write the fields properly -- field by field,

rather than reading or writing the structure as a whole.
Copyright 1997, Mike Wallace and Pete Davis
Chapter 2, Multiresotution Bitmap (.MRB) File Format,

from Undocumented Windows File Formats, published by R&D Books,
an imprint of Miller Freeman, Inc.

* Ok R O O Ok Ok %k F F F F

* * * *K xx/

18 — Windows Undocumented File Formats

The sbDPI field should match the siDPI field in the SHGIMAGEHEADER. The
sbNumBits field is the number of bits per pixel. sbWidth and sbHeight have the
dimensions of the bitmap. sbNumQuads and shNumimp are the number of RGBQUADS
listed and the number of RGBQUADS required to render the image properly, respec-
tively. The shCmpSize field is the size of the compressed bitmap data. shSizelmage
is the size of the SHGIMAGEHEADER + the SHGBITMAPHEADER + the image data.

The shSizeHS field is the size of the hotspot data areain BYTEs. This is used only
by SHED andis0Oinan .M RB file. However, thisfield would be usedin an .M RB file
created from . SHGfiles. I'll discuss thisinformation in more detail in the next chapter.

To give you an idea of how to read this structure, take alook at ReadBMHeader()
(Listing 2.2). Notice how, instead of one simple fread() call, we have to resort to five
fread()s and seven calls to ReadWordVal() or ReadDWordVal(), each of which will
make one or two calsto fread(). Thisis certainly alot of overhead to save a couple
bytes here and there and alot more work than it should be.

Listing 2.1 (continued)

void WriteWordVal(FILE *SHGFile, WORD val) {
BYTE a;
WORD b;

b =val * 2;
if (b > 255) fwrite(&b, sizeof(b), 1, SHGFile):
else {
a = (BYTE) b;
fwrite(&a, sizeof(a), 1, SHGFile);
}
}

void WriteDWordVal(FILE *SHGFile, DWORD val) {
WORD a;
DWORD b;

b= val * 2;
if (b > 65535) fwrite(&b, sizeof(b), 1, SHGFile);
else {

a = (WORD) b;

fwrite(&a, sizeof(a), 1, SHGFile);

}

WORD ReadWordVal(FILE *SHGFile) {
BYTE a, b=0;
fread(&a, sizeof(a), 1, SHGFile);
if (a % 2) fread(&b, sizeof(b), 1, SHGFile);
return (WORD) ((WORD)b*256 + a) / 2;
)

DWORD ReadDWordVal(FILE *SHGFile) {
WORD a, b=0; fread(&a, sizeof(a), 1, SHGFile);
if (a % 2) fread(&b, sizeof(b), 1, SHGFile);
return (DWORD) ((DWORD)b*65536 + a) / 2;

}

Multiresolution Bitmap (.MRB) File Format — 19

SHGMETAFILEHEADER

The SHGMETAFILEHEADER (Table2.4) follows the SHGIMAGEHEADER structure if the
silmageTypefieldis IT_WMF. This structure is essentially a scaled down version of the
SHGBITMAPHEADER. All smXXXXX fields are the same as their sbXXXXX equivar
lents. The only difference is the smXWidth and smY Height. These values are given in
metafile units and are not multiplied by two.

Table 24 SHGMETAFILEHEADER record.

Field Name Data Type Comments

smXWidth WORD Width of image in metafile units
smYHeight WORD Height of image in metafile units

smUDataSize

WORD or DWORD

Size of metafile data x 2 (uncompressed)

smCDataSize

WORD or DWORD

Size of metafile data x 2 (compressed)

smSizeHS WORD or DWORD Size of hotspot data area x 2 (used only by
SHED)

smunk1 DWORD Unknown

smSizelmage | WORD o DWORD | (ImageHdr + WMFHdr + smCDataSize) x 2

Listing 2.2 ReadBMHeader().

/**

*

* PROGRAM: ReadBMHeader()

*

* PURPOSE: An example of how the SHGBITMAPHEADER structure works.

*

* Copyright 1997, Mike Wallace and Pete Davis
*

* Chapter 2, Multiresolution Bitmap (.MRB) File Format,
* from Undocumented Windows File Formats,
* published by R&D Books, an imprint of Miller Freeman, Inc.

*

dokokk ke

Fokdeok dedok ko koK *

hhkkk *x * xx/

20 — Windows Undocumented File Formats

Bitmaps

Following the SHGBITMAPHEADER s alist of RGBQUADS. These provide the color values
used by the bitmap. Immediately following the RGBQUADS is the actud bitmap data. If
the compression flag is set in the SHGIMAGEHEADER, then this data will be compressed
(but the RGBQuad information will not be compressed). This is afairly smple RLE

compression algorithm, which I'll describe shortly.

Metafiles

Metdfiles, as | sad earlier, don't go through quite as drastic a change as bitmaps. The
structure for a metafile can be seen in Figure 2.2.

MRBC and SHED only accept placeable metafiles. Placegble metafiles are meta-
files that are preceded by the METAFILEHEADER structure (Table 2.5). Microsoft docu-
ments this in the APl references (Volume 4, Chapter 3 of Microsoft Windows 3.1
Programmer's Reference) and APl help files, but it doesn't provide the structure in
WINDOWS.H.

Thekey field is the value 0x9AC6CDD7L. This of course has a deep cosmic meaning
that only Bill Gates is aware of, or maybe it's his phone number in hex.

The hmf and reserved fields are unused and must be set to 0. The bbox field has the
bounding box rectangle for the image. The values are in metafile units. The inch field
tells how many metafile unitsthere are to aninch. Thisvaueisusualy 576 or 1000. It
should definitely be less than 1440.

Listing 2.2 (continued)

voi d ReadBMHeader (FILE *SHGFi | e, SHGBI TMAPHEADER *SHE@BM {
fread(& SHEBM >shlszero), 1, 1, SHGFile);
SHGBM >shDPl = ReadWr dVal (SHGFi | e);
fread(& SHGBM >shTwoHund), 2, 1, SHGFile);
SHGBM- >sbNumBi t s = ReadWor dVal (SHGFi | e);
SHGBM >sbW dt h = ReadDWér dVal (SHGFi | e);
SHGBM >shHei ght = ReadDWbr dVal (SHGFi | e) ;
SHGBM >shNumQuads = ReadDWbr dVal (SHGFi | e) ;
fread(& SHEBM >sbNum np), 2, 1, SHGFile);
SHGEBM >shCmpSi ze = ReadDWor dVal (SHGFi | e);
SHGEBM >sbSi zeHS = ReadDWbr dVal (SHGFi | e) ;
fread(& SH@®BM >sbunkl), 4, 1, SHGFile);
fread(& SHE®BM >shSi zel mage), 4, 1, SHGFile);

Multiresolution Bitmap (.MRB) File Format — 21

The checksum field is an XORed sum of the first 10 words of the METAFILEHEADER
structure. There's a safety feature! In case you were reading atext file by mistake that
begins with 0x9AC6CDD7L, thisis where you can be sureit'sreally ametdfile.

Figure 2.2 Placeable metafile layout.

METAFILEHEADER

METAHEADER

Metafile record

Metafilerecord

Table 2.5 METAFILEHEADER record.

Field Name | Data Type Comments

key DWORD 0x9AC6CDDTL

hmf HANDLE unused; must be 0

bbox RECT Bounding rectangle for image

inch WORD M etafile units per inch

reserved DWORD Unused; must be 0

checksum WORD XORed sum of first 10 WORDs of structure.

22 — Windows Undocumented File Formats

Thisis followed immediately by the METAHEADER record (Table 2.6). This header is
described in the Microsoft Windows 3.1 Programmer's Reference, Volumes 3 and 4.
The only field that should change in thisrecord whenyou createa .M RB or .SHG isthe
mtSize field. MRBC or SHED will make two modifications to ametafile. Firgt, it will
discard the METAFILEHEADER record and add SetWindowOrg() and SetWindowExt()
functions to the metafile. I'll discuss why this is done later. For now, though, you need
to know that the mtSi ze field is changed because of this.

This is immediately followed by a string of metafile records (Table 2.7). The
rdSize field contains the size of the metafile record, which varies depending on the
number of parameters in rdParm. rdFunction can be any of the metafile-supported
GDI functions.

When MRBC or SHED reads a metdfile, it discards the METAFILEHEADER structure
(but it is required to be in the original metafile). The information from the bbox field is
used to add two metafile records to the beginning of the metafile itself. The first record is
a 0x020B [SetWindowOrg()] function and the second is a 0x020C [SetWindowExt()].
These provide the dimensions of the metafile. There is an exception. If the metafile

Table 2.6 METAHEADER record.

Field Name Data Type | Comments

mtType UINT Always 1 for .MRBs and .SHGs

mtHeaderSize UINT Size of this header in WORDs (9 WORDs)

mtVersion UINT 0x300 if it contains DIBs, else 0x100

mtSize DWORD Size of metafile in WORDs

mtNoObjects UINT Maximum number of objects that exist in
the metafile simultaneously

mtMaxRecord DWORD Size in WORDs of the largest record in the
metafile

mtNoParameters UINT Reserved

Table 27 Typical metafile record.

Field Name Data Type Comments
rdSize DWORD Size of metafile record
rdFunction WORD GDI function

rdParmi] WORD Parameters for GDI function

Multiresolution Bitmap (.MRB) File Format — 23

dready has a SetWindowExt() function in it, MRBC or SHED simply ignores
the METAFILEHEADER structure altogether. If there is a SetWindowExt() but no
SetWindowOrg(), SetWindowOrg() isassumedto be a 0,0.

Other than this alteration, the metafile remains more or less intact. The only other
change is that it is usually compressed.

.MRB Compression

MRBC and SHED use a simple RLE (Run Length Encoding) compression agorithm
to compress data. The help compiler, when importing bitmaps and converting them to
the .MRB/.SHG images, sometimes uses an LZ77 compression agorithm. 1'll show the
code as it would apply to these images, but Chapter 7 will have amuch more in-depth
discussion of the LZ77 agorithm in general, and Chapter 4 will talk more about the
implementation specific to WinHelp. Because this only occurs with WinHelp, | will
save most of the discussion about how bitmaps are handled in WinHelp for Chapter 4.

Compression is applied to both bitmaps and metafiles. With bitmaps, the compres-
sion begins on the data immediately following the RGBQuad list and continues
through al of the bitmap data. With metafiles, the compression begins immediately
after the SHGMETAFILEHEADER and continues through the entire metafile.

RLE compression basically works as follows: When you get a series, or "Run”, of
bytes that are identical, say 20 zeros, instead of keeping those 20 zeros, you put in a
flag, a 20, and a zero. So instead of writing 20 bytes of zeros, you're writing three
pieces of information: A flag that indicates compression, the character that's repeated,
and the number of times that character is repeated. That's the theory; the implementa
tions vary. In this case, there are seven simple steps to the decompression algorithm:

1 If not at the end of the data, read 1 byte into count, dse quit.
2. If bit 8 of count is set, goto step 5.

Copy next input byte count times to the output file.
Gotostep 1

Subtract 0x80 from count (unset hit 8).

Copy next count bytes from the input file to the output file.
Go to step 2.

N o g b~ o

24 — Windows Undocumented File Formats

Listing 2.3 shows the code for the routine doRLE(), which decompresses data
from an input file to an output file. doRLE() has three parameters. the input file, the
output file, and the number of bytes to decompress in the input file. It then returns the
sze of the data after it's expanded.

Listing 2.3 doRLE().

/**
*

PROGRAM: doRLE{)

PURPQSE: Decompress data from an input file to an output file.
Copyright 1997, Mike Wallace and Pete Davis

Chapter 2, Multiresclution Bitmap (.MRB) File Format,

from Undocumented Windows File Formats,
published by R&D Books, an imprint of Miller Freeman, Inc.

o o F % A o X H Kk

**************************t***/

DWORD doRLE(FILE *InFile, FILE *QutFile, DWORD NumBytes) {
DWORD =1, imagesize=0;
BYTE j, count, data;
do {
fread(&count, sizeof{count), 1, InFile);
i+
/* If the 8th bit is set, lower 7 bits has # bytes to copy */
if {count & Ox80) {
count -=0x80;
while (count--) (
fread{&data, sizeof(data), 1, InFite);
i+
furite{&data, sizeof(data), 1, OutFile);
§
}
/* If B8th bit not set, it"'s an RLE count */
else {
count = count & 0x7F;
fread(&data, sizeof{data}, 1, InFile);
4+
/* Write out uncompressed */
for (j = 1; j <= count; j+t, imagesizett)
fwrite(&data, sizeof(data), 1, QutFile};
)
}
white(i < NumBytes):
return imagesize;

Multiresolution Bitmap (.MRB) File Format — 25

The LZ77 adgorithm is quite a bit more complex. Again, we'll discuss it more
in-depth in Chapter 7, but for now, the code here shows how we handle it. Ligting 2.4
shows the doL Z77V 3() routine. This is the verson of LZ77 used by WinHep. (Two
other versons, much like this routine, are supported by COMPRESS.EXE and LZEX-
PAND.DLL SeeChapter 7 for more details.)

Where Do | Gofrom Here?

Clearly, the .MRB file format isn't used quite as much anymore. Mainly because
dmog everyone has Super VGA monitors. However, for those that are disassembling
dd help files (see Chapter 4), you can remove the .M RB files and extract the bitmaps
from them. And because the SHED file format is gill being used extensively, you'll

need this knowledge to ded with SHED files.

Listing 2.4 doLZ77V3().

/**

*

PROGRAM: dolZ77V3(}
PURPOSE: The version of LZ77 used by WinHelp
Copyright 1997, Mike Wallace and Pete Davis

*
w
*
*
*
*
* Chapter 2, Multiresolution Bitmap (.MRB) File Format,

* from Undocumented Windows File Formats,

* published by R&D Books, an imprint of Miller Freeman, Inc.
*

**/

fidefine WINSIZE 4096

#define LENGTH(x) ({((x) & OxOF}} + 3)

fidefine OFFSET(x1, x2) (((({x2&0xF0)>>4}*0x0100)+x1+0x0001)&0x0FFF)
fidefine FAKEZREAL_POS(x) ((x) & (WINSIZE - 1))

#define BITSET(byte, bit) ({{byte) & (I<<bit)) > O}

void doLZ77V3(FILE *InFile, FILE *OutFiie, DWORD NumBytes) {
unsigned char BitMap, bytel, byteZ;

int Length, counter, NumToRead;
long Offset, CurrPos=0;

26 — Windows Undocumented File Formats

Listing 2.4 (continued)

/* Window must initially be filled with spaces */
for (counter = 0; counter < WINSIZE; counter +)
Window[counter} = ' *;:
/* Go through until we're done */
while (CurrPos < NumBytes) {
/* Get BitMap and data following it */
BitMap = fgetc(Infile);
if (feof(inFile}) return;
NumToRead = BytesToRead(BitMap);
/* Go through and decode data */
for {counter = 0; counter < 8: counter+) [
/* It's compressed, so decode it and copy the data */
if (IBITSET(BitMap, counter)) {
bytel = fgetc{InFile);
if (feof(InFile)) return;
byte2 = fgetc(infile):
Length = LENGTH{byte2);
Offset = OFFSET(bytel, byteZ):
/* Copy data from ‘window® */
while (Length} {
bytel = Window[FAKEZREAL_POS{Offset)];
Window[FAKEZREAL_POS(Currfos}] = bytel;
fputc{bytel, Qutfile};

CurrPos++;
Offset++;
Length--;
}
1/* Aif */
/* 1t's not compressed, so copy the bytes */

else {
bytel = fgetc(InFile);
Window[FAKEZREAL_POS(CurrPos)] = bytel;
fputc(bytel, QutFile);
CurrPos++;

}

if (feof(InFile))} return;

}/* for */
}/* while */

Chapter 3

Segmented Hypergraphic
((SHG) FileFormat

Chapter 2 discussed the Multiresolution Bitmap (.MRB) file format. The Segmented
Hypergraphic (.SHG) file format is almost identical. It provides a few key differences
and some additional structures not normally foundin a .M RB file. | say not normally,
because the Multiresolution Bitmap Compiler (MRBC) is capable of taking . SHG files
asinput and retaining al hotspot data. Figure 3.1 showsanormal .SHGfile.Ina.MRB
filewith multiple . SHG files (hereafter referred to as amulti-image .SHGfile), sections
3 and 4 are repeated instead of section 3 only.

The primary difference between the .SHG file and the .M RB file is the support for
hotspots. Hotspots are rectangular areas you can define in a . SHG to produce an event
in WinHelp. Three events are supported by WinHelp 3.1, including a topic jump, a
topic popup, and macro execution.

SHED doesn't support multiple images within a .SHG file, but WinHelp does. As
far as WinHelp is concerned, a multi-image .SHG file is the same as a .M RB with
hotspots. My guessiis that WinHelp doesn't really distinguish between .SHG files and

.MRB files. MRBC and SHED do distingui sh between them. MRBC will takea .SHG
file asinput, but it will truncate an input .M RB file to oneimage. SHED too will trun-
catea.MRB filetooneimage.

27

28 — Windows Undocumented File Formats

Figure 3.1 .SHG file layout.

.SHG File Header

.SHG Image Header

.SHG Bitmap Header
or . SHGMetafileHeader

Bitmap/Metafile Data

Hotspot Header

Hotspot Records
L
L N

Macro Strings (Optional)
L
[

Pairs of Context IDs and
Context Strings

[BN NN]

2 o0

Section 1

Section 2

> Section 3

Section 4

Segmented Hypergraphic (.SHG) File Format — 29

Hotspots

As dtated earlier, the difference between.M RB and . SH Gfilesishotspots. Hotspots are
kept in the last section (section 4 and see Figure 3.2) of a . SHG file. They too are bro-
ken into four generd sections: hotspot header, hotspot records, macro strings, and
pairs of context IDs and context strings.

The HOTSPOTHEADER (Table 3.1) has three fields. The hhVersion field is the ver-
sion of hotspot records you are dealing with. The hhNumHS field tells you how many
hotspots are defined in this .SHG file. hhContextOffset has the offset to the ligt of
context strings and context 1Ds relative to the end of the array of HOTSPOTRECORDS
(see below).

Figure 3.2 Hotspot Attributes dialog box.

Atuibutes

—Binding

Context String: |a_context_string|

Altnbute:

Type:

¥Yizible

Hotspot Id: |Hotspot 1
r Bounding Box

Left: (63 Top: |56

Right: |196 Bottom:|152

Table 3.1 HOTSPOTHEADER record.

Field Name Data Type Comments

hhVersion BYTE Always 0x01

hhNumHS WORD Number of hotspots

hhContextOffset DWORD Offset to context strings and context 1Ds

30 — Windows Undocumented File Formats

The HOTSPOTHEADER is followed by an array of HOTSPOTRECORDs (Table 3.2), one
for each hotspot. Figure 3.2 shows the hotspot Attributes dialog box from SHED.
These values are reflected in the HOTSPOTRECORD.

Valid hrType values are:

» 0x0042 = visible popup

* 0x0043 = visiblejump

+ 0x00C8 = visible macro

* 0x04E6 = invisible popup
* Ox04E7 = invisblejump
* 0x04CC = invisible macro

hrBox contains the bounding rectangle of the hotspot. The values contain the |eft,
top, right, and bottom sides of the rectangle relative to the upper left corner of the
image in pixels.

The hrM acOffset field contains the offset to the macro string, if this hotspot is a
macro. If it is not a macro, this value can be ignored. As shown in Figure 3.1, the
list of macros immediately follows the array of HOTSPOTRECORDs. The offsets in
hrMacOffsets are relative to the start of the macro list, so the offset to the first
macro would be 0. Each macro is a null-terminated string, o if the first macro was
Next(), for example, this string would be null-terminated and the second macro, if
there was one, would start at an offset of 6.

Immediately following the macro list is an array of context IDs (called hotspot
IDs by SHED, Figure 3.2) and context strings. Because the context string is dso the
macro string for macros, macros are essentialy listed twice, once in the macro string
list following the HOTSPOTRECORDs and again in this list. Each context ID and context
string is anull-terminated string.

We've included the source code for SHGDUMP, an MS-DOS program that will read
an .SHGor .MRB file. This program is meant only to illustrate reading hotspots from
such files, and could be used as a starting point for a more elaborate program, such as
agraphics editor.

Table 3.2 HOTSPOTRECORD record.

Field Name Data Type Comments

hrType WORD Hotspot type

hrZero BYTE Always 0

hrBox RECT Bounding box of hotspot
hrMacOffset DWORD Offset to macro data

Segmented Hypergraphic (.SHG) File Format — 31

Where Do | Gofrom Here?

.SHG files are used quite a bit in WinHelp files. Utilities for working with .SHG files
could easily be created using the information in this chapter. For example, aprogram
to modify the tab order of the hotspotsin an .SHG file could be quickly built using the
source code in this chapter. Y ou could aso extract the bitmaps from an existing .SHG
file 0 you can modify them with your favorite graphics editor. Y ou could even write a
converter to cresteimage maps and graphics for your HTML documents, whichis one
gepofan.HL PtoHTML converter.

Listing 3.1 SHEDEDIT.H.

I**********i’****'k****i**********************************i**&***********

*

PROGRAM: SHEDEDIT.H

PURPOSE: Header file for SHGDUMP.C.

Chapter 3. Segmented Hypergraphic (.SHG) File Format,
from Undocumented Windows File Formats, published by R&D Books,

*

*

*

*

* Copyright 1997, Mike Wallace and Pete Davis
*

*

*

* an imprint of Miller Freeman, Inc.

*

*****************************"k******‘k'l:'k*******************************!

/* Structures for .SHG files */

/* SHG File Header */

typedef struct tagSHGFILEHEADER

{ .
char sfTypel2]: /* Must be '1p' or 0x706C */
WORD sfNumdbjects; /* Number of gbjects in file */
DWORD *sfObjectQff; /* Offsets to objects in file */

}
SHGFILEHEADER;
/* SHG Image Header */

typedef struct tagSHGIMAGEHEADER
{

BYTE silmageType: /* 0x06=.BMP 0x08=_WMF *f
BYTE siCompression; /* 0x00 = None, OxDLl = RLE, OxQ2= LZI77 */
BYTE siDPI; /* Dots Per Inch x 2 (0x10 for .wmf) */

}
SHGIMAGEHEADER;

32 — Windows Undocumented File Formats

Listing 3.1 (continued)

/* Defines for image type
fidefine IT_BMP Ox06
fidefine IT_WMF Ox08
fidefine IC_NONE Ox00
#define IC_RLE Ox01
fidefine IC_LZ77 0x02
fdefine IC_BOTH 0Ox03

/* SHG Bitmap Header */

{

BYTE sblsZero; /*
BYTE shbDPI; />
WORD sbTweHund; i*
WORD sbNumBits; /*
OWORD sbWidth; /*
OWORD sbHeight; I
DWORD sbNum{uads: i
WORD sbNumImp; /*
DWORD sbCmpSize; i
DWORD sbSizeHS; i

DWORD sbunkl;

DWORD sbSizelmage; /*
}
SHGBITMAPHEADER;
/* SHG Metafile Header */

{

DWORD smUnkl;

}
SHGMETAFTLEHEADER;

and compression type */

typedef struct tagSHGBITMAPHEADER

Always 0x00 */
Dots Per Inch x 2 */
0x0200 */
Number bits per pixel x 2 */
Width x 2 */
Height x 2 */f
Number RGB Quads x 2 */
Number of 'important’ RGB Qds */
Size of Compressed BMP x 2 */
Size of Hotspot Data area x 2 */

size ImageHdr+BmpHdr+ImageDat */

typedef struct tagSHGMETAFILEHEADER

WORD smXWidth; /* Width of image in metafile units
WORD smYHeight; /* Height of image in metafile units
DWORD smUncSize; /* Size of uncompressed metafile
DWORD smimpSize; /* Size of compressed metafile

DWORD smSizeHS; /* Size of hot spot data area x 2

DWORD smSizelmage; /* Size ImageHdr+wmfHdr+ImageDat

*/
*f
*/
*f
*f

Segmented Hypergraphic (.SHG) File Format — 33

Listing 3.1 (continued)

J* Documented in "Microsoft Windows 3.1 Programmer's
Referenece Yolume 4, Resources.” Hot in WINDOWS.H.
This is the header for a Placeable Metafile */

typedef struct tagMETAFILEHEAGER

{

QWORD key:

HANDLE hmf; /* Must be 0 */
RECT bbox;

WORD inch;

DWORD reserved; /* Must be O */
WORD checksum;

i
METAFILEHEADER;

/* Hot Spot Header */

typedef struct tagHOTSPOTHEADER

{
BYTE hhOne; /% Always Ox01 */
WORD hhNumHS; /* Number of Hot Spots */
DWORD hhContextDffset; /* (Offset to Cntxt Strings & IDs */

}
HOTSPOTHEADER:

/*_Hot Spot Record */
typedef struct tagHOTSPOTRECORD
{
WORD hrType; /* Hot Spot Type. See below */

BYTE hrZero: /* Always 0 */
WORD hrleft: /* Bounding box of Hot Spot */
WORD hrTop;

WORD hrRight;

WORD hrBottom;

DWORD hrMacOffset; /* Offset to macro for Hot Spot */
}
HOTSPOTRECORD;

fidefine HS_INVISIUMP O0x04E7
#idefine HS_INVISPOPUP OxDAES
fidefine HS_INVISMACRO 0x04CC
fidefine HS_VISJUMP 0xGOE3
fdefine HS_VISPOPUP QxODE?
fidefine HS_VISMACRD 0x00CS

34 — Windows Undocumented File Formats

Listing 3.2 SHGDUMPC.

/**
*

* PROGRAM: SHGDUMP.C

PURPOSE: Oump the hotspot information for a SHG file
Copyright 1997, Mike Wallace and Pete Davis

Chapter 3, Segmented Hypergraphic (.5Ha) File Format,

from Undecumented Windows File Formats, published by R&D Books,
an imprint of Miller Freeman, Inc.

% F % % o * F o ¥

TRk AR AR T ERHIRA TN ER IR R R AR TR T A AT A I T Thd T rhhhkdhkrhkhikdiirhiddisn f

#include <windows.h>
#include <stdlib.h>
#include <stdie.h>
#include <string.h>
#include "shededit.h®

/* Flags an incorrect value for known fields */
{define CheckUval(a,b) \
{if (a '=b) {
printf{"UINT: Not a O0x¥04%?\n\n Ox%04x\n".b, a); exit(l); } }

#define CheckBVal(a,b) \
{if (al=b) { \
printf{"BYTE: Not a 0xZ02X7\n\n 0xXD2x\n".b, a); exit(l}; } }

#define ReadString(f, s) { char *p = {(char *}(s); \
white {({(*p+ = fgetc(f)} I=0) ; *p =0; }

/* Reads in a BYTE. If it's odd, it reads in a WORD. Returns 1/Z2 value */
WORD Readwordval{FILE *SHGFile)
{

BYTE a, b:

b=0:

fread(Ba, sizeof(a), 1, SHGFile}:

if (a % 2) fread(&b, sizeof(b), 1, SHGFile):
return (WORD) {(WORD)b*256 + a) /2;

/* Reads in a WORD. If it's odd, it reads in a DWORD. Returns 1/2 value */
DWORD ReadDWordval {FELE *SHGFile)
{

WORD a. b:

b= 0:

fread(4a, sizeof(a), 1, SHGFile):

if {a % 2) fread(&b, sizeof(b), 1, SHGFiTe);
return {(DWORD) ((DWORD)}b*65536 + a) /2;

Segmented Hypergraphic (.SHG) File Format — 35

Listing 3.2 (continued)

/* Dumps HotSpot data from .SHG file */
void DumpHotSpots(FILE *SHGFile}
{

HOTSPOTHEADER HSHead;

HOTSPOTRECORD HSRec:

WORD i, NumMacs = Q:

char AString[128];

Tong fileloc;

fread(&HSHead, sizeof(HSHead), 1, SHGFile};

for(i = 1; i < HSHead.hhNumHS; i++)
{
fileLoc = ftell{SHGFile);
fread(&HSRec, sizeof{HSRec), 1, SHGFile}:
printf("Hot Spot X%u (offset %1d) - ", i, fileloc);
switch(HSRec.hrType)
{
case HS_INVISJUMP: printf("Invisible Jump\n"); break:
case HS_VISJUMP: printf("Visible Jump\n"}: break;
case HS_INVISPOPUP: printf("Invisible Popup\n”): break:
case HS_VISPOPUP: printf("Visible Popup\n"}; break:

case HS_INVISMACRO:
printf("Invisible Macro\n”):
NumMacs++;
break:

case HS_VISMACRO:
printf("Visible Macro\n®};
NumMacs++;
break;

default:
printf("Invalid Record Type\n"}:
return:
H
]

/* Print out the 1ist of macros */
for (i =1; i < NumMacs: i++)
{
ReadString(SHGFile, AString);
printf("Macro %u> %s\n", i, AString):
}

printf("\n"}:

/* Print out the 1ist of hotspot IDs */

for(i = 1; 1 <= HSHead.hhNumHS; 3i++)

{
ReadString(SHGFile, AString):
printf("Hotspot 1D #%u> Zs\n", i, AString):
ReadString(SHGFile, AString);
printf(“Context String-> %s\n\n", AString}.

36 — Windows Undocumented File Formats

Listing 3.2 (continued)

/* Reads in a bitmap header. Doubles the
size of certain fields when necessary. */

void ReadBMHeader{FILE *SHGFile, SHGBITMAPHEADER *SHGBM)

{
/* Read first three fields unmodified */
fread{&(SHGBM->sblsZero), 1, 1, SHGFile);
SHGBM->sbDPI = ReadWordVal (SHGFitle};
fread{&(SHGBM->sbTwoHund), 2, 1, SHGFile);
SHGBM->sbNumBits = ReadWordVal(SHGFiTe);
SHGBM->sbWidth = ReadDWordVal(SHGFile);
SHGBM->sbHeight = ReadDWordVal(SHGFile);
SHGBM->sbNumQuads = ReadDWordVal(SHGFile);
fread{&{SHGBM->sbNumImp), 2, 1, SHGFile);
SHGBM->sbCmpSize = ReadDWordYal (SHGFile);
SHGBM->sbSizeHS = ReadDWordV¥al(SHGFile);
fread(&{(SHGBM->sbunkl}, 4, L, SHGFile};
fread(&{SHGBM->sbSizelmage), 4, 1, SHGFile);

/* Dump bitmap data in .SHG filte */
void BitMapDump(FILE *SHGFile)
{
RGBQUAD AnRGBGQuad;
OWORD i=0L;
SHGBITMAPHEADER SHGEM:

ReadBMHeader {SHGFile, &SHGEM):

/* Read past bitmap quad info */
for{i = OL; i < SHGBM.sbNumQuads; i++)
(
fread(&AnRGBQuad, sizeof (AnRGBQuad), 1, SHGFile);
}

/* Jump past the image to the hotspot data */
fseek (SHGFile, SHGBM,sbCmpSize, SEEK_CUR});

if (SHGBM.shSizeHS)
DumpHotSpots(SHGFile);
elsea
printf("No Hot Spot data for this Bitmap.\n"):

Segmented Hypergraphic (.SHG) File Format — 37

Listing 3.2 (continued)

/* Reads in a metafile header. Doubles the
size of certain fields when necessary. */

void ReadWMHeader(FILE *SHGFile, SHGMETAFILEHEADER *SHGWM}

{
/* Read first two fields unmodified */
fread(&{SHGWM->smXWidth), 4, 1, SHGFile);
SHGWM->smUncSize = ReadDWordVal (SHGFile):
SHGWM->smCmpSize = ReadDWordVal(SHGFile};
SHGWM->smSizeHS = ReadDWordVal (SHGFile};
fread (&(SHGWM->smUnkl}, 4, 1, SHGFile):
SHGWM->smSizelmage = ReadDWordVal(SHGFile):

/* Dump the .WMF data from the .SHG filte */
void WMFDump(FILE *SHGFile, BOOL bCompUsed)

SHGMETAFILEHEADER SHGWM;
ReadWMHeader(SHGFile, ASHGWM):

/* Jump to the hot spot information (how far we jump */
/% is based on whether the image is compressed) */
if {bCompUsed)
fseek (SMGFile, SHGWM.smCmpSize, SEEK_CUR);
else
fseek (SHGFile, SHGWM.smUncSize, SEEK_CUR}):

if {SHGWM.smSizeHS)
DumpHotSpots(SHGFile);
else
printf("No Hot Spot Data for this metafile.\n"};

/* Dumps the .SHG file */
void SHGDump(FILE *SHGFile)
{
SHGFILEHEADER SHGHead;
SHGIMAGEHEADER SHGImage;
WORD 1;
BOOL bCompUsed;

/* Read in first 4 bytes */

fread (&SHGHead, 4, 1, SHGFile);

printf{"Number of images = %d\n", SHGHead.sfNumObjects);
SHGHead .sf0bjectOff=malloc{4*SHGHead.sfNumObjects);
fread(SHGHead.sfObjectOff, 4, SHGHead.sfNumObjects, SHGFile);

38 — Windows Undocumented File Formats

Listing 3.2 (continued)

/* Make sure it is an .SHG file */
if (strncmp{SHGHead.sfType, "1p", 2)}

(
printf{"Invalid .SHG ar .MRB file! \n\nType: %ZcZc\n", SHGHead.sfType[O],

SHGHead.sfType[1]);
exit(l);
}

for (i = 0; i < SHGHead.sfNumdbjects:; i++)}

[
/* Jump to Image Header and read it in */
fseek{SHGFile, SHGHead.sfObjectOff{i], SEEK_SET);
fread(&SHGImage, sizeof(SHGImage), 1, SHGFile);

if (SHGImage.silmageType == IT_BMP}
printf("\nFile is a BITMAP using “);
else
printf("\nFile is a METAFILE using ");

if (SHGImage.siCompression == [{_NONE)
printf{"no compression.\n"};

else if (SHGImage.siCompression == IC_RLE)
printf("RLE compression.\n™);

else if (SHGImage.siCompression = I1C_LZ77)
printf{"LZ77 compression.\n”"};

else if (SHGImage.siCompression == IC_BOTH)
printf{"RLE and LZ77 compression.\n");

else
printf{“unknown compression.\n");

bComplUsed = (SHGImage.siCompression == IC_NONE} ? FALSE : TRUE;

if (SHGImage.silmageType == IT_BMP}
BitMapbump(SHGFile);

else if (SHGImage.siImageType == IT_WMF)
WMFDump{SHGFile, bComplUsed):

else |
printf("Unknown sflmageType value.\n");
exit(l};

}

}

free(SHGHead. sfObjectOff}:
i

/* Show usage for SHGDUMP */
void Usage{void)
{
printf("Usage:\n");
printf(" SHGDUMP shgfile[.shg] \n");
printf(" shgfite - Name of .5HG file\n"):
}

Segmented Hypergraphic (.SHG) File Format — 39

Listing 3.2 (continued)

/* main routine */
int main(int argc, char *argv[1)
{

char inputFilel20]:

FILE *SHGFile:

/* Check if the program was invoked correctly */
if (argc < 2) {

Usage();

return EXIT_FAILURE;
}

/* Save the input filename */
strcpy{inputFile, argv[1]}:

/* If no extension in the input filename, assume .shg */
if (0 == strchr(inputFile, "."))}
strcat{inputFite, " SHG");

/* Check that the input file exists */
if ((SHGFile = fopen(inputFile, "rb")) = NULL}
{
printf{"%s does not exist!"™, inputFile):
return EXIT_FAILURE;
H

/* Dump the hotspot information */
SHGDump (SHGFile);

/* Close the fite and exit */
fclose({SHGFile);
return EXIT_SUCCESS;

Chapter 4

Windows Help File Format

Since this information was first published in Dr. Dobb's Journal, many mistakes have
been corrected and a lot of information has been added. In addition to many interna
HFS files that were intentionally omitted due to space considerations, the |TOPIC file
is described in much greater detail and is now complete.

Because of dl of these changes, some structures have been modified or renamed.
Although my articlesin Dr. Dobb's Journal were agood start, the information in this
book is much more accurate and up-to-date.

It should be clear that this description applies only to WinHelp 3.1 and WinHelp
40. WinHelp 30 was significantly different and is, for al intents and purposes, a
dead product. Although alot of the information here will apply to WinHelp 3.0, some
key aress differ, including the layout of the internal |[TOPIC file, which is where the
actual topic text and layout information is kept.

In this chapter, I'll lay out the different parts of the WinHelp .HL P file and then
provide adump program that lets you view internal WinHelp files.

Overview

WinHelp, on the surface, may not seem dl that complex, and unless you've actually
developed WinHelp .HL Pfiles, it wouldn't occur to you how incredibly complex they
can get. This format has been able to easily handle incredibly large and complex files
like the MSDN-CD, Cinemania, and so on which get as large as 300Mb-400Mb. Obvi-
ously Microsoft had some forethought in developing the format in the sense that they

41

42 — Windows Undocumented File Formats

knew it should be able to handle very large files. On the other hand, there are many
instances where the structures and fields in structures don't make alot of sense. After
talking with various people about the format (though no one a Microsoft who would
know), it appears that the WinHelp file format was probably developed by a single per-
son who, in the process of developing it, made ad hoc modifications to handle new fea-
tures. Because of this, WinHelp .HL P files can be very complex and messy. | would
hazard a guess that this is the main reason Microsoft never released the file format.

Thebasic structure of . HL Pfilesisthat of multiplefiles. A .HL Pfile has an internal
structure called the Help File System (HFS). The HFS is like a single directory in
DOS and contains, simply, alist of filenames and pointers to where those files are in
relation to the beginning of the help file. Each of these files, in one way or another
contributes something to the help file, such as keywords, context strings, font infor-
mation, and so on. All of these are then used together to render the help file on-screen.
It's not that al of these files are terribly complex, but that the combination of them all,
and using them dl together, is very complex. As | discuss the different parts of the
.HLPfileformat, I'll try to give insights into how Microsoft uses these files and ways
you can use them to enhance WinHelp.

WinHelp B-Trees

A WinHelp .HL Pfileis a combination of many files. These files are kept internally in
what is caled the Help File System (discussed later). The HFS and some of the data
files kept internally in WinHelp files are organized into b-trees. B-trees may be famil-
iar to those of you who didn't deep through your data structures classes in school.
Until | started working on the WinHelp file, | didn't really know much about b-trees, |
think | dept in class that day. To refresh my memory, | went back to some old data
structures books that use phrases like "branching factor", and they calculate disk
accesses with logarithms. Not exactly my cup of tea, so I'm going to try to explain
them in English.

A b-tree is a structure made up of nodes or pages. There are two types of nodes,
index nodes and leaf nodes (Figure 4.1). Index nodes contain alist of "keys' and links
to other nodes. All of the keys are in aphabetica order. In Figure 4.1, Level-0 and
Level-1 nodes are dl index nodes. Say you're looking for the word "Beast”. To find it,
search Node 1 firgt. You don't find it there, but "Beast" adphabetically comes before
"Example", our first key, so you know to go to Node 2 because there is alink pointer
to Node 2 before "Exampl€’. From Node 2 you see that, again, "Beast" comes before
"Blow Figh", so you go onto Node 5. Node 5 is alesf node. All nodes on the highest
level, in this case, Level 2, areleaf nodes. Leaf nodes contain the datayou're searching
for. From Node 5, smply perform alinear search to find the word you're looking for.

Windows Help File Format — 43

The b-tree format is very efficient in WinHelp. The reason is this: If aWinHelp file
has 3,000 internal files, it will need about 15 to 18, 1Kb nodes to store the list of files.
If you have to search thisfile in alinear search, you'd average about 7 node-sized disk
reads. On the other hand, if the file list is in a b-tree format, 3,000 files could be kept
in 15 to 18 nodes of a two-level b-tree, meaning you'd have to read exactly two
node-sized pages from disk before you had the node with your data. From there, a
smple linear search of the node would provide the filename quickly. Although b-trees
save little time for smdl files (100Kb or less), for larger files, it can provide atremen-
dous boost in performance. Microsoft was obviously looking ahead to the days of
300Mb help files.

These large numbers can come up in other places too, such as the Topic Titles
b-tree, KeyWord b-trees, and so on. These are dl kept in internal files and can grow
quitelargewithlarge . HL Pfiles.

Figure 4.1 B-tree structure made up ofindex nodes and

To Node4

leaf nodes.
| |
Root Level] Leve 1 [Leve 2
or Level 0
l Node 2 | Node 5
| |
| Node 5 l Answer
) Ask
Nodel | Blow Fish | Baby
Node 2 ! Node 6 I Battle
| I Beast
Example | Dandruff | Bicyde
Node 3 | Node7 | Blow Fish
| |
Test
| |
Node 4 | ToNode6 |
| |
| |
To Node 3 | ToNode 7 |
| |
I !
) '

44 — Windows Undocumented File Formats

Help File Header

Each .HLP file begins with a HELPHEADER (Table 4.1). This header simply has a magic
number that identifies this file as a WinHelp .HLP file, a pointer to the WHIFS (dis-
cussed below), and a FileSize field. There is dso a reserved field, which should
aways be st to -1. The FileSize is redly only useful as a sanity check and should
match the size of the file displayed by DOS. | suppose it could be useful if you wanted
to read the entire file into memory, but there's redlly no reason to do that.

The HFSLoc field contains the offset to the beginning of the Help File System
insidethe .HL Pfile.

The Help File System (HFS)

WinHelp files are based on a structure caled the HFS, or Help File System. In my
articlein Dr. Dobb's Journal, | referred to this as the WHIFS (WinHelp Internd File
System). It turns out that Microsoft has provided some documentation on this (not
much, though), so | thought it would be less confusing (and two characters shorter) to
adopt their naming convention.

The HFS is adirectory, much like a DOS directory, that contains alist of filenames
and offsets to those files within the help file. All of these "files' are actually inside the
WinHelp file. When the help compiler generates a .HL P file, it builds temporary files,
in the form of true DOS files, that contain various types of information. When it has
finished building dl of these temporary files, it then combines them into asingle .HL P
file and generates the HFS, which has pointers to these different interna files.

The help compiler also alows you to import "baggage” files into your WinHelp
file. This essentialy brings a DOS file into a WinHelp file and provides a pointer in
the HFS to this file. WinHelp exports severd functions for dealing with baggage files.
These functions can also be used to access other HFS files.

Table 41 HELPHEADERrecord.

Field Name Data Type Comments
MagicNumber DWORD 0x00035F3F

HFSOff long Offset to HFS
Reserved long -1

FileSize long Sizeof entire .HL Pfile

Windows Help File Format — 45

The following is a list of the internal files you are going to run into with a short
description of each one. Notice that most of the internal files generated by WinHelp
begin with a"[' (pipe) character. All filenames in the HFS are case sensitive.

[CONTEXT Contains a list of hash values, generated from context words, and offsets
into the [CTXOMAP file.

ICTXOMAP Lists all the topics from the [MAP] section of the Help Project File (.HPJ)
with aMap number (from the .HPJfile), and an offset to the actual topic data.

|[FONT Contains alist of fonts and font descriptors. These are used to display text in
the proper fonts within the topics.

|KWBTREE, |[KWDATA, |[KWMAP (as well as |AWBTREE and |AWDATA, discussed later)

These three files provide access to the keyword list and the topics associated with the
keywords. Using the Multikey option will get you another st of files. For example, using
the Multikey option with the letter "L" will add [LWBTREE, |LWDATA, and [LWMAP.

|Phrases Containsalist of phrases that WinHelp uses to provide extra compression
of topic text. This list may aso be compressed with LZ77 compression.

|Phrimageand |Phrindex These are used by Hall compression. As discussed later,
we were unable to decipher the formats used here.

|SYSTEM This contains various pieces of information about the help file, including
the date the file was generated, the version of the compiler, the type of compression,
etc. It aso contains alot of information that was listed in the Help Project File (.HPJ),
such as copyright notice, secondary window information, etc.

[TOPIC This is the biggest and most complex of al the interna files. This file con-
tains al of the actual text from the topics, including formatting information.

[TTLBTREE Contains a list of topic titles with their associated offsets into the
|TOPICfile.

|[bmx These are bitmap files referred to by the topics. "X" is a sequential whole num-
ber beginning a zero. If you have three bitmaps, they'd bereferred to as |bmO, |bm1,
and |bm2. Asasdde note, in version 3.0 help files, these filenames are the same except
the "' (pipe) character did not precede the name.

Baggage files Baggage files retain their case-sensitive filenames and extensions
exactly as they were specified in the .HPJ file (any path information is discarded). If

46 — Windows Undocumented File Formats

in the .HPJ you refer to a file as C:\MYPATH\FiLeNaMe.EXT, it will be stored in the

help file with the same case, leaving you with an internd file called FiLeNaMe.EXT.
The first 9 bytes of every file in a WinHelp file is the HFSFILEHEADER record

(Table 4.2). The HFS itsdlf is considered a file (although it doesn't lit itself in the
HFS directory), so even the HFS has an HFSFILEHEADER record. This record contains

three fields. The FilePlusHeader field is the size of the file plus the 9 bytes of the
header. The second field, FileSize, is the size of the file without the header. Why are
both values included? Beats me. The first is always 9 bytes larger than the second. |

suppose it was to alow for the possibility of having a different HFSFILEHEADER

record, although | haven't come across one yet.

Table 42 HFSFILEHEADER record.

Field Name Data Type | Comments

FilePlusHeader long Size of HFS file in bytes + 9-byte header
FileSize long Size of file without header

FileType char 1-byte file type

Table 4.3 HFSBTREEHEADER record.

Field Name Data Type Comment

Signature WORD Signature for header, dways 0x293B
Unknownl char Always 0x02

FileType char Same asin FILEHEADER record
PageSize int Size of the b-tree pages
SortOrder[16] char Describes sort order

FirstL eaf int First leaf page number

NSplits int Number of splits in b-tree

RootPage int Page number of root page

FirstFree int Firg free page

TotalPages int Total number of pagesiin tree
NLevels int Number of levelsin tree
TotalHFSEntries DWORD Total number of entries in HFS b-tree

Windows Help File Format — 47

The last field is FileType, which takes one of two values. FT_NORMAL (0x00),
which is any normal file, and FT_HFS (0x04), which is used in the HFSFILEHEADER
record for the HFS.

#define FT_NORMAL 0x00
#define FT_HFS 0x04

The first 9 bytes of the HFS, therefore, will be an HFSFILEHEADER record. The
FileSizeand FilePlusHeader fields will tell you how large the entire HFS is. The
FileType field should always be FT_HFS. This is the only time I'll really describe the
HFSFILEHEADER record. From now on, when | discuss the first record of afile, | will
mean the first record following the HFSFILEHEADER record. For example, if I'm talk-
ing about the |TTLBTREE file, | will say that the first record is the BTREEHEADER
record. It is assumed that the file header record has already been read.

Asmentioned earlier, the HFS is organized into a b-tree. So, thefirst record in the HFS
(following the HFSFILEHEADER record, of course), isthe BTREEHEADER record (Table 4.3).

The FileType byte is the same as the byte in the HFSFILEHEADER record, and they
should always match. (As you will see, this sort of redundant information pops up in
WinHelp quite often.)

The next field, PageSize, tells how large the individua pages of the b-tree are. For
the HFS, this always appears to be 1Kb for help files, but it's probably best to use this
field and be able to handle different-sized b-tree pages. In fact, as you'll seein Chap-
ter 5, Annotation and Bookmark files use a different page size. For those of you that
go on to write your own help compiler, | would suggest trying to come up with an
algorithm that optimizes the HFS b-tree page size, not only for speed, but for size.
This is one area where a few kilobytes of file space can be saved, especially with
smaller help files.

The PageSize field is followed by 17 characters that | call SortOrder here. This
isjust aguess, but it appears that different language versions of the help compiler pro-
duce different values for this field. Sometimes only part of the field is used. | can only
assume that it, somehow, describes the sorting order for different languages. | have
not been able to figure out how it is used.

The code in Listing 4.1 traverses the HFS b-tree to find an HFS filename. This
code is from HLPDUMP2.C, which comes on the companion diskette. Since
HLPDUMP2 isn't redly concerned with speed or efficiency, actual traversal of the
b-tree wasn't necessary. | felt it was important to show how it's actually done, how-
ever, so | added this function for that reason.

The first section, encompassed by the if (HFSHeader.TotalPages > 1), is
where you search the index pages and follow the keys down to the leaf page. The way
this works is simple. Read the first index page, or root page (provided in the b-tree
header record described later). Search through the list of keys on this page to find out
which page the next key is on. Continue this process until you're down to the leaf

48 — Windows Undocumented File Formats

Listing4.1 B-treetraversal.

/************t*****t*************************t***t*********************
*

* PROGRAM: HLPDUMPZ.C

*
* PURPOSE: Traverses the HFS b-tree to find an HFS filename.
Copyright 1997, Mike Wallace and Pete Davis

Chapter 4, Windows Help File Format, from Undocumented Windows
File Formats, published by R&D Books, an imprint of Miller Freeman, Inc.

R EEER

i*******************/

char FindFile(FILE *HelpFile, char* filename, Tong* offset)
{

HFSFILEHEADER HFSFileHeader;

BTREEHEADER HFSHeader:

BTREEINDEXHEADER* HFSEndexHeader;

BTREELEAFHEADER* HFSLeafHeader;

tong HFSStart;

int* pNextPage;
char* buffer:

char* currPtr;

int nkeys, nFiles;
char found = 0;

int currlevel = 1;

/* Go to the HFS and read the header. */
fseek(HelpFile, HelpHeader.HFSLoc, SEEK_SET);:
LoadHeader{HelpFile);

fread(&HFSHeader, sizeof(HFSHeader), 1, HelpFile};

/* Allocate space for read buffer */
buffer = malloc{HFSHeader.PageSize};

HFSIndexHeader = (BTREEINDEXHEADER*) buffer;
HFSStart = ftell(HelpFile);

/* Advance to root page */
fseek(HelpFile, (HFSHeader_RootPage * HFSHeader.PageSize) + HFSStart,
SEEK_SET):

/* If there's only one page, then it must be a leaf */
if (HFSHeader.TotalPages > 1)
{
/* Traverse b-tree Tooking for the key for the leaf page */
while (!found}
{
/* Read in the page */
fread(buffer, HFSHeader. PageSize, 1, HelpFile):
currPtr = buffer + sizeof (BTREEINDEXHEADER);
pextPage = (int *) currPtr;
currPtr += sizeof(int);

Windows Help File Format — 49

pages, and do a smple sequential search to find the string or value you're searching
for. (This code is found in the second half of the function, after the comment "Loop
through dl files on this page’.) If it's not found on this leaf page, it's not in the tree. If
it is found, then whatever data is associated with it will follow. For example, in the
leef pages of the HFS b-tree, each key is astring with an HFS filename. Each stringis
followed by an offset to where that file is located in the help file.

Although this code is specific to the HFS b-tree, similar code could be used to
traverse the KWBTREE, TTLBTREE, and other b-tree structuresin a .HLP file.

Listing 4.1 (continued)

/* Go through all keys in the page */
for (nKeys = 0; nKeys < HFSIndexHeader->NEntries: nKeys+)

/* If filename is Vess than key, this is our page. */
if (stremp(filename, currPtr} < 0)
{

break;

}

else

{
/* &dvance to the next pageff */
while (*currPtr)

currftr++;

currPir++;
pNextPage = {int *} currPtr;
currPtr += sizeof(int);

}

}

/* Advance to next page */
fseek{HelpFile,
(*pNextPage * HFSHeader.PageSize) + HFSStart, SEEK_SET):

/* If this is the last index page */
/* then pNextPage points to a *f
/* leaf page *f
if (currlevel == HFSHeader.nlLevels - 1}
{
found = 1;

currlevel++;
1
)

fread(buffer, HFSHeader.PageSize, 1, HelpFile);
HFSLeafHeader = (BTREELEAFHEADER*) buffer;
currPtr = buffer + sizeof{BTREELEAFHEADER);

50 — Windows Undocumented File Formats

A Note on Object-Oriented Programming

The C language is used for code in this book. We feel C is ill the best known lan-
guage and is better as a demonstration tool, at least a this point. We both normally
use C++ for our work and that's why | fed it's important to point out afew things for
those who might want to implement code in C++ for dealing with help files. One
place where C++, or any object-oriented language, would be redly helpful is dedling
with b-trees. The problem with coding for WinHelp b-treesin Cis that there's no easy
way to have asingle piece of code ded with the different datatypes held in Winhelp
b-trees. On the other hand, in C++, if you have ab-tree abstract base class, you could
share much of the functionality of traversing, or even building, a b-tree in one base
class. All functionality dependent on the individual files could be broken down into
the individual derived classes for those files.

Listing 4.1 (continued)

found = 0;

/* Loop through alt files in this page */
for (nFiles = 0; nFiles < HFSLeafHeader->NEntries; nFiles++)
{
if (strcmp(filename, currPtr))
{
/* Advance to the file offset */
while (*currPtr)
CurrPtri+;

/* Hove past the null and file offset */
/* to next file */
currPtr += 5;
}
else
{
/* Save the offset of the file */
while {*currPtr)
currPtr++;
currPtr+;

*offset = (long) *({long*) currPtr};
found = I;
break;
}
}

/* TRUE if file was found, FALSE if it wasn't */
return found;
H

Windows Help File Format — 51

Another place that C++ would come in very handy is supporting both the Win-
dows 3.1 and Windows 95 version of the help file. If certain things are handled differ-
ently, you can easily override that specific behavior much easier in C++ than in C.

HLPFileOrganization

Before we start getting into the nuts and bolts of . H L P files, we wanted to give a brief
overview of the organization of help files and how they work. The center point of al
help files is the |TOPIC file. This is where the text for the actual help topics is kept.
When WinHelp reads atopic, it must then refer to a least one other file, and possibly
others, to produce the text. When WinHelp reads data for a topic, it must first figure
out which font is being used. A reference to the font number is in the |TOPIC file.
From there WinHelp goes to the |FONT file to get the information on the font. If the
text is compressed, WinHelp must go to the | Phrases file to extract phrases to insert
into the topic text.

These arejust some of the interdependencies of WinHelp's internal files. When
developing software for WinHelp, you need to think about these things beforehand. If
you're planning on extracting topic text, for example, it's a good idea to keep the
entire |Phrases file in memory so you don't have to extract the text from the files
every time you locate a phrase replacement. Y ou'll dso want to keep the |FONT filein
memory, if you're using fonts, to keep disk activity to aminimum.

Other interdependencies include the |KWBTREE, |KWDATA, and |KWMAP files. All of
these files work together to perform one function — keyword lookup.

Getting ahandle on these interdependencies is crucia to understanding how Win-
Help works as awhole. As | discuss the different files, I'll discuss how they interact
with other files. In some places I'll point out how WinHelp performs tasks that aren't
obvious from a smple look a the file formats. Armed with this knowledge, you
should be able to do everything from writing your own WinHelp viewer to writing
your own WinHelp compiler.

WinHelp Compression

The help compiler (HC.EXE) for Windows 3.0 provided a method of compression
called "phrase replacement” compression, during which, while scanning through text
from the help file, the compiler put together alist of phrases. As it encountered dupli-
cates of these phrases, it built atable of the most common ones. In the last pass of the
compile, it then removed these phrases from the actual text and inserted a reference
number in its place. This reference number pointed to a phrase in the phrase table
which then could be inserted whenever the topic text was displayed.

52 — Windows Undocumented File Formats

This compression was activated by adding the command COMPRESSION=TRUE in
the [CONFIG] section of the Help Project File (.HPJ).

When Windows 3.1 came out, a new WinHelp and help compiler were released.
One of the improvements was an additional level of compression. This was activated
by either COMPRESSION = TRUE or COMPRESSION = HIGH (the new command COM-
PRESSION = MEDIUM replaced the old COMPRESSION = TRUE). This new level of com-
pression added an LZ77 compression agorithm (called Zeck compression), which is
identical to the compression used by COMPRESS.EXE (see Chapter 6), athough the
actual implementation of the algorithm is dightly different. This compresson was
implemented in two places— the |TOPIC file and the |Phrases file. The compression
of the |Phrases file starts after the PHRASEHDR (discussed later) and encompasses the
rest of the |Phrases file. For the |TOPIC file, the compression is done in increments
of 2Kb blocks. This is necessary to allow one to get to topics without having to
decompress every preceding topic. At the most, a preceding 2Kb would need to be
decompressed to get to the beginning of atopic.

Because I've dready discussed the LZ77 compression used by COMPRESS.EXE, |
will simply mention the areas in which the compression is different. The changes are
rather subtle and the code changes for the decompression are fairly moderate. Specif-
icaly, in the LZ77 implementation used by COMPRESS.EXE, compression codes and
uncompressed data are thought of as "terms'. For every 8 "terms’, a flag BYTE pre-
cedes those terms. Each bit in the flag BYTE tells you if the corresponding "term” is a
BYTE of uncompressed data or a2-BY TE compression code. In COMPRESS.EXE, a set hit
(or a 1) means that the term is uncompressed data, whereas a cleared bit (or a 0) indi-
cates a compression code. In WinHelp, this same format is used; however, the mean-
ings of sat bits and cleared hitsis reversed.

Table 4.4 SYSTEMHEADER record.

Field Name Data Type Comment

Magic BYTE 0x6C

Version BYTE 0x03

Revisionf BYTE OxOF, 0x15, 0x21

Always0 BYTE Always 0

Alwaysl WORD Always 0x0001

GenDate DWORD Time/date stamp help file created

Flags WORD See the discussion of Flags in the section
"|SYSTEM"

Windows Help File Format — 53

With the release of WinHelp 4.0, a further level of compression was added —
Hall Compression. Sadly, we have been unable to come up with the exact format of
the Hall compression. It seems to operate completely differently from the |Phrases
and LZ77 agorithms that we have managed to reverse engineer.

ISYSTEM

The |SYSTEM file is probably the single most important source of general information
within a HLP file. The |SYSTEM file contains a lot of information kept in the Help
Project file and if you want to decompile a .HL P file, this is where you get the infor-
mation for that file.

Following the HFSFGLEHEADER record (which is at the beginning of al HFS
files, remember?) is the SYSTEMHEADER record (Table 4.4). The SYSTEMHEADER record
contains the version of WinHelp needed to use the .HL P file (in arather vague num-
bering scheme), the date the file was generated, and a Flags WORD.

If Flags = 0x04, then the help file implements Zeck compression, which leads to
the question, how does one know which compression agorithm is used if it isn't
Zeck? Fairly simply. If a |Phrases file exists, then Phrase compression is used. If
|PhrImage and |Phrindex files exist, then Hall compression is used. And finaly, if
this flag is set to 0x04, then Zeck compression is used.

Following the SYSTEMHEADER records is a list of SYSTEMREC records (Table4.5).
These contain thejuicy information. The SYSTEMREC structure is very simple.

The RecordType field identifies the type of information in the SYSTEMREC record.
This can be amacro, copyright information, icon data, etc. The valid values are listed
in the following code fragment:

Table 45 SYSTEMREC record.

Field Name Data Type Comment

RecordType WORD Type of datain record (see the dis-
cussion of RecordType in the section
"|SYSTEM".)

DataSize WORD Size of Rdata

RData void * Record data

54 — Windows Undocumented File Formats

#define HPJ_TITLE
#define HPJ_COPYRIGHT
#define HPJ_CONTENTS
#define HPJ_MACRO

#define

HPJ_ICON

#define HPJ_SECWINDOW

#define

HPJ_CITATION

#define HPJ_CONTENTS_FILE

0x0001
0x0002
0x0003
0x0004
0x0005
0x0006
0x0008
0x000A

The DataSize field is the number of bytes to read into RData.

RData is defined as a void * because it can contain anything from the text of a

macro to the data of the icon associated with the help file.

HPJ_TITLE, HPJ_COPYRIGHT, HPJ_CONTENT, and HPJ_CITATION simply contain a
string (not null-terminated) for the TITLE=, COPYRIGHT=, CONTENT=, and CITATION=
lines of the .HPJ file. The only odd ball in the group is HPJ_COPYRIGHT, which seems
to appear in dl help file compiles, regardiess of whether or not a COPYRIGHT= lineis
in the .HPJ. In the case where there is no COPYRIGHT= line, the DataSize field is 1

and RData is simply a single null byte (0x00).

HPJ_MACRO is aso just text. It contains the text of each macro cdl listed in the
.HPJ. You'll noticethat the macros are kept in the same format asthey areinthe .HPJ,
meaning that if you use "RR" instead of RegisterRoutine, the HPJ_ MACRO record will

contain RR. These are then read and parsed at run time by WinHelp.

Table 4.6 SECWINDOW record.

Field Name Data Type Comment

Flag WORD Valid fields

Type[10] char Type of secondary window
Name[9] char Name of secondary window
Caption[15] char Caption for secondary window

X int Starting x-coor dinate

Y int Sarting y-coor dinate

Width int Width of secondary window
Height int Height of secondary window
Maximize WORD Maximize flag

SR_RGB RGBQUAD Scrolling region background color
NSR_RGB RGBQUAD Nonscrolling region background color

Windows Help File Format — 55

HPJ_ICON is the actual data of the icon for the help file (generated from an ICON=
statement in the .HPJ). This format is exactly the same as the standard ICON format.
You can find a description of this format in the SDK documentation.

HPJ_SECWINDOW is slightly more complicated than the others, because it contains a
SECWINDOW structure (Table 4.6).

The Flag WORD contains a flag that basically describes which fields of the
SECWINDOW record are valid. Because a secondary window definition in the .HPJ
includes many optiona fields, some of these may be invaid. The following values
describe the valid fields:

#define WSYSFLAG_TYPE 0x0001
#define WSYSFLAG_NAME 0x0002
#define WSYSFLAG_CAPTION 0x0004
#define WSYSFLAG_X 0x0008
#define WSYSFLAG_Y 0x0010
#define WSYSFLAG_WIDTH 0x0020
#define WSYSFLAG_HEIGHT 0x0040
#define WSYSFLAG_MAXIMIZE 0x0080
#define WSYSFLAG_SRRGB 0x0100
#define WSYSFLAG_NSRRGB 0x0200
#define WSYSFLAG_ONTOP 0x0400

The Type field contains the null-terminated word " Secondary”. Presumably this
was to alow for different classes of secondary windows, however, | have only seen
this one used.

The Name field contains the name of the window as it is referred to in jumps. For
example, mywindow>mytopic would show mytopic in the mywindow secondary win-
dow.

Caption contains the text of the window title bar.

X, Y, Width, and Height contain the location and dimensions of the window (very
cryptic, isn'tit?).

The Maximizefield is either a0 or 1 A 0x0000 indicates that the window is set to
the dimensions specified in X, Y, Width, and Height (or whatever defaults WinHelp
uses if these aren't specified). A 0x0001 tells WinHelp to maximize the secondary
window and to disregard the dimensions for initially showing the window. (If the user
hits the Restore button after WinHelp has displayed the window maximized, it will
return to specified dimensions.)

SR_RGB and NSR_RGB contain the default RGB values for the background of the
scrolling region and nonscrolling region, respectively.

56 — Windows Undocumented File Formats

|Phrases

The |Phrases file (remember, HFS filenames are case sengitive) is used as part of the
compression in WinHelp. When you use the COMPRESSION=HIGH or COMPRES-
SION=MEDIUM statement in your .HPJ, the help compiler generates a |Phrases file.
This file contains alist of the most common "phrases’ in a help file.

A phrase is actually any series of characters. For example, "Their help file" could
be aphrase, but so could ". Their he'. Then, in the topic text, instead of actually stor-
ing the text, a pointer to the phrase is given alowing WinHelp to use 2 bytes instead
of however many bytes it takes to store the phrase. This provides a significant space
savings in larger help files. Because help files tend to be topic specific, many words
and phrases tend to be reused. For example, in the help file for the solitaire game that
comes with Windows, the word "card” is used repeatedly. If you were to replace every
occurrence of "card" with a 2-byte code, you'd save 2 bytes for every occurrence.
Usually, though, the phrases are longer than four letters, so the space savings can be
tremendous.

There are two possble layouts of the |Phrases file, depending on the levd of
compression used. For COMPRESSION=MEDIUM, the PHRASEHDR record doesn't contain
the PhrasesSize field. For COMPRESSION=HIGH, the phrases file is compressed with
an LZ77 agorithm. The reason for this is that the |Phrases file can grow quite large
with long phrases and a large number of phrases (as many as 1,024). The actua
implementation of the LZ77 algorithm was discussed earlier in this chapter. The com-
pression begins immediately following the PHRASEHDR record and continues to the end
of the file.

The PhrasesSize field in the PHRASEHDR record contains the size of the |Phrases
file (minus the size of the PHRASEHDR record) after it has been decompressed. The
main purposeisthat it tells you how much space you'll need to alocate to hold al the
phrases after decompression.

Once loaded (or decompressed and loaded), the |Phrases file consists of two sec-
tions: Offsets and Phrases. The Offsets section is alist of offsets (of WORD data type) to
the beginning of phrases in the Phrases section. For example, if there are 10 phrases,
there will be 11 offsets, one for the beginning of each phrase and one for the end of
the last phrase. The first phrase will begin immediately after the offsets, that is, 22
bytes after the first offset. To find the length of the first phrase, subtract the first offset
(22) from the second offset, which points to the beginning of the second phrase.

IKWBTREE, |KWDATA, and |[KWMAP

As mentioned earlier, in ".HLP File Organization”, there are alot of interdependen-
cies in WinHelp. That is the case with these three files, and that is why they are
grouped into one topic. |KWBTREE is a smple b-tree of keywords with a pointer to a
list of topic offsets in |[KWDATA. This is necessary because a single keyword can be

Windows Help File Format — 57

associated with more than one topic. The |[KWMAP file is used to provide quick access
back into the |[KWBTREE file based on akeyword number.

In WinHelp 4.0, two other files were introduced: |[AWBTREE and [AWDATA. These
files mimic the |KWBTREE and |KWDATA files, except they work with the new A-type
keywords in WinHelp 4.0 instead of the regular keywords. This, however, is along the
same lines of the Multikey option in WinHelp. WinHelp has aways dlowed for key-
words based on different letters by adding the line MULTIKEY =x to the help project file,
where x is a letter from A to Z. In each of these cases, anew set of keyword files are
created. For example, with MULTIKEY=V, you will have the files |VWBTREE, and
[VWDATA. Also notice that there is no eguivalent of |[KWMAP. The reason is that |[KWMAP
appears to be used specificaly for the keyword search facility in WinHelp, which
does not work for non-"K" keyword ligts. This will become clearer later on as | dis-
cuss the |KWMAP file and how it helps the WinHelp search engine.

Asl said, the [KWBTREE file is another smple b-tree. It contains alist of KWBTREEREC
structures (Table 4.7) in the leaf pages. The Keyword, of course, is the key in the index
pages. | have defined Keyword as char[80] for smplicity. It is avariable-length string
that is null-terminated and should be read in that way, but it is limited to 80 characters.
The Count field contains the number of occurrences of the keyword in the |TOPIC file
and the number of topic offsets you'll find in the |[KWDATA file. KWDataOffset, obvi-
oudy, is the offset to the list of topic offsets in the [KWDATA file.

The |[KWDATA file is very smple. It has a list of topic offsets (DWORDs), which are
referenced from the |KWBTREE file. For example, if you traverse the |KWBTREE file for
the keyword "Flower", you could find six occurrences. The KWDataOffset field tells
you that the first offset is located in [KWBTREE at 24h. From there, you would go to
byte 24h in |KWDATA and the next six long data types would be the topic offsets for
the occurrences of the word "Flower". When WinHelp displays the keyword lists, it
provides a ligt of topic titles associated with the keywords. How does it pull that off?
Well, it's actually smple, but it's another example of the interdependencies of the
interna files. WinHelp reads through the keyword topic offsets and then goes to the
|TTLBTREE file (topic titles) and matches the keyword offsets with topic title offsets,
giving it the information it needs to display the topics with the keywords.

Table 4.7 KWBTREEREC record.

Field Name Data Type Comments

Keyword char[80] Keyword

count int No. of keyword occurrences
KWDataOffset long Offset into [KWDATA file

58 — Windows Undocumented File Formats

The |KWMAP file is used as a shortcut method for avoiding traversal of the |KWB-
TREE file. WinHelp probably uses this file for the following situation: You select the
Search button from WinHelp. WinHelp goes through the |[KWBTREE file and reads the
entire list of keywords. When you go through this list, you pick a keyword to retrieve
alist of associated topics. At this point, instead of retraversing the b-tree to find the
proper KWBTREEREC, WinHelp takes the index number of the keyword and then goes to
the |KWMAP file. The [KWMAP file has a long data type that gives the number of
KWMAPREC records (Table 4.8) in the file. This is immediately followed by a list of
KWMAPREC structures. The first field, FirstRec, contains the index number of the first
keyword on a given leaf page. This is followed by PageNum, which has the page num-
ber this keyword is located on. This alows WinHelp to find the proper b-tree leaf
page, just by knowing the number of the keyword.

ITTLBTREE

|TTLBTREE contains alist of the titles for all the topicsin a .HLP file dong with an off-
et to the topics the titles are associated with. As the name implies, thislistis kept in
the form of a b-tree. As with the |[KWBTREE file, this b-tree uses a 2Kb page size and
uses the same BTREENODEHEADER and BTREEINDEXHEADER records. The key used in the
index pages is the topic title itself.

The data on the leaf pages consists of a topic offset, followed by a null-terminated
string containing the topic title. If you look through a |TTLBTREE, you'll notice alot
of offsets without any actual titles. The reason for this is that not al topics necessarily
have atitle. When this is the case, there will be no titlein |TTLBTREE, but the offset to

the topic will appear.

IFONT

The |FONT file is where .HLP files keep al of their information about fonts used in the
topic text (big surprise!). .HL P files actually maintain very specific font information,
not just the name and point size. The reason is that when WinHelp encounters a font
that isn't available on the system, with very specific information, it can find a much
closer match than it could by name alone. This isimportant in maintaining the consis-
tency of viewed text.

Table 4.8 KWMAPREC record.

Field Name Data Type Comments
FirstRec long Index number of first keyword
PageNum int Page number of lesf with keyword

Windows Help File Format — 59

.HL P files keep two ligts of fonts. One is a simple list of font names followed by
the font descriptor table. The font descriptor table provides information about point
size (in half point increments), color in the scrolling region, color in the nonscrolling
region, font family, and attributes (such as bold, itdics, etc.).

The layout of the |FONT file is quite simple. It begins with the FONTHEADER
(Table 4.9).

The DescriptorsOffset has the distance to the beginning of the descriptor table
relative to the end of the FONTHEADER record. In between the FONTHEADER and the
descriptor list isthe list of font names. Thislist is smply fixed-length, null-terminated
font names. For WinHelp 3.1, font names are 20 characters, and in WinHelp 4.0, font
names are 32 characters (a quick check of the system record will, of course, tell you
which version you're working with). Because the font names are null-terminated, one
character must be the NULL, alowing 19 or 31 characters per font name.

The font list is immediately followed by an array of FONTDESCRIPTOR records
(Table 4.10), which should not be confused with LOGFONT structures, which are com-
pletely different (so there shouldn't be any confusion anyway, just making sure). The
Attributes fidd is the bitwise ORed sum of font attributes such as bold, italic, .
The HalfPointsfield is the Sze of the text in haf points. The FontFamily field tells
WinHelp the general variety of font. Thisis useful in determining close matches if the
exigting font is not available. FontName is an index into the font list that preceded the
font descriptors. This is followed by two RGBQUADs, one for the color of the font when
it is in the scrolling region and one for when the font is displayed in the nonscrolling
region. The idea behind this is to prevent repeating the same font descriptor simply
because the font is in the nonscrolling region.

Table 49 FONTHEADER record.

Field Name Data Type Comments

NumFonts WORD Number of fonts in font list
NumDescriptors WORD Number of font descriptors
DefDescriptor WORD Default font descriptor
DescriptorsOffset WORD Offset to descriptor list

60 — Windows Undocumented File Formats

/* Font Attribute Values */

#define FONT_NORM 0x00 /* Normal */
#define FONT_BOLD O>x<0O1 [/*Bold */
#define FONT_ITAL 0x02 /* ltalics */
#define FONT_UNDR 0x04 /* Underline */
#define FONT_STRK 0x08 /* Strike Through */
#define FONT_DBUN Ox10 /* Dbl Underline */
#define FONT_SMCP 0x20 /* Small Caps */

[*Font Family Values */
#define FAM_MODERN OxO1

#define FAM_ROMAN 0x02
#define FAM_SWISS 0x03
#define FAM_TECH 0x03
#define FAM_NIL 0x03
#define FAM_SCRIPT 0x04
#define FAM_DECOR 0x05

Font descriptors are created for every variation of afont in the help file. For exam-
ple, if you have 16-point Helvetica Bold in atitle and follow that with 12-point Hel-
veticain the text, you'd have two font descriptors. If you bold aword in the 12-point
Helvetica text, that would create a third font descriptor. If you itaicize a word, you
would then have afourth font descriptor, and so on. As you can seg, it's easy to accu-
mulate a lot of font descriptors.

Table4.10 FONTDESCRIPTORrecord.

Field Name Data Type Comments

Attributes BYTE Font attributes (See the discussion of font
descriptors in the section "|FONT".)

HalfPoints BYTE Point size x 2

FontFamily BYTE Font family (see the discussion of font
families in the section "|Font".)

FontName BYTE Font name (refers to font list no.)

Unknown BYTE Unknown but always seems to be 0

SRRGB RGBTRIPLE Scrolling region color

NSRRGB RGBTRIPLE Nonscrolling region color

Windows Help File Format — 61

ICTXOMAP

|CTXOMAP (Table 4.11) is the smplest of the WinHelp internal files. In the Help
Project (\HPJ) file, you can create alist, under the [M AP] section, of context strings
(created in the help file with a context string footnote) and assign unique identification
numbers to these topics. These IDs, in turn, can be used from the WinHelp() API call
to display atopic.

The first WORD of the |CTXOMAP file is a count of the number of CTXOMAPREC
records to follow. The CTXOMAPREC has two fields. The MaplID field is the map ID
assigned inthe .HPJ. The second field is the offset of the topic.

|CONTEXT

Like many of the other files, |CONTEXT is a b-tree structure. The leaf nodes consist of
alist of hash values and topic offsets. The key in the index nodes is the hash value.
The hash values are generated from a list of keywords and context strings. The pur-
pose appears to be to alow a user to type akeyword or context string and to quickly
locate that with a minimum amount of space. In other words, if the key was the actua
keyword or context string instead of a hash table, the space required for the text would
take up too much space. The hash values are calculated using a hashing algorithm
(Listing 4.2) that Ron Burk was able to reverse-engineer. Following is a sample pro-
gram that calculates a hash value, given a string. As with al hash functions, there is
no way to determine the string, given ahash value.

The actua datain the leaf pages of the [CONTEXT file is smply one hash value fol-
lowed by atopic offset. The hash value is a DWORD. Although it's not really important,
it is known that the hash values are treasted as signed long integers in WinHelp,
because they are sorted in that fashion.

ITOPIC

The |TOPIC file format is, by far, the most complex of al the HFS files. The [TOPIC
file, as its name would imply, contains al of the information for individual topics. It
contains paragraph formatting options, paragraph text, pointers to phrases in
|Phrases (if it exists), and so on.

Table 4.11 CTXOMAP record.

Field Name Data Type Comments
MaplD long Map ID from HPJ
TopicOffset long Offset to topicin |TOPIC file

62 — Windows Undocumented File Formats

To add one small layer of additional complexity, when the help file is compiled
with COMPRESS=HIGH, the |TOPIC file is compressed with the LZ77 compression.

The main complexity of the |TOPIC file involves two things. topic offsets and
multiple layers. I'll discuss the topic offsets later. The multiple layers can get alittle

Listing 4.2 WinHelp hashingfunction.

f***t********

*

* PROGRAM: MakeHash.C

*

* PURPOSE: Calculates and outputs the hash value of a string. These hash
* yalues are used in the [CONTEXT file of a WinHelp .HLP file.

*

* Copyright 1997, Mike Wallace and Pete Davis
*
* Chapter 4, Windows Help File Format, from Undocumented Windows

* File Formats, pub¥ished by R&D Books, an imprint of Miller Freeman, Inc.
*

**/

#include <stdio.h>
char MapTable[256];

/* Function prototypes */
void BuildMap(void);
Tong Hash (char *);

/**

Builds character set map for hash function.
**************t******************************/
void BuiltdMap(} {

char c;
int counter;

/* Map A-Z and a-z as 0-25. */
for (counter = 'A*, ¢ = 17; counter <= 'Z'; couniertt, c++)
MapTable[counter] = MapTable[counter + 32] = ¢;

for (counter = '1', ¢ = 1; counter <= "9'; counter+, c++)
MapTable[counter] = c;

MapTable['0'] = Ox(A;
MapTable['.'] = Ox0(;
MapTable['_'] = 0x0D;

Windows Help File Format — 63

confusing. The |TOPIC file has two layers, redly: the paragraph layer and the topic
layer. The topic layer is embedded within the paragraph layer. So when you first start
traversing the |TOPIC file, you do it one paragraph at atime. The paragraphs are con-
nected viaa doubly linked list. There are three different types of paragraph records:
topic headers, paragraph data, and table data. The topic headers, in turn, cregate the
topic layer. These topic headers create another doubly linked list of topic records. I'll
discussal of these later in greater depth.

Topic Offsets

Mogt of us are familiar with offsets. Offsets are used in many aspects of program-
ming. Because of the complex nature of WinHelp, direct offsets to a location in the
|TOPIC file are inadequate for many jobs. For example, when finding the exact loca
tion of a keyword, you can't smply say that it's 85 bytes into the |TOPIC file. Why
not? One reason is compression. if you're looking for the keyword "Carthage', what
doyou doifitis part of aphrase being used in phrase replacement?Y ou could replace
al the phrases and then use adirect offset, right? That works fine if your hdp fileis
tiny, but what if you have a2Mb |TOPIC file? To use a direct offset to a word near the
end of the file, you'd have to replace all the phrases of the previous information in the
|TOPIC filejust to get the correct offset.

Listing 4.2 (continued)

/**

Hash function by Ron Burk
***/
long Hash (char *p) {

long h = 0;

white(*p} {

char ¢ = MapTable[*p+]:
h=nh=*0x2B + c;
1
return h;
}

void main{int arac, char *argv[]) {

Tong HashVal;

BuildMap{);

HashVal = Hash(argv[1]};

printf(" Hash value = %1d\n", Hashval):
1

64 — Windows Undocumented File Formats

To avoid this problem, offsets in WinHelp are broken into two pieces. a block
number and a block offset. The entire |TOPIC file is then broken into 4Kb blocks.
Unfortunately, it's alittle more complex than this. Two types of these broken offsets
are used: one called Extended Offsets and the other Character Offsets.

Ext ended O fset

3 1

1 3 0
Fom e e e e e e e a e e e e +
Lo Block Number | Block Gfset |

Extended offsets are simply a block number and a block offset. Each offset is a
DWORD with the upper 18 hits used as the block number and the lower 14 hits as the
offset within that block. Extended offsets are used only within the |TOPIC file in
TOPICBLOCKHEADER and TOPICHEADER (discussed later) records.

Character Offset

3 1

1 4 0
Fo o e e e eioaoo-- +
Lo Block Number | Block Ofset |

Character offsets are, obvioudy, very smilar to extended offsets. The only differ-
ence is an additional bit for calculating the block offset and one less bit for calculating
the block number. Why the difference? Beats me. I've aways thought that either
would do, and | till think that's the case, but who knows what's going through the
heads a Microsoft.

Character offsets are used as references to the |TOPIC file by files externa to
|TOPIC. Offsetsin |TTLBTREE, |[KWDATA, |CONTEXT, and so on use character offsets.

If you're only using 4Kb blocks, you might wonder why the block offsets for
extended offsets (see the following paragraph) are 14 bits (0 to 16Kb) and character
offsets are 15 bits (0 to 32Kb). This dlows for the compression of the 4Kb blocks. If a
4Kb block is decompressed to 5 or 6Kb, then you need more than 12 bits (0 to 4Kb) to
find the offset within the block.

On top of the block number/block offset split of character offsets, there is one
additional difference between character offsets and extended offsets. Where extended
offsets always point to a direct offset within a block, character offsets point to a spe-

Windows Help File Format — 65

cific character within the text. What you essentially have to do, once you've loaded
the 4Kb block and decompressed it, if necessary, is to go through and count al of the
characters of displayable text to get the character offset. For example, a character off-
st with a block number of 1 and a block offset of 124 would point to the first block
and the 124th displayable character within the block. Fortunately, to make this essier,
each paragraph has a character count. So if the first paragraph has 110 characters, and
the second paragraph has 165 characters, your character offset would point to the 14th
character in the second paragraph.

On the other hand, if you had an extended offset with ablock number of 1 and a
block offset of 124, you would go directly to the 124th byte in the first 4Kb block
(after decompression and/or phrase replacement, if necessary).

Later in this chapter I'll show examples of how to find atopic using extended off-
Sets and character offsets.

Compression in |[TOPIC

Compression in the |TOPIC file is handled in two ways. The first is that common
phrases are removed and placed in the |Phrases file. In place of the actua phrases,
references are placed in the topic text to point to these phrases. After this, the actual
topic text is then compressed with the LZ77 (Zeck) agorithm. This happens in 4Kb
blocks as described in the following text.

TOPICBLOCKHEADER

As| sad earlier, the |TOPIC fileis broken into 4Kb blocks. Each of these blocks has a
TOPICBLOCKHEADERrecord (Table 4.12).

The LastParagraph field is an extended offset to the last PARAGRAPH record (see
the section "TOPICHEADER") of the previous 4Kb topic block. Topic datais an extended
offset to the first paragraph record of this block. LastTopicHeader is an extended off-
et to the beginning of the last TOPICHEADER record (see below) in this block.

Table 4.12 TOPICBLOCKHEADER record.

Field Name Data Type | Comments

LastParagraph long Last paragraph in this block
TopicData long First paragraph in this block
LastTopicHeader long Last topic in this block

66 — Windows Undocumented File Formats

PARAGRAPH

The name PARAGRAPH is abit misleading for this structure. It doesn't necessarily mean
an actua paragraph, though, in most cases, it is, and it seems like the most logica
name for the structure for that reason. PARAGRAPH records (Teble 4.13) are where the
actual "meat” of the |TOPIC file is stored. PARAGRAPH records contain the text of the
topic, hotspot markers, font markers, etc.

The key piece of information is the RecordType field. There are three different
record types: topic headers (0x02), text records (0x20), and table records (0x23). Then
the actual datais kept in the LinkDatal and LinkData2 fields. For topic headers, a
TOPICHEADER record (see later) is stored in the LinkData2 field. For text records, the
LinkDatal field contains formatting information (fonts, hotspot markers, etc.) for the
paragraph, and the LinkData2 field contains the text, phrase pointers, and so on, for

the paragraph.

TOPICHEADER (0x02 Paragraph Records)

TOPICHEADER records (Table 4.14) are kept in the LinkData2 field of PARAGRAPH
records with a RecordType of 0x02. TopicHeader records precede every topic.

Text Records (0x20 Paragraph Records)

PARAGRAPH records of type 0x20 contain actual text and other displayable information
for the topic. PARAGRAPH records are one of the more complex aspects of WinHelp,
because there are quite a few paragraph features, and if you plan on displaying help
text, you have to make use of al the formatting information.

Table 4.13 PARAGRAPH record.

Field Name Data Type Comments

BlockSize long Size of thisrecord + link data 1 & 2
Datal en2 long Length of LinkData2

PrevPara long Offset of previous paragraph
NextPara long Offset of next paragraph

DatalLenl long Length of LinkDatal + 11 bytes
RecordType BYTE Type of paragraph record
LinkDatal char* Data set one for this paragraph
LinkData2 char* Data set two for this paragraph

Windows Help File Format — 67

Two types of paragraph bresks are used by the help compiler: \par and \pard.
\pard creates anew PARAGRAPH record, whereas \par bresks are considered part of a
single paragraph. Thisisimportant for severa reasons, \pard is meant to create anew
paragraph and start new defaults for the paragraph. This alows you to bresk a para
graph with \par and keep dl the previous formatting information. To manage this, it's
al kept as part of the same PARAGRAPH record within WinHelp.

Understand that, in terms of the PARAGRAPH record, | don't necessarily mean a
physical paragraph of text, but text with like formatting information. Every time the
formatting information changes, a new PARAGRAPH record is created.

Type 0x20 PARAGRAPH records have two data links, DatalLinkl1 and Datalink2.
DataLink1 primarily contains paragraph formatting information and begins with a
FORMATHEADER record (Table 4.15). The FormatSize and DataSi ze fields are doubled
vaues. Simply read abyte. If the I'sb in these fields is s, then a second byteis read as
the high byte to create aWORD value. Then thistota isdivided by two. Thisislike many
fields in the .SHG/.MRB file formats. As with those, you can use the ReadWordVal()
functions provided in Chapter 2 to read these fields.

Table 4.14 TOPICHEADER record.

Field Name Data Type Comments

BlockSize long Size of block

BrowseBck TOPICOFFSET Previous topic in browse sequence

BrowseFor TOPICOFFSET Next topic in browse sequence

TopicNum DWORD Topic number

NonScroll TOPICOFFSET Start of nonscrolling region

Scroll TOPICOFFSET Start of scrolling region

NextTopic TOPICOFFSET Start of next topic

Table 4.15 FORMATHEADERrecord.

Field Name Data Type Comment

FormatSize BYTE or WORD 2x the no. of bytes of formatting
information

Flags BYTE Flag byte (unknown values)

DataSize BYTE or WORD 2x the no. of bytes of text

68 — Windows Undocumented File Formats

Another dlightly stupid thing about the FORMATHEADER is that this information is
duplicated in the PARAGRAPH record's DataLenl and Datal en2 fields. The only rea
difference is that the size given in FormatSize doesn't include the FORMATHEADER
record, whereasthe D atal en1 valuedoes.

Following the FORMATHEADER record is asingle NULL byte.

The next section is alist of paragraph attribute strings. The list is terminated by a
NULL (0x00) byte. It starts with a DWORD paragraph set-up attribute. The following val-
ues have the following meanings.

0x00020000 Space before
0x00040000 Space after
0x00080000 Line spacing before
0x00100000 Left margin indent
0x00200000 Right margin indent
0x00400000 First line indent
0x01000000 Paragraph border
0x02000000 Tab setting information
0x04000000 Rightjustify
0x08000000 Center justify
0x10000000 Don't wrap lines in paragraph

This value may be followed by a 3-byte paragraph border setting, if there is a bor-
der. The first byte is 0x01, indicating a border setting. This is followed by the border
description byte. The third byte is always 0x51. The following values are valid border
descriptions. They can be ORed together.

0x80 Dotted border
0x40 Double border
0x20 Thick border
0x10 Right border
0x08 Bottom border
0x04 L eft border
0x02 Top border
0x01 Boxed border

After the paragraph set-up attribute and, if it exigts, the border setting, a NULL byte
indicates the end of the paragraph set-up.

Thisis followed by a string of bytes that consist of format codes and parameters
for the format codes. The LinkDataz2 field contains the text for the paragraph. Within
the text will be NULL (0x00) bytes. For each null byte there is aformatting code in the
LinkDatal field. So obvioudly, these fields need to be handled together. Each time
you run into a NULL byte in the LinkData2 field, you need to pull in the appropriate
formatting code from the LinkDatal field.

Windows Help File Format — 69

Figure 4.2 shows a dump of a PARAGRAPH record. The area labeled PARAGRAPH
Rec is actually al of the fields except LinkDatal and LinkData2, whereas FORMAT-
HEADER Rec is part of the LinkDatal field.

Formatting codes are variable length. Basically, there's a 1-byte code, and depend-
ing on what that code is, a variable number of parameters follow it. For example, the
format code 0x80 specifies afont change. It is followed by one word that tells you the
font descriptor for the font. The following is alist of codes and their meanings. Below
each code is alist of parameters for that code.

0x80: Font change. Specifies that a new font starts here.
WORD. Font descriptor for font to insert

0x81: Newline. Caused by the \line RTF command.
No parameters

0x82: New paragraph. Caused by the \par RTF command, but not the \pard com-
mand, which starts a new PARAGRAPH record.
No parameters

0x83: Tab. Caused by the \tab RTF command.
No parameters

0x86: Bitmap current. Caused by the \bmc RTF command. For \bmc, \bml, and
\bmr, there is a second case of each. If you use \bmcwd, \bmlwd, or \bmrwd, the actual
bitmap data follows instead of a reference to the |bmxxx file. So in each case where
the second parameter is 0x92 instead of 0x08, the \bmxwd version of the function is
used, and the final word, the bitmap number, is not provided. Instead, the actual bit-
map or metafile is included. See the following section, "Bitmaps and Metafiles", for a
description of the format.

Figure 4.2 PARAGRAPH Record Dump

PARAGRAPH rec FORMATHEADER rec

0x00000100: 00 00 42 00 00 00 1C 00 QL D0 85 00 00 00 44 01 ..B........... D.
0x00000110: 00 00 26 00 00 00 20 1L 80 38 80 B0 D 1 6., .. 8......
0x00000120: 01 51 00 80 03 0082 £F

ould be in a box
oG

LinkDatal
LinkData2

70 — Windows Undocumented File Formats

BYTE 0x22

BYTE. 0x08 or 0x92 (\ bnewd)

BYTE. 0x80 or 0x83 (\ bnewd)

BYTE 0x02

WORD. 0x0000 or 0x0001 (\bmcwd)

WORD. Bitmap number (HSF file= |bmxxx, \bmc only)

0x87: Bitmap left. Caused by the \bml RTF command.
BYTE. 0x22
BYTE. 0x08 or 0x2 (\bmlwd)
BYTE. 0x80 or 083 (\bmlwd)
BYTE. 0x02
WORD. 0x0000 or 0x0001 (\bmlwd)
WORD. Bitmap number (HSF file = |omxxx, \bml only)

0x83: Bitmapright. Caused by the\bmr RTF command.
BYTE. 0x22
BYTE. 0x08 or 0x92 (\ brrwd)
BYTE. 0x80 or 0x83 (\ brmwd)
BYTE. 0x02
WORD. 0x0000 or 0x0001 (\bmrwd)
WORD. Bitmap number (HSF file = |bmxxx, \bmr only)

0x89: End of hotspot. Follows a hotspot code.

OxE2: Popup hotspot. Hotspot caused by \ul RTF command
DWORD. Context hash value for topic title (use [CONTEXT to find topic)

OxE3: Jump hotspot. Hotspot caused by \uldb RTF command
DWORD. Context hash value for topic title

OxFF: End attributes. Always the last byte of LinkDatal.
No parameters

Bitmaps and Metafiles

When you insert bitmaps and metafiles by reference (meaning you use the RTF bml,
bmc, or bmr command to insert the bitmap), the bitmap or metefile is stored within the
HFS under the name |bmX (where X is a sequentia number starting at 0 or 1).
Embedded bitmaps and metafiles are dso stored in separate HFS files and treated as if
they were inserted by reference with a\bmc command. In addition to this change, the
actual format of the bitmap or metéfile is changed. In fact, it's changed to a .SHG/.MRB
file. (See chapters 2 and 3 for information about the .M RB and .SHG file formats.)

Windows Help File Format — 71

Essentidly, it gets converted to a .M RB file with only one image. The help compiler
does afew things that MRBC and SHED never do, though.

When the help compiler converts the bitmap, it tests two different compression
methods on the data: RLE and LZ77 (the WinHelp version). Whichever is more effi-
cient, no compression, RLE, or LZ77, is the format the image uses. SHED and
MRBC never use LZ77 compression, only RLE. In addition, if the help compiler uses
LZ77 compression, it changes the first 2 bytes of the image to "IP" instead of the stan-
dard "lp" used by SHED and MRBC.

The images are given names like |bm0, [bm1, and so on, which causes one of the
biggest annoyances for reversing a help file back into RTF source: the original bitmap
filenames arelost.

Conclusion

That pretty much wraps up the WinHelp file format. To be sure, this is obviously not
the complete format. There are unknown fields and entirely unknown files, such asthe
[VIOLA file. Most embarrassing is the .GID file, which contains the HFS file called
|Pete. This was clearly left for me as ajoke, and unfortunately the joke is on me,
because | have yet to figure out the contents of the file. | believe that, to some degree,
a hit of a challenge was placed specificaly for me by giving these files names that
have no real meanings. (I know the head of WinHelp development. It's like agame to

him.)

Speaking of the .GID file, you may have noticed that it has gone totally unad-
dressed. Some of you may not even know what the . G1 D fileis. The .GI D fileisahid-
den file that WinHelp crestes every time you open anew .HL Pfile. Itis crested in the
same directory as the help file. Mogt of the information in this file is a binary version
of your .CNT file. Becausethereisaready atext version of the .CNT file (the .CNT file
itself, obviously), it has never seemed particularly important to get into the nuts and
bolts of the .GI D file. Among other things, it includes additiona information on the
last position of the . H L Pfile on the screen.

In addition, you'll notice a [KWBTREE and a |[KWMAP file in the .GID file. Whereas
the |[KWMAP file is the same format as [KWMAP in a help file, the format for the |KWBTREE
fileisdifferentina .GID filethan in ahelpfile. Inthe .CNT file, you can associate mul-
tiple help files with asingle help file. This |[KWBTREE file provides a place where |[KWB-
TREE files can be merged together from all the .HLP files. The difference between the
|[KWBTREE file of aregular help file and that of the .GID fileis in the additional informa
tion that tells which help file the keywords reference.

72 — Windows Undocumented File Formats

Where Do | Gofrom Here?

There's really so much you can do with this information, it's hard to know where to
begin. I'veseen . HL Pto.DOCconverters, . HL Pto.RT Fconverters, andagroupover a
Sun Microsystems even wrote aprogram to read . HL P files under UNIX. | believe the
most useful tool someone could creste with this information now, however, would be
a .HL Pto HTML program. This might not be too difficult if you have the source for
your .HL Pfile, but what if you want to take a . HL P file that you didn't create, and cre-
ate an HTML document from that?

Windows Help File Format — 73

Listing 4.3 WINHELP.H.

/***t***************'kt********************************i****i***********
*

PROGRAM: WINHELP.H

PURPOSE: Sample header file for an .HLP file.

Chapter 4, Windows Relp File Format, from Undocumented Windows

*

*

*

*

* Copyright 1997, Mike Wallace and Pete Davis

”*

*

* File Formats, pubtished by R&D Books, an imprint of Miller Freeman, Inc.
#

***********************‘**********t******i**t*******t******************/

/* Force byte aligned packing of data structures */
#ipragma pack(1l)

/*
The following are defined as based on the Windows 3.1
Programmer’s Reference.

*/

#Fifndef _INC_WINDOWS

typedef unsigned char BYTE;

typedef unsigned short WORD:

typedef unsigned leng DWORD:

typedef struct tagRGBTRIPLE
{
BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
] RGBTRIPLE:;
typedef DWORD COLORREF;
fidefine RGB(r,9,b) {{COLORREF) \
{C(BYTE){r}} ((WORD){g)<<8)) | {{(DWORD) (BYTE}(b))<<16}})

ffendif

/* Define the size of a Topic Block 4k - sizeof(TOPICLINK) */
fidefine TopicBlockSize 4096l

74 — Windows Undocumented File Formats

Listing 4.3 (continued)

/**t**

WinHelp Common Structures
**************k*********t****w******************************/

/* Help file Header record */
typedef struct tagHELPHEADER {

OWORD MagicNumber; /* 0x00035F3F */
Tong HFSLoc; /* Pointer to WHIFS header */
long Negativel;

long FiteSize; /* Size of entire .HLP File */

} HELPHEADER;
fdefine HF_MAGIC Ox00035F3F
/* File Header for WHIFS files */

typedef struct tagHFSFILEHEADER {
Tong FilePlusHeader; /* File size including this header */

Tong FileSvze; /* File size not including header */
char FileType; i* *f
J HFSFILEHEADER;
/* File types used by HFS */
/* FT_NORMAL is a regular file *f
/* FI_HFS i5 the HFS directory file *f

/* FT_UNK Found in MSDONCD4.MVB |TTLBTREE file */

fidefine FT_NORMAL 0xQ0
fidefine FT_HFS 0x04

/***

B-Tree related structures
*t*t**/

/* Keyword & TTL BTREE Headers - Slightly different than HFS B-tree Header.

Both HFS and Keyword B-Trees use same leaf and index node headers. */
typedef struct tagBTREEHEADER {

WORD Signature; /* 0x2938 */
char Hnknownl; /* 0x02 always */
char FileTypeFlag; /* Same as FILEHEADER FileTypeFlag field */
short PageSize; /* Size of tree pages ®f
char SortOrder[16]; /* Used for internationalization */
short Firstleaf; /* Probably First Leaf page!!! *f
short NSplits; /* § of page splits Btree has suffered */
short RootPage: /* page {fof root page w
short ReservedZ;

short TotalPages; /* total # of 2Kb pages in Btree */

short nlevels: /* § of levels in this Btree */

DWORD TotalBtreeEntries;
] BTREEHEADER;

Windows Help File Format — 75

Listing 4.3 (continued)

/* Modified B-Tree Leaf Header */
typedef struct tagBTREELEAFHEADER {

WORD Signature; /* Signature word *f

short NEntries: /* Number of entries */

short PreviousPage; /* Index of Previous Page */

short NextPage; /* Index of Next Page *f
) BTREELEAFHEADER;

/* Modified B-Tree Index node header */
typedef struct tagBTREEINDEXHEADER {
WORD Signature; /* Signature byte */
short NEntries; /* Number of entries in node */
} BTREEINDEXHEADER;

/**t**t***t***

| Phrases header
***************t*******t****t**i******i*********************/

/* Phrases header. In uncompressed, last field doesn™t exist */
typedef struct tagPHRASEHEADER {

short NumPhrases: /* Number of phrases in table */
WORD OneHundred: /* Qx0100 */
long PhrasesSize; /* Amount of space uncompressed phrases reguires. */

} PHRASEHEADER;

[ket dededodod gedokde drdededk d d e dede gk dedok ke dededkde dede ko dedededede kol deded ke kodok ke ko

| FONT File structures
**/

/* Header for |FONT file */
typedef struct tagFONTHEADER {

WORD NumFonts; /* Number of fonts in Font List */
WORD NumDescriptors; /* Number of font descriptors */
WORD DefDescriptor; {* Default font descriptor */

WORD DescriptorsOffset; /* Offset to descriptor Tist */
} FONTHEADER;

typedef struct tagFONTDESCRIPTOR {
BYTE

Attributes: /* Font Attributes See values below */
BYTE HalfPoints; /* PointSize * 2 */
BYTE FontFamily; /* Font Family. See values below *f
BYTE FontName; /* Number of font in Font List *f
BYTE Unknown; /* Unknown *f
RGBTRIPLE SRRGB; /* RGB values of foreground */
RGBTRIPLE NSRRGE; /* background RGB Values (77 Not sure */

) FONTDESCRIFPTOR;

76 — Windows Undocumented File Formats

Listing 4.3 (continued)

/* Font Attributes */

fidefine FONT_NORM 0x00 /* Normal *f
#define FONT_BQLD 0xQ1 £* Bold *f
#define FONT_ITAL OxD2 /* Ttalies */
fidefine FONT_UNDR 0x04 /* Underline */
fidefine FONT_STRK 0x08 /* Strike Through */
fidefine FONT_DBUN 0x10 /* Dbl Underline */
fidefine FONT_SMCP 0x20 /* Small Caps */

/* Font Families */

#define FAM_MODERN OxD2
fdefine FAM_ROMAN ox02
f#define FAM_SWISS 0x03
ffdefine FAM_TECH 0x03
ffdefine FAM_NIL 0x03
ffdefine FAM_SCRIPT 0x04
fidefine FAM_DECOR Ox05

/***
|SYSTEM file structures

*****************t**/

/* Header for |SYSTEM file */
typedef struct tagSYSTEMHEADER {

BYTE Magic; /% (0x6C *f
BYTE Yersion; /* Version # */
BYTE Revision; /* Revision code */
BYTE AlwaysQ; /* Unknown */
WORD Alwaysl; /* Always 0x0001 */
DWORD GenDate; /* Date/Time that the help file was generated
WORD Flags; /* Yalues seen: Ox0000 0x0004, 0x0D008, 0x000A

} SYSTEMHEADER;

/* Magic number of SYSTEM record */
fdefine SYS_MAGIC 0x6C

/* Flags for |SYSTEM header Flags field below */
ffdefine NO_COMPRESSION 0x0000
#define COMPRESSION_HIGH 0x0004

/* Help Compiler 3.1 System record. Multiple records possible */
typedef struct tagSYSTEMREC {

WORD RecordType; /* Type of Data in record *f
WORD DataSize; /* Size of RData *f
char *RData; /* Raw data (Icon, title, etc) */

} SYSTEMREC;

*/
*/

Windows Help File Format— 77

Listing 4.3 (continued)

/* Types for SYSTEMREC RecordType below */

#idefine HPJ_TITLE 0x0001 /* Title from HPJ file */
f#define HPJ_COPYRIGHT 0x0002 /* Copyright notice from .HPJ file */
#define HPJ_CONTENTS 0x0003 /* Contents=77? from .HPJ */
ffdefine MACRO_DATA 0x0004 /* SData = 4 nulls if no macros */
jidefine ECON_DATA 0x0005

#define HPJ_SECWINDOWS 0x0006 /* Secondary window info in .HPJ */
fidefine HPJ_CITATION 0x0008 /* CITATION= under [OPTIONS] */

/* Secondary Window Recerd following type 0x0006 System Record */

typedef struct tagSECWINDOW {

WORD Flags:; /* Flags (See Below) *f
BYTE Typel[101; /* Type of window *f
BYTE Name[9]; /* Window name */
BYTE Caption[51]; /* Caption for window */
WORD X: /* X coordinate to start at */
WORD Y /* Y coordinate to start at */
WQARD Width; /* Width to create for */
WORD Height; /* Height to create for */
WORD Maximize: /* Maximize flag =/

8YTE Rgh[3];
BYTE Unknownl;
BYTE RgbNsr[3]; /* RGB for non scrollable region */
BYTE Unknown2:
} SECWINDOW;

/** Yalues for Flags **/

fidefine WSYSFLAG_TYPE 0x000F /* Type is valid */
f#define WSYSFLAG_NAME 0x0002 /* Name is valid */
f#tdefine WSYSFLAG_CAPTION 0x0004 /* Ccaption is valid */
fidefine WSYSFLAG_X 0x0008 /* X is valid */
fidefine WSYSFLAG_Y Ox0010 /> ¥ is valid */
#define WSYSFLAG_WIDTH 0x0020 /* Width is valid */
fdefine WSYSFLAG_HEIGHT 0x0040 /* Height s valid */
ftdefine WSYSFLAG_MAXIMIZE 0xQ080 /* Maximize is valid */
fdefine WSYSFLAG_RGB 0x0100 /* Rgb is valid */
#define WSYSFLAG _RGBNSR 0x0200 /* RgbNsr is valid *f

fdefine WSYSFLAG_TOP 0x0400 /* On top was set in HPJ file */

78 — Windows Undocumented File Formats

Listing 4.3 (continued)

/********i***t*****t**

Keyword file structures
**/

/* Keyword Map Recoerd */
typedef struct tagkKWMAPREC {

Tong FirstRec; /* Index number of first keyword on leaf page *f
WORD PageNum; /* Page number that keywords are associated with */
} KWMAPREC; ’

/* Record for the [KWBTREE file */

typedef struct tagkWBTREEREC {
char Keyword(801; /* Yariable Length Keyword */f
short Count; /* Count of Keywords occurances */
long KWhataOffset; /* Offset into |KWDATA file */

} KWBTREEREC;

/******t***t**

{TOPIC file structures

************************************t******t**************t*f

/* |TOPIC Block header - Header for a block of topic data. IF
uncompressed, there’s only one of these at the beginning of the
file. If the help file is compressed, then these occur in 4k
increments. (e.g. 0x0000, 0x1000, 0x2000, Ox3000, Ox4000, etc,)} */

typedef long TOPICOFFSET;

typedef struct tagTOPICBLOCKHEADER {
long tastTopiclink; /* Dffset of last topic link in previous block */
long Topichata; /* Offset of topic data start *f
tong tastTopicHeader; /* Offset of last topic header in previous block */
} TOPICBLOCKHEADER;

/* Linked 17st record for |TOPIC file */

typedef struct tagPARAGRAPH {
long BlockSize; /* Size of this 1ink + Data *f
long DatalenZ; /* Length of LinkDataZ */
long PrevBlock; /* Relative to first byte of |TOPIC */
long NextBleck; /* Relative to first byte of [TOPIC */
long Datalenl; /* Len{LinkDatal + 1l(hdr size}) */

BYTE RecordType; /* See below */
BYTE *LinkDatal: /* Data associated with this Tink */
BYTE *LinkDataZ; /* Second set of data *J

} PARAGRAPH;

Windows Help File Format — 79

Listing 4.3 (continued)

/* Known record types for topic link */

{fdefine TL_TOPICHDR 0x02 /* Topic header information */
fidefine TL_DISPLAY Ox20 /* Displayable information */
ffdefine TL_TABLE 0x23 /* WinHelp Table *f

/* Topic header. Starts inside LinkData of a type Ox02 record */

typedef struct tagTOPICHEADER {
long BlockSize; /* Size of topic, including internal topic Yinks */
TOPICOFFSET BrowseBck; /* Topic offset for prev topic in Browse sequence */
TOPICOFFSET BrowseFor; /* Topic offset for next topic in Browse sequence */

DWORD Topicium: /* Topic Number{?} *f
long NonScroll; /* Start of Mon-Scroll Region *f
Tong Scrotl: /* Start of Scrolling Region of text. */
TOPICOFFSET NextTopic; /* Start of next Type 0x02 record */

} TOPICHEADER;

/***

Structures for other system files
**/

/* Header for |TOMAP file */
typedef struct tagTOMAPHEADER (
long IndexTopic: /* Index topic for help file */
long Reserved[15]);
short ToMaplen; /* Number of topic pointers */
Tong *TopicPtr; /* Pointer to all the topics */
} TOMAPHEADER;

/* Record from |CTXOMAP file. Created from the [MAP] section of .HPJ file */
typedef struct tagCTXOMAPREC

long MapID;
Tong TopicOffset;
} CTXOMAPREC;

/* Record from |CONTEXT file */
typedef struct tagCONTEXTREC {
Tong Hash¥alue; /* Hash value of a phrase *f
tong TopicOffset: /* Topic offset of the phrase */
} CONTEXTREC:

80 — Windows Undocumented File Formats

Listing 4.4 HLPDUMP2.H.

.[***t***********************‘k**
*

PROGRAM: HLPDUMPZ.H
PURPQOSE: Header file for HLPDUMPZ.C
Copyright 1997, Mike Wallace and Pete Davis

Chapter 4, Windows Help File Format, from Undocumented Windows
File Formats, published by R&D Books, an imprint of Miller Freeman, Inc.

A+ % % % o % * % d

**********‘k**t******t*******/

[Feededekdodk e e e e e s e e e e de ok e de ke de ke e ke e e de dodeode ok Aok ke ok A

Global Variables

*—******'k'k*'k**'k'k*'k'k*'ft'k*'k*‘)('k*******'k**************************.f

int ReadHFSFite;

int ForceHex;

/* While it appears HFS filenames don't exceed 8 */
/* it’s safer to assume that the 1imit is higher. */
char HFSFileToRead[255];

char SyslLoaded:;

HELPHEADER HelpHeader;
SYSTEMHEADER SysInfo:

int* Phroffsets:
char* Phrases;
int NumPhrases;

/***

Function Praototypes
*****************************ﬂ*********ﬂ*******i**k********'[

lang LoadHeader(FILE *);

long Decompress(FILE *, long, char *);
vaid HexDumpData(FILE *, long):
vaid HexDumpFile(FILE *, long};
void SystemDump{FILE *, Tong):
void FontDump(FILE *, long);
void ContextDump(FILE *, long};
void PrintPhrase(long);

void KWBTreeDump(FILE *, long):
void KWlataDump(FILE *, long);
void KWMapDump(FILE *, long};
void TTLDump(FILE *, lgng}:
void PhrasesDump{FILE *, long):
int Systead(FILE *, long};
void PhrasesLoad(FILE *, Tong):
char FindFile{FILE *, char*, Tong*):
void DumpFile(FILE *):

void ListFiles{FILE *};

void HelpDump(FILE *);

void Usage();

int main(int, char**);

Windows Help File Format — 81

Listing 4.5 HLPDUMP2.C.

/************i***-k** e dokk
*

PROGRAM: HLPOUMPZ.C
PURPOSE: A dump program that lets you view internal WinHelp files.
Copyright 1997, Mike Wallace and Pete Davis

Chapter 4, Windows Help File Format, from Undocumented Windows
File Formats, published by R&D Books, an imprint of Miller Freeman, Inc.

= o * ok % ¥ ok ¥ *

‘*******t******/

fidefine MEM_DEBUG 1

#include <stdio.h>
#include <stdiib.h>
fHinclude <time.h>
f#include <conio.h>
finclude <ctype.h>
f#Hinclude <limits.h>
fHinclude “winhelp.h”
#Hinclude “hlpdump2.h”

fidefine HLP_DEBUG 1

fidefine CHECK_SIGNATURE(is, shouldbe) \
{if (is != shouldbe) { \
printf(“Signature shoutd be %x, but is Zx\n"); \
return;) |}

/* Tells us if a particular bit is set or not */
fidefine BITSET(bitmap, bit) ({bitmap & (1 << bit)) 21 : 0)

/* Sum of set bits in a byte + 8 */
ffdefine BYTESTOREAD(bitmap) \

(BITSET(bitmap, 0) + BITSET(bitmap, 1) + \
BITSET(bitmap, 2} + BITSET(bitmap, 3) + \
BITSET(hitmap, 4} + BITSET(bitmap, 5) + \
BITSET(bitmap, 6) + BITSET(bitmap, 7} + 8)

82 — Windows Undocumented File Formats

Listing 4.5 (continued)

/***

Loads the HFSFileHeader

**/

long LoadHeader(FILE *HelpFile}

{
HFSFILEHEADER f1ileHeader:

fread(&fileHeader, sizeof(HFSFILEHEADER), 1, HelpFile);

#Hifdef HLP_DEBUG

printf(“DEBUG -> LoadHeader{}\n”);

printf(“File plus Header:
printf(“File size: ¥1d\n”

21d\n™, fileHeader.FilePlusHeader);

, fileHeader.FileSize);

printf(“File type: Ox%02x\n\n", fileHeader.FileType):;

ffendif

return fileHeader.FileSize;

H

/***

Decompresses the data using Microsoft’s LZ77

derivative (called Zeck Compression)
i*****j

tong Decompress(FILE *HelpFile, long CompSize, char *Buffer)

{

tong InBytes = O; i
Tong OutBytes = 0; I
BYTE BitMap, Set[16]; r*
long NumToRead; i*
long counter, Index; /*
Tong Length, Distance; /*
char *CurrPos; i*
char *CodePtr: /*

CurrPos = Buffer;

/* Go through until we're

How many bytes read in */
How many bytes written out */
Bitmap and bytes associated with it */
Number of bytes to read for next group *f

Going through next 8-16 codes or chars */

Code length and distance back in ‘window® */
Where we are at any given moment */
Pointer to back-up in LZ77 ‘window’ */

dane */

while {InBytes < CompSize) {

/* Get BitMap and data following it */
BitMap = (BYTE) fgetc(HelpFile};
NumToRead = BYTESTOREAD(BitMap};

Windows Help File Format — 83

Listing 4.5 (continued)

/* If we're trying to read more than we've
got left, only read what we have left. */
NumToRead = (CompSize - InBytes) < NumiogRead ? CompSize-InBytes : NumToRead;

fread(Set, 1, (int) NumToRead, HelpFile):
InBytes += NumToRead + 1;

/* Go through and decode data */
for (counter = @, Index = O; counter < 8: counter+}

/* It's a code, so decode it and copy the data */

if {BITSET(BitMap, counter}) {
Length = ({Set[Index+1] & OxF0) »> 4) + 3;
Distance = ({Set{Index+l] & OxQF) << 8) + Set[Index] + 1;
CodePtr = Currfos - Distance;

/* Copy data from “window® */
while (Length) {
*CurrPos++ = *CodePtr+;
QutBytLes++;
Length--;
)
Index += 2:
}
else {
*CurrPos++ = Set[Index+1:
OutBytes++;

}
}/* for X/
) /* while */
return QutBytes:
}

/ Fr Fe e e e e e dedede e Fede e de okt e de e e e de dedede dode e ok e ok ke de e de el sede de e e

Performs a Hex/ASCII dump of an HFS file.

t********i**":'k****t*'9('k**t****t****************i*f

void Hex[DumpData(FILE *HelpFile, long fileSize)
{

char Buffer[16]:

long counter;

tong BytesToPrint, Index:

printf{“0ffset Hex Yalues Asciivn™):
PPNt (- o e e A H

for (counter = 0; counter < fileSize: counter+=16) {
printf(“0x%081X: ", counter):
/* If this 1s the last 1ine. how many bytes are im it?7 */

BytesToPrint = ({(fileSize - counter) > 16) 7 16 : (fileSize - counter);
fread(Buffer, BytesToPrint, 1, HelpFile);

84 — Windows Undocumented File Formats

Listing 4.5 (continued)

/* Dump Hex */
for (Index=0; Index < BytesToPrint; Index++)
printf("%02X% “, (BYTE)} Buffer(Index]);

/* If last line, fill in blanks */
for {Index=0; Index < 16-BytesToPrint; Index++}
printf(* ");

/* Dump AsCii */
for (Index=0; Index ¢ BytesToPrint: Index++)
putchar(isprint(Buffer[Index]) ? Buffer[Index] : *.’);

putchar(’\n’});
H

free{Buffer};
H

Pl i s L b e b Lt b L L L b e b L b e E

Performs a Hex/ASCII dump of an HFS file,

**‘f

void HexDumpFile{FILE *HelpFile, long FileStart)
{ long fileSize;

fseek{HelpFile, FileStart, SEEK_SET);

fileSize = LoadHeader{HelpFile);

printf{“File Size: Ox¥081X\n\n", fileSize):

HexDumpData(HelpFite, fileSize);
1

j*****t******t**t*****t********t********************

Dumps the |SYSTEM info

'!:*********H***Q*H*********************************'{

void SystemDump(FILE *HelpFile, Tong FileStart)
{

char HelpFileTitle[33];

SYSTEMREC SystemRec;

Tong Currentlocation;

struct tm *TimeRec:

SECWINDOW *SWin; /* Secondary Window record */
Tong fileSize;

SYSTEMHEADER SysHeader;
fseek{HelpFile, FileStart, SEEK_SET);
fileSize = LoadHeader{HelpFile);

fread{&SysHeader, sizeof(SysHeader), 1, HelpFile}:
printf{*|SYSTEM Dumpiminin™);

Windows Help File Format — 85

Listing 4.5 (continued)

/* Figure out Version and Revision */
if {SysHeader.Revision == Ox15) printf(*HC.EXE 3.10 Help Compiler used\n”};
else if {SysHeader.Revision =~ 0x21) printf{"HCW.EXE. 4.00 or MVC.EXE\n");

printf{“\nV¥ersion: Zd\nRevision: 3d\n"”, SysHeader .Version, SysHeader.Revision):
printf(“Flag: Ox%04X - “ SysHeader Flags):

/* Determine compression, if any. */

if (SysHeader.Ftags =— NO_COMPRESSION) printf(“No compression\n”};

else 1f (SysHeader.Flags & COMPRESSION_HIGH) printf(“High Compressionin™};
else printf(“Unknown Compression: 0x%02x\n”, SysHeader.Flags):

TimeRec=localtime(&4SysHeader GenDate};
printf(“Help File Generated: %s”, asctime{TimeRec)):

J* If 3.0 get title */

CurrentlLocation=12;

if (SysHeader. Revision == (QxOF) {
fgets(HelpFileTitle, 33, HelpFile);
printf(“Help File Title: %s\n”, HelpFileTitle);

)

/* Else, get 3.1 System records */
else {
while (Currentlocation < fileSize) ¢

/* Read in system record and SystemRec data */
fread(&SystemRec, 4, 1, HelpFile};
SystemRec.RData = malloc{SystemRec.DataSize);
if (SystemRec.RData == NULL)
{
printf(“Allocation of SystemRec.RData failed.”):
return;
}
fread{SystemRec.Rlata, SystemRec.DataSize, 1. HelpFile);
Currentlocation=CurrentLocation+d+SystemRec.DataSize;

switch(SystemRec.RecordType}
{
case 0x0001: printf{“Help File Title: %Zs\n™, SystemRec.RDatai:
break;

case 0x0002: printf(“Copyright Notice: %s\n”, SystemRec.RData);
break;

case Ox0003: printf(“Contents ID: 0x%04Xn™, {long) *SystemRec.RData);
break;

86 — Windows Undocumented File Formats

Listing 4.5 (continued)

case 0x0004: printf(“Macro Data: %s\n”,SystemRec.RPata}:
break:

case 0x0005: printf(“Icon in System record\n”);
break;

case 0x0006: printf(*\nSecondary window:\n");
SWin = (SECNINDOW *)SystemRec.RData;
printf(“Flag: %d\n™, SWin->Flags);
if (SWin->Flags & WSYSFLAG_TYPE)
printf{“Type: %s\n”, SWin->Type);
if (SWin->Flags & WSYSFLAG_NAME)
printf{“Name: ¥s\n”, SWin->Name);
if (SWin->Fiags & WSYSFLAG_CAPTION}
printf{“Caption: %s\n”, SWin->Caption);
if (SWin->Flags & WSYSFLAG_X)
printf(“X: %d\n”, SWin->X);:
if (SWin->Flags & WSYSFLAG_Y)
printf(*Y: %d\n", SWin->Y):
if (SWin->Flags & WSYSFLAG_WIDTH)}
printf(“Kidth: %d\n™, SWin-»>Width);
it (SWin->Flags & WSYSFLAG_HEIGHT)
printf{“Height: %d\n", SWin->Height):
if (SWin->Flags & WSYSFLAG_MAXIMIZE)
printf(“Maximize Flag: %d\n", SWin->Maximize);
if (SWin->Flags & WSYSFLAG_RGB)
printf{“RGB Foreground Colors Set\n");
if (SWin->Flags & WSYSFLAG_RGBNSR)
printf(“RGB For Non-Scrollable Region Setin™):
if {SWin->Flags & WSYSFLAG_TOP)
printf{“Secondary Window is always On Top\n“):
break:

case Ox0008: printf(“Citation: ¥s\n”, SystemRec.Rbata);

break;
case 0x000A: printf(“\nfontents File: %s\n\n", SystemRec.RData);
break;
default: printf{*\nUnknown record type: Ox%04X\n".SystemRec.RecordType);

{* Back-up and hex-dump the data */
fseek(HelpFile, ftell(HelpFile) - SystemRec.DataSize, SEEK_SET):
HexDumpData{HelpFile, SystemRec.DataSize);

} /* switch */

free(SystemRec.RData):
} /* while */

b /* else */
¥ /> SysDump */

Windows Help File Format — 87

Listing 4.5 (continued)

/****k***-**‘**‘**Hi‘l"ir**‘*t*‘!rt*‘Jr**t‘!**‘l**l’**********t**

Dumps the |FONT file

**********‘*******************t*****t*****t**********"f

void FontBump(FILE *HelpFile, long FileStart)

FOMTHEADER FantHdr;
FONTDESCRIPTOR FontDlesc:

char AFont[32];

Tong FontStart, Currloc;
Tong fileSize;

long counter;

Tong Namelen:

/* Go to the FONT file and get the headers */
fseek(HelpFile, FileStart, SEEK_SET);
fileSize = LoadHeader(HelpFile);

fread(&FontHdr, sizeof(FontHdr), 1, HelpFile};

printf(“]FONTS\n\n Number Fonts: %d\n”,FontHdr.NumFonts):
printf(“Font # - Font Name\n"):

/* Font pames are 20 chars priaor to Winhelp 4.0 */
/* In WinHelp 4.0, they are 32 characters. */
if {SysInfo.Revision = Dx15}
(

Namelen = 20;
)
else

HameLen = 32;

/* Keep track of start of fonts */
FontStart = ftell(HelpFile)};
for {counter = (; counter < {long) FontHdr.Numfonts; counter++)
{
fread{AFont, NameLen, 1, HelpFile);
printf(* %3d - %¥s\n”, counter, AFont};
)

/* Go to Font Descriptors. Don't actually need this, because we're
there, but wanted to show how to get there using the offset, *f
fseek(HelpFile, FontStart + (long)(FontHdr.Descriptorsdffset} - sizeof(FontHdr),
SEEK_SET);
printf(“\nNum Font Descriptors: Zd\n", FontHdr.NumDescriptors);
printf(“Default Descriptor: Xd\n\n", FontHdr.DefDescriptor);
printf(“Attributes: r=ncne b=bold i=ital u=undr s=strkout™}
printf(* d=dblundr C=smallcapsin\n”™);
printf(“Font Name PointSize Family™)
printf(* FG RGB BG RGB Attrin”}:

88 — Windows Undocumented File Formats

Listing 4.5 (continued)

L 1 A G AN

far (counter = 0; counter < (long} FontHdr.NumDescriptors; counter+) {
fread{&kFontDesc, sizeof(FontDesc), 1, HelpFile}:
Currloc = ftell(HelpFile):
fseek(HelpFile, FontStart + (NamelLen * FontDesc.FontName), SEEK_SET);
fread{AFont, NamelLen, 1, HelpFile}:
fseek{HelpFile, Currioc, SEEK _SET);

/* write out info on Font descriptor */
printf("%-32s %417 “ AFont, (float)(FontDesc.HalfPoints / 2));
switch (FontDesc.FontFamily)
case FAM_MODERN: printf{“Modern”}:
break:

case FAM_ROMAN: printf(“Roman ");
break;

case FAM _SWISS: printf("Swiss “);
break;

case FAM_SCRIPT: printf(“Script”);

break:

case FAM_DECOR: printf{“Decor “};
break;

default: printf(“0X%02X “, FontDesc.FontFamily);
break;

} #* Switch */
printf{* 0X2081X *“,RGB(FontDesc.SRRGB.rgbRed,
FontDesc.SRRGE. rgbGreen,
FontDesc.SRRGB. rgbBluel) ;
printf(“0X2081X “ RGR(FontDesc.NSRREB. rgbRed,
FontDesc.NSRRGB. rgbGreen,
FontDesc.NSRRGB. rgbBtue)) ;

if (FontDesc.Attributes = 0) putchar{‘n’):

if (FontDesc.Attributes & FONT_BOLD) putchar(‘b’);
if (FontDesc.Attributes & FONT_ITAL) putchar(‘i’};
if (FontDesc.Attributes & FONT_UNDR) putchar(’u’};
if (FontDesc.Attributes & FONT_STRK) putchar(’s’
if (FontDesc.Attributes & FONT_DBUN) putchar('d’
if (FontDesc.Attributes & FONT_SMCP) putchar(‘C');

printf{“\n"};

}
}
}
)
)
)

{fifdef HLP_DEBUG
printf(“Unknown = %d\n~, FontDesc.Unknown);
fendif
t
H

Windows Help File Format — 89

Listing 4.5 (continued)

/*********************‘k******i**ﬂ***********#******

Dumps the |CONTEXT file

R***************k*'lt***********************—**********'f

void ContextOump(FILE *HelpFite, long FileStart)
{

long count;
Tong Currifage, FirstPageloc;
long TopicOffset, HashValue:

BTREEHEADER BTreeHdr;
BTREELEAFHEADER CurrNade;

/* Go to the TTLBTREE file and get the headers */
fseek(HelpFile, FileStart, SEEK_SET);
LoadHeader{HelpFite);

fread(&BTreeHdr, sizeof(BTreeHdr), 1, HelpFile):

/* Save the current Tocation */
FirstPageloc = ftell{HelpFile):

fseek{HelpFite, FirstPageloc+(BTreeHdr.RootPage * BTreeHdr.PageSize), SEEK_SET):

printf(“# Context Hash Values in JCONTEXT Zlu\n\n”, BTreeHdr.TotalBtreeEniries):
CurrPage = BTreeHdr.Firstleaf;

do
t
fseek{HelpFile. FirstPagetoc+{CurrPage * BTreeldr.PageSize), SEEK _SETY:

fread(&CurrNode, 8, 1, HelpFile);
for{count = 1; count <= CurrNode.NEntries: count++)

fread(&HashValue, sizeof{Hash¥alue), 1, HelpFile}:
fread(&TopicOf¥set, sizeof(TopicOffset), 1, HelpFile);
printf(“Topic Offset:0x3081X Hash Value: OxZ081X\n", TopicOffset, Hash¥alue):
)
CurrfPage = Currlode.NextPage;
) while(CurrPage != -1);
}

f Fhkkddkdiokkhkihkdkhhhkhhhkiikkhkihktrihirrdhhibirdrikhik

Prints & Phrase from the Phrase table.
-k******t****‘ir'k****************t*********t*****/

void PrintPhrase(long PhraseNum)

{
short *Offsets;
char *p;

p = Phrases+0ffsets[PhraseNum];
while (p < Phrases + Qffsets{PhraseNum + 11)
putchar(*pt+};

90 — Windows Undocumented File Formats

Listing 4.5 (continued)

FRrkxkkhkkhhhd Ak khdkkkhkddhthhkr kbt khkkrkhhikhk

Dumps the Keyword B-Tree

sk drk Ak ok ok o kdr kA kA kAR ok kR A Ak kAR A Ak xk ik hdk |

¥oid KWBTreeDump{FILE *HelpFile, tang FileStart)

char Keyword(8G], c;

long count, Index:

Tong CurrPage, FirstPageloc;
long Keyworddffset ;

Tong KeywordCount ;

BTREEHEADER BTreeHdr:
BTREELEAFHEADER CurrNode:

/* (o to the KWBTREE file and get the headers */
fseek{HelpFile, FileStart, SEEK_SET):
LoadHeader{HelpFile);

fread(&BTreeHdr, sizeof(BTreeHdr). 1, HelpFile);

/* Save the current location */
FirstPageloc = ftell(HelpFile);

fseek{HelpFile, FirstPageLoc+(BTreeHdr.RootPage * BTreeHdr.PageSize), SEEK_SET);

printf(“# Keywords - %Tu\n\n”, BTreeHdr.TotalBtreeEntries):
CurrPage = BTreeHdr.Firstleaf;

do
{
fseek(HelpFile, FirstPageloc+(CurrPage * BTreeHdr.PageSize), SEEK_SET):
fread(&CurrNode, &, 1, HeipFile):
{or(cnunt = 1; count <= CurrNode.NEntries; count+)
Index = 0;
while{c = (char) fgetc(HelpFilel}}
Keyword[Index++] = c;

Keyword[Index] = 0;
fread(dKeywordCount, sizeof(KeywordCount}, 1, HelpFile);
fread{&KeywordQffset, sizeof(KeywordQffset), 1, HelpFile):

printf("0ffset: Ox¥081X Count: %d Keyword: %sin™,
KeywordOffset,
KeywordCount,
Keyword}:

}
CurrPage = CurrNode.NextPage:
} while(CurrPage 1= -1);

Windows Help File Format — 91

Listing 4.5 (continued)

/***
Dumps the Keyword Data file

ki dkdkhhdkkhkkhokkdkd ki hikikdhhdhrdhhkeikrriris f

void KWlataDump{FILE *HelpFile, long FileStart}
{

long fileSize;

tong nlndex;

tong Offset;

/* Go to the KWDATA file and get the headers */
fseek(HelpFile, FileStart, SEEK_SET};
fileSize = LoadHeader(HelpFile):

printf{“Dumping Keyword Data File\ln\n™);
/* Go through all keyword offsets (fileSize / 4) */
for (nindex = 0; nlndex < (fileSize / sizeof(0ffset)); nlndex++)

fread(40ffset, sizeof(Offset}, 1, HelpFile):
printf{“Index: ¥d 0Offset: 0x2081X\n", nlndex, Offset}:
}
H

Flodkkkhkkrdkhhhikihkkhhhhhkdhhiikkhiihkiiikhhikiikkiid

ODumps the Keyword Map file

**/

void KWMapDump(FILE *HelpFile, long FileStart}
{

Tong fileSize;
long nindex;
WORD nkikMaps;

KWMAPREC kwMap:

/* Go to the KWMAP file and get the headers */
fseek{HelpFile, FileStart, SEEK_SET};

fileSize = LoadHeader(HelpFile);
printf(“Dumping Keyword Map\n\n™};
fread(&nkkMaps, sizeof{nKWMaps), 1, HelpFile);

/* Go through all keyword offsets (fileSize / 4) */
for (nIndex = 0; nIndex < (int) nKWMaps; nlndex++)

{
fread(dkwMap, sizeof(KWMAPREC}, 1, HelpFile):
printf(“Index;: %d First Keyword OxZ081X Leaf Page#: F05uln™,
nindex, kwMap.firstRec, kwMap.PageMum};

92 — Windows Undocumented File Formats

Listing 4.5 (continued)

P bt R e L e e b b L E b E L

Dumps the Topic Titles B-Tree

Fed sk dokded dkodd ok deodeok dededode dodeokok kodeok o ok kR dek ek ek ek deordek

void TTLDump(FILE *HelpFile, Tong FileStart)

{

}

char Title[80], c;
long count, Index;
long CurrPage, FirstPageloc, TopicOffset:

BTREEHEADER BTreehdr;
BTREELEAFHEADER CurrKode:

/* Go to the TTLBTREE file and get the headers */
fseek(HelpFile, FiteStart, SEEK_SET);
LoadHeader(HelpFile);

fread(4BTreeddr, sizeof(BTreeHdr), 1, HelpFile};

/* Save the current location */
FirstPagetoc = ftell(HelpFile};

fseek(HelpFile, FirstPageloc+{BTreeHdr.RootPage * BTreeHdr.PageSize},
SEEK_SET);

printf{“# Titles in |TTLBTREE Z1u\n\n”,BTreeHdr.TotalBtreeEntries);
CurrPage = BTreeHdr, FirstlLeaf;

do

{

fseek{HelpFile, FirstPageloc+(CurrPage * BTreeHdr.PageSize), SEEK_SET);
fread(&CurrNode, 8, 1, HelpFile);
for{count = 1. count <= CurrNode.NEntries; count+t}
{

fread{&TopicOffset, sizeof(TopicOffset), 1, HelpFile);

Index = 0;

while{c = {char) fgetc(HelpFile)}

Titie[Index++] = ¢;

TitlelIndex] = O;

printf(“Topic 0ffset:0x3081X Title: %s\n”, TopicOffset, Title):
}
CurrPage = Curriode.NextPage;

} while(CurrPage != -1);

Windows Help File Format — 93

Listing 4.5 (continued)

/*******"**'k**

Dumps the |Phrases file

**j

void PhrasesDump(FILE *HelpFile, long FileStart)

{
long nOuterIndex, nlnnerlndex;
WORD start, len;

PhrasesLoad(HelpFile, FileStart);

printf{“Phrase# Phrase\n™);
for (nQuterIndex = 0; nOuterlndex < NumPhrases; nOuterlIndex++)
{

start = (WORD) PhrOffsets[nfuterindex] ;

Ten = PhrOffsets[nOuterIndex + 1] - start;

printf{“ %¥5d “, nQuterindex + 1};
for (nlnnerIndex = 0; nlnnerIndex < {int) len; nlnnerlndex++}
{

printf{“%c”, (Phrases[start + nlnnerindex]));
}
printf{“\n”);

l'k***t****'k**t****t*********************************

Loads the {SYSTEM info

ek hdoktekedokob ke ddekkk ddkdk ko k ke dkk ke dkdded dokok ke kkdodokkk

int Sysload(FILE *HelpFile, long FileStart)

{
fseek(HelpFile, FileStart, SEEK_SET);

LoadHeader(HelpFile);
fread{&SysInfo, sizeof(SYSTEMHEADER), 1, HelpFile);

#ifdef HLP_DEBUG
printf(“DEBUG -> Sysload()\n")
printf(“Magic: 0xZ02x\n”, SyslInfo.Magic);
printf(“Yersion: 0xZ02x\n", SysInfo.Version);
printf{“Revision: 0x¥02x\n”, SysInfo._Revision);
printf{“Flags: Ox304x\n\n”, SysInfo.Flags):
fendif

if {SysInfo.Magic != SYS_MAGIC)
{

return 0;
}

return 1;

94 — Windows Undocumented File Formats

Listing 4.5 (continued)

/*****k*****i****t**********************************

l.oads the compression phrases
******t********i*********************************t**/

void PhrasesLoad(FILE *HelpFite, long FileStart)
{

PHRASEHEADER phraseHeader;

tong FiteSize;

tong DeCompSize;

fseek{HelpFile, FileStart, SEEK_SET);
FileSize = LoadHeader(HelpFile};

fread{&phraseleader, sizeof(phraseHeader}, 1, HelpFile);
if (SysInfo.Flags != NO_COMPRESSIGN)

if ((PhrOffsets = malloc(phraseHeader . PhrasesSize +
(phraseHeader .NumPhrases + 1} * 2 + 10)) ~— NULL)
{
printf(“Unable to allocate space for Phrases.\n"}:

return;
)

/* Assign Phrases to where the comrpessed phrases are */
Phrases = {char*) PhrOffsets + fread(PhrOffsets,
2

pﬁraseHeader.NumPhrases +1,
HelpFile);

DeCompSize = Decompress{HelpFile, FileSize - (sizeof(phraseHeader) +
2 * (phraseHeader NumPhrases + 1)}, Phrases);
if (DeCompSize != (long) phraseHeader.PhrasesSize)

printf(*Warning, Phrases did not decompress to the proper size.\n"};
}

)
else

if ({(PhrOffsets = malloc{phraseHeader.PhrasesSize +
{phraseHeader .NumPhrases + 13 * 2 + 10)) = NULL}
{
printf(“Unrable to allocate space for Phrases.\n"});
return;

}
/* Back up four bytes if phrases aren’t compressed *l
/* because PhrasesSize field doesn't exist.
fseek(HelpFile, -4, SEEK_CUR);
fread(PhrOffsets, FileSize - 4, 1, HelpFile);

}

/* Reset Phrases to be equal to PhrOffsets */

Phrases = {char *) PhrOffsets;

NumPhrases = phraseHeader. NumPhrases;

Windows Help File Format — 95

Listing 4.5 (continued)

/*******************************t*i********t********

Finds an HFS File by traversing the HFS b-tree
Note: This is the only place I actually traverse
the b-tree instead of cycling through the Teaf
pages. I put this in specifically to show how to
traverse the b-tree, since speed isn’t a real

concern for HelpDump.
************************t*t*****t*******t**t****t***’

char FindFile{FILE *HelpFile, char* filename, long* offset)
{

BTREEHEADER HF SHeader;
BTREEINDEXHEADER* HFSIndexHeader:
BTREELEAFHEADER* HFSLeafHeader:

Tong HFSStart;
short* pNextPage;
char* buffer;

char* currPtr;

long nkeys, nFiles:
char found = 0
Tong currlevel = 1;

/* Go to the HFS and read the header, */
fseek{HelpFile, HelpHeader.HFSLoc, SEEK_SET):
LoadHeader(HelpFile);

fread{&HFSHeader, sizeof(HFSHeader), 1, HelpFile);

/* Allocate space for read buffer */

buffer = malloc(HFSHeader.PageSize);

if (buffer = NULL)

{
printf{“Unabte to allocate space for buffer.\n”):
return found;

)
HFSIndexHeader = (BTREEINDEXHEADER*) buffer:
HFSStart = ftel1(HelpFile);

/* Advance to root page */
fseek{HelpFile, {HFSHeader.RootPage * HFSHeader.PageSize) + HF3Start, SEEK_SET):

/* If there's only one page, then it must be a Jeaf */
if {HFSHeader.TotalPages > 1}
{

/* Traverse b-tree looking for the key for the leaf page */
while (!found)
{

/* Read in the page */

fread(buffer, HFSHeader.PageSize, 1, HelpFile);

currPtr = buffer + sizeof(BTREEINDEXHEADER);

pNextPage = (int *) currPtr;

currPtr += sizeof(int);

96 — Windows Undocumented File Formats

Listing 4.5 (continued)

/* Go through all keys in the page */
for (nkeys = 0: nKeys < HFSIndexHeader->NEntries: nKeys++)
{

/* If filename is less than key, this is our page, */
If (strcmp(fitename. currPtr} < 0)

break;

else

{
/* Advance to the next page# */
while (*currPtr)

currPtr+;

currPtr+;
pNextPage = (int *) currPtr;

} currPtr += sizeof(int);

}

/* Advance to next page */

fseek(HelpFile,
(*pNexitPage * HFSHeader.PageSize) + HFSStart,
SEEK_SETJ;

/* If this is the last index page */
/* then pNextPage points to a *f
/* leaf page *f
if {currlevel = HFSHeader.nlLevels - 1)

{
found = 1:

currLevel+;
}
}

fread(buffer, HFSHeader.PageSize, 1, HelpFilte);
HFSLeafHeader = (BTREELEAFHEADER*} buffer:
currPtr = buffer + sizeof (BTREELEAFHEADER);

Found = 0;

/* Loop through all files in this page */
for {nFiles = 0; nFiles < HFSLeafHeader->NEntries: nFiles++)

if (stremp(filename, currPtr))
{

/* Advance to the file offset */
while (*currPtr)
currPirt+;

/* Move past the null and file offset */
/* to next file
currPtr += 5;

Windows Help File Format — 97

Listing 4.5 (continued)

else

{
/* Save the offset of the file */
while (*currPtr)
currPtri+;
currPtr+;

*offset = (Yong) *((long*} currPtir);
found = 1;
break;
}
F

/* TRUE if file was found, FALSE if it wasn't */
return found;

J***********************‘****************************

DumpFile
*****************************k***i******—k***********f

void DumpFile(FILE *HelpFile)
[

long fileOffset:
char fileName[255];

/* For many files we need to know information about the system, */
/* 50 we'll load the system data info here if i#t's available */
SysLoaded = 0;

strcpy(fileName, “[SYSTEM"):

if (FindFile(HelpFile, fileMame, &fileQffset)}}

Sysloaded = (char) SysLoad(HelpFile, fiteODffset);

/* If it"s not a version 3 help file then we can't handle it. *f
if (Sysinfo.Version != Dx(03}

printf(“Warning: Not a version 3 help file. Version is %d.\n", SysInfo.Version);
/* If it’s version 3, but not revision Ox15 or Ox21, we also can’t handle it */
if {Sysinfo.Revision |= 0x15 &% SyslInfo.Revision != 0x21)

printf(“Revision not 0xi5 or 0x21. Revision is 0x¥02x.\n", SysInfo.Revision);
/* If we're reading the ;TOP!C file, then we need to */
/* pre-1oad the phrases from the éPhrases file */
if (lstremp(HFSFileToRead, “fTOPIC™) |] tstrcmp(HFSFileToRead, “TOPIC™))
{

strepy(fileName, “[Phrases™);

if (FindFile(HelpFile, fileMame, &fiteOffset))

{
Phrasesicad(HelpFile, file(ffset);

98 — Windows Undocumented File Formats

Listing 4.5 (continued)

strepy{fileName, HESFileToRead);

if (IFindFile{Helpfile, fileName, &file0ffset))

(
/* Append a “|" character to the beginning */
/* of the filename and try to find the file */
strepy(fileName, “{");
strcat{fileName, HFSFileToRead):
if (IFindFile(HelpFile, fileName. &fileQffset))

/* File not found */
printf(*Error: Unable to find HFS file Zs or ¥s\n", HFSFileToRead, fileName):;
return;

1
if (fForceHex)

{

if (Istromp{fileName, "lSYSTEH“))
SystemDump(HelpFile, fileQffset);

else if (!stremp{fileName, “|TTLBTREE™))
TTLDump(HelpFile, fileOffset);

else if (!stremp{fiteName, “|CONTEXT™))
ContextDump(HelpFile, FfileQffset):

else if (!strcmp(fiieName, “|FONT"})
FontDump(HelpFile, filelffset};

else if (!strcmp(fileName, “]XKWBTREE™})
KWBTreeDump(HelpFile, file(ffset);

alse if (Istrcmp(fileName, “JAWBTREE™))
KWBTreeDump(HelpFile, fileUffset);

else if (Istrcmp(fileName, “#KHDATA"})
KWDataDump({HelpFite, fileDffset):

else if {!strcmp(fileName, "LAHDATA"])
KWDataDump(HelpFile, file0Qffset);

else if (lstrcmp(fileName, “LKNHAP”))
KWMapDump(HelpFile, fileOffset);

else if (!strcmp{fileName, “|Phrases”))
ilPhrasesDump(He1pFi1e, fileUffset);

else
HexDumpFile(HelpFile, fileGffset):

else
{
HexDumpFile(HelpFile, fiteDffset);
)

}‘***H**i’***i******—******************************H*

List out all the HFS files in a .HLP file

AkekdkrikRkhddd ke dkdok ket dekdk bk ddrkdok kdokdokkodediekeok ko dekokkok f

void ListFites(FILE *HelpFile)
{

BTREEHEADER HFSHeader;
BTREELEAFHEADER* HFSLeafHeader:
Tong HFSStart:

char* buffer;

char* currPir:

long nlndex, nFiles;

Tong* offset:

Windows Help File Format — 99

Listing 4.5 (continued)

/* Go to the HFS and read the header. */
fseek{HelpFile, HelpHeader.HFSLoc, SEEK _SET);
LoadHeader(HelpFile);

fread{3HFSHeader, sizeof(HFSHeader), 1, HelpFile):

CHECK_SIGNATURE{HFSHeader.Signature, 0x293B);

#ifdef HLP_DEBUG
printf{“DEBUG -> ListFiles()\n™};
printf{“B-Tree Page Size ¥d\n”, HFSHeader.PageSize);
printf{“B-Tree First Leaf zd\n HFSHeader . FirstLeaf);
printf{“8-Tree Num. Levels %d\n", HFSHeader .nLevels);
printf{“B-Tree Total Pages %d\n", HFSHeader.TotalPages);
s pg;gtf(“B-Tree Total # Entries ¥1d\n™, HFSHeader.TotalBtreeEntries):
en
/* Start of the HFS b-tree pages */
HFSStart = ftell(HelpFile);

/* Go to the first leaf page of the HFS */
fseek{HelpFile, HFSHeader.FirstLeaf * HFSHeader.PageSize, SEEK_CUR);

/* Allocate space for read buffer and read first page */
buffer = malloc{HFSHeader.PageSize);
if (buffer = NULL)

printf(“Unable to allccate space for buffer.\n"};
return;

}
HFSLeafHeader = (BTREELEAFHEADER*) buffer;

printf(*\nHFS Filename Offset\n™};
priptf{*---------ormmn e ")

/* Loop through all HFS Teaf pages */
for {nIndex = 0; nIndex < HFSHeader.TotalPages: nIndex++)

fread(buffer, HFSHeader.PageSize, 1, HelpFile);
currPtr = buffer + sizeof (BTREELEAFHEADER) ;

/* Loop through all files in this page */
{or (nFiles = §; nFiles < HFSLeafHeader->NEntries; nFiles++)

/* Print filename */
printf(“X-30s™, currPtr);

/* Advance to next filename */
while (*currPtr)

currPtrd+;
currPtr++;

offset = (long*} currftr;
/* print offset to file */
printf(“0x2081X\n", *offset):

/* Mave past the file offset to next file */
currPtr += 4;

100 — Windows Undocumented File Formats

Listing 4.5 (continued)

l*****************************i***********k***i**i**
Check to make sure it's a help file. Then
either dump the HFS directory or dump an HFS
file.

Frkdk gk gk Aok kA Rk d ek ko X A R koA A Aok ok R R ARk ko

void HelpDump(FILE *HelpFile}
{

fread(&HelpHeader, sizeof{HelpHeader), 1, HelpFile):
Zf (HelpHeader.MagicNumber != HF_MAGIC)

printf(“Fatal Error:\n");
printf(* Not a valid WinHelp file!\n"):
return;

}

if (ReadHFSFile)
DumpFile(HelpFile):
else
ListfFiles{HelpFile);

[l ket dde g dek gk gkt e doicedk Aok dodededode ke dedeok e de ok Aok de ko

Show usage
**/

void Usage()
{

printf{“HLPDUMPZ {version 2.0 of Help Dump)\n™);

printf{“By Pete Davis and Mike Wallace Copyright 1997\n\n"};
printf{“Usage: HLPDUMPZ helpfile[.hip] [hfsfilename] [/HI\n\n™);
printf{"where:\n");

printf{" helpfile - name of _HLP/.GID/ . ANN/.BMK file to open\n™);
printf(” hfsfilename - name of HFS file to read\n™);
printf(* /H - force a hex dump\ni\n”};

printf(“note: Do not include the pipe *|" character in the hfsfilename, \n"};

J Aok sk deodek de ko ek o koo e d ook ok ootk dedek e d ek Aok A dedee ok

Entry point to HLPDUMPZ

Fkkdedk kAo Xk ek de kAo skt ok ok ek kA ok de ok ko ek

int maintint argc, char *argvl])
{

char filename[_MAX_PATH];
FILE *HelpFile;

:f {argc < 2)

Usage():
return EXIT_FATLURE:

]
ReadHFSFile = 0;
if {argc >= 3

strepy{HFSFileToRead, argv[2]):
ReadHFSFile = 1:
1

Windows Help File Format — 101

Listing 4.5 (continued)

/* Are we forcing a hex dump? */
ForceHex = 0;

if (argc = 4}

{

if (stricmp(argvi3], “/H")}

printf(“Error: Argument 3 unreccgnizedi\n™):
return EXIT_FAILURE;

ForceHex = 1:

}

strcpy(filename, argvl[1]);

strupr(filename);

if (lstrchr{filename, *."})
streat{filename, *.HLP™);

if {(HelpFile = fopen{filename, “rb™)} = NULL}
printf("%s does not exist!”, filename);
’ return EXIT_FAILURE;

printf{“Dumping %s\n\n™, filename):
HelpDump(HelpFile);
fclose(HelpFite);

return EXIT_SUCCESS;

Chapter 5

Annotation (LANN) and
Bookmark (.BMK)
File Formats

WinHelp provides Annotation and Bookmark files that users can create while viewing
ahelp file. Like many of the WinHelp files, Annotation and Bookmark files are stored
with aHelp File System (HFS) described in Chapter 4.

Annotation Files

Annotation (.ANN) files are the smpler of the two file formats. As | said earlier, .ANN
files are based on the HFS, so I'll be speaking in terms of the internal files and ignore
the HFS agpect dtogether. Each .ANN file automatically contains two files; @LINK
and @VERSION. In addition to these two files is one file for each annotation.

The @VERSION file is static and identical in al .ANN files that 1've seen. It smply
contains the following string of 6 bytes: 0x08 0x62 0x6D 0x66 0x01 0x00 (or 8
bytes in WinHelp 4.0: 0x08 0x62 0x6D 0x66 0x01 0x00 0x00 0x00). The meaning
behind this has me stumped. 0x62 0x6D 0x66 spell out bmf (BookMark File?), but
other than that, we could not come up with ameaning.

103

104 — Windows Undocumented File Formats

The @LINK file is dightly more complex, though ill fairly smple. The file begins
with a single WORD that contains a count of the annotations in the .ANN file. It is then
followed by arecord for each annotation (Table 5.1).

As| sad, it'sfairly smple. Therest of the . ANN file contains asingle HFS file for
each annotation. These files are named based on the topic offsets of the annotation.
For the sake of amplicity, assume you have an annotation for atopic located at offset
0x100. 0x100 in decima is 256, of course, 0 the name of the HFS file within the
.ANN file for that annotation would be 256!0. Each file basically consists of the deci-
mal equivaent of the offset followed by an exclamation point and a zero. The contents
of each of these files is simply the text of the annotation itself.

That'sit; that's al there isto an Annotation file.

Bookmark Files

Bookmark files, on the other hand, are actually alittle more complex. Again, they are
based on the Help File System (HFS). Thereis only one WinHelp Bookmark file. It is
shared by al help files, and is named, appropriately, WINHELP.BMK. All bookmarks for
al help files are kept in the WINHELP.BMK file.

One HFS file per help file has bookmarks. Thet is to say, that when a user creates
the first bookmark in a help file, an HFS file is added to the WINHELP.BMK file. This
HFS file will contain all bookmarks ever made with this help file. The name of the
HFS file in the Bookmark file is based on two things: the name and the generation
date of the help file. The generation date can be found in the |SYSTEM HFS file found
in the help file. See Chapter 4 for more information on this. The HFS file in the Book-
mark file, therefore, contains the name (without the extension) of the help file, and
eight characters that represent the hex DWORD value of the generation date.

Assume on December 9th, 1994, at exactly 11:09:30am, you generated the help
file TEST.HLP. The generation date in hex would be 2EE8ABGA. If a user were to create
a bookmark with this file, the name of the HFS file to contain the bookmark would be
TEST2ee8abba. Natice that the help file name is al capitals, whereas the hex digits
that are letters are al lowercase. This is important because HFS filenames are case
sengitive. But things are still fairly simple at this point.

Table 5.1 ANNLINKRECORD record.

Field Name Data Type Comments

TopOffset DWORD Offset to topic associated with the annotation
Reservedl DWORD Probably reserved for future use

Reserved?2 DWORD Probably reserved for future use

Annotation (LANN) and Bookmark (.BMK) File Formats — 105

The Bookmark file itself has a bookmark header (Table 5.2).

Thisis followed by bookmark entries for each bookmark (Table 5.3).

I'm not sure why, but al offsets of bookmarks are associated with the beginning of
the scrolling region of the topic instead of the beginning of the topic itself. | don't see
why it would matter either way, though.

Where Do | Gofrom Here?

Surprisingly, quite a bit could be done with Bookmark and Annotation files that
Microsoft has neglected to do. Firgt of dl, thereis currently no utility for upgrading a
Bookmark or Annotation file when a help file gets updated. Instead, your annotations
and bookmarksjust get lost completely when anew version of the help file comes out.
That makes them amogt entirely useless when you have a help file that is updated on
aperiodic basis.

Another utility that would be very useful is an expanded annotation editor. Why not
have one that supports embedded graphics and maybe RTF text? It would be easy
enough to take an existing Annotation file and add new files to it to hold your particular
data types. For example, if your annotation's HFS filename is 1242!0, make another
one cdled 1242!x that holds data that your annotation editor program reads. It could

Table 5.2 BOOKMARKHEADER record.

Field Name Data Type | Comment

Magic int Always 0x0015

GenDate DWORD Same date that is part of the HFS filename
NumBookmarks WORD Number of bookmarks in this HFS file
FileLen WORD Contains the length of this HFS file in bytes

Table 5.3 BOOKMARKENTRY record.

Field Name Data Type Comment

TopOffset DWORD Offset to scralling region of topic this
bookmark is associated with

Reserved DWORD Reserved for future use

BkmrkText[] char Null-terminated string of bookmark text

106 — Windows Undocumented File Formats

use both files and keep straight text in the 1242!0 file (so that WinHelp's built-in anno-
tation code could read it), and you could keep your specid datain 1242!x. Simply cre-
ate aDLL that attaches to WinHelp. (See the Bibliography for an article | wrote for PC
Magazine with Jim Michel on how to force WinHelp to load your DLL.) This DLL
could monitor topic jumps and the annotation menu item (viawindow subclassing) and
know when to show annotations. (Thisis, in fact, autility Jim Michel and | were think-
ing of writing quite some time ago, but never got around to.)

Chapter 6

Compression Algorithm and
File Formats

The Microsoft compression agorithm is implemented in COMPRESS.EXE,
EXPAND.EXE, and the LZEXPAND.DLL library. The most common use of these rou-
tines is for application install programs. Compressing the files on a set of installation
disks results in the need for fewer disks. When a user is installing a Microsoft pro-
gram, EXPAND.EXE is used to uncompress the files, writing the output to the hard
drive. LZEXPAND.DLL is a collection of routines that allows a Windows program to
expand files compressed with COMPRESS.EXE. This chapter covers verson 2.0 of
COMPRESS.EXE and EXPAND.EXE.

The Algorithm

The algorithm used by Microsoft is based on the LZ77 algorithm developed by Abra-
ham Lempel and Jacob Ziv in a paper published in 1977. LZ77 is called a dictio-
nary-based, sliding window agorithm. "Dictionary-based’ means the compression is
accomplished by replacing repeating character strings with a pointer to the first occur-
rence of the string, where the pointer is a pair of numbers indicating the offset and the
length of the repeating string. For example, the string "abcdefabed” would be com-
pressed into "abedef[0,4]", where "0" is the offset of the origina string (“abcd") and

107

108 — Windows Undocumented File Formats

"4" is the length. This approach raises the following question: How many bytes
should be reserved for storing the offset and length parameters? Assuming a maxi-
mum file size of 4Gb, you would have to use 4 bytes for the offset and 4 bytes for the
length, for atotal of 8 bytes, each time arepeating occurrence of astring is found. In
practice, this would not produce a good compression ratio. If the average length of
repeating strings in the input file is fewer than 8 bytes, the compressed file will be
larger than the origina file. This is considered bad compression.

This observation led to the concept of "dliding window" compression. Instead of
searching the entire file (up to the character currently being read), use only the last n
characters, where n is an integer denoting the size of the window. This is how it
works: an array of the last n characters (from the input file) is maintained in memory
(the "window"). When the next character in the input file is read, search the window
for strings starting with the same character. After this step is done, the current charac-
ter is added to the window, which means the character read n bytes ago is discarded.
Only the previous n characters are in memory, so a window continuously dides
through the input file. This approach has the advantage of decreasing the number of
bytes required to store the [offset, length] pair of integers that denote arepeating
string. The smaller the window, the fewer bytes needed to store the necessary infor-
mation. The size of the window varies with the implementation. It should be small
enough to reduce the size of the [offset, length] pair, but large enough that there
is a high probability that a previous occurrence of the current string will be found in
the window. It is important to find the longest match you can in order to improve the
compression rétio.

Microsoft's Implementation

Microsoft uses a window of 4,096 bytes in their scheme. Such awindow size would

need 12 bits for an offset (2 = 4,096). A compression code of 2 bytes (to minimize
the number of bytes needed to code the offset and length) would leave 4 bits for the
length. This means the maximum length of arepeating string that could be encoded in

the compressed file is 15 bytes, but this can be improved. Because 2 bytes are needed
for acompression code, repeating strings of fewer than 3 bytes can be stored uncom-
pressed, because nothing would be gained by using a 2-byte compression code in
place of a 2-byte string or, even worse, a 1-byte character. So alength of either zero,
one, or two would never be found in the length field. You can take advantage of this
by subtracting three from the length of the string when encoding it in the compressed
file, thus alowing for a maximum length of 18 bytes. When the decompression rou-
tine encounters a compression code ([offset, length]), it adds three to obtain the
actual length.

Compression Algorithm and File Formats — 109

For reasons known only to Microsoft, the offset in a compression code is biased
by 16 bytes. Before an offset is encoded in the compressed file, 16 is subtracted. The
least significant bits of the offset are stored in the first byte of the 2-byte code; the
most significant bits are stored in the upper 4 bits of the second byte. The length is
stored in the lower 4 bits of the second byte. As an example, a compression code of
offset = 36 and length = 15 would be processed as follows:

1 Subtract three from the length and 16 from the offset;
2. Offset = 20, 0 the 12 hits are 0000 0001 0100;

3. Length = 12, so the 4 bits are 1100;

4. Byte 1is0001 0100 (the lower 8 hits of the offset);

5. Byte2is 0000 1100 (remainder of the offset, length).

The Details

A problem with implementing this algorithm is distinguishing between uncompressed

data and a 2-byte compression code. COMPRESS.EXE uses the following approach: data
is stored in blocks of eight terms, where each term is either 1 byte of uncompressed

data, or a 2-byte compression code. Each block is preceded by a 1-byte header, where
each bit in the header is set to "1" if the corresponding term is uncompressed data, or

"0" if itis a compression code (hence the eight-term size of the block). For example, a
header byte of OxC7 trandlates into 11000111 binary, which is read as follows: the first
3 bits are set, s0 the first three terms are single, uncompressed bytes and should be
treated as literals; the following 3 bits are clear, so each of the next three terms are

2-byte compression codes; finally, the last two terms are literals. The data block

immediately following the header, incidentally, would be 11 bytes (5 bytes of literals
and 6 bytes of compression codes).

The following macro determines the compression code:

#define COMP_CODE(len, off) ((((len-3) & OxOF) « 8) + \\
(((off - 0x10) & OxOF00) « 4) + ((off - 0x10) & OxOOFF))

The following macros extract the length and offset from the compression code:
#define LENGTH(x) ((((x) & OxOF)) + 3)

#define OFFSET(x1, x2) ((((((x2 & OxFO) » 4) * 0x0100) + x1) & \\
OXOFFF) + 0x0010)

110 — Windows Undocumented File Formats

Now for a concrete example. Say you have afile that only contains four words,
each separated by a space. The words, in order, are "Plenty”, "Plentiful”, "Plenteous’,
and "lentic". When compressed with Microsoft's COMPRESS.EXE, the output file looks
like Figure 6.1.

The first ten characters aren't related to the compression, so you can ignore them
for the purposes of this discussion (see Table 6.1 for details on the header structure).
The next field (a long integer) is the size of the data when decompressed: 0x21 bytes,
or 33 characters. The data follows. The first block header is 0xBF, which is 10111111
binary. This means the first six termsin the block are 1-byte literals and can be written
directly to the output file. The seventh term is a 2-byte compresson code (OXEF OxF3),
and the eighth term is a 1-byte literal.

To fill in the string referenced by the seventh term in the first block, you have to
decipher OXEF OxF3. The length of the replacement string is found in the lower 4 bits
of OxF3, which is three. Add three to this to obtain the true length, for atota of six.
The offset (into the window) of the string is the upper 4 bits of OxF3 (0x0F) and dl of
OXEF, which is OXOFEF. Add 16 to this, for atotal of 0xOFFF, which is 4,095 in deci-
mal. So the string starts with the last character in the window (index number 4,095)
and is 6 bytes long. Are you wondering how the string could start with the 4,095th let-
ter after only reading six characters? This occurs because the window must first be
initialized with 0x20 (spaces). Because the words in the input file are separated by

Figure 6.1 Sample output of COMPRESS.EXE.

Offset 0 12 3 45 6 7 8 9 A B C D E F 0123456789ABCDEF

0x00000010: 6C 65 6E 74 79 EF F3 69 F7 66 75 6C EF F3 65 6F lenty..i.ful..eo
0x00000020: 75 73 05 20 F8 F2 63 us. ..c

Table 6.1 COMPHEADER record.

Field Name Data Type Comments

Magicl long 0x44445A53

Magic?2 long 0x3327F088

|41 char 0x41

FileFix char Lagt character in uncompressed file's name
DecompSize long Size of the uncompressed file

Compression Algorithm and File Formats — 111

spaces and the first five characters of the first two words are the same, COMPRESS.EXE
was able to start the replacement string with the last character in the window, a space.
So far, by processing the first seven terms in the block, you have "Plenty Plent". The
remainder of the file is processed in the same manner.

The Header

Each compressed file begins with a COMPHEADER (Table 6.1) structure. This structure
has two magic number fields, a single-character constant, the last character of the
name of the uncompressed file, and the size of the file when decompressed. The first
three fields are dways the same. The fourth field is used when the "-r" option is
passed to COMPRESS.EXE, instructing it to store the last character of the uncompressed
file's name, to be used when it is uncompressed.

Compressing

One of the programs included with this chapter is COMP.EXE. This DOS program will
compress a file using Microsoft's implementation, so it can be decompressed using
EXPAND.EXE. This section will detail how COMP.EXE works.

Once COMP.EXE has written the header described above, it starts compressing the
data. Each character read is inserted into an array of 4,096 bytes. The array isinitialy
filled with 0x20's (spaces). Once this array has been filled (i.e., 4,096 characters have
been read from the input file), COMP.EXE returns to the beginning of the array and con-
tinues filling it in from there. As described in "Details' previously, data is written in
blocks, where each block starts with asingle character describing the remainder of the
block. The remainder of the block is data from the input file (in compressed or
uncompressed format). At this point, COMP.EXE begins reading the input file. When a
new character is read, COMP.EXE searches the array containing the previous 4,095
characters. Each time a matching character is found, COMP.EXE continues to read to
determine how many characters match. Once this step is completed, COMP.EXE moves
through the window again, finding the next match, and the process is repeated. This
method will produce the longest matching string in the previous 4,095 characters.

If no match is found or if the match is fewer than three characters, the datais written
to the output file uncompressed. Also, the corresponding bit in the header character for
the block is set. If amatch of three or more characters is found, the offset of the match-
ing string in the 4,096-byte window and the length of the match are used to credte a
2-byte code. The code is written to the output file, and the corresponding bit in the block
header is cleared. This process is repeated until the entire input file has been read.

112 — Windows Undocumented File Formats

Decompressing

Another program included with this chapter is DECOMP.EXE, which will decompress a
file produced by either COMPRESS.EXE or COMP.EXE.

The DECOMP.EXE program decompresses a file by doing the opposite job of
COMP.EXE. After it skips the header, it reads the 2-byte compression code that begins
eech block. If ahit is s, the corresponding character is written to the output file and
inserted into the diding window (array of 4,096 bytes). If abit is not set, DECOMP.EXE
gets the offset and size of the string from the corresponding 2-byte compression code in
the block. Next it will retrieve that string from the window and write it to the output file.

If the sum of the offset and length (in a 2-byte compression code) is greater than
the size of the window, it means the string wraps around from the end to the beginning
of the array. After the byte a the end of the array is read, DECOMP.EXE jumps to the
first byte in the array and continues reading.

The source code for COMP.EXE and DECOMP.EXE are shown in Listings 6.1 and 6.2
respectively. Each program has been tested extensively, and both seem to produce out-
put compatible with the corresponding program from Microsoft, so any file com-
pressed with either compression program can be decompressed using either
decompression program. It is interesting to note that our version of the compression
program will always achieve a least the same amount of compression as Microsoft's,
but if the input file is larger than a few hundred bytes, COMP.EXE achieves a better
compression ratio. It appears that Microsoft's implementation of the algorithm will
only alow for amaximum length of 16 bytes when compressing a string, whereas our
version alows for 18 bytes.

Where Do | Gofrom Here?

The codein Listing 6.1 could be used for a variety of purposes. Anyone interested in

writing a quicker compressor or decompressor than those provided by LZEXPAND.DLL

should study the code accompanying this chapter. If you're curious to see how one
company implemented the LZ77 algorithm and want to attempt to improve the overall

compression ratio, this code will serve as agood starting point.

Compression Algorithm and File Formats — 113

Listing 6.1 COMP.C— Compression program
compatible with EXPAND.EXE.

Fok Rk Kk k Kk k Kk kkkKk F Kk Kkkdokddodok kkkkdk *KKK

~
*
%

PROGRAM: COMP.C

PURPOSE: Compress a file using something 1ike Microsoft's derivative on LZ77
(i.e., it can be uncompressed using Microsoft's EXPAND.EXE).

Copyright 1997, Mike Wallace and Pete Davis

Chapter 6, Compression Algorithm and File Formats, from Undocumented Windows
File Formats, published by R&D Books, an imprint of Miller Freeman, Inc.

* % %k % ok ok % * X * F

*kkkk * * * * * *kkKkk * x/

JHinclude <stdio.h>

JHinclude <stdlib.h>
f#include <string.h>
fHinclude "decomp.h”

#idefine WINSIZE 4096
#define MAXLEN 18

fidefine COMP_CODE(x,y) (({({x-3) & OxO0F) << 8) + (({y - 0x10) & \
0x0F00) << 4) + ((y - 0x10) & OxO00FF))

#define LOBYTE(x) ((unsigned char)(x))
fidefine HIBYTE(x) ((unsigned char)(((unsigned short)(x) >> 8) & OxFF))

Jidefine DROP_INDEX(x) (x = 0) ? (WINSIZE - 1) : (x - 1)
fidefine ADD_INDEX(X) ((x + 1) =— WINSIZE) 2 0 : (x + 1)

/* This is our Compression Window */
unsigned char Window[WINSIZE];

/x Kk k Kk dk * * *

Set bit number "bit" in byte "byte"

*k Kk * e kkkok KKk Kdek koK * %k KKk Kdkk Kok K /
void BitSet(int bit, char *byte)
{

short result = 1;

/* make sure bit range is 0,..,7 */
if (bit < 0) bit = 0;
else if (bit > 7) bit = 7;

while (bit--)
result *= 2;
*byte = result | *byte:

} /* BitSet - end */

114 — Windows Undocumented File Formats

Listing 6.1 (continued)

f*************************************t***********

InBetween - detects if lower <= target <= higher
*****************t**t****************ti***********j
int InBetween(int lower, int higher, int target)

{

if(higher < lower}
higher += WINSIZE;

if((lower <= target) && (target <= higher))
return 1;

else
return 0;

} /* InBetween - end */

f*************t********************i**************

Force FlagByte and DataBytes to print out
*************i*********************t**************/
void WriteFlagByte(FILE *outfile)

{

int index = 0;

if(FtagCount > 0} {
DataBytes[DataCount] = "\0';
fputc{FlagByte, outfile);
for {; index < Datalount ; ++index)
fprintf(outfile, "%c™, DataBytes[index]);
DataCount = FlagCount = O;
FlagByte = '\0';
for (index = 0; index < 17; ++index)
DataBytes[index] = ' *
}

} /* WriteFlagByte - end */

I***

Check 1f FlagByte is full and should be printed out
k***f
void CheckFlagByte(FILE *outfile}

{

++DataCount;
if(++FlagCount = 8)
WriteFlagByte{ outfile);

) /* CheckFlagByte - end */

Compression Algorithm and File Formats — 115

Listing 6.1 (continued)

[rwkkkdkdkkdkdkokkicddkkkk kb hkkdhkkdhhkhhkdhdhhkkiik

Saves an uncompressed data byte
**j

void GetNextChar(int *CurrPos, FILE *infile)
{

unsigned char ch;

fread{&ch, sizeof(char), 1, infile):
if (lfeof{infile)) .
Window[*CurrPos = ADD_INDEX(*CurrPos}] = ch;

} /* GetNextChar - end */

/**i**i*****

Unreads the last character read
t*****t***************************************/

void UnreadChar{unsigned char ch, FILE *infile, int *CurrPos,
unsigned char ch2)
i

ungetc(ch, infile):
Window[*CurrPos] = ch2;
*CurrPos = DROP_INDEX{*CurrPos);

} /* UnreadChar - end */

/************************************W************

Saves an uncompressed data byte
*****************w********************************;

void SaveUncompByte{unsigned char ch, FILE *outfile)
{

BitSet(FlagCount, &FlagByte);
DataBytes[DataCount] = ch;
CheckFlagByte{ outfile);

} /* SaveUncompByte - end */

116 — Windows Undocumented File Formats

Listing 6.1 (continued)

JRERRRRkeckkdkdok bk dkkok K bRk ik kdodobkkdhkkkk kA hkhhh ik

Compresses the data using Microsoft's LZ77
derivative (Zeck).
****t***.1:***********'Jr*****************************/
void Compress{FILE *infile, FILE *outfile)

{

int count=0, shifter=0, CurrPos=0;

int SavePos=0, iCompCode = 0, offset = 0;
int newPos = 0;

unsigned char ch;

int bestcount = 0, bestoffset = 0;

char oldchars({3];

FlagCount = 0;
DataCount = 0;
FlagByte = '\0";

for {(count = 0; count < WINSIZE; count ++)
Window[count] = * '

rewind(infile };

/* Go through input file until you're done */
fread{&ch, sizeof{(char}, 1, infile};
Window[CurrPos] = ch;

while {!feof{infile)) {

/* if less than 3 chars from end, just write out remainder */
if({InfileSize - ftelli(infile)) < 2) {

SaveUncompByte(Window[CurrPos}, outfile):

GetNextChar{ &CurrPos, infile):

continue;
}

/* Find previous occurrence of character in window */

for (count = 1, shifter = DROP_INDEX(CurrPos):
(Window[shifter] 1= Window[CurrPos]} &% (count < WINSIZE}:
++count, shifter = DROP_INDEX(shifter)) (}

/* ¢check if char is unique so far in input file */
if{count = WINSIZE} {
SaveUncompByte{ Window[CurrPos], outfile};
GetNextChar{ &CurrPos, infile}:
continue;

Compression Algorithm and File Formats— 117

Listing 6.1 (continued)

else [

/* find out how many characters match */
SavePos = CurrPos;
oldchars[2] = oldchars[0] = Window[ADD,_INDEX{CurrPos)];
GetNextChar(&CurrPos, infile);
for(count = 1, offset=shifter, shifter = ADD_INDEX{shifter);
('feof{infile)) &% (Window[shifter] = Window[CurrPos]) &&
(count < MAXLEN);) {
+count;
if(count == 2}
oldchars(l] = Window[ADD_INDEX(CurrPos}];
oldchars[2] = Window[ADD_INDEX(CurrPos)];
GetNextChar{ &CurrPos, infile);
shifter = ADD_INDEX(shifter);
H

/* Since this is the first maich, save it as the best so far */
bestcount = count;
bestoffset = offset;

if(({Windowlshifter] != Window[CurrPos]) || (count == MAXLEN)) &&
(Ifeof (infile)))
UnreadChar(Window[CurrPos], infile, &CurrPos, oldchars[2]);

/* Now find the best match for the string in the window */

shifter = DROP_INDEX(offset };

while({shifter != CurrPos) && {(bestcount < MAXLEN) &&
(!InBetween{ SavePos, CurrPos, shifter))) {

for(; {shifter |= CurrPos) &&
(Window[shifter] != Window[SavePos]);
shifter = DROP_INDEX(shifter)) {}
if(shifter = CurrPos)
continue:
for(count = 0, offset = shifter, newPos = SavePos;
(Ifeof(infile)) && (Window[shifter] — Window[newPos]) &&
(count < MAXLEN}; ++count, newPos = ADD_INDEX(newPos)) {
if (count >= (bestcount - 1)) {
if(count = 1)}
oldchars[1] = Window[ADD_INDEX(CurrPos)];
oldchars[21 = Window[ADD_INDEX(CurrPos}];
GetNextChar(&CurrPos, infile };
}
shifter = ADD_INDEX(shifter);

118 — Windows Undocumented File Formats

Listing 6.1 (continued)

1

Tf{{(count >= MAXLEN) || ((Window[shifter] != Window[newPos]} &&
(count >= bestcount)))} && (!feof(infilel)})
UnreadChar{ Window[CurrPos], infile, &CurrPos, oldchars[2]};

if(count > bestcount) {
bestcount = count;
bestoffset = offset;

) '

shifter = DROP_INDEX(offset);

} /* while(shifter |= CurrPos) */

if(!feof(infile))
GetNextChar{ &CurrPos, infile);

count = bestcount;
offset = bestoffset;

/* it count < 3, then not enough chars to compress */
if {count < 3) {
SaveUncompByte(Window[SavePos], outfile):
fseek{infile, ftell(infile) - count, 0);:
Window[SavePos = ADD_INDEX{SavePos}] =~ oldchars[0];
CurrPos = DROP_INDEX{CurrPos);
if {count == 2} |
Window[ADD_INDEX(SavePos)] = oldchars(1];
CurrPos = DROP_INDEX(CurrPos};
}

t

else |
iCompCode = COMP_CODE(count, offset);
DataBytes{DataCount] ~ LOBYTE(iCompCode):
DataBytes[+DataCount] = HIBYTE(iCompCode);
CheckFlagByte(outfile);

if (Ifeof(infiie))
UnreadChar{ Window[CurrPos], infile, &CurrPos, oldchars[2]}:
}

if((!feof(infile)) && (count {= MAXLEN)}
GetNextChar(&CurrPos, infile);

} /* while - end */

WriteflagByte{ ocutfile };

} /* Compress - end */

Compression Algorithm and File Formats— 119

Listing 6.1 (continued)

/***************i***********************************

Write the header that exists at the beginning of

every file compressed using MS's Zeck compression
*********************t*****************t************/

void WriteHeader(FILE *infile, FILE *outfile)
(

COMPHEADER CompHeader;

CompHeader.Magicl = MAGICI;

CompHeader Magic2 =~ MAGICZ;

CompHeader. 1541 = {x41;

CompHeader .FileFix = *\0'; /* This stores the original last */
/* char. of the input filename */

fseek{ infile, OL, 2};
CompHeader.DecompSize = InfileSize = ftell(infile);
rewind(infile);

rewind(outfiley};
fwrite{&CompHeader, sjzeof(CompHeader}, 1, outfilel};
Compress(infile, outfile):

} /* WriteHeader - end */

/ﬁ****tt**

Show usage.
****t**************t********************************/
vaid Usage(void)

{

printf("Usage:\n");

printf(* COMP filel.ext fileZ.ext\n\n");

printf(" filel.ext - Mame of uncompressed file\n");
printf(* #ile2.ext - Name of compressed file\min®};

] /* Usage - end */

fRFhdkddokkkkhkdkdkhktakdkhhkkhkdhkkidokkhkidkkhhkriohik

Open the input and output filtes, and call routine
to compress the data.
t***/
int main{int argc, char *argv[1}
{

char filenamel128];
FELE *infile, *outfile;

120 — Windows Undocumented File Formats

Listing 6.1 (continued)

if (argc l= 3)
Usage();
return EXIT_FAILURE;
}

strepy{filename, argv[1]}:

if ((infile = fopen(filename, "rb")) == NULL) {
printf{"%s does not exist\n™, filename);
return(EXIT_FAILURE);

H

strepy(filename, argv(2]);

if ((outfile=fopen(fitename, "wb+"}) = NULL)
printf("Error opening destination file\n"J;
return{EXET_FAILURE);

}

WriteHeader{infile, outfile):
fclose(infile};
fclose(outfile):
return{EXIT_SUCCESS);

} /* main - end */

/* comp.c - end */

Compression Algorithm and File Formats — 121

Listing 6.2 DECOMP.C — Decompression program.

/ Ir e e e vedr e e s ok d et g e de i e ek dede oA e ok e A de e Aede e e de Ade ke ek ek e de ke de ke ke ke ke ke de ke ke Aok de
¥

PROGRAM: DECOMP.C

PURPOSE: Decompresses a file compressed with Microsoft's COMPRESS.EXE utility.
Functionaly equivalent to EXPAND.EXE

Copyright 1997, Mike Wallace and Pete Davis

Chapter 6, Compression Algorithm and File Formats, from Undocumented Windows
fite Formats, published by R&D Bocks, an imprint of Miller Freeman, Inc.

* % & % & & * * % *

*******************************t**************************************/

#include <stdio.h>
{#Hinclude <std1ib.h>
#include <string.h>
#include “decomp.h”

f#idefine WINSIZE 4096

fidefine LENGTH{x} ((((x) & OxOF)) + 3}

#idefine OFFSET{xl, x2) (({(((x2 & OxFQ) »> 4) *
0x0100) + x1) & OxQFFF} + 0x0010)

fidefine FAKEZREAL_POS(x) ((x) & (WINSIZE - 1))

fidefine BITSET{byte, bit) (((byte) & (1<<bit)) >)

/* This is our Compression Window */
char Window[WINSIZE];

/***

Decides how many bytes to read, depending on the
number of bits set in the Bitmap

**/

int BytesToRead{unsigned char BitMap)
{
int TempSum, counter, ¢;

TempSum = 8; .
for (counter = 0; counter < §; counter ++)
{

¢ = BITSET(BitMap, counter};

TempSum += (I - BITSET(BitMap, counter));
}

return TempSum;

122 — Windows Undocumented File Formats

Listing 6.2 (continued)

/***

Decompresses the data using Microsoft's L777 derivative.
t***************/

void Decompress(FILE *infile, FILE *outfile, long CompSize)
{

unsigned char BitMap, bytel, byte2;

int tength, counter, NumToRead;

long Offset, CurrPos=0;

for (counter = 0; counter < WINSIZE: counter ++)}
Windowicounter] = * *;

/* Go through until we're done */
while {CurrPos < CompSize)
{
/* Get BitMap and data following it */
BitMap = fgetc(infite);
if (feof(infile)) return:
NumToRead = BytesToRead(BitMap};

/* Go through and decode data */

for {counter = 0: counter < 8: counter++}

{
/* It’s a code, so decode it and copy the data */
if (IBITSET(BitMap, counter})
{

bytel = fgetc(infile);

if (feof(infile)} return;
byte2 = fgetc(infile):

Length = LENGTH(byte?):

Offset = OFFSET(bytel, hyte?);

/* Copy data from ‘window' */

while {Length)

{
bytel = Window{FAKE2REAL_PQS{(Qffset}];
Window[FAKEZREAL_POS(CurrPos)T = bytel;
fputcibytel, outfile);
CurrPos++:
Offset++;
Length--:

}
Ji* if */
else
{
bytel = fgetc(infile);
Window[FAKEZREAL_POS(CurrPos)] = bytel:
fputc(bytel, outfile};
CurrPos++;

]
if (feof(infile)) return;
} /* for */

1> while */

Compression Algorithm and File Formats — 123

Listing 6.2 (continued)

/***

Read the file header

*****t*******************************i**************/

void ReadHeader{FILE *infile, FILE *outfile}
{

COMPHEADER CompHeader:

lang CompSize;

fseek(infile, 0, SEEK_END};

CompSize = ftell(infile);

fseek(infile, 0, SEEK_SET};

fread (&CompHeader, sizeof(CompHeader)}, 1, infile);

if ({CompHeader.Magicl != MAGIC1) |} (CompHeader.Magic2 != MAGIC2)) {
printf(“Fatal Error:\n”};
printf(* Not a valid Compressed file filel\n”);
return;

}

Decompress(infile, outfile, CompHeader.DecompSize};
}

j****i**

Show usage.
**/

void Usage()
{

printf(“Usage:\n"};

printf(* DECOMP filel.ext fileZ.ext\n\n");

printf(“ filel.ext - Name of compressed file\n"};
printf(* file2.ext - Name of decompressed file\nin");

}

124 — Windows Undocumented File Formats

Listing 6.2 (continued)

/***

Open the file and dump it.

**/

int main{int argc, char *argv(])
{

char filename[128];

FILE *infile, *outfile:

if {argc < 3)
{

Usage();

return EXIT_FAILURE;
}

strepy(filename, argv[11);
if ((infile = fopen(filename, "rb"}} == KULL)
{
printf(“%s does not exist!™, filename};
return EXIT_FAILURE;
}

strepy(fitename, argviz]):
if ((outfile=fopen(filename, “wb™)) == RULL)
{
printf(“Error opening destination filel”);
return EXIT_FAILURE:
}

ReadHeader{infile, outfile):
fclose(infile);
fclose({outfile};

return EXIT_SUCCESS;

Chapter 7

Resource (.RES) File Format

In this chapter, I'll take alook alook at the format of .RESfiles. Our thanks go to Alex
Fedorov and Dmitry Rogatkin for their work on this topic originally published in
Andrew Schulman's "Undocumented Corner,” Dr. Dobb's Journal, August 1993,
We'd aso like to thank Jonathan Erickson, DDJ editor, for alowing us to use the
information in that article. After describing the file format, I'll present a program for
decompiling .RESfilesinto .RC files. This chapter references the resource compiler
(RC.EXE) supplied with the Windows 3.1 SDK.

An .RC file contains information on the resources used by aWindows executable,
such as bitmaps, buttons, and dialog boxes. These files must be compiled by
Microsoft's resource compiler (RC.EXE) before they can be added to the executable.
The output of this compiler isa .RES file. The format of resources in the executable
has been documented by Microsoft, but never the format of the .RESfile. If you have
a copy of the Microsoft Windows 3.1 Programmer's Reference, Volume 4 (Resources),
you aready have this documentation. Chapter 7 in that reference is titled "Resource
Formats Within Executable Files', and covers the format of each resource type.
Although this information was helpful in writing a program described later in this
chapter, it doesn't mention the . RESfile format.

As it turns out, each type of resource is stored in a .RES file in the same format as
it would appear in aWindows executable. The difference is the existence of a descrip-
tive header before each resource. A .RESfileis nothing more than a collection of pairs
of resources and their respective headers. You can confirm this by writing a smple

125

126 — Windows Undocumented File Formats

.RC file and compiling it with RC.EXE. Take alook at the .RES file; strings from the
.RC file are practically jumping off the page. What we'll do here is fill in the blanks
and describe the format of the header.

The Format

Resource headers are type independent; that is, regardless of the type of resource, the
header always has the same format. The first field in the header is the name or type of
the resource. If the first character is OxFF, it is immediately followed by a number (a
WORD) which maps to a specific resource type (either predefined or defined by the
user). A quick look in WINDOWS.H and VER.H (the header file required to include ver-
sion information in a resource file) produces the list of predefined resource types in
Table 7.1.

Any other number after OXFF indicates a user-defined resource.

If the first character is not OXFF, it is a null-terminated string naming the resource
type (as defined by the user). This is different than a name given to an instance of a
resource. If you're unfamiliar with defining your own type of resource, read Program-
mer's Reference, Volume 4, pp. 212-213.

Table 7.1 Numeric valuesfor resource types.

Resource Type Identification Number (from WNDOWSH)
Cursor RT CURSOR (1)
Bitmap RT BITMAP (2)

Icon RT_ICON (3)

Menu RT_MENU (4)

Dialog box RT DIALOG (5)

String table RT_STRING (6)

Font directory RT_FONTDIR (7)

Font RT_FONT (8)
Accelerator RT_ACCELERATOR (9)
RCDATA (user defined) RT_RCDATA (10)
Group cursor RT_GROUP_CURSOR (12)
Group icon RT_GROUP_ICON (14)
Name table (obsolete with v3.1) 15

Version information 16

Resource (.RES) File Format — 127

The next field in the header is a number or name identifying an instance of a
resource. Similar to the format of the resource type field, if the first byte is OxFF, itis
followed by a numeric value (also a WORD). Otherwise, the field is a null-terminated
string haming the resource.

This is followed by a WORD value storing memory flags. A memory flag describes
how the resource should be loaded, discarded, and moved around in memory. Because
each flag (e.g., MOVEABLE, DISCARDABLE) is a WORD and doesn't overlap (at the bit
level) with the other flags, they can be ORed together to produce a single WORD value.
This ORed vaue of the individual memory flags is what appears in this field. These
vaues are summarized in Table 7.2.

If the resource in question is a cursor or an icon, the table changes dlightly. The
value for "Discardable” is 0x20, and "Pure" appears to have no meaning in relation to
these two types of resources.

The next (and fina) field in the header is a DWORD containing the total length of the
resource data, not including the header. This is followed by the resource data, whose
format is documented in Programmer's Reference, Volume 4.

Look at the following example. Suppose you come across a resource header in a
.RESfilethat consists of the following characters (in hexadecimal):

FF 05 00 46 4F 4F 42 41 52 00 30 10 9A 00 00 00

Because the first character is OXFF, this resource type is identified by the number
immediately following it, which, in this case, is 0x05. Using Table7.1, you know
this is the header for adialog box. The next field is the name of the dialog box, and
since it does not start with OXFF, it is a null-terminated string. Converting the hex
string 46 4F 4F 42 41 52 to aphabetic letters, you get "FOOBAR". Next is the
memory flag for this dialog, which is 0x1030. Using Table 7.2, you know this dialog
box is discardable, pure, moveable, and loaded on call (this last aspect can be
deduced because 0x1030 does not contain 0x40). Finally, the length of the dialog box
resource datais 0x0O000009A.

Table 7.2 Memoryflags ORed values.

Value Meaning

0x1000 Discardable

0x40 Preload (otherwise, load on call)
0x20 Pure

0x10 Movesable (otherwise, fixed)

128 — Windows Undocumented File Formats

One shortcoming of this file format is the absence of a signature a the start of the
.RESfile. This prevents any utility that reads a .RESfile asinput from knowing if the
input file isindeed a .RES file. When we were testing the program that decompiles
.RESfilesinto .RCfiles (RES2RC), sometimes we accidentally gaveitan .RCfileas
input. The results were unpredictable, but demonstrated how sensitive utility pro-
grams must be to non-.RES files. When Microsoft wanted to distinguish a 32-hit
.RESfilefrom a 16-bit .RESfile, they evaded this shortcoming by starting al 32-bit
.RESfileswith an entry illegal in a 16-bit .RESfile: 0. Becausethisvalueis not OxFF,
it must be a character string naming the resource type, but because it begins with
zero, the length of the string must be zero, which isillegd. Thisis documented in the
RESFMT.TXT file on Microsoft's Win32 CD-ROM.

TheProgram

This chapter describes a DOS program caled RES2RC (Listing 7.1, see page 140)
which decompiles an .RESfile into an .RC file. It requires two arguments: an input
filename (a .RESfile) and an output filename. Because each resource has its own for-
mat, we had to write code to handle each type of resource. As you may guess this
made for alot of code — roughly 3,200 lines of C. This section will detail how the
program works.

Before processing any resources in the input file, the program will verify that it is
not a Win32 resource file by checking the first byte. If that test succeeds, the program
rewinds the input file and enters a smal loop to read the first byte of each resource
header. If it is OxFF, it is aresource listed in Table 7.1, and must be processed accord-
ingly; otherwise, it is a user-defined resource, in which case the program saves the
data to a uniquely named externa file of the format UR###.USR. An entry is added to
the output file referencing this file.

Resources with a header starting with OxFF are those predefined by Windows or
the user and include resources typicaly used in a Windows program (eg., diadog
boxes, cursors). The bulk of the code was written to handle these types of resources
for which the program reads the number (integer) following the OxFF, and compares it
against the list of types defined in WINDOWS.H and VER.H (the latter exclusively for a
version resource). Once the program determines the type, itjumps to the code written
for that resource.

Nearly everything described so far is handled in under 200 lines of code. The
remainder of the code is needed to handle each resource type. The rest of this section
will describe the format of each of these types. | will dso point out any discrepancies
between the format and Microsoft's documentation.

All of the tables in the remainder of this chapter were either definedin VER H or
WINDOWS.H or described in the Microsoft Windows 3.1 Programmer's Reference.

Resource (.RES) File Format — 129

Cursors and Group Cursors

Each cursor file (.CUR) included in an .RC file starts with a header, called CURSOR-
HEADER (Table 7.3). The only interesting field in the header is cdCount, which is the
number of cursorsinthe . CURfile. Theheaderisfollowed (inthe .RESfile)byaCUR-
SORDIRENTRY structure for each cursor (Table 7.4). The number of these structures in
the file will be the same as cdCount. After the array of these structures, the .CUR file
contains the data for each of its cursors. It is important to note that the CURSORDIREN-
TRY structure in the .RESfileis different than the structure of the same name defined
in the Microsoft Windows 3.1 Programmer's Reference, Volume 4, Chapter 1; rather,
it matches the format described in Chapter 7 of the same Reference. The structure
used in Table 7.4 isthe one used in RES2RC.

Inthe .RESfile, the datais arranged somewhat differently. The datafor each of the
cursors (excluding the headers) appears first. Inthe .RESfile, each cursor is listed sep-
arately and successively. These will be followed by a group cursor resource, which
contains the data described previoudly.

When RES2RC encounters cursor data in the .RES file, it does a bit of jumping
about, s0 it's important to describe what it is doing. RES2RC skips over the cursor
resources when they first appear, since the header has to be written first, and that
doesn't appear until later. The next resource to appear should be a group cursor. At
this point, RES2RC will generate a uniquely named filename of the form CU###.CUR,

Table 7.3 CURSORHEADERrecord.

Field Name Data Type Comments

cdReserved WORD Must be zero

cdType WORD Resource type; must be 2
cdCount WORD Number of cursors in the file

Table 7.4 CURSORDIRENTRY record.

Field Name Data Type Comments

wWidth WORD Width, in pixels

wHeight WORD Height, in pixels

wPlanes WORD Number of color planes; set to 1
wBitCount WORD Number of bits in cursor; set to 1
dwBytesInRes DWORD Size of resource in bytes
wlmageOffset WORD Image number

130 — Windows Undocumented File Formats

which will hold the cursor data, including headers. It will then add an entry to the out-

put file for the cursor data, using this filename. Next, it reads the header, which starts
the group cursor resource and writes it to the data file. It then makes two passes

through the CURSORDIRENTRY fields. The first time, it reads each occurrence of the
structure so it can write the data to the data file. However, it is stored in the datafile in
adightly different format, which is described in Table 7.5.

Next, RES2RC runs through the array again, this time using the wl mageOff set
field to find the cursor data in the .RES file. The wimageOffset field isn't the offset
into the .RESfile of the image; each image in the .RESfileis numbered (eg., 1, 2, 3)
in the first field in its respective header, and this is the number RES2RC searches to
find a match against the wi mageOffset field. Once it finds a match, it writes the data
for that particular image to the datafile.

The Microsoft documentation on cursors (in the .RC file) says the default is LOAD-
ONCALL, MOVEABLE, and DISCARDABLE. This does not appear to be the case. It seems
DISCARDABLE must be specified explicitly for the resource compiler to mark it as such.

Table 7.5 CURSORRESENTRY record.

Field Name Data Type Comments

bwidth BYTE Width, in pixels

bHeight BYTE Height, in pixels

bColorCount BYTE Must be zero

bReserved BYTE Must be zero

wXHotSpot WORD X-coordinate of hotspot, in pixels
wY HotSpot WORD Y -coordinate of hotspot, in pixels
dwBytesInRes DWORD Size of the resource, in bytes
dwlImageOffset DWORD Offset to image

Table 7.6 BITMAPFILEHEADER record.

Field Name Data Type Comments
bfType UINT 0x4D42

bfSize DWORD Size of the bitmap
bfReservedl UINT Zero
bfReserved2 UINT Zero

bfOffBits DWORD 0x76

Resource (.RES) File Format — 131

Bitmaps
Bitmap files (.BMP) are composed of two distinct parts: header and data. The header is
defined in WINDOWS.H and described in Table 7.6.

Most of the fields in the header are constants; the exception is bf Size, which is
computed as the sum of the size of the header and the size of the data. In the .RESfile,
only the datais included because the header can be computed. When RES2RC finds a
bitmap resource, it generates a unique filename of the form BM##.BMP and writes a
reference to this filename to the output file. It then calculates bfSize, writes the
header, and then writes the datain the bitmap resource (in the . RE Sfile).

Icons and Group |cons

Each icon file (.ICO) included in an .RC file starts with a header, caled ICONHEADER
(Table 7.7). The only interesting field in the header is idCount, which is the number
of icons in the .1CO file. The header is followed (in the .RES file) by an ICONDIR-
ENTRY structure (Table 7.8) for each icon (the number of these structures in the file
will be the same as idCount). After the array of these structures, the .1 CO file contains
the data for each of its icons.

Inthe .RESfile, the datais arranged somewhat differently. The datafor each of the
icons (excluding the headers) appears first. Inthe .RESfile, eachiconinthe .1 COfile

Table 7.7 ICONHEADER record.

Field Name Data Type Comments

idReserved WORD Must be zero

idType WORD Resourcetype; setto 1
idCount WORD Number of entries in directory

Table 7.8 ICONDIRENTRY record.

Field Name Data Type Comments

bWidth BYTE Width, in pixels (16, 32, or 64)
bHeight BYTE Height, in pixels (16, 32, or 64)
bColorCount BYTE Number of colorsinicon (2, 8, or 16)
bReserved BYTE Must be zero

wPlanes WORD Number of color planes

wBitCount WORD Number of bits in the icon bitmap
dwBytesInRes DWORD Size of the resource, in bytes
wlmageOffset WORD Image number

132 — Windows Undocumented File Formats

has a separate resource, each of which is listed successively. These will be followed
by agroup icon resource, which contains the data described previously.

When RES2RC encountersicon datain the . RESfile, it does abit of jumping about,
%0 it's important that | describe what it is doing. RES2RC skips over the icon resources
when they first appear, because the header has to be written first, and it doesn't appear
until later. The next resource to appear should be a group icon. At this point, RES2RC
generates a uniquely named filename of the form | C###.1CO, which holds the icon data,
including headers. It then adds an entry to the output file for the icon data, using this
filename. Next, it reads the header that starts the group icon resource and writes it to the
data file. It then makes two passes through the ICONDIRENTRY fields. The first time, it
reads each occurrence of the structure so it can write the datato the datafile. However, it
is stored in the data file in a dightly different format, which is described in Table 7.9.

Next, RES2RC runs through the array again, this time using the wlmageOffset
field to find the icon datain the .RES file. The wImageOffset field isn't the offset into
the .RESfile of theimage; eachimageinthe .RESfileisnumbered (e.g., 1, 2, 3) inthe
first field in its respective header, and this is the number RES2RC searches to find a
match against the wl mageOffset field. Once it finds amatch, it writes the data for that
particular image to the datafile.

The Microsoft documentation on icons (in the .RC file) says the default is LOADONCALL,
MOVEABLE, and DISCARDABLE. This does not appear to be the case. It seems DISCARDABLE
must be specified explicitly for the resource compiler to mark it as such.

Table 7.9 | CONRESENTRY record.

Field Name Data Type Comments

bWidth BYTE Width, in pixels (16, 32, or 64)
bHeight BYTE Height, in pixels (16, 32, or 64)
bColorCount BYTE No. of colors (2, 8, or 16)
bReserved BYTE Must be zero

wPlanes WORD Number of color planes
wBitCount WORD Number of bitsin icon bitmap
dwBytesInRes DWORD Size of the resource, in bytes
dwlmageOffset DWORD Offset to start of icon data

Table 7.10 MenuHeader record.

Field Name Data Type | Comments

wVersion WORD For Windows 3.0 and later, zero

wReserved WORD Must be zero

Resource (.RES) File Format — 133

Menus

Menu resources begin with a header, followed by the datafor the menu. The format of
the header is described in Table 7.10.

The remainder of the header contains data describing the menu. The data is redly
a series of small blocks describing each menu item. The first field in the block is a
WORD, containing flags that describe how the menu item is displayed. The possible val-
ues for this field depend on whether the item is a popup or normal menu item, but they
have severd values in common. Valid flag values for both types are MF_GRAYED,
MF DISABLED, MF CHECKED, MF MENUBARBREAK, MF _MENUBREAK, and MF_END (any
combination). In addition to these possible values, popup items must have aflag value
of MF_POPUP. Another possible value for norma menu items is the undocumented
MF_HELP attribute. If the menu item has the MF_POPUP attribute, it is immediately fol-
lowed by a null-terminated string containing the text of the menu item. Otherwise, it
is followed by a WORD containing the menu ID and the text of the item.

The code in RES2RC for processing menu resources is fairly straightforward. For
each menu item, it checks the possible values for the flag field and prints the corre-
sponding attribute. Whenever it encounters a popup menu item, it starts a new sub-
menu. When an item has an attribute of MF_END, it printsa"}" to end the block. This
continues until it has processed the entire resource.

Dialog Boxes

Dialog box resources are stored in a .RES file beginning with a dialog box header,
which is then followed by the data for each control in the dialog box. The heeder is
described in Table 7.11.

Table 7.11 DIALOGHEADERTrecord.

Field Name Data Type Comments

IStyle DWORD Style of dialog box
bNumberofltems BYTE Number of controls

X WORD X-coordinate of dialog box

y WORD Y -coordinate of dialog box
width WORD Width of dialog box

height WORD Height of dialog box
szMenuName charl[] Name of any associated menu
szClassName char[] Name of class of dialog box
szCaption char(] Caption of dialog box
wPointSize WORD Only if IStyle has DS_SETFONT
szFaceName char[] Only if IStyle has DS_SETFONT

134 — Windows Undocumented File Formats

The last two fields only exist if the | Style field has a value of DS _SETFONT. This
structure is declared in RESTYPES.H, but in a slightly different format. Everything
after the height field is dropped, because of the way variable strings are processed.
RES2RC does not store those strings in memory; it will read the string one character
a atime and immediately write it to the output file, repeating this process until it hits
the null character; this is done partly because most strings in a compiled resource file
have no length restrictions.

After reading the resource header for the didog box, RES2RC reads the DIALOG-
HEADER structure and writes the appropriate strings to the output file.

The resource compiler stores information for each control in the format described
in Teble 7.12.

As declared in RESTYPES.H, this structure contains only the first six fields, since
the remainder can consist of variable-length strings. If the class field contains 0x80,
it is apredefined control type: button, edit control, static control, listbox, scroll bar, or
combo box; otherwisg, it is the first character in a string haming the resource type.
RES2RC will process the CONTROLDATA structure differently for each control type.
The bulk of this code consists of checking for each possible value of the [Stylefield
(which differs with the control type) and writing the appropriate string to the output
file. For example, if the control is a combo box, the program will check 1Style for
any of 14 possible values, such as CBS_HASSTRINGS and WS_TABSTOP.

If the class field does not contain 0x80, the program does not process the 1Style
field, because it has no prior knowledge of the resource, such as how to interpret 1Style.

Table 7.12 CONTROLDATA record.

Field Name Data Type Comments

X WORD X-coordinate of control
y WORD Y -coordinate of control
width WORD Width of control
height WORD Height of control

id WORD Numeric ID of control
IStyle DWORD Style of control
class/szClass (union) BYTE/char(] Type/name of control
szText char[] Text in the control

Resource (.RES) File Format — 135

String Tables

String tables alow a programmer to group strings used by a program into a single
areain the resource file. The documentation says each table is composed of 16 strings.
However, something it doesn't make clear is that the resource compiler will read any
string table defined in aresource file and group them into sets of 16, regardless of how
they were originally declared. Each string is stored in a compiled resource file as a
separate resource, but they can't be treated as such. RES2RC maintains arecord of the
number of consecutive string table entries it has processed, starting a new table in the
output file after every 16 strings. If fewer than 16 strings are specified in the resource
file, the compiler fills out the table with zero-length strings. These zero-length strings
are skipped by RES2RC. After the standard resource header, string resources contain
two fields: length of the string and the string itself. Because the string can contain null
characters, the length is required.

The code in RES2RC to handle string resources is very short — roughly 50 lines.
You should keep in mind that atable produced by RES2RC may not appear as it was
originaly defined, but it is functionally the same. For example, if you define two
string tables, each containing three strings, the compiler will merge them into one
table of six strings. RES2RC will use this format when writing it to the outpuit file. If
you compile the RES2RC output, the resulting .RESfile will be identical to the origi-
na .RESfileyou used asinput to RES2RC.

Fonts and Font Directories

Fonts and font directories are closely related resources. For each font file (.FON) refer-
enced in your .RC file, the resource compiler will add a font resource, containing dl
of the datain the origina .FON file. For each unique font directory, the compiler will
add a font directory resource. Related fonts are grouped into font directories; a direc-
tory contains atable of metrics for each of its fonts. Because dl the information the
resource compiler needs is contained within the .FON file, RES2RC skips al font
directory resources it finds in the input file. When it finds a font resource, it will save
the data to an external and uniquely named file of the format FO###.FON. A reference
to this file is added to the output file. This .FON file will be identical to the original
font file.

136 — Windows Undocumented File Formats

Accelerator Tables

Accelerator resources are very straightforward to process. All of the accelerators
grouped into a single table in the resource file are grouped likewise in the .RESfile as
a single resource. The resource header contains the name of the table. The resource
data itself contains a sequence of smal structure(s) for each accelerator in the table.
The format of this structure is described in Table 7.13.

The fFlags field describes whether the accelerator uses any combination of the
Alt, Shift, and Ctrl keys, and whether the top-level menu item is highlighted when the
key is pressed. Each of these values is unique (at the bit level), and are ORed together
to produce the final value. The Microsoft documentation describes the possible values
of fFlags, but they left one out: if it contains 0x01, the accelerator is a virtua key.
Thisis transparent to the user, but is important to RES2RC. The wEvent field contains
the key used in the accelerator, and wl D is the numeric value passed to the window
procedure when the accelerator is pressed.

The code in RES2RC that handles these tables isn't complicated at al; it should
be easy to follow. The longest part of the code is the processing for the wEvent field;
we attempted to make the output as easy to read as possible. If the field is a virtual
key, a string describing the key is printed (eg., "VK_TAB", "VK_HOME"). Other-
wise, the character is ASCII and printed as a letter. If it is a control character, it is
printed as a caret ("M") followed by the letter, adl within quotes. After that, the wid
field is printed, followed by fFlags processing. Each possible value is checked for,
and if TRUE, the appropriate string is written to the output file.

RCDATA

An RCDATA resource allows araw data resource to be included in a resource file, and
ultimately, the executable. This type of resource can include binary data. RES2RC
processes this type of resource by running through the data, one character at atime,

Table 7.13 Accel TableEntry record.

Field Name Data Type Comments

fFlags BYTE Shows Alt, Ctrl, Shift, highlighted, virtual
wEvent WORD Key used in the accelerator

wid WORD Value passed to window

Resource (.RES) File Format — 137

and printing it to the output file. We attempted to make the data as readable as possi-
ble; the characters are grouped into lines of 60 characters each. If a character has an
ASCII value between 32 and 126 (inclusive), it is printed as a character. Otherwise, it
is printed in octal, with aleading backslash ("\"), so the resource compiler will inter-
pret it as octd. As with the other resources, RES2RC knows the length of the data
from the resource header, the last field of which is the length of the resource data.

Name Tables

Name tables were once used under Windows 3.0, but are now obsolete. If RES2RC
comes across a name table, it will add a three-line comment to the output file saying
one was found, but the table is otherwise ignored.

Version Information

The Versionlnfo resource dlows a programmer to specify information such as the
version number and intended operating system for a program. This information is
used by the File Installation library functions (VER.DLL). This resource is stored in a
compiled resource file as a sequence of blocks. Each block has the same format and is
described in Table 7.14. The abV aluefield is always aigned on 32-bit boundaries.
The datais stored starting with aroot block, which contains the fixed information
(specified immediately after VERSIONINFO in the .RC file), such as FILEVERSION and
FILEOS. The documentation contains some discrepancies about the FILEOS field. It
says two possible vaues for this field are VOS_WINDOWSI16 and VOS WINDOWS32. We
couldn't find references to these in VER.H; furthermore, we found definitions for
VOS_08S216, VOS_0S232, VOS_0S216_PM16, and VOS_0S232_PM32. We assume the first
two are for 16-bit and 32-bit OS/2 programs, respectively; the last two are for 16-bit
and 32-bit OS/2 Presentation Manager programs, respectively. All of the fields in the

Table 7.14 VERSONINFO block header record.

Field Name Data Type Comments

cbBlock WORD Complete size of the block
chbValue WORD Size of the abV aluefield

szKey(] char Name of the block

abValue BYTE Either an array of WORDs or a string

138 — Windows Undocumented File Formats

root block are processed by RES2RC by reading the abValue field into the
VS_FIXEDFILEINFO structure, which is defined in VER.H. The fields are described in
Table 7.15. The program then checks each field against the list of possible vaues
defined in VER.H, and writes the appropriate string to the output file.

Inan .RC file, a Versionlnfo block can have two types of information blocks:
string and variable. String information blocks allow a programmer to specify different
string information (e.g., "CompanyName", "InternalName") in different languages.
For example, you could set up a block of this type of information, label the block as
U.S. English — 7-bit ASCII, and Windows would use that information when install-
ing onto the appropriate set-up. These blocks are stored in a . RE Sfile using the same
format as the root block, with an szKey field starting with "S', so RES2RC runs
through the abV al ue field (for the next cbBlock number of bytes) and processes each
nested block of resource data.

A similar agorithm is used for variable information blocks. When RES2RC
encounters ablock with an szKey field starting with "V", the block is treated as a vari-
able block. These are different than string blocks, in that variable blocks cannot be
nested, and each line defines the languages and character sets supported by the exe-
cutable. Each variable block is immediately followed by one or more "Trandation"

Table 7.15 VS FIXEDFILEINFO record.

Field Name Data Type | Comments

dwSignature DWORD 0XFEEF04BD

dwStrucVersion DWORD Binary version number of this structure.

dwFileVersionMS DWORD High 32 bits of the file's version number

dwFileVersionLS DWORD Low 32 hits of the file's version number

dwProductVersionMS | DWORD High 32 bits of the product's version
number

dwProductVersionLS | DWORD Low 32 hits of the product's version
number

dwFileFlagsMask DWORD Specifieswhich bitsin dwFileFlagsare
vaid

dwFileFlags DWORD Describes various attributes of the file

dwFileOS DWORD Intended operating system of the file

dwFileType DWORD Type of file

dwFileSubtype DWORD Specifies the function of the file

dwFileDateM S DWORD High 32 bits of the file's time stamp

dwFileDateL S DWORD Low 32-bits of the file's time stamp.

Resource (.RES) File Format — 139

blocks, because each line in a variable information block has the form 'Value "Trans-
lation", lang-1D, charset-ID'. RES2RC processes these blocks by reading each trans-
lation block and writing out the appropriate information, one block at atime.

One of the first things RES2RC does when it encounters a V ersionlnfo block is
to check whether it is the first resource of this type found in the input file. If o,
RES2RC will write the line "#include <ver.h>" to ensure that the version strings
listedin VER.H (and used by RES2RC) will be defined if the user attempts to compile
the output of RES2RC with the resource compiler.

User-Defined Data

If aresource header begins with OxFF followed by a number not found in Table 7.1,
RES2RC considers it data defined by the user. It will save the datain an external and
uniquely named file of the format UR###.USR. An entry is put in the output file con-
taining areference to thisfile. Some of the code for this caseis shared by the case of a
resource header starting with a character other than OxFF (which signifies a name for
the resource, rather than numeric identification).

In order to use RES2RC, dl you need is a .RES file (such as that produced by
RC.EXE, Microsoft's resource compiler). RES2RC will convert it to an .RC file.
RES2RC requires two arguments. input filename and output filename. It will write
any bitmaps, cursors, icons, or user-defined data to externd files, generating unique
filenames when needed. The line "#include <windows.h>" is aways written to the
output file; if any version resources are defined, the line "#include <ver.h>" is adso
written. In order to compile the output from RES2RC into a .RES file (which should
be identical to the original input to RES2RC), you will need to include the path for
WINDOWS.H. This can be done with a command of the form rc -r -i<path> <input
file>.rc. Substitute the directory name containing WINDOWS.H for <path>, and the
name of the input file for <input file>.rc. For example, on my computer, | use rc
-r -i\msvc\include xyz.rc. The -r means produce only a .RESfile. The -i means
to include the following directory in the search path for header files.

Where Do | Gofrom Here?

An adventurous soul could use this code to write a program that would extract the
resources from an executable and produce the corresponding .RC file, sort of an
"Exe2Rc". The resource dataitself isstored inan .EX Efileinthe sameformat asin a
.RES file. The latter includes a header before each resource. An executable uses a
resource table to maintain alist of resources.

140 — Windows Undocumented File Formats

Listing 7.1 RES2RC.C— Convertsa .RESfile
toan .RCfile.

/***t************
*

PROGRAM: RESZRC.C

PURPDSE: Converts & .RES file to an .RC file.

Chapter 7. Resource {.RES) File Format, from Undocumented Windows

*

*

*

*

* Copyright 1997, Mike Wallace and Pete Davis

*

*

* File Formats, published by R&D Books, an imprint of Miller Freeman, Inc.
*

**********i***t*****,

#include “restypes.h”

[ErAkEkkkkkkdhkhhkkkkhkkriokkelkkidtkdhkdhhhkdhrrirrtst

Read a byte from infile

TR de R AR A Aok e ok ok Aok Aok ok Ak ok Ak
BYTE get_byte(FILE *infile) {
BYTE ch;

fread(&ch, sizeof(BYTE), 1, infile);
return(ch);

} /* get_byte - end */

/**t

Read a word from infile
******t****t*****************************t**********/

WORD get_word(FILE *infile) {
WORD num;

fread(&num, sizeof(WORD), 1, infile);
return{num};

} /* get_word - end */

/t**

Write out an integer to outfile
t*********/

void write_number(int num, FILE *autfile)} {

fprintf({ outfile, "%d ", num);

} /* write_number - end */

Resource (.RES) File Format — 141

Listing 7.1 (continued)

/*******************t*******************************

Write out a word (unsigned short integer) to outfile
*******************t********************************/

void write_word(WORD num, FILE *outfile} {
fprintf(outfile, "Zhu”, num);

} /* write_word - end */

JHedededededededededede dedededrdedededede dededek ek gk dedndeiedokokokokok kdedeod dodok o deodeke ke

Write out a dword (unsigned long) to outfile
**/

void write_dward(DWORD num, FILE *outfile) {
fprintf(outfile, "¥lu”, num};

} /* write_dword - end */

I******************************t********************

Write out a character to outfile
**j

void write_char{char ch, FILE *gutfile} {

/* if the character is null, write out the string "\Q" */
if {ch == *\D')

fprintf(outfile, "\\0"};
else

fprintf(outfile, "%c®, ch);

} /* write_char - end */

Foksekedekekdededde s ddodiedrdededcded dedededede dededeiodeie dek ook o ek ek

Write out an unsigned character to outfile
**/

void write_byte(BYTE ch, FILE *outfile) {
fpute(ch, outfilel);
} /% write_byte - end */

/'!(******'k****'k**************************************

Write out a string to outfile, then add a newline
**/

void writetine{char *string, FILE *outfile) {

if{strlen(string))
fputs(string, outfile};

fputc(CR, outfile};
fputc(KL, outfile):

F /* writeline - end */

142 — Windows Undocumented File Formats

Listing 7.1 (continued)

/***

Write out a string to outfile
**f

void writestring{char *string, FILE *gutfile) {

if(strlen(string)}
fputs(string, outfile);

1 /* writestring - end */

/************************************t**************

Increase the INDENT variable value by INDENT_SPACES

**;

void increase_indent(void) {
INDENT += INDENT_SPACES:

} /* increase_indent - end */

/***

Decrease the INDENT variable value by INDENT_SPACES

**/
void decrease_indent{ void) {

PT(CINDENT -= INDENT_SPACES) < 03
INDENT = O:

} /* decrease_indent - end */

/***
Write out INDENT spaces to outfile
**/
void write_indent(FILE *outfile) [
int n;

for{n = INDENT; (n); --n}
write_char(' ', outfile):

} /* wWrite_indent - end */

Resource (.RES) File Format — 143

Listing 7.1 (continued)

/**********t**

If the last stringtable wasn't closed, do so now.
**/

void finish_off_stringtable(FILE *outfile) (

if {StringCount)
writeline{"}*, outfile);

} /* finish_off_stringtable - end */

/***

Get name of custom resource
**/

void get_custom_type(BYTE ch, FILE *infile, FILE *outfile) §

while(ch '= Ox00)
write_char(ch, outfile};
ch = get_byte{infile);

}

1 /* get_custom_type - end */

/***

Get the resource name from the .res file (infile)
**/

DWORD write_item text(FILE *infile, FILE *outfile) |

BYTE ch;
DWORD 1ength;

ch = get_byte(infile);

if(ch = 0x00) return{l);
writestring("\"", outfile);
length = 1;
while{ch != 0x00) {

+length;

write_char{ch, outfile);
ch = get_byte(infile):
!
writestring("*", outfile};
return(length);

) /* write_item text - end */

144 — Windows Undocumented File Formats

Listing 7.1 (continued)

/***

Returns the first new filename of the form
<prefixd#. <suffix>

*********t*************************t***********ﬂ****!
char *get_data_filename(char *prefix, char *suffix) {

FILE *fp:

WORD number;

char fname[13];

char fname_start[3]:
char fname_end{5]:
int name_length;

/* form the prefix to the new filename */

name_length = (strlen{prefix) > 2) 7 2 : strlen{prefix):
strnecpy(fname_start, prefix, name_length):
fname_start[name_length] = '\(}';:

/* form the suffix to the new filename */
fname_end(0] = '.";
name_length = {(strlen{suffix} > 3) 7 3 : strlen(suffix);
strncat{ fname_end, suffix, name_length}:
fname_end[name_length + 11 = *\0";
/* Keep forming new filenames until you get to one you can't open */
number = 0;
sprintf{ fname, "%s¥uls”™, fname_start, numbar, fname_end);
while{(number < 1000) && {((fp = fopen({ fname, "r")) i= NULL)) {
fclose(fp);
+number:
sprintf{ fname, "¥s¥u%s", fname_start, number, fname_end);
}

if(pumber = 1000)
frname[0] = "\0';

return{fname};

P /* get_data_filename - end */

,*i**************************i****i*****************

Write out reslen bytes of data to datafile
**f

void write_data{ FILE *infile, FILE *datafile, DWORD reslen) {
BYTE ch;

ch = get_byte(infile):
while{reslen) {
fputc(ch, datafile);
if(--resien)
ch = get_byte(infile);
H

} /* write_data - end */

Resource (.RES) File Format — 145

Listing 7.1 (continued)

/***

Retrieves the length of the resource from the .res file
**/

DWORD get_resource_length{FILE *infile) {
DWORD reslen;

fread(&reslen, sizeof(DWORD), 1, infile):
return(resien);

} /* get_resource_length - end */

/***

Get the resource name from the .res file {infile)
***************‘**‘*************t*********************/

void get_resource_name(FILE *infile} {

int resname;
BYTE ch;

ch = get_hyte(infile}:
if{ch = OxFF} {
fread(&resname, sizeof(int), 1, infile);
}
else [
ch = get_byte(infile);
while((!feof(infile)) && (ch != 0x00)) {
ch = get_byte(infile);
}
}

} /* get_resource_name - end */

/*********t***t****t********************************

Get the version name from the .res file (infile)
**/

void get_version_name(FILE *infile) |

int count=1; /* record number of chars read */
BYTE ch;

ch = get_byte(infile);
while((!feaf(infile)) && (ch != 0x00)) (
+count ;
ch = get_byte{infile); 1}

146 — Windows Undocumented File Formats

Listing 7.1 (continued)

/* Ensure number of characters read is a multiple of 4, */
/* According to the MS documentation, this is the format. */
/* See "MS Windows 3.1 Programmer's Reference” Vol.4, p.9% */
count = count % 4;
count = (count > Q) 7 (4 - count} : O;
while ((!feof(infile}) && (count > 0)) [

¢h = get_byte(infile);

--count;
1

} /* get_version_name - end */

]***

Get the resource number from the .ras file {infile)
**/

WORD get_resource_number{FILE *infile) (

WORD resname = 0;
BYTE ch;

¢h = get_byte(infile);
if(ch = OxFF) {
resname = get_word{ infile };
H
else {
ch = get_byte(infile);
while((!feof(infile)) &% (ch != 0x00}) {
ch = get_byte(infile);
H
}

return{resname};
} /* get_resource number - end */

/***

Get the resource name from the .res file (infile)
t*******/

void write_resource_name(FILE *infile, FILE *outfile) {

int resname;
BYTE ch;

writetine("*, outfile);

Resource (.RES) File Format — 147

Listing 7.1 (continued)

ch = get_byte(infile):
if(ch = OxFF) { fread(&resname, sizeof(int), 1, infile);
write_number(resname, outfile):
}
else |
write_char{ch, outfile);
ch = get_byte(infile);
while((!feof(infile)) && (ch != 0x00)) {
write_char(ch, outfile);
ch = get_byte(infile);

}

¥} /* write_resource_name - end */

/***

Get the version number from the .res file (infile)
**/

void write_version_number(FILE *infile, FILE *outfile) {

int resname;
BYTE ch;

writeline{ "", outfile};

ch = get_byte(infile);
1f(ch == DxFF) {
fread(&resname, sizeof(int), 1, infile):
if (resname = (int} VS_VERSION_INFQ)
writestring("VS_VERSION_INFO ", outfile);
else .
write_number(resname, outfile);
}
else {
write_char(ch, ocutfile):
ch = get_byte(infile): while((!feof(infile)) && (ch = 0x00}) {
write char{ch, outfile};
ch = get_byte(infile);
]
}

} /* write_version_number - end */

148 — Windows Undocumented File Formats

Listing 7.1 (continued)

!*********************************ﬁ*********t*******

Get the memory flags for the current resource.
*****t**/

void get_mem_flags(FILE *infile) {

/* Save the flag in a giobal variable. 3$ee the header filel */
prev_mem_flag = get_word(infile }:
return;

} /* get_mem_flags - end */

JRFA Kk k ke kkhkhkkhhdkddhdkk ko dokkkkkkdhook ko ki ik

Write the memory flag values for the "special™
resources - cursors and jcons, They're different
than the rest in that 0x20 means "discardabie”,
not "pure”.
i***/

void write_special_mem_flag_values(WORD memtype, FILE *putfile) {

iftmemtype & 0x40)}

writestring(“ PRELOAD", outfile};
else

writestring(" LOADONCALL™, outfile);

ifimemtype & 0x10}

writestring{" MOVEABLE", outfile);
else

writestring{"™ FIXED", outfile);

if{memtype & 0x20}
writestring{” DISCARDABLE", outfile);

} /* write_special_mem_flag_values - end */

/***************************************i***********

Hrite the memory flag values for the current resource.
********t**********************************t********!

void write_mem_flag _values(WORD memtype, FILE *outfile) { -

if(memtype & 0x40}

writestring(” PRELOAD™, outfile);
else

writestring{" LOADONCALL", outfile};:

if{memtype & 0x10)

writestring(™ MOVEABLE®, outfile);
else

writestring(* FIXED", outfile);

Resource (.RES) File Format— 149

Listing 7.1 (continued)

/* This one isn't really used - "PURE" doesn't seem to make a difference.

if(memtype & 0x20}
writestring(® PURE", outfiie);
*/

if(memtype & 0x1000)
writestring(™ DISCARDABLE", outfile):

} /* weite_mem_flag_values - end */

/***

Get the memory flags for the current resource.
******************************t*********************/

void write_mem _flags(FILE *infile, FILE *outfile} {
WORD memtype;

memtype = get_word(infile);
write_mem_flag _values{ memtype, outfile);

P /* write_mem_flags - end */

/***

Process the cursor resource
*******************************t********************/

void process_cursor{ FILE *infile) {

DHORD reslen;

/* Skip it for now. You'll come back and get the information */
/* when you hit the group cursor resource - that has the header */
/* that has to go at the start of the .cur file, *f

get_resource_name{infile);
get_mem_flags(infile);
reslen = get_resource_length(infile);

fseak(infile, reslen, 1);

) /* process_cursor - end */

150 — Windows Undocumented File Formats

Listing 7.1 (continued)

j****************************t**********************

Process the bitmap resource
**/

void process_bitmap(int restype, FILE *infile, FILE *outfile) |

DWORD resten;
BITMAPFILEHEADER bmfh;
char datafilename[13];
FILE *datafile;

write_resource name(infile, outfile);
write_char(’ ', outfile);
writestring(res_array[restype], outfile):
write_mem_flags(infile, outfile);
write_char(' *, outfile);

reslen = get_resource_length{infile};

strepy(dataftilename, get_data_filename("BM", "BMP*));
if(strlen(datafilename} = 0} {
writeline{"<Unable to open output file>", autfile):
fseek(infile, reslen, 1};
return;
}

writeline(datafilename, outfile };
if({datafile = fopen{datafilename, "wb"}) == NULL) {

printf{"Unable to open file ¥s\n", datafilename);
fseek(infile, reslen, 1);:

return;
}
bmfh_bfType = Ox4D42;
bmfh.bfSize = reslen + sizeof(BITMAPFILEHEADER);

bmfh.bfReservedl = 0;

bmfh.bfReserved? = 0;

bmfh.bfOffBits = Ox76L;

furite(&bmfh, sizeof (BITMAPFILEHEADER), 1, datafile);

write_data(infile, datafile, reslten);
fclose{ datafile }:

} /* process_bitmap - end */

Resource (.RES) File Format— 151

Listing 7.1 (continued)

f***********************t***************************

Process the flags for a popup menu
**************t***t*********************************f

void process_popup_flags(DWORD menuitem, FILE *outfile) {

if(menuitem & MF_GRAYED)
writestring(", GRAYED", outfile):
if(menuitem & MF_DISABLED)
writestring(®, INACTIVE", outfile);
if{menuitem & MF_CHECKED)
writestring(", CHECKED", cutfile):
if{menuitem & MF_MENUBARBREAK)
writestring(", MENUBARBREAK", outfile);
if(menuitem & MF_MENUBREAK)
writestring(”, MENUBREAK", cutfile);
if(menuitem & MF_END) |
}

} /* process_popup_flags - end */

/***

Process the flags for & normal menuitem
********t********************************t*********t/
void process_menuitem flags(DWORD menuitem, FILE *outfile) {

if{menuitem & MF_GRAYED)
writestring(", GRAYED", outfile);
if{menuitem & MF_DISABLED)
writestring(”, INACTIVE™, outfile);
if{menuitem & MF_CHECKED)
writestring(®, CHECKED", outfile};
ifi{menuitem & MF_MENUBARBREAK}
writestring{", MENUBARBREAK", outfile};
if(menuitem & MF_MENUBREAK)
writestring(®, MENUBREAK", outfilej;
if(menuitem & MF_HELP)
writestring{™, HELP", outfile);
if(menuitem & MF_END) {
writeline("", outfile):
decrease_indent();
write_indent{outfile);
writestring("}", outfile):
H

} /* process_menuitem_flags - end */

152 — Windows Undocumented File Formats

Listing 7.1 (continued)

f***

Process a normal menu resource
**/

DWORD process_normal_menu(OWORD menuitem, FILE *infile, FILE *outfile) [

WORD menuid;
DWORD bytesread;

fread(&menuid, sizeof{menuid), 1, infile);
bytesread = sizeof (menuid};

increase_indent()}:
write_indent{outfile);

writestring(™MENUITEM ", outfile);

bytesread += write_item text{ infile, outfile);

if({bytesread - 1} > sizeof(menuid)) {
writestring(®, ", outfile};
write_word{ menuid, outfile};
process_menuitem_flags{menuitem, ocutfilte);

}

else if(({!menuid} && (lmenuitem}) {
f* *** pramove the leading quote from above */
writestring{"SEPARATOR", outfile);

)

writeline("", outfile);

decrease_indent(};
return{bytesread);
} /* process_normal_menu - end */

/***********1***************************************

Process a popup menu rasource
**/

DWORD process_popup_menu{DWGRD menuitem, FILE *infile, FILE *outfile) {
DWORD bytesread;

increase_indent(};
write_indent{outfile);

writestring("POPUP ", outfile):

bytesread = write_jtem_text{ infile, outfile};
process_popup_flags(menuitem, outfile);
writetine(" {", outfile);

Resource (.RES) File Format — 153

Listing 7.1 (continued)

return({bytesread);

} /* process_popup_menu - end */

j***

Process the menu resource
**/

void process_menu(int restype, FILE *infile, FILE *outfile} {

DMORD reslen:

DMORD bytesread;

WORD menuitem;

WORD popupmenuitem;
struct MenuHeader menuhdr;

write_resource_name(infile, outfile);
write_char{' ', outfile);
writestring(res_array[restype], outfile);
write_mem_flags(infile, outfile);
writeline(" {", outfile);

reslen = get_resource_length{infile};

fread{&menuhdr, sizeof(struct MenuHeader), 1, infile);
reslen -= sizeof(struct MenuHeader):

fread(&menuitem, sizeof{menuitem), 1, infile);
reslen -= sizeof(menuitem);
while(resten} {

if(menuitem & MF_POPUP} {

popupmenuitem = menuitem;

bytesread = process_popup_menu{ menuitem, infile, outfile):
}
else

bytesread = process_normal_menu(menuitem, infile, ocutfile);

reslen -= bytesread;

if(reslen) {
fread{8menuitem, sizeof(menuitem}, 1, infile);
resten -= sizeof(menuitem);

}

else 1f(popupmenuitem & MF_END} /* check last popup was the end */
writeline("}", outfile);

)

} /* process_menu - end */

154 — Windows Undocumented File Formats

Listing 7.1 (continued)

f**************************************t*******t****

Process the icon resource
*********t****t**********************************t**/

void process_icon{ FILE *infile) {
BWORD reslen;

/* Skip it for now. You'll come back and get the information */
/* when you hit the group icon resource - that has the header */
/* that has to go at the start of the .ico file. *f

get_resource_name(infile);
get_mem_flags(infile);
reslen = get_resource_length{infile);

fseek(infile, reslen, 1);

} /* process_icon - end */

/***

Write the dialog box size and shape information
**/

void write_dialog_sizes(DIALOGHEADER dlg_hdr, FILE *gutfile) {

write_char(* ', outfile);

write word{ dlg_hdr.x, outfile };
writestring(", ", outfile);
write_word(dlg_hdr.y, outfile);
writestring(", ", outfile);
write_word(dlg_hdr.width, outfile);
writestring(®, ", outfile);
write_word{ dlg_hdr.height, outfile);
writeline("", cutfile};

) /* write_dialog_sizes - end */

/**********************t****************************

Check if the style is true; if so, write it out
***********************t********t*******************/

void check_for_style{ DWORD style, char *name, FILE *outfile) |

static WORD first_style = 1;
static WORD 1ine_size = 6; /* Tength of 'STYLE ' */

Resource (.RES) File Format — 155

Listing 7.1 (continued)

if (style) {

if {(first_styte} {
writestring("STYLE ", outfile);
first_style = 0;
}
else {
writestring(® | °, outfile);
line_size += 3; /* add lenght of ' | * */
)

/* this is an attempt to keep the line length reasonable */
if ((Vine_size + strlen{name)) > 75} {

writeline("", outfile);

line_size = 6;

writestring{"” ", outfile);
H

writestring(name, outfile);
line_size 4= strlen(name}:

) /* if (style) - end */

} /* check_for_style - end */

/***

Write the dialog box style information
***t**/

void write_dialog_style(DIALOGHEADER dlg_hdr, FILE *outfile) [
DWORD style:
style = dlg_hdr.15tyle;

WS_OVERLAPPED, "WS_OVERLAPPED™, outfile
WS_POPUP, “WS_PGPUP", outfile
WS_CHILD, “WS_CHILD", outfile
WS_CLIPSIBLINGS, "WS_CLIPSIBLINGS®, outfile
W
W
W

check_for_style(style)
)
)
):
S_CLIPCHILDREN, "WS_CLIPCHILDREN", outfile);
).
)
)
)

&
check_for_style(style &
check_for_style(style &
check_for_style(styie &
check_for_style(style &
check_for_style(style & WS_VISIBLE, "WS_VISIBLE", outfile
check_for_style(style & WS_DISABLED, "WS_DISABLED", outfile
check_for_style(style & WS_MINIMIZE, "WS_MINIMIZE", outfile
check_for_style(style & WS_MAXIMIZE, "WS_MAXIMIZE", outfile

156 — Windows Undocumented File Formats

Listing 7.1 (continued)

check_for_style(style & WS_BORDER, "WS_BORDER", outfile);
check_for_style{ style & WS_DLGFRAME, "WS_DLGFRAME", outfile);
check_for_style{ style & WS_VSCROLL, "WS_VSCROLL", outfile };
check_for_style{ style & WS_HSCROLE, "W5_HSCROLL", outfile);
check_for_style({ style & WS_SYSMENU, "WS_SYSMENU™, outfile };
check_for_style({ style & WS_THICKFRAME, “WS_THICKFRAME", outfile }:
check_for_style{ style & WS_MINIMIZEBOX, “WS_MINIMI[ZEBOX", outfile });
chack_for_styla(style & WS_MAXIMIZEBOX, *"WS_MAXIMIZEBOX", outfile }:
check_for_style(style & WS_GROUP, "WS_GROUP", outfile);
check_for_style(style & WS_TABSTOP, "WS_TABSTOP", outfile);

check_for_style(style & WS_EX_TOPMOST, "WS_EX_TOPMOST", outfile);
check_for_styte(style & WS_EX ACCEPTFILES, "WS_EX_ACCEPTFILES™, outfile):

check_for_style(style & WS_EX_NOPARENTNOTIFY, "WS_EX_NOPARENTHOTIFY™,
outfile J);

check_for_style(style & DS_ABSALIGN, "DS_ABSALIGN", outfile
check _for_style{ style & DS_SYSMODAL, "DS_SYSMODAL", outfile
check_for_style{ style & DS_LOCALEDIT, "DS_LOCALEDIT", outfile
check_for_style{ style & DS_SETFONT, "DS_SETFONT", outfile
check_for_style{ style & DS_MODALFRAME, "DS_MODALFRAME®, outfile
check_for_style(style & DS_NOIDLEMSG, "DS_NOIDLEMSG™, outfile

— e Nt et et

writeline("", outfile);

} /* write_dialog_style - end */

f*************************t**t*************i********

Write the dialog box menu name
***********************************t******t*********/

void write_dialog_menu(FILE *infile, FILE *outfile) {

BYTE ch;
WORD menuid;

/* Read the first character and check for non-zero start byte */
ch = get_byte(infile);

/* if first byte is Ox00, no menu name */
if{ch I= 0x00) {

writestring{"MENU *, outfile):
if{ch == 0xFF) {
/* menu id 1 a number */
menuid = get_word{ infile };
write_word{menuid, outfile);
}

Resource (.RES) File Format — 157

Listing 7.1 (continued)

else
get_custom_type{ ch, infite, outfile):

writeline(™", outfile};
}

} 7% write_dialog menu - end */

[Rkdkkk ok ook kdokk kb ki kk Rk kkddkdkdkdokkrkdkkhhkk ki

Write the dialog box class name
**/

void write_dialeg_class(FILE *infile, FILE *outfile) {
BYTE ch;

/* Read the first character and check for non-zerc start byte */
ch = get_byte(infile);

/* get the resource type */

if{ch 1= 0x0 {
writestring("CLASS \"", outfile):
get_custom_type(ch, infile, outfile);
writeline("*", outfile};

)

} /* write_dialog_class - end */

/***
Write the dialog box font information
************************************t**************tf
void write_dialog_font(FILE *infile, FILE *gutfile} {
WORD pointsize;
writestring("FONT ", outfile);
/* read and write the font point size */
pointsize = get_word(infile);
write word{ pointsize, outfile);
writestring(®, ", outfile):

/* write the font name */
(void) write_item_text(infile, outfile);

writeline{"", outfile);

} /* write dialog_font - end */

158 — Windows Undocumented File Formats

Listing 7.1 (continued)

/******t**

Write the dialoeg box caption
**/

void write_dialog_caption(FILE *infile, FILE *outfile) (
BYTE ch;

/* Read the first character and check for non-zero start byte */
ch = get_hyte(infile};

/* get the resource type */

if{ch != 0x00) {
writestring("CAPTION \"", outfile):
get_custom_type{ ch, infile, outfile);
writeline("™\"", outfile);

}

} /* write_dialog_caption - end */

/*******************t***********************ﬁ*******

Write the start of the *CONTROL" string

**/

void write_control_header(char *text, WORD id, FILE *outfile) {
write_indent{outfile);

writestring{ CONTROL **, outfile);
writestring{ text, outfile):
writestring("\", ", outfile);

/* check if id is -1 */
if (id != OxFFFF}

write_word{ id, outfile);
else

writestring{ *-1", outfile);

writestring(", *, outfile)};

} /* write_control_header - end */

Resource (.RES) File Format — 159

Listing 7.1 (continued)

/****************H********************t************

Write the end of the "CONTROL" statement.

EEFRKKKRENXNH RN Fhddokddodkoddokoddkkd ko kokhh kb sk kb kkkik f

void write_controi_end(CONTROLDATA ctrl, FILE *outfile} {
char string(50]; ‘

/* write the size/dimensions of the object */

write_indent(outfile):

sprintf{ string, "%hu, %hu, Zhu, Thu", ctri.x, ctri.y.
ctrl width, ctrl.beight),

writeline{ string, outfile);

} /* write_control_end - end */

‘,' 'l!**ir‘.l'Q***i‘*‘*—*ﬂ***‘****’*****i’***ﬂ***********MQ***‘*

Write the style for the dialog box
*t************‘k'ﬁ******‘***‘*********t*i*************t*/
void check_for_dlg_style(DWORD style, WORD *first_style, WORD *Yine_len,
char *style_name, FILE *outfile) {

if (style) {

/* Af first_style = 2, write out a leading comma */
if (*first_style = 2} {

writestring(™, *, outfilte);

*first_style = 1.
}

if (*first_style = 1) {

/* this is the first style, so just write out the style name */
writestring(style_name, outfile):

*first_style = 0;

*Tine_len += strien{style_name):

}
else {

/* this is after first style, so write *|' for concat */
writestring(" i ", outfile);
*1ine_ten += (3 + strien{style_name));

/* try to keep each line to a reasonable length */
if (*1ine_len >= 75) {

writeline(™", outfile);

write_indent(outfile);

*1ing_len = strlen{style_name);
}

/* write out the name of the style */
writestring(style_name, ocutfile):

Yy /* if (*first_style} / else - end */
}of* if {styie) - end */
] /* check_for_dig_style - end */

160 — Windows Undocumented File Formats

Listing 7.1 (continued)

f*********************k*****************************

Process the button control in the dialog box
x*/

void process_control_button(WORD style, FILE *outfile) {

WORD first_style = 1:
WORD Tline_len = 0:

writestring{ "\"buttom\", ", outfile};

check_for_dig_style{ BS_LEFTYEXT & style, &first_style, &line_len,
"BS_LEFTTEXT", outfile);

check_for_dlg_style{ WS_TABSTOP & style, &first_style, Kline_ien,
"WS_TABSTOP", outfile);

check_for_dlg_style{ WS_GROUP & style, &first_style, &line_len,
"WS_GROUP™, outfile J;

check_for_dlg_style{ WS_DISABLED & style, &first_style, &line_len,
"WS_DISABLED", outfile);:

if{first _style = 0}
writestring(® | *, outfile):

/* checked for non-exclusive properties, now clear out high bits */
style &= OxF;

if (style = BS_DEFPUSHBUTTON)
writestring("BS_DEFPUSHBUTTON", outfile):
else if {style = BS_CHECKB(X)
writestring("BS_CHECKBOX", outfile);
else if (style == BS_AUTOCHECKBOX)
writestring("BS_AUTOCHECK80X", outfile);
else if {style = BS_RADIOBUTTON)
writestring("BS_RADIOBUTTON®, cutfile);
else if (style = BS_3STATE)
writestring("BS_3STATE", outfile);
else if {style = BS_AUTO3STATE)
writestring("BS_AUTO3STATE", outfile);
else if (style = BS_GROUPBOX)
writestring("BS_GROUPBOX™, outfile);
else if {style = BS_USERBUTTON)
writestring("BS_USERBUTTON", outfile):
ekse if {style = BS_AUTQRADIOBUTTON)
writestring("BS_AUTORARTQBUTTON", outfile);
else if {style = BS_OWNERDRAW}
writestring("BS_OWNERDRAW", cutfile);
else
writestring("BS_PUSHBUTTON", outfile):

writeline(",", outfile):

} /* process_control_button - end */

Resource (.RES) File Format — 161

Listing 7.1 (continued)

/****t**

Process the edit control in the dialog box

**/

void process_control_edit(CONTROLDATA ctrl, FILE *outfile) |

WORD first_style = 2;

char string[100];
WORD 1ine_len = 0;
DWORD style;

style = ctrt.15tyle;

write_indent({outfile);

sprintf{ string, "EDITTEXT %hu, %hu, %hu, Zhu, %hu™, ctrl.id, ctrl.x,
ctrl.y, ctrl.width, ctrl.height);

Tine_len = strlen{string):

writestring{ string,
check_for_dlg_style(
check_for_dig_style(
. check_for_dlg_style(
check_for_dlg_style(
check_for_d1g_style(
check_for_dlg_styie(
check_for_dlg_style(
check_for_dlg_stylel(
check_for_d1g_style(
check_for_dig_styte(
check_for_dlg_stylel(
check_for_dlg _style(

check_for_dlg_style(

outfile);

ES_LEFT & style, &first_style, &line_len,
"ES_LEFT", outfile J:

ES_CENTER & style, &first_style, &line_len,
"ES_CENTER", outfile J;

ES_RIGHT & style, &first_style, &line_len,
"ES_RIGHT", outfile };

ES_LINE & style, &first_style, &line_len,
"ES_MULTILINE", outfile);

ES_UPPERCASE & style, &first_style, &line_len,
"ES_UPPERCASE", outfile);

ES_LOWERCASE & style, &first_style, &line_len,
"ES_LOWERCASE", outfile);

ES_PASSWORD & style, &first_style, &line_len,
"ES_PASSWORD", outfile }:

ES_AUTOVSCROLL & style, &first_style, &line_len,
"ES_AUTOVSCROLL", cutfile);

ES_AUTOHSCROLL & style, &first_style, &line_len,
"ES_AUTOHSCROLL", outfile };

ES_NOHIDESEL & style, &first_style, &line_len,
"ES_NOHIDESEL", outfile };

ES_OEMCONVERT & style, &first_style, &line_len,
"ES_OEMCONVERT™, outfile);

ES_READQONLY & style, &first_style, &line_len,
"ES_READONLY", outfile);

ES_WANTRETURN & style, &first_style, &line_len,
"ES_WANTRETURN", outfile);

162 — Windows Undocumented File Formats

Listing 7.1 (continued)

check_for_d1g style(WS_TABSTOP & style, &first_style, &line_len,
"WS_TABSTOP", outfile);

check_for_dlg_style(WS_GROUP & style, &first_style, &line_len,
“WS_GROUP™, outfile);

check_for_dlg_style{ WS_VSCROLL & style, &first_style, &line_len,
"WS_VSCROLL™, outfile };

check_for_dlg_style{ WS_HSCROLL & style, &first_style, &line_len,
"WS_HSCROLL™, outfila);

check_for_dlg_style{ WS_DISABLED & style, &first_style, &line_len,
"WS_DISABLED", outfile);

writetine("", outfile);

} /* process_cantrol_edit - end */

/***

Process the static control in the dialog box
*************************************t**************/

void process_control_static(DWORD style, FILE *outfile)} {

WORD first_style = 1;
WORD 1ine_len = 0O:

writestring("\"static\", ", outfile);

check_for_dlg_style(SS_NOPREFIX & style, &first_style, &line_len,
"SS_NOPREFIX", outfile);

check_for_dlg_style{ WS_GROUP & style, &first_style, &line_len,
"WS_GROUP™, outfile);

check_for_dlg_style{ WS_TABSTOP & style, &first_style, &line_len,
"WS_TABSTOP", outfile):

if(first_style == 0}
writestring(” | ", outfile);

style &= 0OxF;

Resource (.RES) File Format — 163

Listing 7.1 (continued)

if (style == S5_CENTER)}
writestring("SS_CENTER". ocutfile);
else if { style = SS_RIGHT)
writestring{ *SS_RIGHT®, outfile);
else if { style == SS_ICON)
writestring("SS_ICON", outfile);
else if { style = SS_BLACKRECT)
writestring(“SS_BLACKRELT™, outfile);
else if (style = SS_GRAYRECT)
writestring("SS_GRAYRECT", outfile);
else if (style =— SS_WHITERECT)}
writestring("SS_WHITERECT", outfile):
else if (style == SS_BLACKFRAME)
writestring{ "SS_BLACKFRAME®, outfiie);
else if (style == 55 _GRAYFRAME)
writestring{ "SS_GRAYFRAME", outfile);
else if (style =— SS_WHITEFRAME)
writestring("SS_WHITEFRAME", outfile);
else if (style =~ SS_SIMPLE)
writestring("SS_SIMPLE", outfile):
else if (style = SS_LEFTNOWORDWRAP)
writestring("SS_LEFTNOWORDWRAP", outfile);
else
writestring{ "SS_LEFT", ocutfile);

writeline(",", -outfile);

} 7* process_control_static - end */

f***

Process the Tist box control in the dialog box
**/

void process_control_listbox(CONTROLDATA ctrl, FILE *outfile) (

WORD first_style = 2;
char string[100];
WORD Tine_len = 0;
DWORD style:

style = ¢ctrl.15tyle;

write_indent(outfile);

sprintf(string, "LISTBOX %hu, Zhu, %Zhu, Thu, Zhu", ctrl.id, ctrl.x,
ctrl.y, ctrl.width, ctrl.height);

line_len = strlen{string):

writestring{ string, outfile);

164 — Windows Undocumented File Formats

Listing 7.1 (continued)

check_for_dlg _style(LBS_NOTIFY & style, &first_style, &line_len,
"LBS_NOTIFY", outfile);
check_for_dlg_style(LBS_SORT & style, &first_style. &line_len,
"LBS_SORT", outfile };
check_for_dlg_style{ LBS_NOREDRAW & styte, &first_style, &line_len,
"LBS_NOREDRAW", outfile }:
check_for_dlg_style{ LBS MULTIPLESEL & style, &first_style, &line_len,
"LBS_MULTIPLESEL", cutfile);
check_for_dlg_style{ LBS_OWNERDRAWFIXED & style, &first_style, &line_len,
"LBS_OWNERDRAWFIXED", outfile);
check_For_dlg_style(LBS_OWNERDRAWVARIABLE & style, &first_style,
&1ine_len, "LBS_OWNERDRAWVARIABLE™, outfile }:
check_for_dig_style(LBS_HASSTRINGS & style, &first_style, &line_len,
"1B5_HASSTRINGS", ocutfile);
check_for_dig_style{ LBS USETABSTOPS & style, &first_style, &line len,
"1 BS_USETABSTOPS", outfile);
check_for_dlg_style{ LBS_NOINTEGRALHEIGHT & style, &first_style,
&line_len, “LBS_NOINTEGRALHEIGHT", outfile):
check_for_dto_style(LBS_MULTICOLUMN & style, &first_style, &line_len,
"LBS_MULTICOLUMN", outfile);
check_for_dlg_style(LBS WANTKEYBOARDINPUT & style, &first_style,
&1ine_len, "LBS_WANTKEYBOARDINPUT™, ocutfile);
check_for_dlg_style(LBS_EXTENDEDSEL & style, &first_style, &line_len,
"LBS_EXTENDEDSEL", outfile };
check_for_dlg_style(LBS_DISABLENOSCROLL & style, &first_style,
&line_Jen, "LBS_DISABLENOQSCROLL", outfile);

check_for_dlg_style(WS_BORDER & style, &first_style, &line_len,
"WS_BORDER", outfile };:

check_for_dlg_style(WS_VSCROLL & style, &first_style, &line_len,
"WS_VSCROLL", outfile)

writeltine("", outfile);

V /* process_contrpl_listbhox - end */

/*k***************‘k*******‘k*'k******‘k****‘k‘k******'k***

Process the scroll bar control in the dialog box
*********************i’******t***********************/

void process_control_scrollbar(CONTROLDATA ctrl, FILE *outfile) {

WORD first_style = 2:
char string[100];
WORD 1ine_len = {;
DWORD style;

Resource (.RES) File Format — 165

Listing 7.1 (continued)

style = ctrl.15tyle;

write_indent{outfile}:

sprintf{ string, "SCROLLBAR %hu, %hu, %hu, Zhu, Zhu®, ctrl.id, ctrl.x,
ctri.y, ctri.width, ctrl.height};

Tine_len = strien(string}:

writestring(string, outfile);

check_for_dlg_style(SBS_HORZ & style, &first_style, &line_len,
"SBS_HORZ", outfile);

check_for_dlg_style{ SBS_VERT & style, &first_style, &line_len,
"SBS_VERT", outfile);

check_for_dlg_style{ SBS_TOPALIGN & style, &first_style, &line_len,
"SBS_TOPALIGN™, outfile):

check_for_dlg_style{ SBS_BOTTOMALIGN & style, &first_style, &line_len,
"SBS_ROTTOMALIGN", outfile);

check_for_dlg_style{ SBS_SIZEBOX & style, &first_style, &line_len,
"SBS_SIZEBOX", outfile };

check_for_d1g_style{ WS_TABSTOP & style, &first_styie, &line_len,
"WS_TABSTQPR", outfile);

check_for_dlg_style{ WS_GROUP & style, &first_style, &line_len,
"WS_GROUP”, outfile };

check_for_dlg_style(WS_DISABLED & style, &first_style, &line_len,
"WS_DISABLED", outfile):

writeline("", outfile};

} /* process_control_scrollbar - end */

/***

Process the combo box contral in the dialog box
**j

void process_control_combobox{ CONTROLDATA ctri, FILE *outfile) f{

WORD first style = 2;
WORD 1ine_Ten = O;
char string[100];
DWORD style;

style = ctrl.15tyle;

write_indent(outfile);

sprintf(string, "COMBOBOX %hu, %hu, %hu, %hu, Zhu", ctrl.id, c¢trl.x,
ctrl.y, ctrl.width, ctrl.height);

Tine_len = strlen{string);

writestring{ string, outfile};

166 — Windows Undocumented File Formats

Listing 7.1 (continued)

check_for_d1g_style(
check_for_dlg_style(
check_for_dlg_style(
check_for_dlg_style(
check_for_dlg_style(
check_for_dig_style(
check_for_dig_style{
check_for_dig_style(
check_for_dlg_style(

check_for_dtg_style{

check_for_dlg_style(
check_for_dlg_style(
check_for_dlg_style(

check_for_dlg_style(

CBS_SIMPLE & style, &first_style, &line_len,
"CBS_SIMPLE", outfile };

CBS_DROPDOWN & style, &first_style, &line_len,
"CBS_DROPDOWN", outfile);

CBS_OWNERDRAWFIXED & style, &first_style, &line_len,

"CBS_OWNERDRAWFIXED", outfile);

CBS_OWNERDRAWVARIABLE & style, &first_style,
&line_len, "CBS_OWNERDRAWVARIABLE®, outfile);

CBS_AUTOHSCROLL & style, &first_style, &line_len,
"CBS_AUTGHSCROLL™, outfile);

CBS_OEMCONVERT & style, &first_style, &line_len,
"CBS_OEMCONVERT", outfile };

CBS_SORT & style, &first _style, &line len,
"CBS_SORT", outfile)

CBS_HASSTRINGS & style, &first_style, &line_len,
"CBS_HASSTRINGS™, outfile };

CBS_NOINTEGRALHEIGHT & style, &first_style,
&1ine_len, "CBS_NOINTEGRALHEIGHT", outfile);

CBS_DISABLENOSCROLL & style, &first_style,
&line_len, "CBS_DISABLENOSCROLL", outfile):

WS_TABSTOP & style, &first_style, &line_len,
"WS_TABSTOP™, outfile);

WS_GROUP & style, &first_style, &line_len,
"WS_GROUP", outfile);

WS_VSCROLL & style, &first_style, &line_len,
"WS_VSCROLL™, outfile):

WS_DISABLED & style, &first_style, &line_len,
"WS_DISABLED", outfile);

writeline("", outfile);

} /* process_control_combobox - end */

/***

Process each control in the ditalog box
***t**/

void process_control{ FILE *infile, FILE *outfilie } [

CONTROLDATA ctrl;
BYTE class_id;

BYTE ch;

char ctrl_text[260];
char ctrl_class[260];
WORD index = 0;

Resource (.RES) File Format — 167

Listing 7.1 (continued)

fread(&ctrl, sizeof(CONTROLDATAY, 1, infile):

/* read the class type {if 0x8?) or the string {otherwise) */

ch = get_byte(infile);
if (ch & OxBO} [
class_id = ch;
}
else {
class_id = 0x00;
while (ch i= 0Ox00} {
if (index < 260) {
ctrl_class[index] = ch;
+index;
1
ch = get_byte(infile};
]

)
ctrl_class[index] = '\0';

/* read the text field */
ch = get_byte{infile):
index = 0;
while (ch 1= 0x00) {
if (index < 260) {
ctrl_text[index] = ch;
++index;
)
ch = get_byte{infile};
}
ctri_text{index] = '\0';

/* read the extra 0xQ0 */
ch = get_byte(infile):
if {ch != 0x00) {
writestring{"Error ** ch =>" gutfile);
write_char(ch, outfile);
writeline("< - should be 00", outfile);
H

increase_indent(};
if (class_id & 0x80) {
switch (class_id) {

/* Control is a button */
case 0x80:

write_control_header{ ctri_text, ctrl.id, outfile)};

process_control_button(ctrl.1Style, outfile);
write_control_end(ctrl, outfile);
break;

168 — Windows Undocumented File Formats

Listing 7.1 (continued)

/* Contrel is an edit widget */

case 0x81:
process_control_edit(ctrl, outfile);
break:

/* Control is a static widget */
case 0x82:

write_control_header(ctrl_text, ctrl.id, outfile);
process_control_static(ctrl.]15tyle, outfile);

write_cantrol_end(c¢trl, outfile);
break:

/* Control is a listbox */

case 0x83:
process_control_Tlistbox({ ctrl, outfile }:
break;

/* Control is a scrollbar */

case 0Ox84:
process_control_scrollbar{ ctrl, outfile);
break;

/* Control is a combobox */

case (x85:
process_control_combobox(ctrl, ocutfile);
break;

default:
break:; /* Unknown type, so skip */

)
else {

; /* The resource type is unknown, so skip */
}

decrease_indent(};

} /* process_control - end */

Resource (.RES) File Format — 169

Listing 7.1 (continued)

/****************t**************************t*******

Process the dialog resource
*t**/

void process_dialog{int restype, FILE *infile, FILE *outfile} {
DIALOGHEADER d1g_hdr:
/* write the generic dialeg box info */
write_resource_name{infile, outfile):
write_char(” ', outfile);
writestring(res_array[restype], outfile);
write_mem_flags(infile, outfile);
/* get the dialog box resource length, and the dialeg box header */
(void) get_rescurce_length(infile);
fread(&dlg_hdr, sizeof(DIALOGHEADER), 1, infile);
write_dialog_sizes{ dlg_hdr, oqutfile);
write_dialog_style{ dig_hdr, outfile);
write_dialog_menu(infile, outfile);
write_dialog_class{ infile, outfile):
write_dialog_caption(infile, outfile);

if (dlg_hdr.15tyle & DS_SETFONT}
write_dialog_font(infile, outfile);

writeline("BEGIN", outfile):
while(dlg_hdr.bNumberdfitems) {
process_control{ infile, outfile);

d1g_hdr.bNumber(fItems -= 1;

writeline("END", outfile);

} /* process_dialog -~ end */

170 — Windows Undocumented File Formats

Listing 7.1 (continued)

’***

Process the string resource
t*f

void process_string{int restype, FILE *infile, FILE *outfile) {

WORD sID;
int index;
BYTE ch;

BYTE strlen;

siD = get_resource_number(infile};

if {StringCount == Q) |{
writeline{ "", outfile);
writestring(res_array[restype], outfile);
write_mem _flags{infile, outfile);
writeline(* (", outfile};

1

else {
get_mem_flags{infite);

i

++StringCount;
increase_indent(};
{void) get_resource_length(infile);

for{index = 0; index < 16; ++index) {
if{{strien = get_byte{infite)) != 0x00) {
write_indent(outfite);
sID = index + ((sID - 1) * 16):
write_word(sID, outfile);
writestring(*, *", outfile);
while{strlen--) {
ch = get_byte{infile);
write_char(ch, outfile};
}
writeline("\"", outfile);

}

decrease_indent();

if(StringCount »= 16) {
writeline("1", outfile):
StringCount = 0;

)

} /* process_string - end */

Resource (.RES) File Format — 171

Listing 7.1 (continued)

/**‘k*******t**

Process the fontdir resource
***********************************t****************/

void process_fontdir(FILE *infile } {
OWORD reslen;

get_resource_name{infile);
get_mem_flags{infile);
resten = get_resource_length(infile);

fseek(infile, reslen, 1):

J /* process_fontdir - end */

/***

Process the font resource
***********************************t***i************/

void process_font(int restype, FILE *infile, FILE *outfile) {

DWORD reslen;
char datafilename[13];
FILE *datafile;

write_resource_name(infile, outfile);
write_char(' ", outfile};
writestring(res_array[restypel, outfile);
write_mem_flags(infile, outfile);
write_char(® ', outfile);

reslen = get_resource_length{infile)};

strepy(datafilename, get_data_filename(”FO", "FON"));
if(strien(datafilename) == 0) {
writeline("<(Unable to open output fiTed>", outfile);
fseek(infile, reslen, 1);
return;
}

writeline(datafilename, outfile };

if((datafile = fopen(datafilename, "wb")} == NULL} {
printf{"Unable to open fite Zs\n", datafilename}:
fseek{ infile, resten, 1);:
return;

}

write_data(infile, datafile, reslen);
fclose(datafile); '

} /* process_font - end */

172 — Windows Undocumented File Formats

Listing 7.1 (continued)

/***

Write the virtual character for the current accelerator
**/

void write_virtual_accel_event{ WORD wEvent, FILE *outfile) [
switch{wEvent} {

case VK_LBUTTON:
writestring("VK_LBUTTON", outfile):
break;

case VK_RBUTTON:
writestring("VK_RBUTTON", outfile):
break;

case VK_CANCEL:
writestring("VK_CANCEL", outfile);
break;

case VK_MBUTTON:
writestring{ "VK_MBUTTON", outfile):
break;

case VYK_BACK:
writestring("VK_BACK". outfile);
break;

case VK_TAB:
writestring("VK_TAB™, outfile);
break;

case YK_CLEAR:
writestring("VK_CLEAR™, cutfile);
break;

case VK_RETURN:
writestring{ "VK_RETURN", ocutfile}:
break;

case VK_SHIFT:
writestring("VK_SEIFT", outfile);
break;

case VK_CONTROL:
writestring("VK_{ONTROL", outfile):
break;

Resource (.RES) File Format — 173

Listing 7.1 (continued)

case VK_MENU:
writestring{
break;

case VYK_PAUSE:
writestring(
break;

case VK_CAPITAL:
writestring(
hreak;

case VK_ESCAPE:
writestring{
break;

case VK_SPACE:
writestring(
break;

case VK_PRIOR:
writestring(
break:

case VK_NEXT:
writestring(
break;

case VK_END:
writestring(
break;

case VK_HOME:
writestring(
break;

case VK_LEFT:
writestring(
break;

case YK_UP:
writestring(
break;

case VK_RIGHT:
writestring(
break;

"VK_MENU", outfile);

"VK_PAUSE™, outfile);

"VK_CAPITAL", outfile);

“VK_ESCAPE", outfile};

"YK_SPACE", outfile);

"VK_PRIOR",

outfile);

"VK_NEXT", outfile);

"VK_END", outfile);

"VK_HOME",

outfile);

"YK_LEFT™, outfile);

"YK_UP™, outfile):

"VK_RIGHT", outfilel:

174 — Windows Undocumented File Formats

Listing 7.1 (continued)

case VK_DOWN:
writestring("VK_DOWN", outfile);
break;

case VK_SELECT:
writestring("VK_SELECT", outfile);
break;

case VYK_PRINT:
writestring("VK_PRINT", outfile);
break;

case VK_EXECUTE:
writestring("VK_EXECUTE", outfile};
break;

case VK_SHAPSHOT:
writestring("VE_SNAPSHOT", gutfile};
break;

case VK_INSERT:
writestring(“YK_INSERT®, outfile);
break;

case VK_DELETE:
writestring{ "VK_DELETE", outfile);
break;

case VK_HELP:
writestring("VK_HELP", outfile};
break;

case VK_NUMPADD:
writestring("VK_NUMPADO", outfile);
break;

case VX_NUMPADI1:
writestring("VK_NUMPAD1", outfiie);
break:

case VK_NUMPADZ:
writestring("VE_NUMPADZ", autfile};
break;

Resource (.RES) File Format — 175

Listing 7.1 (continued)

case VK_NUMPAD3:
writestring{ "VK_NUMPAD3", outfile);
break:

case VK_NUMPAD4:
writestring("VK_NUMPAD4™, outfile);
break;

case VK_NUMPADS:
writestring("V _NUMPADS® | qutfile);
break;

case VK_NUMPADG:
writestring{ "VK_NUMPADS", outfile);
break;

case YK_NUMPAD7:
writestring("VK_NUMPAD7™, outfile);
break;

case VK_NUMPADS:
writestring{ "VK_NUMPADB", outfile);
break;

case VK_NUMPADS:
writestring("VEK_NUMPADA™, ocutfile);
break;

case VYK_MULTIPLY:
writestring("VK_MULTIPLY®, outfile);
break:

case VK_ADD:
writestring("VK_ADD™, outfile);
break:

case VK_SEPARATOR:
writestring("VK_SEPARATOR", outfile):
break:

case VK_SUBTRACT:
writestring("VK_SUBTRACT", ocutfile};
break;

176 — Windows Undocumented File Formats

Listing 7.1 (continued)

case YK_DECIMAL:
writestring{ "VK_DECIMAL®, outfile)
break;

case VK_DIVIDE:
writestring{ "VK_DIVIDE", outfile);
break;

case VK_F1:
writestring("VK_F1", outfile):
break;

case VEK_F2:
writestring{ "VK_F2", outfile):
break;

case VK_F3:
writestring("VK_F3", outfile);
break;

case VK_F4:
writestring("VK_F4", outfile):
break;

case VK_F5:
writestring(“VK_F5". outfile);
break;

case VEK_F6:
writestring("VK_F6", outfile);
break:

case VK_F7:
writestring("VK_F7*, outfile);
break;

case VK_F8:
writestring{ "VK_F8", outfile):
break;

case VK_F3:
writestring{ "VK_F9", outfile);
break;

Resource (.RES) File Format — 177

Listing 7.1 (continued)

case VK_F10:
writestring("VK_F10",
break;

case YK_F11:
writestring("VK_F11",
break;

case VK_F12:
writestring("VK_F12",
break;

case VK_F13:
writestring("VK_F13",
break;

case VK_F14:
writestring{ "VK_F14~,
break:

case VK_F15:
writestring("VK_F15",
break;

case VK_Fl6:
writestring("VK_F16",
break;

case VK_F17:
writestring{ "VK_F17",
break;

case VK_F18:
writestring("YK_F187,
break;

case VK_F19:
writestring("VK_F19",
break;

case VK_F20:
writestring("VK_Fz20",
break;

outfile);

outfile):

outfile):

outfile);

outfile};

outfile};

autfile);

outfile);

outfite);

outfile);

outfile):

178 — Windows Undocumented File Formats

Listing 7.1 (continued)

case VK_F21:
writestring("VK_F21°, outfile):
break;

case VK_F22:
writestring("VK_F22", outfile):
break;

case VK_F23:
writestring("VK_F23*, outfile):
break;

case VE_F24:
writestring("VK_F24", ocutfile);
break;

case VK_NUMLOCK:
writestring("VK_NUMLOCK", outfile):
break;

case VK_SCROLL:
writestring{ "VK_SCROLL®, outfile):
break;

default:
write_word{ wEvent, outfile);
break;

} /* switch{wEvent) - end */

] /* write_virtual_accel_event - end */

/***

Write the character for the current accelerator
**/

int write_accel_event(WORD wEvent, FILE *outfile) {

if(({(wEvent >= 65) && (wEvent <= 90}) ||
((wEvent >= 97} && (wEvent <= 122))) |
write_char{'"', outfile);
write_char{{BYTE) wEvent, outfile):
write_char{'"", outfile):
return(0);

Resource (.RES) File Format — 179

Listing 7.1 (continued)

if{{wEvent >= 1} && (wEvent <= 26)) {
write_char{'**, outfile);
write_char{'*", outfile);
write_char((BYTE) (wEvent + 64}, outfilel:
write_char('"', outfile};
return{0};

}

write_word{ wEvent, outfile};
return(1l};

} /* write_accel_event - end */

/******i**

Write the flags for the current accelerator
***************************k************************/

void write_accel_flags(BYTE flags, FILE *outfilte, int ascii_value_used) {

if(flags & 0x02)

writestring(™, NOINVERT", outfile);
if(flags & 0x04)

writestring(®, SHIFT", outfile);
if{flags & 0x08)

writestring(", CONTROL", outfile):
if{flags & 0x10)

writestring(", ALT", cutfile);
if{flags & 0x01)

writestring(™, VIRTKEY", outfile):
else if (ascii_value_used)

writestring(®, ASCII", outfilej;
writeline("", outfile);

} /* write_accel_flags - end */

/**************tt*****************ii****************

Process the accelerator resource
********t********t**********************************/

void process_accelerator{int restype, FILE *infile, FILE *outfile) f

DWORD reslen;
struct AccelTableEntry accelhdr;
int ascii_value_used;

180 — Windows Undocumented File Formats

Listing 7.1 (continued)

write_resource_name(infile, outfile);
write_char(® ', outfile);
writestring{res_array[restypel, outfile};
get_mem_fiags(infile);

writeline(* {", outfile);

increase_indent()};

resten = get_resource_length(infile};

white{reslen) {
write_indent{outfile};

fread{&accelhdr, sizeofistruct AccelTableEntry), 1, infile);
reslen -= sizeof(struct AccelTableEntry):

if(accelhdr.fFlags & Ox01)
write_virtual_accel_event(accelhdr.wEvent, outfile);
else
ascii_value_used = write_accel_event(accelhdr.wEvent, outfile);

writestring(“, ", outfile);
write_word{accelhdr.wid, outfile);
write_accel_flags{ accelhdr.fFlags, cutfile, ascii_value_used);
}
decrease_indent();
writeline("}", outfile);
} /* process_accelerator - end */

/************************t**************************

Praocess the rcdata resource
**/

void process_rcdata(int restype, FILE *infile, FILE *cutfile} {

DWORD reslen;
int ch:
unsigned short ch_count:

Resource (.RES) File Format — 181

Listing 7.1 (continued)

write_resource_name{infile, outfile);
write_char{' °, outfile}:
writestring{res_array[restypel. cutfile);
write_mem_flags{infile, outfile);
writeline(" (", outfile};

resten = get_resource_length(infile);
increase_indent()};

/* copy the data out to the .r¢ file */
ch_count = 0;
while {reslen--) {
if (ch_count == 0} [
write_indent(outfile):
write_char('*", outfile);
H
ch = fgetc(infile };
if ((ch >= 32) && {(ch <= 126)) {
fputc(ch, outfile);
+tch_count;
}
else
write_char('y\', outfile);
fprint¥{ outfile, "%0", ch);
ch_count += 4;
}
if (ch_count >= 60) [
writeline(*\"", outfile};
ch_count = 0;

}
/* if last string wasn't terminated with end quotes, do so now */
if {ch_count > 0)
writeline("\"", outfile);
decrease_indent(};

writeline("}", outfile):

} /* process_rcdata - end */

182 — Windows Undocumented File Formats

Listing 7.1 (continued)

/***

Search infile for image #image_num of type image_type
********t****************************t**************/

int search_for_image(WORD image_num, FILE *infile, int image_type) {

BYTE ch;

long reslen;

int restype:

WORD dest_image_num;

fseek{infite, 0, M;

ch = get_byte(infile);
while(!feof(infile)) {

/* get the resource type */
if(ch == OxFF) {

fread(&restype, sizeof(int), 1, infile};

/* If it's not the right image type. skip it */
if (restype != image_type) {

get_resource_name{infile);
get_mem_flags(infile);
reslen = get_resource_length(infile);

fseek{infile, reslen, 1);
}
else {
dest_image_num = get_resource_number{infile);
get_mem_flags{infile);
reslen = get_resource_length(infile);

if (dest image_num = image_num)
return{l);

else
fseek{infile, reslen, 1):

Resource (.RES) File Format— 183

Listing 7.1 (continued)

else {

/* read the name of the resource */
while{{ch = get_byte(infile)) = 0x00} ()

get_resource_name(infile);
get_mem_flags(infile};
reslen = get_resource_length(infile);

fseek{infile, reslen, 1};
}

ch = get_byte(infile);
} /* while{not eof(infile)) - end */
return(0);

} /* search_for_image - end */

/***

Write the Cursor Directory entry to the cursor file
**/
void write_cursor_direntry(CURSQRDIRENTRY cursorentry, FILE *datafile,
FILE *infile, DWORD cursor_size} {

CURSORRESENTRY curscrres:
long filepos;
WORD hotspot;

cursorres.bWidth (BYTE} cursorentry.wWidth;

cursorres.bHeight = (BYTE) {cursorentry.wHeight - cursorentry.wWidth};
cursorres.bColorCount = 0;

cursorres.bReserved = 0;

]

f* Initialize to 0's */
cursorres.wXHotSpot = 0;
cursorres.wYHotSpot = (;

/* Save the current position of the input file */
filepos = fteil{infile):

/* Search for cursor resource number #wImagedffset to get the hotspots */
if {search_for_image(cursorentry.wlmageQffset, infile, CURSOR_TYPE)) {
hotspot = get_word{ infile);
cursorres . wiHotSpot = hotspot;

184 — Windows Undocumented File Formats

Listing 7.1 (continued)

hotspot = get_word(infile };
cursorres wYHotSpot = hotspot:
}

/* return to the prior pesition in the input file */
fseek(infile, filepos, 0);

/* subtract size of 2 WORD values - X & Y Hot Spot - they occur */
/* at the beginning of the cursor resource data, but really */
/* belong in the header. so they get subtracted from the length */
cursorres.dwBytesInRes = cursorentry.dwBytesInRes - (2 * sizeof(WORD)};

cursorres .dwimageOffset = cursor_size;
fwrite(&cursorres, sizeof(CURSORRESENTRY}, 1, datafile):

} /* write_cursor_direntry - end */

!************t**************************************

Process the group cursor resource
**/

void process_group_cursor{FILE *infile, FILE *outfile) {

DWORD reslen;

char datafilename[13];
FILE *datafile;

long CurrPos;

DWORD cursor_size;

CURSORHEADER cursorinfo;
CURSORDIRENTRY cursorentry;
WORD count;

write_resource_name(infile, outfile);
writestring(" CURSOR", outfile);

/* Now write out the memory flags for the previous resource */
/* {cursor). since that has the correct value; this must be */
/* done befare the succeeding call to get_mem_flags, since */
/* that will change the value of prev_mem flag. *f
write_special_mem flag_values{ prev_mem_flag, outfile);

/* Now skip over the memory flag for this resource */
get_mem_flags(infiie);

Resource (.RES) FileFormat — 185

Listing 7.1 (continued)

write_char{' *, outfile);

reslen = get_resource_length(infile};

/* Determine a unique .cur filename in the current directory */
strcpy(datafilename, get_data_filename("CU", "CUR"));
if(strien(datafilename) — Q) {

writeline("<Unable to open output file>", outfile);

fseek(infile, reslen, 1);

return;
}

/* Write the name of the new cursor file to the .r¢ file */
writeline(datafilename, outfile);

/* open .cur output file */

if({datafile = fopen(datafilename, "wb")} = NULL} {
printf{*Unable to open file #s\n", datafilename};
fseek(infile, reslen, 1};
return;

}

fread(&cursorinfo, sizeof(CURSORHEADER), 1, infile);
fwrite(&cursorinfo, sizeof(CURSORHEADER), 1, datafile):

cursor_size = sizeof (CURSORHEADER) +
(sizeof (CURSORRESENTRY) * cursorinfo.cdCount);
CurrPos = fteil(infile);

/* Loop through each Cursor entry in the Group Cursor resource */
count = cursorinfo.cdCount;
while (count--) {

/* Read the header for this cursor, and save to the output file */
fread{ &cursorentry, sizeof(CURSORDIRENTRY), 1, infile};

write_cursor_direntry(cursorentry, datafile, infile, cursor_size);
cursor_size += cursorentry.dwBytesInRes;

}

fseek(infile, CurrPos, 0);

/* Loop through each Cursor entry in the Group Cursor resource */
count = cursorinfo.cdCount;
while (count--) {

186 — Windows Undocumented File Formats

Listing 7.1 (continued)

fread(curserentry, sizeof(CURSORDIRENTRY}, 1, infile);

CurrPos += sizeof (CURSORDIRENTRY):

/* Search for cursor resource number #wlmageOffset */
if (search_for_image(cursorentry.wlmage(ffset, infile, CURSOR_TYPE)}) (

/* skip the 2 WORDS for XHotSpot and YHotSpot */
fseek(infile, 4, 1);

/* subtract the size of 2 WORDs at the start: hotspot data */
write_data(infile, datafile,

{cursorentry.dwBytesInRes - (2 * sizeof(WORD)})};
}

fseek(infile, CurrPos, 0}:
}
fclose(datafile);
} /* process_group_cursor - end */

/***

Write the Icon Directory entry to the icon file
*********t**/

void write_icon_direntry{ ICONDIRENTRY iconentry, FILE *datafile,
DWORD icon_size) {

ICONRESENTRY iconres;

jconres.bWidth = jconentry.bWidth;
iconres.bHeight = jconentry.bHeight;
iconres.bColorCount = iconentry.bColorCount;
iconres.bReserved = jconentry.bReserved;

/* The Planes and BitCount values stored in the .ico file
seem to be ignored.

iconres.wPlanes = jconentry.wPlanes;
iconres . wBitCount = jconentry .wBitCount;

Resource (.RES) File Format — 187

Listing 7.1 (continued)

iconres.wPlanes =0;
iconres.wBitCount =0;

iconres.dwBytesInRes = iconentry.dwBytesInRes;
jconres.dwimage0ffset = jcon_size;

furite(&iconres, sizeof(ICONRESENTRY), 1, datafile);

} /% write_icon_direntry - end */

[dkddk kg kdkdkddkdeokhkdokkkk kdkkk kA ook dkek Kk kdkhkkdkkk

Process the group icon resource
**********t***/

void process_group_icon{FILE *infile, FILE *outfile) {

OWORD reslen;

char datafilename[131;
FILE *datafile;

long CurrPos;

DWORD icon_size;

ICONHEADER iconinfo;
[CONDIRENTRY iconentry;
WORD count;

write_resource_name(infile, outfile);
writestring(™ ICON®, cutfile):

/* Now write out the memory flags for the previous resource */
/* (icon), since that has the correct value; this must be */
/* done before the succeeding call to get_mem_flags, since */
/* that will change the value of prev_mem_flag. */
write_special_mem_f1lag_values(prev_mem_flag, outfile);

/* Now skip over the memory flag for this resource */
get_mem_flags{infile};

write_char(" ', outfile);
reslen = get_resource_length{infile);

/* Determine a unique .ico filename in the current directory */
strepy(datafilename, get_data_filename("IC", "ICO"}};
if{strlen{datafitename) == 0) {

writeline{"<Unable to open output file>", outfile);

fseek{ infile, reslen, 1};

return;

188 — Windows Undocumented File Formats

Listing 7.1 (continued)

/* Write the name of the new icon file to the .rc file */
writeline(datafilename, outfile };

/* Open the cutput file containing the icon resource data */
if((datafile = fopen{dataFilename, "wb")}) == NULL) {
printf("Unable tc open file #s\n", datafilename);
fseek(infile, reslen, 1);
return;
}

fread(&iconinfo, sizeof{ICONHEADER), 1, infile);
fwrite(&iconinfo, sizeof(ICONHEARER}, 1, datafile):

jcon_size = sizeof(ICONHEADER) +
(sizeof (ICONRESENTRY) * iconinfo.idCount};
CurrPos = ftell(infile);
/* Loop through each Icon entry in the Group Icon resource */
count = iconinfo.idCount;
while (count--) {
fread(&iconentry, sizeof(ICONDIRENTRY}, 1, infile);

write_icon_direntry(iconentry, datafile, icon_size);
icon_size += jconentry.dwBytesinRes;

}
fseek{infite, CurrPos, 0);
/* Loop through each Icon entry in the Group Icon resource */
count = jconinfc.idCount;
while (count--) |
fread(&iconentry, sizeof(ICONDIRENTRY), 1, infile);
CurrPos += sizeof(JCONDIRENTRY};
/* Search for icon resource number fwlmageOffset */
if (search_for_image{ iconentry.wimageQffset, infile, ICON_TYPE}) {
write_data(infile, datafile, iconentry.dwBytesInRes };
}
fseek(infite, CurrPos, 0);
1
fclose(datafile);

} /* process_group_icon - end */

Resource (.RES) File Format — 189

Listing 7.1 (continued)

/***

Save a user-defined resource data to a file.
**/

void save_user_resource{ FILE *infile, FILE *outfile) {

DWORD reslen;
char datafilename[13];
FILE *datafile;

reslen = get_resource_length(infile);

strcpy(datafilename, get_data_filename("UR", "USR")};
if{strlen{datafilename} == 0} {
writeline{"<Unable to open cutput file>", outfile):
fseek(infile, reslen, 1);
return;
}

writeline(datafilename, outfile):

jf{(datafile = fopen{datafilename, "wb")) — NULL) {
printf("Unable to open file %s\n", datafilename);
fseek(infile, resien, 1);
return;

}

write_data(infile, datafile, reslen);
fclose{ datafilte);

} /* save_user_resource - end */

/***

Process a user-defined resource {by number).
******************************i*********************/

void process_user_resource_num(int restype, FILE *infile, FILE *outfile) {

write_resource_name{infile, outfile);
write_char{" *, outfile};
write_number{ restype, outfile};
write_mem_flags(infile, cutfile);
write_char(' ', ocutfile);

save_user_resource(infilte, outfile);

} /* process_user_resource_num - end */

190 — Windows Undocumented File Formats

Listing 7.1 (continued)

/***

Read the name table, but ignore it.
**/

void process_name_table{ FILE *infile, FILE *outfile) {

DWORD reslen;

writeline("™, outfile);

writeline(“//", outfile);

writeline("// Name table found, but ignored.”, outfilie):
writeline("//", outfile);

get_resource_name{infile):
get_mem_flags(infile};

resten = get_resource_length{infile);
fseek(infile, reslen, 1);

} /* process_name_table - end */

/***

Checks if ver.h has been included: if not, does so
**/

void check_if_ver_header_included(FILE *gutfile) (

if {VersionUsed = 0} {

/* update VersionUsed so <ver.h> can't be included twice */
Versionlsed = 1:

writeline{ "*, outfile);
writeline{ "#include <ver.h>", outfile);

;

] /* check_if_ver_header_included - end */

/***

Process version fileflags
**/

void write_version_fileflags(DWORD style, FILE *outfile) {

WORD first_style = 1:
WORD Tine_len = [;

writestring(* FILEFLAGS *, outfile};

Resource (.RES) File Format — 191

Listing 7.1 (continued)

if (style == QL)
writeTine("Ox0L", outfile);
else {
check_for_dlg_style(VS_FF_DEBUG & style, &first_style,
&line_len, "VS_FF_DEBUG", outfile};
check_for_dlg_style(VS_FF_INFOINFERRED & style, &first_style,
&Tine_len, "VS_FF_INFOINFERRED", outfile):
check_for_dig_style(VS_FF_PATCHED & style, &first_style,
&1ine_len, "VS_FF_PATCHED", outfile);
check_for_dlg_style(VS_FF_PRERELEASE & style, &first_style,
&1ine_len, "VS_FF_PRERELEASE", outfile);
check_for_dlg_style(VS_FF_PRIVATEBUILD & style, &first_style,
&line_len, "VS_FF_PRIVATEBUILD", outfile);
check_for_dig_style{ VS_FF_SPECIALBUILD & style, &first_style,
&line_len, "VS_FF_SPECIALBUILD", outfile};

writeline(™", outfile);
}

} /* write_verstion_fileflags - end */

/***

Process the version driver subtype
**/

void process_version_driver_subtype(OWORD driver_subtype, FILE *outfile J {
switch (driver_subtype) {

case VFT2_UNKNOWN:
writeline{"VFTZ_UNKNOWN", outfile):
break;

case VFTZ2_DRV_COMM:
writeline("VFTZ_DRV_COMM™, outfile);
break;

case VFTZ_DRV_PRINTER:
writeline("VYFTZ_DRV_PRINTER", outfile):
break;

case VFT2_DRY_KEYBOARD:
writeline("VFT2_DRV_KEYBOARD", outfile):
break;

192 — Windows Undocumented File Formats

Listing 7.1 (continued)

case YFTZ2_DRV_LANGUAGE:
writeline("VFT2_DRV_LANGUAGE", outfile);
break;

case VFT2_DRV_DISPLAY:
writeline("VFT2_DRV_DISPLAY™, outfile):
break;

case VFT2_DRV_MOUSE:
writeline("VFTZ_DRV_MOUSE", outfile);
break;

case VFT2_DRV_NETWORK:
writeline("VFTZ_DRV_NETWORK", outfile};
break;

case VFTZ2_DRV_SYSTEM:
writeline("VFT2_DRY_SYSTEM™, outfilel;
break;

case VFT2_DRV_INSTALLABLE:
writeline{"VFT2_DRY_INSTALLABLE", gqutfile):
break;

case VFTZ_DRV_SOUND:
writeline{"VFT2_DRV_SOUND", outfile}:
break;

default:
fprintf{ outfile, "%lu”, driver_subtype):
writeline{"", outfite);
break;

} /* switch (driver_subtype) - end */
} /* process_version_driver_subtype - end */

/********************t******************************

Process the version font subtype
**/

void process_version_font_subtype(DWORD font_subtype, FILE *outfile) {

switch {(font_subtype) {

Resource (.RES) FileFormat — 193

Listing 7.1 (continued)

case YFTZ_UNKNOWN:
writeline("VFT2_UNKNOWN™, outfile);
break;

case VFT2_FONT_RASTER:
writeline("VFT2_FONT_RASTER*, outfile);
break;

case VFT2_FONT_VECTOR:
writeline("VFT2_FONT_VECTOR", outfile};
break;

case VFT2_FONT_TRUETYPE:
writeline("VFTZ2_FONT_TRUETYPE", outfile);
break;

defautt:
fprintf(outfile, "%Tu", font_subtype);
writeline("", outfile);
break;

} /* switch (font_subtype) - end */

} /* process_version_font_subtype - end */

/*************************************t*************

Process version infeormation root block
**/

void process_version_root_bleck(FILE *infile, FILE *outfile} {
VS_FIXEDFILEINFO infostruct:

/* Process each field of the root block */
fread{ &infostruct, sizeof(VS_FIXEDFILEINFO), 1, infile);

fprintf(outfile, " FILEVERSION %u.%u,%u,Zu”,
HIWORD(infostruct.dwFileVersionMs},
LOWORD{infostruct.dwFileVersionMs),
HIWORD (infostruct.dwFileVersionlS),
LOWORD(infostruct.dwFileVersionlS)};
writeline("", outfile):

194 — Windows Undocumented File Formats

Listing 7.1 (continued)

fprintf{ outfile, = PRODUCTYERSIGN Zu,%u,%u,fu",
HIWORD(infostruct.dwProductVersionMs),
LOWORD{ infostruct .dwProductVersionMS),
HIWORD{ infostruct.dwProductVersionis),
LOWORD{infostruct.dwProductVersionlS));
writeline(", outfile):

write_version_fileflags(infostruct.dwFileFlags, outfile };

if(infostruct.dwFileFlagsMask = V5_FFI_FILEFLAGSMASK)

fprintf(outfile, " FILEFLAGSMASK VS_FFI_FILEFLAGSMASK"):
else

fprintf(outfile, ® FILEFLAGSMASK Zlu", infostruct.dwFileFlagsMask):
writeline("", outfile);

writestring(* FILEQS ", outfile);
switch {infostruct.dwFile0S) (

case VOS_UNKNOWN:
writeline("VOS_UNKNOWN®, outfile};
break;

case V0S_DOS:
writeline{"¥0S_DOS™, outfile):
break;

case Y05_0S5216:
writeline("V05_05216", outfile);
break:

case V0S_0S232:
writeline("V05_05232", outfile);
break;

case VOS_NT:
writeline("VOS_NT", outfile);
break:

case VDS_DOS_WINDOWS16:
writeline(“VOS_DOS_WINDOWS16™, outfile);
break;

case YOS_DOS_WINDOWS32:
writeline("VOS_DOS_WINDOWS32", cutfile):;
break;

Resource (.RES) File Format — 195

Listing 7.1 (continued)

case V0S5_05216_PM16:
writeline("V0S_0S216_PM16", outfile):
break;

case V0S5 _0S232_PM32:
writeline("V05_08232_PM32", outfile);
break;

case VOS_NT_WINDOWS3Z:
writeline("VOS_NT_WINDOWS32", outfile);
break;

default:
fprintf(outfile, "Zlu", infostruct.dwFilelS);
writeline(*", outfile);
break;

} /* switch {(File0S) - end */

writestring{ " FILETYPE ", outfile);
switch (infostruct.dwFilteType) {

case VFT_UNKNOWN:
writeline{ "VFT_UNKNOWN", outfile);
break;

case YFT_APP:
writeline("VFT_APP", outfile);
break;

case VFT_DLL:
writeline("VFT_DLL", outfile):
break;

case VFT_DRV: .
writeline("VFT_DRY™, outfile);
break;

case VFT_FONT:
writeline("VFT_FONT", outfile}:
break;

case VFT_VXD:
writeline{*VFT_VXD", outfile);
break:

196 — Windows Undocumented File Formats

Listing 7.1 (continued)

case VFT_STATIC_LIB:
writeline{"VFT_STATIC_LIB®, outfile):

break;

default:
fprintf(outfite, "%1u", infostruct.dwFileType };

writeline("", outfile):
break;

} /* switch (Filelype) - end */

writestring(™ FILESUBTYPE *, outfile);
switch (infostruct.dwFileType) {

case VFT_DRV:
process_version_driver_subtype(infostruct.dwFileSubtype, outfile);

break;

case VFT_FONT:
process_version_font_subtype(infostruct.dwFileSubtype, outfile);

break;

default:
fprintf(outfile, "%1u", infostruct.dwFilteSubtype };

writeline("", outfile);
break;

} /* switch (FileSubtype) - end */

} /* process_version_root_block - end */

/***
Write out the name of the current block, and return
whether it was string, variable or other type of
block.

**/

int write_block_name(FILE *infile, FILE *outfile } {

int count=1; /* record number of chars read */
int blocktype=0; /* record which type of block it is */
BYTE ch;

Resource (.RES) File Format — 197

listing 7.1 (continued)

ch = get_byte(infile):
if (ch == 'S')
blocktype = STRINGBLOCK:
else if {ch = '¥")
blocktype = VARBLOCK;
else
blocktype = OTHERBLOLK;

while((!feef(infile)) && (ch != 0x00}) {
+count;
write_char(ch, outfile);
ch = get_byte(infile);

1

/% Ensure number of characters read is a multiple of 4, */
/* According to the MS documentation, this is the format. */
/* See "MS Windows 3.1 Programmer's Reference®™ Vol.4, p.99 */
count = count % 4;
count = (count > Q) 7 (4 - count) : O;
while {(!feof(infile}) && (count > 0)) |

ch = get_byte(infile);

--count;
}

return{blocktype);

} /* write_block_name - end */

/***********************‘k*********‘k**********‘k******

Write out the name of the current block., and return
the total number of characters in the field.
****tt*******t*************t*t**********************/

WORD write_ver_field_name{ FILE *infile, fILE *outfile) {

WORD count=1; /* record number of chars read */
WORD fieldsize=l; /* record number of chars read */
BYTE ch:

ch = get_byte(infile);

white((!feof(infile}) && (ch != 0x00))} {
++count ;
write_char(ch, outfile);
ch = get_byte{infile);

}

fieldsize = count;

198 — Windows Undocumented File Formats

Listing 7.1 (continued)

/* Ensure number of characters read is a multiple of 4, */
/* According to the MS documentation, this is the format., */
/* See "MS Windows 3.1 Programmer’s Reference® Vol.4, p.99 */
count = count % 4;

count = {count > 0} 7 {4 - count} : 0;

while ((1feof(infile)) &% {count > 0)} {

+Hfieldsize;
ch = get_byte(infile);
--count;
} :
return(fieldsize);

} /* write_ver_field_name - end */

!***********************************i***********i**t

Read "wordsize® # of bytes and write them to the

output file; these bytes are the second part of

the ‘'VALUE "---", "---"" line in a version info

string btock. Return the number of bytes needed

to align the string on a 32-bit boundary.
************************************t*******tt*t****/
WORD write_ver_field_name _size_n(FILE *infile, FILE *outfile,

WORD wordsize) |

WORD count=0; {* record number of chars read */
WORD diff=(;
BYTE ch;

while((}feof(infile)) && (count < wordsize)) f
+count;
ch = get_hyte(infile);
write_char(ch, outfile);

}

/* Ensure number of characters read is a multiple of 4. *f
/* According to the MS documentation, this is the format. */
/* See "MS Windows 3.1 Programmer's Reference® Vol.4, p.99 */
count = count % 4;
count = (count > 0) ? (4 - count} : O;
diff = count;
while ((!feof(infile)) &% (count > 0)) {

ch = get_byte(infile);

-~count;
}

return(diff);

) /* write_ver_field_name_size n - end */

Resource (.RES) File Format — 199

Listing 7.1 (continued)

/********i*t**

Process a version string block
**f
void process_version_string_block{ WORD blocksize, FILE *infile,
FILE *outfite } {

WORD stringblocksize = 0;
WORD subblocksize = 0;
WORD subdatasize = 0;
WORD fieldsize = 0:

WORD diff = Q;

WORD totalblocksize = Q; [¥ size so far of the entire Block */
WORD totalsubsize =0; /* size so far of a subblock */

/* add up: len(StringFileInfo\)) + sizeof(blocksize) + */
/* sizeof(datasize) (values already read in) */
totalblocksize = 16 + (2 * sizeof(WORD)):

while (totalblocksize < blocksize) {

/* get the name of this entire string block */
stringblocksize = get_word(infile);
{voidlget_word(infile };

totalblocksize += stringblocksize:

write_indent{ cutfile);

writestring{ "BLOCK \"", outfile};

fieldsize = write_ver_field_name{ infile, outfile);
writeline("\"", outfile};

write_indent(outfile);
writeline("BEGIN", outfile);

increase_indent();

totalsubsize = fieldsize + (2 * sizeof(WORD});
while (totalsubsize < stringblocksize) {

subblocksize = get_word(infile);
subdatasize = get_word{infile);

/* increment the counter by the size of the current block */
totalsubsize += subblocksize;

write_indent(outfile };

writestring("VALUE \"", outfile);
(void)write_ver_field_name(infile, outfile);:
writestring("\", \"", outfile};

200 — Windows Undocumented File Formats

Listing 7.1 (continued)

diff = write ver_field name size n{ infile, outfile, subdatasize):

totalsubsize += diff;
totalblocksize += diff;

writeline{ "\"", outfile);
} /* while (totalsubsize < stringblocksize) - end */
decrease_indent();
write_indent{ outfile):
writelina("END", outfile):
} /* while (totalblocksize < blocksize) - end */
} /* process_version_string block - end */

/***

Process a version variable block
**/

void process_version_var_btock{ WORD blocksize, FILE *infile,
FILE *outfile) {

WORD subblocksize = 0;

WORD subdatasize =0;
WORD totalsize =0
WORD Tangid =0;
WORD charsetid = 0;

/* add up: len(VarFileInfo\0) + sizeof(blocksize) + */
/* sizeof(datasize) (values already read in) */
totalsize = 12 + (2 * sizeof{WORD)):

while (totalsize < blocksize) {

subblocksize
subdatasize

get_word(infile);
get_word(infile):

write_indent(outfile);

writestring("VALUE \"", outfile);
(voidiwrite_block_name(infile, outfile };
writestring("\", ", outfile);

/* increment the byte counter by the size of the current block */
totalsize += subblocksize;

Resource (.RES) File Format — 201

Listing 7.1 (continued)

while (subdatasize) {

langid = get_word(infile };
charsetid = get_word{ infile);

fprintf(outfile, "Ox%ZX, %d", 1angid, charsetid);

/* take off the size of the 2 variables read above */
subdatasize -= {2 * sizeof(WORD));

/* if another entry after this one, write out a comma */
if (subdatasize) {

writeline(",7, outfile);

write_indent({ outfile);
}

else
writelina{ "7, outfile);
} /* while {subdatasize) - end */
} /* while (totalsize < blocksize) - end */
} /* process_version_var_block - end */

/************it*************************************

Process an unknown type of version block
**/

void process_version_other_block(WORD blocksize, lang currpoé,
FILE *inftle, FILE *outfile) {

tong newPos = 0OL;

write_indent{ outfile };
writeline("// Unknown block type - skipping®, outfite};

newPos = currpos + ((long) Blocksize);
fseek(infile, newPos, 0);

} /* process_versign_pther_block - end */

202 — Windows Undocumented File Formats

Listing 7.1 (continued)

/*‘**t*

Process a version block, which can be either a
StringFilelnfo or VarFilelnfo block.

Fd A KRR Ak ok ok koA e e ARk
void process_version_block(FILE *infile, FILE *outfile } {
WORD blocksize = 0; /* size of the next {complete) block */
Tong currpos = OL; /* use in case the block type is unknown */
int block_type = 0; /* mark block as StringFileInfo or VarStringInfo */
INDENT = 0; /* reset the amount of indentation */

currpos = ftell(infile};

blocksize = get_word(infile}:
(void) get_word(infile); /* skip over the size of current dataset */

increase_indent();
write_indent(outfile };

writestring(“BLOCK \"", ocutfile);
block_type = write_block_name(infile, outfile };
writeline{ "\"", outfile);

write_indent{ outfile };
writeline{ "BEGIN", outfile};

increase_indent():

/* call the appropriate procedure for block_type */
switch (block_type) {

case STRINGBLOCK:
process_version_string_block(Blocksize, infile, outfile };
break;

case VARBLOCK:
process_version_var_block{ blocksize, infile, outfile);
break;

case OTHERBLOCK:

default:
process_version_other_block{ blocksize, currpos, infile, outfile);
break;

} /* switch (block_type} - end */

Resource (.RES) File Format — 203

Listing 7.1 (continued)

decrease_indent();
write_indent{ outfile }:

writetine("END", outfile);
decrease_indent();
} /* process_version_block - end */

/*******************t*******************************

Process version information
**l

void process_version_info(FILE *infile, FILE *outfile) {

DWORD reslen = OL; /* total size of version info */
DWORD endpos = QL; /* ftel1() of end of version info */
DWORD currpos = OL; /* current position in input file */

/* see if "finctude <ver_.h>" has already been written */
check_if_ver_header_included(outfile);:

/* start writing out the version information */
write_version_number(infile, outfile);
writeline("VERSIONINFO", outfile);

/* versign info doesn't seem to use memory flags, so skip them */
get_mem_flags(infite);

reslen = get_resource_length{infile);
currpos = ftell(infite};
endpos = currpos + reslen;

/* get the name and size of the root block - you can ignore */
/* this because you know what it's going to be. */
{void)get_word(infile); /* cbBlock */

(void)get_word{infile); /* cbV¥alue */
get_version_name(infile); /* szKey[] */
process_version_root_block{infile, outfile);

writeline("BEGIN®, outfile};

/* now go through all of the remaiming blocks */

currpos = ftell(infile);
while (currpos < endpos) {

204 — Windows Undocumented File Formats

Listing 7.1 (continued)

process_version_black(infile, outfile);
currpos = ftell(infile);

}
writeline("END™, outfile};

} /* process_version_info - end */

/***i*******

Call the appropriate function for each resource type
**/

void process_resource by _number(FILE *infile, FILE *outfile) {
int restype = {0;

INDENT = 0;
fread(&restype, sizeof(int), 1, infile):;

/* If you're in the middie of a string table, and the new resource */
/* isn't a string table, finish it of f */
if {{restype != STRING_TYPE} && (StringCount)) (
writeline("}", outfile);
StringCount = 0;
)

switch{restype) {
case RT_CURSOR:
process_cursor{ infile);
break;

case RT_BITHAP:
process_bitmap{restype, infile, outfile);
break;

case RT_ICON:
process_icon(infile);
break;

case RT_MENU:
process_menu{restype, infile, outfile);
break;

case RT_DIALQG:
process_dialog(restype, infile, outfile);
break;

Resource (.RES) File Format — 205

Listing 7.1 (continued)

case RT_STRING:
process_string{restype, infile, outfile);
break;

case RT_FONTDIR:
process_fontdir({ infile);
break;

case RT_FONT:
process_font(restype, infile, outfile);
break;

case RT_ACCELERATOR:
process_accelerator{restype, infile, outfile):
break;

case RT_RCDATA:
process_rcdatalrestype, infile, outfile);
break;

case RT_GROUP_CURSOR:
process_group_cursor{infile, outfile);
break;

case RT_GROUP_ICON:
process_group_icon(infile, outfile};
break;

/* name tables aren't used in Win3.1l, so no predefined "RT_??7?7" */
case 15:

process_name_table(infile, outfile);

break;

case lb:
process_version_infe{ infile, outfile};
break;

default:
process_user_resource_num{restype, infile, outfile):
break;

}

} /* process_resource_by_number - end */

206 — Windows Undocumented File Formats

Listing 7.1 (continued)

/***

Process user-defined resource (by name)
**/

void process_resource_by_name{ BYTE ch, FILE *infile, FILE *outfile) {

long typeid_pos; /* file position of type id */
Tong nameid_pos; /* file position of name id */

typeid_pos = ftell(infile);

/* Skip the resource name */
fseek(infile, -1, 1);
get_resgurce_name(infile);

/* Get the name of the resource itself */
write_resource_name{infile, outfile);
nameid_pos = ftell{infile);

write_char{’ ', outfile);

/* now go back to the resource name and print it out */
fseek(infile, typeid_pos, 0);
get_custom_type(ch, infile, outfile);

fseek(infile, nameid_pos, 0);
write_mem_flags(infile, ocutfile);
write_char(' ', outfiie);

save_user_raspurce(infile, outfile);

) /* process_resource_by_name - end */

/***

Check the parameters passed on program invokation
**/

void check_usage{int argc) [

if (argec != 3) {
printf("Usage: listrec <.res fiilename> <.rc output filename>\n");
exit(l):

)

} /* check_usage - end */

Resource (.RES) File Format— 207

Listing 7.1 (continued)

/******t**

Write the header to the cutput file.
**/

void write_header{ char *infname, char *outfname, FILE *outfile) {

writeline("//", outfile);

writestring(*// ", outfile);

writestring(outfname, outfile);

writestringl " - resource file decompiled from ", ocutfile):
writeline({ infname, outfile}:

writeline("//", outfile);

writeline{ "#include <windows.h>", outfile);

} /* write_header - end */

/***i**********************t************************

Check if input file is a Win32 respurce file
**/

void check_for _win3z_res{ FILE *infile) |
char ch;

ch = get_byte(infile);

if(ch == 0x00) {
printf("Input file is a Win32 .res file. Stopping.\n"};
exit{l);

}

rewind{infile);

} /* check_for_win32_res - end */

/***

Read .res file and process each resource.
**/

int main(int argc, char *argv[]) {

FILE *infile:
FILE *outfile;
BYTE ch;

check_usage{argc};
if({infile = fopen(argv[1], "rb")) — NULL} {

printf("Error: Unable to open input fite.\nStopping.\n");
exit(1l); |}

208 — Windows Undocumented File Formats

Listing 7.1 (continued)

check_for_win32_res(infile);

if{(outfile = fopen(argv[2], "wb")) = NULL) {
printf{"Error; Unable to apen output file.\nStopping.\n");
exit(l);
H
write_header(argv[1], argv[2], outfile);
StringCount = 0;
ch = get_byte(infile);
while{!feof(infile}) {
/* get the resource type */
if{ch = OxFF)
process_resource_by_number(infile, outfile);
else
process_resource_by name(ch, infile, outfile);

ch = get_byte(infile):

} /* while(not eof(infile)) - end */
finish_off_stringtable{outfile);

fclose(infite);
return(0):

1 /* main - end */

/* ResZRc.c - end */

Chapter 8

PIF File Format

In this chapter, I'll take alook alook at the format of . PI Ffiles. Our thanks go to Mike
Maurice for his origina work on this topic, published in Andrew Schulman's "Undoc-
umented Corner”, Dr. Dobb's Journal, July 1993. Weld aso like to thank Jonathan
Erickson, DDJ editor, for alowing us to use the information in that article. After
describing the file format, I'll present a DOS program that retrieves data, which can be
set through Microsoft's PIF Editor (included with Windows 3.1), from a PIF file.

As operating systems go, DOS is old. In the rapidly evolving world of computers,
most software starts to show its age within a few years. Software that's till in use
after more than 12 years is dmost unheard of, but you can't ignore it — DOS is lill
around. Forget the version numbers; if you want your software to maintain backward
compatibility (and DOS does), you soon redlize that all you can redly do is tack on
bells and whistles. Same face, more makeup. DOS should have died years ago, but
traces of it can even be found in Windows 95, and speaking of Windows...

When Microsoft introduced Windows, they redlized it needed the ability to run
DOS applications; otherwise, they would have lost a huge software base. So they
introduced Program Information Files (PIFs), which allow a user to run DOS executa:
bles from within Windows. Microsoft includes a program called PIF Editor with each
and every copy of Windows, just so you can run DOS and Windows programs aike all
day long without leaving your comfortable GUI. PIF files contain information such as
how much memory to use, background priority, and what type of graphics mode to
use. The need for PIF files is rooted in the difference between DOS and the Windows
operating environment. Windows executables contain a lot more information than

209

210 — Windows Undocumented File Formats

their DOS counterparts. DOS executables start off with a relatively small header

(0Ox3C bytes) that contains al the information it needs, such as the file size and signa-
ture word, before it runs the program. But this header is too small for Windows. The
header for each executable is designed so that if the word value a 0x18 is 0x40 or
greater, the word vaue at 0x3C is an offset to aWindows header. This second header
includes such information as the segment table and resource table. In order for Win-
dows to run DOS programs, it needs more information than is provided in the DOS
header. This information is provided through a PIF file. Because there are some differ-
ences between Standard Mode and Enhanced Mode in Windows, PIF files allow you
to specify different values for the two modes for some fields (but not al). For more
detailed information on DOS and Windows executables, see Chapter 6, "Execut-
able-File Header Format" of the Microsoft Windows 3.1 Programmer's Reference,
Volume 4, Resource.

The Format

You can think of PIF files as series of blocks, where each block contains five pieces of
information. The first is a 16-byte string, containing the title of the block. This is fol-
lowed by three WORDs. offset to the next block and the offset and size of the current
block. This is followed by the data record for the block. The only exception to this
structure is the first block in the file, in which the data record comes first.

The known acceptable values for the title of a block are "MICROSOFT PIFEX",
"WINDOWS 286 3.0", "WINDOWS 386 3.0" and "WINDOWSNT 3.1". Thefirst
block in the PIF file is aways labdled "MICROSOFT PIFEX", and always occurs in
the same place. This allows a program to verify that the file is a PIF. As mentioned
previoudly, this block is dlightly different than the rest, in that the data record comes
first (at the beginning of the PIF). The size of this block is 0x171 (369) bytes. It con-
tains al the information common to Standard Mode and Enhanced Mode in Windows,
plus severa fields specific to Standard Mode. If you run PIF Editor, you will notice
severd fields must be the same between the two modes, such as "Window Title". This
is the type of information stored in the "MICROSOFT PIFEX" block.

The block labeled "WINDOWS 286 3.0" contains only information relevant to
Standard Mode operation of Windows, such as whether the program directly modifies
the keyboard. The size of the datarecord for this block is 6 bytes. Sometimes more than
one block in the PIF file will have a similar title, but the first "W" will be zeroed out.
These appear to be unused; there will be ablock that does not have the "W" zeroed.

Another block type is labeled "WINDOWS 386 3.0", and is specific to Enhanced
Mode in Windows. The size of this datarecord is 0x68 (104) bytes. If this or the 286
structure seems small, it is because both structures store much of their information as
single bits. Both this structure and the 286 structure are documented in PIFSTRUC.H.

PIF File Format — 211

Windows NT has its own block, labeled "WINDOWS NT 31" (note the two
spaces between NT and 3.1). The format of the data record for this block is currently
unknown but appears to be 0x8C (140) bytes long.

Another type of block supported by PIF Editor is the "COMMENT" block. If you
add the appropriate offsets and size, you can create a block containing comments
about the PIF file.

Severd new types of blocks have been found in Windows 95 . PI F files since the
original article appeared in Dr. Dobb's Journal. These have appeared in various prer-
€eleases, 0 some may now be obsolete. These include "WINDOWS PIF.403" (with a
length of 0x180 bytes), "WINDOWS PIF.402" (0x17A bytes), "WINDOWS |CO.001"
(0x2A0 bytes) and "WINDOWS VMM 4.0" (0x1AC bytes). The formats of the data
record for these blocks are unknown at this time.

TheProgram

We've written the DOS program PIFDUMP (Listing 8.1), which you can use to exam-
ine al of the fields in a PIF file. You can change the PIF fields with Microsoft's PIF
Editor. PIFDUMP requires two arguments:

1 either -2 or -3, for information relevant to Standard Mode or Enhanced Mode,
respectively (information common to both modes is always presented), and

2. the name of the input PIF file.

We tried to make the format of the output mimic the order of appearance of the
datain PIF Editor as closely as possible, but this was strictly an arbitrary decision. For
example, if you want dl information relevant to Enhanced mode for a file called
doom.pif, you would enter

PIFDUMP -3 doom.pif

The code is fairly straightforward. All of the information relevant to the format of
the PIF file is contained in PIFSTRUC.H. Y ou might notice severa structures appear to
be declared twice. As mentioned before, much of the datain a PIF file is encoded at
the bit level. Some compilers complained when we passed these bits around, so we
commented out the original declaration of these structures and added another struc-
ture (with the same name) that used BYTES instead of bits. Also, when these struc-
tures were later referenced in PIFSTRUC.H as part of the declaration of a larger
structure, we substituted the appropriate number of BYTES. For example, a structure
call HOTKEY contains hotkey information. If you look at the original declaration (in
the comments), it uses 16 bits, or 2 bytes. Immediately after the comment in which
the declaration appears, there is a declaration for a structure called HOTKEY that uses
16 bytes. The latter is used in PIFDUMP.C. The HOTKEY structure was originally apart

212 — Windows Undocumented File Formats

of the DATA386 structure. It was replaced with 2 bytes to hold the date; in PIFDUMP.C,
there is afunction that uses those 2 bytes to fill in the HOTKEY structure. Similar func-
tions exist for the other structures containing bit-level information.

Where Do | Gofrom Here?

An interesting use of the information in this chapter would be to write a Windows
program for running DOS applications, but alowing the user to specify PIF settings.
The program could then create and write aPIF file on-the-fly and then run the applica
tion in amanner reflecting the user's preferences.

Listing 8.1 PIFDUMP.C— Extracts information from a
Windows PIFfile.

/********************************‘!r***'k*******************'k*************

*

* PROGRAM: PIFDUMP.C

PURPOSE: This program extracts information from an MS Windows
PIF file {either 3B6 or 286 mode)

Copyright 1937, Mike Wallace and Pete flavis

Chapter 8, PIF File Format, from Undocumented Windows File Formats,
pubtished by R&D Books, an imprint of Miller Freeman, Inc.

* o K Kk ¥ A A X ¥

**********************'k***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "windows.h"
f#include "pifstruc.h*

fdefine SUCCESS 0
fdefine ERROR_FOUND 1

PIF File Format — 213

Listing 8.1 (continued)

!************‘k***‘!r*************************ﬁ*******‘****'k***********\

* *
* Check how the program was called. Required parameters are *
* the mode of information to extract (-3 for 386, -2 for 286) *
* and the input filename. *
* *

****‘k******H**********************‘****t********t***'&*************/

int check_usage(int argc, char *argv[]) {

int dump_type=(;
if (argc = 3) {

if (Istrcmpiargv[1}, "-2"}H
dump_type = 2:

else if (istremp(argv[1], "-3")})
dump_type = 3;

}o/*if {argc — 3) - end */

if (dump_type = 0) {
printf("Usage: pifdump < -3 | -Z > <infiled\n"):
exit{0};

]

return(dump_type);

} #* check_usage - end */
/*********t***H*H-k-k*-k***H***-k-k**********************************\
* k3

* Strip out trailing spaces from text_string. *
* L1

****‘*************************'k******‘***********‘***‘********‘********/
void trim(char text_string[], int sizey {

/* check for a non-positive size */
if (size < 1) return;

/* find last non-bTank character, then set next char. to null #/
for {--size; {--size >= 0) &% (text_string{sizel !="' *);) {}
text_string(++size] = "\0";

} /*+ trim - end */

,f*****************‘****t**\

* *
* If test_flag is non-zero, print strl, else print str2. *
* *

\‘*H'k*******t**i**1:*******************************H*-**************/

void print_flag(WORD test_flag, char *strl, char *str2) {

if (test_flag)
puts{stri};

else
puts{str2);

} f* print_flag - end */

214 — Windows Undocumented File Formats

Listing 8.1 (continued)
/******************i********—ki*************************************\
* *
* Convert the hotkey from the PIF file inte a readable character.*
* *
‘**************************************‘*'ll**************t***i*******/
void convert_hotkey(WORD hotkey, WORD num_flag} {
switch(hotkey) {

case 30: putchar{'a’); break:

case 48: putchar{'b"); break:

case 46; putchar('c"): break;

case 32: putchar{'d'): break;

case 18; putchar{'e’); break:

case 33: putchar('f'); break;

case 34: putchar{'g"); break:

case 35: putchar{'h"): break;

case 23: putchar('i’); break:

case 36: putchar{'j"); break;

case 37: putchar('k"); break;

case 38: putchar('1"); break;

case 50: putchar(‘m'). break:

case 49: putchar('n'); break:

case 24: putchar{'o"); break;

case 25: putchar('p’); break;

case 16: putchar('q"); break;

case 19: putchar('r’); break;

case 31: putchar(’'s’); break;

case 20: putchar("t'); break:

case 22: putchar(*u'); break;

case 47: putchar('v'); break;

case 17: putchar('w'}; break;

case 45: putchar('x'}; break;

case 21: putchar('y'}; break;

case 44: putchar('z'}); break:

case 2: putchar('l'}; break;

case 3: putchar('2'); break;

case 4: putchar{'3'}; break;

case 5: putchar(’4'}; break;

case 6: putchar{'5"}; break:

case 7: putchar{’'6'}; break;

case 8: putchar{'7'}; break;

case 9: putchar{'8'); break:

case 10; putchar('9"}; break;

case 11: putchar('0"); break:

PIF File Format — 215

Listing 8.1 (continued)

case 27: putchar(']"); break;

case 26: putchar('["); break;

case 39: putchar(';"}: break;

case 40: putchar{'\'"}; break;

case 41: putchar(’"'}; break;

case 51: putchar(','); break;

case 52: putchar(".'); break:

case 53: print_flag{num_flag, "Num /™, “/"): break;

case 12: putchar(*-'); break;

case 13: putchar(‘="); break;

case 43: putchar('\\'); break;

case 59: puts("F1"); break;

case 60: puts("F2"); break;

case 61l: puts("F37); break;

case 62: puts("F4*); break;

case 63: puts("F5"); break;

case 64: puts("F6"); break;

case 65: puts("F7"); hreak:

case 66: puts("F8"}: break;

case 67: puts({"F9"}; break;

case 68: puts("Fl0"): break:

case 87: puts(*FI1"}; break;

case B8: puts("Fl2"}; break;

case 78: puts("Num +7); break;

case 69: puts("NumlLock™); break;

case 76: puts{"Num 5"); break:

case 74: puts("Num -"); break:

case 82; print_flag{num_flag, "Insert™, “"Num 0"}; break;
case 70: print_flag{num_flag. "Break”. "Scroll Lock®): break;
case 71: print_flag(num_flag, "Home", "Num 7"}; break;
case 72: print_flaginum_flag, "Up", "Num 8"); break;

case 73: print_flag{num_flag, "Page Up", "Num 3"); break;
case 75: print_flag{num_flag, “Left”, “Num 4"): break;
case 77: print_flag{num_flag, "Right", “Num 6"); break;
case 79: print_flag(num_flag, "End", "Num 1%); break;
case 80: print_flag{num_flag, "Down™, "Num 2"); break;
case 81: print_flag{num_flag, "Page Down", "Num 3")}; break:
case 83: print_flag(num_fiag, ~Oefete™, "Num 0el"); break:
default: printf("<Unknown: ¥d>", hotkey): break;

'

putchar{'\n');

} /* convert_hotkey - end */

216 — Windows Undocumented File Formats

Listing 8.1 (continued)

/***********************W**\

* *

* Use the 8 bits in the 286-Flags BYTE to fill in the 8 bytes of *
* the FLAGSZB6 structure.

* %*
****************t**t**/

veid fit1_flags2B6(BYTE flags286, FLAGSZ86 *fz86_data) {

/* The comment at the end of each Tine converts decimal to binary */
f286_data->A1tTabZB6 (BYTE)(flags286 & 1); /* 1 = 00000001
f286_data->A1tEsc?86 = (BYTE)(flags2B6 & 2): 2 = 00000010
f286_data->AltPrtScr2B6 = (BYTEX(flags2B6 & 4); 00000100
fZB6_data->PrtScr286 (BYTE}(f1ays286 & 8); 00001000
f286_data->CtrlEsc2se (BYTE)(flags286 & 16): 00010000
f2B6_data->NoSaveScreen = (BYTE}{flags286 & 32); 00100000
f286_data->Unusedi0[0] (BYTE){f1ags286 & 64): 01000000
f286_data->Unused10[1] {BYTE)(flags286 & 128); 10000000

} /* Fi11_f1ags286 - end */

/**\

* *
* UUse the B bits in the COM Ports BYTE to fill in the 8 BYTES of *
* the COMPORT structure. *
o

&

t***f

void fill_com_ports(BYTE comports, COMPORT *com_ports) {

/* The comment at the end of each line converts decimal to binary */
com_ports->Unusedl110] (BYTE)(comports & 1); = (0000001
com_ports->Unusedlif1] = (BYTE)(comports & 2); = 00000010
com_ports->Unused11[2] (BYTE) (comports & 4); 00000100
com_ports->Unusedil[3) (BYTE}(comports & 8); 00001000
com_ports->Unusedl1[4] (BYTE) (comports & 16); 00010000
com_ports->Unused11[5] {BYTE){comports & 32): 00100000
com_ports ->Com3 (BYTE){comports & 64); 01000000
com_ports->Comd {BYTE)(comports & 128); 10000000

} /* fill_com_ports - end */

PIF File Format — 217

Listing 8.1 (continued)

JrEdRkkkddkdhkikiohddkkidhidhirihkdiihikkiokkihihdiahhkhihrkhhrrhhkiny

* *
* Use the 16 bits in the video[2] bytes to i1l in the 16 bytes *
* of the VIDED structure. *
* *

*****t******************************i*****************************/

void fill_video{ BYTE video[2]., VIDEO *video_data} {

/* The comment at the end of each 1ine converts decimal to binary */

video_data->EmulateText = (BYTE)(video[(®] & 1); f* 1 = 00000001 */
video_data->MonitorText = (BYTE)(video[0] & 2); J* 2 = 00000010 */
video_data->MonitorLoGr = (BYTE)(video[0] & 4); /* 4 = 00000100 */
video_data->MoniterHiGr = (BYTE)(video[0] & 8): /* 8 = 00001000 */
video_data->InitModeText = (BYTE} videol0] & 16); /* 16 = 00010000 */
video_data->InitModeloGr = (BYTE}{video{0D] & 32); /* 32 = 00100000 */
video_data->InitModeHiGr = (BYTE){(video[0] & 64); /* 64 = 01000000 */
video_data-»*RetainVideo = (BYTE)(video[0] & 128); /* 128 = 10000000 */

video_data->VideoUnused[0] = (BYTE)}(video[1] & 1); /* 1 = Q000000% */
video_data->VideoUnused[1} = (BYTE}(video[1] & 2): /* 2 = Q0000010 */
video_data->VideoUnused[2] = (BYTE}(video[1] & 4); f* 4 = 00000100 */
video_data->VideoUnused[3] = (BYTE}(video[1] & 8); /*8 00001000 */
video_data->YideoUnusedf4] = (BYTE)(video[1l]} & 16); /* 16 DOD1D00D */
video_data->VideoUnused(5] = (BYTE)}(video[1] & 32); f* 32 Q0100000 */
video_data->VideoUnused[6] = (BYTE}{video[1] & 64); /* 64 01000000 */
video_data->VideoUnused[7] = (BYTE}(video[1] & 128); /* 128 = 10000000 */

} /* fill_video - end */

f**\
* *
* Use the 16 bits in the hotkey[2] bytes to fill in the 16 bytes *
* of the HOTKEY structure.

* *
**/

void fitl_hotkey(BYTE hotkevy{2], HOTKEY *hotkey_data} {

/* The comment at the end of each Tine converts decimal to binary */

hotkey_data->HOT_KEYSHIFT = (BYTE)(hotkey[0] & 1); /*1 = 00000001 */
hotkey_data->Unusedd {BYTE)(hotkey[0] & 2); /* 2 = 00000010 */
hotkey_data->HOT_KEYCTRL {BYTE)(hotkey[D] & 4): /* 4 = 00000100 */
hotkey_data->HOT_KEYALT {BYTE) (hotkey[0] & 8); /* 8 = Q0001000 */
hotkey_data->Unused5{0] {BYTE)(hotkey[0] & 16); /* 00010000 */
hotkey_data->UnusedST1] {BYTE) (hotkey[0] & 32): /* 32 00100000 */
hotkey_data->Unused5[2] (BYTE)}(hotkey[01 & 64); /* 64 01000000 */
hotkey_data->Unused5(3] (BYTE)} Chotkey(0J & 128); /#* 128 = 10000000 */

wonouono
—_
o
oo

218 — Windows Undocumented File Formats

Listing 8.1 (continued)

{BYTE) (hotkey[0] & 1); * 1 = 00000001 */
(BYTE)(hotkey[0] & 2): /* 2 = 00000010 */
(BYTE)}{hotkey[0] & 4); /%4 = 00000100 */
(BYTE) (hotkey[0] & 8); /*8 =00001000 */
(BYTE)(hotkey[0] & 16): /* 16 = 00010000 */
(BYTE) thotkey[0] & 32); /* 32 = 00100000 */
(BYTE)(hotkey[01 & 64); /* 64 = 01000000 */
(BYTE)(hotkey[0] & 128); /* 128 = 1000000¢ */

hotkey_data->Unused5[4]
hotkey_data->Unuseds[5]
hotkey_data->»Unused5{6]
hotkey_data->Unused5[7]
hotkey_data->Unuseds[8]
hotkey_data->Unuseds[9]
hotkey_data->Unused5[10]
hotkey_data->Unusedhs[11]

} /* fill_hotkey - end */

JRERkRh Ak Tk kkdhkddokkkdk T ikkihiddhddkshdhihkkidhbkddkirkrkhhrihrh)

* *
* Use the 16 bits in the flags_XMS[2] bytes to i1l in the 16 *
* bytes of the FLAGSXMS structure. *
* *

\VRFkkkhdkhddkkhdkkhddhdddhibtkhkk kb kkkhkikhhihddkdhkkiiokkk |

void fi11_flagsxms{ BYTE fxms[2], FLAGSXMS *xms_data) {

/* The comment at the end of each 1ine converts decimal to binary */

xms_data->XMS_Locked = (BYTE)(fxms[0] & 1); /* 1 = 00000001 */
xms_data->Allow_FastPst = (BYTE)(fxms{0] & 2); /% 2 = 0p000010 */
xms_data->Lock_App (BYTEX(fxms[0] & 4); I* 4 00000100 */
xms_data->Unused3[0] (BYTE)(fxmsf0] & B): /* 8 00001000 */
xms_data->Unused3[1] (BYTE)(fxms[0} & 16); 00010000 */
xms_data->Unused3[2] (BYTE)}(fxms[0] & 32);: /* 32 00100000 */
xms_data->Unused3[3] (BYTE)(fxms[0] & 64); /* 64 01000000 */
xms_data->Unused3{4] (BYTE)(fxms[0] & 128); /* 128 = 10000000 */

.
*

—

-
]

LI I S B B A |
]

00000001 */
00000010 */
00000100 */
00001000 */
00010000 */

xms_data->Unused3fs]
xms_data->Unused3[6]
xms_data->Unused3[7]
xms_data->Unused3[8]
xms_data->Unused3[9]
xms_data- >Unused3[10]
xms_data->Unused3[il]
xms_data->Unused3[12]

(BYTEY(fxmsEQ] & 1): /* 1
(BYTEX(fxms{0] & 2): /* 2
(BYTE}{fxms[0] & 4): * 4
(BYTEX (fxms[0] & 8); i* 8
(BYTE}{fxms[0] & 16):
(BYTE)Y{fxms[0] & 32); /* 32 00100000 */
(BYTE) (fxms[0] & 64): /* &4 01000000 */
(BYTE)(fxms[0] & 128); /* 128 = 10000000 */

—
*
—_
(=]

| I I I B

L2000 I I T T I B |
]

} o /* Fil1_flagsxms - end */

PIF File Format — 219

Listing 8.1 (continued)

[**************************t**t************************************\

* w
* llse the 16 bits in the 386-Flags(2] bytes to fill in the 16 *
* bytes of the FLAGS3B6 structure. *
* *

*******t**/

void fi11_f1ags3B6(BYTE flags3B6[2], FLAGS3B6 *f386_data) {

/* The comment at the end of each line converts decimal to binary */

f3iB86_data->AllowCloseAct = (BYTEX(f1ags386[0] & 1¥: /* 1 = Q0000001 */
f386_data->Backgroundin = (BYTE)(flags386E0] & 2); /*x 2 = 00000010 */
£386_data->ExclusiveOn = (BYTEX(flags3B6[0] & 4); /* 4 = 00000100 */
386_data->FullScreenYes = (BYTE)(flags386£0] & 8); /* 8 = 00001000 */
f386_data->Unusedd = (BYTE)(f1ags386[0] & 16); /* 16 = 00010000 */
f3B6_data->SK_AltTab = (BYTE)(flags386[0] & 32); /* 32 = 00100000 */
f386_data->SK_AltEsc = (BYTE){f1ags386[0] & 64}; /* 64 = 01000000 */
f386_data->SK_AltSpace = (BYTE){flags386[0] & 128); /* 128 « 10000000 */
f3B6_data->SK_AlTtEnter = (BYTE)(flags386(1] & 1}; /* 1 = 00000001 */
f3B6_data-»>SK_AltPrtSc ~ (BYTE)(flags38e[1] & 2); /* 2 = 00000010 */
f3B6_data->SK_PrtSc = {BYTE)(flags386[1] & 4); /* 4 = 00000100 */
f3B6_data->SK_Ctrl1Esc = (BYTE)(flags386[1] & 8); /* B8 = 00001000 */
f386_data->Detect_Idle = (BYTE)(flags386[1] & 16); /* 16 = 00010000 */
1386_data->UseHMA -~ {BYTE)(flags386[1] & 32); /* 32 = 00100000 */
f386_data->Unused] = (BYTE)(flags386f1] & 64); /* 64 = 01000000 */
f386_data->EMS_Locked = (BYTE)(flags386£1] & 128): /* 128 = 10000000 */

b /* fill_f1ags386 - end */

/************t***************************#*******t********#********\
* *
* lise the 8 bits in the PIF close_on_exit BYTE to fill in the *
* B BYTES of the CLOSEQNEXIT structure. *

* *
**f

void fill_close_on_exit{ BYTE close_on_exit, CLOSEONEXIT *coe_data} {

/* The comment at the end of each line converts decimal to binary */

coe_data->Unused = (BYTE)(close_on_exit & 1); /* 1 = 00000001 */
coe_data->Graph286 = (BYTE)(close_on_exit & 2); /* 2 = 00000010 */
coe_data->PreventSwitch = (BYTE)(close_on_exit & 4); /* 4 = 00000100 */
coe_data->NoScreenExch = (BYTE)(close on_exit & 8); /* 8 = 00001000 */
coe_data->Close_OnExit = (BYTE)Y(close_on_exit & 16); /* 16 = 00010000 */

coe_data->Unusedl - (BYTE)(close_on_exit & 32); /* 32 = 00100000 */
coe_data->Com2 = (BYTE)(c)pse_on_exit & 64); /* 64 = DIO00000 */
coe_data->Coml = (BYTE){close_on_exit & 128};/* 128 = 10000000 */

) #* fill_close_on_exit - end */

220 — Windows Undocumented File Formats

Listing 8.1 (continued)

/**\

* *
* Search the tinked Tist of records at the end of the PIF file *

* for the section with a title of "title”. *
* *
************t***************i**********************!r***********i**/

long search_pif_file{ char *title, FILE *infile) {

SECTIONHDR sect_hdr:
SECTIONNAME sect_name;

Tong offset=0L;
short match_found=0;
short at_eof=0;

/* Skip over "MICROSOFT PIFEX" header - it points to the first part
/* of the file (in its sect_hdr structure, next_section = Ox187,

/* current_section = 0x0, and size_section = Ox171; next_section =
/* 0x171 (size of section) + 0x10 (size of "MICROSOFT PIFEX\0") +
/* Ox06 {size of section header).

fread(§_name, sizeof{sect_name), 1, infile};

fread(§_hdr. sizeof(sect_hdr), 1, infile):

if (strcmp(sect_name.name_string, "MICROSOFT PIFEX™)) ¢
printf(*Invalid PIF file. Stopping.\n"};
exit(l);

H

/* Now scan through remaining sections in the PIF file */
while {((imatch_found) && (lat_eof}} {

if (feof{infile))
at_eof = 1;
else {

f* Read in the name and header of the current section */
fread(§_name, sizeof(sect_name), 1, infile);
fread(§_hdr, sizeof(sect_hdr), 1, infile);

/* Check if secticon found, or at eof, or if can't fseek to the */
/* next section (these 3 actions are mutually exclusive} */
if (Istremp(title, sect_name.name_string))

match_found = 1;
else if (sect_hdr.next_section ==~ 0xFFFF)

at_eof = 1;

PIF File Format — 221

Listing 8.1 (continued)

else |

/* Convert a WORD to signed long */
offset = Ox0000FFFF & sect_hdr.next_section;
if (fseek(infile, offset, M) {
printf(“Unable to fseek to ¥1d. Stopping.\n", offset);

axit(l);
}

} /* if (section-not-found && not-at-end) - end */
} /* if (not at end of file) - end */

} /* while [(match-not-found && not-at-snd-of-file) - end */

if (match_found)

offset = sect_hdr.current_section;
else

offset = -1;

return(offset);

} f* search_pif_file - end */

JRAER R R AR Rk gk bk R ek R e det Aok ok kR kol ol e dokek ok deokokeoke

* *

* Read the first 286 block from the PIF file.
*
**/

void read_286_block(DATA286 *data, FILE *infile } {

*
*

long offset=QL;

if ({offset = search_pif_file{"WINDOWS 286 3.07, infile)) == -1) {
printf("Error: 286 Section not found. Stopping.\n"):
exit(l);

)

else {

/* Read 286 section into memory */

fseek({infile, offset, 0);
fread(data. sizeof(DATAZ286), 1, infile);

}
} #* read_286_block - end */

222 — Windows Undocumented File Formats

Listing 8.1 (continued)

‘{**\

* *
* Read the first 386 block from the PIF file. *
* *

****************************'k********t********************t*******/

void read_386_block(DATA386 *data, FILE *infile) {

long of fset=0L;

if ((offset = search_pif_file("WINDOWS 386 3.0", infile}) == -1} {
printf("Error: 386 Section not found. Stopping.\n");
exit(l};

1

else {
/* Read 386 section into memory */
fseek(infile, offset, 0);
fread(data, sizeof{DATA386), 1, infile);

}

} /* read_386_block - end */

/ ******************************‘k*************************i*********\

w *
* Process the PIF input file. If the user passes in "-2", *
* print out "Standard Mode" dump; for "-3", print "Enhanced” *
* mode dump. *
* *

*t*************************t*********:1'****************i’***********f

void main{int argc, char *argv[]} {
int dump_type=0; /* 2=286 dump, 3-386 dump */
FILE *infile;

PIF pif_header;
DATA386 data386:
DATAZ86 data2Bb;

CLOSEONEXIT close_onexit_data;
FLAGS286 f286_data;
FLAGS386 £386_data;

COMPORT com_ports;

YIDED video_data;

HOTKEY hotkey_data;
FLAGSXMS xms_data;

PIF File Format— 223

Listing 8.1 (continued)

/* Determine (from command line) if user wants 286 or */
/* 386 info; set dump_type to 2 or 3, respectively. */
dump_type = check_usage(argc, argv);

/* Try to open the file. If it fails, exit. */

if ((infile = fopen(argv[2], "rb")) == NULiL) {
printf("Input file not found. Stopping.\n");
exit(0);

]

/* fopen() was successful, so read in the first header */
printf{“Extracting 2d86 information from %s.\n\n", dump_type, argv[2]);
fread{ &pif_header, sizeof(pif_header), 1, infile);

/* Retrieve 286 or 386 (Standard or Enhanced) info from PIF file */
if (dump_type = 2) {
read_286_block({ &data286, infile);

fill_flags286(data286.flags_286, &f286_data):
i1l _com_ports{ data286.com_ports, &com ports);
)
else |
read_386_block{ &data3B6, infile);

fil1_flags386(data386.f1ags_386, &Ff386_data):
fill_video{ datal86.video. &video_data);
fill_hotkey(data38h.hot_key state, &hotkey data):
fil11_flagsxms{ data3d86.flags_XMS, Exms_data);

1

/* You're done with the input file, so close it */
fclose(infile);

/* Initialize bit-replacement structures */
fill_close_on_exit(pif_header.close_on_exit, &close_onexit_data):

/* Remove trailing spaces from text fields */
trim{pif_header.prog_path, sizeof(pif_header.prog_path)};
trim(pif_header.title, sizeof(pif_header.title));
trim{pif_header.def_dir, sizeof(pif_header.def_dir});
trim{pif_header.prog_param, sizeof(pif_header.prog_param));

trim{pif_header.shared_prog_name, sizeof{pif_header.shared_prog_name)};
trim{pif_header,shared_data_file, sizeof(pif_header.shared_data_file)};

224 — Windows Undocumented File Formats

Listing 8.1 (continued)

/* Print out the data common to both groups */
printf("Program Filename ; %s\n", pif_header.prog_path):
printf("Window Title : Ts\n", pif_header.title);

/% print optional parameters based on dump_type */
printf{"0pt. Parameters S T
if (dump_type — 2)
printf{ "%s\n", pif_header.prog_param};
else
printf(*%s\n", data386.opt_params);

printf{"Startup Directory : %s\n", pif_header.def_dir);

/* print out video data */
if (dump_type == 2) {
printf("Video Mode HE
if (close_onexit_data.Graph286)
printf("Graphics/Mult. Textin®):
else
printf("Text\n"};
}
else if (dump_type — 3) {
printf("Video Memory HH
if (video_data.InitModeText)
printf(* Text®):
if {video_data.InitModelLoGr)
printf(* Low Graphics™}:
if (video_data.InitModeHiGr)
printf(* High Graphics");
printf{"\n");

if (dump_type == 3} {

printf("Memory Requirements: %dK Required\t %dK Desiredin”,
data386.mem_req, data386.mem_1imit});:

print{("EMS Memory : %K Requiredit ZdK timitin™,
data3Be.ems_min, datal386.ems_max};:
printf("XMS Memory : %dK Required\t %dK Limit\n®*,

dataldB6.xms_min, datal386.xms_max}:

if (f386_data.FullScreenYes)

printf{“Display Usage ¢ Full Screen\n*):
else
printf{"Display Usage : Windowedin™);

printf{"Execution o "h

PIF File Format — 225

Listing 8.1 (continued)

if (f386_data.Backgrounddn)
printf("Backgreund "J;
else
printf("Foreground ~);

if (f386_data.Exclusiveln)
printf{"Exclusive\n”);

else
printf{"Non-exclusivein"};

jf (close_onexit_data.Close_OnExit)
printf("Close Window On Exiti\n™);

else
printf{"Don't Close Window On Exit\n*);

}
else if (dump_type = 2) {

printf("Memory Requirements: #dK Requiredin®, pif_header.min_mem);
printf("XMS Memory : %dK Required\t ZdK Limit\n\n",
data286.xmsReq2B6, dataZB6.xmsLimit286);

printf(*Directly Modifies:");

if (¢lose_onexit_data.Coml)
printf(" Coml™};

if {close_onexit_data.Com2)
printf(™ Com2"};

if {com_ports.Com3)
printf(* Com3®};

if {com_ports.Comd)
printf(" Comd~™};

if (pif_header.flagsl & 16) /* Check the 5th bit for keyboard */
printf(" Keyboard"};

printf("\n"};

if {close_onexit_data.NoScreenExch)
printf{"No Screen Exchangsin”);
else
printf{"Screen Exchange Allowed\n");

if (close_onexit_data.PreventSwitch)
printf{"Program Switch Preyented\n");
else
printf("Program Switch Alltowed\n™);

226 — Windows Undocumented File Formats

Listing 8.1 (continued)

if {close_onexit_data.Ciose OnExit)
printf{"Close Window On Exit\n"};

else
printf("Don't Close Window On Exitin™):

if (f286_data.NoSaveScreen)

printf("Save Screen is not Enabledin”);
else

printf("Save Screen is Enabled\n"};

printf{"Reserve Shortcut Keys:");

if (f206_data.A1tTab286)
printf(™ Alt+Tab");

if (f286_data.A1tEsc286)
printf(* Alt+Esc*):

if (f286_data.CtrlEsc2Bh)
printf{" Ctrl+Esc");

if (f286_data.PrtScr286)
printf{" PrtScr™);

if (f286_data.A1tPrtScr286}
printf(" Alt+PrtScr);

printf(*\n"};

/* Print out the 386 Advanced screen data */
if {dump_type = 3) {

printf("\nAdvanced Options:\nin");

printf("Multitasking Options:\n");
printf("Background Priority: %d\n", data3gé.back_pri);
printf("Foreground Priority: Zd\n", dataliBé.for_pri);
if (f3B6_data.Detect_ldle)

printf("Detect Idle Time\n\n"};
else

printf(“Doe not Detect Idle Time\n\n");

printf{"Memory Options:\n");
if (f386_data.EMS_Locked)

printf("EMS Memory Locked\n®™);
else

printf("EMS Memory Not Locked\n”™):

if (xms_data.XMS_Locked)

printf(*XMS Memory Locked\n");
else

printf("XMS Memory Not Locked\n™):

PIF File Format — 227

Listing 8.1 (continued)

if (1F386_data.UseHMA)
printf("Use High Memory\n");
else
printf("Do Not Use High Memory\n");

if (xms_data.btock_App)
printf("Lock Application Memory\n"};
else
printf(“Do Not Lock Application Memory\n©};

printf("\nMonitor Ports:");

if (lvideo_data.MonitorText}
printf("™ Text");

if (lvideo_data.MonitorLoGr}
printf(* Low Gr")

if (lvideo_data.MonitorHiGr}
printf(" High Gr");

if (video_data.EmulateText)
printf(* Emul. Text®):

if (video_data.RetainVideo}
printf(™ Retain Video Mem™);

printf("\n\n");

if (xms_data.Allow_FastPst)
printf{"Allow Fast Paste\n");

else
printf("Don't Allow Fast Pastewn"};

if {f386_data.AllowCloseAct}
printf{"Allow Close When Activein®):
else
printf{"Don’t Allow Close When Activeln®);

228 — Windows Undocumented File Formats

Listing 8.1 (continued)

printf("\nReserved Shortcut Keysin™);

if (f386_data.SK_AltTab}
printf(*™ Alt+Tab"};

if (f386_data.SK_AltEsc)
printf(" Alt+Esc®);

if (f386_data.SK_CtrlEsc)
printf{" Ctrl+Esc");

if (f386_data.SK_PrtSc)
printf(* PrtScrT):

if (f386_data.SK_A1tPrtSc)
printf(* Alt+PrtScr*);

if (f386_data.SK_AltSpace)
printf(* Alt+Space™):

if (f386_data.SK_AltEnter}
printf(* Alt+Enter®);

printf{"\n\nAppiication Shortcut Key: "):
if (data386.hot_key flag = Q)
printf(*None\n");
else {
if (hotkey_data . HOT_KEYALT)
printf(TAlL+"Y),
if {(hotkey_data.HOT_KEYCTRL)
printf("Ctri+");
if (hotkey_data_ HOT_KEYSHIFT)
printf("Shift+");

convert_hotkey(data386.hot_key_scan, data386.hk_numflag);
]

} /% if (dump_type = 3) - end */
} /* main - end */

/* pifdump.c - end */

Chapter 9

W3 and W4 File Formats

Overview

Unless you follow the literature on undocumented Windows features, you might not
even know what a "W3' or "W4" file is. The W3 file is the file format used by
WIN386.EXE in Windows 3.x and is actualy quite simple. The W4 file is used by
VMM32.VXD in Windows 95 and is alittle more complex than the W3 file.

W3 and W4 files aren't readlly executable files, in the common sense of the term.
They are more like a library. They contain a series of VxDs (LE files), and they're
basically away of packaging together a bunch of the core VxDs for Windows. Essen-
tially, the W3 file contains a directory of al the LE files (by name), with offsets to
their locations, and the length of each one.

Like NE, PE, and LE executables, the W3 and W4 have an MZ (MS-DOS compat-
ible executable) stub program, with the W3 or W4 file immediately following it. I'm
not really going to get into the details of the MZ stub program. All you really need is
avery small piece of the header. Listing 9.1 shows the MZHEADER structure and a short
routine, SkipMZ(), that allows you to seek to the "next" executable in the file. This
same routine would work for LE, PE, and NE files, as well.

229

230 — Windows Undocumented File Formats

Listing 9.1 SkipMZ code sample — allows you to seek
to the "next" executable in thefile.

/************************t*************************************t**t****
*

PROGRAM: SkipMZ
PURPOSE: SkipMZ allows you to seek to the “next™ executable in the file.
Copyright 1997, Mike Kallace and Pete Davis

Chapter 9, W3 and W4 Filte Formats, from Undocumented Windows File Formats,
published by R&D Books, an imprint of Miller Freeman, Inc.

LIS B B A

***********t**t**********i***********************************i********f
typedef struct tagMZHEADER
{

char MZMagicl[2]; /* Should always be ‘M2’ */

char Stuff{58]: /* Stuff you don’t care about */

long OtherOff; /* Offset to next executable */
} MZHEADER:

BOOL SkipMZ{FILE *inFile)
{
MZHEADER MZHeader;

fread(&MZHeader, sizeof{MIHeader), 1, inFile);
if (MZHeader MZMagic[0] != 'M' || MZHeader.MZIMagic[1l] = 'Z')
{
printf("This is not an executable filei\n");
return FALSE;
t

if (!MZHeader.Other(ff)

{
printf("This is a DOS executablie.\n");
return FALSE;

}

fseek(inFile, MZHeader.Other0ff, SEEK_SET);
return TRUE;

W3 and W4 File Formats— 231

The W3 File Format

After the MZ stub, you're basically just concerned with the W3 section of the file. The
W3 file itself consists of a header, the VxD directory, and then the VxDs themselves.
The header for the W3 file is shown in Table 9.1.

The W3 header is immediately followed by the list of VxDs. The list contains
VXDRECORD structures (Table 9.2).

VxDName is simply the eight-character name of the VxD. If the name is fewer than
eight characters, it's padded with spaces (0x20). There is no null-terminator. The start-
ing location of the VxD is based on the beginning of the WIN386.EXE file, not the begin-
ning of the W3HEADER record. The VxDHdrSize field provides the size of the VXD header
in bytes. Actualy, VxDHdrSize includes not only the LEHEADER structure, but every-
thing in the Loader and Fixup sections of the LE file. So for our purposes, VxDHdrSize
includes everything from the "LE" signature to the end of the import procedure name
table. For more information on the LE file format, see Chapter 10.

How to Unmangle the VxDs

Unfortunately, VxDs within a W3 file are somewhat mangled, although the mangling
is fairly minor and easy to rectify. First of al, the DataPages value of LEHEADER is
changed to be relative to the beginning of the MZ header for the W3 file. Normally this
is relative to the beginning of the MZ header of the LE file. Of course, in aW3 file, the

Table 9.1 W3HEADERrecord.

Field Name Data Type Comments

W3Magic char[2] Contains the characters "W3"

WinVer WORD Version of Windows (0x30A = Windows 3.1)
NumVxDs WORD Number of VxDs in the directory

Reserved BYTE[10] Basicdly filler

Table 9.2 VXDRECORD structure.

Field Name Data Type Comments

VxDName char[8] Name of VXD, padded at the end with blanks
VxDStart long Starting location of VxD in W3 file
VxDHdrSize long Size of LE header in VxD

232 — Windows Undocumented File Formats

stubs for VxDs have been stripped to save space. The changing of the DataPages value
is weird though, because none of the other offset fields are changed at dl.

The other mangling has to do with the nonresident name table. The nonresident
name table is usually the last section of an LE file. In the case of W3 files, however,
al nonresident name tables have been removed, so if you extract the LE files, you'll
need to build one for it. Thisis afairly smple process, however.

SUCKW3

Okay, the name sounds a little strange, but basically SUCKW?3 (Ligtings 9.2 and 9.3)

extracts VxDs from a W3 file. Running SUCKW3 with just the name of the W3 file
gives you a listing of al the VxDs in the W3 file. Passing a second parameter, the
name of aVxD, extractsthe VXD into a separate .386 file. Y ou heed to make sure you
have a STUB.EXE program in the same directory, because the LE file will require its
own stub program.

Listing 9.2 SUCKW3H.

oAk K dokdesk gk kool ek dekok drdekododkok ek o X kb X ke diok i ek dokk ok A kA ok ko
&

PROGRAM: SUCKW3.H

PURPGSE: Extracts VxOs from a W3 file.

Chapter 9, W3 and W4 File Formats, from Undocumented Windows Fite Formats,

*

*

*

*

* Copyright 1997, Mike Wallace and Pete Davis

*

*

* published by RRD Books, an imprint of Milier Freeman, Inc,
*

****"r*****i*‘***‘***********'*******************'k****'********************/

typedef unsigned short WORD:
typedef unsigned char BYTE;
typedef unsigned tong DWORD;
typedef unsigned char BOOL;

#define TRUE 1
fdefine FALSE 0

typedef struct tagMZHEADER
[
char MZMagicf2];

char Stuff[58];
long DOtherOff;)} MZHEADER:

W3 and W4 File Formats —233

Listing 9.2 (continued)

/* Header for W3 File */
typedef struct tagW3HEADER
{

char W3MagicE2];

WORD WinVer;

WORD NumVxDs;

BYTE Reserved[10];
} W3HEADER;

/* Listing for single VxD in W3 directory */
typedef struct tagVxDRECORD
[
char ¥xDName[8];
Tong VxDStart:
long VxDHdrSize;
} VxDRECORD;

/* LE Header structure */

typedef struct taglLEHEADER

{
char LEMagic[2]:
BYTE ByteOrder:
BYTE WordOrder:
DWORD Formatlevel;
WORD CPUType;
WORD 0SType;
DWCRD ModuleYer;
OWORD Moduleflags;
BWORD MumPages;
DWORD ETPObJNum;
DWORD EIP;
DWORD ESPObjNum;
DWORD ESP;
CWORD PageSize:
DWORD LastPageSize;
OWORD FixupSize;
DWORD FixupChecksum:
DWORD LoaderSize;
DWORD LoaderChecksum;
DWORD ObjTbl10ffset;
DWORD NumObjects;
DWORD ObjPageTbl:
DWCRD ObjIterPage:
DWORD ResourceTbl;
DWORD NumResources;
DWORD ResNameTabie;

234 — Windows Undocumented File Formats

Listing 9.2 (continued)

DWORD EntryTable:
DWORD ModDirectTable;
DWORD NumMedDirect:
DWORD FixUpPageTable:
DWORD FixUpRecTable:
DWORD ImportModTable;
DWORD Numlmports;
DWORD ImportProcTable;
DWORD PerPageChecksum:
DWORD DataPages:
DWORD NumPreloadPages:
DWORD NonResTable;
DWORD NonResSize;
DWORD NonResChecksum;
DWORD AutoDSObj;
DWORD Debuglnfolff;
DWORD DebugInfolen;
DWORD NumInstPreload;
DWORD NumInstDemand;
DWORD HeapSize;

} LEHEABER;

Listing 9.3 SUCKW3.C.

JRFE ARkt R kR kAR Rk koo kb A kA Rk kb Ak Aok bk Rk kA Ak d kb Ak Aok
*

* PROGRAM: SUCKW3.C

*
* PURPOSE: Extracts VxDs from a W3 file.
Copyright 1997, Mike Wallace and Pete Davis

Chapter 9, W3 and W4 File Formats. from Undocumented Windows File Farmats,
published by RED Boeks, an imprint of Miller Freeman, Inc.

* ¥ o ¥ ¥ ¥

*****************************H***************************************f

#inciude <stdlib.h>
#include <stdio.h>
#include “suckw3.h”

W3 and W4 File Formats — 235

The PullVxD() function in SUCKW3 performs all the patching of the LEHEADER
structure and adds the nonresident nametable. Again, for more information on the LE
file format, see Chapter 10.

Listing 9.3 (continued)

// Pass by the MZ Header
BOOL SkipMZ(FILE *inFile)
(
MZHEADER MZHeader;
fread{&MZHeader, sizeof(MZHeader), 1, infile};
if (MZHeader .MiMagic[0] != 'M' || MZHeader .MZMagic[1] 1= "Z")
{
printf(*This is not an executable filel\n"};
return FALSE;
}

if (tMZHeader.0therQff) {
printf("This is a DOS Executable");
return FALSE;

)

fseek(inFile, MZHeader_ Other0ff, SEEK_SET);
return TRUE;
)

/f List vxDs in the W3 file
void ListW3File(FILE *W3File}
{

long Wistart;
WIHEADER W3Hdr ;
WORD i;

VxDRECORD VxDRec;
W3Start = ftell(W3File);

fread(&W3Hdr, sizeof(W3Hdr), 1, W3IFile);
if (W3Hdr.WinVer == (x30A)

printf("W3 File for Windows Version 3.1\n\n"};
else if (W3Hdr.WinVer == 0x400)

printf("W3 File for Windows 95.\nm\n"):

printf("%u VxDs in this W3 File.\n\n", W3Hdr.NumVxDs);

printf{“¥xDName ¥xDStart ¥xDHdrLen\n"};
printf("--------omieie \n"});
for (i=0; <W3Hdr NumVxDs; i++)
{
fread(&VxDRec, sizeof(¥xDRec), 1, W3File);
printf("%-10s 0x%Z081X 0x2081X\n",
VxDRec.VxDName, VxDRec.VxDStart, VxDRec.VxDHdrSize);

236 — Windows Undocumented File Formats

Listing 9.3 (continued)

// txtract the YxD
vaid PullVxD(FILE *W3File, char *VxDName, long VxDStart)
{

char DutFilel12];
FILE *YxDFite;
LEHEADER LEHdr:

long Remaining;
int TaCopy:

static char buffer[8192];
fseek(W3File, VxDStart, SEEK_SET):

strcpy(OutFile, VxDName);

strcat(OutFile, *,386%);

if {((VxDFile = fopen{DutFile. “wb™)} =— NULL)
printf(*Unable to create file ¥s1\n", QutFile):

fread(&LEHdr, sizeof(LEHdr), 1, W3File);
Remaining = LEHdr _NonResTable;

// Patch values for Non-Resident Name Table
LEHdr . KonResSize = strlen{¥xDName) * 2 + 6;

// Patch Data Pages offset
LEHdr . PataPages -= VxOStart:

// Write the new LE Header
fwrite(&LEHdr, sizeof(LEHdr), 1, VxDFile}:
Remaining -= sizeof(LEHdr):

// Copy remaining information
while {(Remaining)
{
ToCopy = Remaining > 4096 7 4096 : (int) Remaining;
fread(buffer, ToCopy. 1, W3File);
fwrite(buffer, ToCopy. 1, VxDFile);
Remaining -= ToCopy;
)

// Patch Non-Resident Name Table itself
buffer[(l=strlen{VxDName);

memcpy{&buffer[1], VxDName, strlen{VxDName)};
buffer[strien(VxDName) + 1] = 0;
buffer[strien(¥xDName) + 2] = 0;
buffer[strien(VxDName) + 3] = bufferfQ];

ToCopy = strien{VxDName) + 4:
memcpy{&bufferfTolopy]l, ¥xDName, strien{VxDName)):
ToCopy += strien(V¥xDName);

buffer{ToCopy]l = 0x01; buffer[ToCopy + 11 = 0;
ToCopy+=2;

// Write the Non-Resident Name Table and close file.
furite{buffer, ToCopy, 1, VxDFile);
fclose{VxDFile);

W3 and W4 File Formats — 237

The W4 File Format

The W4 file format is very similar to the W3 file format, except for one major differ-
ence: it uses compression. In fact, the compression used in the W4 file is exactly the

same as the Double Space compression used in double-space drives. There's code

reuseforyou. In fact, inthefirst stories | heard of people working on the W4 file for-

mat, everyone was calling directly into the Double Space decompression routines to
decompress the W4 files. A very ingenious method, but for our purposes, we needed
to know the compression agorithm, which Clive Turvey was nice enough to provide.

Infact, Clive Turvey, in addition to providing help with the W3 file format, provided

Listing 9.3 (continued)

/f Find the ¥xD to "suck" out
void SuckVxD(FILE *W3File, char *VxDName)
{

long W3Start;
W3HEADER W3Hdr;
WORD is

VXDRECORD ~ VxDRec;
WiStart = ftell(W3File);
fread{&W3Hdr, sizeof(W3Hdr), 1, W3File);

/7 Try to find the ¥xD
for(i=0; i<W3Hdr NumyxDs; i++)
{
fread(&VxDRec, sizeof(VxDRec), 1, W3File);
if {!memcmp(VxDRec.VxDName, VxDName, strien{VxDName}})
{
printf("Extracting %5..\n", VxDName):
Pul1VxD(W3File, VxDName, VxDRec.V¥xDStart);
return;

}

// Didn't find the VxD;
printf{"VxD Zs not found in this W3 File.\n");
)

void Usage(void)

{
printf{"Usage: SUCKW3 W3Name [V¥xDNamelinin™):
printf("W3Name is the name of the W3 executable, probably\n"}:
printf(" WIN3B6 . EXE, VMM32.VXD, or VMM32.EXE\n"):
printf("VxbName 1is, optionally, the name of the VxD to extract.\n\n"};
printf("Just providing the W3Name will give a directory\n");
printf("of the contents of the W3 executable.\n"};

238 — Windows Undocumented File Formats

everything we know about the W4 format. He was even nice enough to provide source
code for decompressing aW4 file. Although we've rewritten this code from scratch, it

isdill smilar to hisand it wouldn't have been possible without his assistance.

The W4 compression agorithm is called a Lempel/Ziv/We ch compression ago-
rithm, named after the three people who contributed to its design. The W4 file, when
decompressad, actudly contains a W3 file indde, s once you've decompressed the

W4 file, you can traverse the W3 file structure described earlier.
The W4 file begins with the WAHEADER record (Table 9.3).

Listing 9.3 (continued)

int main{int argc, char *argv[])
{

char filename[256]:
char VxDMame[9];
FILE *W3File:

if {argc < 2} {
Usage(}:
return EXIT_FAILURE:
}
strepy(fitename, argv[11):
if (argc =— 3)
{
if (strlenargv(2}} > B}

printf("Invalid VxDName. Must be 8 characters or less.\n");
return EXIT_FATILURE;

}
strcpy (VxOName, argv[2]);

}
if (Istrchrifilename, '."))
streat{filename, ".EXE");

if ((W3File = fopen(filename, "rb")} == NULL)

{
printf("%s does not exist!\n", filename);
return EXIT_FAILURE;

}

if (SkipMZ{W3IFile})
{ if (argc == 2)

{ ListW3File{W3File);

éf {argc = 3}

{ Suck¥xD{W3File, YxDName);
¥

fclose(W3File);
return EXIT_SUCCESS;

W3 and W4 File Formats — 239

W4Magic must be W4. Always0is an unknown value, but appearsto aways be zero.
ChunkSizeis the size of "chunks" of data that need to be decompressed (discussed
later). It's important to keep in mind that Chunk Si ze is the maximum size of the data,
compressed or decompressed. This means that two buffers of Chunk Si ze bytes will be
sufficient to hold one chunk of compressed data and one chunk of decompressed data.
ChunkSizeis followed by the number of "chunks" in the W4 file. DSMagic is simply
the letters "DS' to indicate that this is DriveSpace compression. The Unknown field is
just six NULL bytes, probably reserved for future use.

Following the WAHEADER record is a list of offsets to the "chunks'; there will be
W4HEADER.NumChunks offsets (say that 10 times really fast). Each offset is a DWORD
and is an offset to the beginning of an 8Kb chunk of compressed data. The offsets are
relative to the beginning of the file (in other words, the beginning of the MZ file, not
the W4 file). Each 8Kb chunk isjust a block of compressed data that you'll decom-
press to recreate the W3 file.

The W4/Double Space Compression Algorithm

| am not an expert on compression algorithms. | understand the basics enough to
reverse-engineer smple ones, like LZ77. This agorithm is quite a bit different in
many ways than the LZ77 derivative used in WinHelp and COMPRESS.EXE (which I'll
refer to as Zeck). | would recommend reading the chapter on COMPRESS.EXE first,
however, because it will give you the basics.

This algorithm, although based in the Double Space algorithm, does not encom-
pass the entire Double Space format. Due to time constraints, we were unable to
tackle the entire Double Space algorithm for this book.

The W4 compression algorithm is also a Lempel-Ziv agorithm, but unlike the
Zeck, this one is bit based. In other words, in the Zeck agorithm, al of the com-
pressed datais held aBYTE at atime and everything is on BYTE boundaries. This ago-
rithm has only a bit boundary, which can make it difficult to work with, but as you
dtart to teke it apart, | think you'll see that it's not as bad as it may appear.

Table 9.3 WAHEADER record.

Field Name Data Type Comments

WaMagic char[2] Contains the characters "W4"

Always0 WORD Always zero

ChunkSize WORD Size of a"chunk"; should always be 8Kb
NumChunks WORD Number of "chunks"; must be less than 1Kb
DSMagic char[2] Contains characters "DS' for "Double Space”
Unknown char[6] These are all NULLs

240 — Windows Undocumented File Formats

Shannon-Fano Tables

As | mentioned before, I'm not an expert in compression, nor is it within the scope of
this book to discuss LZW compression dgorithms in genera. So, instead of explain-
ing what a Shannon-Fano table is, | will only go into how it specificaly affects W4
files. At its most basic, the Shannon-Fano table provides codes that give the depth and
count of repeated data in the compressed data.

The Shannon-Fano table for the W4 compression agorithm is shown in

Figure 9.1.

Figure 9.1 Shannon-Fano tablefor W4 compression.
MSB.....oiieieeeeeeee e, LSB | Meaning
XXXXXXX01 | IxxxxxxX - Uncompressed byte
XXXXXXX10 | Oxxxxxxx - Uncompressed byte
Depth
00000000 | Quit code
XXXXXX00 | xxxxxx=1-63
11111100 | 63
XXXXXXXX011 | 64 + XXXXXXXX = 64 - 319
XXXXXXXXXXXX11L | 320 + XXXXXXXXXXXX = 320-4414
111111111111111 | (4415) = Check Buffer
Count
1] 2
010 | 3
110 | 4
xx100 | 5+xx=5-8
xxx1000 | 9+xxx=9- 16
xxxXx10000 | 17 + xxxx = 17 - 32
XxXxxx100000 | 33 + xxxxx =33 - 64
XXxXxxx1000000 | 65 + xxxxxx = 65 - 128
XXXXXXX10000000 | 129 + xxxxxxx = 129 - 256
XXXXXXXX100000000 | 257 + XXXXXXXX = 257 - 512
000000000 | Done

W3 and W4 File Formats— 241

The idea of how the Shannon-Fano table works is quite simple. At this point, it's
probably bestjust to examinethe codein W4Decomp; inparticular, W4Decompress()
and LoadMiniBuffer(). Noticethat W4Decompress() pulls only as many bits from
dwMiniBufferasit needs. After pulling adepthvalue, itcalsL oadMiniBuffer()to
shift in some new hits. Then it looks for the count value, again pulling only as many
hits as it needs, and then calling LoadMiniBuffer() tofill up dwMiniBuffer again.
The rest of the code should be very straight forward. This code is not optimized for
speed. It has been written for clarity so that it's easy to understand. I'll leave the opti-
mized version as an exercise for the reader. (I've aways wanted to say that.)

Where Do | Gofrom Here?

| can see two magjor uses for this information. The first is to have a utility to extract the
VxDs, like the one | wrote. Then, using a disassembler based on the information in
Chapter 10, you could disassemble the VxDs in the W3 and W4 files (left as an exer-
cisefor thereader) for whatever purpose you may need.

The other use | can think of is to write your own utility to create and append to W3
and W4 files (again, left as an exercise for the reader), so that you can add your own
VxDs to the W3 and W4 files.

242 — Windows Undocumented File Formats

Listing 94 WADECOMPH — Header filefor WADECOMP.C.

/*‘****************t***********************************t*********t******
*

* PROGRAM: WADECQMP .H

*

* PURPOSE: Decompresses a W4 file into a W3 file.

*

* Copyright 1997, Mike Wallace and Pete Davis
W

* Chapter 9, W3 and W4 File Formats, from Undecumented Windows Fite Formais,
* published by R&D Books, an imprint of Miller Freeman, Inc.
*

*****************i*************ii‘*******************************k*****,

typedef unsigned char BOOL;
typedef unsigned short WORD;
typedef unsigned char BYTE;
typedef unsigned 1ong DWORD;

{define FALSE 0
f#define TRUE 1;

typedef struct tagMZHEADER
{

int Magic;

char Stuffl58]:

long Other(ff;
} MZHEADER;

typedef struct tagW4HEADER {
WORD Magic:
WORD Unknownl;
WORD ChunkSize;
WORD ChunkCount;
WORD DS;
WORD UnknownZ2:
WORD Unknown3;
WORD Unknown4;
} WAHEADER;

fidefine MZMAGIC Ox5A40
fdefine WAMAGIC 0x3457

W3 and W4 File Formats — 243

Listing 9.5 WADECOMP.C— Decompresses a WAfile
into a W3file.

f Fededdedde drddedede e dedede dod Ao dedobie Aok e d ook i kot ok e ki kok bk ke k ki ik ke A ek Ak ka
*

PROGRAM: W4DECOMP.C
PURPOSE: Decompresses a W4 file into a W3 file.
Copyright 1997, Mike Wallace and Pete Davis

Chapter 3, W3 and W4 File Formats, from Undocumented Windows File Formats,
published by RED Boeks, an imprint of Miller Freeman, Inc.

4+ * & * F & F *

********H!****i***************H**M**M*ﬂ*t*!********t*********i***/

f#include <stdio.h>
finclude <std1lib.h>
fHinclude <memory.h>
#include <string.h>
#include “wddecomp.h”

void LoadMiniBuffer(DWORD *pMiniBuffer,
BYTE **pSrcBuffer,
WORD *pBitslsed,
WORD *pBitlount)
{
while {{*pBitsUsed)--)
{

*pMiniBuffer >>= 1;
if (--(*pBitCount) =~ O}
{

*pMiniBuffer += (DWORD) **pSrcBuffer << 241;
*pSrcBuffer += 1;
*pBitCount = 8;

}

WORD W4Oecompress(BYTE *pSrcBuffer, BYTE *pDestBuffer, WORD nSize)
{
DWORD dwMiniBuffer = Q;

WORD nCount, nDepth; /4 Count and Depth of a compressed “string”
WORD nBitCount; // How many bits are left before we read
// another BYTE into dwMiniBuffer
WORD nBitsUsed; // Number of bits used by the last “code”,
/4 a code being a count or depth value.
WORD nDestIndex: /¢ Index into pDestBuffer

WORD nindex;

244 — Windows Undocumented File Formats

Listing 9.5 (continued)

WORD tmpSize = nSize;

BYTE *pTmpBuffer;
pTmpBuffer = pSrcBuffer;

// Load up dwMiniBuffer with first 4 bytes. We want it
// to lTook like this:

//

/7 msb dwMiniBuffer 1sb

A Framaaea o LR Form e +

/f F byte3d | bytez | bytel | byte 0|

{f +-------e-- R tmmmm e LR +

/

nDestIndex = 0; // start at byte 0 of dest buffer

for (nIndex = 0: nIndex <= 3; nlndex++}
dwMiniBuffer = {(dwMiniBuffer >> 8) + ((DWORD)*pSrcBuffer++ << 24);

nBitCount = 8; // We start with 8 hits Jeft before reading another BYTE
nDepth = 1; /f Just allows us inte the following Toop.

// While nDepth != 0. In gther words, if there"s nothing left
// to decompress, then we’re done.

while {nDepth)

{

// 1s the next piece of data an uncompressed byte?
if (({dwMiniBuffer & O0x00031)} = 0x00011) ||

{ (dwMiniBuffer & 0xD0031) = 0x00021))
{

if (--nSize == OxFFFF)

{
printf(“Error: Over-run of data\n™);
return 0;

}

phestBufferinDestindex++] = (BYTE) ({ (dwMiniBuffer & Ox01FC1Y >> 21) |
({dwMiniBuffer & 0x00011) << 713);

nBitsUsed = 9;
}

W3 and W4 File Formats— 245

Listing 9.5 (continued)

else // Depth data is compressed
{

/f (0-63)

if ((dwMiniBuffer & (x00031) == 0x00001)

{
nDepth = (WORD){ (dwMiniBuffer & OxOOFC1) >> 2);
nBitstsed = 8;

1

/1 (64-319)

else if {({dwMiniBuffer & 0x00071) == 0x00031)

(
nDepth = (WORD)({dwMiniBuffer & 0x07F81) >> 3) + 0xD040;
nBitstised = 11;

}

// (320-4414)

else if ((dwMiniBuffer & 0x00071) — O0x00071)

{
nDepth = (WORD) ((dwMiniBuffer & Ox07FF81) >> 3) + 0x0140;
nBitstised = 1%:

H

else

{
printf(“Errcer, invalid depth data. \n™);
return 0;

}

// If depth isn’t 0 and not a CheckBuffer,
/f load buffer, as needed.
if ((nDepth) &&
(nDepth I= 0x113F)) /7 Ox113F = (4415 - 3200

{
LoadMiniBuffer(&dwMiniBuffer, &pSrcBuffer, &nBitsUsed, &nBitCount};

// Get count
if ((dwMiniBuffer & 0x000011) == 0x000011) // 2
{
nCount = 2;
nBitslsed = 1;
}
else if ({dwMiniBuffer & 0x000031) = 0x00021) // 3-4
{
nCount = (WORB}{(dwMiniBuffer & 0x00041) >> 21) + 3;
nBitslised = 3;
}

246 — Windows Undocumented File Formats

Listing 9.5 (continued)

else if ({dwMiniBuffer & 0x000071) == 0x0000471) // 5-8
1
nCount = (WORD) {{dwMiniBuffer & 0x000181) >> 31) + 5;
nBitsUsed = 5;
}
else if ({(dwMiniBuffer & Ox00Q0F1) == 0x00081) // 9-16
{
nCount = {WORD)((dwMiniBuffer & 0x000701) >>» 41) + 9;
nBitsUsed = 7;
}
else if ((dwMiniBuffer & 0x0001F1) — 0Ox0010%) // 17-32
{
nCount = (WORD}({(dwMiniBuffer & 0x001E01} >> 51) + 17:
nBitsUsed = 9;
}
else if ((dwHiniBuffer & OxODO3F1) = 0x000201) 7/ 33-64
{
nCount = (WORD){{dwMiniBuffer & O0x007CQT} >> 61) + 33;
nBitsUsed = 11:
)
else if ({dwMiniBuffer & 0x0007F1) == Ox000401} // 65-128
{
nCount = {WORD)({dwMiniBuffer & 0x01F801) >> 71) + 65;
nBitsUsed = 13;
}
else if ((dwMiniBuffer & 0xQ00FF1) — 0x000801) // 129-256
{
nCount = (WQRD){ (dwMiniBuffer & OxQ7F001) >> 81) + 129;
nBitslUsed = 15;
]
else if ((dwMiniBuffer & Ox001FF1} — 0x001001) // 257-512
{
nCount = (WORD){{(dwMiniBuffer & Ox01FEQD1) >> 91) + 257;
nBitslsed = 17;
}
eglse
(
// Bad data, but handle as if it were a quit condition
printf(“Bad count data, quiting at current point.\n"};
nbepth = 0;
nCount = 0;
nBitsilsed = 9;

W3 and WA4 File Formats— 247

Listing 9.5 (continued)

// Copy “nCount”™ bytes of data from “nDepth” bytes back,
while {nCount--)
{
if (--nSize = OxFFFF}
{
printf(*Error: Over-run of data\n”);
return 0;
}

pDestBufferlnDestIndex] = pDestBuffer(nDestIndex - nDepth];
nDestIndex++;
}
}
else
{
/f If we get a Check Buffer and
// size of the remaining data is 0.
// then we're done.
if ((nDepth == 0x113F) &&
(nSize == 0x0000})
{
nDepth = Q;
}
}

) /7 else
LoadMiniBuffer(&dwMiniBuffer, &pSrcBuffer, &nBitsUsed, &nBitCount};
} /1 while(nDepth)

return nDestIndex;
}

int ExtractW3{(FILE *W4File, char *fjlename)
{

FILE *W3File;

MZHEADER mzHeader;

WAHEADER wAdHeader:

DWORD *pChunkTable;

DWORD start, end:

BYTE *pSrcBuffer, *pDestBuffer;

WORD nChunkIndex;

WORD nDestSize;

DWORD i;

248 — Windows Undocumented File Formats

Listing 9.5 (continued)

if ((W3File = fopen(“LIBRARY.W3", “wb™)) =~ HNULL)

printf(“Unable to open file LIBRARY.W3 for ocutputin”):
return 1;
1

fread(&mzHeader, sizeof(mzHeader), 1, W4File);
if (mzHeader_Magic i= MZMAGIC)
{

printf(“Not an executable file.\n"}:
return 1;
]

fseek(W4File, mzHeader.OtherGff, SEEK_SET):
fread(&wdHeader, sizeof(wdHeader), 1, WAFile);

if (wdHeader Magic |= WAMAGIC)
{
printf{“Not a W file.\n");
fclose(W3File);
return 1;
i

// Allocate space for chunk table
pChunkTable = malloc(wdHeader.ChunkCount * 4);

if (pChunkTable == KULL)

{
printf(“Not enough memory to allocate chunk table.\n"};

return 1;
}

// Allocate space for source buffer
pSrcBuffer = malloc(wdHeader .ChunkSize);

if {pSrcBuffer =— NULL}
{

printf(“Not enough memory for source buffer.\n"):
return 1;
}

// Allocate space for destination buffer
plestBuffer = malloc(wdHeader.ChunkSize * 2);

if (pDestBuffer == NULL)

{
printf{“Mot enough memory for destination buffer.\n"};
return 1;

)

W3 and W4 File Formats— 249

Listing 9.5 (continued)

/! Read chunk tabte
fread{pChunkTable, wdHeader.ChunkCount, 4, W4File);

[/ Pad W3File so that offsets in the 1ist of VxDs
// will match up.

printf{“Padding W3 File.\n"};

fwrite{&mzHeader, sizeof(mzHeader), 1, W3File);

end = mzHeader.OtherOff - sizeof(mzHeader);
for (i =0; 7 < end; 1++)
{
fputc{0, W3File);
H

for (nChunkIndex = 0: nChunkIndex < wdHeader.ChunkCount: nChunkIndex++)
{
start = pChunkTable[nChunkIndex];

if (nChunkindex — waHeader,ChunkCount}
{ end = fseek(W4File, 01, SEEK_END):
2159

i end = pLhunkTable[nChunkIndex + 11:

printf("Decompressing chunk %d - Compressed 3ize %d\n”, nChunkIndex,
(end - start)):

// Go to and read the current chunk

/7 Note: This code assumes that the chunk size

1 is not beyond the ability of fread.

fseek(W4File, start, SEEK_SET);

fread(pSrcBuffer, (WORD)(end - start), 1, wiFile):

/f Fill destination buffer with clear marker
memset (pDestBuffer, GxE5, wiHeader.ChunkSize):

if ((WORD){end - start) != wdHeader.ChunkSize)
nbestSize = WaDecompress(pSrcBuffer, pbestBuffer, wiHeader.ChunkSize);

// This is an error condition,
if {inDestSize)
{
fctose{W3File);
return 1;
}

fwrite(pDestBuffer, (WORDInDestSize, 1, W3File);

]
else

fwrite(pSrcBuffer, (WORD)({end - start), 1, W3File):
}
}

250 — Windows Undocumented File Formats

Listing 9.5 (continued)

fcloselW3File);
free(pChunkTable);
free(pSrcBuffer);
free(pDestBuffer):

void Usage{void)
{
printf{“Usagae: WADECOMP W4Name\nin™);
printf{“WiName is the name of the W4 executable, probabiy\n™);
printf(* YMM32 . VXDAR™);
}
int main{int argc, char *argv[])
{
char filename[?56]:
FILE *W4File;
if (argc < 2) ¢
Usage{();
return 1;
)
strepy(filename, argv[1]);

if (Istrchr(filename, *.")}
strcat(fitename, “_EXE"):

if ((WAFile = fopen{filename, "rb”)} == NULL)
printf(“%5 does not existivn®, filename);
return 1;

ExtractW3(W4Fite, filename);

fclose(WdFile):
return 0;

Chapter 10

LE File Format

Overview

Those of you who have been writing VxDs have probably been tied to Microsoft's
tools for writing VxDs. Although I'm not really picky when it comes to assemblers
and linkers, some people are. Beyond that, the information in Linear Executables
(LE) can be useful. Microsoft has usually been pretty good about documenting exe-
cutable file formats. They've provided information on the standard DOS executable
(M2), Windows 16-bit (NE), and Windows 32-hit (PE) file formats, among others.
For some reason, Microsoft chose not to do the same with the LE format.

The LE format is actually based on, or at leest very similar to, the LX file format
used by OS/2 executables. In fact, dl of the work in reverse-engineering the LE format
was based on information available on the LX format. | have never written alinker or
assembler, so | can't say that I'm absolutely positive about all of the information here.
For models, | examined the MZ, NE, PE, and LX formats to give me as good an under-
standing of executable file formats as | could get. However, as | said, | haven't written
an LE linker or an LE assembler, s0 it's possible that some of this information is not
correct. As with al undocumented information, use it at your own risk.

The most useful tool that could probably be written with this material would be a
linker (or possibly an assembler), but in the interest of time, space, and most impor-
tantly, my sanity, I've chosen to write an LE Dump utility modeled loosely on Andrew
Schulman's EXEDUMP included with Undocumented Windows (see the Bibliogra-
phy for more information).

LEDUMP simply goes through the linear executable and gives you some informa-
tion about it, including global header information, relocations, and exports. This
should be suitable to demonstrate how to get to the information.

251

252 — Windows Undocumented File Formats

Figure 10.1 Overview of LEfile layout.

00h

3Ch

40h

??h

DOS “MZ”
EXE Header

Offset to “LE”
Header

Rest of “MZ”
stub program

VxD “LE”
Module

Figure 10.2 LE module layout.

“LE” Header

Object Table

Object Page
Table

Resource
Table

Resident
Name Table

Entry Table

Module Format
Directive Table

Verify Record
Directive Table

Per-Page
Checksum

Loader
Section

R

Table

Fixup Page

Table

Fixup Record

Import Module
Name Table

Import Procedure
Name Table

Non-Resident
Name Table

—— Fixup Section

Non-Resident

Debug Info

LE File Format — 253

General Layout

The genera layout of an LE file is similar to the NE, PE, and LX file formats, in that
the very first section is actualy a stub MZ program that tells you that you can't run
thisprogram in DOS, or whatever MZ stub was attached. Following the stub program
is the actud LE file. | won't go into a complete description of the MZ file format,
because that isn't my purpose here, but | will give you enough information to maneu-
ver around the MZ file and get to the LE file.

Figure 10.1 shows the basic layout of an LE file with the MZ stub. Offset 3Ch in
the MZ file contains an offset to the LE file header.

The LE Fle itsdf isbroken into severa sections, as shown in Figure 10.2. Imme-
diately following the header is the loader section. The loader section is everything that
must be kept resident in memory while the program is running. This is followed by
the fixup section. The fixup section contains everything required to resolve addresses
within the code and to resolve dynamic links to other modules; although, asI'll dis-
cuss later, this isn't supported by Windows. The fixup section is followed by the non-
resident section, which contains the export table and debugging information and does
not need to be kept in memory while the VXD is running.

The smple code shownin Listing 10.1 can be used tojump to the LE header. This
code reads a portion of the MZ header. You're redly only interested in two fields:
MZMagic, which lets you make sure this is an MZ executable file, and the offset to the
LE header, which is located at offset 3Ch in the MZ header. Actudly, this isjust an
offset to whatever executable might follow the MZ stub. NE executables, for example,
are pointed to by the same offset.

Listing 10.1 SkipMZ code sample.

/***t****************
*

PROGRAM: SkipMZ

PURPQSE: Read the MZ header and determine
whether the fite has an LE header.

Copyright 1997, Mike Wallace and Pete Davis
Chapter 10, LE File Format,

from Undocumented Windows File Formats, published by R&D Books,
an imprint of Miller Freeman, Inc.

% % ok % % % % o %k

**/

254 — Windows Undocumented File Formats

The code in Ligting 10.1 jumps to the beginning of the LE file, where the LE file
header resides. The LE file header is shown in Table 10.1

I'll be the first to admit that this is not asmal header, but alot of things need to be
kept track of in an executable file. Some of the fields may not make dl that much
sense, 0 I'll go into more detail about them.

Firg of al, I'll talk about whet fields aren't used and get them out of the way. All
of the checksum fields are zero, S0 it appears that no checksum is done by the linker.
The resource table will never exist because a VxD cannot have resources. So the
ResourceThl and NumResources fields will aways be zero. The ModDirectTable
and NumModDirect will dso be zero. The module format directive table is used to
extend the LE or LX executables. These are unused by VxDs and will therefore always
be zero. NuminstPreload and NuminstDemand are not used by Windows or Win95.
Preload and Demand pages are handled entirely by the loader in Wing5. Thisis smply
acarry over from OS2. The ESPObjNumand ESP fields are both unused, as well.

Listing 10.1 (continued)

typedef struct tagMZHEADER
(

char MZMagic[2]: /* Should always be "MZ' */f

char Stuff[58]; /* Stuff you don't care about */

tong LEDfF; /* Offset to ‘LE' Header *f
} MZHEADER;

BOOL SkipMZ(FILE *inFile)
{
MZHEADER MZHeader;

fread(&MZHeader, sizeof(MZHeader), 1, inFile);
if (MZHeader.MZMagic[0] != 'M' || MZHeader.MIMagic[l] != 'Z')
{
printf("This is not an executable filel\n"};
return FALSE;
)

if (IMZHeader,LEQff)

{
printf{"This is a DOS executable.\n"):
return FALSE;

}

fseek{inFile, MIHeader.LEOTf, SEEK_SET);
return TRUE;

LE File Format — 255

Table 10.1 LEFileHeader record.

Field Name Data Type | Comment

LEMagic char[2] MustbeLE

ByteOrder BYTE Byte ordering (big-/little-endian)
WordOrder BYTE Word ordering (big-/little-endian)
FormatLevel DWORD Version of LE file

CPUType WORD Type of CPU required

OSType WORD Type of OS required

ModuleVer DWORD Version of this module

ModuleFlags DWORD Global flags for this module

NumPages DWORD Number of physical pages in entire module
EIPObjNum DWORD Object no. to which EIP register is relative
EIP DWORD Starting instruction pointer (EIP) address
ESPObjNum DWORD Object no. to which ESPregister isrelative
ESP DWORD Starting stack (ESP) address

PageSize DWORD Size of apage (usually 4Kb)
LastPageSize DWORD Used to read object page table entries
FixupSize DWORD Totd size of the fixup information
FixupChecksum DWORD Checksum for fixup information
LoaderSize DWORD Size of loader section

LoaderChecksum DWORD Checksum for loader information
ObjThlOffset DWORD Offset to object table

NumObjects DWORD Number of objects in object table
ObjPageThl DWORD Offset to object page table

ObjlterPage DWORD Offset to object iterated pages
ResourceThl DWORD Offset to resource table

NumResources DWORD Number of entries in resource table
ResNameTable DWORD Resident name table offset

EntryTable DWORD Entry table offset

ModDirectTable DWORD Module directive table

NumModDirect DWORD Number of module directives
FixUpPageTable DWORD Offset to fixup page table

256 — Windows Undocumented File Formats

Although the import module and import procedure tables may exist, you'll find
them empty because VxDs don't import functions dynamically. Therefore both tables
are amost always empty (single NULL byte) and NumImports is almost always zero. |
say "dmost dways' because it is "possible’ to add imports. If you add an IMPORTS
section to the .DEF filefor the VXD, you will, in fact, popul ate these tables. Thereis no
way of actually using these imports, because Windows has no dynamic-link support
for VxDs.

Now I'll discuss the fields you will use.

LEMagic Contains the letters LE. They are, of course, quite magical, so be careful
with them.

ByteOrder and WordOrder These flags let you know if the data in the file is stored

in little-endian (0x00) or big-endian (0x01) format. ByteOrder indicates how a WORD
is stored internally. For example, the WORD 0x1234 in little-endian notation would be
stored internally with the byte order 0x34 0x12. In big-endian notation, it would be

Table 10.1 (continued)

Field Name Data Type Comment
FixUpRecTable DWORD Offset to fixup record table
ImportModTable DWORD Import module table offset
NumImports DWORD Number of entries in import module table
ImportProcTable DWORD Offset to import procedure name table
PerPageChecksum DWORD Offset to per-page checksum table
DataPages DWORD Offset to data pages
NumPreloadPages DWORD Number of pages to preload
NonResTable DWORD Nonresident name table
NonResSize DWORD Size, in BYTEs, of nonresident name table
NonResChecksum DWORD Checksum for nonresident name table
AutoDSObj DWORD Object no. of automatic data segment
DebuglnfoOff DWORD Offset to debug information
DebuglnfoLen DWORD Size of debug information areain BYTES
NumlnstPreload DWORD Instance pages in preload section
NumlnstDemand DWORD Instance pages in demand section
HeapSize DWORD No. BYTEs to add to auto-data segment
for heap

LE File Format — 257

gtored with the byte order Ox12 0x34. WordOrder works the same way. The DWORD
0x12345678 in little-endian notation would be stored as 0x5678 0x1234. ByteOrder
and WordOrder let us know how the data is stored in the file. Because Intel uses lit-
tle-endian notation exclusively, you'll find that the ByteOrder and WordOrder fields
are always st to little-endian.

FormatLevel This should always be zero. If it's not zero, then the LE format itself
has been modified in an incompatible format (i.e., the LE format has been changed).

CPUType Thisindicates the minimum CPU required. Valid values are:

0x01 80286
0x02 80386
0x03 80486

The first value is a carry-over from the LX file format used by OS/2. You won't find
any VxDs that require less than a 386. | haven't seen one that's specific to the 486 yet.

OSType Thistellsuswhat OS is required to run this executable. Valid values are:
0x00 Unknown
0x01 0s/2
0x02 Windows
0x03 DOS 4.x
0x04 Windows 386 Enhanced mode

Obvioudy, Windows 386 Enhanced Mode is the only vaid vaue you'll see | list
the others simply because they are defined in the LX file format specifications.

ModuleVer Thisisthe version datafor this particular module. According to the LX
specifications, this value is specified at link time by the user. Any DWORD value would
be vdid. I've seen only 0x0000.

ModuleFlags Theseflags globally define aspects of the VXD. | will only cover those
flags used by VxDs.

0x00000010 Module uses interna fixups. This means that each object has a pre-
ferred load address. ("Object”, in the case of the LE file format, means segment. I'll
discuss this later.) If the object can be loaded a that address, then no fixups need be
applied. If it must be moved to another address, then fixups should be applied.

258 — Windows Undocumented File Formats

0x00000020 Module uses external fixups. Thisjust means that there are no interna
fixups, so the fixups must be applied at load time. | have never seen aVxD that used
internal fixups, but because the internal fixups flag is specified, I'll assume it's poss-
ble to have external fixups.

0x00008000 Library module.
0x00028000 Virtual device driver module.

0x00038000 Physical device driver module.

The Modul eFlags value in Windows 3.x VxDs aways seems to be 0x00008020.
This means it has the Library Module attribute and uses external fixups.

Windows 95 VxDs, on the other hand, seem to have one of two values,
0x00028000 (virtual device driver) or 0x00038000 (physical device driver). I've seen
the latter for network cards, but most VxDs in Windows 95 appear to have the virtual
device driver flag.

NumPages The NumPages field specifies the number of pages contained in the VxD
module.

EIPObjNum This provides the object (or segment) with which to initialize EP.
EIP Thisisthe offset within the object (segment) with which to initialize EIP.

PageSize This is the size of the page, in bytes, within this module. Where page
counts are given, they are multiplied by this number to get the size in bytes. Page size
is usualy 4Kb. I've never seen adifferent value used.

LastPageSize Thisisthe size of thelast page in the module. This keepsthe module
from having to be an exact multiple of PageSize and saves alittle space.

FixupSize Thisis the size of the fixup section. The fixup section includes the fixup
page table, the fixup record table, import module name table, and import procedure
name table. The fixup page table and fixup record table are used to map unresolved
addresses in the code to the proper locations after the code has been loaded. The
import module name and import procedure name tables are used to resolve calls to
external functions. Of course, as mentioned before, Windows doesn't support
dynamic linking for VxDs.

LoaderSize Thisis the size of dl the objects (segments) that need to remain resi-
dent in memory while the program is resident in memory. It includes everything from
the object table down to and including the entry table.

LEFileFormat — 259

ObjThlOffset This is the offset to the object table. The object table is described
below in greater detail. Objects, as mentioned earlier, are segments within the execut-
able and contain code or data.

NumObjects Contains acount with the number of entries in the object table.

ObjPageThl Thisis the offset to the object page table (described in greater detail in
the section "Object Page Table").

ResNameTable This contains the offset to the resident name table (again, described
in greater detail in the section "Resident or Nonresident Name Tables").

EntryTable Contains the offset to the entry table.
FixUpPageTable Offset to the fixup page table.
FixUpRecTable Offsst to thefixup record table.

ImportModTable Offset to the import moduletable.

Numlmports Number of imports in the import module table. This should aways be
zero.

ImportProcTable Offset to the import procedure name table.
DataPages Data pages offset.
NumPreloadPages Number of preload pages.
NonResTable Offset to the nonresident name table.
NonResSize Size of the nonresident name table.
That's pretty much it for the fields you're going to use from the header. As you
start to look at the different aress of the LE file, you'll see that it's really just alarge

collection of parts, and parts of the header are all that are needed for parts of the LE
file. It's really not quite as overwhelming as it may first appear.

260 — Windows Undocumented File Formats

Object Table

Again, "Objects" are really just segments. The object table just provides some basic
information about each segment in the executable. Table 10.2 shows the OBJECTENTRY
structure.

The Virtual Sizefield is the amount of space that Windows needs to alocate for
the segment in memory.

The RelocAddr field is the base address to which the object is currently relocated.
If the interna fixups for the module have been removed, this is the address at which
the object will be dlocated by the loader.

The ObjectFlags field may have the following bit values:

0x0001h Readable

0x0002h Writable

0x0004h Executable

0x0008h Resource object

0x0010h Discardable object

0x0020h Object is shared

0x0040h Object has preload pages
0x0080h Object has invalid pages
0x0100h Object has zero-filled pages
0x0200h Object is resident

0x0300h Object is resident and contiguous
0x0400h Object is resident and "long lockable”
0x0800h Reserved for system use
0x1000h 16:16 dias required

Table 10.2 OBJECTENTRYrecord.

Field Name Data Type Comments

Virtual Size DWORD Amount of space to allocate for the
object

RelocAddr DWORD Relocation base address for the object

ObjectFlags DWORD See below for alist.

PageThlldx DWORD First object page table entry for the
object

NumPgTblEntries DWORD No. of entries in object page table

Reserved DWORD Must be set to 0

LE File Format — 261

0x2000h Big/Default bit setting (see the following paragraph on
bit settings)

0x4000h Object is conforming for code
0x8000h Object 1/0 privilege level (used for 16:16 alias objects)

The Big/Default bit setting, for data segments, controls the setting of the Big hit in
the segment descriptor. (The Big bit, or B-bit, determines whether ESP or SPis used as
the stack pointer.) For code segments, this bit controls the setting of the Default bit in
the segment descriptor. (The Default bit, or D-bit, determines whether the default word
sizeis 32 bits or 16 hits. It dso affects the interpretation of the instruction stream.)

The PageThblldx field specifies the number of the first entry for this object in the
object page table. I'll discuss the object page table later.

The NumPgTblEntriesfield is the number of entries in the object page table for
this object.

Object Page Table

The Object Page Table (OPT) provides information about logical pages in an object.
A page can be either a pseudo-page, an enumerated page, or an iterated page.

The OPTENTRY structure (Table 10.3) shows the format for each page table entry.

The PageDataOff field has the offset to the page datain the .EXE. This field may
be zero if the flags specify that it is a zero-filled page.

The DataSize field specifies the number of bytes that the page actually takes up.
If it is smaller than the page size specified in the module header, then the remaining
bytes in the page are filled with zeros.

The OPTFlags field has five possible flag values:

0x00h Lega physical page in the module (offset from preload
page section)

0x01h Iterated data page (offset from iterated data pages section)
0x02h Invalid page

0x03h Zero-filled page

0x04h Range of pages

Table 10.3 OPTENTRYrecord.

Field Name Data Type Comments

PageDataOff DWORD Offsettopagedatain . EX E
DataSize WORD Number of bytes for this page
OPTFlags WORD Flags for the OPT entry

262 — Windows Undocumented File Formats

Resident or Nonresident Name Tables

The structure of the resident and nonresident name tables is identical. Again, thisis a
place where | am adapting the names from the LX file format.

These tables aren't redlly the resident and nonresident name tables, per se. The
resident name table, for example, contains a single entry, which is the name given in
the .DEF file for the LIBRARY parameter. The nonresident name table contains two
entries. The first entry is the description provided in the DESCRIPTION parameter of
the .DEFfile. The second entry isthe single export specified inthe .DEFfile, usualy the
modulenamewith_D DB appendedtoit.

The actual format for these tables is very simple. Each entry consists of a single
byte with the length of the string. Thisis followed by the string (which is not null-ter-
minated). The string is, in turn, followed by an ordina number. The ordinal number is
an index into the entry table (described in the following section).

Entry Table

The entry table contains information to resolve fixups to entry points within the mod-
ule. There appears to only be one entry point within VxDs. This is the
"vxdname _DDB" area defined in the EXPORTS section of the .DEF file. An ordina
number is used as an index into the entry table. Entry table items are numbered Start-
ing with one. There should only be one entry in this table and that entry will be 1

Objects in the entry table are grouped in bundles. The ENTRYTABLEREC is seen in
Table 104.

Count is the number of entries in the "bundl€e".

The Type field describes the type of data that's contained in the bundle. Valid val-
ues are:

(xo1 16-hit entry

0x02 286 callgate entry
0x03 32-hit entry

0x04 Forwarder entry

Table 10.4 ENTRYTABLEREC record.

Field Name Data Type Contents

Count BYTE No. entriesin this bundle
Type BYTE Type of entries in this bundle
Bundle BYTE(] Bundle data

LE File Format — 263

The type of data in the Bundl e field depends on the Type field. Only the 32-bit
entry type is used, so it's the only one I'll look at. For the 32-bit entry, the bundle data
contains an object number in the form of a WORD followed by an array of 32BITENTRY
records (Table 105). The size of the array depends on the value of Count in
ENTRYTABLEREC:

The only value for Flagsis 0x01, which simply means it's an exported entry. Off -
et is the offset of the entry within the object defined for this bundle.

Fixup Page Table

The fixup page table is simply alist of offsets into the fixup record table (described in
the following section). The offsets are to the beginning of the fixup data for a given
page. Each entry in the object page table has one entry, plus one additional entry that
points to the end of the fixup record table. Each offset is simply a DWORD that is added
to the offset of the fixup record table. This provides you with the first entry in the
fixup record table for a specific page number (or segment). Figure 10.3 shows how
this works.

Table 10.5 32BITENTRY record.

Field Name Data Type Comments
Flags BYTE Flags
Offset DWORD Offset in the object for this entry

Figure 10.3 Layout ofthefixup page table.

Page #1
Offset for page 1 in fixup record table
Page #2
Offset for page 2 in fixup record table

Page #n
Offset for page n in fixup record table
Offset to end of fixup record table

264 — Windows Undocumented File Formats

Fixup Record Table

The fixup record table contains alist of al fixups for the VxD. Entries in this table are
grouped by page number. This alows the fixup page table to point to a group of fixup
recordsfor anindividual page.

Each entry consists of a FIXUP record (Table 10.6).

Valid Type vaues are;

0x00 Byte fixup (8 bits)

0x02 16-hit selector (16 bits)

0x03 16:16 pointer (32 bits)

0x05 16-hit offset (16 bits)

0x06 16:32 pointer (48 bits)

0x07 32-hit offset (32 bits)

0x08 32-bit self-relative offset (32 bits)
OxOF Type mask

0x10 Fixup to alias flag

0x20 List flag

Although the linker (LINK386.EXE) supports al of these fixup types, the VxD
loader itself only supports 32-bit offsets and 32-bit self-relative offsets, types 0x07
and 0x08, respectively.

The two types that really require a description are 0x10 (fixup to dias flag) and
0x20 (list flag). The fixup to alias flag occurs for some entries of type 0x02, 0x03, and
0x06. In these cases, the fixup refers to the 16:16 alias for the object. For the list flag,
the Fixup field contains a byte that says how many offsets are listed. The offsets then
follow the end of the FIXUP record.

Vdid Flags values are

0x00 Interna reference
0x01 Imported reference by ordinal
0x02 Imported reference by name

Table 10.6 FIXUPrecord.

Field Name | Data Type | Comment

Type BYTE Type of fixup

Flags BYTE Specifies how the fixup is interpreted

Fixup BYTE[] Fixup information. Size and format depend on Type

LE File Format — 265

0x03 Internal reference viaentry table

0x04 Additive fixup

0x10 32-bit offset

0x20 32-bit additive fixup

0x40 16-bit object number/module ordina flag
0x80 8-bit ordina

The contents of the Fixup field depend on whether or not the list flag in the Type
field is sat. If the list flag isn't set, the Fixup field smply contains the value for the
fixup; otherwise, the Fixup field begins with the number of fixups, in the form of a
WORD, to follow. Thisis followed by an array of fixups.

LE Dump

Dump (Listings 102 and 103) is afairly smple program. It basicaly provides vari-
ous pieces of information from the LE Header and severa of the internal structures,
such as the object table, resident name table, and nonresident name table.

The ideaisjust to show you how to get around the LE file itsdlf. If you actually
want to write a disassembler, assembler, or linker, you're going to have a bit more
work to do, but you'll be able to do it from the information given in this chapter.

Listing 102 LEDUMPH — Headerfilefor LEDUMP.C.

/H**‘**********t***‘****t***********t*************************‘k*********
*

* PROGRAM: LEDUMP.H

*

* PURPOSE: Header file for LEDUMP.C.

*

* Copyright 1997, Mike Wallace and Pete Davis
d

* Chapter 10, LE File Format,
* from Undocumented Windows File Formats, published by R&D Books,

* an imprint of Miller Freeman, Inc.
*

************‘k*****‘k**‘i:**it**i**ir***—k**************t**i’******‘***********/

/* Mini-MZ Header. Need only 2 fields */

typedef struct tagMZHEADER

{
char MIMagic[2];
char Stuff[58]; /* Stuff you don't care about */
long LEOff;

} MZHEADER;

266 — Windows Undocumented File Formats

Where Do | Gofrom Here?

What can you do with this information? Well, |'ve already mentioned this, but dises-
semblers, assemblers, and linkers are the main tools that come to mind. A VXD disas-
sembler is probably the most useful tool, in my mind, but then again | like to reverse
engineer stuff, if you haven't noticed.

Listing 10.2 (continued)

/* LE Header structure */
typedef struct tagLEHEADER
{

char LEMagicl2]:
BYTE ByteOrder;

BYTE WordQrder;
DMORD FormatLevel;
WORD CPUType:

WORD 05Type;

DWORD HoduleVer:
DWORD ModuleFlags:
OWORD NumPages ;
DWORD EIPCDjNum;
ONGRD ETP:

DWMORD ESPOD jNum;
DWCRD ESP:

DWORD PageSize;
OWORD LastPageSize;
DMORD FixupSize:
DWORD FixupChecksum;
DWORD LoaderSize;
DWORD LoaderChecksum;
DWORD 0bjiThl10ffset:
DWORD NumObjects;
DWORD 0bjPageThbl:
DWORD ObjlterPage;
DWORD RescurceTbl;
DWORD NumResources;
DWORD ResNameTable;
DWORD EntryTable;
DWORD ModDirectTable;
DWORD NumModbirect;
DWORD FixlpPageTable;
DWORD FixUpRecTable;
DWORD ImportModTable:
DWORD NumImports;
DWORD ImportProcTable:
DWORD PerPagelhecksum;
DWORD DataPages:
DWORD NumPreloadPages;
DWORD NonResTable;
DWORD NonResSize:
DWORD NonResChecksum;
DWORD AutobSObj:
DWORD Debuginfolff;
DWORD DebugInfolen;
DWORD NuminstPrelopad:
DWORD NumInstDemand;
OMORD Heap3ize:

} LEHEADER:

LE File Format — 267

Listing 10.2 (continued)

/* Defines for Byte and Word Order */

fidefine ORD_LITTLEENDIAN 0x00
#define ORD_BIGENDIAN 0x01
/* Defines for CPU Type */
fidefine CPU_286 0x01

fidefine CPU_386 0x02

ftdefine CPU_486 0x03

/* Defines for 0S5 Type */
ffdefine OS_UNKNOWN 0x00
fidefine 0S_0S2 0x01
ffdefine OS_WINDOWS (x02
#define 0S_D0S4X 0x03
fHdefine OS_WINDOWS386 0x04

/* Defines for Module Flags */

fdefine MOD_PERPROCESSLIBINIT 0x00000004
fdefine MOD_INTERNALFIXUPS 0x00000010
#define MOD_EXTERNALFIXUPS 0x00000020
ffdefine MOD_INCOMPAT_PM 0x00000100
f#fdefine MOD_COMPAT_PM 0x00000200
fidefine MOD_USES_PM 0x00000300
f#define MOD_NOTLOADABLE 0x00002000
#define MOD_MODTYPEMASK 0x00038000
fidefine MOD_PROGRAMMOD 0x00000000
fidefine MOD_LIBMOD 0x00008000
#define MOD_PROTLIBMOD 0x000128000
f#define MOD_PHYSDEYICEDRYR 0x00020000
#define MOD_VIRTDEVICEDRVR 0x00028000
f#fdefine MOD_PERPROCLIBTERM 0x43000000
/* Object Table Entry Records */
typedef struct tagOBJTBLENTRY
{

DWORD VirtualSize;

BWORD RelocBaseAddr;

AWORD ObjectFlags;

DWORD PageTablelndex:

DWORD NumPgTbl1Entries;

DWORD Reserved;

} OBJTBLENTRY;

268 — Windows Undocumented File Formats

Listing 10.2 (continued)

/* Defines for Object Flags */

#idefine OBJ_READABLE (0001
#define OBJ_WRITEABLE 010002
#define OBJ_EXECUTABLE (x0004
#define 0BJ_RESOURCE 0x0008
#define 0BJ_DISCARDABLE 0x0010
#define OBJ_SHARED 0x0020
#define OBJ_PRELOAD 0x0040
ffdefine OBJ_INVALID 0x0080
fidefine OBJ_ZEROFILLED 0x0100
#define OBJ_RESIDENT 0x0200
#define OBJ_RESIDENTCONTIG 0x0300
fidefine OBJ_RESIDENTLOCK 0x0400
#define OBJ_RESERVED 0x0800
#define DBJ_1616ALIAS 0x1000
ffdefine OBJ_BIGDEFAULT 0x2000
ffdefine OBJ_CONFURM 0x4000
fidefine OBJ_PRIVILEGE 0x8000

/* Object Page Table Entries */
typedef struct tagOBJPAGETBLENTRY
{

DWORD PageDataDffset;
WORD DataSize;
WORD ObjPageFlags;

} OBJPAGETBLENTRY;

/* Defines for Object Page Flags */

ffdefine OPG_LEGAL 0x00
fidefine OPG_ITERATEDDATA bx01
ffdefine OPG_INVALID Ox02
fidefine OPG_ZEROFILL 0x03
#define GPG_RANGE 0x04

typedef struct tagFIXUPREC
{

BYTE Src;
BYTE Flags;
WORD SrcOff_Cnt;

} FIXUPREC;

LE File Format — 269

Listing 10.2 (continued)

typedef struct tagPROCEYHAML
{

WORD ModuleCrd;
DWORD ProcName(fT:
} PROCBYNAME:

typedef struct tagPROCBYORD
[
WORD Modulelrd;

WORD ImportQrd :
s

Listing 10.3 LEDUMP.C— Extract information from the
LE header.

/*****************‘k****'k***************k*‘k***************‘k*****t**t****
*

* PROGRAM: LEDUMP.C

PURPOSE: Dump 'LE* file info.
Copyright 1997, Mike Wallace and Pete Davis
Chapter 10, LE File Format,

from Undocumented Windows File Formats. published by R&D Books,
an imprint of Miller Freeman, Inc.

ok ok A A F E % o

*************\\'**********7\'**********‘k************‘k*********************/

#include <stdio.h>

#inctude <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <windows.h>
#include "ledump.h”

/* Make this big thing global since you'11 need it everywhere, */
LFHEADER LEHeader;
Tong LEStart: /* Keep track of start of LE Header */
BOOL SKkipMZ{FILE *LEFiie)
{

MZHEADER MZHeader:

fread(&MZHeader, sizeof(MZHeader), 1, LEFile}:
if {MZHeader.MIMagic[0] != 'M' || MZHeader.MZMagic{l] != 'Z'}
[

printf("This is not an executable filet\n™};
return FALSE:

270 — Windows Undocumented File Formats

Listing 10.3 (continued)

if {!MZHeader.LEOff)
{
printf("This is a DOS executable.\n"};
return FALSE;
)
fseek{LEFile, MZHeader. LEQff, SEEK_SET);
return TRUE;
)
void OumpHeaderInfo()

DWORD Flags;

Flags = LEHeader.ModuleFlags: /* Get it into an easier to type variable */

printf("CPU Required: "}:
switch(LEHeader.CPUType}
{

case CPU_286:
printf("80286\n"};
break;

case CPU_386:
printf("803856\n"};
break:

case CPU_486:
printf("B0486\n"};
break;

H

printf("0S Required: ");
switch(LEHeader.0SType)
(
case 0S_UNKNOWN:
printf("Unknown\n®"};
break;
case 05_052:
printf("0S/2\wn™);
break;
case OS_WINDOWS:
printf{"Windows\n™);
break;
case 0S_POS4X:
printf("DOS 4.x\n"};
break;
case 05_WINDOWS386:
printf{"Windows 386 Enhanced Mode\n"}:
break;
}

printf{"Initial EIP: %1X:2081X\n", LEHeader.EI1PObjNum, LEHeader.EIP);
printf{"Initial E5P: %1X:%081X\n", LEHeader.ESPObjNum, LEHeader.ESP):

LE File Format— 271

Listing 10.3 (continued)

printf("Flags: 0x%081X\n", Flags);
if (Flags & MOD_PERPROCESSLIBINIT)
printf("- Per Process Library Initialization\n®);
if (Flags & MOD_INTERNALFIXUPS)
printf("- Internal Fixups\n*);
if (Flags & MOD_EXTERNALFIXUPS)
printf("- External Fixups\n"};
if { (Flags & MOD_USES_PM) = MOD_USES_PH}
printf("- Uses Presentation Manager\n®);
else

if {Flags & MOD_INCOMPAT_PM)

printf("- Incompatible with Presentation Manager\n"):
if {Flags & MOD_COMPAT_PH)

printf{"- Compatible with Presentation Managerin");

}

if (Flags & MOD_NOTLOADABLE)
printf{"- Module is not loadable.\n"}:

if ((Flags & MOD_PROTLIBMGD) == MGD_PROTLIBMOD)
printf{=- Protected Memory Library Module\n");

else if { (Flags & MOD_VIRTDEVICEDRVR} = MOO_VIRTDEVICEDRVR}
printf("- VYirtual Device Driver Modulein”);

else

if (Flags & MOD_LIBMOD)
printf("- Library Module\n"}:

if (Flags & MOD_PHYSDEVICEDRVR)
printf("- Physical Device Driver\n"});

}
if (Flags & MOD_PERPROCLIBTERM)
printf{”- Per-Process Library Termination\n");

printf{*\n*);
}

void DumpObjectTable(FILE *LEFile)
{

DWORD i

OBJTBLENTRY ote:

printf("There are %1d objects in the Object Table.\n". LEHeader.Numlbjects);

fseek(LEFile, LEStart + LEHeader.0bjTh10ffset, SEEK_SET):
for (i=l; i<=LEHeader. Numdbjects; i++}
{
fread(&ote, sizeof(ote), 1, LEFile);
printf("Segment #: %1d Size: 0x%081X Reloc Addr: Ox3081X # Pages: %1d\n",
i, ote.VirtualSize, ote.RelocBaseAddr, ote . NumPgThlEntries);
if (i — LEHeader.AutoDSObj}
printf("Auto Data Segmentin®);
printf{"Flags:\n");
if (ote.ObjectFtags & OBJ_READABLE)
printf("Readable\n");
if (ote.ObjectFlags & OBJ_WRITEABLE)
printf{"Writeablein”);
if {ote.ObjectFlags & 0BJ_EXECUTABLE}
printf("Executable\n"):

272 — Windows Undocumented File Formats

Listing 10.3 (continued)

if (ote.Objectflags & OBJ_RESOURCE)
printf("Resourcein™};

if (ote.ObjectFlags & OBJ_DISCARDABLE)
printf("Discardable\n"};

if (ote.ObjectFlags & OBJ_SHARED)
printf("Shared\n”);

if (ote.ObjectFlags & OBJ_PRELDAD)
printf("Preloadin”);

if (ote.ObjectFlags & 0BJ_INVALID)
printf("Envalidin™);

if ((ote.ObjectFlags & OBJ_RESIDENTCONTIG) == OBJ_RESIDENTCONTIG)
printf(“Resident & Contiguous\n™);

else

if {ote.ObjectFlags & OBJ_ZEROFILLED)
printf{“Zers-Filled\n");

if (ote.ObjectFlags & OBJ_RESIDENT}
printf("Resident\n"};

}

if (ote.0bjectFlags & OBJ_RESERYED)
printf(“Reservedin”):

if (ote.ObjectFlags & OBJ_1616ALIAS)
printf{"16:16 Alias Required\n"};

if (ote.ObjectFlags & QOBJ_BIGDEFAULT)
printf{"'Big’ bit for segment descriptorin”):

if (ote.ObjectFlags & QBJ_CONFORM)
printf{"0Object is conforming to code\n™):

if (ote.ObjectFlags & OBJ_PREVILEGE)
printf("Object 1/0 privilege level\n");

printf{*\n");

t
}

void DumpNameTable{FILE *LEFile, DWORD size)
{

DWORD Curr;

BYTE len;

char Hame[2571
WORD ord;

Curr = 0;

while (Curr < size)

{
fread(&len, sizeof(ten), 1, LEFile):
Curr += {len + sizeof{len) + sizeof(0Ord)):
fread(Name, len, 1, LEFile):
Name[ten] = Ox0G:
fread(&0rd, sizeof(Ord), I, LEFile};
printf("%u %s\n®*, Ord, Name);

LE File Format— 273

Listing 10.3 (continued)

/* Dumps the Resident and Non-Resident Name Tables */

void DumpNameTables{FILE *LEFite)

(
printf("\nResident Name Tablein");
printf("0rdinal Namewn®};
fseek{LEFile, |EStart + LEHeader.ResNameTable, SEEX_SET);
DumpNameTable(LEFile, (LEHeader.EntryTable - LEHeader.ResNameTable)} - 1);
printf("\n");
printf(“Non-Resident Name Table\n™};
printf("0rdinal Kame\n");
fseek(LEFile, LEHeader.NonResTable, SEEK_SET};
DumpNameTable(LEFi1e, LEHeader.NcnResSize - 1);

b
void DumpImports(FELE *LEFile}
{

FIXUPREC FixupRec;
PROCBYNAME PraocByName;
PROCBY(ORD ProcBy(rd:
long CurrlLoc:

fseek(LEFile, LEStart+LEHeader fixupRecTable, SEEK_SET):

}

*
¥oid CheckdHeaderSurprises(}

if (LEHeader.ByteOrder != ORD_LITTLEENDIAN)
printf{“Byte Order is not Little Endian!\n");

if (LEHeader.WordOrder != ORD_LITTLEENDIAN)
printf("Word Order is not Little Endian!\n"};

if (LEHeader .CPUType < CPU_386)
printf("Doesn’t reguire a 386 or better!\n™};
if (LEHeader.0SType != 0S_WINDOWS386)
printf("Not a Windows386 VYxDl\n");

if {LEHeader.ResourceTbl)
printf("Resource Table Found!\n");
if {LEHeader .NumResources}
printf("Num Resources Found!\n"}:
#f {LEHeader .ModDirectTable)
printf{"Module Directive Table Found!\n");
if {(LEHeader.NumModDirect)
printf{"NumModDirect Found!\n"};
if (LEHeader.NumInstPreload}
printf{*Instance Preloads Found!\n");
if (LEHeader. NumInstDemand}
printf(*Instance Demands Found!\n");
if (LEHeader.FixupChecksum}
printf{"Fixup Checksum Foundi\n"}:
if (LEHeader.loaderChecksum)
printf("Loader Checksum Found!\n");
if (LEHeader.PerPageChecksum}
printf(“Per-Page Checksum Found!\n"};
if {LtHeader.NonResChecksum)
printf{"Non-Resident Name Table Checksum Found!\n");

274 — Windows Undocumented File Formats

Listing 10.3 (continued)

zoid DumpLEFi1e{FILE *LEFile)
LEStart = ftel1{LEFile}:

fread(&LEHeader, sizeof(LEHeader)}, 1, LEFile);:
if (LEHeader.tLEMagic[0] != 'L* || LEHeader.LEMagic[1] i= 'E")

printf("This is not an 'LE" executable.\n\n");
return:

}

DumpHeaderInfol};

CheckdHeaderSurprises();

DumpObjectTable(LEFile);

DumpNameTables{LEFile):

/4 if (LEHeader.NumImports)
/ DumpImports(LEFile);

}
void Usage(void)
printf(*Usage: LEDump filename[.386]\n\n");
int mainCint argc, char *argv(l)
{
char filename[256];
FILE *LEFile;
if (arge € 2) {
Usage();
return EXIT_FAILURE;
strepy(filename, argv{11):

if {Istrchr(filename, *."))
strcat(filename, ".386");

if {(LEFile = fopen{filename, "rb")} = NULL} {
printf("%s does not exist!y\n", filename);
return EXIT_FAILURE;

H

}f {SkipMZ(LEFile}}

printf("Dumping ¥s\n", filename):
DumpLEFite(LEFile};

}
fclose{LEFile);
return EXIT_SUCCESS;

Appendix A

Contents of the
Companion Code Disk

The included code disk contains al of the source code mentioned in the book, as well
as make files for Microsoft's and Borland's compilers. The files are organized by
chapter with al the files for each chapter sorted in the same directory, except when
there was a clear delineation in functionality. In such cases, we provided separate
directories beneath the chapter directory. We will also keep the source code updated
on the Internet a http://www.mnsinc.com/peted/. The executables will aso be

available on the web site. The following page contains alist of the companion code
disk contents.

275

276 — Windows Undocumented File Formats

FI LEFORMATS
CHAPL
SETVAL
SETVAL. C
MAKEFI LE. BOR
MAKEFI LE. MS
DUVP
DUWP. C
MAKEFI LE. BOR
MAKEFI LE. MS
CHAP3
MAKEFI LE. BOR
MAKEFI LE. MS
SHGDUWP. C
SHEDEDI T. H
CHAP4
HLPDUMP2. H
HLPDUMP2. C
W NHELP. H
MAKEFI LE. BOR
MAKEFI LE. MS
TOPI CDVP
TOPI CDVP. C
WHSTRUCT. H
MAKEFI LE. BOR
MAKEFI LE. MS
CHAPG
COW. C
DECOWP. H
DECOWP. C
MAKEFI LE. BOR
MAKEFI LE. MS
CHAP7
RESTYPES. H
MAKEFI LE. BOR
RES2RC. C
MAKEFI LE. MS
CHAPS
PI FDUWP. C
PI FSTRUC. H
MAKEFI LE. MS
MAKEFI LE. BOR
CHAP9
SUCKVB
SUCKVB. C
SUCKV8. H
MAKEFI LE. BOR
MAKEFI LE. MS
\WMDECOW
WDECOWP. C
MDECOWP. H
MAKEFI LE. BOR
MAKEFI LE. MS
CHAP10
LEDUWP. C
LEDUWP. H
MAKEFI LE. MS

MAKEFI LE. BOR

Annotated Bibliography

1 Pete Davis, ".mrb and .shg File Formats', Windows/DOSDeveloper's Joumal,

Feoruary 1994.
A true work of art. | recommend al of his articles as required reading. Actu-
aly, | admit, it's a bit out of date. Most of the information was accurate. Enough
50 that many people were actually able to put it to good use.
2. Pete Davis, "Microsoft's Compression File Format”, Windows/DOSDeveloper's
Journal, July 1994.
This article just covered the "SZDD" variation of the compression format.
Two days after this article was available in stores, | found out about the older "SZ"
and newer "KWAJ" algorithms from, as Dave Barry would say, "Alert Readers’.
| was pretty bummed.
3. PeteDavis, "Documenting Documentation: TheWindows . H L PFile Format,
Partl", Dr. Dobb's Journal, September 1993.
4. PeteDavis, "Documenting Documentation: TheWindows . H L PFileFormat,
Part2", Dr. Dobb's Journal, October 1993,
As with the other file formats | wrote articles about, this one is out of date and
incomplete. It was agood start, | think.

5. Microsoft Corporation, SHDFMT.DOC.

This file has a README.1ST from Rick Segal at Microsoft. The README.1ST
warns that "This [the SHED file format] is gonna change. | promise." Well, he

277

278 — Windows Undocumented File Formats

kept his word. They changed it quite a bit between when this document was writ-
ten and the SHED editor came out. | say that because it's completely inaccurate.
It's possible it wasjust inaccurate to begin with but hey, Microsoft wroteit, so I'm
sure it was originally entirely accurate (or at least as much as they thought we
deserved). | actually found this after | had done most of the reverse-engineering,
%0 it wasn't really a great help. The only thing | could have done was try to adopt
their naming convention, but | couldn't find many names that matched the func-

tion of the fields in my structures.

6. Charles Petzold, Programming Windows 3.1, Third Edition, Redmond WA :
Microsoft Press, 1990.

How do you write anything about Windows without in some way owing some
of your knowledge to this book?

7. Alex Fedorov and Dmitry Rogatkin, "TheWindows .RESFile Format", Dr.
Dobb's Journal, August 1993.

This is the first public description of the .RES file format. Alex and Dmitry did
agreatjob. | knew Alex before he wrote the article and he has sent me two issues
of ComputerPress, a Russian magazine of which he is executive editor in Mos-
cow. Can someone please translate this to English for me?

8. Mike Maurice, "The PIF File Format, or Topview (sort of) Lives!", Dr. Dobb's
Journal, July 1993.

Like severd other file formats, I've never understood why Microsoft didn't
just document it. On the other hand, 1'm surprised it took so long for someone to
do it. Thanks to Mike Maurice for doing a stand-up job.

9. Jim Mischel, The Developer's Guide to WINHELP.EXE, NewY ork NY : John Wiley
& Sons, Inc, 1994.

This is the only really good book that covers ailmost all the major aspects of
WinHelp. It's anecessity for any serious WinHelp authors or DLL developers. It's
either this or use 20 different articles, books, etc., as your source of WinHelp
information. Also a good source of undocumented WinHelp information.

10. Microsoft Windows Software Development Kit v3.1, 1992,

If you don't know what thisis, you probably bought the wrong book. In partic-
ular, Volume 3 "Message, Structures, and Macros', and Volume 4 "Resources'.
Some of the undocumented file formats are related to the documented file formats
in some way or another, and this book is a good source for the documented ones.

11. Mark Nelson, The Data Compression Book, San Mateo CA : M&T Books, 1992.

This is the best book I've ever read on data compression. (Okay, it's the only

one |'ve ever read.) As much as data compression can be explained in English, it's
done in this book. Data compression can be very complex, and most explanations

Annotated Bibliography — 279

have been cryptic to me. Mark Nelson did areally great job of making it under-
standable by your average programmer.

12. Matt Pietrek, "Peering Inside the PE: A Tour of the Win32 Portable Executable
File Format", Microsoft Systems Journal, Vol. 9 No. 3, March 1994.

This is a really good description of the Portable Executable (PE) file format
and gave some insights into the LE file format.

13. IBM Boca Programming Center, "IBM OS/2 32 bit Object Module Format (OMF)
and Linear eXecutable Module Format(LX): Revision 6".

This was passed along to me by Clive Turvey who also provided most of the
information on the W4 file format. As the title declares, this is a description of
both the OMF and the LX file formats for OS/2. It contains a fairly detailed
description of the LX file format, upon which the LE file format was based. It's
not exactly light reading material, but it appears to be very complete and gave me
enough information to provide the LE file format.

14. Author Unknown (believed to be IBM), "LX - Linear eXecutable Module Format
Description”, June 3, 1992,

| found this file on the Internet as LXEXE.ZIP (ftp.watcom.on.ca in the
/pub/bbs/general directory). There was no credit as to the author, but it's
amog identical to the IBM document sited above, so my guess is that it's either
an earlier or later edit. This version has only the LX file format and not the OMF.
The postmaster of the site informed me that the file had been obtained much ear-
lier from a site he couldn't remember, so there's no rea record of where it origi-
nated.

A

accelerator 126, 136, 172, 178, 179
AccelTableEntry 136

ANN 2

Annotation 2, 47

B

bitmap 2, 13-25, 27, 31, 45, 69-70,
122,126,130, 131, 139, 150

.BMK 2

Bookmark 2, 47

C

COMPHEADER 110-111

COMPRESS.EXE 2, 5 6 2 5 10-
112, 121, 239

|CONTEXT 45, 6L, 64, 70, 79, 89

CONTROLDATA 1%

|[CTXOMAP 4, 61, ™

cursor 126-130, 139, 148, 149, 183,
185

CURSORDIRENTRY 129-130

CURSORHEADER 1¥

CURSORRESENTRY 130

D

dialogbox 126-127, 133-134, 154-166

DIALOGHEADER 133-134

Dr. Dobb's Journal 1, 2, 41, 44, 125,
209, 211, 277, 278

| ndex

E

Erickson, Jonathan 125, 209
EXPAND.EXE 2 107, 111, 113 11

F

Fedorov, Alex 2, 125, 278

|[FONT 45, 51, 58-60, 75, 87

font 42, 51, 58-60, 66, 69, 87, 126,
135,171,192

font directory 126, 135, 171

G

.GID71
group cursor 126, 129-130, 184
group icon 126, 131-132, 187

H
.HLP12,7,31,41-43,49,51,53, 5-
58, 62, 71, 74, 98, 277

icon 53, 126-127, 131-132, 139, 148,
154,186

ICONDIRENTRY 131

ICONHEADER 131

ICONRESENTRY 132

281

282 — Windows Undocumented File Formats

K

KWAJ 277

|[KWBTREE 45, 51, 56-58, 71, 78
[KWDATA 45, 51, 56-57, 64, 78
[KWMAP 45, 51, 56-58, 71

L

Lempel, Abraham 107
Lempel/Ziv/Welch
compression algorithm 238
Lempel-Ziv agorithm 239
LZ77 2, 15, 16, 23, 25, 45, 52, 56, 62,
65, 71, 82, 107, 112, 113,
116, 122, 239
LZEXPAND.DLL 2, %, 107, 112

M

Maurice, Mike 209, 278

memory flag 127, 148-149, 184, 187,
203

menu 126, 133, 136, 151-153, 156

MenuHeader 132

MRB 2, 4, 6, 13-15, 18, 22-25, 30, 67,
70, 277

MRBC 3, 13-15, 20-23, 27, 71

N

name table 126, 137, 190, 205, 231-
236, 255-259, 262, 265,273

P

|Phrases 45, 51, 52-53, 56, 61, 65,
75, 93, 97

.PIF2, 3, 209, 211

PIF Editor 209-211

R

.RC125-132,135,137-140

RCDATA 126, 136-137, 180

RC.EXE 15 1%

.RES 2, 125-140, 278

RESFMT.TXT 128

resource 125-139, 143-146, 210,
254-255, 260

Rogatkin, Dmitry 2, 125, 278

S

Schulman, Andrew 1, 125, 209, 251

SHED 2, 3, 1315, 18, 20-25, 27, 30,
71,277,278

.SHG 2-4, 6, 13, 18, 22-23, 27-29, 30,
67, 70, 277

dliding window 107-108, 112

string table 126, 135, 204

|SYSTEM 45, 53-55, 76, 84, 93

277

SZDD 6, 277

T

|TOPIC 41, 45, 51, 52, 57, 61-7?, 61,
72-70,78,97
|TTLBTREE 45 47, 58, 64

\Y

VER.DLL 137

VER.H 126, 128, 137-139, 190

version information 126, 137-139,
193,203

VERSIONINFO 137

Versioninfo 137-139

VS_FIXEDFILEINFO 13

W

WINDOWSH 2, 3, 16 1§ 13 13
WinHelp 3, 7, 15, 23, 25, 27, 31, 41-
71, 239, 278

Z

Zeck 16 119, 239
Ziv, Jacob 107

Index — 283

