
v1 © Microsoft Corporation 2006 1

ProjectOZ

9 October 2006

Singapore

Dave Probert, Ph.D.

Architect, Windows Kernel Group
Windows Core Operating Systems Division

Microsoft Corporation

v1 © Microsoft Corporation 2006 2

ProjectOZ Experimental Environment

• An OS project environment using the native NT API
– Runs on Windows
– Uses NT features designed for OS personality support

• Provides simple, user-mode abstractions of the
– CPU, MMU, trap mechanism, and physical memory

• Experiments in OS principles, not computer organization

• Use real OS features rather than a ‘toy’ simulation

• Encourage ‘out-of-the-box’ thinking by students

• Based on SPACE project at UCSB (Probert & Bruno)

v1 © Microsoft Corporation 2006 3

ProjectOZ

NT Kernel

NT native API

SPACE.exe

BasicOZ

ProjectOZ

workloads

SPACE abstractions of
CPU, MMU, Traps

Initial OS implementation

Workloads, tests,
instrumentation

Student projects and
experiments

v1 © Microsoft Corporation 2006 4

BasicOZ Functionality

Process/thread

– CreateProcess/Thread, Exit, Wait/Signal, Yield

Virtual Memory

– Allocate/Free virtual addresses

– Allocate backing memory

Files

– Get/Put file

Namespace

– Allocate/Free NS, Bind/Release names

Inter-process communication

– Send/receive

v1 © Microsoft Corporation 2006 5

BasicOZ Device Model

Device emulators load in SPACE

– Implement access to device registers

– Call on SPACE to do DMA (background copies)

– Post interrupts at a specific IRQL

BasicOZ device access

– Access device registers

– Specify mapping of interrupts to handlers

– Control CPU IRQLs

v1 © Microsoft Corporation 2006 6

ProjectOZ

ProjectOZ refers to the projects students build

Projects take areas of BasicOZ with limited or missing
functionality, poor algorithms, performance problems,
etc, and extend the system

Examples

– Use timer to make threads preemptive

– Write a priority-based scheduler

– Implement open/read/write/code operations

– Add clock algorithm for pageout

v1 © Microsoft Corporation 2006 7

ProjectOZ Multicomputer

NT Kernel

NT native API

SPACE.exe

BasicOZ

ProjectOZ

workloads

Simulated or real network

SPACE.exe

BasicOZ

ProjectOZ

workloads

SPACE.exe

BasicOZ

ProjectOZ

workloads

v1 © Microsoft Corporation 2006 8

Workloads, Instrumentation, Community

Workloads

Projects need a significant set of programs to exercise
functionality, both for testing and evaluation

Instrumentation

Still investigating how to appropriately instrument
SPACE with measurements of CPU times and event
counters to use for relative evaluation of projects

Community

ProjectOZ is successful if-and-only-if it proves valuable,
in which case an academic community grows up around
it – in which case Microsoft will assume a secondary role

v1 © Microsoft Corporation 2006 9

SPACE

v1 © Microsoft Corporation 2006 10

SPACE CPU Model

OS can only control:

MMU (memory management unit)

trap vector

scheduling of external interrupts

when it does an RETI (Return from Interrupt)

OS only regains control through trap/interrupt

CPU

MMU

MEMORY

TRAP handler

RETI
External

interrupts

v1 © Microsoft Corporation 2006 11

SPACE Abstractions

CPU – sequences instructions until interrupted

– traps, exceptions, interrupts, faults

– CPU executes in a specific MMU context and CPU mode

MMU – maps virtual to physical addresses

– invalid mapping/access causes a fault

– each MMU context defines an (address) space

– access for each mapping determined by CPU mode

PORTAL – specifies what to do when CPU is interrupted

– portals specify new context, mode, and program counter

– previous execution state preserved in a proc control blk

– access to portals depends on mode

v1 © Microsoft Corporation 2006 12

Primary SPACE Operations

Manage MMU and Trapvector

MapMemory(ctx, virtual, phys, modeaccess)

MapPortal(ctx, trap, pctx, pmode, ppc, modeaccess)

Portal Operations

Resume() – resumes at top entry on PCB chain

token = Suspend() – breaks current PCB chain, assigns token

Unsuspend(token) – like resume, but uses suspended chain

Portals generalize traps to multiple protection domains

Processor context (PCB) implicitly managed

v1 © Microsoft Corporation 2006 13

Following the CPU
CPU 0

Domain a Domain b Domain c suspend Domain d

a b c

Domain eDomain fsuspend

f e d

Domain d

T0

T1

unsuspend

T0

Domain c

resume Domain b suspend

a
T0

Domain d
unsuspend

T1

Domain f

v1 © Microsoft Corporation 2006 14

Redrawing the picture
CPU 0

Domain a

Domain b

Domain c

suspend

Domain d

a b c

Domain e

Domain f

suspend

f e d

Domain d

T0

T1

unsuspend

T0

Domain c

resume

Domain b

suspend
a

T0

Domain d

unsuspend

T1

Domain f

SCHEDULER

sleep1

wakeup1

start2
sleep1

wakeup2sleep2

v1 © Microsoft Corporation 2006 15

The General SPACE case vs kernel

kernel

app

service

service

app service

service

service

v1 © Microsoft Corporation 2006 16

SPACE using native NTAPI

v1 © Microsoft Corporation 2006 17

NT Facilities used for SPACE

Objects

Threads – NT unit of CPU scheduling

Processes – NT virtual address space container

Sections – NT sharable memory objects

Exception port – NT mechanism for subsystem fault handling

Functions

MapView – Map process addresses to section offsets

Wait/Reply port – Receive/Send message to port

v1 © Microsoft Corporation 2006 18

ProjectOZ using NT

SPACE.exe

NT Proc NT Proc NT Proc

NT Thread NT Thread NT Thread NT Thread NT Thread NT Thread

NT Views NT Views NT Views

NT Shared Memory Section

X X X

v1 © Microsoft Corporation 2006 19

ProjectOZ using NT

SPACE.exe

trapvec trapvec trapvec

CPU CPU CPU CPU CPU CPU

MMU MMU MMU

Physical Memory

v1 © Microsoft Corporation 2006 20

domains == overlaid VA spaces

3
2

1 0

domains

1 2 30 1

spaces

vaddr
paddr

fault

mode 1, 2

mode 0, 3
vaddr

vaddr

vaddr

vaddr

paddr

paddr

fault

fault

v1 © Microsoft Corporation 2006 21

Kernels: special case of SPACE

kernel-mode

domain 0

user-mode

domain 1

kernel-mode

domain 0

user-mode

domain 1

kernel-mode

domain 1

user-mode

domain 1

space 0 space 1 space 2

Kernel-mode memory mappings (mostly) shared in all spaces

spaces used to build processes

v1 © Microsoft Corporation 2006 22

Building CPUs

out of NT

threads

CPU 0 CPU 1

P
ro

c
e

s
s

 A
P

ro
c

e
s

s
 B

K

U

K

U

Two NT processes with same

mappings, different protections

Space.exe uses baton passing so only one NT

thread per CPU runs at a time

space.exe

NT thread AU0

NT thread AK0

NT thread BU0

NT thread BK0

NT thread AK1

NT thread AU1

NT thread BK1

NT thread BU1

v1 © Microsoft Corporation 2006 23

Limitations

• Some artifacts of NT still exist within spaces

– Certain parts of address space have been claimed beyond our

control

– Ntdll – Mapped into every NT process

• Unavoidable

• Required for Exception port trampoline anyway

– Lower 4MB of address space reserved

– Additional space used by PEB/TEB

• Shared view granularity on a section is 64kb, restricting us

to a 64kb page/frame size

• Unable to query dirty & reference bits

– NtWriteWatch doesn’t work on shared sections

v1 © Microsoft Corporation 2006 24

Space.exe Control Flow

K
U

K
U

K
U

L
P

C
 E

x
c

e
p

ti
o

n

P
o

rt
 Q

u
e

u
e

Active NT

thread for

CPU 0

Device Models

Abstraction

Dispatcher

• Portal traversal

• ‘HW’ calls

DMA

DMA

NT thread

operations

Active NT

thread for

CPU 1

Exceptions Interrupts (messages)

v1 © Microsoft Corporation 2006 25

SPACE Device Model

Running inside SPACE.exe. Device models:
– Export function to emulate device access

– Call StartDMA function to emulate DMA between ‘physical
memory’ and ‘device memory’

– SendInterrupt to a CPU

– Respect IOMMU and IRQL emulated for each processor

– ‘Software’ interrupts can be used to defer processing

Advanced devices
– Alternate interrupt schemes (mapping, preferred CPU, …) by

modifying SPACE

– Add instrumentation and physical simulation (e.g. seek
times, packet loss, errors)

– Can build ‘smart’ devices – it is all just software anyway

– Memory-mapping of device registers (fault handling)

– Per-device IOMMU, mask-based interrupts

v1 © Microsoft Corporation 2006 26

BasicOZ

v1 © Microsoft Corporation 2006 27

BasicOZ elements

• Kernel Object Management

• Name Space Management

• Address Space Management

• Paging

• Threading

• Processes

• Interrupts, Traps, System calls

• Driver model

• Booting & Initialization

• User-mode model

v1 © Microsoft Corporation 2006 28

Kernel Object Management

• Objects allocated from static pools

• Object states:
– Free – available to be allocated

– Allocated – assigned to thread, has refs

– Activated – in-service

– Shutting-down – no new access

Managed by references

Separation of storage allocation from object use

• Object instances have IDs
– Lookup by thread or type

v1 © Microsoft Corporation 2006 29

Name Space Management

• Name Spaces:

– (ns, name) -> object

• Recursive: objects can be Name Spaces

• Lookup within a Name Space or recursively search
reachable Name Spaces

• Name Space can be extended to persistent stores

• No central root

• Each process has starts with two Name Spaces

– Shared – finds objects passed from parent

– Private – not shared with parent

– New Name Spaces can be readily created

v1 © Microsoft Corporation 2006 30

Address Space Management

• Main data structures

– AddrSpace, Mapping, PageDescr (with PageRefs)

• activateaddrspace(as, hwspaceid)

– binds AS to a ‘hardware’ context

• activatemapping(map, npages, prot, PDlist)

– binds map to PageDescr, sets protection

• linkmapping(as, map, vpage)

– links map to as at vpage (no sharing)

• Main operations

– findmap(as, vpage) and findpageref(map, vpage)

• Special operations for I/O mapping

v1 © Microsoft Corporation 2006 31

Address Space Structures

AddrSpace

Mapping Mapping

PageDescr

PageRefs[]

PageDescr

PageRefs[]

Paging File

PageFrames

v1 © Microsoft Corporation 2006 32

Paging

• Allocate memory pageframes

• Allocate pageframes within pagefile

– uses simple linked list of free pages

• Page-in, page-out, handle faults

– Working-set based

– Waits for pages in transition

– No soft-faults

• Reference counts lock pages

– E.g. for I/O operations

v1 © Microsoft Corporation 2006 33

Threading

• activatethread(thread, process, waitvalue, startinfo)

– Queues thread for run/wait

– First time run starts at kernel routine

– Kernel routine may enter user-mode through a portal

• Block by calling await(value)

– Uses portal traversal to capture state

• signal(value) makes thread awaiting value runnable

• threads exit by returning (i.e. to scheduler)

• yield is await(0)

• preemption is involuntary yield()

v1 © Microsoft Corporation 2006 34

Processes

• Programs are NT executables

• BasicOZ allocates resources and loads

• Two initial Name Spaces
– Shared: get parameters, arguments, files, and

other objects from creating process

– Private: private object directory

• Capability-based
– Control of portal mappings controls access

• SPACE_* hardware emulation

• System Calls

v1 © Microsoft Corporation 2006 35

Address Space Structures

AddrSpace

Mapping Mapping

PageDescr

PageRefs[]

PageDescr

PageRefs[]

Paging File

PageFrames

v1 © Microsoft Corporation 2006 36

Process & Thread Structures

process process

AddrSpace

thread

token

waitval

objlist objhdr objhdr

schedlink

thread

Ready List

Wait List

v1 © Microsoft Corporation 2006 37

Interrupts, Traps, et al

• Implemented using SPACE portals

– Traps map to Portals

– Portals specify (space,prot) [aka (ctx,mode)]

– Stacks are dynamically allocated

– Traps generalized

• UD2 trap augmented with parameter (syscall number)

• Different portals can map to different pagefaults

– SPACE_* ‘instructions’ execute in SPACE.exe

• Errors in SPACE_* => illegal instruction exceptions

• Other traps, execeptions, interrupts => portal traversal

– Glue code is Bootstrap.asm and Machine.asm

v1 © Microsoft Corporation 2006 38

Driver Model

• Device Models link with SPACE.exe
– Devices register SPACE by ‘device ID’

– Device models implement device registers & memory

– StartDMA transfers between device memory &
physical memory through the IOMMU

– Devices can interrupt a CPU at a specified IRQL

• SPACE_MapIO()
– Supports IOMMU access from drivers in BasicOZ

• SPACE_AccessDevice()
– Provides access to device registers from BasicOZ

• Trap/Portals provide interrupt mechanism

v1 © Microsoft Corporation 2006 39

Booting & Initialization

• SPACE.exe %rundir%

– Creates new domains via bootstrap.exe

– Loads BasicOZ.boz and invokes boot()

– SPACEOps.c and %arch%\Machine.asm invoke

SPACE_* emulation instructions by executing

illegal instructions

• SPACE uses native NT functionality

• BasicOZ uses only SPACE (& syslib)

v1 © Microsoft Corporation 2006 40

Status
• Code for SPACE.exe v1 available July 2006

• SPACE v2 and BasicOZ v1 available soon

– Watch community forums or MSDNAA

• Work ahead

– Documentation

– NCPUS > 1

– Multicomputer support

– x64 support

– Instrumentation and Workloads

– Projects, community involvement

– WRK-enhancements, Rotor, C#, VisualStudio

v1 © Microsoft Corporation 2006 41

Questions & Discussion

