
v3 © Microsoft Corporation 2006 1

Windows Kernel Internals

Overview

9 October 2006

Singapore

Dave Probert, Ph.D.

Architect, Windows Kernel Group
Windows Core Operating Systems Division

Microsoft Corporation

v3 © Microsoft Corporation 2006 2

History of NT/OS2

• 1988: Bill Gates recruits VMS Architect Dave Cutler

• Business goals:

• an advanced commercial OS for desktops/servers

• compatible with OS/2

• Technical goals:

• scalable on symmetric multiprocessors

• secure, reliable, performant

• portable

2

v3 © Microsoft Corporation 2006 3

NT Timeline first 17 years

2/1989 Coding Begins

7/1993 NT 3.1

9/1994 NT 3.5

5/1995 NT 3.51

7/1996 NT 4.0

12/1999 NT 5.0 Windows 2000

8/2001 NT 5.1 Windows XP

3/2003 NT 5.2 Server 2003

8/2004 NT 5.2 Windows XP SP2

4/2005 NT 5.2 Windows XP 64 Bit Edition (& WS03SP1)

2006 NT 6.0 Windows Vista (client)

3

v3 © Microsoft Corporation 2006 4

Important NT kernel features

• Highly multi-threaded

• Completely asynchronous I/O model

• Thread-based scheduling

• Object-manager provides unified management of
• kernel data structures
• kernel references
• user references (handles)
• namespace
• synchronization objects
• resource charging
• cross-process sharing

• Centralized ACL-based security reference monitor

• Configuration store decoupled from file system

4

v3 © Microsoft Corporation 2006 5

Important NT kernel features (cont)

• Extensible filter-based I/O model with driver layering,
standard device models, notifications, tracing, journaling,
namespace, services/subsystems

• Virtual address space managed separately from memory
objects

• Advanced VM features for databases (app management
of virtual addresses, physical memory, I/O, dirty bits, and
large pages)

• Plug-and-play, power-management

• System library mapped in every process provides trusted
entrypoints

v3 © Microsoft Corporation 2006 6

Major Kernel Functions

• Manage naming & security

• Manage address spaces

• Manage physical memory

• Manage CPU

• Provide I/O & net abstractions

• Implement cross-domain calls

• Abstract low-level hardware

• Internal support functions

• Internal configuration mgmt

�OB, SE

�PS, MM

�MM, CACHE

�KE

� IO, drivers

�LPC

�HAL

�EX, RTL

�CONFIG

v3 © Microsoft Corporation 2006 7

Major NT Kernel Components
� OB – Object Manager

� SE – Security Reference Monitor

� PS – Process/Thread management

� MM – Memory Manager

� CACHE – Cache Manager

� KE – Scheduler

� IO – I/O manager, PnP, device power mgmt, GUI

� Drivers – devices, file systems, volumes, network

� LPC – Local Procedure Calls

� HAL – Hardware Abstraction Layer

� EX – Executive functions

� RTL – Run-Time Library

� CONFIG – Persistent configuration state (registry)

v3 © Microsoft Corporation 2006 8

Major Kernel Services
Object Manager

Naming, referencing, synchronizing
Process management

Process/thread creation
Security reference monitor

Access checks, token management
Memory manager

Virtual address mgmt, physical memory mgmt, paging, Services
for sharing, copy-on-write, mapped files, GC support, large apps

Lightweight Procedure Call (LPC)
Native transport for RPC and user-mode system services.

I/O manager (& plug-and-play & power)
Maps user requests into IRP requests, configures/manages I/O
devices, implements services for drivers

Cache manager
Provides file-based caching to buffer file system I/O

Scheduler (aka ‘kernel’)
Schedules thread execution on each processor

v3 © Microsoft Corporation 2006 9

Windows Architecture

User-mode

Kernel-mode Trap interface / LPC

ntdll / run-time library

Win32 GUIProcs & threads

Kernel run-time / Hardware Abstraction Layer

Memory MangerI/O ManagerSecurity refmon

Cache mgr

File filters

File systems

Volume mgrs

Device stacks

Scheduler

Kernel32 User32 / GDI

DLLs

Applications

System Services

Object Manager / Configuration Management (registry)

Filesys run-time

Synchronization

Subsystem

servers

Login/GINA

Critical services

Net devices

Net protocols

Net Interfaces

v3 © Microsoft Corporation 2006 10

Windows Kernel Organization
Kernel-mode organized into

NTOS (kernel-mode services)

• Run-time Library, Scheduling, Executive services, object

manager, services for I/O, memory, processes, …

HAL (hardware-adaptation layer)

• Insulates NTOS & drivers from hardware details

• Providers facilities, such as device access, timers, interrupt

servicing, clocks, spinlocks

Drivers

• Kernel extensions (devices, file systems, network)

10

v3 © Microsoft Corporation 2006 11

NamespaceNamespace

ComponentsComponents

Manage naming and security

Manage references to kernel data structures

Extensible mechanisms, scalable

Provides general synchronization

v3 © Microsoft Corporation 2006 12

NT Object Manager

– Provides underlying NT namespace

– Unifies kernel data structure referencing

– Unifies user-mode referencing via handles

– Simplifies resource charging

– Central facility for security protection

– Other namespaces ‘mount’ on OB nodes

– Provides device & I/O support

v3 © Microsoft Corporation 2006 13

\Global??\C:

\Device\HarddiskVolume1

<directory>

L“Global??”

<directory>

L“C:”

L“\”

<symbolic link>

\Device\HarddiskVolume1

<directory>

L“Device”

<directory>

L“HarddiskVolume1”

L“\”

<device>

by I/O

manager

implemented

v3 © Microsoft Corporation 2006 14

Security Reference Monitor

• Based on discretionary access controls

– Single module for access checks

– Implements Security Descriptors, System and

Discretionary ACLs, Privileges, and Tokens

– Collaborates with Local Security Authority

Service to obtain authenticated credentials

– Provides auditing and fulfills other Common

Criteria requirements

v3 © Microsoft Corporation 2006 15

Object Mgr and Sec Monitor

Object

ManagerKernel

Code

Kernel

Data Object

Name lookup

Access checks

Security

Ref Monitor

Returns ref’d ptr

Ref’d ptr used until deref

v3 © Microsoft Corporation 2006 16

OB Namespace: objdir \
ArcName Directory

BaseNamedObjects Directory

Callback Directory

Cdfs Device

Device Directory

Dfs Device

DosDevices SymbolicLink - \??

Driver Directory

ErrorLogPort Port

FileSystem Directory

GLOBAL?? Directory

i8042PortAccessMutex Event

KernelObjects Directory

KnownDlls Directory

LanmanServerAnnounceEvent Event

LsaAuthenticationPort Port

NETLOGON_SERVICE_STARTED Event
NLAPrivatePort WaitablePort

NLAPublicPort WaitablePort

NLS Directory

Ntfs Device

ObjectTypes Directory

REGISTRY Key

RPC Control Directory

SAM_SERVICE_STARTED Event

Security Directory

SeLsaCommandPort Port

SeLsaInitEvent Event

SeRmCommandPort Port

Sessions Directory

SmApiPort Port

SmSsWinStationApiPort Port
SystemRoot SymbolicLink -

\Device\Harddisk0\Partition1\WIN
DOWS

ThemeApiPort Port

UniqueSessionIdEvent Event

Windows Directory

XactSrvLpcPort Port

v3 © Microsoft Corporation 2006 17

OB Extensibility: Object Methods

Note that the methods are unrelated to actual

operations on the underlying objects:

OPEN: Create/Open/Dup/Inherit handle

CLOSE: Called when each handle closed

DELETE: Called on last dereference

PARSE: Called looking up objects by name

SECURITY: Usually SeDefaultObjectMethod

QUERYNAME: Return object-specific name

v3 © Microsoft Corporation 2006 18

OB Extensibility: \ObjectTypes

Adapter

Callback

Controller

DebugObject

Desktop

Device

Directory

Driver

Event

EventPair

File

IoCompletion

Job

Key

KeyedEvent

Mutant

Port

Process

Profile

Section

Semaphore

SymbolicLink

Thread

Timer

Token

Type

WaitablePort

WindowsStation

WMIGuid

v3 © Microsoft Corporation 2006 19

OB Extensibility: \ObjectTypes

Adapter

Callback

Controller

DebugObject

Desktop

DeviceDevice

DirectoryDirectory

DriverDriver

Event

EventPair

FileFile

IoCompletion

Job

KeyKey

KeyedEvent

Mutant

Port

Process

Profile

Section

Semaphore

SymbolicLinkSymbolicLink

Thread

Timer

Token

Type

WaitablePort

WindowsStation

WMIGuid

v3 © Microsoft Corporation 2006 20

Object referencing: Handles

General mechanism: shorthand for referencing an opaque

data structure

e.g. a kernel structure (file, process, …)

user kernel

Data

structure

handle
Mapping

mechanism

v3 © Microsoft Corporation 2006 21

Process/Thread structure

Object

Manager

Any Handle

Table

Process

Object

Process’

Handle Table

Virtual

Address

Descriptors

Thread

Thread

Thread

Thread

Thread

Thread

Files

Events

Devices

Drivers

user-mode execution

read(handle)

Memory

Manager

Structures

v3 © Microsoft Corporation 2006 22

Handle Table

– NT handles allow user code to reference

kernel data structures (similar, but more

general than UNIX file descriptors)

– NT APIs use explicit handles to refer to

objects (simplifying cross-process operations)

– Handles can be used for synchronization,

including WaitMultiple

– Implementation is highly scalable

v3 © Microsoft Corporation 2006 23

Handle Table Requirements

• Perform well (time & memory) across a broad range of

handle table sizes

• Handles can’t change as table expands

• Efficient allocate, duplicate, free operations

• Scalable performance on high-MP systems

v3 © Microsoft Corporation 2006 24

One level: (to 512 handles)

v3 © Microsoft Corporation 2006 25

Two levels: (to 512K handles)

v3 © Microsoft Corporation 2006 26

Three levels: (to 16M handles)

v3 © Microsoft Corporation 2006 27

Kernel Handles

v3 © Microsoft Corporation 2006 28

IO Support: IopParseDevice

user

kernel
Trap mechanism

Dev Stack

NtCreateFile()

ObjMgr Lookup

context

IopParseDevice()

DevObj,

context

Security

RefMon
Access

check

File object

File Sys

File System Fills in File object

Access

check

Returns handle to File object

v3 © Microsoft Corporation 2006 29

Object Manager Implementation

• Implements standard operations

– Open, close, delete, parse, security, query

• Dynamic definition of OB types, including

callbacks for standard ops and allocation

• Implements a unified API

– OpenByName, reference, dereference

– Namespace and synchronization functions

• Relies on Security Reference Monitor

• Every object has standard OBJECT_HEADER

v3 © Microsoft Corporation 2006 30

OBJECT_HEADER

PointerCount

HandleCount

pObjectType

oNameInfo

pQuotaBlockCharged

pSecurityDescriptor

CreateInfo + NameInfo + HandleInfo + QuotaInfo

OBJECT BODY

[with optional DISPATCHER_HEADER]

oHandleInfo oQuotaInfo Flags

v3 © Microsoft Corporation 2006 31

Uniform Synchronization:

DISPATCHER_HEADER

Fundamental kernel synchronization mechanism

Equivalent to a KEVENT at front of dispatcher objects

Inserted

SignalState

WaitListHead.flink

WaitListHead.blink

Absolute TypeSizeObject Body →

v3 © Microsoft Corporation 2006 32

WaitListHead WaitListEntry

WaitBlockList

KPRCB Thread Thread

WaitListEntry

WaitBlockList

WaitListEntry

NextWaitBlock

WaitBlock

WaitListEntry

NextWaitBlock

WaitBlock

WaitListEntry

NextWaitBlock

WaitBlock

WaitListEntry

NextWaitBlock

WaitBlock

WaitListEntry

NextWaitBlock

WaitBlock

WaitListEntry

NextWaitBlock

WaitBlock

WaitListHead

Object->Header

Signaled

WaitListHead

Object->Header

Signaled

WaitListHead

Object->Header

Signaled

WaitListHead

Object->Header

Signaled Structure used by
WaitMultiple

v3 © Microsoft Corporation 2006 33

Address SpacesAddress Spaces

Memory MgmtMemory Mgmt

• Virtual Address management, processes

• Shared memory, cache management

• Virtual Address Translation, page tables

• Physical pageframe (& pagefile) management

• Large app support

v3 © Microsoft Corporation 2006 34
No access region

Private
Process
Space

Stacks

Address Space Layout (2GB mode)

0x00000000

0x0000FFFF

0x7FFE1000

0x7FFFFFFF

0x7FFE0000

Module images

Heaps

Virtual Allocations

Unused

TEBs

PEB

Shared User Data

No access region

v3 © Microsoft Corporation 2006 35

Process/Thread structure

Object

Manager

Any Handle

Table

Process

Object

Process’

Handle Table

Virtual

Address

Descriptors

Thread

Thread

Thread

Thread

Thread

Thread

Files

Events

Devices

Drivers

Memory

Manager

Structures

v3 © Microsoft Corporation 2006 36

Processes

• An environment for program execution

(conceptually)

• Binds

– namespaces

– virtual address mappings

– ports (debug, exceptions)

– threads

• Not a virtualization of a processor

v3 © Microsoft Corporation 2006 37

Virtual Address Descriptors

• Tree representation of an address space

• Types of VAD nodes

– invalid

– reserved

– committed

– committed to backing store

– app-managed (large pages, AWE, physical)

• Backing store represented by section
objects

v3 © Microsoft Corporation 2006 38

Shared Memory Data Structures

File Object

Handle

Shared

Cache Map

Control Area

Segment
Handle

Section

Object

Page

Directory

Process
Page

Table

VAD

Page

Directory

Subsection

Subsection

Proto

PTEs

v3 © Microsoft Corporation 2006 39

Cache Manager Summary
• Virtual block cache for files not logical block cache for
disks

• Memory manager is the ACTUAL cache manager

• Cache Manager context integrated into FileObjects

• Cache Manager manages views on files in kernel virtual
address space

• I/O has special fast path for cached accesses

• The Lazy Writer periodically flushes dirty data to disk

• Filesystems need two interfaces to CC: map and pin

v3 © Microsoft Corporation 2006 40

The Big Block Diagram

Cache Manager

Memory Manager

Filesystem

Storage Drivers

Disk

Fast IO Read/Write IRP-based Read/Write

Page
Fault

Cache
Access,
Flush,
Purge

Noncached
IO

Cached IO

v3 © Microsoft Corporation 2006 41

Filesystem & Cache Manager
• 3 basic types of I/O: cached, noncached and “paging”

• Paging I/O is I/O generated by Mm – flushing or faulting
– the data section implies the file is big enough

– can never extend a file

• A filesystem will recurse on the same callstack as Mm
dispatches cache pagefaults
– This makes things exciting! (ERESOURCEs)

Three File Sizes
• FileSize – normal length expected by the user

• AllocationSize – backing store allocated on the volume
– multiple of cluster size, which is 2n * sector size

• ValidDataLength – size written so far
– ValidDataLength <= FileSize <= AllocationSize

v3 © Microsoft Corporation 2006 42

Letting the Filesystem Into The Cache

• Two distinct access interfaces

– Map – given File+FileOffset, return a cache address

– Pin – same, but acquires synchronization – this is a

range lock on the stream

• Lazy writer acquires synchronization, allowing it to serialize

metadata production with metadata writing

• Pinning also allows setting of a log sequence

number (LSN) on the update, for transactional

FS

– FS receives an LSN callback from the lazy writer prior

to range flush

v3 © Microsoft Corporation 2006 43

Virtual Address Translation

0000 0000 0000 0000 0000 0000 0000 0000

CR3

PD PT page DATADATA

1024

PDEs
1024

PTEs
4096

bytes

v3 © Microsoft Corporation 2006 44

Self-mapping page tables

• Page Table Entries (PTEs) and Page Directory Entries

(PDEs) contain Physical Frame Numbers (PFNs)

– But Kernel runs with Virtual Addresses

• To access PDE/PTE from kernel use the self-

map for the current process:

PageDirectory[0x300] uses PageDirectory as

PageTable

– GetPdeAddress(va): 0xc0300000[va>>20]

– GetPteAddress(va): 0xc0000000[va>>10]

• PDE/PTE formats are compatible!

• Access another process VA via thread ‘attach’

v3 © Microsoft Corporation 2006 45

Self-mapping page tables
Virtual Access to PageDirectory[0x300]

0000 0000 0000 0000 0000 0000 0000 0000

CR3

PD

1100 0000 0011 0000 0000 1100 0000 0000

CR3

PD

PTEPTE

0x300

Phys: PD[0xc0300000>>22] = PD

Virt: *((0xc0300c00) == PD

v3 © Microsoft Corporation 2006 46

Self-mapping page tables
Virtual Access to PTE for va 0xe4321000

0000 0000 0000 0000 0000 0000 0000 0000

CR3

PD

1100 0000 0011 1001 0000 1100 1000 0100

CR3

PD

0x300

PTEPTE

PT

0x390

0x321

GetPteAddress:

0xe4321000

=> 0xc0390c84

v3 © Microsoft Corporation 2006 47

Writing Cached Data

• There are three basic sets of threads involved,

only one of which is Cc’s

– Mm’s modified page writer (paging file)

– Mm’s mapped page writer (mapped file)

– Cc’s lazy writer pool (cleans data in cache)

v3 © Microsoft Corporation 2006 48

The Lazy Writer
• Name is misleading, its really delayed

• All files with dirty data have been queued onto
CcDirtySharedCacheMapList

• Work queueing – CcLazyWriteScan()
– Once per second, queues work to arrive at writing 1/8th of dirty data
given current dirty and production rates

– Fairness considerations are interesting

• CcLazyWriterCursor rotated around the list, pointing at the
next file to operate on (fairness)
– 16th pass rule for user and metadata streams

• Work issuing – CcWriteBehind()
– Uses a special mode of CcFlushCache() which flushes front to back

v3 © Microsoft Corporation 2006 49

Physical Frame Management

• Table of PFN data structures
– represent all pageable pages

– synchronize page-ins

– linked to management lists

• Page Tables
– hierarchical index of page directories and tables

– leaf-node is page table entry (PTE)

– PTE states:

• Active/valid

• Transition

• Modified-no-write

• Demand zero

• Page file

• Mapped file

v3 © Microsoft Corporation 2006 50

Paging Overview
Working Sets: list of valid pages for each process
(and the kernel)

Pages ‘trimmed’ from working set on lists
Standby list: pages backed by disk

Modified list: dirty pages to push to disk

Free list: pages not associated with disk

Zero list: supply of demand-zero pages

Modify/standby pages can be faulted back into a
working set w/o disk activity (soft fault)

Background system threads trim working sets,
write modified pages and produce zero pages
based on memory state and config parameters

v3 © Microsoft Corporation 2006 51

Physical Frame Management

Process/System

Working Set

Modified

List

Standby

List

Free

List

Zero

List

Modified

Page-

writer

MM Low

Memory

Zero

Thread

Delete

Page

Soft

Fault

Trim

Dirty

Trim

Clean

Soft

Fault

Hardfault

(DISK)

Zerofault

(FILL)

Physical Page State

Changes

v3 © Microsoft Corporation 2006 52

Managing Working Sets
Aging pages: Increment age counts for pages
which haven't been accessed

Estimate unused pages: count in working set and
keep a global count of estimate

When getting tight on memory: replace rather
than add pages when a fault occurs in a working
set with significant unused pages

When memory is tight: reduce (trim) working sets
which are above their maximum

Balance Set Manager: periodically runs Working
Set Trimmer, also swaps out kernel stacks of
long-waiting threads

v3 © Microsoft Corporation 2006 53

Bypassing Memory Management

Application

VAD tree

File

Data

Image

c-o-w

Data

Data

File

Data

Sections

e
x
e
c
u
ta
b
le

d
a
ta
file

p
a
g
e
file

S
Q
L
 d
b

Working-set Manager

M
o
d
ifie
d
 L
is
t

Working-set list

Modified

Page Writer

S
ta
n
d
b
y
 L
is
t

F
re
e
 L
is
tPhys

v3 © Microsoft Corporation 2006 54

CPUCPU

Processes versus Threads

Lighterweight multi-threading

CPU scheduling

CPU mechanisms:

APCs, ISRs/DPCs, system worker threads

v3 © Microsoft Corporation 2006 55

Process

Container for an address space and threads

Associated User-mode Process Environment Block (PEB)

Primary Access Token

Quota, Debug port, Handle Table etc

Unique process ID

Queued to the Job, global process list and Session list

MM structures like the WorkingSet, VAD tree, AWE etc

v3 © Microsoft Corporation 2006 56

Thread

Fundamental schedulable entity in the system

Represented by ETHREAD that includes a KTHREAD

Queued to the process (both E and K thread)

IRP list

Impersonation Access Token

Unique thread ID

Associated User-mode Thread Environment Block (TEB)

User-mode stack

Kernel-mode stack

Processor Control Block (in KTHREAD) for cpu state when
not running

v3 © Microsoft Corporation 2006 57

Process/Thread structure

Object

Manager

Any Handle

Table

Process

Object

Process’

Handle Table

Virtual

Address

Descriptors

Thread

Thread

Thread

Thread

Thread

Thread

Files

Events

Devices

Drivers

v3 © Microsoft Corporation 2006 58

Mitigating thread costs

Thread pools

• Driven by work items

• User-mode thread pool

• Kernel-mode worker threads

Fibers

• user-mode threads

• allows user-mode control of scheduling

• better performance for certain apps, but generally

discouraged

• has most of the usual user vs. kernel thread issues

v3 © Microsoft Corporation 2006 59

Thread latencies

Scheduling introduces bad latencies

– Preemption

• introduces fairness and responsiveness

• creates priority inversion if holding locks/resources

– Scheduling

• allows prioritized sharing

• defeats RPC

caller IPC
scheduler

IPC callee

block

block

readyready

ready

ready

Boost priority

v3 © Microsoft Corporation 2006 60

Scheduling
Windows schedules threads, not processes

Scheduling is preemptive, priority-based, and round-robin at the
highest-priority

16 real-time priorities above 16 normal priorities

Scheduler tries to keep a thread on its ideal processor/node to
avoid perf degradation of cache/NUMA-memory

Threads can specify affinity mask to run only on certain processors

Each thread has a current & base priority
Base priority initialized from process

Non-realtime threads have priority boost/decay from base

Boosts for GUI foreground, waking for event

Priority decays, particularly if thread is CPU bound (running at
quantum end)

Scheduler is state-driven by timer, setting thread priority,
thread block/exit, etc

Priority inversions can lead to starvation
balance manager periodically boosts non-running runnable threads

v3 © Microsoft Corporation 2006 61

Scheduler

Ready

Running

Blocked

Sw
ap
pe
d

v3 © Microsoft Corporation 2006 62

Thread scheduling states

• Main quasi-states:

– Ready – able to run (queued on Prcb ReadyList)

– Running – current thread (Prcb CurrentThread)

– Waiting – waiting an event

• For scalability Ready is three real states:

– DeferredReady – queued on any processor

– Standby – will be imminently start Running

– Ready – queue on target processor by priority

• Goal is granular locking of thread priority queues

• Red states related to swapped stacks and processes

v3 © Microsoft Corporation 2006 63

NT thread priorities

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16zero thread

real-time

(fixed)

worker

threads

normal

(dynamic)

critical
H

I

G

H
+

N

O

R

M

N

O

R

M

N

O

R

M

-

I

D

L

E

idle

v3 © Microsoft Corporation 2006 64

CPU Control-flow
Thread scheduling occurs at PASSIVE or APC level

(IRQL < 2)

APCs (Asynchronous Procedure Calls) deliver I/O
completions, thread/process termination, etc (IRQL == 1)
Not a general mechanism like unix signals (user-mode code must
explicitly block pending APC delivery)

Interrupt Service Routines run at IRL > 2

ISRs defer most processing to run at IRQL==2 (DISPATCH
level) by queuing a DPC to their current processor

A pool of worker threads available for kernel components to
run in a normal thread context when user-mode thread is
unavailable or inappropriate

Normal thread scheduling is round-robin among priority
levels, with priority adjustments (except for fixed priority
real-time threads)

v3 © Microsoft Corporation 2006 65

Asynchronous Procedure Calls

APCs execute routine in thread context

not as general as UNIX signals

user-mode APCs run when blocked & alertable

kernel-mode APCs used extensively: timers,

notifications, swapping stacks, debugging, set

thread ctx, I/O completion, error reporting,

creating & destroying processes & threads, …

APCs generally blocked in critical sections

e.g. don’t want thread to exit holding resources

v3 © Microsoft Corporation 2006 66

Deferred Procedure Calls

DPCs run a routine on a particular processor
DPCs are higher priority than threads

common usage is deferred interrupt processing

ISR queues DPC to do bulk of work
• long DPCs harm perf, by blocking threads

• Drivers must be careful to flush DPCs before unloading

also used by scheduler & timers (e.g. at quantum end)

kernel-mode APCs used extensively: timers,
notifications, swapping stacks, debugging, set thread
ctx, I/O completion, error reporting, creating &
destroying processes & threads, …

High-priority routines use IPI (inter-processor intr)
used by MM to flush TLB in other processors

v3 © Microsoft Corporation 2006 67

System Threads

System threads have no user-mode context

Run in ‘system’ context, use system handle table

System thread examples

Dedicated threads

Lazy writer, modified page writer, balance set manager,

mapped pager writer, other housekeeping functions

General worker threads

Used to move work out of context of user thread

Must be freed before drivers unload

Sometimes used to avoid kernel stack overflows

Driver worker threads

Extends pool of worker threads for heavy hitters, like file server

v3 © Microsoft Corporation 2006 68

SynchronizationSynchronization

Multiple tailored mechanisms for synchronization

and resource sharing

Examples:

PushLocks

Fast Referencing

v3 © Microsoft Corporation 2006 69

Kernel synchronization mechanisms

Pushlocks

Fastref

Rundown protection

Spinlocks

Queued spinlocks

IPI

SLISTs

DISPATCHER_HEADER

KQUEUEs

KEVENTs

Guarded mutexes

Mutants

Semaphores

EventPairs

ERESOURCEs

Critical Sections

v3 © Microsoft Corporation 2006 70

Push Locks

• Acquired shared or exclusive

• NOT recursive

• Locks granted in order of arrival

• Fast non-contended / Slow contended

• Sizeof(pushlock) == Sizeof(void*)

• Pageable

• Acquire/release are lock-free

• Contended case blocks using local stack

v3 © Microsoft Corporation 2006 71

Pushlock format

v3 © Microsoft Corporation 2006 72

Fast Referencing

• Used to protect rarely changing reference

counted data

• Small pageable structure that’s the size of

a pointer

• Scalable since it requires no lock acquires

in over 99% of calls

v3 © Microsoft Corporation 2006 73

Fast Referencing Internals

RObject Pointer

Object: RefCnt: R + 1 + N

v3 © Microsoft Corporation 2006 74

Obtaining a Fast Reference

3Object Pointer

2Object Pointer

Reference Dereference

v3 © Microsoft Corporation 2006 75

I/OI/O

Driver stacks

I/O Request Packets

Synchronous vs Asynchronous I/O

I/O completion ports

File Systems

v3 © Microsoft Corporation 2006 76

I/O Manager

Object Manager

NtCreateFile

I/O Manager

ObOpenObjectByName

IopParseDevice

IoCallDriver

IRPIRP

FS filter drivers

NTFS

Volume Mgr

IoCallDriver

Disk Driver

IoCallDriver

IoCallDriver

HAL

FileFile

ObjectObject

Result: File ObjectFile Object
filled in by NTFS

v3 © Microsoft Corporation 2006 77

Layering Drivers
Device objects attach one on top of another using
IoAttachDevice* APIs creating device stacks

– IO manager sends IRP to top of the stack

– drivers store next lower device object in their private
data structure

– stack tear down done using IoDetachDevice and
IoDeleteDevice

Device objects point to driver objects

– driver represent driver state, including dispatch table

File objects point to open files

File systems are drivers which manage file objects for
volumes (described by VolumeParameterBlocks)

v3 © Microsoft Corporation 2006 78

IO Request Packet (IRP)

• IO operations encapsulated in IRPs.

• IO requests travel down a driver stack in an IRP.

• Each driver gets a stack location which contains
parameters for that IO request.

• IRP has major and minor codes to describe IO
operations.

• Major codes include create, read, write, PNP,
devioctl, cleanup and close.

• Irps are associated with a thread that made the
IO request.

v3 © Microsoft Corporation 2006 79

IRP Fields

Flags

Buffer Pointers

MDL Chain

Thread’s IRPs

Completion/Cancel Info

Completion

APC block

Driver

Queuing

& Comm.

System

User
MDL

Thread

IRP Stack Locations

v3 © Microsoft Corporation 2006 80

Each IRP Stack Location

Major/Minor Function Codes

Flags & Control

MDL Chain

Parameters:

DeviceObject

FileObject

Completion Routine & Parameter

Create: security, options
Read: len, key, offset

DevObj

FileObj

DrvrObj

v3 © Microsoft Corporation 2006 81

IRP flow of control (synchronous)

IOMgr (e.g. IopParseDevice) creates IRP, fills in top
stack location, calls IoCallDriver to pass to stack

driver determined by top device object on device stack

driver passed the device object and IRP

IoCallDriver

copies stack location for next driver

driver routine determined by major function in drvobj

Each driver in turn

does work on IRP, if desired

keeps track in the device object of the next stack device
Calls IoCallDriver on next device

Eventually bottom driver completes IO and returns on callstack

v3 © Microsoft Corporation 2006 82

IRP flow of control (asynch)

Eventually a driver decides to be asynchronous

driver queues IRP for further processing

driver returns STATUS_PENDING up call stack

higher drivers may return all the way to user, or may
wait for IO to complete (synchronizing the stack)

Eventually a driver decides IO is complete

usually due to an interrupt/DPC completing IO

each completion routine in device stack is called,
possibly at DPC or in arbitrary thread context

IRP turned into APC request delivered to original thread

APC runs final completion, accessing process memory

v3 © Microsoft Corporation 2006 83

Asychronous I/O

• Applications can issue asynchronous IO requests to files
opened with FILE_FLAG_OVERLAPPED and passing
an LPOVERLAPPED parameter to the IO API (e.g.,
ReadFile(…))

• Five methods available to wait for IO completion,

– Wait on the file handle

– Wait on an event handle passed in the overlapped
structure (e.g., GetOverlappedResult(…))

– Specify a routine to be called on IO completion

– Use completion ports

– Poll status variable

v3 © Microsoft Corporation 2006 84

I/O Completion Ports

• Five methods to receive notification of completion for
asynchronous I/O:

– poll status variable

– wait for the file handle to be signalled

– wait for an explicitly passed event to be signalled

– specify a routine to be called on the originating ports

– use and I/O completion port

v3 © Microsoft Corporation 2006 85

Completing Asynchronous I/O

K

U

th
re
a
d

th
re
a
d

th
re
a
d

I/O I/O I/O

re
q
u
e
s
t

re
q
u
e
s
t

re
q
u
e
s
t

c
o
m
p
le
te

c
o
m
p
le
te

c
o
m
p
le
te

K

U

th
re
a
d

th
re
a
d

th
re
a
d

I/O I/O I/O

re
q
u
e
s
t

re
q
u
e
s
t

re
q
u
e
s
t

complete

c
o
m
p
le
te

th
re
a
d

th
re
a
d

I/O completion portsnormal completion

I/O Completion

v3 © Microsoft Corporation 2006 86

File System Device Stack

NT I/O Manager

File System Filters

File System Driver

Cache Manager

Virtual Memory

Manager

Application

Kernel32 / ntdll
user
kernel

Partition/Volume

Storage Manager

Disk Class Manager

Disk Driver

DISK

v3 © Microsoft Corporation 2006 87

Discussion

