
In this chapter:
• Flushing the Cache
• Termination of

Caching
• Miscellaneous File

Stream
Manipulation
Functions

• Interactions with the
VMM

• Interactions with the
I/O Manager

• The Read-Ahead
Module

• Lazy-Write
Functionality

The NT Cache
Manager III

This chapter explains the remaining file stream manipulation functions that were
listed in Chapter 6, The NT Cache Manager I. These include flushing the cache on
demand, purging pages from the system cache, changing file sizes (and informing
the Cache Manager of such changes), and terminating caching for a file object.

Following the description of the file stream manipulation functions, I describe
some of the interactions the Cache Manager has with both the Virtual Memory
Manager and the I/O Manager. I then present a discussion of the lazy-writer and
the read-ahead components of the Cache Manager.

Flushing the Cache
Modified cached data is typically written asynchronously to secondary storage
media by the lazy-writer component. Also, if the system is running low on avail-
able physical memory, the Virtual Memory Manager may flush modified pages to
secondary storage. However, any thread that opens a file stream for write access
can request that cached data be flushed, and it then has the option of waiting
until the flush operation completes before continuing with further processing.

Another method that a thread can use to force modified data to be written to
secondary storage is to use write-through operations. This is accomplished by
specifying the FILE_WRITE_THROUGH flag when the file stream is opened.

325

326______________________________Chapter 8: The NT Cache Manager III

NOTE By requesting write-through mode, a thread informs the file system
that a system call (resulting in a call to the file system) to write modi-
fied data must ensure that the data has been written to secondary
storage before returning control back to the thread. Then, in the
event of unexpected system crashes, the thread can guarantee that
data was not lost due to in-memory buffering.

An interesting situation arises when multiple open operations are concurrently
performed on a file stream, some requesting cached access and others specifying
write-through mode. Typically, when the file system receives a write request
using a file object that specifies write-through, the file system has to ensure that
all modified data for the file stream in the system cache is written to secondary
storage, including the newly modified data.* Therefore, requests for access to data
using file objects that were created with write-through specified typically result in
frequent flush operations performed on the file stream.

The routine used by file systems to request that file stream data be flushed is
defined as follows:

VOID
CcFlushCache (

IN PSECTION_OBJECT_POINTERS SectionObjectPointer,
IN PLARGE_INTEGER FileOffset OPTIONAL,
IN ULONG Length,
OUT PIO_STATUS_BLOCK loStatus OPTIONAL

) ;
Resource Acquisition Constraints:

The file system can choose from one of two acquisition options:

• The FCB for the file stream can be acquired exclusively.

• The FCB for the file stream is left unowned. The file system should guarantee
in this case that no resources are acquired before invoking the Cache Man-
ager.

* It is indeed possible that a file system may flush only the region specified in the write-through request.
Typically, however, most files are relatively small (many are less than 64KB in length), and it might make
sense for the file system to request that the entire file be flushed out to secondary storage—hopefully, in
a single I/O operation. Only modified pages will ever be written out; therefore, most file systems simply
request that the Cache Manager flush the entire file and subsequently let the Cache Manager and the Vir-
tual Memory Manager figure out the pages to be actually written.

Flushing the Cache___327

Parameters:

SectionObj ectPointer
The file system allocates a section object pointer structure when caching is
first initiated for the file stream. As noted in Chapter 6, the Shared-
CacheMap field is used by the Cache Manager to store a pointer to an
allocated shared cache map structure uniquely associated with the file stream.
The Cache Manager can uniquely identify the file stream that should be
flushed using this pointer.

Since a pointer to the section object pointers structure is required, caching
must have been previously initiated on the file stream.

FileOffset
This is an optional argument. If supplied, the offset specifies the starting
offset of the byte range to be flushed. If not supplied, the Cache Manager
assumes that the starting offset is byte 0 in the file stream. Also, if the file
offset argument is omitted, the Cache Manager ignores the Length argument
and also assumes that the entire file should be flushed to secondary storage.
Note that the large integer structure is not pushed onto the stack and that a
pointer to the large integer structure is required instead.

Length
This is the number of bytes that should be flushed. This argument is ignored
if no file offset is supplied to the Cache Manager.

loStatus
The Cache Manager returns the status code for this operation in the Status
field of the loStatus structure. This is an optional argument and the caller
can supply a NULL pointer if the client does not need to know the result of
the operation.

Functionality Provided:

The CcFlushCache () routine accepts a request to flush the modified in-
memory data to secondary storage. The flushing is performed synchronously, and
hence the calling thread should be prepared to block, waiting for the I/O opera-
tion to complete.

The implementation of this routine is conceptually very simple: the Cache Manager
receives this request and decides if the entire file (beginning at file offset 0) should
be flushed or if a specific byte range in the file should be flushed. This is deter-
mined based on whether the caller supplied a file offset argument or not. If a file
offset is supplied, then the requested byte range is flushed; otherwise, the entire file
is flushed. If a byte range is supplied, the Cache Manager checks that a valid range
has been requested.

328______________________________Chapter 8: The NT Cache Manager III

The Cache Manager then asks the Virtual Memory Manager to flush the section
object (representing the file stream mapping object) to secondary storage. The
results of the operation are then returned to the caller, if the caller supplies an
loStatus argument.

Note that modified buffers that are currently pinned in memory are not flushed
when this routine is invoked. These buffers are flushed asynchronously by the
lazy-writer thread after they are unpinned.

Termination of Caching
Once caching has been initiated for a file object, the user can access data directly
out of the system cache and also enjoy the benefits obtained from read-ahead and
lazy-write operations on the cached data. As was noted in the previous chapter,
in response to a file system request to initiate caching, the Cache Manager allo-
cates the shared cache map data structure. Once all processes in the system
complete processing data for the file stream, this structure should be deallocated
by the Cache Manager and memory pages used to cache data for the file stream
should be freed.

After I/O operations on the file stream have ceased, a close operation is
performed on the file handle representing the file stream. This operation indicates
that the particular process no longer needs to access the data for that file stream,
and the file system should terminate caching of data using the associated file
handle.

After all processes that opened the file stream close their respective handles to the
file, all references to file objects for the file stream are removed. At this time, all
data structures used to maintain cache state information can be deallocated and
data for the file stream can be purged from system memory.

To understand the sequence of operations that leads to termination of caching for
a file stream, let us examine the cleanup and close requests handled by file
system drivers.

Once a process completes all desired I/O operations on a file stream, it performs
a close operation on the handle representing that file stream. When the last user
handle corresponding to the file object is closed, the I/O Manager invokes the file
system driver with an IRP containing the major function IRP_MJ_CLEANUP. This
is known as a cleanup request to the file system driver.

Termination of Caching_________________________________ 329

NOTE The terminology is a little confusing here; you may wonder why a
dose operation by a process on a handle to the file stream results in
a cleanup request (IRP) to the file system. And then, at some point,
the file system receives a close request (IRP) as well for the file
stream. The simple answer: someone at Microsoft picked these non-
intuitive names! Alternative names for these IPRs could include IRP_
MJ_FILE_OBJ_USERS_HANDLES_CLOSEDhmn, for the cleanup re-
quest, and IRP_MJ_FILE_ALL_REFERENCES_GONE for the close
request. Hopefully, the discussion in this chapter and in Part 3 will
help clarify the situation.

The cleanup request notifies the file system that no additional user processes will
attempt to access the file stream using the specific file object (an argument to the
file system receiving the cleanup request). In response, the file system performs a
well-defined sequence of operations; these operations are explained in further
detail in Part 3. However, regarding interfacing with the Cache Manager, the file
system driver typically does the following:

• The file system flushes all the buffers associated with the file stream.*
Once the IRP for the cleanup request is completed by the file system, the call-
ing process expects that modified data should have been written to secondary
storage, or at the very least, it should be scheduled to be written fairly soon.

• The file system terminates caching for the passed-in file object.

You have already seen the Cache Manager routine used by the file system to flush
buffers for a file stream. The routine to terminate caching for a file object associ-
ated with a file stream is defined as follows:

BOOLEAN
CcUninitializeCacheMap (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER Truncatesize OPTIONAL,
IN PCACHE_UNINITIALIZE_EVENT UninitializeCompleteEvent OPTIONAL

);
The CACHE_UNINITIALIZE_EVENT structure is defined below:

typedef struct _CACHE_UNINITIALIZE_EVENT {
struct _CACHE_UNINITIALIZE_EVENT *Next;
KEVENT Event;

} CACHE_UNINITIALIZE_EVENT, *PCACHE_UNINITIALIZE_EVENT;

' The Cache Manager routine to uninitialize the cache map for a file object also ensures that data for the
file stream gets flushed to secondary storage. However, that flush operation is typically performed asyn-
chronously, and invoking the flush call explicitly could be useful to file systems that wish to ensure that
modified buffers are written to secondary storage each time a user handle is closed.

330 Chapter 8: The NT Cache Manager III

Resource Acquisition Constraints:

The FCB for the file stream must be acquired exclusively before invoking this
routine.

Parameters:

FileObject
This is a pointer to the file object structure for which caching is being termi-
nated by the file system.

TruncateSize
This is an optional argument. If the file stream has been deleted, the delete
actually occurs only when the final cleanup call for the file stream is received
by the file system driver, i.e., when the last user handle is closed.* At this
time, the Cache Manager purges all pages from the system cache and forces
the section representing the file mapping to be closed if the value of the
TruncateSize argument is set to 0.
Alternatively, the file system may wish to truncate the file stream even when
there are other open handles for the file stream. In this case, specifying a
valid truncate size results in this truncation and pages are purged when the
last user handle is closed.

UninitializeCompleteEvent
The name for this optional argument is somewhat of a misnomer (maybe
UninitializeAndFlushCompleteEvent might have been a better
choice). Since the Cache Manager might choose to lazy-write the file stream data
to secondary storage and/or lazy-delete the section object representing the file
mapping, this argument allows the caller to request that it be notified when the
actual flush of cached data and the subsequent uninitialization of the cache map
is completed.

Functionality Provided:

The CcUninitializeCacheMapO routine is used by file systems for each file
object when a cleanup IRP is received for a file object. Note that this routine
should be invoked for every file object, regardless of whether caching had ever
been invoked for the file object. This is because truncation related to deletion of a

* This is a peculiarity of the Windows NT system. As you will see in Chapter]0, Writing A File System
Driver II, to delete a file stream (more specifically, to delete a link/name-entry in a directory associated
with a file stream), a process must first open the link for the file stream, mark it for deletion, and finally
close the handle. When all file handles for the file stream are closed, the directory entry will actually be
deleted (and so will the file stream if the link count for the file was 1). For cached files, when the last
user handle for the file stream is closed, the Cache Manager purges all the pages associated with the file
stream from system memory and also forces the section to be closed. In other operating systems, it is not
always required that a file stream be opened in order to delete it.

Termination of Caching______________________________________331

file is only performed when the last cleanup operation is invoked for a file
stream; i.e., when all user file handles (and therefore all corresponding file
objects) have been closed. Similarly, truncation specified for a file stream opened
by other processes is performed when all user handles to the file stream have
been closed.

Invoking this routine for a file object on which caching has not been initialized
has a benign effect.

WARNING Although the above statement is mostly true, if you write a file sys-
tem driver, be careful to ensure that the SectionObjectPointer
field in the file object structure has been initialized prior to invoking
this routine. Failure to do so might lead to an exception being
raised because the Cache Manager dereferences this field to get to
the shared cache map field within the structure. The shared cache
map structure in turn is used to determine whether caching is in
progress at all for the file stream associated with the file object.

You should ensure that the file control block for the file stream has been acquired
exclusively prior to invoking the routine. If caching has been initiated for the file
object on which this operation is being performed, caching will be uninitialized.
You should note that after returning from this operation, the PrivateCacheMap
field in the file object structure will have been reset to NULL.

If the last open user handle to the file stream is being closed, invoking this
routine will result in the following:

• If a valid TruncateSize argument was supplied, the pages starting at the
supplied offset will be purged from the system cache.

• Modified (but unpurged) pages in the system cache are flushed to secondary
storage.

• The shared cache map for the file stream is deleted (actually a lazy-delete will
be initiated, since modified pages may be lazy-flushed to secondary storage).

As was noted in Chapter 6, the Cache Manager does not interpret the contents of
the byte streams that it caches for other system components. In particular, the
Cache Manager is used by file systems to cache not only user data but also file
system metadata, such as volume information, extended attributes, directory
contents, and other similar information. To initiate caching for such file streams,
file systems use the loCreateStreamFileObject () routine to request that
the I/O Manager create a file object representing the file stream. Once this file
object has been created, the file system can itself initiate caching on the returned
file object and use the system cache to cache nonuser data.

332______ ______________________Chapter 8: The NT Cache Manager III

The loCreateStreamFileObject () routine creates a file object and refer-
ences it. It then executes a close operation on the referenced file object before
returning the file object pointer to the caller. This close operation on the handle
for the newly created file object results in a cleanup IRP being dispatched to the
file system. The file system should recognize that this is a cleanup request for a
special stream file object data structure and simply no-op the call (instead of
trying to uninitialize caching for the file object).

You should also note that receipt of a cleanup request on a file object by the file
system does not mean that no further I/O requests will be received by the file
system using that file object. Although the cleanup request does indicate that all
user handles associated with the file object have been closed, it is indeed possible
that the Cache Manager (and/or the Virtual Memory Manager) may have refer-
enced the file object and might send read or write-behind requests to the file
system using that file object.

Typically, once a file system receives a cleanup request on a file object, further
I/O requests should be expected if the following conditions hold true:

• The file object was the first one used to initiate caching for the file stream
(i.e., this was the first file object—corresponding to the first open instance
among many possible file open instances—that was used in a call to CcIni-
tial izeCacheMap () to initiate caching).

• The file system did not invoke CcFlushCache () explicitly when receiving
the cleanup IRP and there is modified data in the system cache (you should
note that the lazy-writer would then try to write-behind this modified data),
or there are other open instances for the same file stream and one or more is
resulting in modified data in the system cache (this means that some other
thread/process seems to be modifying data for the file stream). •

Close Request
When the last user handle associated with a file object is closed, the file system
receives a cleanup request. In response, the file system flushes the cached file
stream data, uninitializes the cache map, and performs other housekeeping func-
tionality for that file object.

It is important to note that, although all user handles associated with a file object
may be closed, there may be references to the particular file object. As long as
one or more references exist to a file object, the file object structure cannot be
deallocated. However, once the last reference to the file object structure has been
removed, the file system receives a close IRP (IRP_MJ_CLOSE). At this time, the
file system can perform any final housekeeping associated with the file object
before it gets deallocated.

Termination of Caching______________________________________333

Although most file systems do not interact with the Cache Manager when a close
IRP is received for a file stream, it is important to note that the Cache Manager
retains a reference to the first file object for a file stream on which caching has
been initiated. This may result in a close operation on a file object being delayed
until after the cleanup request for the file object has been received and completed.

To clarify this further, consider a file stream for a file foo on disk. When process-1
opens this file, a file object is created to represent the open instance for the file
stream. Now, imagine that process-2 also opens file foo. At this time, another file
object representing the second open for the file stream is created. Now, let
process-1 initiate the first I/O operation (either read or write) on the file stream.
The file system driver initiates caching for the file object, and this request to
initiate caching is received by the Cache Manager. While initiating caching for the
file object, the Cache Manager notices that this is the first occurrence of caching
being initiated for the file stream foo. Therefore, the Cache Manager retains a refer-
ence to the file object. Although, at some later time, process-2 might also perform
buffered I/O, which causes caching to be initiated for the second file object associ-
ated with the file stream foo, the Cache Manager does not reference any other file
object for the same file stream.

After both processes have closed their respective handles, the file system will get
a close IRP only when the Cache Manager (and any other component that refer-
ences the file object) releases its reference to the file object structure.

NOTE You know that the Cache Manager invokes the Virtual Memory Man-
ager to create a section object representing the file mapping for
each file that is cached. When the VMM is invoked for the first time
on a file stream (to create a section object or file mapping), the
VMM also references the passed-in file object. Therefore, the first
file object on which caching is initiated for a file stream is refer-
enced at least twice due to the act of caching being initiated—once
by the Cache Manager and a second time by the Virtual Memory
Manager. Both of these references need to be removed before a
close IRP is received by the file system for this particular file object.
This method of referencing the file object and thereby delaying the
close operation for a file object results in cached data being kept
around in the system cache across user file open and close opera-
tions. Therefore, if you open a Microsoft Word document, then
close it and then quickly open it once again, the second open and
subsequent I/O operations will typically access cached data, and
should be a lot quicker than the first one.

334______________________________Chapter 8: The NT Cache Manager HI

Miscellaneous File Stream
Manipulation Functions
In Chapter 7, The NT Cache Manager II, as well as in this chapter, I presented in
detail some file stream manipulation functions used by Cache Manager clients. For
example, you now know how to request that the Cache Manager initialize
caching for a file stream, how to flush the cache, and how to uninitialize caching.
In this section, the remaining file stream manipulation functions made available
by the Cache Manager are presented.

CcSetFileSizesQ
VOID
CcSetFileSizes (

IN PFILE_OBJECT FileObject,
IN PCC_FILE_SIZES FileSizes // See the previous chapter

// for the type definition
);
Resource Acquisition Constraints:

The FCB for the file must be acquired exclusively before invoking this routine.

Parameters:

FileObject
This argument contains a pointer to a file object structure associated with the
file stream whose size is being modified.

FileSizes
This is an initialized structure with the correct AllocationSize (may be
different from the current one), FileSize (i.e., the end-of-file value, which
might be changed), and the ValidDataLength. Note that the value in the
ValidDataLength field is not used.

Functionality Provided:

When the file system changes either the allocation size for a file or the current
end-of-file mark for a file stream on which caching has been initiated, it must
inform the Cache Manager of the new sizes. This is done using the CcSetFile-
Sizes () routine.

By acquiring the file stream exclusively, the file system ensures that no other
thread can concurrently access the data contained within the stream until the file
size change operation has been completed. This ensures that users see a consis-
tent view of the data.

The functionality provided by this routine is as follows:

Miscellaneous File Stream Manipulation Functions______________________335

1. If the new allocation size is greater than the previous allocation size, the
Cache Manager will extend the section size for the mapped data section
object created for the file stream.
Remember that the Cache Manager provides caching services by mapping the
file stream data. Mapping of a file stream is performed by requesting that the
Virtual Memory Manager create a section object for the file stream. Therefore,
the Cache Manager (once again) asks the VMM to increase the size of the
section object to correspond to the new allocation size for the file stream.
Note that this section object extension operation could result in a recursive
callback into the file system.

2. The Cache Manager will update the end-of-file with the new file size value.
If the valid data length value is being maintained (remember that the file
system can decide whether valid data length should be maintained or not),
the Cache Manager will also update the valid data length field for the file
stream. If the new end-of-file mark is less than the previous end-of-file value,
the Cache Manager may purge the cache of all extraneous pages.
You should note that in certain cases, the NT Cache Manager may actually
flush some dirty data to disk before purging the pages from the cache. These
flush operations typically cause a recursion back into the file system driver at
this time. The flush operations are usually performed when the file system
driver has not yet initiated caching on the file stream, yet the user has
mapped the file into the process' virtual address space.

CcPurgeCacheSection ()
BOOLEAN
CcPurgeCacheSection (

IN PSECTION_OBJECT_POINTERS SectionObjectPointer,
IN PLARGE_INTEGER FileOffset OPTIONAL,
IN ULONG Length,
IN BOOLEAN UninitializeCacheMaps

);
Resource Acquisition Constraints:

The FCB for the file must be acquired exclusively before invoking this routine.

Parameters:

SectionObj ectPointer
The Cache Manager uses the SectionObjectPointer to uniquely identify
the cached file stream on which the purge operation is being performed.

336______________________________Chapter 8: The NT Cache Manager III

FileOffset
The caller can specify that data be purged beginning at this file offset. If the
FileOffset value is nonnull, the Length argument (described below) will
be used; otherwise the Length argument will be ignored. Note that if the
FileOffset pointer value is set to NULL, all cached pages associated with
the file stream will be purged from memory.

Length
The client file system can request that the supplied number of bytes should
be purged, beginning at the FileOffset value described above. Note that
the Length field is ignored if the value of the FileOffset pointer is set to
NULL. If the supplied Length is not a multiple of the PAGE_SIZE for the
system, then the value will be adjusted upward to a multiple of the page size.
For example, if the FileOffset is 0, signifying that the purge should begin
at the beginning of the file stream, and the Length is 5, then at least one
page will be purged. Note that typically the page size is 4K bytes or greater.

UninitializeCacheMaps
If set to TRUE, the Cache Manager will force uninitialization of caching for all
file objects associated with the file stream.

Functionality Provided:

A file system uses this routine when a file stream is being truncated, but not
deleted. This routine causes previously written data to be discarded from memory
without being flushed to secondary storage (although a flush might have taken
place already due to asynchronous I/O initiated by either the lazy-writer or the
modified page/block writer).

The file system supplies a pointer to the section object structure associated with
the file stream. The Cache Manager purges the entire file (i.e., all pages in
memory for the file stream) if the supplied FileOffset pointer is NULL or if the
FileOffset value is 0 and Length is 0. Otherwise, it purges beginning at the
supplied offset value for Length number of bytes. Note that if Length is set to
0, then the remainder of the file, beginning at FileOffset, will be purged from
memory.

An important point to note here is that user-mapped files cannot be purged or
truncated as long as the file is mapped by some process. Therefore, if a user
process previously mapped the file (see Chapter 5, The NT Virtual Memory
Manager, for details), the purge request fails and potentially stale data continues
to reside in the system cache. If the purge is unsuccessful, this routine returns
FALSE; otherwise it returns TRUE.

Miscellaneous File Stream Manipulation Functions 33 7

WARNING The fact that a purge could fail simply because a user previously
mapped the file is a big problem for distributed file systems. As an
example, consider a remote file system (e.g., NFS or DPS) that is be-
ing accessed by processes on multiple nodes on a network. If some
process on node-1 maps the file into its virtual address space and
then a request to truncate the file stream is received from another
process on another node, the mapped pages cannot be purged from
node-1 until the process that mapped the file into memory unmaps
it. We -will discuss this problem further in a later chapter.

The client can also request that all file objects with caching initiated for this file
stream have their cache maps uninitialized. Note that typically, uninitialization of
a cache map is only performed by a file system upon receiving a cleanup request.
Uninitialization of the cache maps forces all file objects to reinitiate caching when-
ever new I/O operations are received. If UninitializeCacheMaps is set to
TRUE, the Cache Manager will force uninitialization of all cache maps on all file
objects associated with this file stream, regardless of whether the purge operation
succeeds or fails.

CcSetDirtyPageThresholdQ
VOID
CcSetDirtyPageThreshold (

IN PFILE_OBJECT FileObject,
IN ULONG DirtyPageThreshold

) ;

Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This is a file object associated with the file stream on which a restriction is
being placed. The file object must have caching initialized.

DirtyPageThreshold
This is the maximum number of modified pages that can be outstanding at
any time for this file stream.

Functionality Provided:

In order to help provide good overall system performance, a file system may
restrict the maximum total number of outstanding modified pages associated with
a file stream. An example of when this may be necessary is if some process starts
rapidly modifying pages for a file stream at a rate faster than the system can cope

338___ _ _______________________Chapter 8: The NT Cache Manager III

with, resulting in pages for other file streams being discarded from memory, to
make room for this one particular file stream. This situation leads to unnecessary
thrashing of pages in and out of memory and degrades overall system responsive-
ness and performance to other processes.

By restricting the total number of outstanding modified pages for a file stream,
and subsequently using the CcCanlWrite () and CcDeferWrite () routines
described in the previous chapter, the file system can ensure that no rogue
process can seriously degrade overall system performance by flooding the system
cache with data belonging to a single file stream.

CcZeroData ()
BOOLEAN
CcZeroData {
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER StartOffset,
IN PLARGE_INTEGER EndOffset,
IN BOOLEAN Wait
);
Resource Acquisition Constraints:

The FCB for the file must be acquired exclusively before invoking this routine.

Parameters:

FileObject
This argument contains a pointer to a file object structure for which a range
of bytes should be zeroed.

StartOffset
This is the starting offset for the range of bytes to be zeroed.

EndOffset
This is the corresponding ending offset.

Wait
This is set to TRUE if the file system is prepared to block in the context of the
thread used to invoke this routine. Otherwise, it should be set to FALSE.

Functionality Provided:

This routine can be used by the Cache Manager client to zero a range of bytes
within a file stream. The StartOffset and EndOffset arguments determine
the actual range of bytes that will be modified (set to zero).

The CcZeroData () routine can be invoked regardless of whether or not
caching has been initiated on the concerned file object. If caching has not been
previously initiated on the file object or if the file object has been marked for

Miscellaneous File Stream Manipulation Functions______________________339

write-through, i.e., the FO_WRITE_THROUGH flag was set, then the byte range is
zeroed directly on-disk.

Note that it is possible that other file objects for the same file stream may have
caching initiated (even though the one being used to zero data might not), or that
other file objects for the same file stream may not have write-through specified. In
such situations, the cached byte range might not be consistent with the newly
zeroed range on disk. Therefore, file system developers should be especially
careful when invoking this routine if they want to present a consistent view of
data to all processes accessing the file stream.

The Wait argument allows the file system to specify whether the file system is
prepared to block in the context of the thread used to invoke the CcZero-
Data () routine. Writing to secondary storage is potentially a blocking operation,
and if write-through is set or if the file object does not have caching initiated and
if Wait is set to FALSE, no zeroing of data will be performed. In general, if Wait
is set to FALSE, the Cache Manager will be able to successfully zero the specified
byte range only if the required space for the byte range is immediately accessible
in the system cache. If Wait is set to TRUE, however, the Cache Manager
attempts to zero as much of the byte range in the system cache as possible, and
the remainder of the specified byte range is zeroed directly on disk.

File systems should note that if the Cache Manager decides to zero data directly
on disk, invoking this routine leads to a recursive callback into the file system in
the form of a paging I/O write operation. See Chapter 10 for a discussion of the
implications on FSD processing when the zeroing operation is performed directly
on-disk.

If the Cache Manager successfully zeroes the specified byte range, the call to this
routine returns TRUE; otherwise the Cache Manager returns FALSE. This routine
raises an exception (e.g., STATUS_INSUFFICIENT_RESOURCES) in the event of
an error while allocating resources or while performing I/O to secondary storage.

CcGetFileObjectFromSectionPtrsQ
PFILE_OBJECT
CcGetFileObjectFromSectionPtrs (

IN PSECTION_OBJECT_POINTERS SectionObjectPointer
);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

340______________________________Chapter 8: The NT Cache Manager III

Parameters:

SectionObj ectPointer
This is a pointer to the section object associated with the FCB representing
the file stream.

Functionality Provided:

The Cache Manager returns a pointer to the file object used when caching was
first initiated for the file stream. Note that the Cache Manager does not reference
the file object structure an extra time when returning a pointer to the structure
from this routine, and hence, the Cache Manager cannot guarantee that the file
object structure will not be deallocated at any instant.

This routine is typically used when the file system needs to perform an operation
requiring a file object pointer that might not be conveniently available at that time.

CcSetLogHandleForFileQ
VOID
CcSetLogHandleForFile (

IN PFILE_OBJECT FileObject,
IN PVOID LogHandle,
IN PFLUSH_TO_LSN FlushToLsnRoutine

) ;
where:
typedef
VOID (*PFLUSH_TO_LSN) (

IN PVOID LogHandle,
IN LARGE_INTEGER Lsn

) ;

Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This is a file object for a file stream with which the log handle is being
associated.

LogHandle
This is an opaque value (from the Cache Manager's perspective) associated
with the file stream identified by the passed-in file object.

FlushToLsnRoutine
This routine is invoked before the Cache Manager flushes buffers (or any
BCB) for the file.

Miscellaneous File Stream Manipulation Functions______________________341

Functionality Provided:

As described in the previous chapter, the Cache Manager helps the Log File
Service assist file systems that use on-disk logging to help guarantee data consis-
tency and to provide fast recovery from system crashes. The file system can
associate a handle with a file stream for a data file using this routine; typically this
handle represents a log file associated with the data file.

The file system can also specify a callback routine, which is invoked before the
Cache Manager flushes a BCB (Buffer Control Block) to disk. By specifying a call-
back routine, the file system is informed of the newest Logical Sequence Number
(associated with a data record) being flushed, giving the file system an opportu-
nity to ensure that the contents of the log file are written to before the data is
written out. Typically, this is required by logging file systems to guarantee data
consistency in the event of system crashes. See the previous chapter, especially
the discussion on CcSetDirtyPinnedData () , for additional information.

CcSetAdditionalCacheAttributesQ
VOID
CcSetAdditionalCacheAttributes (

IN PFILE_OBJECT FileObject,
IN BOOLEAN DisableReadAhead,
IN BOOLEAN DisableWriteBehind

);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This is a pointer to a file object structure for the file stream for which read-
ahead and/or write-behind is being disabled. Caching must have been initi-
ated for the file stream using the passed-in file object, or an exception will be
raised.

DisableReadAhead
If set to TRUE, read-ahead is being disabled.

DisableWriteBehind
If set to TRUE, write-behind (or lazy-write) will be disabled.

Functionality Provided:

Typically, read-ahead and lazy-write (or write-behind) are enabled for all file
streams for which caching is initiated. In the event that a file system wishes to

342______________________________Chapter 8: The NT Cache Manager III

disable one or both of these features for a particular file stream, this routine can
be used to do so.

CcGetDirtyPagesQ
LARGE_INTEGER
CcGetDirtyPages (

IN PVOID LogHandle,
IN PDIRTY_PAGE_ROUTINE DirtyPageRoutine,
IN PVOID Contextl,
IN PVOID Context2

) ;
where:

typedef
VOID (*PDIRTY_PAGE_ROUTINE) (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN PLARGE_INTEGER OldestLsn,
IN PLARGE_INTEGER NewestLsn,
IN PVOID Contextl,
IN PVOID Context2

> ;
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

LogHandle
This is a log handle, previously associated with the file stream, for which dirty
pages should be returned.

DirtyPageRoutine
This is the callback routine to be invoked for each dirty page that is found for
the file stream identified by the LogHandle input parameter.

Contextl
This is an opaque (from the Cache Manager's perspective) value to be passed
in to the dirty page callback routine.

Context2
This is a second opaque value to be passed in to the dirty page callback
routine.

Functionality Provided:

For logging file systems, the Cache Manager provides this routine to obtain a list
of dirty pages for file streams associated with the specified log handle. Cached file

Miscellaneous File Stream Manipulation Functions______________________343

streams may have been previously associated with a log handle. Each of these
cached file streams may also have one or more byte ranges cached in memory,
with modified data that has not yet been written to secondary storage.

The Cache Manager checks all cached byte ranges in memory, and if it finds any
such range that has dirty data for a file stream that was associated with the speci-
fied log handle, the Cache Manager immediately invokes the supplied dirty page
routine for this byte range. The dirty page routine is given the starting file offset,
length of the cached range (in memory), the oldest and newest logical sequence
numbers associated with this range, and the two opaque context values that the
file system supplied in the call to CcGetDirtyPages ().

The file system should be aware that the callback is invoked at high IRQL with a
spin lock acquired. Therefore, the callback is not allowed to take a page fault and
it must perform its tasks quickly before returning control back to the Cache
Manager. Also, since the Cache Manager invokes the callback for each modified
byte range, the callback could be invoked multiple times for every file stream
associated with the specified log handle.

The call to CcGetDirtyPages () returns 0 if no dirty pages are encountered, or
else it returns the value of the oldest logical sequence number found for a modi-
fied byte range for a file stream associated with the supplied log handle.

CdsThereDirtyDataQ
BOOLEAN
CdsThereDirtyData (

IN PVPB Vpb
) ;

Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

Vpb
This is a pointer to a mounted Volume Parameter Block structure.

Functionality Provided:

In response to this call, the Cache Manager simply scans through all the cached
file streams, looking for those that are associated with the supplied VPB and have
some modified—but not flushed—data in the system cache. If any such cached
file stream is encountered, the Cache Manager returns TRUE.

Note that this is a quick way for a file system to determine whether dirty data for
any file stream on a particular volume exists in the system cache.

344 _ __________________________Chapter 8: The NT Cache Manager HI

So how does the Cache Manager determine whether a cached file stream belongs
to the specified volume? Recall that the Cache Manager stores a pointer to the
referenced file object used in the very first CcInitializeCacheMap() invoca-
tion for a file stream. Also, recall from Chapter 4, The NT I/O Manager, that each
file object has a pointer to the VPB for the volume on which the file stream for
the file object resides. Therefore, the Cache Manager can always obtain the
pointer to the VPB from the file object for that file stream.

CcGetLsnForFileObjectQ
LARGE_INTEGER
CcGetLsnForFileObj ect(

IN PFILE_OBJECT FileObject,
OUT PLARGE_INTEGER OldestLsn OPTIONAL

) ;

Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This is the file object for the file stream for which information is being
requested.

OldestLsn
This is an optional argument. If the oldest logical sequence number is also
required, this argument will be filled in.

Functionality Provided:

This routine simply returns the newest logical sequence number associated with a
file stream among dirty byte ranges. If caching has not been initiated for the file
stream, or if all data for the file stream has already been flushed to secondary
storage, this routine returns 0.

If the OldestLsn argument is supplied, and if there is any dirty data cached in
memory, the routine will also return the oldest logical sequence number for the
file stream.

Interactions with the VMM
The Cache Manager depends on the services provided by the Virtual Memory
Manager to provide caching functionality. Specifically, all policies related to actual
memory management, such as allocation of physical memory, creation of file

Interactions with the VMM____________________________________345

mappings, destruction of file mappings (section objects), and flushing data cached
in memory are performed with the active assistance of the VMM subsystem.

Dependencies upon the VMM exist throughout the Cache Manager implementa-
tion; most of these dependencies are resolved by internal calls to the VMM.
Unfortunately, most of the Cache Manager calls to the VMM use routines that are
not exposed to other kernel developers. Still, in order to understand the Cache
Manager, it is useful to be aware of the dependencies that the Cache Manager has
on the VMM. This allows you to be more aware of the dependencies within the
NT Executive as a whole, and if you design or develop a kernel-mode driver, you
will undoubtedly see stack traces during system crashes that indicate that both the
Cache Manager and VMM were involved in calls that ended up in your code.* Let
us examine the various points where the Cache Manager requires the assistance
of the Virtual Memory Manager.

At system initialization time, the Cache Manager requires a range of addresses
within the system virtual address space to be reserved for its exclusive use. This is
performed by the VMM automatically, and therefore the Cache Manager can be
guaranteed an available fixed-size virtual address byte range.

When the Cache Manager initializes, it needs to determine the number of threads
it should create, the maximum number of dirty pages that the entire system cache
can contain, and other such configuration parameters. To determine absolute
values, the Cache Manager uses a VMM routine called MmQuerySystemSize ()
(see Chapter 5 for the definition of this routine).

Assume that a file system invokes the CcInitializeCacheMap() routine
described earlier to initiate caching for a file stream using a specific file object. To
service this request, the Cache Manager checks whether caching was previously
initiated for the file stream using any other file object. If this is the first instance of
caching being initiated for the file stream using any file object, the Cache Manager
has to map the file stream into memory (specifically, into the reserved virtual
address range set aside for the Cache Manager). The Cache Manager achieves this
by using the MmCreateSection() routine, and although this routine is not
exported by the Windows NT Executive for use by any external kernel drivers,
the routine is amazingly similar to the NtCreateSection() (also known as the
ZwCreateSection () t) system call. The MmCreateSection () routine results
in the creation of a section object that represents a file stream mapping to the

* My apologies for insinuating that newly developed kernel code by readers could lead to system crashes.
Unfortunately, this is a fact of life that all kernel developers either learn to accept and so become better
designers/developers, or deny stoically forever, resulting in their customers finding out the effects of the
designers intransigence the hard way.
t This routine is defined in Chapter 5.

346______________________________Chapter 8: The NT Cache Manager III

VMM. A pointer to the section object can subsequently be used by the Cache
Manager whenever it needs to manipulate the section or its contents.

When the allocation size of a file stream is extended, the Cache Manager must
extend the section associated with the specific file stream if the file stream was
previously mapped into the system cache. This is achieved, once again, by
invoking the VMM via a routine called MmExtendSection (). Unfortunately, this
routine is not defined or exposed by the NT Executive and hence the arguments
supplied to this routine are subject to change.

Whenever a file system tries to perform I/O to a cached byte range and the
request is transferred to the Cache Manager, the Cache Manager must map a view
of the affected byte range into the system virtual address space (using the section
object created earlier when caching was initiated). This is achieved by invoking
the VMM routine called MmMapViewInSystemCache () . Note that, although this
routine is not exposed, the functionality provided is similar to that of ZwMap-
ViewOf Section (). The difference, however, is that the requested view is
mapped into the specific reserved virtual address range set aside for the Cache
Manager.

Correspondingly, whenever the Cache Manager wishes to discard a previously
mapped view, it uses the VMM routine MmUnmapViewInSystemCache () .*

Now, when the Cache Manager has to flush the data associated with a file stream,
the actual flush is performed by invoking the MmFlushSection () call. The inter-
esting point to note is that, for any data present in the system cache, the Cache
Manager never directly invokes the file system or the I/O Manager to write data
out, instead, the Cache Manager always requests that the VMM flush out the asso-
ciated section (and more specifically, a byte range within the section), thereby
always synchronizing with the modified page writer thread within the VMM. This
is true even when the lazy-writer component within the Cache Manager performs
asynchronous write-behind of data.

* Unmapping a mapped view is almost never a cheap operation. If pages are physically assigned to some
addresses within the mapped view, invoking this routine leads to TLB (Translation Lookasidc Buffer)
flushes. This degrades performance somewhat.

Interactions with the VMM 347

NOTE The way a file system eventually sees this request to write data out
is in the form of a noncached, paging I/O -write request that comes
via the VMM and the I/O Manager. Again, if you were to see the
stack trace, you might be able to see the Cache Manager routine
(CcFlushCache ()) in the trace. Sometimes, if the modified page
writer is already in the process of asynchronously flushing out the
same byte range, you may not even see the Cache Manager in the
trace, since the Cache Manager's request to the VMM would be
blocked waiting for the asynchronous flush to complete.

When the Cache Manager has to read data into the system cache, it does not even
have to invoke the VMM explicitly. It simply attempts to copy data from the
mapped view in the system cache into the user-supplied buffer. This causes a
page fault, which is automatically (and normally) handled by the page fault
handler component of the VMM. Note that when the read-ahead component of
the Cache Manager wishes to bring data asynchronously into the system cache, it,
too, simply tries to touch (or access) a byte from each page that is being brought
into the system cache. Once again, the act of accessing a byte leads to a page
fault (if the data is not already in physical memory) and this page fault is resolved
by the VMM. Remember that the page fault will eventually be resolved by a
noncached, paging I/O read request to the file system by the VMM, although the
file system cannot tell whether the page fault is due to the Cache Manager
touching a page that was not in memory or some other process doing so.

NOTE File system drivers (especially those for the Windows NT operating
system) have to be fully aware of how an I/O request arrives at ei-
ther the read or write dispatch entry point. Therefore, file systems
work very hard to determine the sequence of operations that caused
the dispatch entry point to be invoked. This applies equally well to
paging I/O operations. Part 3 discusses this topic extensively.

There are other VMM routines that are available only to the Cache Manager for
use during normal operations. For example, the Cache Manager can check
whether an address is backed by a physical page (and if not, request that the
page be made resident and zeroed) using the MmCheckCachedPageState ()
routine. The Cache Manager can set an address range to modified (causing the
data to be flushed out) using a routine called MmSetAdd.ressRangeMod.i-
f ied() . Also, the Cache Manager can force pages to be purged from the system
cache using the MmPurgeSection () routine.*

* The request to purge might be failed by the VMM if the section is mapped by a user process as well as
by the Cache Manager.

348______________________________Chapter 8: The NT Cache Manager III

Note that the Cache Manager is treated as any other (though slightly special)
client by the VMM. This means that the VMM maintains a working set for the
pages allocated to the Cache Manager and trims or expands the physical memory
that is assigned to the Cache Manager, based upon demands made by the Cache
Manager and other modules in the system. This allows the VMM to make global
allocation decisions wisely and prevents file data caching from overwhelming the
system to the extent that all other work becomes impossible.

Although routines listed in this section might not be exported and described in
detail for use by other kernel-mode subsystems, it is obvious that special support
is provided by the VMM to the Cache Manager. This makes the Cache Manager
unique within the NT Executive and allows it, in turn, to provide caching support
to other modules, such as file systems.

One final note: although the Cache Manager uses the services of the NT VMM, the
VMM never needs to utilize services provided by the Cache Manager.* Therefore,
the relationship is mostly a one-directional, client-server relationship.

Interactions with the I/O Manager
The Cache Manager uses the services of the I/O Manager, just like other system
modules. For example, the Cache Manager must request that the I/O Manager allo-
cate an IRP for it using the loAllocatelrp () system call. The Cache Manager
uses loCallDriver () when it invokes the file system to notify the file system
about changes in the file size. Other I/O Manager routines such as loAllo-
cateMdl () and loRaiselnformationalHardError () are also used by the
Cache Manager.

An important point to note about the interactions between the Cache Manager
and the I/O Manager is the existence of the fast I/O path described in the
previous chapter. The I/O Manager tries to increase system throughput by
bypassing the file system completely and invoking the Cache Manager directly to
satisfy user I/O requests for cached file streams. If this fails, the I/O Manager
defaults to using the standard I/O path through the file system driver. The fast I/O
path is described in detail in the previous chapter and further information is also
available in Chapter 11, Writing a File System Driver III

* As with everything else, this is almost true. It appears that the VMM uses a single routine, CcZeroEnd-
Of LastPage () , provided by the Cache Manager, when mapping a section on behalf of a user process.
The purpose of this routine is to check for uninitialized pages at the end of the file stream being mapped,
and if found, to zero these pages by freeing them. This routine is exported for use by other kernel devel-
opers, but the lack of sufficient documentation explaining this routine seems to deter usage by any other
module.

The Read-Ahead Module______________________________ _______349

The Read-Ahead Module
The Cache Manager helps enhance system responsiveness and throughput by
providing read-ahead functionality. This means that the Cache Manager tries to
bring data from secondary storage into the system cache before it is even
requested by a user process. Subsequently, when the user process tries to access
the byte range that was read-ahead into the system cache, the user I/O request
can be immediately satisfied from the data present in the cache, avoiding a time
consuming read operation to obtain data from secondary storage or from across
the network.

In order to provide read-ahead, the Cache Manager must be able to answer the
following questions:

• Should read-ahead be performed for a specific file stream?

• If it is determined that read-ahead should be performed for a cached file
stream, when should read-ahead be initiated?

• What should be read-ahead into the system cache?

• Given a user request that was recently satisfied, what would be the byte
range that the user process is likely to access in the near future?

• Who does the actual read-ahead operation—one thread, many threads, spe-
cially reserved threads, or simply system worker threads?

• If errors occur while trying to read-ahead data into the system cache, what
should the Cache Manager do in response to these error conditions?

Let us examine each of the issues listed here to see how the Cache Manager
implements read-ahead functionality.

Should Read-Ahead Be Attempted for a File Stream?
The default answer to this question is yes. Read ahead is generally attempted by
the Cache Manager for all file streams that are cached in memory. The exception
is that read-ahead is not attempted for file streams on which caching was initiated
specifying that PinnedAccess would be used to access cached data.

It is possible for file systems to request that read-ahead be disabled for specific
file streams. This can be achieved by the CcSetAdditionalCacheAt-
tributes () routine described earlier in this chapter.

When Should the Cache Manager Try Read-Ahead?
Read-ahead is attempted by the Cache Manager either at the explicit request of
file system drivers or automatically when I/O requests are serviced by the Cache

350 Chapter 8: The NT Cache Manager III

Manager. A file system can request that read-ahead be performed by using the
following system defined macro:

#define CcReadAhead (FO, FOFF, LEN) {
if ((LEN) >= 256) {

CcScheduleReadAhead((FO) , (FOFF) , (LEN)) ;

where:

FO = file object pointer
FOFF = file offset from where last read request was initiated
LEN = length in bytes of last read request

As you can see, the system will perform read-ahead (at the explicit request of a
module such as a file system) only if the last read operation was greater than 256
bytes. Apparently, invoking read-ahead for smaller read operations actually results
in degraded system performance.*

The CcSch.eduleReadAh.ead() routine is automatically invoked by the Cache
Manager whenever CcCopyRead () , CcFastCopyRead() , or CcMdlReadO
are invoked. The Cache Manager checks read-ahead is not currently active for the
file stream and, if not active, will invoke CcScheduleReadAhead() . Of course,
if read-ahead is disabled for the file stream, it will not be attempted.

NOTE The Cache Manager often schedules read-ahead concurrently with
trying to read in the current user request. Typically though, the
Cache Manager will not get ahead of itself and the user request will
be received by the file system before the read-ahead request makes
it to the file system.

What Does the Cache Manager Read-Ahead?
The function of read-ahead is to try to anticipate the byte range the user process
might next access and preread into memory. The Cache Manager relies on the
property of locality of reference to make educated guesses about the byte range
that the user process might access next, following the current read request.

Simply stated, this means that a user process is likely to access a byte range that is
within a few bytes of the byte range that was just accessed. Therefore, say that a
process accessed bytes 1000—5000 within a file with length of 2MB. There is a

* The caller is not required to use the read-ahead macro; it's simply a good idea.

The Read-Ahead Module______________________________________351

greater probability that the process will next try to access byte offset 10,000 than
that the process will next try to access byte offset (1MB + 1).

A process can specify when opening a file whether the file stream will be
accessed in a sequential manner by means of the FO_SEQUENTIAL_ONLY flag in
the file object. This flag serves as a valuable hint to the Cache Manager, which
then tries to keep at least two read-ahead granularities ahead of the current read
operation (although the default read-ahead granularity is one PAGE_SIZE, it can
be changed using the CcSetReadAheadGranularity () routine described
earlier). This means that if the user process has just accessed the first page length
in the file stream, approximately two additional pages beyond the ending offset of
the first page will be read-ahead by the Cache Manager.

Even if the sequential-only flag is not supplied by a process when opening a file
stream, the Cache Manager keeps track of read requests performed via the copy
or the MDL interfaces. If the Cache Manager detects a sequential nature in the
read operations being performed (e.g., if the previous two read requests were
close enough to be considered sequential), the Cache Manager will attempt to
read-ahead from the offset where the last read request ended (rounded up to a
multiple of the page size).

NOTE The Cache Manager masks off certain noise bits when trying to char-
acterize two or more read operations as being sequential or not. For
example, if read operation #1 starts at offset 0 and has a length of
4096 bytes, and read operation #2 starts at offset 5002 and has a
length of 1500 bytes, the Cache Manager will disregard the fact that
operation #2 starts 6 bytes beyond the end of the first request and
will consider the two read requests to be sequential in nature. There-
fore, read-ahead will be attempted.

Note that the Cache Manager keeps track of whether sequential accesses are
being performed in the forward or in the reverse direction. Read-ahead will also
be performed if a process begins reading from the end of a file stream sequen-
tially toward the beginning of the file.

Who Performs the Actual Read-Ahead Operation?
The read-ahead is performed in the context of a system worker thread. As you
know, there are worker threads available to asynchronously perform operations
that are not time-critical. Therefore, the Cache Manager simply posts a request
using the ExQueueWorkItem() system call. Note that the Cache Manager speci-
fies that the request be posted onto the critical work queue.

352______________________________Chapter 8: The NT Cache Manager HI

This ExQueueWorkItem() routine is defined in the documentation for the
Device Driver's Kit. It allows a work request to be queued to a global system
queue. The work item is subsequently performed in the context of a system
worker thread when such a thread becomes available.

There are three categories of work requests that can be queued: delayed work
requests, critical work requests, and hypercritical work requests. The read-ahead
operation is queued onto the critical work queue. Note also that, when invoking
this routine, the caller has to specify the actual function call that the worker
thread must invoke, and the caller must also supply an opaque context pointer
that will be supplied as an argument to the specified function call.

In Chapter 7, I mentioned that a file system has to supply callback routines when
initiating caching on a file stream. These callback routines are used to maintain
locking hierarchy between the Cache Manager, the VMM, and the file system
driver. One of the callback routines that a file system must supply (AccruireFor-
ReadAhead ()) allows the Cache Manager to acquire file system resources before
initiating read-ahead. This callback is invoked by the thread that actually performs
the read-ahead operation on a file stream. Upon completion of the read-ahead
operation, the thread invokes ReleaseFromReadAhead() to inform the file
system that resources previously acquired should now be released.

Further information on the implementation of these callback routines is given in
Chapter 11.

What If There Are I/O Errors in Attempting the
Read-Ahead?
If there are I/O errors during the read-ahead, the Cache Manager ignores them
and simply aborts the current read-ahead operation. It is possible that read-ahead
might be retried in the future.

Lazy-Write Functionality
Just as in the case of read-ahead operations, the Cache Manager tries to help
enhance system responsiveness and provide greater throughput by implementing
write-behind (or lazy-write) functionality. Here, the Cache Manager does not write
modified data supplied by a user process, either directly to disk or across the
network to a file server. Instead, the Cache Manager buffers the data in memory
and periodically flushes modified data asynchronously to nonvolatile storage. This
asynchronous, periodic flushing of data is called write-behind (or delayed-write or
lazy-write) functionality.

Lazy-Write Functionality______________________________________353

As in the case of read-ahead operations, the Cache Manager must be able to
answer the following questions:

• Should lazy-write be performed for a specific file stream?

• If it is determined that lazy-write should be performed for a cached file
stream, how is the lazy-write functionality initiated?

• Who does the actual lazy-write operation?
• If errors occur during trying to lazy-write data from the system cache, what

should the Cache Manager do in response to these error conditions?

Let us examine each of the issues listed above to see how the Cache Manager
implements lazy-write functionality.

Should Lazy-Write Be Attempted for a File Stream?
By default, all cached file streams are lazy-written unless lazy-write has been
disabled for a specific file stream, using the CcSetAdditionalCacheAt-
tributes () routine described earlier in this chapter. However, data that is
currently pinned in memory is not flushed until the data is unpinned.*

Furthermore, temporary files are not written to secondary storage, since the appli-
cation has specified that the file be deleted anyway once the last user handle to
the file has been closed.

How Is Lazy-Write Functionality Initiated?
The lazy-writer is invoked in one of the following ways:

• The Cache Manager has a DPC (Deferred Procedure Call) timer that pops
once every few seconds (between 1—3 seconds). When this timer pops, it
schedules a scan through the cache to find candidates that should be flushed
to secondary storage.

• The Cache Manager explicitly schedules a scan of all cached byte ranges to
search for modified ranges that can be flushed to secondary storage.

Once a scan is initiated, the Cache Manager sets a target amount of data that it
would like to flush in that instance. Typically, the Cache Manager determines that
one quarter of the currently modified (or dirty) data in the system cache should
be flushed. This allows the Cache Manager to sweep through all of the dirty data
in four scans through the cache. Note that the scan always begins at the point at

* This is different from the read-ahead case where file streams that specified PinAccess as TRUE would
simply not have read-ahead initiated for them. Lazy-write, in contrast, is performed on these file streams,
but pinned byte ranges are skipped until unpinned.

354______________________________Chapter 8: The NT Cache Manager III

which the last scan terminated; this ensures that all dirty pages in the system
cache are flushed out to secondary storage in a round-robin fashion.

When searching the cache for candidates to be flushed, the Cache Manager simply
looks at each shared cache map that has dirty pages outstanding and schedules an
asynchronous write operation for the shared cache map. The Cache Manager
continues to schedule such write operations until the targeted limit of 1/4 of the
total dirty pages has been exceeded or the Cache Manager runs out of dirty pages
to be flushed.

The Cache Manager also tries to adapt the rate at which it flushes data to disk. For
example, if the Cache Manager notices that modified pages are being produced at
a fast rate, it will try to flush out more data in the current scan to keep the total
number of outstanding dirty pages constant in the system cache.

Who Performs the Actual Lazy-Write Operation?
As noted in the preceding section, the Cache Manager periodically scans through
all the shared cache maps and schedules asynchronous write operations for those
that contain dirty data. Just as in the case of the read-ahead functionality, the
actual write-behind operation is performed in the context of a system worker
thread. The write-behind requests are posted to the global critical work queue
and are picked up by available system worker threads assigned to service that
queue.

Before actually posting the write to the file system, via a synchronous call inter-
nally to CcFlushCache () , the thread performing the write-behind will invoke
the file system callback for AcquireForLazyWrite (). After completion of the
flush operation, the Cache Manager will invoke a corresponding callback
ReleaseFromLazyWrite () to inform the file system that it can release its
resources.

The thread performing the write-behind will also check to see if the write opera-
tion extended the ValidDataLength associated with the file stream. If the
current ValidDataLength is exceeded, the file system will be invoked via the
IRP_MJ_SET_INFORMATTON I/O Request Packet (the AdvanceOnly Boolean
flag will be set to TRUE),* and informed of the new valid data length for the file
stream.

Finally, the thread that performs the lazy-write operation also performs a lazy/
delete operation of the shared cache map for the file stream if such a delete had

* A description of this IRP is presented in Part 3. There, you will also find an explanation of this special
flag that exists solely to inform the file system that the ValidDataLength for the file stream must be
changed.

Lazy-Write Functionality______________________________________355

been requested earlier by the file system. Of course, no file object should be
actively referencing the shared cache map so that the delete operation is
attempted. If any thread is awaiting the deletion of the shared cache map, the
appropriate event will be set in order to inform the thread that the shared cache
map was deleted.

What If There Are I/O Errors in Attempting the
Write-Behind?
Consider a situation where the system worker thread, performing a lazy-write,
encounters an error during the actual write operation. In this case, the thread
attempts to retry the write operation—one page at a time. The theory here is to
try to write out as much data as possible.

Once the retry operation has been attempted (one write per page being flushed
to secondary storage), any I/O errors encountered while retrying are essentially
ignored. The thread marks the pages as clean and thereby effectively loses all
data that could not be flushed to secondary storage. This is a nasty side effect of
the delayed-write method because a user process that opened the file stream
wrote data that was buffered, received a successful return code, closed the file
stream, and exited can lose the data that it thought had been successfully written
out, due to the failure of the write-behind attempt!

However, the Cache Manager does pop up a message on the system console, and
also writes out the message to the error log, stating that some data for the specific
file stream was lost in the write-behind process. Unfortunately, by the time the
system operator receives this message, it is already too late to save the data, since
the pages have been marked clean.*

With this chapter, we have concluded our discussion of the NT Cache Manager.
In Part 3, you will find code examples and discussions of how file systems and
filter drivers take advantage of the services provided by the NT Cache Manager.

* It would he wise for system administrators to invest in high availability software (and redundant hard-
ware) that provide for mirrored copies to avoid such nasty surprises. However, this still does not guaran-
tee that such data loss will never occur.

