
In this chapter:
* Cache Manager

Structures
* Interaction with

Clients (file Systems
and Network
Redirectors)

* Cache Manager
The NT Cache merfaces

Manager II

In the previous chapter, you were introduced to the NT Cache Manager module,
which provides a global cache for file streams, along with read-ahead and
delayed-write functionality. As was noted in that chapter, the Cache Manager
cannot provide such functionality by itself, but must work in conjunction with the
Virtual Memory Manager, the I/O Manager, and each file system or network redi-
rector driver to boost throughput and increase system performance.

In this chapter, as well as in the next one, the interfaces presented by the Cache
Manager are examined in much greater detail. First I present an overview of
Cache Manager data structures used internally by the Cache Manager to maintain
state information for cached file streams. You were exposed to some of these
structures in the previous chapter; in this chapter, you will see how the Cache
Manager tries to maintain a consistent in-memory representation of all information
associated with the cached file streams.

Then I describe further the interactions between the Cache Manager and its
clients, specifically file system drivers and network redirectors. This includes an
introduction to the resource acquisition constraints that must be followed by the
Cache Manager as well as by the client, followed by a detailed examination of the
steps involved in initiating caching for file streams; code examples are used to
make the material more concrete and applicable in real-world development
environments.

Although the routines exported by the Cache Manager are the primary means of
interaction between the Cache Manager and the file system drivers, there are also
callback routines exported by Cache Manager clients, which are in turn invoked
by the Cache Manager. I present some information on these routines in this
chapter. Further discussion on callbacks exported by file system drivers will also
be presented in Chapter 11, Writing a File System Driver III.

270

Cache Manager Structures__________________________________ 271

A detailed listing (with descriptions and examples) of the copy interface, the
pinning interface, and the MDL interface concludes the chapter.

Cache Manager Structures
The Cache Manager maintains information for each file stream on which caching
has been initiated. Before examining the interactions between the Cache Manager
and other system components, it will be useful to understand some of the data
structures used internally by the Cache Manager to maintain the required state
information for cached file streams. Very little information is currently publicly
available on the data structures used by the Cache Manager, and it is also likely
that these data structures will continue to change and evolve in new releases of
the Windows NT operating system. However, it is quite instructive to get an
overall sense of the manner in which the Cache Manager keeps track of cached
file streams.

The I/O Manager creates a file object structure for every successful open opera-
tion on a file stream. For every file object on which caching has been initiated,
the Cache Manager maintains caching-related state information:

• A private cache map structure for each file object

• The shared cache map structure, which is shared by all file objects represent-
ing the same file stream

The private cache map structure is allocated by the Cache Manager for each file
object when caching is initiated using that file object. It is unique to the file
object, and therefore multiple private cache maps can exist concurrently for an
open file stream. On the other hand, only one shared cache map structure is allo-
cated by the Cache Manager when caching is first initiated for a file stream via
some file object. This shared cache map is used by all open instances for the file
stream. The shared cache map is accessible indirectly via the SectionObject-
Pointer field in the file object structure.

Recall from the previous chapter that the Cache Manager provides caching
services by mapping views of the file stream. Each mapped view of the file is
represented internally by the Cache Manager in a structure called the Virtual
Address Control Block (VACB). The mapping granularity—or the size of each
mapped view for every file stream—is set to a constant value by the Cache
Manager and therefore is the same for each VACB. This constant value determines
how large the Cache Manager makes each window into the file stream. The Cache
Manager maintains a global array of VACB structures and allocates VACBs to a
specific file stream on an as-needed basis.

272_______________________________Chapter 7: The NT Cache Manager U

The shared cache map structure is the primary repository of caching information
for a file stream and is maintained by the Cache Manager.

All VACBs associated with the same file stream are accessible to the Cache
Manager using the shared cache map structure. Each VACB contains the virtual
address associated with the view, as well as the starting offset in the file stream.
This allows the Cache Manager to quickly determine whether a mapped view
already exists containing the byte range requested by the user. If no such view
exists, the Cache Manager can create a new view and allocate a VACB to repre-
sent it.* The list of VACBs associated with the file stream is accessible using an
array of VACB pointers associated with the shared cache map. Since VACB struc-
tures are allocated from a fixed-size global pool of VACBs, it is possible that the
Cache Manager may not have any free VACBs to allocate to a file stream when a
view needs to be created. In this case, the Cache Manager may need to unmap a
previously mapped view for a file stream (this could be from the same file stream
that requires a new view to be mapped in or it could be from another file
stream), remove the VACB from the linked list of VACBs allocated for the file
stream, and then reassign the VACB to the new file stream. However, this opera-
tion is typically not required, since VACBs are freed whenever file close
operations are performed, and a free VACB is generally available whenever
required.

As shown in Figure 7-1, all private cache map structures for a cached file stream
are linked together, and this list of private cache maps is anchored by a field in
the shared cache map structure for the cached file stream.

This layout also allows the Cache Manager to keep track of all file objects that
have the file stream cached, since the private cache map structure is always associ-
ated with a corresponding file object that represents an instance of the file stream
opened for cached data access. As will be explained later in this chapter, in some
situations the Cache Manager might need to forcibly terminate caching previously
initiated using different file objects for a specific file stream. The Cache Manager
must be able to get to each file object that has the file stream cached.

Now that you have some understanding of the structures used internally by the
Cache Manager, we can examine the various routines exported by the Cache
Manager and the interactions between the Cache Manager and file system drivers
or network redirectors.

* Note that a byte range accessed by a user application may be quite large and may span multiple VACBs
(since the size of the view associated with a VACB is a constant). However, the Cache Manager can still
quickly determine what portions of the requested byte range are already contained in a mapped view of
the file (if any such view exists) and what subset needs to be mapped in.

Interaction with Clients (File Systems and Network Redirectors) 273

Figure 7-1. State maintained by Cache Manager for a cached file stream

Interaction with Clients (File Systems
and Network Redirectors)
File system and network redirector drivers interact heavily with the Cache
Manager; they must initiate caching for every file object for each file stream that

2 74 Chapter 1: The NT Cache Manager II

can be buffered, use an appropriate Cache Manager interface routine to transfer
data to and from the system cache, service page fault requests from the Virtual
Memory Manager (caused by the Cache Manager), flush or purge data belonging
to a file stream from the cache, and finally, terminate caching when the file
stream is no longer being accessed.

To perform these operations, file system and network redirector clients use the
interface routines made available by the Cache Manager. Nearly all interface
routines available to file system or network redirector drivers result in an opera-
tion being performed on the cached information for a specific file stream. Since
many threads could concurrently attempt to manipulate data for a file stream, any
file system using Cache Manager services must correctly synchronize all such
concurrent operations. Synchronization is maintained by following well-defined
rules describing how mutual exclusion can be maintained whenever data for a file
stream is modified. At the same time, applications that share data for read opera-
tions should be allowed to proceed concurrently only if no other thread is
modifying the data. Therefore, many Cache Manager interface routines can also
be invoked concurrently on behalf of multiple threads reading data for the same
file stream.

Resource Acquisition
As you know, each file stream is uniquely represented in memory by a File
Control Block (FCB) structure. In the previous chapter, you saw that each FCB
must be associated with a unique structure of type FSRTL_COMMON_FCB_
HEADER. There are two important fields contained within this structure:

• MainResource
• PagingloResource
Both of these fields contain pointers to objects of type ERESOURCE.

In order to synchronize correctly with the Cache Manager and the Virtual Memory
Manager, all I/O operations to a file stream, including reading or writing file data
or file size changes, must be synchronized using one or both of these resources.*

* For some third-party file system or network driver implementations, there may be additional synchro-
nization primitives associated with a file stream that may need to be acquired. Although the NT environ-
ment does not prohibit the existence of such additional primitives, these .should be acquired (and
released) in some manner compatible with the requirements placed by the Cache Manager on the two
ERESOURCE type objects. For example, some file systems might have a third resource that may have to
be acquired exclusively to provide mutual exclusion between threads when the file stream is being mod-
ified. In this case, this third resource would have to be acquired in addition to the predefined resources
(i.e., the MainResource and/or the PagingloResource) mentioned here.

Interaction with Clients (File Systems and Network Redirectors)______________275

NOTE In any multithreaded or multiprocessor environment, shared objects
that are accessed in the context of more than one thread or process
must be protected using a synchronization primitive. This ensures
that the state of the shared object does not change unexpectedly in
the midst of an operation involving the object.
Synchronization primitives of type ERESOURCE (as described in
Chapter 3, Structured Driver Development) are read/write locks that
help provide multiple reader, single modifier semantics. By acquir-
ing the synchronization primitive exclusively, a thread is able to en-
sure that no other thread can concurrently access the shared data
object. On the other hand, by acquiring the synchronization primi-
tive shared, multiple threads can concurrently read the data compris-
ing the shared object, but no thread can acquire the synchronization
primitive exclusively and modify the shared object.
Since starvation is a possibility for threads requiring exclusive ac-
cess, the NT operating system typically grants waiting requests for
exclusive access over requests for shared access.
A final note: in order to ensure data integrity and consistency, all
threads accessing the shared data object must follow the resource ac-
quisition rules described here. None of the synchronization is auto-
matic and failure to observe the rules by any single thread could
potentially lead to data corruption. Therefore, it is the file system
driver's responsibility to ensure that resources are acquired correctly
in the context of the thread requesting the cached I/O operation.

For each interface routine exported by the Cache Manager, there are well-defined
options describing how the file stream should be acquired:

• Resources for the file stream should be acquired exclusively.

• Resources should be acquired shared.

• Resources should not be acquired (or should be unowned).
• The Cache Manager is not affected by the state of the resources.

Although the Cache Manager requires that synchronization be performed using
the two resources associated with the FCB, there are not any clear, specific rules
governing how these resources should actually be used to provide the required
synchronization. For example, acquiring an FCB representing a file stream exclu-
sively may consist of one of the following actions:

• Acquire the MainResource exclusively
• Acquire the PagingloResource exclusively
• Acquire both the MainResource and the PagingloResource exclusively

276 Chapter 7: The NT Cache Manager 11

In this case, to prevent deadlock, a locking hierarchy must be defined
between the two resources. Typically, most file systems define a hierarchy in
which the MainResource must be acquired before the PagingloRe-
source is acquired.

Similarly, acquiring an FCB for shared access might be implemented by the Cache
Manager client as acquiring any one or both of the resources shared. A determina-
tion of the exact usage of these resources is made by each file system or network
redirector, based on the requirements of the particular driver.

Typically, the PagingloResource is acquired only while servicing paging read
operations or during delayed write (paging I/O write) operations. For example, if
the file system driver read routine is invoked to service a page fault request, the
FCB for the file stream is acquired shared, by acquiring the PagingloResource
shared. The MainResource, on the other hand, is typically used by the Cache
Manager client to service requests that execute in the context of user threads (or
as a result of direct user requests). For example, a write request executing in the
context of the originating user thread is synchronized by acquiring the MainRe-
source for the file exclusively.

NOTE Each FSD has unique requirements that influence -when and how re-
sources should be acquired to ensure correct synchronization of
FSD data structures. In general, however, the Windows NT environ-
ment appears to favor usage of the PagingloResource to syn-
chronize most modifications to file state (e.g., file size changes)
while the MainResource appears to be used mostly to synchro-
nize user-initiated I/O requests with each other.

Sometimes, the Cache Manager client may acquire both resources before
performing an action of the file stream. For example, truncation of a file stream is
performed only after both the MainResource and the PagingloResource
have been exclusively obtained. This prevents any unwanted side effects from
taking place, since file size changes are typically not otherwise synchronized with
background delayed-write or read-ahead activity that might be in progress. As
mentioned previously, whenever both resources need to be acquired simulta-
neously, a well-defined locking hierarchy should dictate the order in which the
two resources are acquired. For the remainder of this book, we will define the
hierarchy such that the MainResource is acquired before the
PagingloResource.

In Part 3, the rules governing resource acquisition for file streams will be
discussed in greater detail.

Interaction with Clients (File Systems and Network Redirectors)______________277

Prerequisites to Initiation of Caching
Now that you have a fair idea of how caching is provided by the Cache Manager,
it is time to begin exploring the sequence of steps undertaken by Cache Manager
clients to interact with the Cache Manager and provide higher performance to
user applications. The previous chapter lists the various kinds of modules that
interact with the Cache Manager; the two specific clients that use Cache Manager
services directly are file systems and network redirector drivers.

Fundamentally, both disk-based file systems and network redirectors provide
similar functionality to user applications, namely, access to data streams stored as
files on media. The difference is that network redirectors obtain data from servers
residing on other nodes across the network, while local file systems simply use
the services of disk drivers to obtain data from media directly attached to the
node on which the request was initiated. For the remainder of this chapter, we
will not differentiate between the two kinds of modules, except where absolutely
necessary, and will refer to both types of drivers genetically as file system drivers.

At driver initialization: fast I/O support

Typically, I/O requests for a file are conveyed by the I/O Manager to the file
system driver using I/O Request Packets (IRPs). However, the overhead associ-
ated with the creation, completion, and destruction of IRPs is sometimes an
inhibitor of good performance. Also, if data is cached by the Cache Manager, it is
possible that such data could be directly obtained from the system cache by
directly issuing a request to the Cache Manager instead of going through the file
system driver.- Since the Cache Manager can then directly access data within the
system cache, such access is as fast as a single hardware lookup (using the Trans-
lation Lookaside Buffer to convert the virtual address into a physical memory
address), which is extremely efficient. The desire to achieve better system perfor-
mance by taking into consideration the factors mentioned here led to the creation
of the fast I/O method for obtaining cached file data in the Windows NT
environment.*

Fast I/O is only performed if the file stream is cached and it is always a synchro-
nous operation. An interesting point to note is that if data transfer is not possible
using the fast I/O path for a specific operation on a file stream, the I/O Manager
simply resorts to using the standard IRP method to retry the operation. This is no

* It could legitimately be argued that the entire fast I/O interface was a last minute hack or addition to
the I/O subsystem in response to some serious performance problems encountered during testing by the
Windows NT development group. Whether this is true is difficult to say, unless confirmed or denied by
engineers at Microsoft. However, the fast I/O interface seems to have measurably enhanced throughput
in the I/O path, and will continue to exist for the foreseeable future unless some major revamping of the
Cache Manager module is undertaken by Microsoft.

2 78 Chapter 7: The NT Cache Manager II

worse than the original method of always creating an IRP to communicate with
the file system driver to service a user request. Figure 7-2 illustrates the flow of
execution when fast I/O is used to satisfy user requests.

Figure 7-2. I/O requests using the fast I/O path

Interaction with Clients (File Systems and Network Redirectors)______________275*

In Figure 7-2, the following steps are performed:

1. The I/O Manager receives a user request to read or write data for a specific
file object. The file object represents an open instance for a file stream.

2. The I/O Manager invokes the fast I/O read or write entry point, which causes
the corresponding Cache Manager entry point to be invoked. Note that typi-
cally the Cache Manager copy interface is used to obtain the data.

3. The Cache Manager attempts to transfer data from or to the system cache. If
data exists in the system cache and is present in memory, Step 9 is executed.
Otherwise, execution continues with Step 4 below.

4. A page fault occurs, causing the memory manager page fault handler routine
to be invoked.

5. The page fault handler routine calls into the file system driver entry point
using an I/O Request Packet. Although the figure does not show this, the
actual call into the file system driver entry point is via the I/O Manager
loCallDriver () routine.

6. The file system driver uses the services of disk and network drivers to transfer
data.

7. The file system satisfies the page fault request and control returns to the page
fault handler.

8. The page fault is satisfied and the Cache Manager data transfer operation is
restarted.

9. The Cache Manager completes the data transfer.
10. The Cache Manager returns control back to the I/O Manager (via the fast I/O

entry point).

11. The I/O Manager completes the user request synchronously.

As you might have noticed, data that is physically present in memory can be trans-
ferred extremely quickly to or from the user's buffer. However, if data is not
already physically present in memory, a trip through the file system will eventu-
ally result as a consequence of the page fault that must be resolved. This is not
conducive to quick response times and is typically not required, due to the read-
ahead performed by the Cache Manager.

Providing support for fast I/O is not required from file system drivers, and file
systems have the option of not supporting fast I/O or of disabling fast I/O
support for certain file streams dynamically. However, the resulting performance
degradation is evident, especially when data transfer rates are compared with file
systems that do provide fast I/O support.

280 _______________________________ Chapter 7: The NT Cache Manager II

To provide fast I/O support, the file system driver must perform the following
actions, generally at driver initialization time:

• Initialize a global/static structure of type FAST_IO_DISPATCH. This structure
contains a list of pointers that must be initialized to functions implementing
each of the fast I/O entry points.

• Initialize a pointer within the DRIVER_OBJECT structure to refer to the fast
I/O dispatch table described above.

There are specific operations that can be executed using the fast I/O method. The
list of possible operations differs between the various NT versions. Specifically,
Windows NT Version 4.0 supports more operations using the fast I/O method
than Windows NT Version 3.51. Further information on the implementation of fast
I/O support is given in Part 3.

The following code fragment illustrates the two steps described above:*

// Declare a static global fast I/O structure that contains function
// pointers. The fast I/O structure here is contained within a global
// data structure type declaration.
typedef struct _SFsdData {

SFsdldentif ier Nodeldentif ier ;

// Other fields that you will read about in subsequent chapters.

// The NT Cache Manager, the I/O Manager, and this code will
// conspire to bypass IRP usage using the function pointers
// contained in the following structure
FAST_IO_DISPATCH SFsdFastloDispatch;

// Still more fields . . .
} SFsdData, *PtrSFsdData;

// Declare all the functions that we will implement to support the
// fast I/O path. In this example, only read and write operations are
// supported via the fast I/O method.
extern BOOLEAN SFsdFastloChecklf Possible (

IN FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN ULONG LockKey,
IN BOOLEAN CheckForReadOperation,
OUT PIO_STATUS_BLOCK loStatus,
IN DEVICE_OBJECT *DeviceObject
);

extern BOOLEAN SFsdFastloRead (

* All of the routines are prefixed with SFsd to conform to the convention used by the sample file system
driver code provided in Part 3.

Interaction with Clients (File Systems and Network Redirectors)______________ 281

IN FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN ULONG LockKey,
OUT PVOID Buffer,
OUT PIO_STATUS_BLOCK loStatus,
IN DEVICE_OBJECT *DeviceObject

);
extern BOOLEAN SFsdFastloWrite (

IN FILE_OBJECT *FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN ULONG LockKey,
IN PVOID Buffer,
OUT PIO_STATUS_BLOCK loStatus,
IN DEVICE_OBJECT *DeviceObject

// Driver Entry routine - this is where all of the initialization takes
// place.
NTSTATUS SFsdDriverEntry (
IN PDRIVER_OBJECT DriverObject , // created by the I/O subsystem
IN PUNICODE_STRING RegistryPath) // path to registry key for the driver
{

// Initialize the global data structure. Note that we will
// end up zeroing out the fast I/O dispatch structure as well.
// This will save us setting individual fields to NULL.
RtlZeroMemory (&SFsdGlobalData, sizeof (SFsdGlobalData)) ;

// Other initialization operations . . .

// Initialize the IRP major function table, and the fast I/O table.
SFsdlnitializeFunctionPointers (DriverObject) ;

// Still more initialization stuff . . .

void SFsdlnitializeFunctionPointers (
PDRIVER_OBJECT DriverObject) /* created by the I/O sub-
system */
t

PFAST_IO_DISPATCH PtrFastloDispatch = NULL;

// Initialize dispatch function table here. See Part 3
// and accompanying disk for details.

// Now, it is time to initialize the fast I/O stuff . . .
// Note that I am initializing the "FastloDispatch" field in
// the DriverObject below.
PtrFastloDispatch = DriverObject->FastIoDispatch =

& (SFsdGlobalData . SFsdFastloDispatch) ;

282_______________________________Chapter 7: The NT Cache Manager II

II Initialize the global fast I/O structure
// NOTE: The fast I/O structure has undergone a substantial
// revision in Windows NT Version 4.0. The structure has been
// extensively expanded.
// Therefore, if your driver needs to work on both V3.51 and V4.0+,
// you will have to be able to distinguish between the two versions
//at compile time.
PtrFastIoDispatch->SizeOfFastIoDispatch = sizeof(FAST_IO_DISPATCH) ;
PtrFastIoDispatch->FastIoCheckIfPossible =

SFsdFastloChecklfPossible;
PtrFastIoDispatch->FastIoRead = SFsdFastloRead;
PtrFastIoDispatch->FastIoWrite = SFsdFastloWrite;

// See Part 3 for other initialization steps performed here.
}
In this example, the test driver only supports read and write operations using the
fast I/O method. Therefore, other fields in the FAST_IO_D IS PATCH data structure
are initialized to NULL. An explanation for the SFsdFastloChecklf Possible!)
routine, as well as other information on the implementation of the fast I/O routines
is provided in Part 3.

File open

In Windows NT, to access data for a file stream, the file stream must first be
opened. The open* operation performed by an application returns a handle to the
application. This handle is used by the application when reading or writing to the
file stream and corresponds to a file object structure, created by the I/O Manager,
representing an instance of a successful open operation.

From the perspective of the file system driver servicing the open request, a consid-
erable amount of work is performed at file open time to support access to the file
stream. The file system constructs all in-memory data structures required to
support I/O operations to the file stream, including the construction of any data
structures that might be required to support buffered access to file data. The file
system driver must also fill in specific fields in the file object structure; these fields
were described in the previous chapter.

The file system driver allocates and initializes a file control block (FCB) structure,
which is a unique representation of the file stream in memory. This is done only
if no such structure currently exists; as it would if the file stream had been previ-
ously opened and at least one reference to the FCB were still present. If a new

* Open operations requesting access to previously created file streams and close operations that create
new file streams result in the same IRP being dispatched to a file system by the I/O Manager, with a major
function of IRP_MJ_CREATE. Effectively, a create operation is simply a two-step process, where an entry
representing the new file is first created, and subsequently opened. We will refer to both create and open
operations together as requests to open a file stream.

Interaction with Clients (File Systems and Network Redirectors)_______ _____283

file control block is created, most file system drivers also allocate memory for a
structure of type FSRTL_COMMON_FCB_HEADER (see the previous chapter for an
explanation of the various fields in the CommonFCBHeader structure). Often, this
structure, which is required by the Cache Manager to be able to cache file data, is
embedded by file system drivers within the file control block representing the file
stream.

Note that even if the current open operation specifies noncached access to file
data, the file system driver will still end up allocating the FSRTL_COMMON_FCB_
HEADER along with the FCB for the file, since subsequent concurrent open opera-
tions might require cached file access. Initialization of the individual fields within
the structure is performed by the file system at this time as follows:

• The FSD initializes the two ERESOURCE type objects, allocated as part of the
CommonFCBHeader from the nonpaged memory pool, with the Exlni-
tializeResourceLite () system call.
The two resource object fields are the MainResource and the Paging-
loResource.

• The enumerated type field IsFastloPossible is initialized to an appropri-
ate value.
Typically, FSDs set this to FastloIsPossible. By doing so, the I/O Man-
ager is encouraged to begin using the fast I/O method for accessing data for
the file stream at the very earliest—typically, as soon as caching is initiated for
the file.*

• Each of the file size fields—the AllocationSize, ValidDataLength,
and FileSize—is initialized to their true values.

If the file stream has been created as a result of the create operation, then the
file size fields will all be initialized to 0. Otherwise, for an existing file stream
or if the create operation requested preallocation of space for the file, the file
size fields will be initialized to the correct values.

Once the CommonFCBHeader is allocated and initialized, the FsContext field
in the file object is initialized to refer to the allocated CommonFCBHeader
structure.

The PrivateCacheMap field in the file object structure is initialized by the file
system driver to NULL.

Finally, the FSD must also allocate and initialize a structure of type SECTION_
OBJECT_POINTERS. A single (unique) instance of the structure is typically associ-

* Caching for the file stream is initiated when the FSD receives the first I/O request for the file stream.
Therefore, the first I/O request for the file stream will always be described via an IRP by the I/O Manager.

284_______________________________Chapter 7: The NT Cache Manager II

ated with the FCB. Each of the fields within the structure is initialized to NULL.
The SectionObjectPointer field in the file object structure is then initialized
to refer to the allocated structure.

The following code extract from a file system driver implementation of a file open
operation performs the operations described here (in the code extract, it's
assumed that the IRP_NOCACHE flag has not been specified):

// There are some fields that must always be associated with an FCB
//to successfully interface with the Cache Manager. The sample FSD
// implementation has extracted these fields into a separate structure.
typedef struct _SFsdNTRequiredFCB {

FSRTL_COMMON_FCB_HEADER CommonFCBHeader;
SECTION_OBJECT_POINTERS SectionObj ect;
ERESOURCE MainResource;
ERESOURCE PagingloResource;

} SFsdNTRequiredFCB, *PtrSFsdNTRequiredFCB;

// The actual FCB structure is defined by the sample FSD as shown below:
typedef struct _SFsdFileControlBlock {

SFsdldentifier Nodeldentifier;
// We will go ahead and embed the "NT Required FCB" right here.
// Note that it is just as acceptable to simply allocate
// memory separately for the other half of the FCB and store a
// pointer to the "NT Required" portion here, instead of embedding
// it.
SFsdNTRequiredFCB NTRequiredFCB;
// Other fields go here. See subsequent chapters for details.
// . . .
// Some state information for the FCB is maintained using the
// Flags field
uint32 FCBFlags;
// More fields here ...

} SFsdFCB, *PtrSFsdFCB;

// Some Flag definitions, see accompanying diskette for definitions
// of other flag values.
#define SFSD_INITIALIZED_MAIN_RESOURCE (0x00002000)
ttdefine SFSD_INITIALIZED_PAGING_IO_RESOURCE (0x00004000)

// Our work is performed while servicing a create/open request.
// The parameters to the SFsdCommonCreate() function will be explained
//in Part 3.
NTSTATOS SFsdCommonCreate(
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp)
{

PtrSFsdFCB PtrNewFCB = NULL;
LARGE_INTEGER FileAllocationSize, FileEndOfFile;
PFILE_OBJECT PtrNewFileObject = NULL;
PtrSFsdVCB PtrVCB = NULL;
// Other declarations ...

Interaction with Clients (File Systems and Network Redirectors)___________ 285

try {

//As you will see in Chapter 9, a lot of information is obtained
// from the IRP sent to the FSD for a create/open request.
// The I/O-Manager-created file object structure pointer is also
// obtained from the current I/O Stack Location in the FCB.
PtrloStackLocation = loGetCurrentlrpStackLocation(Ptrlrp);
PtrNewFileObject = PtrIoStackLocation->FileObject;

// The Volume Control Block (VCB) pointer is obtained
// from the target device object representing the mounted logical
// volume.

// The create/open operation is fairly complex and is detailed in
// Part 3. The FSD has to validate all arguments passed- in within
// the IRP, and then traverse the path supplied within the IRP,
// eventually leading to the file/directory/link that has to be
// created/opened.

// Assume that all the complicated processing has been done and
// that we have decided to create a new FCB structure.
// Note that a typical FSD gets the current file stream allocation-
// size and EOF values from the directory entry for the file
// stream (obtained from secondary storage) .
// In this example, we assume that this is the first instance of
// an "open" operation for a specific file stream. Therefore, we
// allocate the FCB structure for this file stream.
RC = SFsdCreateNewFCB(&PtrNewFCB, &FileAllocationSize,

SFileEndOfFile,
PtrNewFileObject, PtrVCB);

if (!NT_SUCCESS(RC)) {
try_return(RC) ;

} finally {
// All of the cleanup code is executed here.

return (RC) ;
} / / SFsdCommonCreate ()

NTSTATUS SFsdCreateNewFCB (
PtrSFsdFCB *ReturnedFCB,
PLARGE_INTEGER AllocationSize ,
PLARGE_INTEGER EndOfFile,
PFILE_OBJECT PtrFileObject ,
PtrSFsdVCB PtrVCB)
{

NTSTATUS RC = STATUS_SUCCESS;
PtrSFsdFCB PtrFCB = NULL;

286 Chapter 7: The NT Cache Manager II

PtrSFsdNTRequiredFCB
PFSRTL_COMMON_FCB_HEADER

PtrReqdFCB = NULL;
PtrCoiranonFCBHeader = NULL;

try {
// Obtain a new FCB structure.
// The function SFsdAllocateFCB () will obtain a new structure
// either from a zone or from memory requested directly from the
// VMM. Note that the sample FSD (described in greater detail in
// Part 3 of this book) allocates the entire FCB from nonpaged pool
// though you may choose to be "smarter" about your allocation
// method and possibly break up the FCB into paged and nonpaged
// portions.
PtrFCB = SFsdAllocateFCB () ;
if (! PtrFCB) {

// Assume lack of memory.
try_return(RC = STATUS_INSUFFICIENT_RESOURCES) ;

// Initialize fields required to interface with the NT Cache
// Manager. Note that the returned structure has already been
// zeroed. This means that the SectionObject structure has been
// zeroed, which is a requirement for newly created FCB structures.
PtrReqdFCB = & (PtrFCB->NTRequiredFCB) ;

// Initialize the MainResource and PagingloResource structures now.
ExInitializeResourceLite (& (PtrReqdFCB->MainResource)) ;
SFsdSetFlag(PtrFCB->FCBFlags, SFSD_INITIALIZED_MAIN_RESOURCE) ;

ExInitializeResourceLite (& (PtrReqdFCB->PagingIoResource)) ;
SFsdSetFlag (PtrFCB->FCBFlags, SFSD_INITIALIZED_PAGING_IO_RESOURCE) ;

// Start initializing the fields contained in the CommonFCBHeader.
PtrCommonFCBHeader = &(PtrReqdFCB->CommonFCBHeader);

// Allow fast I/O for now.
PtrCoiranonFCBHeader->IsFastIoPossible = FastloIsPossible;

// Initialize the MainResource and PagingloResource pointers in
// the CommonFCBHeader structure to point to the ERESOURCE
// structures we have allocated and already initialized above.
PtrCommonFCBHeader->Resource = &(PtrRegdFCB->MainResource);
PtrCommonFCBHeader->PagingIoResource =

&(PtrReqdFCB->PagingIoResource) ;

// Ignore the Flags field in the CommonFCBHeader for now. Part 3
// of the book describes it in greater detail.

// Initialize the file size values here.
PtrCommonFCBHeader->AllocationSize = *(AllocationSize);
PtrCommonFCBHeader->FileSize = *(EndOfFile);

// The following will disable ValidDataLength support. However,
// your FSD may choose to support this concept.
PtrCommonFCBHeader->ValidDataLength.LowPart = OxFFFFFFFF;

Interaction with Clients (File Systems and Network Redirectors)______________287

PtrCommonFCBHeader->ValidDataLength.HighPart = OxVFFFFFFF;

// Initialize other fields for the FCB here.
PtrFCB->PtrVCB = PtrVCB;
InitializeListHead(&(PtrFCB->NextCCB));

// Other similar initialization continues ...

// Initialize fields contained in the file object now.
PtrFileObject->PrivateCacheMap = NULL;
// Note that we could have just as well taken the value of
// PtrReqdFCB directly below. The bottom line, however, is that
// the FsContext field must point to a FSRTL_COMMON_FCB_HEADER
// structure.
PtrFileObject->FsContext = (void *)(PtrCommonFCBHeader);

// Other initialization continues here ...

try_exi t: NOTHING;
} finally {

return (RC) ,-
}

Initiation of Caching
All file stream operations in NT require that the file stream first be opened. To
avoid incurring unnecessary overhead, file system drivers do not initiate caching
for a file stream until it can be determined that I/O (read/write of file data) will
be performed on the file stream. Therefore, caching is typically initiated only
when the first I/O operation (read/write) is received by the file system driver.
Note that caching must be initiated for each file object on which I/O can be
performed (only if buffered access is allowed by the user). To determine whether
caching had been previously initiated for a specific file object, the Private-
CacheMap field in the file object is checked as follows:

#define SFsdHasCachingBeenlnitiated(PFileObject) \
((PFileObject)->PrivateCacheMap ? TRUE : FALSE)

To initiate caching, the FSD uses the CcInitializeCacheMapt) interface
routine. This routine is defined as follows:

void CcInitializeCacheMap (
IN PFILE_OBJECT PtrFileObject;
IN PCC_FILE_SIZES FileSizes;
IN BOOLEAN PinAccess;
IN PCACHE_MANAGER_CALLBACKS CallBacks;
IN PVOID LazyWriterContext

288 Chapter 7: The NT Cache Manager II

where:

typedef struct _CC_FILE_SIZES {
LARGE_INTEGER AllocationSize;
LARGE_INTEGER FileSize;
LARGE_INTEGER ValidDataLength;

} CC_FILE_SIZES, *PCC_FILE_SIZES;

// The callbacks structure is defined as follows:
typedef struct _CACHE_MANAGER_CALLBACKS {

PACQUIRE_FOR_LAZY_WRITE AcquireForLazyWrite ;
PRELEASE_FROM_LAZY_WRITE ReleaseFromLazyWrite;
PACQUIRE_FOR_READ_AHEAD AcquireForReadAhead;
PRELEASE_FROM_READ_AHEAD ReleaseFromReadAhead;

} CACHE_MANAGER_CALLBACKS, *PCACHE_MANAGER_CALLBACKS;

Resource Acquisition Constraints:

The above routine requires that the FCB for the file be acquired either shared or
exclusive prior to invoking the routine.

Parameters:

PtrFileObject
This is the file object for which caching is being initiated.

FileSizes
The Cache Manager requires that the current file sizes be supplied at this
time. Note that since the FCB for the file is acquired either shared or exclu-
sively, none of the file size values can change while caching is being initiated
for any file object associated with the file stream.*

PinAccess
The caller can specify if the pinning interface will be used to access data.
Note that the pinning interface cannot be used concurrently with either the
copy interface or the MDL interface to access data for the file stream. Typi-
cally, for user file open requests, you should set this to FALSE.

Callbacks
In the Windows NT environment, the file system, Virtual Memory Manager,
and the Cache Manager are all highly dependent on each other. I/O opera-
tions can be initiated from the file system driver (on behalf of user processes),
via the Virtual Memory Manager or from the Cache Manager. To avoid system

* It is highly recommended (in order to avoid data corruption) that the FCB for a file be acquired exclu-
sively whenever there are any modifications resulting in changes to the data or attributes of the file stream.
Therefore, if the FCB for the file stream has been acquired shared or exclusively while caching is being
initiated, we can be certain that the file sixes will not change from underneath us.

Interaction with Clients (File Systems and Network Redirectors)______________289

deadlock, a well-defined hierarchy must set the order in which each of these
components can acquire their respective resources associated with the file
stream(s) on which I/O is being performed. This order is defined as follows:

— File system resources are acquired first.

— Cache Manager resources are acquired next.

— Virtual Memory Manager resources are acquired last.

To help maintain this hierarchy, the file system driver is required to supply
the Cache Manager with callback routines that are utilized by the read-ahead
and delayed-write threads in the Cache Manager. These callback routines are
supplied when caching is initiated by the FSD using this argument. Further
details on this topic will be presented in Part 3.

LazyWriterContext
This value is treated as an opaque pointer value by the Cache Manager. It is
used as an argument supplied to the file system driver when the Cache
Manager uses the AcquireForLazyWrite () and AcquireForRead-
Ahead () callback routines. (The name of the argument is somewhat of a
misnomer since the same context is used for both the read-ahead and write-
behind callbacks; therefore it is not just the lazy writer context, but the read-
ahead context as well.) Typically, the FSD will supply a pointer to a Context
Control Block (CCB)* as the context.

Functionality Provided:

The CcInitializeCacheMap () routine is responsible for creating all data
structures required for the Cache Manager to support caching for the concerned
file stream. The first invocation of this routine results in the creation of the shared
cache map structure for the file stream. It is extremely important to note that the
Cache Manager also references the file object structure at this time to ensure that
the file object stays around and that a corresponding uninitialize operation will
occur sometime in the future. The Cache Manager also creates a file mapping
(section) object for the file using the services of the Virtual Memory Manager. For
all subsequent invocations of this routine for the same file stream (with different
file object structures), the Cache Manager checks the current size of the mapping
section object and extends it if required.

The Cache Manager also allocates a private cache map structure and initializes it.
A pointer to the allocated PrivateCacheMap is stored in the Private-
CacheMap field within the passed-in file object structure. Since the value of the

* The Context Control Block is a structure created by file system drivers to represent an open instance of
a file stream. There is one CCB corresponding to each successful open operation; therefore there is a one-
to-one mapping between file object structures created by the I/O Manager (representing a successful
open operation on a file stream) and CCBs created by the file system driver. CCB structures arc discussed
in detail in Chapter 9, Writing a File System. Driver I.

290_______________________________Chapter 7: The NT Cache Manager tt

PrivateCacheMap field now becomes nonnull, subsequent I/O requests will
check this field using the SFsdHasCachingBeenInitiated() macro, defined
above, and determine that caching had been previously initiated for the file
stream via the specific file object.

Note that the Cache Manager does not map in any views for the file stream at this
time. These views into the file are created only when data transfer is requested
using any of the three interfaces provided by the Cache Manager.

Since the initialization routine does not return any status back to the caller, the
Cache Manager raises exceptions if something goes wrong while trying to perform
the initialization for the file object. Exception handlers in the FSD should be
capable of receiving such exceptions and returning an appropriate error back to
the application that initiated the cached I/O operation.

WARNING Using Structured Exception Handling is no longer optional if you
write a file system driver that interacts with the Windows NT Cache
Manager. I would advise that all kernel-mode drivers should incor-
porate SEH to ensure that system integrity and robustness is not
compromised.

Example of Usage:

Caching is initiated by file system drivers when either a read or a write operation
is invoked for a file stream. In this code snippet, caching is initiated when a read
request is processed for a file stream.

//A pointer to a callbacks structure must be passed in to the Cache
// Manager when initializing caching for a file stream. Typically, file
// systems use a single global callbacks structure that has been
// initialized.
typedef struct _SFsdData {

SFsdldentifier Nodeldentifier;
// Some fields that will be discussed further in Part 3.

// The NT Cache Manager uses the following callbacks to ensure
// correct locking hierarchy is maintained.
CACHE_MANAGER_CALLBACKS CacheMgrCallBacks;

// Some more fields that will also be discussed in Part 3.

} SFsdData, *PtrSFsdData;

// The arguments to the SFsdCommonRead() function (part of the sample FSD
// provided in this book) will be discussed in Part 3.
NTSTATUS SFsdCommonRead(
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp)

Interaction with Clients (File Systems and Network Redirectors) 291

NTSTATUS RC = STATUS_SUCCESS;
PFILE_OBJECT PtrFileObject = NULL;
PtrSFsdFCB PtrFCB = NULL;
PtrSFsdCCB PtrCCB = NULL;
PtrSFsdNTRequiredFCB PtrReqdFCB = NULL;
BOOLEAN NonBufferedlo = FALSE;
LARGE_INTEGER ByteOffset;
uint32 ReadLength = 0, TruncatedReadLength = 0;
BOOLEAN CanWait = FALSE;
void *PtrSystemBuffer = NULL;
// Other declarations .. .

try {

//As you will see in Chapter 9, a lot of information is obtained
// from the IRP sent to the FSD for a read request.
// The I/O-Manager-created file object structure pointer is also
// obtained from the current I/O Stack Location in the FCB.
PtrloStackLocation = loGetCurrentlrpStackLocation(Ptrlrp);
PtrFileObject = PtrIoStackLocation->FileObject;

// Get the FCB and CCB pointers.
// Typically the FsContext2 field in the file object refers to
// the Context Control Block associated with the file object.
PtrCCB = (PtrSFsdCCB)(PtrFileObject->FsContext2);
ASSERT(PtrCCB);
PtrFCB = PtrCCB->PtrFCB;
ASSERT(PtrFCB);

// Other arguments are also obtained ...

NonBufferedlo = ((PtrIrp->Flags & IRP_NOCACHE) ? TRUE : FALSE);
ByteOffset = PtrIoStackLocation->Parameters .Read.ByteOffset;
ReadLength = PtrIoStackLocation->Parameters.Read.Length;

// Don't worry about how the following flag is set in the
// PtrlrpContext structure at this time. Note, however, that
// the CanWait value determines whether the caller is willing to
// perform the operation synchronously (CanWait = TRUE), or if the
// caller prefers asynchronous processing (CanWait = FALSE).
CanWait = ((PtrIrpContext->IrpContextFlags &

SFSD_IRP_CONTEXT_CAN_BLOCK)
? TRUE : FALSE);

PtrReqdFCB = &(PtrFCB->NTRequiredFCB);

/ / A lot of preprocessing is typically performed that you will
// read about later in this book.

// Assume for now that this FSD does not have to worry about
// paging I/O requests.

// Try to acquire the FCB MainResource shared. Assume that the call

292_______________________________Chapter 7: The NT Cache Manager II

II cannot fail. Also assume that the caller does not mind blocking.
ExAcquireResourceSharedLite(&(PtrReqdFCB->MainResource), TRUE)

// More processing here that will be discussed later in Part 3 of
// this book.

// Branch here for cached vs. noncached I/O.
if (iNonBufferedlo) {

// The caller wishes to perform cached I/O. Initiate caching if
// this is the first cached I/O operation using this file
// object
if (!SFsdHasCachingBeenInitiated(PtrFileObject)) {

// This is the first cached I/O operation. You must ensure
// that the Common FCB Header contains valid sizes at this
// time
CcInitializeCacheMap(PtrFileObject, (PCC_FILE_SIZES)

(&(PtrReqdFCB->CommonFCBHeader.AllocationSize)) ,
FALSE, //We will not utilize pin access for

// this file
&(SFsdGlobalData.CacheMgrCallBacks), // callbacks
PtrCCB); // The context used in callbacks

// Check and see if this request requires an MDL returned to
// the caller.
if (PtrIoStackLocation->MinorFunction & IRP_MN_MDL) {

// Caller wants an MDL returned. Note that this mode
// implies that the caller is prepared to block.
// CcMdlReadO is discussed later in this chapter.
CcMdlRead(PtrFileObject, &ByteOf f set , TruncatedReadLength,

&(PtrIrp->MdlAddress) ,
&(PtrIrp->IoStatus)) ;

NumberBytesRead = PtrIrp->IoStatus . Information;
RC = PtrIrp->IoStatus. Status;

try_return(RC) ;

// This is a regular run-of-the-mill cached I/O request. Let
// the Cache Manager worry about it.
// First though, we need a buffer pointer (address) that is
// valid. More on this in Chapter 9.
PtrSystemBuf fer = SFsdGetCallersBuf fer (Ptrlrp) ;
ASSERT (PtrSystemBuf fer) ;
if (!CcCopyRead(PtrFileObject, & (ByteOf f set) , ReadLength,

CanWait, PtrSystemBuf fer , & (PtrIrp->IoStatus))) {
// The caller was not prepared to block and data is not
// immediately available in the system cache.
// Mark IRP Pending and prepare to post the request for
// asynchronous processing. I am beginning to sound like a
// broken record but more on this in Part 3 of the book.
try_return(RC = STATUS_PENDING) ;

Cache Manager Interfaces_____________________________________25*3

// We have the data
RC = PtrIrp->IoStatus.Status;
NumberBytesRead = PtrIrp->IoStatus.Information;

try_return(RC);

} else {
// Noncached processing done here.

}

// Other processing ...

try_exi t: NOTHING;

} finally {
// A lot of processing done here before completing the IRP.

} // end of "finally" processing

return(RC);

Cache Manager Interfaces
Once caching has been initiated for a file stream using a file object, requests to
read and write data are satisfied from the system cache. In the previous chapter,
three interfaces provided by the Cache Manager to access cached data were listed.
Each of the routines comprising the three interfaces is covered in this section.

TIP You may find it useful simply to skim through the material present-
ed below on your first reading and to refer back to it when required
as you progress through Part 3 (describing FSD development) and
also when you eventually design and debug your kernel-mode file
system (or filter) driver.

Copy Interface
The copy interface is most commonly used by FSDs to access data within the
system cache. The following routines comprise the copy interface.

CcCopyReadO/CcFastCopyReadQ
BOOLEAN
CcCopyRead (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,

294_______________________________Chapter 7: The NT Cache Manager II

IN BOOLEAN Wait,
OUT PVOID Buffer,
OUT PIO_STATUS_BLOCK loStatus

VOID
CcFastCopyRead (

IN PFILE_OBJECT FileObject,
IN ULONG FileOffset,
IN ULONG Length,
IN ULONG PageCount,
OUT PVOID Buffer,
OUT PIO_STATUS_BLOCK loStatus

) ;

Resource Acquisition Constraints:

The FCB for the file must usually be acquired shared before invoking the routine.
Acquiring the FCB exclusively will prevent multiple readers from being able to
concurrently access file data and should therefore be avoided in the interest of
efficiency.

Parameters:

FileObject
This is a pointer to the file object structure representing the open operation
performed by the thread. Caching must have been previously initiated by the
file system driver on this file object.

Note that if the file system driver has not initiated caching prior to invoking
the CcCopyReadO or CcFastCopyRead () routines, an exception will be
generated since the Cache Manager assumes that the private cache map and
shared cache map structures exist and have been initialized correctly.

FileOffset
This is the starting offset in the file, from where the read operation should be
performed.

For the CcCopyRead () routine, the starting offset can be anywhere within
the allowable range of file offsets—a 64-bit quantity. However, the CcFast-
CopyRead () expects the entire range being requested (starting offset +
number of bytes) to be contained within 4GB (maximum range allowable for
a 32 bit offset).

Length
This field specifies the number of bytes requested in the read operation.

Wait
This argument is only accepted by the CcCopyRead () routine. If the entire
byte range requested is not present in the system cache (therefore, the data

Cache Manager Interfaces_____________________________________295

would have to read off media using the page fault mechanism), and if Wait
is specified as FALSE, the CcCopyRead () routine returns a FALSE value to
the caller. The caller can subsequently determine whether to restart the copy
operation or to pursue some other course of action.

The CcFastCopyRead() routine assumes that the caller is prepared to wait
for the data; i.e., the implied value of Wait is TRUE.

PageCount
This is the number of pages requested in the read operation. Argument is
required only by the CcFastCopyRead() routine. The caller can use the
COMPUTE_PAGES_SPANNED () macro supplied in the ntddk.h header file to
determine the value to be passed in.

NOTE It is surprising that the Cache Manager requires this argument, since
computing the value could just as easily be done within the routine
by the Cache Manager itself.

Buffer
This field contains a pointer to the buffer into which the copy operation
should be performed is passed-in. If the buffer pointer becomes invalid (once
the Cache Manager is invoked), an exception will be raised by the Cache
Manager.

loStatus
The Status field is generally set to STATUS_SUCCESS by the Cache Manager.
The Information field contains the number of bytes that were actually
transferred.

Functionality Provided:

Fundamentally, both the CcCopyRead () and the CcFastCopyRead() routines
perform the same functionality: data is transferred from the system cache to the
buffer passed in to either of the two routines. The Cache Manager also schedules
read-ahead based upon the pattern of accesses detected during multiple invoca-
tions of either of these two routines.

The primary difference between the two routines is that the CcFastCopy-
Read () routine assumes that the caller is always prepared to block, waiting for
the data to be brought into the system cache if it is not already there. In the case
of the CcCopyRead () routine, the caller is allowed to specify whether waiting
for the data to be brought into the system cache is acceptable or not. If Wait is
set to FALSE and file data is not already physically present in memory, the Cache
Manager will simply return a status of FALSE to the caller. However, if data is

296______________________________Chapter 7: The NT Cache Manager II

already physically present in memory, or if Wait is supplied as TRUE, the Cache
Manager will return as many bytes as it successfully reads, which can be less than
or equal to the number of bytes requested (if the read extends beyond the end-of-
file).

A second constraint for the CcFastCopyRead () routine is that it expects to
work with byte ranges that are completely contained within a 32-bit quantity.
Therefore, the CcFastCopyRead () routine will not accept a byte range with a
starting offset greater than or equal to 4GB or an ending offset (= starting offset +
length) greater than or equal to 4GB.

For both routines, the Cache Manager expects the file system to have checked
that the byte range being requested does not extend beyond the end-of-file mark
(based on the size of the file stream). Therefore, the only likely reason for the
number of bytes in the Information field to be less than the number of bytes
requested is if data was not present in the system cache and there was an error
encountered faulting in the data from disk (or from across the network).

If the buffer pointer passed in to either routine is invalid, an exception is raised
by the Cache Manager.

The implementation of both routines is conceptually very simple:

• The Cache Manager determines if a mapped view for the desired range exists.
If no such view exists, the Cache Manager will create such a view.

• The Cache Manager checks to see if the requested data is already physically
present in memory (using the services provided by the Virtual Memory Man-
ager). If data is not already in memory and if Wait is supplied as FALSE (for
the CcCopyRead () routine), the Cache Manager immediately returns to the
caller with a return status of FALSE, indicating that data transfer was not per-
formed. In the case of the CcFastCopyRead () routine, the Cache Manager
expects that the caller is prepared to block, waiting for data to be brought
into the system cache. If data is not already present, the Cache Manager also
determines the number of pages that should be brought in using a single I/O
operation, based upon the number of bytes requested. This information is
then conveyed by the Cache Manager to the Virtual Memory Manager, which
is responsible for handling the page fault (when it occurs) and actually obtain-
ing data via the page fault path from the file system driver.

• The Cache Manager performs a simple copy operation from the system cache
(using the mapped view of the file) to the buffer sent in by the caller. If data
is already available in the system cache, the copy operation will immediately
complete. Otherwise, a page fault will occur, and the page fault handler in
the Virtual Memory Manager obtains the data from disk or from across the net-
work. Note that this results in a recursive operation into the file system driver.

Cache Manager Interfaces _____________________________________ .297

The Cache Manager returns the total number of bytes successfully transferred in
the Information field in the loStatus parameter.

CcCopyWriteO/CcFastCopyWriteQ
BOOLEAN
CcCopyWrite (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN PVOID Buffer

VOID
CcFastCopyWrite (

IN PFILE_OBJECT FileObject,
IN ULONG FileOffset,
IN ULONG Length,
IN PVOID Buffer

);
Resource Acquisition Constraints:

The FCB for the file must be acquired exclusively before invoking either of the
two routines. This allows only a single thread to be able to access the file stream
and modify it.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread. Caching must have been previously
initiated by the file system driver on this file object.

Note that if the file system driver has not initiated caching prior to invoking
the CcCopyWrite () / CcFastCopyWrite () routines, an exception will
be generated, since the Cache Manager assumes that the private cache map
and shared cache map structures exist and have been initialized correctly.

FileOffset
This is the starting offset in the file, from where the modification operation
should be performed.

For the CcCopyWrite () routine, the starting offset can be anywhere within the
allowable range for file offsets, which is a 64-bit quantity. However, the CcFast-
CopyWrite () routine expects the entire range being modified (starting offset +
number of bytes) to be contained within 4GB (maximum range allowable for a
32-bit offset).

298_______________________________Chapter 7: The NT Cache Manager II

Length
This is the number of bytes to be modified.

Wait
This argument is only accepted by the CcCopyWrite () routine. The caller
can decide whether blocking for disk I/O is acceptable or not. For example,
in order to modify a byte range in memory, free pages are required. To free
up physical memory, some data may have to be transferred to disk. This
involves disk (or network) I/O, which is a blocking operation. Similarly, if a
page is being partially modified, the previous contents of the page must
already be present in memory. If not, then the data has to be read off
secondary storage. This, too, is a blocking operation.

If Wait is specified as FALSE to the CcCopyWrite () routine and blocking
becomes necessary, the routine returns FALSE to the caller.*

The CcFastCopyWrite () routine assumes that the caller is prepared to
block to achieve the data transfer; i.e., the (implied) value of Wait is TRUE.

If the file stream was opened for write-through operations, data will have
been flushed to secondary storage media before this call returns. By defini-
tion, this call therefore will block and hence the Wait argument must be
TRUE in this case. Otherwise, a return value of FALSE will result and no data
transfer will occur.

Buffer
This argument contains a pointer to the buffer from which the copy operation
should be performed. If the buffer pointer becomes invalid (once the Cache
Manager is invoked), an exception will be raised by the Cache Manager.

Functionality Provided:

The CcCopyWrite () and the CcFastCopyWrite () functions are similar to
their read counterparts. They are responsible for transferring modified data from
the user's buffer into the system cache.

As mentioned above in the case of the routines providing read functionality, the
primary difference between the CcCopyWrite () and CcFastCopyWrite ()
routines is that the latter routine assumes the caller is always prepared to block in
the context of the requesting thread. The requesting thread may have to block
due to any one of the following reasons:

If FALSE is returned, the caller should assume that none of the data has been transferred.

Cache Manager Interfaces_____________________________________299

• In the case of partial write requests,* data may first have to be obtained from
disk (or from across the network) before it can be modified.

• The file stream may have been opened with write-through mode specified
(the FO_WRITE_THROUGH flag was set in the file object structure). In this
case, modified data will be physically written out to disk (or across the net-
work) before either of these two routines return control back to the caller.
Note that writing to disk is a blocking operation, since it involves a recursive
call back into the file system driver (which will then forward the request to
the disk drivers/network drivers responsible for the actual transfer of data).

• There may not be a sufficient number of available, unmodified pages of physi-
cal memory to contain the new data before it can be lazy-written to disk. To
create space in memory for the data, the Virtual Memory Manager has to flush
out other previously modified data to disk, discard the data, and reallocate
the physical pages to contain the newly modified bytes.

If CcCopyWrite () is used, the caller can specify whether blocking is accept-
able. If the caller is not prepared to block and data transfer cannot be
immediately completed, the routine returns a FALSE status.

The CcFastCopyWrite () routine expects that the starting and ending offsets
for the entire request are contained within a 32-bit quantity. It also assumes that
the caller is prepared to block until the write operation can be successfully
completed.

Just as in the case of CcCopyRead () described previously, an invalid buffer
being passed in to the Cache Manager results in an exception condition being
raised. Similarly, any errors encountered in either obtaining original data from
secondary store (in the case of a partial write operation) or in writing the new
data out (if write-through mode had been specified) will cause an exception to be
raised. The exception values include the following:

STATUS_INVALID_USER_BUFFER
This exception is raised if the user buffer is invalid or becomes invalid while
the request is being processed.

* A partial write (as used in this context) is a write operation that does not begin and end on whole page
boundaries. Note that the smallest unit of physical memory manipulated by the VMM is a page. The con-
tents of a page are marked as either valid or not valid. It is too expensive for the VMM to keep track of
valid ranges within a page. If an entire page is being overwritten (in a write request), the VMM optimizes
by not obtaining the original byte range from secondary store—if the old data was not already present in
memory. Instead, the VMM simply materializes an empty (zeroed) page into which the new data can be
transferred and subsequently, the new contents of the page are marked as valid. If, however, an entire
page is not being modified, the VMM must ensure that the original contents of the page have been
brought into memory before the modification of a subset of the appropriate byte range is allowed to pro-
ceed. Transferring the affected byte range into memory from secondary storage (if it is not already
present) is an expensive operation.

300_______________________________Chapter 7: The NT Cache Manager II

STATUS_UNEXPECTED_IO_ERROR or STATUS_IN_PAGE_ERROR
One of these two exceptions is raised if the Cache Manager received an error
from the VMM when requesting data transfer. Note that the data transfer
requested by the Cache Manager could be a read operation (in the event that
the write request is a partial write), or it could be the attempt to write out the
contents of the caller-supplied buffer.

STATUS_INSUFFICIENT_RESOURCES
This exception is raised if the Cache Manager could not allocate required
memory to complete the request.

The implementation of both routines is similar to that for the read case described
earlier:

• The Cache Manager determines if a mapped view for the desired range exists.
If no such view exists, the Cache Manager creates such a view.

• The write request may either be contained completely within a page or span
multiple pages. For those pages whose contents are being completely over-
written, the Cache Manager recognizes that obtaining the original contents
from disk (for the byte range associated with the pages) is not required.
Therefore, the Cache Manager requests zeroed pages from the VMM (using a
special call provided by the VMM) and transfers the new data there. For those
pages that are not being completely overwritten, the Cache Manager will per-
form a simple copy operation from the user's buffer into the virtual address
space associated with the mapped view.
Note that as a result of the copy operation, a page fault may occur if the byte
range being modified is not already present in physical memory. The Virtual
Memory Manager will resolve the page fault by bringing the original contents
(for the byte range) from disk and restarting the copy operation. The copy
operation should then complete successfully.

CcCanlWriteQ

This routine is defined as follows:

BOOLEAN
CcCanlWrite (

IN PFILE_OBJECT FileObject,
IN ULONG BytesToWrite,
IN BOOLEAN Wait,
IN BOOLEAN Retrying

Cache Manager Interfaces_____________________________________301

Resource Acquisition Constraints:

If Wait is TRUE, the file system should ensure that no resources have been
acquired. Otherwise, the caller can choose to have the FCB resources unowned,
or acquired shared or exclusively.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread.

BytesToWrite
This is the number of bytes to be modified.

Wait
This argument is used by the Cache Manager to determine whether the caller
is prepared to wait in the routine until it is acceptable for the caller to be
allowed to perform the write operation.

Retrying
The file system may have to keep requesting permission to proceed with a
write operation (if Wait is supplied as FALSE) until it is allowed to do so.
This argument allows the file system to notify the Cache Manager if it had
previously requested permission for the same write request or if the current
instance was the first time permission was being requested for the specific
write operation.

Functionality Provided:

This routine is part of a group of routines that allow the file system to defer
executing a write request until it is appropriate to do so. There are a number of
reasons why deferring a write operation is necessary. They include the following:

• The file system may need to restrict the number of dirty pages outstanding for
each file stream at any time. This allows the file system to ensure that cached
data for other file streams does not get discarded to make space for data
belonging to a single file stream. Such a situation may arise if a process keeps
modifying data for a specific file stream at a very fast rate.

• The Cache Manager tries to keep the total number of modified pages within a
certain limit, for all files that have their data cached. This helps ensure that a
sufficient number of free pages are available for other purposes, including
memory for loading executable files, memory-mapped files, and memory for
other system components.

• The Virtual Memory Manager sets certain limits on the maximum number of
dirty pages within the system (based upon the total amount of physical mem-

302_______________________________Chapter 7: The NT Cache Manager II

ory present on the system). If the write operation causes the limit to be
exceeded, the VMM would rather defer the write until the modified page
writer has flushed some of the existing dirty data to disk.

In order to assist the Cache Manager and the Virtual Memory Manager in
managing physical memory optimally, the file system driver can use the CcCanl-
Write () routine to determine whether the current write operation should be
allowed to proceed. Use of this routine is optional.

The Wait argument allows the file system to specify whether the thread can be
blocked until the write can be allowed to proceed. If Wait is FALSE and the write
operation should be deferred, the routine returns FALSE. The file system can then
determine an appropriate course of action—this might be to postpone the opera-
tion using the CcDef erWrite () routine described next in this section.

Setting Wait to TRUE causes the Cache Manager to block the current thread (by
putting it to sleep) until the write can be allowed to proceed. Note that the file
system should ensure that no resources are acquired by the thread, since this may
lead to a system deadlock.

The Retrying argument allows a file system to notify the Cache Manager
whether permission is being requested either for the first time or in the case when
permission had been previously requested (and denied) at least once before. If
set to TRUE, the Cache Manager assigns a slightly higher priority to the current
request while determining whether it should be allowed to proceed or not (e.g., if
two write requests are pending and one of them is being retried, the Cache
Manager will try to allow the one being retried to proceed first). Note, however,
that there are no guarantees to ensure that a request being retried will indeed be
allowed to proceed before other new requests.

Conceptually, the functionality provided by the Cache Manager in this routine is
fairly simple:

• First, check whether the current write operation can proceed based upon crite-
ria including whether the outstanding number of dirty pages associated with a
file stream has been exceeded, whether the total number of dirty pages in the
system cache has exceeded some limit, or whether the Virtual Memory Man-
ager needs to block this write until enough unmodified pages are available in
the system.

• If the write operation can proceed, return TRUE.

• Otherwise, if Wait is set to TRUE, put the current thread to sleep until the
write operation can be allowed to proceed. Once the thread is awakened
from the sleep, return TRUE. However, if Wait is FALSE, return FALSE imme-
diately.

Cache Manager Interfaces_____________________________________303

Note that a value of TRUE, if returned by this function, does not guarantee that
conditions will continue to remain amenable to performing the write operation.
Therefore, it is quite possible that CcCanlWrite () returns TRUE but by the time
the write operation is actually submitted, conditions have changed (other writes
may have caused many more pages to become dirty) such that the current write
should really be deferred. However, since correctness of the operation is not
affected, the caller should not really worry about this possible race condition.

To ensure that no other thread sneaks in to perform a write and thereby increase
the number of outstanding modified pages, your FSD can acquire the FCB for the
file stream exclusively before invoking CcCanlWrite (). However, Wait should
then be set to FALSE.

CcDeferWriteQ
VOID
CcDeferWrite (

IN PFILE_OBJECT FileObject,
IN PCC_POST_DEFERRED_WRITE PostRoutine,
IN PVOID Contextl,
IN PVOID Context2,
IN ULONG BytesToWrite,
IN BOOLEAN Retrying

);
where:
typedef
VOID (*PCC_POST_DEFERRED_WRITE) (

IN PVOID Contextl,
IN PVOID Context2

);
Resource Acquisition Constraints:

No resources should be acquired before invoking this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread.

PostRoutine
The routine to be invoked whenever it is appropriate for the current write
request to proceed. Typically, this is a recursive call into the file system write
routine.

304_______________________________Chapter 7: The NT Cache Manager II

Contextl and Context2
These are arguments that the PostRoutine will accept. Typically, if the post
routine is the same as the generic write routine, these arguments are the
DeviceObject and the IRP (for the current request).

BytesToWrite
This is the number of bytes being modified.

Retrying
This allows the file system to specify whether the check (should the write be
allowed to proceed?) is being performed for the first time or has already been
performed before.

Functionality Provided:

This routine is part of a group of routines that allows the file system to defer
executing a write request. As discussed earlier, the CcCanlWrite () routine
allows a file system driver to query the Cache Manager to see if the current write
request can proceed immediately. If the CcCanlWrite () routine returns FALSE,
the file system can use the CcDeferWrite () routine to queue the write until it
is appropriate for it to proceed.

The PostRoutine argument allows the file system to specify the routine that
will perform the actual write operation when invoked. It is quite possible that the
Cache Manager might choose to invoke the post routine immediately (in the
context of the thread invoking the CcDeferWrite () routine). Typically,
however, the post routine is invoked asynchronously whenever a sufficient
number of dirty pages have been flushed to disk.

CcSetReadAheadGranularityO
VOID
CcSetReadAheadGranularity (

IN PFILE_OBJECT FileObject,
IN ULONG Granularity

) ;
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread.

Cache Manager Interfaces_____________________________________305

Granularity
This is the new granularity to be used in determining the number of addi-
tional bytes obtained by the read-ahead thread.

Functionality Provided:

The default read-ahead size is PAGE_SIZE. This simple routine allows the file
system to determine an appropriate read-ahead granularity for a file stream. The
new granularity should be a power of two and should be greater than or equal to
the PAGE_SIZE value.

CcScheduleReadAheadQ
VOID
CcScheduleReadAhead (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length

);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread.

FileOffset
This is the offset from which the last read was initiated.

Length
This is the number of bytes requested in the last read operation.

Functionality Provided:

The CcScheduleReadAhead () routine is shared by both the copy interface
and the MDL interface. This routine allows the file system to request that read-
ahead be performed (if appropriate) for a file stream.

Using this routine is optional, since read-ahead is automatically initiated by the
Cache Manager (unless the file system has requested that read-ahead be disabled
for a specific file stream) whenever a read operation is performed, using either
the copy interface or the MDL interface. However, this routine allows a file system
to initiate read-ahead itself whenever required.

The FileOffset and Length arguments typically describe a read operation
that has just been completed (in the case of an MDL read, the read operation may
have just been initiated). Since it has been determined empirically by Windows

306______________________________Chapter 7: The NT Cache Manager II

NT designers that the read-ahead implementation on Windows NT is not particu-
larly beneficial when the original read request is fairly small (performance might
actually degrade in some cases where read-ahead is inappropriately invoked), the
file system typically does not invoke the read-ahead routine directly. Instead, the
file system can use the following system-defined macro to initiate read-ahead if
required:

•define CcReadAhead(FO,FOFF,LEN) { \
if ((LEN) >= 256) { \

CcScheduleReadAhead((FO),(FOFF),(LEN)); \
} \

}
Whether read-ahead is actually performed depends on the following factors:

• If the file stream had been opened for sequential access, the Cache Manager
will typically read ahead aggressively to ensure that data is always present in
the cache to satisfy the (expected) next read operation.

• Even if the file stream is not open for sequential access, the Cache Manager
maintains information, associated with the file stream, that allows it to deter-
mine the pattern of data access. If data is currently being accessed sequen-
tially or if data is being accessed in a certain recognizable pattern, the Cache
Manager will again attempt to read ahead enough data to satisfy the next read
operations from the system cache.

The set of routines comprising the copy interface are the most commonly used by
file systems when accessing cached data for file streams. Consult Part 3, as well as
the accompanying diskette, for code fragments that illustrate the usage of these
routines.

Pinning Interface
The pinning interface allows a client to map data into the system cache, lock the
data into the system cache if required, and subsequently manipulate the data
using a virtual address pointer. Data can be unpinned later when it is no longer
required. The following routines comprise the pinning interface.

CcMapDataQ
BOOLEAN
CcMapData (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
OUT PVOID *Bcb,
OUT PVOID *Buffer

Cache Manager Interfaces__307

Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread.

FileOffset
Data should be mapped in beginning at this offset in the file stream.

Length
This is the number of bytes that should be mapped into the system cache.

Wait
This is TRUE, if the caller wishes only that the data be mapped in (as
opposed to requiring that the data be physically present in the system cache),
otherwise, FALSE.

Bcb
If this routine returns a success code, a pointer to a Buffer Control Block
(BCB) structure (allocated by the Cache Manager) is returned in this argu-
ment. The memory allocated for the BCB structure is released by the Cache
Manager when the CcUnpinData () routine is invoked for the last time. The
BCB is also considered to be referenced whenever this routine is successfully
invoked. A corresponding invocation of CcUnpinData () will dereference
the BCB.

Buffer
This contains the virtual address of the mapped data (if the routine is
successful). The pointer is valid until a request to unmap or unpin the data is
made.

Functionality Provided:

The CcMapData () routine allows the caller to request that a range of bytes asso-
ciated with the file stream be mapped into the system cache. This range of bytes
will not be unmapped until a subsequent call to CcUnpinData () is made. If
successful, this routine returns two values:

• A pointer to a Buffer Control Block (BCB) structure. This pointer should be
used by the caller as context to be supplied to the Cache Manager on subse-
quent calls to manipulate the mapped buffer.

• A virtual address pointer representing the start of the mapped range.

Note that this routine simply maps in the desired byte range—no guarantees are
provided that the byte range will be pinned into memory. Therefore, it is entirely

Chapter 7: The NT Cache Manager II

possible that subsequent attempts to access the byte range may cause page faults
that will eventually result in the data being brought into memory from secondary
storage.

It is important to note that the caller must not use the returned buffer pointer to
modify the mapped range of bytes until a call either to CcPinMappedDataO or
CcPreparePinWrite () is made. Therefore, the caller can only use the
returned buffer pointer to read the mapped range until the range is pinned in
memory.

If Wait is TRUE, the Cache Manager will map the data into the cache and return.
In this case, the data does not need to be physically present in the cache. If Wait
is FALSE, the Cache Manager will return success only if the data is already physi-
cally present in the cache. The net result is that setting Wait to TRUE should
result in quicker turnaround from the Cache Manager, since it must only ensure
that data is mapped into the cache, as opposed to the alternative case, when the
Cache Manager must ensure that data is physically present.

It is quite possible that this routine may pin the data into memory before
returning a success code to the caller. However, the caller must be careful not to
depend on this behavior and to explicitly invoke an appropriate routine to pin
the mapped data when required.

Finally, the caller can invoke this routine multiple times for the same byte range.
However, a corresponding invocation to CcUnpinData () must be made for
each instance that the CcMapData () routine was successfully called.

CcPinMappedDataO
BOOLEAN
CcPinMappedData (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN OUT PVOID *Bcb

);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread.

Cache Manager Interfaces_____________________________________309

FileOffset
Data is mapped in beginning at this offset in the file stream.

Length
This is the number of bytes that were mapped into the system cache.

Wait
This is TRUE if the caller can block, waiting for data to be brought into the
system cache.

Bcb
When data was previously mapped into the system cache, a pointer to a BCB
structure was returned by the Cache Manager. That pointer must now be used
as context in this routine. It is quite possible that the Cache Manager might
allocate a new BCB when this routine is invoked, and therefore return a new
BCB pointer value to be used as context in subsequent calls for the pinned
byte range.*

Functionality Provided:

Upon successful return from the CcPinMappedData () routine, the caller can be
assured that the previously mapped data is now pinned in the system cache.
Now, the caller is also permitted to modify the pinned data. However, if modifica-
tions are performed, the caller must inform the Cache Manager by using the
CcSetDirtyPinnedData () routine, described later.

The CcPinMappedData () routine will not do anything and simply return
success if any of the previous invocations to CcMapData () resulted in data
being pinned in the system cache. Similarly, since it is legitimate to invoke the
CcPinMappedData () routine multiple times for the same file stream, this
routine will simply return a success if the requested byte range has been pinned
before.

This routine is used only to pin previously mapped data. As was mentioned
earlier, a successful return from a call to CcMapData () requires that a subse-
quent call to CcUnpinData () be made. However, note that no additional calls
to CcUnpinData () are required if the CcPinMappedData () routine is success-
fully invoked for previously mapped data. Therefore, the following rules should
be followed in this regard:

• If you invoke CcMapData () successfully for a specific byte range, you must
subsequently invoke CcUnpinData () .

* If a new BCB pointer value is returned from this call, you (the caller) should assume that the old BCB
has been dereferenced and deallocated.

310 Chapter 7: The NT Cache Manager II

• If you invoke CcMapData () and then you use CcPinMappedData () , you
will invoke CcUnpinData () only once, to correspond to the CcMapData ()
call. Specifically, you should not invoke CcUnpinData () twice.

• If you invoke CcMapData () more than once for the same byte range (i.e.,
using the same BCB pointer), you must invoke CcUnpinData () for each
instance when CcMapData () was successfully invoked.

• Regardless of the number of times you invoke CcPinMappedData () for the
same byte range (i.e., using the same BCB pointer), you do not have to
invoke CcUnpinData () to correspond to any of these calls (since the calls
are effectively turned into NULL operations).

CcPinReadQ
BOOLEAN
CcPinRead (

IN PFILE_OBJECT
IN PLARGE_INTEGER
IN ULONG
IN BOOLEAN
OUT PVOID
OUT PVOID

FileObject,
FileOffset,
Length,
Wait,
*Bcb,
*Buffer

Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread. The caller should have initialized
caching for the file stream using this file object.

FileOffset
The caller wishes to have data pinned in memory beginning at this file offset.

Length
This is the number of bytes that should be pinned in the system cache.

Wait
This is TRUE if the caller can block, waiting for data to be brought into the
system cache.

Bcb
If this routine returns a success code, a pointer to a BCB structure (allocated
by the Cache Manager) is returned in this argument. The BCB structure must
be used as context when invoking other routines for the buffer returned

Cache Manager Interfaces_____________________________________311

below. The memory allocated for the BCB structure is released by the Cache
Manager when the CcUnpinData () routine is invoked for the last time.

Buffer
This contains the virtual address of the mapped data (if the routine is
successful). The pointer is valid until a request to unmap or unpin the data is
made.

Functionality Provided:

A call to CcPinRead () is functionally equivalent to calling CcMapData ()
followed by a call to CcPinMappedData () . The net result is that the requested
byte range is pinned in the system cache. The caller is allowed to modify the byte
range that is pinned, as long as the caller informs the Cache Manager that data
has been modified (via the CcSetDirtyPinnedData () call).

The CcPinRead () routine returns TRUE if it successfully pins the requested byte
range in the system cache. If successful, the routine also returns the following
(just as in the case of the CcMapData () routine described earlier):

• A pointer to a Buffer Control Block (BCB) structure. This pointer should be
used by the caller as context to be supplied to the Cache Manager on subse-
quent calls to manipulate the pinned buffer.

• A virtual address pointer representing the start of the pinned range.

If the Wait argument is set to FALSE, the CcPinRead () routine checks to see if
the requested byte range is immediately available in the system cache. If the byte
range is not present in the system cache, the routine will return an unsuccessful
(FALSE) return code. However, if data is immediately available or if Wait is
supplied as TRUE, this routine returns success.

This routine may be invoked multiple times for the same byte range belonging to
the same file stream. However, each successful invocation of CcPinRead () must
be later followed by a corresponding call to CcUnpinData () .

CcSetDirtyPinnedDataO
VOID
CcSetDirtyPinnedData (

IN PVOID Bcb,
IN PLARGE_INTEGER Lsn OPTIONAL

);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

312_______________________________Chapter 7: The NT Cache Manager II

Parameters:

Bcb
This is the BCB pointer used as context. This pointer was obtained from a
previous invocation to either CcPinMappedData () or CcPinRead () .

Lsn
This is a Logical Sequence Number (LSN)* associated with this dirty data.

Functionality Provided:

Once data has been pinned in memory using either CcPinRead () or CcPin-
MappedData () , the file system is free to modify the data. However, once this
data is modified, the Cache Manager must be informed that the byte range
contains dirty (modified) data that has yet to be written to secondary media. The
file system uses CcSetDirtyPinnedData () to inform the Cache Manager that
the pinned data has been modified.

In the descriptions for CcPinMappedData () and CcPinRead () , it's mentioned
that the BCB pointer returned by the Cache Manager should be used as context
when invoking the Cache Manager to perform operations on the pinned byte
range. The CcSetDirtyPinnedData () routine also requires the BCB pointer,
so that the Cache Manager can identify the byte range that has to be marked dirty.

The Cache Manager allows the file system to request that a Logical Sequence
Number (LSN) be associated with the modified, pinned byte range. If your driver
wishes to associate a unique number with the pinned byte range, it can pass in
the optional second argument to the Cache Manager. This number can be used to
determine the sequence in which data is eventually written to secondary media.

When CcSetDirtyPinnedData () is invoked, the Cache Manager marks as
dirty the BCB for the pinned byte range. This call also results in the lazy-writer
thread being signaled if the lazy writer is not currently active. In time, the lazy-
writer component will write the modified data out to secondary storage. There are
two important points that must be noted here:

• No I/O is attempted in the context of the thread invoking this routine.

* NT provides a Log File Service (LFS) component that can be used by file systems or other modules (ap-
parently, the LFS has yet to be extended to become generically usable by components other than kernel-
mode file systems). This component provides logging and recovery services to users. Currently, NTFS is
the only client of the Log File Service. The LFS provides logging and recovery services to NTFS, via the
use of log files associated with file objects. Records written by the LFS to the log files are identified using
Logical Sequence Numbers (LSNs). These LSNs are used in a monotonically increasing fashion, and the
file system can identify the oldest record describing a transaction that has not yet been updated on sec-
ondary media using the Logical Sequence Number associated with this record. The Cache Manager pro-
vides the service where a client can associate a Logical Sequence Number with a byte range that has been
pinned in memory.

Cache Manager Interfaces__________________ _____ ____ 373

• None of the data that is pinned in memory will ever be written until it is
unpinned (and no other references to pin the data are outstanding). There-
fore, all data that is dirty and pinned will have to wait until it is completely
unpinned before it can either be explicitly flushed or lazy-written to second-
ary storage.

Finally, if the byte range being marked dirty extends beyond current valid data
length, the Cache Manager updates the valid data length for the file stream. At
some point, the Cache Manager will then inform the file system that the valid data
length for the file stream has been changed.

CcPreparePin WriteQ
BOOLEAN
CcPreparePinWrite (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Zero,
IN BOOLEAN Wait,
OUT PVOID *Bcb,
OUT PVOID *Buffer

) ;
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread. The caller should have initialized
caching for the file stream via this file object.

FileOffset
The caller wishes to have data pinned in memory beginning at this file offset.
The caller will then begin writing the byte range, presumably beginning at
this offset.

Length
This is the number of bytes that should be pinned in the system cache.

Zero
If TRUE, the Cache Manger will zero out the contents of the buffer before
returning successfully from this routine.

Wait
This is TRUE if the caller can block, waiting for data to be brought into the
system cache.

314_______________________________Chapter 7: The NT Cache Manager II

Bcb
If this routine returns a success code, a pointer to a BCB structure (allocated
by the Cache Manager) is returned in this argument. The BCB structure must
be used as context when invoking other routines for the buffer returned
below. The memory allocated for the BCB structure is released by the Cache
Manager when the CcUnpinData () routine is invoked for the last time.

Buffer
This contains the virtual address of the mapped data (if the routine is
successful). The pointer is valid until a request to unmap or unpin the data is
made.

Functionality Provided:

The CcPreparePinWrite () is used when the file system knows that it will
modify a byte range for the file stream. Upon successful completion of this call,
the file system can immediately begin transferring data into the buffer reserved for
the byte range.

Functionally, this call is similar to the CcPinRead() routine; the Cache Manager
maps in the desired byte range and then ensures that data is present in memory.
If Wait is set to FALSE and the Cache Manager cannot return all the data
requested within the byte range, the Cache Manager will return FALSE from this
routine. However, if either Wait is set to TRUE or all the requested data is imme-
diately available in the cache, the Cache Manager will pin the requested byte
range in memory and return TRUE to the caller.

As a user of this routine, you should be aware of an important optimization
performed by the Cache Manager: if the requested byte range contains pages that
will be completely overwritten, the Cache Manager will not bother to read the
original data contained in those pages from secondary media. Instead, the Cache
Manager simply returns zeroed pages. Therefore, the caller of this routine must be
careful not to use the CcPreparePinWrite () call in lieu of the CcPinReadO
routine, since the buffer returned by the latter can indeed have data read from it.
However, the buffer returned by CcPreparePinWrite () must only be used to
transfer new data to secondary media.

Just as was described for the CcPinRead () routine, this function returns the
following:

• A pointer to a Buffer Control Block (BCB) structure. This pointer should be
used by the caller as context to be supplied to the Cache Manager on subse-
quent calls to manipulate the pinned buffer.

• A virtual address pointer representing the start of the pinned range.

Cache Manager Interfaces _____________________________________ 375

This routine may be invoked multiple times for the same byte range belonging to
the same file stream. However, each successful invocation of CcPreparePin-
Write () must be later followed by a corresponding call to CcUnpinData () .

If Zero is set to TRUE, the Cache Manager will zero out the entire buffer before
returning from this routine. Finally, the buffer returned by the Cache Manager is
marked as dirty (internally). Therefore, at some time, the lazy-writer thread will
begin writing the contents of the buffer to secondary storage. However, as noted
in the description for CcSetDirtyPinnedData () , the modified byte range will
be written to disk only after it has been unpinned.

CcUnpinDataQ/CcUnpinDataForThreadO
VOID
CcUnpinData (

IN PVOID Bcb

VOID
CcUnpinDataForThread (

IN PVOID Bcb,
IN ERESOURCE_THREAD ResourceThreadld

);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with these
routines.

Parameters:

Bcb
BCB pointer used as context. This pointer was obtained from a previous invo-
cation to CcMapData () , CcPinRead () , or CcPreparePinWrite () .

ResourceThreadld
This is only used in CcUnpinDataForThread () . It identifies the thread
performing the operation.

Functionality Provided:

It is extremely important that each successful invocation of CcMapData () ,
CcPinRead(), and CcPreparePinWrite () be followed by a corresponding
call to CcUnpinData () ; this should be done after the operation requiring that
data be pinned has been completed. This routine simply unpins (unlocks) the
byte range from the system cache.

The byte range is unmapped from memory only after all invocations of CcUnpin-
Data () have been made — one for each invocation of CcMapData () ,
CcPinReadO, or CcPreparePinWrite () . Data that was modified in the

316______________________________Chapter 7: The NT Cache Manager II

system cache and has been marked dirty will be written to secondary storage by
the lazy-writer thread after the BCB has been completely unmapped. Note that no
I/O is performed in the context of the thread invoking the CcUnpinData ()
routine (all I/O will be performed asynchronously). This can be a problem when
the client (file system driver) needs to ensure that all data has indeed been
written to secondary storage when the BCB has been completely unmapped
(unpinned). A solution to this problem is described later (see CcUnpin-
RepinnedBcb ()) .

Functionally, there is no difference between the CcUnpinData () and the CcUn-
pinDataForThread () routines.

CcRepinBcbQ
VOID
CcRepinBcb (

IN PVOID Bcb
);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

Bcb
This is the BCB pointer used as context. This pointer was obtained from a previous
invocation to either CcMapData () , CcPinRead () , or CcPreparePin-
WriteO.

Functionality Provided:

After the BCB has been completely unpinned (i.e., CcUnpinData () has been
invoked for each successful invocation of CcMapData () , CcPinRead () , or
CcPreparePinWrite ()) , the modified data will be asynchronously written to
disk via the lazy-writer module. However, this presents a problem for file streams
that have also been opened by users with write-through access specified (F0_
WRITE_THROUGH set in the flags for the associated file object).

Since the user requires that the data be synchronously written to disk, file systems
have to ensure that such write-through functionality is indeed performed before
returning to the requesting user process. To ensure this, file systems use the
CcRepinBcb () and the CcUnpinRepinnedBcb () routines.

The CcRepinBcb () routine simply references the BCB an additional time. This
ensures that the BCB will not be deleted when a subsequent call to CcUnpin-
Data () is made.

Cache Manager Interfaces______________________________ 317

NOTE The BCB is deleted only after all references to the BCB are re-
moved. Typically, a BCB is referenced when one of the Cc-
MapRead () , etc. routines are invoked. The reference is only
removed when CcUnpinData () is subsequently called.

The significance of this operation is explained below (see CcUnpinRe-
pinnedBcb ()) .

CcUnpinRepinnedBcbQ
VOID
CcUnpinRepinnedBcb (

IN PVOID Bcb,
IN BOOLEAN WriteThrough,
OUT PIO_STATUS_BLOCK loStatus

);
Resource Acquisition Constraints:

The caller must ensure that no client resources have been acquired when
invoking this routine (otherwise, a system deadlock is possible).

Parameters:

Bcb
This is the BCB pointer used as context. This pointer was obtained from a
previous invocation to either CcMapDataO, CcPinReadO, or to CcPre-
parePinWrite().

Wr i t eThrough
If set to TRUE, the Cache Manager will synchronously flush modified data to
secondary storage before returning from this call.

loStatus
This is set to STATUS_SUCCESS if WriteThrough is FALSE (i.e., since there
was nothing to flush synchronously, the return status must be STATUS_
SUCCESS). Otherwise, it returns the actual result of the flush operation.

Functionality Provided:

In the earlier description for CcUnpinData () , it's mentioned that modified,
pinned data will be asynchronously written to secondary storage by the lazy-
writer component of the Cache Manager when the BCB is completely unpinned/
unmapped. This happens after the reference count for the BCB structure is equal
to 0; i.e., for every successful invocation of CcMapDataO, CcPinReadO,
CcPreparePinWriteO, a corresponding invocation of CcUnpinData () has
been performed.

3/S______________________________Chapter 7: The NT Cache Manager II

Consider the case, however, when a user process that has opened the file stream
with write-through access makes a write request for the byte range that has been
pinned in memory. Alternatively, the user process may request a write-through
operation when the file system has pinned metadata for the file stream in memory
(metadata includes file stream date, time, and size information, along with other
information pertaining to the file stream). To perform write-through, the file
system must ensure that the data has been written to secondary storage before
control is returned to the user process.

The file system achieves this by using the CcRepinBcb {) and CcUnpinRe-
pinnedBcb () sequence of calls to the Cache Manager. The CcRepinBcb () call
adds a reference to the BCB structure, ensuring that the BCB will not be deleted
when CcUnpinData () is invoked (which will be done by the file system as part
of processing the user request). Subsequently, before completing the IRP
describing the user's write request (typically, the file system does this by
requesting that it be invoked by the I/O Manager before the IRP is completed),
the file system will invoke CcUnpinRepinnedBcb (). Note that the file system
must ensure that no resources have been acquired by the file system when this
routine is invoked.

If WriteThrough is set to TRUE by the file system, the Cache Manager will
synchronously write the modified data to secondary storage before returning from
the routine. This ensures that the resource acquisition hierarchy is maintained, yet
the file system can honor the user's desire for write-through operation.

Although there is a Cache Manager interface routine to flush cached data
(described in the next chapter), pinned buffers are not flushed when that routine
is invoked. Therefore, by using the method described here, the file system can
achieve its objective of ensuring synchronous flush/write-through of user data.

CcGetFileObjectFromBcbO
PFILE_OBJECT
CcGetFileObjectFromBcb (

IN PVOID Bcb
);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

Bcb
This is the BCB pointer used as context. This pointer was obtained from a
previous invocation to either CcMapData () , CcPinRead () , or to
CcPreparePinWrite().

Cache Manager Interfaces_____________________________________319

Functionality Provided:

The Cache Manager returns a pointer to the file object that was used when
caching was first initiated for the file stream. Note that the file object is not
returned referenced (i.e., the Cache Manager does not reference the file object
structure an extra time when returning a pointer to the structure from this routine)
and hence the Cache Manager cannot guarantee that the file object structure will
not be deallocated at any instant.

MDL Interface
The Memory Descriptor List (MDL) interface is used by clients of the Cache
Manager so that they can perform I/O directly into or out of the system cache.
This interface can be used concurrently with the copy interface; however, neither
the copy interface nor the MDL interface can be used in conjunction with the
pinning interface. The following routines comprise the MDL interface.

CcMdlReadQ
VOID
CcMdlRead (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
OUT PMDL *MdlChain,
OUT PIO_STATUS_BLOCK loStatuS

);
Resource Acquisition Constraints:

The FCB for the file must usually be acquired shared before invoking the routine
Acquiring the FCB exclusively will prevent multiple readers from being able to
concurrently access file data.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread. Caching must have been previously
initiated by the file system driver on this file object.

Note that if the file system driver did not initiate caching prior to invoking the
CcMdlRead () routine, an exception is generated, because the Cache
Manager assumes that the private cache map and shared cache map structures
exist and have been initialized correctly.

FileOffset
This is the starting offset in the file. This offset denotes the file position from
which the data will be transferred from the system cache. Note that the Cache

320_______________________________Chapter 7: The NT Cache Manager II

Manager does not require that the starting offset be aligned on some
boundary (e.g., page boundary or sector boundary). However, the device that
eventually uses the returned MDL to perform data transfer may have certain
alignment restrictions that the caller should keep in mind.

Length
This is the number of bytes that will be transferred from the system cache.

MdlChain
If this routine does not generate an exception condition and if the status field
in the returned loStatus argument is set to TRUE, then the Cache Manager
will return a pointer to an allocated MDL, describing the requested byte range
in this field.

loStatus
The Cache Manager returns the status code for this operation—in the Status
field—as well as the number of bytes that are described by the MDL in the
Information field. Typically, if the CcMdlRead () routine does not
generate an exception condition, the Status field will be set to STATUS_
SUCCESS.

Functionality Provided:

The CcMdlRead () routine returns a Memory Descriptor List (MDL) that describes
physical pages allocated for the passed-in byte range. This allows the client to
read data directly from the system cache and write it either across the network or
to some secondary storage device (that typically supports DMA).

Note that the returned pages are locked; i.e., the specified byte range is guaran-
teed to continue to be backed by the physical pages described in the MDL. The
pages are available for reuse only after the caller invokes the CcMdlReadCom-
plete () routine to signify that the caller no longer has any use for the MDL.
Also note that the returned MDL is not necessarily mapped into the system virtual
address space. If the caller does require that the pages be mapped into the system
virtual address space, the caller can invoke the MmGetSystemAddress-
ForMdl () function to do so. (Note that MmGetSystemAddressForMdl () is
actually a macro defined in the ntddk.h header file.)

As part of creating an MDL describing the byte range (requested by the caller),
the Cache Manager ensures that data is physically present in the requested pages.
This is done by faulting the requested byte range into the system cache.

If this routine fails to allocate an MDL or if the data cannot be read-in, an exception
will be generated by this routine. Therefore, the client must ensure that an excep-
tion handler is prepared to handle any exceptions generated as a result of invoking

Cache Manager Interfaces_____________________________________321

this routine (a rare, though typical exception is STATUS_INSUFFICIENT_
RESOURCES).

CcMdlReadCompleteQ
VOID
CcMdlReadComplete (

IN PFILE_OBJECT FileObject,
IN PMDL MdlChain

);
Resource Acquisition Constraints:

There are no special resource acquisition constraints associated with this routine.

Parameters:

FileObject
This argument contains a pointer to the file object structure used when
CcMdlRead () was invoked.

MdlChain
This is the pointer to the MDL chain that was returned by the Cache Manager
when CcMdlRead () was invoked.

Functionality Provided:

Once the client has transferred data from the system cache using the MDL created
by the Cache Manager (see description of CcMdlRead ()) , the client must invoke
this routine to allow the Cache Manager to deallocate the MDL and unlock the
physical pages associated with the byte range.

If multiple calls to CcMdlRead () are made for different byte ranges for a file
stream, it is not necessary that the calls to CcMdlReadComplete () be made in
the same order (or in any particular order) to release the various MDL chains.
However, to avoid serious memory leaks, among other problems, the client must
ensure that a call to CcMdlRead () is always followed by a corresponding call to
CcMdlReadComplete().

CcPrepareMdlWriteQ
VOID
CcPrepareMdlWrite (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
OUT PMDL *MdlChain,
OUT PIO_STATUS BLOCK loStatus

322 Chapter 7: The NT Cache Manager II

Resource Acquisition Constraints:

The FCB for the file must at least be acquired shared before invoking the routine.
Typically, the FCB for the file stream is acquired exclusively by the file system to
ensure that data consistency is maintained.

Parameters:

FileObject
This argument contains a pointer to the file object structure representing the
open operation performed by the thread. Caching must have been previously
initiated by the file system driver on this file object.
Note that if the file system driver has not initiated caching prior to invoking
the CcPrepareMdlWrite() routine, an exception is generated, because the
Cache Manager assumes that the private cache map and shared cache map
structures exist and have been initialized correctly.

FileOffset
This is the starting offset in the file. This offset denotes the file position at
which the data will be transferred into the system cache. Note that the Cache
Manager does not require that the starting offset be aligned on some
boundary (e.g., page boundary or sector boundary). However, the device that
eventually uses the returned MDL to perform data transfer may have certain
alignment restrictions that the caller should keep in mind.

Length
This is the number of bytes that will be transferred into the system cache.

MdlChain
If this routine does not generate an exception condition and if the status field
in the returned loStatus argument is set to TRUE, then the Cache Manager
will return a pointer to an allocated MDL, describing the requested byte range
in this field.

loStatus
The Cache Manager returns the status code for this operation in the Status
field, as well as the number of bytes that are described by the MDL in the
Information field. Typically, if the CcPrepareMdlWrite () routine does
not generate an exception condition, the Status field will be set to STATUS_
SUCCESS.

Functionality Provided:

The CcPrepareMdlWrite () routine is analogous to the CcMdlReadO routine
in that it returns a list of locked physical pages that can subsequently be used by
the client to transfer data directly into the system cache. Typically, data is trans-

Cache Manager Interfaces_____________________________________323

ferred directly from across the network or from a secondary storage device that
supports DMA.

The pages comprising the returned MDL are guaranteed to be resident (locked in
memory) until the caller invokes the CcMdlWriteComplete () routine to
signify that data has been transferred into the system cache. Just as in the case of
CcMdlRead () , the caller must not assume that the pages backing the requested
byte range have been mapped into system virtual address space. However, the
caller may choose to map these pages into the system virtual address space explic-
itly as a separate step.

Since the Cache Manager assumes that the byte range for which an MDL has been
requested will be modified by the caller, the Cache Manager tries to optimize for
the case when entire pages are being overwritten by returning zeroed pages
instead of attempting to fault the original data into the system cache. Typically
this is done only when the requested byte range extends beyond the current valid
data length.*

If this routine fails to allocate an MDL or if the data cannot be read in, it will
generate an exception. Therefore, the client must ensure that an exception
handler is prepared to handle any exceptions generated as a result of invoking
this routine (a rare exception is STATUS_INSUFFICIENT_RESOURCES; this
exception would be raised if the Cache Manager could not allocate an MDL or
some other similar scenario).

CcMdlWriteCompleteO
VOID
CcMdlWriteComplete (

IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN PMDL MdlChain

);
Resource Acquisition Constraints:

The caller must ensure that no client resources have been acquired when
invoking this routine, or a system deadlock is possible.

* Though the Cache Manager could further optimize for the case when entire pages are presumably being
overwritten by returning zeroed pages spanning a byte range contained within current valid data length,
it appears as though the Cache Manager does not do so. One possible explanation for this is the fact that
if the write operation does not successfully complete, the Cache Manager would then overwrite perfectly
valid data with zeroes! The conservative option, in this case, is to fault in all data that is contained within
the current valid data length for the file and to return zeroed pages only for that portion of the byte range
that extends beyond the valid data length.

324_______________________________Chapter 7: The NT Cache Manager II

Parameters:

FileObject
This argument contains a pointer to the file object structure used when
CcPrepareMdlWrite () was invoked.

FileOffset
This is a starting offset passed in to the CcPrepareMdlWrite () routine.

MdlChain
This is the pointer to the MDL chain that was returned by the Cache Manager
when CcPrepareMdlWrite () was invoked.

Functionality Provided:

After data has been transferred into the system cache following a call to CcPre-
pareMdlWrite (), the client must invoke the CcMdlWriteComplete () routine
to inform the Cache Manager that it is now safe to unlock the pages comprising the
MDL. In turn, the Cache Manager will unlock the pages backing the requested byte
range and also ensure that the modified data is written to disk.

If the file stream was opened with write-through specified, the Cache Manager
will not return control from this routine until the data has been written to
secondary storage. In this case, any error in writing the data out to media is
returned in the form of a raised exception. However, if the file stream was not
opened for write-through access, the Cache Manager simply initiates an asynchro-
nous write operation via the lazy writer component. This data will then be written
to disk at a later time.

In order to avoid system deadlock (especially in the case where write-through has
been specified), it is extremely important that this routine be invoked with none
of the client's resources acquired.

In the next chapter, we will continue our detailed exploration of the Cache
Manager and examine issues related to termination of caching, flushing and
purging of file streams, cleanup and close operations, and truncation of cached
streams. We'll also review the interaction of the Cache Manager with the Virtual
Memory Manager, the lazy-writer, and the read-ahead components of the Cache
Manager.

