
In this chapter:
• Functionality
• File Streams
• Virtual Block

Caching
• Caching During Read

and Write Operations
• Cache Manager

Interfaces
• Cache Manager

Some Important Data
Structures
File Size
Considerations

Manager Ivj

Although constant advances in storage technologies have led to faster and
cheaper secondary storage devices, accessing data off secondary storage media is
still much slower than accessing data buffered in system memory. Therefore, to
achieve greater performance with applications that manage large amounts of data
(e.g., with database management applications), it becomes important to have data
brought into system memory before it is accessed {read-ahead functionality), to
retain such information in memory until it is no longer needed {caching of data),
and possibly to defer writing of modified data to disk to obtain greater efficiency
(write-behind or delayed-write functionality).

Most modern operating systems provide support for some form of file data
caching.* This task is traditionally performed by individual file systems or by
modules such as the systemwide buffer cache on UNIX systems. In the Windows
NT operating system, the NT Cache Manager encapsulates the functionality
required to cache file data.t In order to perform this task, the Cache Manager inter-
acts with file system drivers and with the NT Virtual Memory Manager. The Cache
Manager is an integral component of the Windows NT environment. By simply
using Windows NT to access file data, each of us utilizes the services provided by
the Cache Manager. If our requests to access data seem to be satisfied fairly
quickly, without even accessing the disk drive, we know that the Cache Manager

* Even the maligned Microsoft DOS environment featured the (in)famous SmartDrive caching module.
t Actually, the Cache Manager caches byte streams (without interpretation), which can be stored on disk
using any layout defined by the file system. Therefore, file system metadata can also be cached by the
NT Cache Manager.

243

244_______________________________Chapter 6: The NT Cache Manager 1

worked hard to preread our data into system memory. If requests to copy files or
modify them return almost instantaneously, it is probably because the modified
data was buffered in memory. When we notice that the hard disk shows activity
periodically (every few seconds), we realize that modified data is being lazy-
written to disk. And finally, when we lose data as a result of a system crash, it is
quite evident that the Cache Manager must be to blame.*

In this chapter, as well as in the next two, I will present the NT Cache Manager in
detail, focusing on the responsibilities of the Cache Manager, the methodology
used by it to buffer data, and also the interactions of the Cache Manager with the
NT file system drivers and the NT Virtual Memory Manager.

Functionality
The NT Cache Manager is a distinct component of the NT Executive, and it is
closely affiliated with the Virtual Memory Manager.

It provides a consistent systemwide cache for data stored on secondary storage
devices.

This cache is managed in conjunction with the appropriate file system drivers,
and with the cooperation of the Virtual Memory Manager and the I/O
Manager.

It performs read-ahead on file data.
The Cache Manager attempts to tune its read-ahead policy per file based on
the pattern of data access performed by user applications. Since all I/O
requests on buffered files get routed through the Cache Manager, the Cache
Manager can keep track of the access pattern for the data belonging to the
file. Therefore, if a user application reads (say) the first 10K bytes for a file,
the NT Cache Manager will typically try to read ahead the next 64K bytes of
the file into memory. Subsequently, if the application attempts to obtain this
data, it can simply be copied over from the system cache, thereby avoiding
making the user application wait until the data can be read from secondary
storage. For sequentially accessed files, the read-ahead functionality provided
by the Cache Manager can result in significant performance gains, since data
will have already been read into system volatile memory before the applica-
tion requests access to such data.

* By accepting (and requiring) greater throughput via caching in volatile system RAM, users accept the
risks associated with such caching. Typically, unplanned system outages (perhaps due to failure of hard-
ware components or errors in the software) result in the loss of modified data that had not been flushed
to secondary storage. Although it is possible to use nonvolatile memory to cache data, the associated costs
with such usage are prohibitive for most environments.

File Streams___245

It provides delayed-write functionality for modified cached data.
By keeping modified data in memory for some time before actually writing it
to disk, the Cache Manager provides greater responsiveness to the user appli-
cations that actually perform the write. It can also batch multiple contiguous
write operations in memory and write all the modified bytes out in a single
I/O operation, which is typically more efficient than performing each smaller
write operation individually. Finally, it is possible that a user application may
repeatedly modify the same byte range. By deferring I/O to disk, such modifi-
cations are made only in memory, avoiding completely the overhead of
repeated write operations to the media.

File Streams
Each instance of an open file is represented by a file object structure in Windows
NT. Any linear stream of bytes associated with a file object can be defined as a
file stream. Examples of file streams include the data for the given file,* a direc-
tory (containing information about other files stored on disk), file system
metadata (such as volume information), Access Control Lists (ACLs) associated
with the file, and extended attributes stored with the file.

NT file systems create, delete, and manipulate file streams as the result of either
externally generated user requests to read or write file data, or internally gener-
ated requests to manipulate file-system-specific data structures. File systems
identify file streams that they wish to support and cache. For example, unless
directed otherwise by a user, file systems cache user data contained within a file.
For each file stream to be cached, the file system typically supports both cached
and noncached access.

The Cache Manager provides support for the caching of file streams by using
memory mapping, and it also integrates caching with the memory manager's poli-
cies for other uses of pageable memory. From the perspective of the Cache
Manager, the stream is simply a random sequence of bytes representing informa-
tion that should be kept in memory. Therefore, the same set of services offered
by the Cache Manager can be used by file system drivers to cache user file data
or file system metadata.

* Some files could have multiple data streams if the file system supports this feature. For example, NTFS
supports multiple data streams. NTFS uses two distinct byte streams (for the same named file) to store the
resource and data forks associated with Macintosh files stored on NTFS file systems on NT servers.

246 Chapter 6: The NT Cache Manager I

Virtual Block Caching
Some operating systems use physical offsets (or disk block addresses) to cache
file data in system memory. Instead of using disk block addresses, the NT Cache
Manager provides a virtual block cache by using the file mapping method for
caching file streams. Figure 6-1 illustrates the difference between these two
methods for data caching (for buffered data). Note that the numbering indicates
the logical sequence in which the operations are performed.

In operating systems that use physical block addressing for cached data (the old
buffer cache implementation in UNIX SVR4), the file system or caching module
must first convert virtual byte offsets in a file to physical block offsets on disk
before checking whether data is available in the system cache, since the caching
module—the buffer cache—keeps track of cached data by using physical disk
addresses. However, as shown in Figure 6-1, the NT Cache Manager only uses
virtual byte offsets in a file to keep track of cached information. The Cache
Manager does not need to understand physical block addresses for the data being
accessed. Therefore, file system drivers in the Windows NT operating system
generally translate virtual byte offsets in a file to physical block offsets on disk
only if the data could not be obtained from the in-memory cache being managed
by the Cache Manager.

The advantages of using a virtual block cache (as compared to a physical block
cache) follow:

• Some applications may use native NT system calls to access file data, e.g.,
NtReadFile () or NtWriteFile() ,* while other applications executing
concurrently may map the file data into their address space for read or read/
write access. By using virtual block caching, via file mapping, and by using
proper synchronization, it is possible for all such applications to see the most
current data.t

• Conceptually, there is no difference between file data mapped in by the NT
Cache Manager compared to file data mapped in by an application. By using
the file mapping model, all physical memory becomes available for data cach-
ing. As mentioned before, the allocation of physical memory is controlled by
the NT Virtual Memory Manager; the number of physical pages allocated to

* Typically, applications use the interfaces provided by a subsystem (e.g., the ReadFile () interface pro-
vided by the Win32 subsystem) to perform read/write operations. Invoking such interface routines even-
tually results in calls to native NT system services. For a comprehensive listing of system services provided
by the I/O Manager for data access, see Appendix A, Windows NT System Services.
t Note that neither the FASTFAT nor the NTFS native file system implementations currently guarantee that
applications using conventional system calls will always obtain the most current data if other applications
have also mapped the file for read/write access. However, in most cases, the file systems go to consider-
able lengths to ensure that this is indeed the case.

Virtual Block Caching 247

Figure 6-1. Comparison of virtual block address caching with physical block address caching

the Cache Manager depends on changing needs for memory by other compo-
nents in the system (e.g., memory allocated for image file pages versus data
file pages).

• Often, the I/O Manager invokes the Cache Manager directly, bypassing the
file system driver or the network redirector driver completely. In such cases, it

248 Chapter 6: The NT Cache Manager \

is possible for the Cache Manager to resolve the file access via a single hard-
ware virtual address lookup.' This is considerably more efficient than the pro-
cess of converting a virtual address to a physical disk address before checking
whether data is available in system buffers.

Caching During Read and Write
Operations
In the NT operating system, user processes are allowed to specify at the time of
opening a file whether data for the file should be buffered in memory. Only those
files opened without the IRP_NOCACHE flag—to indicate that data for the file can
be buffered—have their data cached in system memory. In order to understand
how the NT Cache Manager provides the caching functionality described in the
previous section, think of the Cache Manager as an application, executing on the
system, which happens to open the very same files as those opened by all of the
other applications executing on the same system.

In order to cache data, the Cache Manager has to utilize system memory. As was
noted in Chapter 5, The NT Virtual Memory Manager, each process executing in
the Windows NT environment has 4GB of virtual address space available to it.
The lower half of this address space is process-specific, while the upper 2GB are
reserved for the operating system and are shared for every process executing in
the system. This virtual address model applies also to the system process, which
is a special process created at system initialization time. At system initialization,
the Cache Manager reserves a range of virtual addresses within the upper 2GB of
the system process virtual address space. Since this virtual address range that is
reserved for the exclusive use of the NT Cache Manager exists within the upper
2GB of the virtual address space, every process executing on the system has
access to the virtual address range reserved for the NT Cache Manager. Figure 6-2
depicts the location of the range of virtual addresses reserved by the NT Cache
Manager.

Although a certain range of virtual addresses is reserved for the exclusive use of
the NT Cache Manager, physical pages are not necessarily allocated for this range
of virtual addresses. The number of physical pages that are allocated to the Cache
Manager is determined, and constantly adjusted, by the NT Virtual Memory
Manager. In the absence of demand for physical memory from other user
processes or system components, the Virtual Memory Manager may choose to
increase the amount of physical memory allocated to the Cache Manager. On the

* Virtual address translation can be immediately performed using the Translation Lookaside Buffer (TLB).
A TLB hit results in extremely efficient translation to the corresponding physical memory address.

Caching During Read and Write Operations 249

Figure 6-2. Virtual address range reserved for the NT Cache Manager

other hand, on heavily loaded systems with scarce available physical memory, the
memory manager may decrease the amount of physical memory allocated to the
Cache Manager for caching file data.

It is important to note that these decisions concerning physical memory allocation
are the sole prerogative of the NT Virtual Memory Manager.

The Cache Manager application uses file mapping to buffer file data. Caching is
initiated on a file stream by a file system driver through a call to the Cache
Manager. Upon receiving such a request, the Cache Manager, invokes the Virtual
Memory Manager to create a section object representing the file mapping—this is
done for the entire file stream. Subsequently, when a process attempts to access
data belonging to the stream, the Cache Manager dynamically maps views of the
file stream into portions of the virtual address space reserved for itself in the
system virtual address space. Note that since the range of virtual addresses
reserved for the Cache Manager is fixed, the Cache Manager may have to unmap
one or more previously mapped views in order to be able to create a new view.

In order to better understand the role played by the Cache Manager in servicing
I/O requests, let's examine the typical sequence of steps executed in response to
user-initiated read and write operations.

Cached Read Operation
Consider a read operation initiated by a user application. This read operation is
passed on to the file system by the NT I/O Manager.* Figure 6-3 illustrates the

* As shown later, the file system is bypassed by the I/O Manager in many cases. However, for simplicity,
let's assume that I/O operations are first sent to the file system driver by the I/O Manager subsystem.

250 Chapter 6: The NT Cache Manager I

sequence of operations executed to satisfy the read request (using the copy
interface* provided by the Cache Manager).

An explanation for each step listed in the figure is provided below. Note that the
arrows in the figure represent flow of control.

1. The user application executes a read operation, which causes control to be
transferred to the I/O Manager in the kernel.

2. The I/O Manager directs the read request to the appropriate file system driver
using an IRP. The user buffer may be mapped into the system virtual address
space, or the I/O Manager may allocate a Memory Descriptor List repre-
senting the buffer and lock pages associated with this MDL, or the virtual
address for the buffer may be passed-in unmodified by the I/O Manager. In
Part 3 you will see that the file system driver has control over which of these
operations is performed by the I/O Manager.

3. The file system driver receives the read request and notices that the read oper-
ation is directed to a file that is opened for buffered access. If caching has not
yet been initiated for this file, the file system driver initiates caching on the
file by invoking the Cache Manager. In turn, the Cache Manager requests the
Virtual Memory Manager to create a file mapping (section object) for the file
to be cached.

4. The file system driver passes the read request to the NT Cache Manager using
the CcCopyRead () t Cache Manager call. The Cache Manager is now respon-
sible for executing all the necessary steps to transfer data into the user's
buffer.

5. The Cache Manager examines its data structures to determine whether there is
a mapped view of the file containing the range of bytes requested by the
user. If no mapped view exists, the Cache Manager creates one.

6. The Cache Manager simply performs a memory copy operation from the
mapped view into the user's buffer.

7. If the mapped view of the file is not backed by physical pages containing the
required data, a page fault occurs and control is transferred to the Virtual
Memory Manager.

8. The VMM allocates physical pages that will be used to contain the requested
data* for which the page fault occurred and then issues a noncached paging I/O

* Later in this chapter, I will discuss the various interface methods presented by the NT Cache Manager
to other system components. The copy interface is one of the four available interfaces.
t See the next two chapters for a detailed discussion on all the routines exposed by the Cache Manager.
£ In order to free up physical memory, the Virtual Memory Manager may need to write modified pages
to disk. For now, assume that unmodified free pages are available.

Caching During Read and Write Operations 251

User application executes a read
request on a file which was opened

with buffering enabled

Virtual
Memory
Manager

NT Cache
ManaflerFile System Driver

Figure 6-3. Sequence of steps executed to satisfy a user read request for a cached file

read operation to the file system driver via the NT I/O Manager. Note that
although the figure above does not indicate that the paging I/O request is
routed via the NT I/O Manager, that is indeed what happens.

,

252_______________________________Chapter 6: The NT Cache Manager I

9. Upon receiving the noncached read request, the file system driver creates a
corresponding I/O request to obtain data off secondary storage media and
sends this I/O request to the lower-layer drivers.

10. The device driver(s) below the file system obtain data from secondary storage
(or from across the network) and complete the request.

11. The file system driver completes the paging I/O request from the NT Virtual
Memory Manager.

12. The instruction that resulted in a page fault is reexecuted.

13. The Cache Manager completes the copy operation from the mapped view for
the file to the user's buffer. This time, the copy should complete without
incurring a page fault (although it is theoretically possible to have a page fault
repeatedly on a page that has just been brought in, practically speaking, this
does not occur).

14. The Cache Manager returns control to the file system driver after the cached
data has been copied into the user's buffer. Note that this data will also
remain cached in the virtual address space reserved for the Cache Manager
(however, this data may be discarded from system memory by the NT Virtual
Memory Manager at any time).

15. The file system driver completes the original IRP sent to it by the NT I/O
Manager.

16. The I/O Manager completes the original user read request.

Cached Write Operation
Now, consider a write operation initiated by a user application. Figure 6-4 illus-
trates the sequence of operations executed to satisfy the write request (using the
copy interface provided by the Cache Manager).* As you will see, the sequence of
operations is similar to the read operation described previously. An explanation
for each step listed in the figure is provided below:

1. The user application executes a write operation, which causes control to be
transferred to the I/O Manager in the kernel.

2. The I/O Manager directs the write request to the appropriate file system
driver using an IRP. As in the case of the read operation, the buffer may be
mapped into the system virtual address space, or an MDL may be created, or

* The figure has been deliberately simplified for the sake of clarity. As you will see in Chapter 9, Writing
a File System Driver I, in order to account for incomplete block transfers, write operations may cause the
file system to actually read data from disk before executing the write.

254_______________________________Chapter 6: The NT Cache Manager I

if caching has not yet been initiated for this file, the file system driver initiates
caching on the file by invoking the Cache Manager. The Virtual Memory
Manager creates a file mapping (section object) for the file to be cached.

4. The file system driver simply passes on the write request to the NT Cache
Manager via the CcCopyWrite () Cache Manager call, which is part of the
copy interface made available by the Cache Manager.

5. The Cache Manager examines its data structures to determine whether there is
a mapped view for the file containing the range of bytes being modified by
the user. If no such mapped view exists, the Cache Manager creates a
mapped view for the file.

6. The Cache Manager performs a memory copy operation from the user's buffer
to the virtual address range associated with the mapped view for the file.

7. If this virtual address range is not backed by physical pages, a page fault
occurs and control is transferred to the Virtual Memory Manager.

8. The VMM allocates physical pages, which will be used to contain the
requested data (for which the page fault occurred). In Figure 6-4, assume that
entire pages are being overwritten by the user. In such a scenario, neither the
Cache Manager nor the VMM read previously existing data off the disk before
modifying such data. However, if partial pages are being modified, page
faults will result in paging I/O read operations being issued by the Virtual
Memory Manager, before the page is allowed to be modified. The instruction
that resulted in a page fault is reexecuted.

9. The Cache Manager completes the copy operation from the user's buffer to
the virtual address range associated with the mapped view for the file.

10. The Cache Manager returns control to the file system driver. Note that the
user data now resides in system memory and has not yet been written to
secondary storage media. The actual transfer of data to secondary storage will
be performed later by the Cache Manager.*

11. The Cache Manager completes the request.
12. The file system driver completes the original IRP sent to it by the NT I/O

Manager.
13. The I/O Manager completes the original user write request.

* Either the lazy writer component of the Cache Manager or the modified page writer component of the
Memory Manager may initiate the write to secondary storage media. Also, it is possible that a user request
to flush system buffers or a flush initiated by the file system driver (due to some reason such as a cleanup
operation) may be responsible for instigating the write operation to disk. The lazy writer component will
be covered in greater detail in the next chapter. Refer to Chapter 5 for more details on the modified page
writer.

Cache Manager Interfaces_____________________________________255

Cache Manager Interfaces
Now that we have explored how caching is typically used by file system drivers,
let us look at the different ways in which system components can use the NT
Cache Manager. File system drivers and other components in the Windows NT
operating system can use the services provided by the Cache Manager through
four sets of interface routines. The first set of interface routines provides support
for basic file stream access and manipulation, while the other three can be used
as different access methods for the system cache.

The four sets of interfaces provided by the NT Cache Manager are file stream
manipulation functions, the copy interface, the MDL interface, and the pinning
interface.

File Stream Manipulation Functions
The Cache Manager provides support for initializing cached operations for a file
stream, terminating caching, flushing cached data to disk (on demand), modifying
file sizes, purging cached data, zeroing file data, support for logging file systems,*
and other common maintenance functions. The functions provided by the Cache
Manager within this interface set consist of the following:

• CcInitializeCacheMap
• CcUninitializeCacheMap
• CcSetFileSizes
• CcPurgeCacheSection
• CcSetDirtyPageThreshold
• CcFlushCache
• CcZeroData
• CcGetFileObjectFromSectionPtrs
• CcSetLogHandleForFile
• CcSetAdditionalCacheAttributes
• CcGetDirtyPages
• CcIsThereDirtyData
• CcGetLsnForFileObject

* Some file systems (e.g., the NTFS file system) use a method called logging to enable faster recovery and
ensure metadata integrity upon a system crash (or any unexpected shutdown). These file systems need
to ensure a certain sequence in which log entries and corresponding file metadata/data are written to
disk. The Cache Manager provides support for such file system drivers via the routines listed above.

256 Chapter 6: The NT Cache Manager 1

Copy Interface
The copy interface is the simplest form of cached access. The client module,
using the Cache Manager, can utilize this interface to copy either a range of bytes
from a buffer in memory to a specified virtual byte offset in the cached file
stream, or a range of bytes from a specified virtual byte offset in the cached file
stream to a buffer in memory.

This interface includes a call to initiate read-ahead and also includes calls to
support write throttling. Write throttling allows the client of the Cache Manager
(usually a file system driver) to defer certain write operations if the system is
running low on available or unmodified pages. This condition can occur if some
applications keep modifying data at an extremely rapid rate, greater than the rate
at which the lazy writer or modified page writer can initiate the transfer of modi-
fied data to disk or across the network to a storage server. Note that it is also
quite possible that the disk or network driver may not be able to keep pace with
the rate at which I/O requests to write data to disk are being generated by the
modified page writer or the lazy writer. This would also result in a decrease in the
number of available, unmodified pages.

The functions provided by the Cache Manager within this interface set consist of
the following:

• CcCopyRead/CcFastCopyRead
• CcCopyWrite/CcFastCopyWrite
• CcCanlWrite
• CcDeferWrite
• CcSetReadAheadGranularity
• CcScheduleReadAhead

MDL Interface
A Memory Descriptor List (MDL) is an opaque Memory-Manager-defined data
structure that maps a particular virtual address range to one or more paged-based
physical address ranges. The MDL interface to the Cache Manager allows direct
access to the system cache via Direct Memory Access (DMA).* The set of routines
comprising the MDL interface return an MDL to the caller, containing the byte
range described in the request, which can be subsequently used by the caller to
transfer data directly into or out of the system cache.

* DMA allows a device controller to transfer data directly between system memory and a secondary stor-
age device. The processing unit doesn't get involved in the data transfer, resulting in better performance.

Cache Manager Interfaces_____________________________________257

This interface is useful to subsystems that need direct access to the contents of the
system cache. For example, network file servers that need to DMA across the
network device directly into or out of the Cache Manager's virtual address range
use the MDL interface to achieve higher performance. In the absence of this inter-
face, a network driver transferring data out of the system cache might first have to
allocate a temporary buffer, copy data from the system cache to this temporary
buffer, let the network device perform the transfer, and, finally, deallocate the
temporary buffer. The extraneous calls to allocate/deallocate the temporary buffer
and the redundant copy can all be avoided if data can be transferred by the
network device directly from the system cache across the network. This can
indeed be achieved using the CcMdlRead () and CcMdlReadComplete ()
sequence of calls.*

Note that this interface shares the same read-ahead call as the copy interface.
Also, routines comprising the MDL interface and those belonging to the copy inter-
face can be used concurrently on the same file stream. The functions provided by
the Cache Manager within this interface set consist of the following:

« CcMdlRead
• CcMdlReadComplete
• CcPrepareMdlWrite
• CcMdlWriteComplete
An interesting point to note here is that, while most of the other Cache Manager
routines associated with data transfer (e.g., CcMdlReadO, CcCopyRead())
perform data transfer as part of the functionality provided by the routine, the
CcPrepareMdlWrite() routine simply creates an MDL containing original data,
which can be subsequently modified by the caller prior to invoking CcMdl-
WriteComplete () . Therefore, although some data transfer might be performed
by the Cache Manager when CcPrepareMdlWrite () is invoked (to obtain
current file stream data from disk or across the network and place it in the pages
described by the MDL), the routine acts more as an enabler routine, allowing the
caller to transfer the new data later, using the returned MDL.

Pinning Interface
This interface provided by the Cache Manager can be used to perform two tasks:

• Map data into the system cache for direct access using a buffer pointer

• Pin (or lock) the physical pages that back the mapped data

* The terminology used here is important: CcMdlRead () is used when the client wishes to read from
the system cache and write to the network (or disk). CcPrepareMdlWrite () is used when the client
wishes to transfer directly from the network device (or disk) and write to the system cache.

258_______________________________Chapter 6: The NT Cache Manager I

In addition to being able to read data directly using a buffer pointer, the caller
can also modify the data directly in the system cache.

When access to the mapped data is no longer required, the data can be
unpinned. This will also result in locked pages being unlocked and made avail-
able for other uses. Once the data is unpinned, the pointer to the data should no
longer be used.

Pinning data is typically used for efficiency reasons when file system drivers or
other system components need to access frequently used data structures (or other
data associated with the file stream) directly in memory. It is also used to ensure
that the data being accessed cannot be removed from system memory. However,
locking mapped data consumes physical memory and therefore decreases the
amount of memory available to other system components.

Note that the pinning interface cannot currently be used in conjunction with
either the copy interface or the MDL interface.

This interface is often used by file system drivers when dealing with cached file
system metadata. The pinning interface consists of the following functions:

• CcMapData

• CcPinMappedData
• CcPinRead
• CcSetDirtyPinnedData
• CcPreparePinWrite
• CcUnpinData
• CcUnpinDataForThread
• CcRepinBcb
• CcUnpinRepinnedBcb
• CcGetFileObjectFromBcb
The above functions are described in greater detail in Chapter 7, The NT Cache
Manager II.

Cache Manager Clients
The following components are typical users of the interfaces provided by the
Cache Manager. These components are also known as clients of the Cache
Manager.

• File system drivers such as NTFS, FASTFAT, CDFS, and other third-party file
systems use the copy interface services of the Cache Manager to perform each-

Cache Manager Clients_______________________________________259

ing on user file data. This allows for greater performance, because once user
data is cached in system memory, subsequent access to the data can be satis-
fied immediately without getting the data again from secondary storage media.

File system drivers also use the Cache Manager to cache file system metadata,
including volume structures, directory information, bitmaps for free space on
disk, extended attributes associated with a file, and other similar information.
Many of these structures are often pinned in memory by the file system
driver. Note that the Cache Manager does not interpret the type of data
streams being cached; it only knows about file object data structures and data
streams associated with such file objects.

File system drivers also typically use the read-ahead and delayed write func-
tionality provided by the Cache Manager, although it is quite possible that cer-
tain sophisticated file system implementations may add their own support for
read-ahead or delayed write operations. Finally, all file system drivers have to
use the file stream manipulation functions provided by the Cache Manager to
interface correctly with the Cache Manager.

• Network redirectors are similar to file system driver implementations; how-
ever, these modules obtain data from file servers across a network, instead of
from a secondary storage medium directly attached to the host system. These
components typically cache various data streams in the system cache to pro-
vide extremely fast performance comparable to local file systems.

Network redirectors typically use the copy interface provided by the Cache
Manager. They may also use the MDL interface to DMA data directly into or
out of the system cache. These components also benefit from the read-ahead
and write-behind functionality provided by the Cache Manager. In order to ini-
tiate or terminate caching on specific data streams or to perform other cache
manipulation functions, network redirectors use the file stream manipulation
functions.

• Network File Servers are indirect clients of the Cache Manager, since they use
the local file systems to ultimately obtain access to file data. These drivers
never invoke Cache Manager routines directly. File servers are often imple-
mented as kernel-mode drivers for performance reasons. They use the copy
interface via the file system drivers that serve their requests. Also, file servers
typically use DMA to transfer data directly into (or out of) the system cache.
To do this, file servers use the MDL interface to the Cache Manager. Since file
servers cannot directly invoke the Cache Manager, they use special flags in
read/write IRPs sent to file system drivers to request that a memory descriptor
list be created for the specified virtual address range in the file stream. After
data transfer has been completed, file servers inform file system drivers that
previously created memory descriptor lists can now be deleted. Chapter 9,

260 Chapter 6: The NT Cache Manager I

contains an explanation of the flags used by file servers to request the cre-
ation and deletion of MDLs for data buffered in the system cache.

• Filter drivers, or other drivers that use the NT file system interface for special-
ized purposes, are indirect clients of the Cache Manager. Consider a filter
driver that provides hard disk caching for data stored on slower media such
as magnetic tape or optical media. Such a driver uses the services of a local
file system to store the cached information. Therefore, the filter driver is an
indirect client of the Cache Manager, since the file system supporting the filter
driver uses the copy interface to transfer data into and from system memory.
Similarly, consider a filter driver that provides HSM* functionality. Such a
driver has to migrate data from a relatively fast secondary storage device,
such as a magnetic disk, to a slower device, such as tape. To help speed up
the process, the filter driver uses DMA to transfer data directly from the sys-
tem cache to tape and, therefore, uses the MDL interface (via special flags in
read/write IRPs sent to the file system driver) provided by the Cache Man-
ager. After the transfer process has completed, the filter driver will inform the
file system driver that any previously created memory descriptor lists can now
be deleted.

Table 6-1 summarizes the way clients of the Cache Manager use its various
interfaces.

Table 6-1. Clients of the Cache Manager

File Stream
Manipulation
Copy Interface
MDL Interface
Pinning Interface

Local File
Systems

7

/

/

Network
Redirectors

'

/
/

Network File
Servers

/
/

Filter
Drivers

/
/

Some Important Data Structures
The services provided by the Cache Manager are most heavily utilized by file
system drivers and network redirectors, which serve user I/O requests. The data

* HSM or Hierarchical Storage Management involves efficient management of available storage using con-
figurations comprising faster and more expensive media along with slower but cheaper media, to mini-
mize cost per byte of stored data and yet have data always available when required. Typically, this is
performed by automatically transferring infrequently accessed data to slower, cheaper media, such as
tape, from the faster (but more expensive) hard disks. When such data is subsequently accessed, the driv-
er automatically transfers data back from tape to hard disk. There are other aspects to HSM that are outside
the scope of this discussion.

Some Important Data Structures_________________________________267

structures and fields described below are important to understand to interface
correctly with the Cache Manager.

Fields in the File Object
As explained in Chapter 4, The NTI/O Manager, each file stream, when created or
opened, has a file object structure (of type FILE_OBJECT) created for it by the
I/O Manager. Although most of the fields within the file object structure are filled
in by the I/O Manager, the file system drivers and network redirectors that are the
recipients of the I/O requests on the associated file stream are required to fill in
certain specific fields. Three important fields that must be initialized follow:

• The FsContext field
• The SectionObjectPointer field

• The PrivateCacheMap field

This initialization is typically performed at file stream open (or create) time; it is
possible, though, for a file system or network redirector to defer this operation to
some other time before caching is first initiated for the file stream.

FsContext

If caching via the NT Cache Manager is required for an open file stream (repre-
sented by the file object structure), the FsContext field must be initialized to
point to a structure of type FSRTL_COMMON_FCB_HEADER. This structure is
defined as follows:

typedef struct _FSRTL_COMMON_FCB_HEADER {
CSHORT NodeTypeCode;
CSHORT NodeByteSize;
UCHAR Flags;
UCHAR IsFastloPossible;

// The following two fields are only present in Version 4.0+ of the
// the Windows NT operating system.
// Second Flags Field.
UCHAR Flags2;
// The following reserved field should always be 0.
UCHAR Reserved;

PERESOURCE Resource ;
PERESOURCE PagingloResource;
LARGE_INTEGER AllocationSize;
LARGE_INTEGER FileSize;
LARGE_INTEGER ValidDataLength;
} FSRTL_COMMON_FCB_HEADER;

The above structure will be referred to as the CommonFCBHeader structure. It
has to be allocated by the file system or network driver from nonpaged kernel

262_______________________________Chapter 6: The NT Cache Manager I

memory. As you will see in Chapter 9, each file stream is uniquely represented in
memory by a File Control Block (FCB) structure.

NOTE For readers with a UNIX background, note that a File Control Block
is analogous to a UNIX vnode structure representing a file (or direc-
tory) in memory.

Although multiple concurrent open operations performed on the same file stream
may result in multiple file object structures being created, there is only one
unique FCB for the file, and all file object structures must refer to it.

Similarly, only one CommonFCBHeader structure can exist per file stream. There-
fore, it is not uncommon to see file system driver or network driver
implementations allocate the CommonFCBHeader structure as part of their FCB
structure representing the file stream. Note, however, that the file system driver is
not required to allocate the CommonFCBHeader as part of the FCB structure as
long as a one-to-one (unique) logical association can be created between these
two structures.

The first two fields in the CommonFCBHeader—NodeTypeCode and NodeBy-
teSize—are unused by the Cache Manager. The fields comprising this structure
are described below. Note that many of these fields require the understanding of
concepts explained in later chapters (specifically Chapters 9-11); the issue of
initialization of each of these fields will be revisited when all such required
concepts have been presented:

Flags
The CommonFCBHeader structure has pointers to two synchronization
ERESOURCE type structures. The PagingloResource is acquired by the
modified page writer thread. By setting an appropriate value in the Flags
field, the file system driver or network redirector is allowed to specify to the
MPW thread that the MainResource (see below) should be acquired instead
of the PagingloResource. In Chapter 11, Writing a File System Driver III,
reasons why a file system driver or a network redirector may set such a flag
will be discussed.

Flags2
This field was added with Version 4.0 of the operating system. As discussed
later in this book, it is possible for an FSD to specify that lazy-write opera-
tions not be performed for a cached file stream. However, if the Flags2 field
has the FSRTL_FLAG2_DO_MODIFIED_WRITE flag set (defined as 0x01),
the Cache Manager will ignore the FSD request to disallow delayed opera-
tions and perform lazy-write I/O for the file stream.

Some Important Data Structures_________________________________263

IsFastloPossible
For efficiency reasons, the I/O Manager attempts to bypass the file system
driver or network redirector for cached files and tries to obtain file data
directly from the Cache Manager. This process is called the fast I/O process.
The IsFastloPossible field allows the file system driver or network redi-
rector to control whether fast I/O operations should be allowed to proceed
for the specific file stream. The contents of this field are set by the file system
driver or network redirector and can be one of the following three enumer-
ated types: FastloIsNotPossible, FastloIsPossible, or Fastlols-
Questionable.

Resource and PagingloResource
Access to data associated with a file stream must be synchronized using these
ERESOURCE structures.*

This is a requirement for file system drivers and network redirectors in order
to be able to interface correctly with the Cache Manager and Memory
Manager components.

Memory for both resources must be allocated by the file system or network
redirector from nonpaged pool, and the fields in the CoiranonFCBHeader
must be initialized to point to the allocated structures. These structures must
also have been initialized by the FSD via the ExInitializeRe-
sourceLite () executive support routine.
Since these resources provide shared reader and exclusive writer semantics,
the Cache Manager expects the file system driver or network redirector to
synchronize all modifying operations for the file stream by obtaining the
MainResource exclusively. Similarly, read operations can be synchronized
by obtaining the MainResource shared.

AllocationSize
This is the actual amount of on-disk storage space allocated for the file
stream. Typically, this is a multiple of the media sector size or file system
cluster size.t This field must be initialized by the file system driver or network
redirector to the appropriate value. Subsequently, the Cache Manager must be
notified each time this value changes. In the next chapter, you will see how
the file system driver notifies the Cache Manager of changes in the allocation
size.

* See Chapter 3, Structured Driver Development, for a discussion on various synchronization structures
available under Windows NT including a discussion on ERESOURCE type structures.
t Space is allocated on secondary storage devices in units called sectors. Each sector is composed of a
fixed number of bytes—for example, one sector may equal 512 bytes. To avoid fragmentation, some file
system drivers allocate storage space using clusters as units, where each cluster is some number of sectors.
For example, one cluster may equal 8 physical sectors.

264 Chapter 6: The NT Cache Manager I

FileSize
This is the size of the file as presented to the user; this value indicates the
number of bytes contained within the file stream. Any read operations
beyond this value will result in an end-of-file (STATUS_END_OF_FILE) error
message being returned to the application process. Any read operations that
overlap this value will be truncated at this value.

For example, if the FileSize is 45 bytes and the reader wishes to obtain
(say) 30 bytes beginning at offset 40 in the file stream, only 5 bytes will actu-
ally be returned to the reader by the file system driver (or the Cache
Manager). However, if the same reader wishes to read 30 bytes beginning at
offset 45 (assuming that offsets are counted beginning at offset 0), an error
STATUS_END_OF_FILE will be returned to the reader.

The file system driver or network redirector initializes this field to an appropri-
ate value and informs the Cache Manager whenever this value changes.

ValidDataLength
Consider a situation where the FileSize for a file stream is 100 bytes.
However, only the first 10 bytes of the file stream have valid data and the last
90 bytes were never written to by any process. The Val idDataLength for
this file stream is then set to 10. Any read operations that attempt to access
bytes beyond this range will automatically get zeroes returned to them. This
helps avoid unnecessary I/O operations from disk and also helps provide
data security (since older information stored on the media from some
previous file stream is not inadvertently returned to the user).

Few file systems maintain the concept of a ValidDataLength stored on
disk associated with a file stream. The NTFS and the HPFS file system drivers
supplied with the NT operating system do support this concept. However,
regardless of whether the file system driver supports the valid data length
concept, the Cache Manager expects the file system driver or network redi-
rector to initialize this field to an appropriate value.

SectionObjectPointer

This field has to be initialized to point to a structure of type SECTION_OBJECT_
POINTERS.* This structure must be allocated from nonpaged kernel memory by
the file system driver or network redirector and is shared by the Virtual Memory
Manager and the Cache Manager. It stores file-mapping and caching-related infor-
mation for a file stream. This structure has the following format:

typedef struct _SECTION_OBJECT_POINTERS {

* This structure is also required by the Virtual Memory Manager to provide support for memory-mapped
files. See Chapter 5 for details on memory mapped files.

Some Important Data Structures_________________ _______________265

PVOID DataSectionObject;
PVOID SharedCacheMap;
PVOID ImageSectionObject;

} SECTION_OBJECT_POINTERS;
typedef SECTION_OBJECT_POINTERS *PSECTION_OBJECT_POINTERS;

Only one structure of this type can be associated with a given file stream at any
time. However, it is entirely possible, and very probable in the case of user-
opened files, that multiple file objects, each representing an open instance of a
given file stream, can exist simultaneously on the node. In this case, all of the
SectionObjectPointer fields in each file object structure must be initialized
with the address of the single allocated structure of this type. Therefore, this struc-
ture is typically associated with the FCB for the file stream.

Upon allocation, it is the responsibility of the client of the Cache Manager to clear
all fields within the SECTION_OBJECT_POINTERS data structure. After clearing
the structure, the client does not need to be concerned anymore with the manipu-
lation of any of the fields. An explanation of fields contained in this structure
follows (remember that only the VMM or Cache Manager can manipulate these
fields):

DataSectionObj ect
This pointer is used by the Virtual Memory Manager to refer to an internal
data structure representing a data section object created for the file stream.
Therefore, this field is initialized by the Virtual Memory Manager when
caching is initiated for the file stream.

SharedCacheMap
The Cache Manager creates private data structures called cache maps to keep
track of the views mapped for the specific data stream. This field is initialized
by the Cache Manager with the address of the SharedCacheMap structure
(described later in this section) when caching is initiated for the file stream.

ImageSectionObject
The Virtual Memory Manager initializes this field with the address of a private
data structure whenever an image section is created for the file stream.

PrivateCacheMap

The client of the Cache Manager is expected to initialize this field to NULL for
each file object structure. Note that multiple file object structures may exist concur-
rently in memory for a given file stream. It is also possible that caching may have
been initiated by some, but not all, file object structures.

We know that file system drivers, network redirectors, and other clients of the
Cache Manager work in cooperation with the Cache Manager to present a consis-
tent view of the data to all users; this is done for those threads that access data

266 Chapter 6: The NT Cache Manager I

using the cached path as well as for those who do not. The only way for a file
system driver or network redirector to determine whether caching has been initi-
ated using a specific file object for a given file stream is to examine whether the
PrivateCacheMap field is nonnull. This check must only be performed after
acquiring the MainResource, either shared or exclusively.

Information on whether caching has been initiated on a file stream via a specific
file object cannot be maintained elsewhere by a client. This is because the Cache
Manager retains the right to forcibly terminate caching via some or all file objects
associated with the file stream. Therefore, as mentioned earlier, the fact that the
PrivateCacheMap field is nonnull is the only reliable indicator for the client
that caching is currently initiated via the file object structure being examined.

Cache Maps
The Cache Manager must maintain information about each file stream for which it
helps to cache data. This information is maintained using Cache Maps. For each
file stream, the Cache Manager allocates a Shared Cache Map structure that serves
as the anchor for all information regarding views mapped for the file stream and
other information associated with the file stream. This shared cache map structure
is allocated when caching is first initiated for the file upon the request of a file
system driver or a network redirector.

In addition to the shared cache map structure that is unique for each file stream
and therefore allocated only when caching is first initiated for a file stream, each
time a client issues a request to initiate caching using a specific file object struc-
ture, the Cache Manager allocates a Private Cache Map structure. This structure
serves as a marker for the Cache Manager, establishing the fact that caching has
been initiated using the specific file object. It also contains some private informa-
tion for the Cache Manager for read-ahead control and other such data.

Note that both the private cache map structure and the shared cache map struc-
ture are allocated and maintained by the Cache Manager.

Buffer Control Blocks
One of the interfaces presented by the Cache Manager and mentioned previously
is the pinning interface. Clients of the Cache Manager that use this interface must
use the Buffer Control Block structure. This structure is divided into two parts: a
public BCB, that is exposed to clients of the Cache Manager, and a private BCB
that is internal to the Cache Manager.

The public BCB is defined as follows:

typedef struct _PUBLIC_BCB {

File Size Considerations______________________________________267

CSHORT NodeTypeCode;
CSHORT NodeByteSize;
ULONG MappedLength;
LARGE_INTEGER MappedFileOffset;

} PUBLIC_BCB, *PPUBLIC_BCB;

The public BCB is extremely simple and serves as a context to the Cache Manager
client—to be used in the pinning and subsequent unpinning of data. Upon return
from a successful request to the Cache Manager by the file system driver or
network redirector to pin data for a file stream, a pointer to the BCB structure is
returned by the Cache Manager. Memory for this BCB structure is allocated by the
Cache Manager.

The file system driver uses the pointer to the BCB structure in an opaque manner:
the MappedLength and MappedFileOffset provide information to the client
about the actual offset, beginning where the data has been pinned in memory
and the number of bytes of data that were pinned.

Subsequent requests by the client to repin the memory structures or to unpin the
memory must be performed using the BCB pointer as a context, which is returned
to the Cache Manager. As will be explained in the next chapter, it's possible for
the BCB returned by the Cache Manager to change across different Cache
Manager invocations when the BCB is passed in as context. Therefore, the client
must not attempt to make and use a copy of the returned BCB structure. The
private portion of the BCB is not exposed by the Cache Manager.

File Size Considerations
There are three different file size values:

• The AllocationSize for a file stream is a value that reflects the actual on-
disk space reserved for the file stream, which is a multiple of the minimum
allocation unit for the media on which the file stream resides.

• The FileSize for a file stream is the value beyond which all read opera-
tions return an end-of-file error.*

• The ValidDataLength is the amount of valid data contained within a file
stream.
Any bytes accessed beyond this value (up to the FileSize) contain invalid
data and should result in zeroes being returned to the application trying to
read this information.

* Note that it is entirely possible that, for certain file system implementations, the FileSize may be
greater than the AllocationSize. This happens when the file system driver supports sparse file im-
plementations. None of the file systems supplied with Windows NT currently support sparse files.

268 Chapter 6: The NT Cache Manager I

There are two important considerations for Cache Manager clients who change
one or more of these file sizes.

One cardinal rule all clients must follow is that changing the AllocationSize
or the FileSize must be synchronized with other read/write requests and that
the Cache Manager must be immediately informed of any changes.

Synchronizing changes in the FileSize with other read/write requests is accom-
plished by ensuring that the FCB for the file stream has been acquired exclusively while
performing such a change. Both the MainResource as well as the Paginglo-
Resource must be acquired exclusively before changing either of the file size values.
The CcSetFileSizes () routine, which is invoked with the FCB for the file
acquired will inform the Cache Manager.

The rationale behind the above rule is simple: the file system driver (or network
redirector) is often bypassed by the I/O Manager, which tries to transfer data to or
from a file stream directly, using the Cache Manager via the fast I/O path. In such
cases, if the Cache Manager is not correctly notified of FileSize changes,
invalid results may be returned to the application trying to perform the data
transfer.* For example, if the current file size is extended by an application but the
Cache Manager is not informed of the new file size, it is quite possible that the
application will receive a STATUS_END_OF_FILE error when trying to read infor-
mation from beyond the old end-of-file offset. This is incorrect and could result in
data corruption.

A second important point to note is that changes in the FileSize are generally
not synchronized with paging I/O read or write requests. Note that paging I/O
requests generally originate either from the lazy writer or modified block writer
components, or are a result of direct user read/write operations on mapped files.
While paging I/O requests are dealt with in greater detail in Chapters 9-11, the
reader should be cognizant of the following:

• Paging I/O read requests starting beyond end-of-file are completed with a
STATUS_END_OF_FILE error.

• Paging I/O read requests that start before the current end-of-file but extend
beyond current end-of-file are truncated to the current end-of-file byte offset.
However, the client must be careful to set the number of bytes written to be
the same as the number of bytes initially requested (although no I/O was actu-
ally performed).

* In certain cases, when the file is being truncated, the Cache Manager or the Memory Manager may
refuse to allow the operation to proceed. This topic will be dealt with in greater detail in Chapter 10,
Writing A File System Driver II. However, it is important to note that the file system driver or network
redirector must coordinate changes in the file size for a file stream with the Cache Manager module.

File Size Considerations______________________________________269

• Paging I/O write requests that start beyond the current end-of-file must be
voided by the file system driver or network redirector and STATUS_SUCCESS
should be returned.

The ValidDataLength concept is supported by few file system drivers on disk.
If the file system driver supports and records the ValidDataLength value on
disk, it should initialize the CommonFCBHeader with the current value when the
file stream is first opened. Subsequently, the Cache Manager will inform the file
system driver when this value changes and the file system driver or network redi-
rector can then record the modified value on disk. Note that the Cache Manager
may have been invoked directly by the I/O Manager to service a user write
request that could have resulted in a change in the valid data length.

The Cache Manager informs the client of the change in the valid data length via
the SetFilelnformation IRP. This IRP and the method used by the Cache
Manager to notify the client will be discussed in greater detail in Chapter 10.

If the client does not support the concept of a valid data length on disk and there-
fore does not wish to receive notification from the Cache Manager about changes
in this value, the client must initialize the ValidDataLength field as follows:
the low 32 bits of the valid data length must be initialized to OxFFFFFFFF and the
high 32 bits of the field must be initialized to Ox7FFFFFFF.

Even if the client does not record the valid data length on disk, it might still be
useful to the client to maintain the valid data length while the file stream stays
open. Consider the situation where a user process extends the file length. Subse-
quently, the user process issues a write request beyond the old end-of-file byte
offset. This request will be directed to the Cache Manager, which will first try to
fault the page in while trying to get a page ready to receive the user data. This
page fault will eventually need to be serviced by the file system driver or network
redirector. If the file system driver maintains the concept of the valid data length
in-memory, it could recognize that no read operation was required since the file
stream had just been extended and zeroes can be returned immediately to
complete the page fault request.

