
In this chapter:
• The NT I/O Subsystem
• Common Data

Structures
• I/O Requests: A

Discussion
• System Boot

Sequence
The NT I/O Manager

Successfully interfacing with external devices is essential for any computing
system. A general-purpose commercial operating system like Windows NT must
also interact with a variety of peripherals, the common ones most of us use each
day, as well as the more uncommon external devices that might be useful in
some specific settings. For example, we expect the NT operating system to
provide us with built-in support for our hard disks, keyboard, mouse, and video
monitor. If, however, I wish to attach a programmable toaster device to my
system (my new invention), and I would like to control this device using my
computer, which is running Windows NT, I suspect that I will have to develop a
driver to control the device. Furthermore, if I expect to be successful in devel-
oping this driver, I will obviously have to look to the operating system to provide
an appropriate environment and support structure that makes developing,
installing, testing, and using this driver a task that might be difficult but not
insurmountable.

Although some might argue that such expectations of support from an operating
system are unreasonable, the Windows NT operating system does provide such a
framework, so that mere mortals like you and me can develop necessary drivers
to control such esoteric devices as a programmable toaster. In fact, the NT oper-
ating system provides a consistent, well-defined I/O subsystem within which all
code required to interface with external devices can reside. The I/O subsystem is
extensive, encompassing file system drivers, intermediate drivers, device drivers,
and services to support and interface with such drivers. It is also consistent in its
treatment of external devices.

In this chapter, I will present an introduction to the NT I/O Manager, the compo-
nent responsible for creating, maintaining, and managing the NT I/O subsystem.
To develop any kind of driver for the Windows NT operating system, an under-

117

118 Chapter 4: The NT I/O Manager

standing of the framework provided by the I/O Manager is extremely important.
First, I will describe some of the services provided by the I/O Manager. Next, I
will present an overview of the components comprising the I/O subsystem,
including a discussion of the various types of drivers that can exist within the I/O
subsystem. I will then describe some common data structures that kernel-mode
developers should be familiar with. Following this is a discussion on some
common issues involving I/O requests sent to kernel-mode drivers. Finally, I will
present a description of the system boot sequence, with emphasis on the activities
of the I/O Manager and the drivers within the kernel.

The NT I/O Subsystem
The NT I/O subsystem is the framework within which all kernel-mode drivers
controlling and interfacing with peripheral devices reside. This subsystem is
composed of the following components (see Figure 4-1):

• The NT I/O Manager, which defines and manages the entire framework.

• File system drivers that are responsible for local, disk-based file systems.

• Network redirectors that accept I/O requests and issue them over the network
to a file server. The redirectors are implemented similarly to other file system
drivers.

• Network file servers that accept requests sent to them by redirectors on other
nodes, and reissue these requests to local file system drivers. Although file
servers do not need to be implemented as kernel-mode drivers, typically they
are implemented as such for performance reasons.

• Intermediate drivers, such as SCSI class drivers. These drivers provide generic
functionality that is common to a set of devices. Intermediate drivers also
include drivers that provide added functionality, such as software mirroring or
fault tolerance, by using the services of device drivers.

• Device drivers that interface directly with hardware, such as controller cards,
network interface cards, and disk drives. These are typically the lowest-level
kernel-mode drivers.

• Filter drivers that insert themselves into the driver hierarchy to perform func-
tionality that is not directly available using the existing set of drivers. For
example, a filter driver can layer itself above a file system driver, intercepting
all requests that are issued to the file system driver. A filter driver could just
as well layer itself below the file system driver, but above a device driver,
intercepting all requests targeted to the device driver. Note that conceptually,
the only tangible difference between filter drivers and other intermediate driv-
ers is that filter drivers typically intercept requests targeted to some existing

The NT I/O Subsystem 119

Figure 4-1. Kernel-mode components, including the I/O subsystem

device and then provide their own functionality, either in lieu of or in addi-
tion to the functionality provided by the driver that was the original recipient
of the request.

Functionality Provided by the NT I/O Manager
The NT I/O Manager oversees the NT I/O subsystem. The following is a list of
some of the functionality provided by the I/O Manager:

• The I/O Manager defines and supports a framework that allows the operating
system to use peripherals connected to the system.

The type and number of peripherals that can potentially be used with a Win-
dows NT system is not limited, since new types of peripheral devices are con-

118__________________________________Chapter 4: The NT I/O Manager

standing of the framework provided by the I/O Manager is extremely important.
First, I will describe some of the services provided by the I/O Manager. Next, I
will present an overview of the components comprising the I/O subsystem,
including a discussion of the various types of drivers that can exist within the I/O
subsystem. I will then describe some common data structures that kernel-mode
developers should be familiar with. Following this is a discussion on some
common issues involving I/O requests sent to kernel-mode drivers. Finally, I will
present a description of the system boot sequence, with emphasis on the activities
of the I/O Manager and the drivers within the kernel.

The NT I/O Subsystem
The NT I/O subsystem is the framework within which all kernel-mode drivers
controlling and interfacing with peripheral devices reside. This subsystem is
composed of the following components (see Figure 4-1):

• The NT I/O Manager, which defines and manages the entire framework.
• File system drivers that are responsible for local, disk-based file systems.

• Network redirectors that accept I/O requests and issue them over the network
to a file server. The redirectors are implemented similarly to other file system
drivers.

• Network file servers that accept requests sent to them by redirectors on other
nodes, and reissue these requests to local file system drivers. Although file
servers do not need to be implemented as kernel-mode drivers, typically they
are implemented as such for performance reasons.

• Intermediate drivers, such as SCSI class drivers. These drivers provide generic
functionality that is common to a set of devices. Intermediate drivers also
include drivers that provide added functionality, such as software mirroring or
fault tolerance, by using the services of device drivers.

• Device drivers that interface directly with hardware, such as controller cards,
network interface cards, and disk drives. These are typically the lowest-level
kernel-mode drivers.

• Filter drivers that insert themselves into the driver hierarchy to perform func-
tionality that is not directly available using the existing set of drivers. For
example, a filter driver can layer itself above a file system driver, intercepting
all requests that are issued to the file system driver. A filter driver could just
as well layer itself below the file system driver, but above a device driver,
intercepting all requests targeted to the device driver. Note that conceptually,
the only tangible difference between filter drivers and other intermediate driv-
ers is that filter drivers typically intercept requests targeted to some existing

The NT I/O Subsystem 119

Figure 4-1. Kernel-mode components, including the I/O subsystem

device and then provide their own functionality, either in lieu of or in addi-
tion to the functionality provided by the driver that was the original recipient
of the request.

Functionality Provided by the NT I/O Manager
The NT I/O Manager oversees the NT I/O subsystem. The following is a list of
some of the functionality provided by the I/O Manager:

• The I/O Manager defines and supports a framework that allows the operating
system to use peripherals connected to the system.

The type and number of peripherals that can potentially be used with a Win-
dows NT system is not limited, since new types of peripheral devices are con-

120__________________________________Chapter 4: The NT I/O Manager

tinuously being designed and developed. Therefore, the I/O subsystem for a
commercial operating system like Windows NT must be well-designed and
extensible, such that it can easily accommodate the myriad devices, each with
its own set of unique characteristics, that could be used.

• The NT I/O Manager provides a comprehensive set of generic system services
used by the various subsystems to actually perform I/O or request other ser-
vices from kernel-mode drivers.

Consider a read request initiated by a user process. This read request is
directed to the controlling subsystem, such as the Win32 subsystem. Note that
the Win32 subsystem does not actually direct the read request to the file sys-
tem driver or device driver itself; instead it invokes a system service called
NtReadFileO , supplied by the I/O Manager. The NtReadFileO system
service then assumes the responsibility for directing the request to the appro-
priate driver and conveying the results to the Win32 subsystem. Also note that
the buffer supplied by the user process requesting the read operation usually
cannot be used directly by the kernel-mode drivers that will eventually satisfy
the request. The I/O Manager provides the support to automatically perform
the necessary operations that would allow the kernel-mode drivers to use a
buffer address that is accessible in kernel-mode. Later in this chapter, I will
describe this operation of manipulating user-mode buffers in further detail.
Although the native NT system services are very poorly documented (if at all),
you can find a detailed description of these services in Appendix A, Windows
NT System Services, in this book.

• The NT I/O Manager defines a single I/O model that all drivers in the system
must conform to. As mentioned above, this model consists of objects and a
set of associated methods used to manipulate the objects. Kernel-mode driv-
ers do not need to be concerned with the originator of an I/O request, since
they respond to all I/O requests in the same manner.
This results in a consistent interface provided to users of the I/O subsystem,
such as the Win32 or POSIX subsystem, and also protects the kernel-mode
drivers from having to worry about the vagaries associated with the particular
subsystem that issued the I/O request.

Furthermore, since every kernel-mode driver must conform to this single I/O
model, kernel-mode drivers can use services provided by each other, since a
kernel-mode driver does not really care whether the I/O request originates in
kernel-mode or user-mode. That said, if you do invoke the services of
another kernel-mode driver from your kernel-mode driver, there are certain
considerations that you must be aware of. These will be described later in this
chapter.

The NT I/O Subsystem

Finally, the single I/O model allows for the implementation of layered kernel-
mode drivers, which are supported by the NT I/O Manager. Each kernel-
mode driver in a layered hierarchy can utilize the services of the underlying
driver to complete a specific operation. In turn, the underlying driver can sat-
isfy the issued request without concerning itself with whether the request
came to it directly from some user process or from a driver that resides above
it in the hierarchy of layered drivers.

The I/O Manager supports installable file system implementations that use the
peripheral devices connected to the system.

The NT operating system includes support for the CD-ROM file system, the
NTFS log-based file system, the legacy FAT file system, the LAN Manager File
System Redirector, as well as the HPFS file system. In addition to supporting
such native local- and network-based file systems, the I/O Manager provides
the infrastructure for development of external, installable file systems, i.e., file
system implementations from third-party vendors. You can purchase commer-
cial implementations of NFS (the Network File System), DPS (the Distributed
File System), and other file system and network redirector implementations.

The NT I/O Manager supports dynamically loadable kernel-mode drivers.

The I/O Manager provides support for device-independent services that can
be utilized by other components of the NT operating system, as well as by
kernel-mode drivers that are implemented by third-party vendors.

If a kernel-mode driver needs to invoke the dispatch routine for another ker-
nel-mode driver, it can use the loCallDriver () service provided by the
I/O Manager. Similarly, if a kernel-mode driver has to allocate a Memory
Descriptor List (MDL) structure, the loAllocateMdl () routine, can be
used. There are other such services that are commonly used by kernel-mode
components (including kernel-mode drivers), provided by the NT I/O Man-
ager. The list of services is available in the Windows NT Device Drivers Kit
(DDK).

The NT I/O Manager interacts with the NT Cache Manager to support virtual
block caching of file data.
Later in this book, you will learn more about the functionality provided by
the NT Cache Manager.

The NT I/O Manager interacts with the NT Virtual Memory Manager and file
system implementations to support memory-mapped files.

In the next chapter, you will read in detail about memory-mapped files. Sup-
port for memory-mapped files is provided jointly by the NT I/O Manager, the
NT Virtual Memory Manager, and the appropriate file system driver.

122_______ ___________________________Chapter 4: The NT I/O Manager

If you wish to develop kernel-mode drivers for Windows NT, your driver must
conform to the specifications provided by the NT I/O Manager. This includes
creating and maintaining some data structures defined by the I/O Manager and
also supplying the methods that manipulate such objects. Furthermore, your
driver must respond appropriately to requests issued by the NT I/O Manager, and
your driver must return results of each operation back to the I/O Manager. It is
extremely unlikely that you can successfully develop a kernel-mode driver that
does not use any of the services provided by the NT I/O Manager. Therefore, you
will need to understand well the framework provided by the NT I/O Manager.
The remainder of this chapter addresses some of these issues in further detail.

Concepts in I/O Manager Design
The design of the NT I/O subsystem exhibits a number of characteristics
described in the following sections.

Packet-based I/O
The I/O subsystem is packet-based; i.e., all I/O requests are submitted using I/O
Request Packets (IRPs). IRPs are typically constructed by the I/O Manager in
response to user requests and sent to the targeted kernel-mode driver. However,
any kernel-mode component can create an IRP and issue it to a kernel-mode
driver using the loAllocatelrp () and loCallDriver () I/O Manager
routines described in the DDK.

The I/O Request Packet is the only method you can use to request services from
an I/O subsystem driver. By strictly conforming to this packet-based I/O model,
the NT I/O Manager ensures consistency across the I/O subsystem and enables
the layered driver model, described later in this section.

Each IRP sent to a kernel-mode driver represents a pending I/O request to that
driver. An IRP will continue to be outstanding until the recipient of the IRP
invokes the loCompleteRequest () service routine for that particular IRP.
Invoking loCompleteRequest () results in that I/O operation being marked as
completed, and the I/O Manager then triggers any post-completion processing
that was awaiting completion of the I/O request. A particular IRP can be
completed only once; i.e., only one kernel-mode driver can invoke loComple-
teRequest () for any outstanding IRP in the system.

You should be aware that, although packet-based I/O is the rule in Windows NT,
the NT I/O Manager, NT Cache Manager, and the various NT file system imple-
mentations collaborate to implement functionality called the fast I/O path, which
is an exception to this rule. The fast I/O method of I/O operations is only valid
for file system drivers. These operations are implemented using direct function

The NT I/O Subsystem__123

calls into the file system drivers and the NT Cache Manager instead of using the
normal IRP method. The fast I/O path is described in detail later in this book.

NT object model
The I/O Manager conforms to the NT Object Model defined and implemented by
the Object Manager component of the NT Executive.

Kernel-mode drivers, peripheral devices, controller cards, adapter cards, inter-
rupts, and instances of open files are all represented in memory as objects that
can be manipulated. These objects also have a set of methods, a set of operations
that can be performed on the object, associated with them. For example, each
controller card in the system is represented by a controller object, while each
instance of an open file is represented by the file object data structure. The
controller object can only be accessed using one of the methods associated with
the object. This same restriction also applies to the file object structure, as well as
to all other object types defined by the I/O Manager.

Note that kernel-mode drivers developed for Windows NT have to conform to
this object-based model along with the rest of the I/O subsystem. All drivers must
initialize a driver object structure representing the loaded instance of the device
driver itself. In addition, if the driver manages devices or peripherals attached to
the system, it must create and initialize one or more device object structures.

Since the I/O Manager uses the NT object model, it can also use the services of
the Security Subsystem to control access to objects. The I/O Manager supports
named object structures. For example, file objects have a name associated with
them indicating the on-disk file that they represent. You can also create other
named objects, such as device objects, that can then be opened by other
processes or kernel-mode drivers.

Layered drivers
The I/O Manager supports layered kernel-mode drivers. Each driver in the hier-
archy accepts an I/O Request Packet, processes it, and then invokes the next
driver in the hierarchy.

Drivers lower in the hierarchy are closer to the actual hardware. However, only
the lowest drivers typically interact directly with hardware devices or cards. The
layered driver model is a boon to designers who wish to provide value-added
functionality not supplied with the base operating system. This feature enables
intermediate and filter drivers to be inserted into the driver hierarchy whenever
required, and therefore allows new functionality to be easily added to the system.
Furthermore, since each driver in the hierarchy interacts with drivers above and
below it in a consistent fashion, development, debugging, and maintenance of

.724

kernel-mode drivers is a lot easier than on most other operating system
implementations .

Asynchronous I/O
The NT I/O Manager supports asynchronous I/O* allowing a thread to request
I/O operations and continue performing other computational tasks until the previ-
ously requested I/O operations have been completed. This makes for greater
parallelism in completing computational tasks as opposed to the purely sequential
model in which a thread must wait for an I/O operation to proceed before it
proceeds with other activity.

Figure 4-2 graphically illustrates the sequence of activities that occur when
performing synchronous and asynchronous I/O operations. As you can see from
the illustration, the thread using asynchronous I/O can continue performing
computational activity in parallel with the servicing of the I/O request that it has
initiated. This results in higher performance and higher net throughput for the
system. Note that the default I/O mechanism is the synchronous model.

Preemptible and interruptible
The I/O subsystem is preemptible and interruptible. It is extremely important for
all kernel-mode driver developers to understand these two concepts.

Every thread executing in kernel mode executes at a certain system-defined Inter-
rupt Request Level (IRQL). Each IRQL has an interrupt vector assigned to it by the
system, and there are a total of 32 different IRQLs defined by Windows NT. Any
thread can have its execution interrupted due to an interrupt at a higher IRQL
than the IRQL at which that thread is executing. When such an interrupt occurs,
the Interrupt Service Routines (ISRs) associated with that particular interrupt are
executed in the context of the currently executing thread. This results in a suspen-
sion of the current flow of execution so that thread can execute the ISR code.t

IRQ levels range from PASSIVE_LEVEL (defined as numeric value 0), which is
the default level at which all user threads and system worker threads execute, to
IRQL HIGH_LEVEL (defined as numeric value 31), which is the highest possible
hardware IRQL in the system. Most file system dispatch routines are executed at
IRQL PASSIVE_LEVEL. However, most lower-level device driver routines (for
example, SCSI class driver read/write dispatch entry points) are executed at
higher IRQ levels — typically at IRQL DISPATCH_LEVEL (defined as numeric
value 2).

* The term overlapped I/O used by the Win32 subsystem refers to the same coneept as that of asynchro-
nous I/O supported by the NT I/O Manager.
t ISR execution can be interrupted as well if another, even higher-level interrupt occurs.

The NT I/O Subsystem_____________________________ ___ __ 125

Figure 4-2. Synchronous/asynchronous processing

Since all code in the I/O subsystem is interruptible, drivers developed for the NT
operating system must use appropriate synchronization and protection mecha-
nisms to prevent data corruption for data accessed at different IRQ levels. For
example, if your kernel-mode driver accesses a data structure at IRQL PASSIVE_
LEVEL in the context of a system worker thread, and if this driver also needs to
access this same data structure at IRQL DISPATCH_LEVEL when servicing an
interrupt request, the driver will have to use a spin lock that is always acquired at
IRQL DISPATCH_LEVEL, which is the highest-level IRQL at which the spin lock
could possibly be acquired, to provide mutually exclusive access to the data
structure.*

Threads executing I/O subsystem code in the kernel are also preemptible. The
Windows NT operating system associates execution priorities with threads. These
priorities are typically variable, and most user-level threads and system worker

* Chapter 3, Structured Driver Development, provides a description of the available locking and synchro-
nization primitives in the Windows NT kernel environment.

126 Chapter 4: The NT I/O Manager

threads execute at relatively lower priorities, which allow them to be preempted
by the NT scheduling code (in the NT Kernel) when a higher-priority thread is
scheduled to run.

The fact that such threads could be preempted while executing kernel-mode code
also necessitates synchronization mechanisms to ensure data consistency. This
requirement is not present in other operating systems, such as the Windows 3.1
operating environment, or some versions of UNIX (e.g., HPUX, or SunOS), which
currently do not allow preemption of threads or processes executing in kernel
mode.

Kernel-mode driver designers must be extremely careful when acquiring common
resources (e.g., read/write locks, semaphores) from within the context of different
threads, because the Windows NT Kernel does not provide any built-in safe-
guards against programming errors resulting in situations like the priority
inversion scenario described in Chapter 1, Windows NT System Components.

If you develop a driver that needs to acquire more than one synchronization
resource at an IRQL that is less than or equal to DISPATCH_LEVEL, you must
also be careful to define a strict locking hierarchy. For example, assume that your
kernel-mode driver has to lock two FAST_MUTEX objects, fast_mutex_l and/as/1
mutex_2. You must define the order in which all threads in your driver can
acquire both of these mutex objects. This order could be "acquire fast_mutex_l
followed by fast_mutex_2 or vice-versa. The reason for strictly defining and main-
taining a locking hierarchy is to avoid a situation like one where thread-a
acquired fast_mutex_l, wants to acquire fast_mutex_2, and gets preempted.
Thread-b in the meantime gets scheduled to execute, acquires fast_mutex_2, and
now needs to acquire fast_mutex_l. This scenario would cause a deadlock
condition.

Portable and hardware independent

The I/O subsystem is portable and hardware independent. Kernel-mode drivers
developed for Windows NT environments are also required to be portable and
hardware independent.

The NT Hardware Abstraction Layer (HAL) is responsible for providing an abstrac-
tion of the underlying processor and bus characteristics to the rest of the system.
NT drivers must be careful to use the appropriate HAL, NT Executive, and I/O
Manager support routines to ensure portability across Alpha, MIPS, PowerPC, and
Intel platforms.

The vast majority of the code in the NT I/O subsystem is written in C, a high-level
and portable language. NT currently also requires kernel-mode driver developers
to write their code in the C language, though it is possible with some extra work

The NT I/O Subsystem 127

to write and link drivers in assembly. However, development in low-level
languages, such as assembly, is highly discouraged, because assembly languages
are inherently processor/architecture specific, and therefore such drivers cannot
execute on more than one type of processor architecture.*

Multiprocessor safe

The I/O subsystem is multiprocessor safe. Windows NT was designed from the
ground up to be able to execute on symmetric multiprocessing environments.

Execution of NT kernel-mode code and drivers on multiprocessor machines
requires careful synchronization by kernel designers to avoid data consistency
problems. For example, on uniprocessor machines, a common practice used to
avoid data consistency problems while servicing an interrupt is to disable all other
interrupts on the same machine (e.g., via a cli assembly instruction on x86 archi-
tectures). However, this same mechanism will fail on symmetric multiprocessor
systems, because it is possible to encounter an interrupt on another processor,
even though all interrupts had been disabled on the current processor. Similarly,
on uniprocessor systems, it can be guaranteed (e.g., via usage of a critical section)
that only one thread at a time can access a particular data structure. However, on
symmetric multiprocessor architectures, even if preemption of a thread from a
single processor were temporarily suspended, other threads executing on other
processors could conceivably try to simultaneously access the same data structure.

Typically, spin locks and other higher level (Executive) synchronization mecha-
nisms must be used consistently and correctly in Windows NT drivers to ensure
correct functionality on multiprocessor systems.

Modular

The NT I/O subsystem is modular. Any driver within the NT I/O subsystem can
be easily replaced by another driver that provides support for the same dispatch
entry points supported by the original driver. The use of I/O Request Packets to
submit I/O requests and an object-based model where all I/O operations are
invoked via standard methods (or well-defined dispatch routine entry points)
allows easy replacement of one kernel-mode driver with another that responds
appropriately to the same dispatch routines.

All drivers also invoke the services of the I/O Manager using a well-defined and
consistent set of service and utility functions. Theoretically, therefore, the I/O
Manager is also easily replaceable. In practice, however, the I/O Manager is an
extremely complex and integral component of the core NT operating system, and

* There are third-party-provided libraries that claim to assist you in developing Windows NT device driv-
ers in C++.

128________ _______ ________________Chapter 4: The NT I/O Manager

would be extremely difficult to replace easily, even by developers at Microsoft
itself.

One obvious benefit of the modularity in the I/O subsystem, however, is the rela-
tive ease with which I/O Manager support functions and driver functionality can
be reimplemented without affecting any clients that use the services of the I/O
Manager or such drivers. As long as the interfaces are maintained consistently, the
internals of any implementation can be changed whenever required.

Configurable

All components of the I/O subsystem are configurable. The I/O Manager and all
components that comprise the I/O subsystem try to maximize run-time config-
urability. The NT I/O Manager works with the HAL to determine the set of
peripherals connected to the system at boot time. It then initializes the appro-
priate data structures to support these connected devices. This process avoids any
requirements for hardcoding device configurations into the operating system.
Windows NT does not as yet support true plug-and-play, though it should in the
near future.

Kernel-mode drivers can be developed to manipulate devices; each driver is
dynamically loadable and unloadable, minimizing unnecessary kernel overhead.
The I/O Manager determines the drivers to be loaded, and the order in which
they should be loaded, based upon the entries in the Windows NT Registry. I/O
Manager configuration parameters, as well as those required by kernel-mode
drivers, are obtained from the Windows NT Registry.

Any drivers that you develop should be as configurable as possible. This includes
avoiding any hardcoded values in the driver code and instead obtaining these
values from the system Registry, maximizing user configurability.

Process and Thread Context
Before discussing other details specific to the I/O Manager and the I/O
subsystem, it would be useful for you to understand the concepts underlying
thread/process contexts and to realize why a good grasp of these concepts is
essential to understanding the operation of the various components in the
Windows NT Kernel. To design and develop kernel-mode drivers under Windows
NT successfully, you will need a solid grasp of these issues.

Every process in a Windows NT operating environment is represented by a
process object structure and has an execution context that is unique to that
process. The execution context for the process includes the process virtual
address space (described in greater detail in the next chapter), a set of resources
visible to that process, and a set of threads that belong to the process. Examples

The NT I/O Subsystem 129

of resources owned by a process include file handles for files opened by that
process, any synchronization objects created by that process, and any other
objects that are created either by the process or on behalf of that process. Each
process has at least one thread that is created and belongs to the process,
although the process certainly could have numerous threads that belong to it.
Note that in Windows NT, the fundamental scheduleable entity is a thread object
and not the process object.

Each process is described internally by the Windows NT Kernel by a Process Envi-
ronment Block (PEB) structure, which is opaque to the rest of the system. The
PEB contains process global context, such as startup parameters, image base
address, synchronization objects for process-wide synchronization, and loader
data structures. Upon creation, the process is also assigned an access token called
the primary token of the process. This token is used, by default, by threads associ-
ated with the process to validate themselves when they access any Windows NT
object.

An object table is created for each new process object structure. This object table
is either empty or a clone of the parent process object table, depending upon the
arguments supplied to the system's create process routine and the inheritance
attributes (OBJ_INHERIT) for each of the objects contained within the object
table for the parent process. The default access token and the base priority for a
new process is the same as that of the parent process.

A thread object is the entity that actually executes program code and is scheduled
for execution by the Windows NT Kernel. Every thread object is associated with a
process object; several threads can be associated with a single process object,
which enables concurrent execution of multiple threads in a single address space.
On uniprocessor systems, threads can never be executed concurrently; however,
on multiprocessor systems, concurrent execution is possible and does occur.

Each thread object has a thread context unique to it. This context is architecture-
dependent and is typically composed of the following:

• Distinct user and kernel stacks for the thread, identified by a user stack
pointer and a kernel stack pointer

• Program counter

• Processor status

• Integer and floating-point registers

• Architecture-dependent registers

You will notice that object handles and other related information about open
object structures stored in the process' object table are global to all threads associ-
ated with the process. Therefore, all threads in a process can access all open

130_________________________________Chapter 4: The NT I/O Manager

handles for the process, even those opened by other threads within the process.
Threads belonging to other processes can only access objects that belong to the
process to which they are affiliated; any attempt to access a resource owned by
another process will result in an error returned by the Object Manager component
in Windows NT.*

Threads are typically referred to as user-mode or kernel-mode threads. Note that
there is no difference in the internal representation of such threads, as far as the
Windows NT operating system is concerned. The only conceptual difference
between such threads is the mode of the processor when the thread typically
executes code, and the virtual address range that is therefore accessible by the
thread. For example, a Win32 application process contains threads that execute
code while the processor is in user mode and therefore are referred to as user-
mode threads. On the other hand, there is a global pool of worker threads
created by the Windows NT Executive in the context of a special system process
that are used to execute operating system or driver code when the processor is in
kernel mode; these threads are typically referred to as kernel-mode threads.

Although user-mode threads typically execute code with the processor in user
mode, they often request system services, such as file I/O, which result in the
processor executing a trap and entering kernel mode to execute the file system
code that will service the I/O request. Notice that the user-mode thread is now
executing operating system (file system driver) code with the processor in kernel
mode, with all the rights and privileges that exist while the processor in this state.
While executing in kernel mode, the thread can access kernel virtual addresses
and perform operations that are otherwise always denied while the processor is in
user mode.

Execution contexts

Consider a kernel-mode driver that you develop. The fact that this is a kernel-
mode driver tells us that, while the code is being executed, the processor will be
in kernel mode and will therefore be able to access the kernel virtual address
range. You might wonder which set of threads will execute the code that you
develop. Will it be some special thread that you would have to create, or will it
be a user-mode thread that requests services from your driver, or will it be a
thread on loan from the pool of system worker threads I referred to earlier?

The answer is, it depends. Your driver might always execute code in the context
of a special thread that you may have created at driver initialization time, or it

* Typically, if you write a kernel-mode driver that attempts to use a handle that is not valid within the
execution context of the currently executing process, you will see an error status of STATUS_INVALID_
HANDLE returned to you.

The NT I/O Subsystem__131

might execute code in the context of a user thread that has requested I/O
services, or it might be invoked in the context of system worker threads. It is
quite possible that, if you develop a file system driver, your driver will execute
code in the context of all three types of threads. Furthermore, if you develop
device drivers or other lower-level drivers that have their dispatch routines
invoked in response to interrupts, your code will execute in the context of which-
ever thread was executing on that processor at the particular instant when the
interrupt occurs. This is referred to as execution of code in the context of an arbi-
trary thread, i.e., a thread whose context is unknown to your driver. The
operating system temporarily "borrows" the execution context of this thread to
execute your driver routines simply because this thread happened to be executing
code on the processor at the time the interrupt occurred.

As a kernel-mode driver designer, you must, therefore, always be aware of the
execution context in which your code will execute. This execution context is
always one of the following:

The context of a user-mode thread that has requested system services
If you develop a file system driver or a filter driver that resides above the file
system in the driver hierarchy, then your code will often execute in the
context of the user-mode thread that requested, say, a read operation. Your
code will then be able to access the kernel virtual address range, as well as
the virtual addresses in the lower 2GB of the virtual address space belonging
to the user-mode process to which the requesting user-mode thread belongs.*

Typically, only file system drivers or filter drivers that intercept file system
requests should expect that their dispatch routinest will be executed directly
in the context of user-mode threads. Other drivers cannot expect this, simply
because higher-level drivers might have posted the user request to be
executed asynchronously in the context of a worker thread, or your driver
code might be executed in response to an interrupt as discussed previously.

The context of a dedicated worker thread created by your driver or by some kernel-
mode component (typically a component belonging to the I/O subsystem)

File system drivers sometimes create special threads in the context of the
system process (using the PsCreateSystemThread() system service
routine described in the DDK) that they subsequently use to perform opera-
tions that cannot otherwise be performed in the context of user-mode threads
requesting I/O services. Filter drivers might also choose to create such dedi-

* See the next chapter for a detailed discussion on virtual address spaces.
t Dispatch routines are the entry points into a kernel-mode driver. Later in this chapter, I will describe-
the possible dispatch routines that a kernel-mode driver could have.

132__________________________________Chapter 4: The NT I/O Manager

cated worker threads; or for that matter, any kernel-mode component can
choose to create one or more worker threads.
If you write a file system driver, you might occasionally request that certain
operations be carried out by such threads created by you. Your code will
then execute in the context of your special threads. If, however, you write
lower-level drivers, and if the file system uses a special thread to process I/O
requests, your driver might now be invoked in the context of the special
thread created by the file system driver. Either way, you can see that the code
executes in the context of specially created threads belonging to the system
process.

The context of system worker threads specially created by the I/O Manager to serve
I/O subsystem components

It is possible for certain I/O operations to be performed in the context of
system worker threads that are created by the I/O Manager. These worker
threads are often used by file system driver implementations, or by device
drivers or other kernel-mode components that need thread context to perform
their operations. For example, consider asynchronous I/O requests from user-
mode applications. Typically, a file system driver will service such a request
by "posting" the request to be picked up and handled by a system worker
thread. Control is immediately returned to the calling application once the
request has been posted, and the I/O Manager will notify the application
once the request has been serviced in the context of the system worker
thread. In such a situation, all lower-level drivers will have their dispatch
routines invoked in the context of the system worker thread. Note that a
system worker thread belongs to the system process, just like the dedicated
worker threads created by kernel-mode components described earlier.
The important point to note here is that once the request has been posted to
the system worker thread, the virtual address space now accessible in the
context of the system worker thread is not the same as the virtual address
space that was accessible in the context of the original, user-mode thread that
requested the I/O operation. Similarly, the resources that were valid in the
context of the original user-mode thread are no longer valid in the context of
the system worker thread. The reason for this is obvious: the system worker
thread executes in the context of the system process, and the user-mode
thread that requested the I/O operation belongs to a distinct application
process with its own object table, virtual address space, and process environ-
ment block.

The context of some arbitrary thread
Consider now a device driver able to service one IRP at any given point in
time. Typically, most device drivers respond to I/O requests by queuing the

The NT I/O Subsystem__733

IRP for delayed processing, and by returning control immediately to the
driver above it in the hierarchy. The IRP will be processed later when the
driver can get to it, which is when I/O Request Packets before it in the queue
have been processed.
So how is an IRP taken off the queue? Once the current I/O operation is
completed by the target device, the device informs the operating system via a
hardware interrupt. The operating system responds to this interrupt by
invoking the Interrupt Service Routines that various drivers have associated
with that specific interrupt. One of these Interrupt Service Routines will be
the ISR specified by your driver. As part of ISR execution, the current IRP will
complete, and the next IRP will be taken off the device queue and scheduled
for actual I/O.*

The point to note here is that the ISR is executed asynchronously, in the
context of the currently executing thread—an arbitrary thread. Therefore,
when responding to such an interrupt, the driver cannot assume that the
virtual address space accessible to it is the same as that of the user thread that
requested the IRP now being completed. Resources associated with that
thread are not available to the driver code either, because the driver does not
know which thread's context is being borrowed to execute the ISR code.

Importance of thread and process contexts

Your kernel-mode driver code will be invoked in one of the execution contexts
described previously. The code you develop should be aware of the execution
context in which it will be invoked, since that determines the restrictions under
which your driver must operate.

Consider the case where you develop a kernel-mode driver that needs to open
some object; for example, your driver may perform file I/O itself and may there-
fore open a file and receive a file handle in return.t If you open this file in your
driver initialization code (the DriverEntry () routine that every kernel-mode
driver must have), you should be aware that this handle will only be valid in the

* If you do develop device drivers, you will note that most processing described above is actually per-
formed as a Deferred Procedure Call (DPC) initiated by the ISR. However, the DPC is also executed in
the context of an arbitrary thread. Although I will not focus on DPCs and device driver development in
this hook, you can consult the DDK for more information.
t Although it may seem strange that a kernel-mode driver might want to perform file I/O, there are filter
drivers that provide functionality that requires such capabilities. A strength of the object-based, layered
model followed by Windows NT components is that kernel-mode drivers have a tremendous amount of
flexibility in terms of services available to them. This leads to the design of very robust, and useful, kernel-
mode drivers.

134__________________________________Chapter 4: The NT I/O Manager

context of the kernel process and the threads associated with the kernel process.
So, if you use this handle in the context of system worker threads, the handle will
be valid. However, if you attempt to use the handle in the context of a user
thread, or an arbitrary thread context, your handle will not be valid. Similarly, if
your driver opens an object while servicing a read request in the context of a user
thread, the handle can be used only in the context of that thread. Any attempt to
use the handle in the context of a system worker thread, for example, will result
in an error.

You must be also be aware of when you can safely use the user buffer address,
passed to your driver, for a read or write I/O operation. The user specifies a
virtual address pointer that is perfectly valid in the context of that particular user
thread. However, if the I/O operation is not performed in the context of that user
thread (e.g., the I/O operation is performed asynchronously), the virtual address
passed in by the user application will no longer be valid and therefore cannot be
used by the kernel-mode driver. The I/O Manager provides support for accessing
user buffers in other contexts besides that of the requesting thread. I will discuss
this support in detail later in this chapter.

As discussed above, there are certain restrictions on the resources that can be
used by your driver, depending on the thread context in which your code
executes. This thread context depends on the circumstances under which your
code is invoked, and this context will determine the resources that your driver
can utilize.

Objects and handles

All objects created by kernel-mode components in the Windows NT Executive
can be referred to in two ways, either by using an object handle returned by the
NT Object Manager when the object is created or opened, or by using a pointer
to the object. Note that the pointer to an object allocated by a kernel-mode
component will typically be valid in all execution contexts, because the virtual
address referring to the object will be from the kernel virtual address range (more
on this in the next chapter). However, as mentioned earlier, object handles are
specific to the execution context in which the handle is obtained and hence are
valid only in that particular execution context.

Remember that each object created by the NT Object Manager has a reference
count associated with it. When the object is initially created, this reference count
is set to 1. The reference count is incremented whenever a kernel-mode compo-
nent requests the Object Manager to do so, typically via an invocation of
ObRef erenceObjectByHandle (), which is described in the DDK. The refer-
ence count is decremented whenever a close operation is performed on the
object handle. Kernel-mode drivers use the ZwClose () system service routine to

Common Data Structures 135

close a handle to any system-created object. The reference count is also decre-
mented when a kernel-mode component invokes ObDereferenceObject (),
which requires the object pointer to be passed in. When the object count goes to
zero, the object will be deleted by the NT Object Manager.

In the course of this book, you will often find places where we open an object
and receive a handle, then obtain a pointer to the object and stash it away some-
place (possibly in global memory), reference the object, and close the handle.
This allows us two advantages:

• By saving a pointer to the object, we can always reobtain a handle to the
same object in the context of a thread other than the one that originally
opened the object. You can find concrete examples of this later in the book.

• By referencing the object and closing the original handle, we are assured the
object will not be deleted (until we finally dereference it for the last time), yet
we are also assured that, once the last dereference operation is performed,
the object will automatically be deleted.

Keep the above discussion in mind as you go through the discussion and code
presented throughout this book. This methodology of working with objects and
object handles will probably be used extensively by you when you develop your
own kernel-mode driver.

Common Data Structures
Data structures are the heart of any computer application or operating system.
The NT I/O Manager defines certain data structures that are important to kernel-
mode driver designers and developers. Often, your driver will have to create and
maintain one or more instances of these data structures to provide driver function-
ality. In this section, I will briefly discuss the structure and uses of some of the
data structures that are important to file system driver and filter driver developers.
Note that all of these structures are well documented in the Windows NT DDK.
However, our objective here is to understand the reason for creating and working
with these data structures, as well as to get a good understanding of the important
fields that comprise these data structures.

Driver Object
The DRIVER_OBJECT structure represents an instance of a loaded driver in
memory. Note that a kernel-mode driver can only be loaded once; i.e., multiple
instances of the same driver will not be loaded by the Windows NT I/O Manager.
The driver object structure is defined as follows:

136 Chapter 4: The NT I/O Manager

typedef struct _DRIVER_OBJECT {
CSHORT Type ;
CSHORT Size;
/* a linked list of all device objects created by the driver */
PDEVICE_OBJECT DeviceObject;
ULONG Flags;
PVOID DriverStart;
ULONG DriverSize;
PVOID DriverSection;
/*** ********************************
the following field is provided only in NT Version 4.0 and later

PDRIVER_EXTENSION
/*****************

DriverExtension;

the following field is only provided in NT Version 3.51 and before

ULONG

UNICODE_STRING
PUNICODE_STRING
PFAST_IO_DISPATCH
PDRIVER_INITIALIZE
PDRIVER_STARTIO
PDRIVER_UNLOAD
PDRIVER_DI SPATCH

} DRIVER_OBJECT;

Count;

DriverName;
HardwareDatabase;
FastloDispatch;
Driverlnit;
DriverStartlo;
DriverUnload;
Ma j orFunction [IRP_MJ_MAXIMUM_FUNCTION 11;

Earlier in this chapter, I discussed the NT packet-based I/O model. Each I/O
Request Packet describes an I/O request. The major function of an I/O request
packet is to request functionality from a driver.

We know that the IRPs will have to be dispatched to some I/O driver routines. If
you examine the driver object structure, you will notice that it contains memory
allocated for an array of function pointers called the Ma j orFunction array. It is
the responsibility of the kernel-mode driver to initialize the contents of this array
for each major function that the kernel-mode driver supports. There are no restric-
tions on the number of functions that your driver must support, nor are there any
restrictions specifying that each function pointer should point to a unique func-
tion; you could initialize the entry points for all major functions to point to a
single routine and this would work perfectly (as long as your driver routine
handled all the IRPs that would be directed to it). If you develop a kernel-mode
driver, you will probably support at least one major function and should therefore
initialize the function pointers appropriately.

The DriverStartlo and the DriverUnload fields are also left for the driver
to initialize. Lower-level Windows NT drivers typically provide a Startle func-
tion, which is invoked either when an IRP is dispatched to the driver, or when an
IRP has just been popped off a queue. The DriverStartlo field is initialized
by lower-level drivers to point to this driver-supplied StartIO function. Typi-

Common Data Structures_____________________________________737

cally, as you will see in code presented later in this book, file system drivers and
filter drivers will not need a DriverStartlo routine, because such drivers
manage their pending I/O Request Packets via other internal queue management
implementations. The DriverUnload field should point to a routine that is
executed just before the driver is unloaded. This allows your kernel-mode driver
an opportunity to ensure that any on-disk information is in a consistent state, as
well as to allow lower-level drivers to put the device(s) they control into a known
state. Note that it is not required that your driver be unloadable; in particular, file
system drivers are extremely difficult to design so that they can be unloaded on
demand. If your driver cannot be unloaded, you must not initialize the Driv-
erUnload field in the driver object structure (the field is initialized to NULL by
the I/O Manager and therefore your driver entry routine need not do anything to
this field).

Many kernel-mode drivers create one or more device object structures. These
structures are linked in the DeviceObject field in the driver object structure. At
driver load time, this linked list is empty. However, the NT I/O Manager fills the
list with pointers to device objects created by your driver as such device objects
are created using the loCreateDevice () service routine.

To load a driver, the I/O Manager executes an internal routine called lopLoad-
Driver () . This routine performs the following functionality:

• Determines the name of the driver to be loaded and checks whether the
driver has already been loaded by the system.
The I/O Manager checks to see whether the driver has already been loaded
by examining a global linked list of loaded kernel modules. If the driver is
already loaded, the I/O Manager immediately returns success; otherwise, it
continues with the process of loading the driver. To have your driver loaded,
your installation utility must have created an appropriate entry in the Registry.
See Part 3 for more information on how the Registry must be configured for
kernel-mode file system and filter drivers.

• If the driver is not loaded, the I/O Manager requests the Virtual Memory Man-
ager (VMM) to map in the driver executable. As part of mapping in the driver
code, the VMM checks to see that the file contains a valid Windows NT exe-
cutable format. If the driver was built incorrectly, the VMM will fail the map
request and the I/O Manager, in turn, will fail the driver load request.

• Now the I/O Manager invokes the Object Manager, requesting that a new
driver object be created. Note that the DRIVER_OBJECT type is an I/O Man-
ager-defined object type, which was previously created by the I/O Manager at
system initialization time; it is therefore recognized as a valid object type by
the NT Object Manager. Note also that the returned driver object structure is

138_________________________________Chapter 4: The NT I/O Manager

allocated from nonpaged system memory and is, therefore, accessible at all
IRQ levels.

• The I/O Manager zeroes out the driver object structure returned by the Object
Manager. Each entry in the MajorFunction array is initialized to lopln-
validDeviceRequest (). This is the default dispatch routine for the vari-
ous entry points. This routine simply sets a return status of STATUS_
INVALID_DEVICE_REQUEST and returns control to the calling process.

• The I/O Manager initializes the Driverlnit field to refer to the initialization
routine in your driver (the DriverEntry routine). DriverSection is ini-
tialized to the section object pointer* for the mapped executable, Driver-
Start is initialized to the base address to which the driver image was
mapped, and DriverSize is initialized to the size of the driver image.

• The I/O Manager requests that the object be inserted into the linked list of
driver objects maintained by the NT Object Manager. In return, the I/O Man-
ager gets a handle to the object. This handle is referenced by the I/O Man-
ager and closed, thereby ensuring that the object will be deleted when
dereferenced at driver unload time.

• The HardwareDatabase field is initialized with a pointer to the Configura-
tion Manager's hardware configuration information; this field could be used
by lower-level drivers to determine the hardware configuration for the current
boot cycle. The I/O Manager also initializes the DriverName field so that it
can be used by the error logging component when required.

• Finally, the I/O Manager invokes the driver initialization routine, which is
where your driver gets the opportunity to initialize itself, including initializing
the function pointers in the driver object structure. You should note that your
driver initialization routine is always invoked at IRQL PASSIVE_LEVEL,
allowing you to use pretty much all of the system services available. Further-
more, your initialization routine will be invoked in the context of the system
process; this is especially important to keep in mind if you open any objects
or create any objects resulting in a handle being returned to you. Any such
handles will only be valid in the context of the system process. In order to be
able to use such objects in the context of other threads, you will have to use
the methodology described earlier in the chapter, where you obtain a pointer
to the object and then subsequently obtain handles in the context of other
threads as and when required.

If your driver fails the initialization routine it will automatically be unloaded
by the Windows NT I/O Manager. Remember to deallocate any allocated

* Chapter 5, The NT Virtual Memory Manager, explains section objects and the process of mappinf files
in greater detail.

Common Data Structures_____________________________________139

memory prior to returning control to the I/O Manager and also to close and
dereference any open objects, or else you will leave a trail behind you that
could lead to degraded or impaired system behavior.

The driver entry routine is the initialization routine for a kernel-mode driver and
is invoked by the I/O Manager. Each kernel-mode driver can also register a re-
initialization routine that is invoked after all other drivers have been loaded and
the rest of the I/O subsystem, as well as other kernel-mode components, have
been initialized. In NT 3.51 and earlier, the Count field in the driver object struc-
ture contained a count of the number of times the reinitialization routine had
been invoked.

Beginning with NT 4.0 and later, the NT I/O Manager allocates an additional struc-
ture that is an extension of the original driver object structure. This driver
extension structure is defined below and contains fields to support plug-and-play
for lower-level drivers that manage hardware devices and peripherals. The Count
field has been moved to the driver extension structure with the new release;
however, it still provides the same functionality as it did in earlier releases. Plug-
and-play support is provided by lower-level drivers and will not be covered in
this book.

typedef struct _DRIVER_EXTENSION {
// back pointer to driver object
struct _DRIVER_OBJECT *DriverObject;
// driver routine invoked when new device added
PDRIVER_ADD_DEVICE AddDevice;
ULONG Count;
UNICODE_STRING ServiceKeyName;

) DRIVER_EXTENSION, *PDRIVER_EXTENSION;

Finally, notice that there is a pointer to a fast I/O dispatch table in the driver entry
structure. Currently, only file system driver implementations provide support via the
fast I/O path. Essentially, the fast path is simply a way to avoid the abstract, clean,
modular, yet relatively slow method of using packet-based I/O. Using the function
pointers provided by the file system driver in this structure, the NT I/O Manager
can either directly invoke the file system dispatch routines or call directly into the
NT Cache Manager to request I/O without having to set up an IRP structure. The
FastloDispatch field should be initialized by the driver entry routine to refer to
an appropriate structure containing initialized file system entry points. In the
coverage of the NT Cache Manager, provided later in this book, you will see a
detailed discussion of the entry points that comprise the fast I/O method of I/O.

Device Object
Device object structures are created by kernel-mode drivers to represent logical,
virtual, or physical devices. For example, a physical device, such as a disk drive,

140 Chapter 4: The NT I/O Manager

is represented in memory by a device object. Similarly, consider the situation
where you develop an intermediate driver that presents a large physical disk as
three smaller disks or partitions. Now, there will be one device object, repre-
senting a large physical disk, that is created by the lower-level disk driver, and
your intermediate driver should create three additional device objects, each of
which represents a virtual disk. Finally, a driver might choose to create a device
object to represent a logical device; for example, the file system drivers create a
device object to represent the file system implementation. This device object can
be opened by other processes and can be used to send specific commands
targeted to the file system driver itself.

Without a device object, a kernel-mode driver will not receive any I/O requests,
since there must be a target device for every I/O request dispatched by the I/O
Manager. For example, if you develop a disk driver and do not create a device
object structure representing this particular disk device, no user process can
access this disk. Once you do create a device object for the disk, however, file
system drivers can potentially mount any volumes present on the physical media
and user-mode processes can try to read and write data from the disk.

Unnamed device objects are rarely created by kernel-mode drivers, since such
device objects are not easily accessible to other kernel-mode or user-mode compo-
nents. If you create an unnamed device object, none of the other components in
the system will be able to open it, and therefore, no component will direct any
I/O to it. However, one common example of unnamed device objects are those
created by file system drivers to represent mounted file system volumes. In this
case, there is a device object, created by the disk driver representing the physical
or virtual disk, on which the file system volume resides, and a Volume Parameter
Block (VPB) structure (described later) performs the association between the
named physical disk device object and the unnamed logical volume device object
created by the file system driver. I/O requests are sent to the device object repre-
senting the physical disk. However, the I/O Manger checks to see whether the
disk has a mounted volume on it (mounted volumes are identified by an appro-
priate flag in the VPB structure for the device object that represents the physical
disk), and if so, it redirects the I/O to the unnamed device object representing the
instance of the mounted volume.

When your driver issues a call to loCreateDevice () to request creation of a
device object, it can specify an additional amount of nonpaged memory to be allo-
cated and associated with the newly created device object. The reason is to have
a global memory area reserved for and associated with that particular device
object. This memory is called the device object extension and will be allocated by
the I/O Manager on behalf of your driver. The I/O Manager initializes the Devi-
ceExtension field to point to this allocated memory. There are no constraints

Common Data Structures 141

mandated by the I/O Manager on how this memory object should be used by
your driver. You may wonder what the difference is between requesting a device
extension and declaring global static variables. The answer can be summed up as
potentially cleaner code design. Another important benefit is that device-specific
global variables stored in a device object extension become logically associated
with the device object immediately, and therefore you can avoid unnecessary
acquisition of synchronization resources before accessing this device-object-
specific data.

Any static variables declared by your kernel-mode driver are global to the entire
Windows NT operating system. They are also not logically associated with any
particular device object, so if your driver creates and manages multiple device
object structures, you will have to design some method where the global struc-
tures can be associated with specific device objects. Note, however, that both
statically declared global variables and the device extensions are allocated from
nonpaged pool, although you can request that your static variables be made page-
able (typically, this is never done). Many kernel-mode drivers make use of both
statically declared global variables that are required by the entire driver, and a
driver extension containing global variables that are specific to the context of a
certain device object structure.

The device object structure is defined as follows:

typedef struct _DEVICE_OBJECT {
CSHORT
USHORT
LONG
struct _DRIVER_OBJECT
struct _DEVICE_OBJECT
struct _DEVICE_OBJECT
struct _IRP
PIO_TIMER
ULONG
ULONG
PVPB
PVOID
DEVICEJTYPE
CCHAR
union {

LIST_ENTRY
WAIT_CONTEXT_BLOCK

} Queue;
ULONG
KDEVICE_QUEUE
KDPC
ULONG
PSECURITY_DESCRIPTOR
KEVENT
USHORT

Type;
Size;
Ref erenceCount ;
*DriverOb j ect ;
*NextDevice ;
*AttachedDevice ;
*CurrentIrp;
Timer;
Flags;
Characteristics ;
Vpb;
DeviceExtension;
DeviceType;
StackSize;

ListEntry;
Web;

AlignmentRequirement
DeviceQueue;
Dpc;
ActiveThreadCount ;
SecurityDescr iptor ;
DeviceLock;
SectorSize;

142 Chapter 4: The NT I/O Manager

USHORT Sparel;

the following fields only exist in NT 4.0 and later

struct _DEVOBJ_EXTENSION
PVOID

*DeviceObjectExtension;
Reserved;

the following field only exists in NT 3.51 and earlier versions

LARGE_INTEGER
DEVICE_OBJECT;

Spare2;

Any kernel-mode driver can direct the I/O Manager to create a device object
using the loCreateDevice () routine. This routine, if successful, will return a
pointer to the device object structure that is allocated from nonpaged memory.
Many of the fields in the device object structure are reserved for use by the I/O
Manager. A brief description of the important fields is given below:

• As long as the ReferenceCount field is nonnull, two invariants hold true.
First, the device object will never be deleted. Second, the driver object repre-
senting the driver that created this device object will never be deleted (i.e.,
the driver will never be unloaded as long as any of the device objects created
by the driver has a positive reference count). The ReferenceCount field is
manipulated at various times by the I/O Manager and can also be manipu-
lated by the driver.* An example of this field being incremented by the I/O
Manager is whenever a new file stream is opened on a mounted volume; the
reference count for the device object representing the mounted volume is
incremented by 1 to ensure that the volume is not dismounted as long as any
file is open. This also ensures that the file system driver is not unloaded as
long as any file is open, since unloading the driver could lead to a system
crash. Similarly, whenever a new volume is mounted, the device object repre-
senting the logical volume has its reference count incremented to ensure that
both the device object and the corresponding driver object are not deleted.

• The I/O Manager initializes the DriverObject field to refer to the driver
object representing the loaded instance of the kernel-mode driver that
invoked the loCreateDevice () routine.

• All device objects created by a kernel-mode driver are linked together using
the NextDevice field in the device object. Note that there is no particular
order in which a kernel-mode driver, traversing this linked list, should expect
to find created device objects. As it happens, the I/O Manager adds new

* Be careful if your driver manipulates the ReferenceCount field in the device object, because there
is no method with which you can synchronize your operation with that of the I/O Manager. This could
lead to inconsistent behavior.

Common Data Structures 143

device objects to the head of the linked list; therefore, you will probably find
the last device object inserted at the beginning of the list.
In this chapter, as well as in Chapter 12, Filter Drivers, you will be exposed to
more detail about how filter drivers can be developed for Windows NT envi-
ronments. These filter drivers are intermediate-level drivers that intercept I/O
requests targeted to certain device objects by interjecting themselves into the
driver hierarchy and by attaching themselves to the target device objects. The
concept of attaching to a device object is simple, as illustrated in Figure 4-3.

Figure 4-3. Illustration of a device object being attached to another

When a device object is attached to another (via the I/O-Manager-provided
loAttachDevice () or the loAttachDeviceByPointer () routines), the
AttachedDevice field in the device being attached to (device object #\ in
Figure 4-3) will be set to the address of the device object being attached
(device object #2).

• The Current I rp field is of interest to designers of device drivers or other
lower-level drivers. Such drivers typically use the I/O-manager-supplied
loStartNextPacket () or loStartPacket () routines to queue and
dequeue an IRP from the driver queue of pending IRPs. Once the I/O man-
ager dequeues a new IRP, it makes the dequeued IRP the current IRP to be
processed by the driver. To do this, it inserts the IRP pointer in the Current-
Irp field of the device object. The I/O manager subsequently passes a
pointer to DeviceObject->CurrentIrp when invoking the device driver
Startlo () dispatch routine.
This field is typically not of much interest to higher-level drivers.

144 Chapter 4: The NT I/O Manager

• The Timer field is initialized when the driver invokes lolnitialize-
Timer (). This allows the I/O Manager to invoke the driver-supplied timer
routine every second.

• The device object Characteristics field describes some additional
attributes for the physical, logical, or virtual device that the object represents.
The possible values are FILE_REMOVABLE_MEDIA, FILE_READ_ONLY_
DISK, FILE_FLOPPY_DISK, FILE_WRITE_ONCE_MEDIA, FILE_REMOTE_
DEVICE, FILE_DEVICE_IS_MOUNTED, or FILE_VIRTUAL_VOLUME. This
field is manipulated by the I/O Manager, as well as by the file system or ker-
nel-mode driver that manages the device object.

• The DeviceLock is a synchronization-type event object allocated by the I/O
Manager. Currently, this object is acquired by the I/O Manager prior to dis-
patching a mount request to a file system driver. This allows synchronization
of multiple requests to mount the volume. You should only be concerned
with this event object if you design a file system driver that uses the I/O-Man-
ager-supplied loVerifyVolume () routine (described in Part 3). In that
case, you should be careful not to invoke that routine when you get a mount
request from the I/O Manager, since the DeviceLock would have been pre-
viously acquired by the I/O Manager prior to sending you the mount IRP;
invoking the verify routine would cause the I/O Manager to try to reacquire
this resource and cause a deadlock.

• The I/O Manager allocates memory for the device extension and initializes
the DeviceExtension field to point to this allocated memory.

I/O Request Packets (IRP)
As described earlier, the Windows NT I/O subsystem is packet-based. Kernel-
mode drivers that comprise the I/O subsystem receive I/O Request Packets (IRP),
which contain details of the operation being requested. The recipient of the IRP is
responsible for processing the IRP, and either forwarding it on to another kernel-
mode driver for additional processing, or completing the IRP, indicating that
processing of the request described in the IRP has been terminated.

IRP allocation

All I/O requests are routed through the NT I/O Manager. Most often, a user
process executes a Win32- or other subsystem-specific I/O request (e.g., Create-
File ()) , and this request gets translated to an NT system service call to the I/O
Manager. Upon receiving the I/O request, the I/O Manager identifies the driver
that should service the I/O request. Most likely, this will be a file system driver
that will have mounted the file system on the physical device to which the I/O
request is targeted.

Common Data Structures_____________________________________145

To dispatch the request to the kernel-mode driver, the I/O Manager allocates an
I/O Request Packet using the routine loAllocatelrp () .* This structure is
always allocated from nonpaged pool. The method of allocation'differs slightly in
the various versions of Windows NT.

NOTE A zone is a system-defined structure supported by the Windows NT
Executive and is used to efficiently manage allocation and dealloca-
tion of fixed-sized chunks of memory. Allocating and freeing memo-
ry using zones is more efficient than asking for small chunks of
memory from the VMM, which could also lead to some internal
memory fragmentation. Using a zone requires your driver to per-
form two steps: first, allocate the memory that will comprise the
zone and inform the NT Executive about this allocated pool, as well
as the size of entries you will allocate from the zone; second, use
the available ExAllocateFromZone () and other related support
routines to allocate and free entries using the zone.
Read Chapter 2, File System Driver Development, for a discussion on
how to use zones in your driver.

In NT version 3.51 and earlier, the I/O Manager first attempts to allocate the IRP
from a zone composed of fixed-sized IRP structures. As you will read later in this
discussion of IRPs, the size of the IRP depends upon the number of stack loca-
tions that are required for the IRP. Therefore, the I/O Manager keeps two zones
available, one for IRPs with relatively fewer stack locations, and the other for I/O
Request Packets with a larger number of stack locations. If the zone from which
allocation is attempted is found empty (this can happen in high-load situations
where an extremely large amount of concurrent I/O is in progress), the I/O
Manager requests memory for the IRP directly from the VMM (actually, the I/O
Manager uses the ExAllocatePool () support routine provided by the NT Exec-
utive). For I/O requests that originate in user-mode, if no memory is currently
available, an error is returned to the user application indicating that the system is
out of available resources. However, for I/O requests that originate in kernel-
mode, the I/O Manager attempts to allocate memory for the IRP from the
NonPagedPoolMustSucceed memory pool. If this memory allocation request
does not succeed, the attempt will result in a system bugcheck.

The methodology used in NT version 4.0 is similar with one slight variation: the
I/O Manager uses lookaside lists, a new structure used to manage fixed-sized
pools of memory introduced in this new release, instead of zones. The reason for

* The loAllocatelrp () routine is documented in the DDK. It can also be used by other kernel-mode
drivers to request an IRP to be allocated. Supply a FALSE for the ChargeQuota argument required with
this routine invocation.

146 Chapter 4: The NT I/O Manager

this new structure is to gain some efficiency, because lookaside lists do not
always use spin locks to perform synchronization; instead they use an atomic 8-
byte compare exchange instruction on architectures where such support is
possible.

Other kernel-mode components besides the I/O Manager can use the I/O-
Manager-supplied routine loAllocatelrp () to request a new IRP structure.
This IRP can subsequently be used to send a I/O request to a kernel-mode driver.
Other routines provided by the I/O Manager that also use loAllocatelrp () to
obtain a new IRP structure and then return these newly allocated IRPs after the
initialization of certain fields are loMakeAssociatedlrp (), loBuildSyn-
chronousFsdRequest () , loBuildDeviceloControlRecjuest () , and lo-
BuildAsynchronousFsdRecruest () . Consult the DDK for more information
on these routines. Part 3 also uses some of these routines in implementing filter
drivers.

IRP structure

Logically, each I/O Request Packet is composed of the following:

• The IRP header

• I/O Stack Locations

The IRP header contains general information about the I/O request, useful to the
I/O Manager as well as to the kernel-mode driver that is the target of the request.
Many of the fields in the IRP header can be accessed by a kernel-mode driver;
other fields exist solely for the convenience of the I/O Manager and should be
considered off-limits by the drivers processing the IRP.

Here is a brief explanation of important fields that comprise the IRP header:

MdlAddress
A Memory Descriptor List (MDL) is a system-defined structure that describes a
buffer in terms of the physical memory pages that back up the virtual address
range comprising the buffer. There are different ways in which buffers used
for I/O request handling can be passed down to the kernel-mode driver.
Descriptions for the three methods will appear shortly. Remember for now,
though, that if the Directlo method is used, the MdlAddress field will
contain a pointer to the MDL structure that can then be used in data transfer
operations.

Associatedlrp
This field is an union of three elements, defined as follows:
union {

struct
LONG

_IRP *MasterIrp;
IrpCount;

Common Data Structures _____________________________________ 147

PVOID SystemBuffer;
} Associatedlrp;

Any IRP structure that has been allocated can be categorized as either a
master IRP or an associated IRP. An associated IRP is, by definition, associ-
ated with some master IRP, and can be created only by a higher-level kernel-
mode driver. By creating one or more associated IRPs, the highest-level driver
can split up the original I/O request and send each associated IRP to lower-
level drivers in the hierarchy for further processing.

For example, higher-level drivers sometimes execute the following loop:
while (more processing is required) {

create an associated IRP using loMakeAssociatedlrp () ;
send the associated IRP to a lower-level driver using
loCallDriver () ;
if (STATUS_PENDING is returned) {

wait on an event for the completion of the associated IRP;
} else {

associated IRP was completed;
check result and determine whether to continue;

For an associated IRP, the union described here contains a pointer to the
master IRP. For a master IRP, however, this union contains the count of the
number of associated IRPs for this master IRP; or, if no associated IRPs have
been created, the SystemBuffer pointer might be initialized to a buffer allo-
cated in kernel virtual address space for data transfer. System buffers are
allocated by the I/O Manager when a kernel-mode driver requests buffered
I/O (described later in this book).
Note that the IrpCount field is manipulated under the protection of an
internal I/O Manager resource. Therefore, external kernel-mode drivers must
not attempt to manipulate or access the contents of this field directly.

ThreadListEntry
This field is typically manipulated by the I/O Manager. Before invoking a
driver dispatch routine via loCallDriver () , all I/O Manager routines
insert the IRP into a linked list of IRPs for the thread in whose context the I/O
operation is taking place. For example, if a user thread invokes a read
request, the I/O Manager will allocate a new IRP structure, and insert it into
the list of IRPs being processed by the user thread prior to invoking the file
system read dispatch routine.

148_________________________________Chapter 4: The NT I/O Manager

NOTE There is a field in each thread structure called IrpList, which
serves as the head of a linked list of pending I/O Request Packets.
The ThreadListEntry field, described earlier, is used to queue
the IRP to this linked list. This list is used to track all pending I/O
Request Packets for the thread in question; this is especially useful
when the I/O subsystem tries to cancel IRPs for a particular thread.
Note that the loAllocatelrp () routine does not queue the re-
turned IRP to the linked list of outstanding IRPs for the current
thread. Therefore, when a cancel request is posted, that IRP will not
be found among the list of IRPs for the thread.

loStatus
This field should be appropriately updated by your kernel-mode driver before
completing the I/O Request Packet. A description of the structure is provided
later in this chapter. Note that this field is part of the IRP structure, and not
part of the I/O status block structure passed in to the I/O Manager by the
thread requesting the I/O operation. It is the I/O Manager's responsibility to
transfer the results of the I/O operation from this field to the I/O status struc-
ture submitted by the requesting thread. This operation is performed by the
I/O Manager as part of the postprocessing of the IRP, once the IRP has been
completed by kernel-mode drivers.

RequestorMode
When code in your driver is executed, it would be useful if you knew
whether the caller was a user-mode thread (e.g., an application requesting an
I/O operation), or if the caller was a kernel component (some other driver
requesting your services in the context of a system worker thread).

You may wonder why such information could be useful. Think about the
case where the caller is a user-mode thread; you know then that you cannot
blindly assume that the arguments passed in to your driver are legitimate. If
your driver uses the direct-IO method of passing buffer pointers (explained
later), you will need to convert the passed-in addresses to something usable
by your kernel-mode code. This is especially true if the request will be
handled asynchronously by your driver.

On the other hand, if your driver is invoked from a system worker thread,
you could bypass these argument checks, because you could assume that
addresses passed in to you are legitimate and usable directly by your driver.

Similarly, the NT I/O Manager, as well as other kernel components such as
the Virtual Memory Manager, need to identify and differentiate whether
clients of their services are executing kernel-mode (operating system) code,
or whether the request came from a user-space component. This information

Common Data Structures 149

is used to check the legitimacy of the arguments passed in to these kernel-
mode components.*

The solution used throughout the NT Executive is to identify the processor
mode in which the calling thread executed prior to invoking the services of
the kernel-mode component. Note that the key concept here is that the
previous mode of the calling thread is important; the very fact that the thread
is executing kernel-mode code at the instant when the check is made tells us
that the current mode will always be kernel mode. To obtain the previous
mode information, the I/O Manager directly accesses a field in the thread
structure. The ExGetPreviousMode () function, declared in the DDK,
provides the same functionality to third-party driver developers. This routine
returns the previous mode of the thread being checked: user or kernel mode.
The I/O Manager puts the information about the previous mode of the
requesting thread into the RequestorMode field prior to invoking the
loCallDriver () routine, which, in turn, invokes one of your driver
dispatch routines. You should use this information both internally in your
driver, as well as in invocations to system service routines such as
MmProbeAndLockPages().

Pendi ngRe turned
Each IRP is typically handled by more than one driver in the hierarchy. To
process an IRP asynchronously, a kernel-mode driver must execute the
following steps:

a. Mark the IRP pending by invoking the loMarklrpPending () function,

b. Queue the IRP internally.

Lower-level drivers may use a Startlo () function instead,

c. Return a status code of STATUS_PENDING.
The loMarklrpPending () call (implemented as a macro) simply sets
the SL_PENDING_RETURNED flag in the Control field of the current
I/O stack location.t

At the time of IRP completion processing, during the execution of the loCom-
pleteRecjuest () function, the I/O Manager traverses each stack location
that had been used by drivers in the hierarchy, looking for any completion
routines that may need to be invoked. This traversal of stack locations
happens in reverse order from that used in processing the IRP. The most
recently used stack location is processed first (the one used by the lowest-

* If the I/O Manager read system service (NtReadFile ()) blindly assumed that the passed-in buffer
address was a legitimate kernel-mode usable address, malicious users could have a field day overwriting
operating system data with their own!
t Stack locations are discussed in detail later in this chapter. You may skip this discussion for the moment
and come back to it after you have read that section.

750__________________________________Chapter 4: The NT I/O Manager

level driver in the hierarchy that processed the IRP), followed by the next
one, and so on.

As each stack location is unwound, the I/O Manager notes whether the SL_
PENDING_RETUKNED flag had been set in the I/O stack location, and sets
the PendingReturned flag to TRUE if the flag had been set. However, if
the flag was not set in the stack location, the I/O Manager sets the Pending-
Returned field to FALSE.

WARNING The value of the PendingReturned field may change as the I/O
stack locations are being traversed, -while the I/O Manager looks for
completion routines that may need to be invoked.

So why is the value of this field important? Well, later on in the loCom-
pleteRecjuest () function, the I/O Manager checks the value of the Pend-
ingReturned field to determine whether or not to queue a special kernel
Asynchronous Procedure Call (APC) to the thread that originally requested the
I/O operation. Your file system or filter driver will have to cooperate with the
I/O Manager to ensure that the right course of action is adopted. You will see
how your driver's actions affect the behavior of the I/O Manager later in this
chapter.

Cancel, Cancellrql, and CancelRoutine
Kernel-mode drivers that process I/O Request Packets that might potentially
require an indefinite time interval to be completed should provide appro-
priate IRP cancellation support. Our perspective is that of a file system driver
or that of a filter driver. We would need to provide this functionality if we do
not pass on IRPs to lower-level disk or network drivers but perform our own
processing instead. Note that all three fields listed above are manipulated by
either the driver or the I/O Manager to provide the capability to cancel
pending I/O Request Packets when required.

ApcEnvironment
When an IRP is completed, the I/O Manager performs postprocessing on the
IRP, the details of which are given below. The ApcEnvironment field is
used internally by the I/O Manager in performing postprocessing on the IRP
in the context of the thread that originally requested the I/O operation. This
field is initialized by the I/O Manager when allocating the IRP and should not
be accessed by driver designers.

Zoned/AllocationFlags
The Zoned field was replaced with the AllocationFlags field in NT
version 4.0. Fundamentally, the field (called by whatever name) records

Common Data Structures_____________________________________151

internal bookkeeping information used by the I/O Manager during IRP
completion to determine whether the IRP was allocated from a zone/looka-
side list, or from system nonpaged pool, or from system nonpaged-must-
succeed pool. This information is not useful from the kernel driver's perspec-
tive, except when debugging the driver and trying to locate all IRP structures
allocated out of the global lookaside list or zone.

Caller-supplied arguments
The following are part of the IRP:
PIO_STATUS_BLOCK Userlosb;
PREVENT UserEvent;

union {
struct {

PIO_APC_ROUTINE UserApcRoutine;
PVOID UserApcContext;

} AsynchronousParameters;
LARGE_INTEGER " AllocationSize;

} Overlay;
The Userlosb field in the IRP is set by the I/O Manager to point to the I/O
status block supplied by the thread requesting I/O. As part of the postpro-
cessing performed by the NT I/O Manager upon completion of an IRP, the
I/O Manager copies the contents of the loStatus field to the I/O status
block pointed to by the Userlosb field.
Most NT I/O system service routines (documented in Appendix A) accept an
optional event argument. This argument (if supplied by the caller) is initial-
ized by the NT I/O Manager to the not-signaled state and is set to the
signaled state by the I/O Manager upon completion of I/O. The I/O Manager
fills in the UserEvent field with the address of the caller-supplied event
object.
The AllocationSize field in the Overlay structure is only valid for file
create requests. The user is allowed to specify an optional initial size for a file
being created. The I/O Manager initializes the AllocationSize field with
this caller-supplied size prior to invoking the file system driver create/open
dispatch routine.

Many of the NT system services provided for I/O operations by the NT I/O
Manager allow asynchronous operations. The caller thread can request that
I/O be performed asynchronously and can also specify an APC to be invoked
upon completion of the IRP. For these system services, the I/O Manager duti-
fully invokes the user-supplied APC, passing it the supplied APC context, as
part of the postprocessing performed by the I/O Manager upon completion of
the IRP by a kernel-mode driver. The I/O Manager stores the calling-thread-
supplied APC function pointer in the UserApcRoutine field. The context is

154 Chapter 4: The NT I/O Manager

this point, none of the I/O Manager routines use this field to pass information
to a kernel-mode driver.*
The CurrentStackLocation field is simply a pointer to the current stack
location for the IRP. Stack locations are discussed later in this chapter. The
important point to note for kernel-mode drivers is to always use I/O Manager-
provided access functions to get the pointer to the current and the next stack
locations in the IRP. To maintain portability, your driver should never try to
access the contents of this field directly.

The OriginalFileObject field is initialized by the I/O Manager to the
address of the file object to which an I/O operation is being targeted. The
same information is available to the highest-level driver (typically, the file
system driver) to which the I/O operation is sent from the current stack loca-
tion. However, the I/O Manager keeps this information in the IRP header and
can therefore access it independently of the manner in which stack locations
are manipulated by lower-level drivers. The file object is used in the postpro-
cessing of the IRP after it has been completed. For example, if the file object
pointer is not NULL (i.e., the OriginalFileObject field is initialized at
IRP allocation), the I/O Manager checks whether it needs to send a message
to a completion port,t or dereference any event objects, or perform any
similar notification or cleanup operation related to that file object. It is legiti-
mate for this field to be NULL, in which case the I/O Manager will skip some
of the postprocessing that it would otherwise perform.

The Ape field is used internally by the I/O Manager after the IRP has been
completed, to queue an APC request for final postprocessing of the IRP in the
context of the thread that issued the I/O request.

As mentioned earlier, each I/O Request Packet is composed of the IRP header,
and the stack locations for that IRP. Some of the fields in the IRP structure such as
StackCount, CurrentLocation, and CurrentStackLocation are related
to stack location manipulation. IRP stack locations are discussed next.

Stack locations and reusing IRP structures

Windows NT I/O request packets are reusable. In a layered driver environment,
such as in the Windows NT I/O subsystem, each higher-level driver in the hier-
archy invokes the next lower-level driver, until some driver actually completes the

* If you write a file system driver, you might notice the value of this field is nonnull for directory-control
IRPs. However, the same buffer pointer containing the directory name is accessible via the information
obtained from the current stack location for the IRP, stored in the Parameters. QueryDirecto-
ry.FileName field.
t Consult the Win32 SDK for further information about I/O Completion Ports.

Common Data Structures 155

original IRP. It is quite possible, and is often the case, that the same IRP is passed
down from driver to driver until it is completed.

Completing the IRP requires invoking loCompleteRequest (); after such a call
is issued, no component, other than the I/O Manager, can touch that IRP, since it
can be deallocated at any time.

So how can a single IRP structure be reused cleanly? The solution provided by the
NT I/O Manager is to use stack locations that contain descriptions of the I/O
requests to the target device objects. When initially dispatching the IRP to a
kernel-mode driver, the I/O Manager fills in one stack location with the parame-
ters for the desired operation. Later, the driver to which the IRP is sent determines
whether it can complete the IRP itself, or whether it needs to invoke another
driver lower in the hierarchy. If it needs to invoke a lower-level driver, the current
holder of the IRP can simply initialize the next IRP stack location, and then
invoke the lower-level driver via loCallDriver (), passing it the IRP. This
process is repeated until a driver in the chain performs all of the required
processing and decides to complete the IRP.

The NT I/O Manager allocates space for multiple associated stack locations when
an IRP structure is allocated. Each of these stack locations can contain a complete
description of an I/O request. For example, an IRP allocated for a read request
should contain the following information:

• A function code, which will be examined by the kernel-mode driver to deter-
mine the type of request issued. In this example, the function code indicates
a read request.

• An offset from which data should be read.
• The number of bytes that are requested.
• A pointer to the output buffer.

In addition to the above, other information relevant to the read request might also
be passed to the driver that manages the device object that is the target of the
read operation. All of this information is encapsulated into a single stack location
structure.

The number of stack locations allocated for an IRP depends upon the Stack-
Size field in the target device object to which the IRP is being issued. The
StackSize field is initialized to 1 when the device object is created; it can then
be set to any value by the driver managing the device object. The StackSize
field is also changed when a device object is attached to another device object. As
part of the attach process, the StackSize value is set to the value obtained
from the device object being attached to, incremented by 1. The logic here is
simple: an IRP sent to a device object needs one stack location for the initial

156 Chapter 4: The NT I/O Manager

target device object; it also needs one stack location for each filter and/or driver
in the hierarchy that will perform some processing on the I/O Request Packet.

As shown in Figure 4-4, if a read request is sent to the file system driver that has a
volume mounted on disk A, the I/O Manager will allocate four stack locations
when creating the read IRP. These stack locations are used in reverse order,
similar to the last-in-first-out usage of a stack structure. When invoking a driver,
the I/O Manager always pushes the stack location pointer to point to the next
stack location; when the called driver releases the IRP, the stack location pointer
is popped to once again point to the previous stack location. Therefore, when
invoking the filter driver dispatch routine in Figure 4-4 below, the I/O Manager
uses stack location #4, the last stack location allocated.

Figure 4-4. IRP stack locations used for a driver hierarchy

The NT I/O Manager initializes the StackCount field in the IRP header with the
total number of stack locations allocated for that IRP. The CurrentLocation
field in IRP header is initialized by the I/O Manager to (StackCount + 1). This
value is decremented each time a driver dispatch routine is invoked via
loCallDriver().

Therefore, if the StackCount is 4, the initial value of CurrentLocation is set
to 5, which is an invalid stack location pointer value. The reason for this,
however, is that to dispatch an IRP to the next driver in the hierarchy, the kernel
component must always get a pointer to the next stack location and then fill in
appropriate parameters for the request.

When an IRP is being dispatched to the first driver in the hierarchy, the next stack
location will be (CurrentStackLocation—1) equal to 4, the correct value for
the stack location used for the filter driver above.

Common Data Structures 157

The I/O Manager often performs sanity checks using this value to ensure that the
IRP is being routed correctly through the I/O subsystem. For example, in
loCallDriver (), the I/O Manager first decrements the CurrentLocation
field (since a new driver is being invoked, it requires the next IRP stack location),
then checks to see if the CurrentLocation value is less than or equal to 0. If
the value does become less than or equal to 0, it is obvious that loCall-
Driver () is being invoked once too often for the number of stack locations that
were initially allocated (or that there is some stray pointer corrupting memory),
and therefore the I/O Manager performs a bugcheck with the error code of NO_
MORE IRP STACK_LOCATIONS.

NOTE The reason for a bugcheck is that, by the time the loCallDriv-
er () is invoked, critical damage may have already been done,
since the caller will in all likelihood have filled in the contents of
the next stack location for the use of the driver being called. Howev-
er, in this situation, the next stack location is some unallocated mem-
ory at the end of the IRP structure, which could literally be anything.
Continuing execution at this time could lead to all sorts of prob-
lems, including the possible corruption of user data.

The I/O Manager maintains a pointer to the current stack location, in addition to
the CurrentLocation value mentioned previously. This pointer is maintained
in the CurrentStackLocation field in the Tail.Overlay structure that is
contained in the IRP header. Kernel-mode drivers should never try to manipulate
the contents of either the CurrentLocation or the CurrentStackLocation
fields themselves.* The I/O Manager does provide routines for a driver to get a
pointer to the current stack location, via a call to loGetCurrentlrpStack-
Location () , to get a pointer to the next stack location using loGetNext-
IrpStackLocation () so that the driver can set up the contents of the stack
location appropriately for the next driver in the hierarchy, and in rare cases to use
IoSetNextIrpStackLocation() to set the stack location value.

The stack location structure defined in the NT DDK is composed of some fields
that are independent of the nature of the I/O request being described by the stack
location. Here are these fields:

Maj orFunc t i on
The NT I/O Manager defines a set of major functions, each of which identifies
a generic function that a kernel-mode driver can implement. Functions are
identified by function codes or numbers, and the set of functions is deliber-

* That being said, it is true that NT file systems themselves perform some underhanded operations on
these fields. However, for most kernel-mode drivers, it is far more preferable to stick with the I/O Man-
ager-supplied aeeess methods to view and modify the contents of these fields.

158 Chapter 4: The NT I/O Manager

ately comprehensive, since the function codes serve all types of NT kernel-
mode drivers, including file system drivers, intermediate drivers, device
drivers, and other lower level drivers.

When an IRP is delivered to a kernel-mode driver, the driver must examine
the MajorFunction field in the current stack location to find out the func-
tionality expected from the driver. The possible major function codes are
shown below:
#define IRP_MJ_CREATE
tdefine IRP_MJ_CREATE_NAMED_PIPE
tdefine IRP_MJ_CLOSE
tdefine IRP_MJ_READ
tdefine IRP_MJ_WRITE
tdefine IRP_MJ_QUERY_INFORMATION
tdefine IRP_MJ_SET_INFORMATION
tdefine IRP_MJ_QUERY_EA
#define IRP_MJ_SET_EA
ttdefine IRP_MJ_FLUSH_BUFFERS

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09

tdefine IRP_MJ_QUERY_VOLUME_INFORMATION OxOa
#define IRP_MJ_SET_VOLUME_INFORMATION OxOb
#define IRP_MJ_DIRECTORY_CONTROL OxOc
tdefine IRP_MJ_FILE_SYSTEM_CONTROL OxOd
tdefine IRP_MJ_DEVICE_CONTROL OxOe
tdefine IRP_MJ_INTERNAL_DEVICE_CONTROL OxOf
tdefine IRP_MJ_SHUTDOWN 0x10
tdefine IRP_MJ_LOCK_CONTROL Oxll
tdefine IRP_MJ_CLEANUP 0x12
tdefine IRP_MJ_CREATE_MAILSLOT 0x13
tdefine IRP_MJ_QUERY_SECURITY 0x14
tdefine IRP_MJ_SET_SECURITY 0x15
tdefine IRP_MJ_QUERY_POWER 0x16
tdefine IRP_MJ_SET_POWER 0x17
tdefine IRP_MJ_DEVICE_CHANGE 0x18
tdefine IRP_MJ_QUERY_QUOTA 0x19
tdefine IRP_MJ_SET_QUOTA Oxla
tdefine IRP_MJ_PNP_POWER Oxlb
tdefine IRP_MJ_MAXIMUM_FUNCTION Oxlc
Function codes beginning at IRP_MJ_DEVICE_CHANGE and higher were
introduced in NT version 4.0. Also, not all of the major function codes are
implemented yet; for example, the quota-related function codes do not yet
have any support from native NT file system drivers.

None of the major functions listed above is mandatory for a kernel-mode
driver to implement, except for the ability to open and close objects managed
by the driver. Open and close operations are very important because, if open
operations fail, no I/O requests can be submitted, since there does not exist
any object that would be the target of the requests. Similarly, if opens suc-
ceed, the close operations will eventually be invoked, and close operations
cannot fail (the I/O Manager does not check the return code from a close

Common Data Structures_____________________________________159

operation). Therefore, if you do not implement a close operation to comple-
ment your open, the system might eventually run out of resources, depending
on what operations were previously performed during the open, and also
depending on the data structures created during the open operation.
The major function codes in the context of a file system driver and a filter
driver are discussed in Part 3-

MinorFunction
Minor function codes provide more information specific to the major function
code in the I/O stack location. For example, consider the IRP_MJ_
DIRECTORY_CONTROL major function code above. An IRP containing this
major function code is sent by the I/O Manager to file system drivers. The
intent is to perform some file directory operation. The question, however, is
what directory control operation does the I/O Manager want the file system
driver to perform?

The available operations include obtaining information about directory
contents (IRP_MN_QUERY_DIRECTORY) and notifying the I/O Manager
when certain attributes of files or directories contained within the target direc-
tory change (IRP_MN_NOTIFY_CHANGE_DIRECTORY).

Currently, only a few of the major functions have minor functions associated
with them. However, for those few, the kernel-mode driver developer must
examine this field to correctly determine the functionality it is expected to
provide.

Flags
The Flags field also provides additional information that qualifies the function-
ality expected from the target driver. For example, consider the IRP_MJ_
DIRECTORY_CONTROL major function code previously discussed. If the minor
function is IRP_MN_QUERY_DIRECTORY, the Flags field could contain addi-
tional information that might cause the file system to behave differently when
returning the contents of the directory being queried.

For example, if the SL_RESTART_SCAN flag is set, the file system driver will
restart the scan from the beginning of the directory being queried. Or if the
SL_RETURN_SINGLE_ENTRY flag is set, the file system driver will return
only the first entry matching the specified search criteria.

Lower-level drivers also have an interest in the settings for this flag. For
example, removable media drivers will perform a read request dispatched to
them from a file system driver if the SL_OVERRIDE_VERIFY_VOLUME flag
has been set. If, however, the flag has not been set, and the device driver has
recognized a media change (and informed the file system about it), it will fail
all I/O requests, including all read requests.

160 Chapter 4: The NT I/O Manager

Control
When a kernel-mode driver must process an IRP asynchronously, the driver
can queue the IRP, mark it "pending" via a call to IoMarkIrpPending()
and subsequently return control back to the caller. The call to loMarklrp-
Pending () simply sets the SL_PENDING_RETUKNED flag in the Control
field for the current stack location. Any kernel-mode driver can examine the
Control field for the existence of this flag.
This flag is also used internally by the NT I/O Manager to store information
about whether a completion routine associated with the current stack location
should be invoked if the return code supplied at IRP completion indicates a
success, a failure, or a cancel operation. These flags are designated as SL_
INVOKE_ON_SUCCESS, SL_INVOKE_ON_FAILURE, and SL_INVOKE_ON_
CANCEL. Kernel-mode drivers typically should not need to be directly
concerned with the state of these flags.

DeviceObject
This field is set by the NT I/O Manager as part of the processing performed in
the loCallDriver () routine. The contents are set to the device object
pointer for the target device object (i.e., the device object to which the IRP is
being dispatched).

FileObject
The I/O Manager sets this field to point to the file object that is the target of
an I/O operation. Note that just calling loAllocatelrpO from your driver
will not result in this field being set. If you intend to use the returned IRP for
an operation on a specific file object, your driver must set the field itself.

CompletionRoutine
The contents of this field are set by the I/O Manager when the loSetCom-
pletionRoutine () macro is invoked. The I/O Manager checks for a
completion routine as part of the postprocessing performed during IRP
completion. If a completion routine is specified, the routine is invoked in the
context of the thread performing the postprocessing; typically this is in the
context of the thread that invoked the loCompleteRequest () routine.
Since IRP completion is often performed by lower level drivers at a high
IRQL, it is quite likely that the completion routine will be invoked at some
high IRQL.
You should also note that completion routines are invoked in a last-specified-
first-invoked order. Therefore, the highest-level driver's completion routine
will be invoked after all other completion routines have been invoked. If any
driver returns STATUS_MORE_PROCESSING_REQUIRED from an invocation
to the driver-supplied completion routine, the I/O Manager immediately stops
all postprocessing of the IRP. Freeing the memory for that IRP will then

Common Data Structures 161

become the responsibility of the driver that returns the STATUS_MORE_
PROCESSING_REQUIRED status.

If you develop a higher-level driver, like a file system driver or a filter driver,
and if you specify a completion routine, always execute the following
sequence of code in your completion routine:
if (PtrIrp->PendingReturned) {

loMarklrpPending(Ptrlrp);
}
If you fail to do this and if there are other drivers layered above yours in the
calling hierarchy, the IRP may be processed incorrectly and you could experi-
ence a driver or process hang. The reason for the potential hang will be
further explained later in this chapter.

Context
This field contains the context supplied by the kernel-mode driver when it
specifies a completion routine for the IRP.

If you develop an intermediate driver, you will have to be careful about copying
some of the values contained in the current I/O stack location into the next I/O
stack location when you prepare to forward the IRP to the next driver in the hier-
archy. For example, you must copy the contents of the Flags field, so the lower-
level driver will know that it should perform an I/O read operation requested by
a file system even though it had previously informed the file system about a
media change.

Processing an IRP

Handling an IRP sent to your driver can be quite straightforward. The next four
figures illustrate some of the common methods employed to handle an IRP
dispatched to a kernel-mode driver.

In Figure 4-5, you can see that the target kernel-mode driver receives an IRP,
obtains a pointer to the current stack location, performs some processing based
on the contents of the I/O stack location, and, finally, completes the I/O request
packet. Note, however, that there could be a delay between receiving the request
and beginning the processing, since the driver might queue the IRP if it is
currently busy processing other requests. The queued IRP would subsequently get
processed asynchronously in the context of a worker thread.

Also note that once the driver gets control back from an invocation to loComplete-
Request () , it must not touch the IRP or any of the fields contained within the IRP
again. Doing so could lead to data corruption and system crashes.

Figure 4-6 illustrates how a kernel-mode driver receives an IRP, obtains a pointer
to the current stack location, and performs processing based upon the contents of

162 Chapter 4: The NT I/O Manager

Figure 4-6. IRP processing where IRP is reused and sent to lower-level driver

If your driver forwards an IRP to another driver, it is no longer allowed to try to
access that IRP, since it does not know when the lower-level driver will complete
that particular IRP. Typically, forwarding of the IRP is done via a call to loCall-
Driver (). The I/O Manager will invoke the lower-level driver in the context of
the thread that makes the call to loCallDriver (); however, the lower-level
driver that now receives the IRP might return STATUS_PENDING and complete
the IRP asynchronously.

Figure 4-7 illustrates a sequence where a higher-level kernel-mode driver (e.g., a
file system driver) uses associated I/O request packets to issue I/O requests to
other lower-level drivers. This might be done if, for example, the higher-level

Common Data Structures 163

driver wishes to split up an I/O request; it might even be required if the higher-
level driver needs processing to be performed by more than one set of lower-
level drivers.

Figure 4- 7. Using associated IRP structures to process an IRP

Note that the higher-level driver does not need to invoke loComplete-
Reguest () on the original IRP; the I/O Manager will automatically complete the
original IRP once all associated IRPs have been completed by lower-level drivers.
However, the higher-level driver can request that a completion routine be
invoked when the associated IRP completes, thereby giving it the opportunity to
perform some postprocessing, and also allowing itself the opportunity to
complete the original IRP at its own convenience.

Figure 4-8 illustrates a variation of the method using associated IRPs; here the
kernel-mode driver uses one of the I/O Manager-supplied functions to create new
I/O Request Packets, which are then dispatched to other kernel-mode drivers.
Once the newly created I/O Request Packets have been completed, the original
IRP can be redispatched to lower-level drivers for further processing, or it can be
immediately completed.

IRP completion and deallocation

Every I/O Request Packet must be completed in order for the I/O Manager to be
informed that the request contained within the IRP has been completely
processed. To complete an IRP, a kernel-mode driver has to invoke the loCom-
pleteRequest () I/O Manager support routine.

164 Chapter 4: The NT I/O Manager

Figure 4-8. Using newly allocated IRPs to help in processing of an IRP

Once this routine is invoked, the NT I/O Manager performs some postprocessing
on the I/O request packet being completed, as follows:

1. The I/O Manager performs some basic checks to ensure that the IRP is in a
valid state. The value of the current stack location pointer is verified to ensure
that it is less than or equal to (total number of stacks + 1). If the value is not
valid, the system will bugcheck with an error code of MULTIPLE_IRP_
COMPLETE_REQUESTS. If you install the debug build of the operating
system, the I/O Manager will execute some additional assertions, such as
checking for a returned status code of STATUS_PENDING when completing
the IRP, and checking other invalid return codes from the driver.

2. Now, the I/O Manager starts scanning through all stack locations contained in
the IRP looking for completion routines that need to be invoked. Each stack
location can have a completion routine associated with it, which should be
called depending on whether the final return code was a success or a failure,
or if the IRP was canceled. The I/O stack locations are scanned in reverse
order, with the highest-valued I/O stack location being checked first. This
results in completion routines invoked such that a completion routine
supplied by a disk driver (the lowest-level driver) will be invoked first, while
the completion routine for the highest-level driver (typically, the file system
driver) will be invoked last.

Completion routines are invoked in the context of the same thread that calls
loCompleteRequest (). If any completion routine returns STATUS_MORE_

Common Data Structures_____________________________________165

PROCESSING_REQUIRED, the I/O Manager immediately stops all further
postprocessing and returns control back to the routine that invoked loCom-
pleteRequest () . Now, it is the responsibility of the driver that returned
STATUS_MORE_PROCESSING_REQUIRED to invoke loFreelrp () later.*

3. If the IRP being completed is an associated IRP, the I/O Manager will decre-
ment the Associatedlrp. IrpCount field in the master IRP. Then, the I/O
Manager invokes an internal routine, lopFreelrpAndMdls () , to free up
memory allocated for the associated IRP and also to free any MDL structures
allocated for the associated IRP. Finally, if this happens to be the last associated
IRP outstanding for the master IRP, the I/O Manager recursively invokes
loCompleteRequest () on the master IRP itself.

4. A lot of the postprocessing performed by the I/O Manager occurs in the
context of the thread that had originally requested the I/O operation. To do
this, the I/O Manager queues a kernel-mode APC, which is subsequently
executed in the context of the requesting thread. However, this methodology
cannot be employed for certain types of IRP structures, used for the following
types of operations:

Close operations
An IRP describing a close operation is generated by the I/O Manager and
sent to the affected kernel-mode driver whenever the last reference to a
kernel-mode object is removed. This might just as well occur while a
special kernel-mode APC was already executing. To perform a close oper-
ation on objects defined by the I/O Manager, a special internal I/O
Manager routine called IopCloseFile() is always invoked.
lopCloseFile () is synchronous and therefore blocking. It allocates
and issues a close IRP to the target kernel-mode driver and waits for an
event object to complete the close operation. Therefore, when
completing an IRP for a close operation, the I/O Manager simply copies
over the return status (which incidentally is never checked by the
requesting thread for a close operation), signals the event object for
which the thread executing lopCloseFile () is waiting, and then
returns control immediately. The IRP is subsequently deleted in
lopCloseFile().

' The DDK assumes that STATUS_MORE_PROCESSING_REQUIRED will only be invoked by kernel-
mode drivers for associated IRPs that they have created. There is nothing, however, that prevents your
driver from returning this status code for a normal IRP request that was dispatched to you by the I/O
Manager. The problem, though, is that there is a lot of postprocessing required on that IRP that will have
been abruptly interrupted due to your returning such a status code from your completion routine. Your
driver will then have to devise a method whereby such postprocessing can be resumed later; this is not
a trivial task.

166_________________________________Chapter 4: The NT I/O Manager

Paging I/O requests
Paging I/O requests are issued on behalf of the NT Virtual Memory
Manager (VMM). In Chapters 5-8, you will read about the functionality
provided by the NT VMM and the NT Cache Manager. For now, simply
understand that the I/O Manager cannot afford to incur a page fault while
completing a paging I/O request. That would cause a system crash. There-
fore, the I/O Manager will do one of two things when completing a
paging I/O request:

— For a synchronous paging I/O request, the I/O Manager will copy the
returned I/O status into the caller-supplied I/O status block structure,
signal the kernel event object for which the caller might be waiting,
then free the IRP and return control, since there is no additional post-
processing to be performed.

— For an asynchronous paging I/O request, the I/O Manager will queue
a special kernel APC to be executed in the context of the thread that
requested paging I/O. This is the Modified Page Writer (MPW)
thread, which is a component of the VMM subsystem. In the next
chapter you will read a lot more about the MPW thread. For now, it
is enough for you to know that the routine that executes in the
context of the MPW thread (once the APC has been delivered),
copies the status from the paging read operation to the I/O status
block provided by the modified page writer, and subsequently
invokes an MPW completion routine using another kernel APC.

Later, you will see that the I/O Manager typically frees up any Memory
Descriptor Lists that are associated with the IRP, before freeing up the IRP
itself. However, for paging I/O operations, the MDL structures that are
used belong to the VMM (i.e., they are allocated by the VMM and will
therefore be freed only by the VMM upon completion of I/O). That is the
reason why the I/O Manager does not free up the MDL structures used in
paging I/O requests.

Mount requests
If you examine the flags supplied in the NT DDK, indicating paging I/O
requests and mount requests (IRP_PAGING_IO and IRP_MOTJNT_
COMPLETION, respectively), you will notice that they are both defined
to the same value. This is because the I/O Manager treats the mount
request exactly the same as a synchronous, paging I/O read request.
Therefore, the I/O Manager performs exactly the same postprocessing for
mount requests as described for a synchronous, paging I/O request.

5. If the IRP did not describe either a paging I/O, a close, or a mount request,
the I/O Manager next unlocks any locked pages described by Memory

Common Data Structures 167

Descriptor Lists (MDLs) associated with the I/O Request Packet. Note that the
MDL structures are not freed at this time; they are freed as part of the postpro-
cessing performed in the context of the requesting thread.

6. At this point, the I/O Manager has completed as much of the postprocessing
it can, without being in the context of the requesting thread. Therefore, the
I/O Manager queues a special kernel APC to the thread that requested the I/
O operation. The internal I/O Manager routine that is invoked in the context
of the calling thread is called lopCompleteRecjuest () . It could happen,
however, that there might not be any thread context to send the APC request
to. This happens if the thread exited after starting an asynchronous I/O opera-
tion, the request had already been initiated by the lower level driver, and the
driver could not complete the request within a fixed time-out period. In this
scenario, the I/O Manager has given up on the request, and therefore, it
simply frees up the memory allocated for the IRP at this point since no further
postprocessing can be performed.
For synchronous I/O operations, the I/O Manager does not queue the special
kernel APC but simply returns control immediately at this point. These IRP
structures have the IRP_DEFER_IO_COMPLETTON flag set in the Flags
field in the IRP. Examples of IRP major functions for which IRP completion
can be deferred are directory control operations, read operations, write opera-
tions, create/open requests, query file information, and set file information
requests. By returning control immediately, the I/O Manager avoids the over-
head associated with queuing kernel-mode APCs and the overhead of serving
APC interrupts. Instead, the thread that originally requested the I/O operation
by invoking loCallDriver () invokes lopCompleteRequest () directly
once control is returned to it. This is simply an optimization performed by the
NT I/O Manager.
Note that the I/O Manager will perform two checks to determine whether the
APC should be queued or not for the above situation:
— The IRP_DEFER_IO_COMPLETION flag should be set to TRUE.
— The Irp->PendingReturned field should be set to FALSE.
Only if both of the conditions above are TRUE will the I/O Manager simply
return from the loCompleteRequest () function at this stage.

The following situation may result in a problem if you are not careful in your
driver:

— Your driver specifies a completion routine before forwarding a request to
a lower-level driver.

168__________________________________Chapter 4: The NT I/O Manager

— There is a driver layered above you in the calling hierarchy (e.g., a filter/
intermediate driver).

— Your driver does not execute the instructions listed earlier about invoking
loMarklrpPending () if Irp->PendingReturned is set to TRUE.

Now the I/O Manager may incorrectly believe that an APC should not be
queued (thinking that the completion was being performed in the context of
the requesting thread) and the original thread will stay blocked forever.

The other situation where the I/O Manager does not queue an APC is if the
file object has a completion port associated with it, in which case the I/O
Manager sends a message to this completion port instead.

At this time, all processing that could have been performed in loComplete-
Request () is complete.

The remaining steps described below occur in the context of the thread that had
originally requested the I/O operation. The NT I/O Manager routine that performs
these steps is the lopCompleteRequest () routine previously mentioned.

1. For buffered I/O operations, the I/O Manager copies any data returned as a
result of the successful execution of the I/O request back into the caller's
buffer. Details of buffered I/O operations are provided later in this chapter;
however, note for now that if the driver returns an error or if the driver
returns a code indicating that a verify operation is required in the IRP
loStatus structure, no copy will be performed.*
Also, the number of bytes copied into the caller's buffer equals the value of
the Information field in the loStatus structure; therefore, if that field is
not set correctly, the caller will not get back all or any of the returned data.
The I/O Manager-allocated buffer is also deallocated once the copy operation
is performed.

2. Any Memory Descriptor Lists associated with the IRP are freed at this time.

* You should understand that the NT I/O Manager treats warning status codes as if the operation suc-
ceeded; i.e., the I/O Manager will copy data into the caller's buffer even if the status code was not
STATUS_SUCCESS, as long as it does not indicate an error.

Common Data Structures 169

TIP It is possible for a file system driver to deliberately return a pointer
to an MDL allocated by the Cache Manager when requested to do
so by a caller for either a read or a write I/O request. Such requests
are distinguished by the presence of the IRP_MN_MDL flag in the
MinorFunction field of the IRP stack location in the IRP sent to
the file system driver. Since all MDLs associated -with an IRP are
blindly freed at this point, it appears that there is not much point to
a file system driver returning an MDL to the caller. However, current-
ly the only kernel-mode client using the IRP_MN_MDL flag is the
LAN Manager Server module, and this module typically circumvents
the problem by returning STATUS_MORE_PROCESSING_RE-
QUIRED from a completion routine. See Chapter 9, Writing a File
System Driver I, for a discussion on how the file system driver pro-
cesses MDL-read and MDL-write requests.

3. The I/O Manager copies the Status and Information fields into the
caller-supplied I/O status block structure.

4. If the caller supplied an event object to be signaled, the I/O Manager signals
that event object. The I/O Manager signals the event object in the Event
field for any file object associated with the I/O Request Packet if either no
event object was supplied by the caller or the I/O operation was executed
synchronously because the file object was opened for synchronous access
only.

5. Typically, the NT I/O Manager increments the reference count of any caller-
supplied event object or any file object associated with an IRP before
forwarding the IRP to a driver for processing. At this time, the I/O Manager
dereferences both of these objects if they had been referenced before.

6. The I/O Manager dequeues the IRP from the list of I/O Request Packets
pending for the current thread.

7. Memory for the I/O Request Packet is finally freed; if the I/O Request Packet
has been allocated from a zone/lookaside list, memory for that packet is
returned to the zone/lookaside list for reuse; otherwise, memory is returned
back to the system.

Working with I/O request packets

There are a few key concepts that you must understand very well with regard to
handling I/O Request Packets sent to your kernel-mode driver:

• Once your driver receives the IRP, no other component in the system, includ-
ing the I/O Manager, can be concurrently accessing the same IRP. Until your
driver either forwards the IRP to another kernel-mode driver, or completes

170 Chapter 4: The NT I/O Manager

the IRP, processing of the request described by the I/O Request Packet is
solely the responsibility of your driver.

Once your driver completes the IRP, or forwards it to another kernel-mode
driver, your driver must give up control of the IRP and not attempt to access
any of the fields contained within it again. The only time you can touch that
IRP again is if you had specified a completion routine prior to forwarding the
IRP. In that case, the I/O Manager will invoke your completion routine as part
of its postprocessing performed during IRP completion.

If you specify a completion routine to be invoked at the time of IRP comple-
tion, it can perform any postprocessing necessary. Keep in mind, though, that
your completion routine might be called at an IRQL less than or equal to
DISPATCH_LEVEL. If your completion routine is invoked at a high IRQL,
you cannot incur any page faults while your code is executing. You do have
the option of stopping any postprocessing of the IRP by returning STATUS_
MORE_PROCESSING_REQUIRED from your completion routine. Be careful,
though, when doing this, especially from a lower-level driver, because some
of the completion routines specified by other drivers higher in the chain,
which normally would be invoked, will now not be called unless you play
some tricks with the IRP later.
No IRP can be completed more than once.* If you do try to do this either
deliberately or erroneously, you might cause data corruption and/or system
crashes. Although the I/O Manager checks for the possibility that an IRP is
being completed more than once, the check is not completely foolproof, so
be aware of this requirement when designing your driver.

Your driver cannot blindly assume that it is being invoked to process an IRP
in the context of the thread that originally requested the I/O operation. As a
matter of fact, lower-level drivers, such as intermediate drivers and device
drivers, will probably never have their dispatch routines invoked in the con-
text of the issuing thread. Therefore, your driver must be careful when trying
to access objects, handles, resources, and memory when processing the I/O
Request Packet. Understand the context in which your dispatch routines can
be invoked and only use resources that are available to you and that are valid
in that particular context.

Kernel-mode drivers have tremendous freedom in what they are able to do.
At the same time, the responsibilities that are placed upon kernel-mode code
are greater than for user-space applications. If your driver uses pointers to

* It is possible for a completion routine to return STATUS_MORE_PROCESSING_REQUIRED, perform
some specialized postprocessing with the IRP, and then reissue the loCompleteReguest () function
on the IRP to make the I/O Manager correctly dispose of the IRP. This is the single exception to the rule
mentioned above and results in the situation where an IRP is completed more than once.

Common Data Structures 171

buffers sent by user-space code, be careful about how you use such buffers.
It is possible for kernel-mode drivers to easily compromise system integrity by
misusing, or not carefully validating, any buffers and data contained within
them, sent by unprotected, user-mode applications. Determine the mode of
the caller in deciding whether or not to validate pointers sent to you. Use the
previous mode of the caller in making your decision on whether or not to val-
idate user-supplied buffers.
Use only the I/O Manager-provided access methods to manipulate stack loca-
tions in an IRP. It is possible for a kernel-mode driver to modify IRP stack
locations, which can affect both how IRP processing is done initially, as well
as how IRP postprocessing is performed once the IRP has been completed.
Try to resist the temptation to manipulate the contents of the stack locations
in any undocumented fashion.
Use your own I/O Request Packets if you wish to utilize services of other driv-
ers above or below you in the hierarchy. Avoid using private communication
channels that are not extensible. To create IRP structures, use one of the I/O
Manager-supplied support routines (i.e., IoAllocateIrp(), loBuildSyn-
chronousFsdRequest () , IoBuildAsynchronou.sFsdRecru.est () , lo-
BuildDeviceloControlRequest(), and IoMakeAssociatedIrp()).
Use lolnitializelrp (), in conjunction with loAllocatelrpO , to ini-
tialize the common fields in the IRP header. Be careful, and reread the previ-
ous section to determine which additional fields you might wish to initialize.
Also, realize that loFreelrp () may or may not need to be invoked, depend-
ing on the status code you return from any completion routine you may have
specified.
Some kernel-mode components, such as the LAN Manager server, allocate I/O
Request Packets from internal pools, instead of requesting them from the NT
I/O Manager. Be aware that these components may use some of the fields in
the IRP in a manner different from the standard manner in which those fields
are manipulated by the I/O Manager. Therefore, be careful when depending
upon the contents of fields that the I/O Manager wants to keep private and
that are not documented in the DDK, since there are no guarantees made by
the system that the fields will always contain consistent values.
Furthermore, components like the LAN Manager server often have a
maximum number of stack locations that they typically allocate for an I/O
Request Packet. If you add one or more additional filter or intermediate
drivers to the driver hierarchy, the number of stack locations required may
then exceed the maximum that the LAN Manager server can deal with. There
is a workaround to this problem, where you can instruct the user to specify

172 Chapter 4: The NT I/O Manager

additional stack locations that the LAN Manager server should allocate via a
Registry parameter.

Volume Parameter Block (VPB)
The VPB is the link between the file system device object representing the
mounted volume and the device object representing the physical or virtual disk
that contains the physical file system data structures. Each time a file open request
for an on-disk file stream is sent to a device object for a physical or virtual
device,* the I/O Manager invokes an internal routine called lopCheckVpb-
Mounted (). This routine is responsible for initiating a logical volume mount
operation, if the VPB associated with the physical/virtual device that is the target
of the request indicates that the volume has not been mounted. If, however, the
volume is previously mounted, the I/O Manager redirects the open operation to
the device object whose pointer is obtained using the DeviceObject field in
the VPB.

Memory for a volume parameter block is automatically allocated from nonpaged
pool by the Windows NT I/O Manager when a device object is created through a
loCreateDevice () call or when a file system driver invokes the loVerify-
Volume () call, for the following types of device objects:

• FILE_DEVICE_DISK
• FILE_DEVICE_CD_ROM
• FILE_DEVICE_TAPE
• FILE_DEVICE_VTRTUAL_DISK (used for RAM disks or any similar virtual

disk structures that can hold a mountable volume)

Note that each of the these types of device objects can have a logical volume
present on the device object, and each of these device objects typically also repre-
sents a single mountable partition for a device. The volume parameter block is
used to map the file system (logical) volume device object to the physical device
also represented by a device object. This structure is initially zeroed by the I/O
Manager upon allocation. The following definition describes the VPB:

* Since the most commonly used subsystem on Windows NT platforms is the Win32 subsystem, consider
the case when a user performs a file open operation on a file stream on drive letter C:. This drive letter
is nothing but a Win32 subsystem-visible name that is actually a symbolic link to a Windows NT name,
such as \Device\HardDiskO\Partitionl. Therefore, accessing a file stream on C: is the same as accessing
an on-disk file stream on the physical disk device object with the name \Device\HardDiskO\Partitionl.
Note that the Windows NT named object is not the device object representing the mounted volume; rath-
er, it is the device object representing the physical/virtual disk drive. The VPB is used to perform the
association between the named physical/virtual disk device object and the unnamed logical volume de-
vice object.

Common Data Structures 173

typedef struct _VPB {
CSHORT Type;
CSHORT Size;
USHORT Flags;
USHORT VolumeLabelLength; // in bytes
struct _DEVICE_OBJECT *DeviceObject;
struct _DEVICE_OBJECT *RealDevice;
ULONG SerialNumber;
ULONG ReferenceCount;
WCHAR VolumeLabel[MAXIMUM_VOLUME_LABEL_LENGTH / sizeof(WCHAR)];

} VPB, *PVPB;

Each mounted volume can have a label associated with it with a maximum length
of 32 characters. The VolumeLabelLength field is initialized by file system
drivers to the actual length of the label for the volume, which is stored in the
VolumeLabel field. Each file system volume can also have a serial number asso-
ciated with it that should be read off the volume by the file system driver and
placed in the SerialNumber field. As long as the reference count for the VPB
is nonzero, the I/O Manager will not deallocate the VPB structure. The RealDe-
vice field is initialized by the I/O Manager to point to the physical or virtual
device object that contains the mountable logical volume. The DeviceObject
field is initialized by the file system driver whenever a mount operation takes
place. This field contains the address of the device object of type FILE_DEVICE_
DISK_FILE_SYSTEM, created by the file system to represent the mounted
volume.

The Flags field in the VPB can have one of three values:

VPB_MOUNTED
This bit is set by the I/O Manager once a file system mounts the logical
volume represented by the VPB. This happens after a file system driver
returns STATUS_SUCCESS from an IRP sent to it with a major function of
IRP_MOUNT_COMPLETION.

VPB_LOCKED
This field can be set or cleared by the file system driver that has mounted the
logical volume represented by the VPB. While this field is set, the NT I/O
Manager will fail all subsequent open/create requests targeted to that logical
volume. File systems may choose to set this field in response to application
requests to lock the logical volume, or if they temporarily wish to prevent any
create/open requests from proceeding. The FASTFAT file system responds to
application IOCTL requests to lock a volume (FSCTL_LOCK_VOLUME) by
setting this field in the VPB.

174 __________________________________ Chapter 4: The NT I/O Manager

VPB_PERSISTENT
This field is also manipulated by file system drivers. If this field is set, the I/O
Manager will not delete the VPB structure, even if the Ref erenceCount in
the VPB is 0.

The NT I/O Manager provides two routines that should be used by filter drivers
and file system drivers to synchronize access to a VPB structure. These support
routines are defined as follows:

VOID
loAcquireVpbSpinLock (

OUT PKIRQL Irql

VOID
loReleaseVpbSpinLock (

IN KIRQL Irql
) ;
Parameters:

Irql
For the loAcquireVpbSpinLock () routine, this is a pointer that, upon
return, will contain the IRQL to which the thread must be restored when the
corresponding release function is invoked.
For the routine loReleaseVpbSpinLock () , this argument contains the
IRQL value returned when the spin lock was acquired.

Functionality Provided:

There is a global spin lock structure that is acquired by the I/O Manager internally
while manipulating contents of the VPB. If your driver wishes to check or manipu-
late the Flags, DeviceObject, or Ref erenceCount fields in any VPB, you
should first invoke the loAcquireVpbSpinLock () support routine to ensure
data consistency. Note that this is a global spin lock and that, while this spin lock
is acquired, not many I/O operations can continue (e.g., new create and open
operations will be blocked). Therefore, be careful to acquire the lock only for the
short period required while accessing the specified fields.

For more detailed information on the flow of execution leading to a mount opera-
tion, as well as for a detailed explanation of handling VPB structures for volumes
mounted on removable media, consult Part 3-

I/O Status Block
The I/O Status Block is used to convey the results of an I/O operation. This struc-
ture is defined as follows:

Common Data Structures 175

typedef struct _IO_STATUS_BLOCK {
NTSTATUS Status;
ULONG Information;

} IO_STATUS_BLOCK, *PIO_STATUS_BLOCK;

Every I/O Request Packet (IRP) has an I/O Status Block associated with it. A
kernel-mode driver should always insert the return code describing the results of
processing the request in the Status field in the I/O status block structure. This
field will, therefore, contain a return code denoting success (STATUS_SUCCESS),
a return code denoting a warning, an informational message, or an error. Error
status codes also include those indicating that an exception (which was handled
by the driver) occurred while processing an I/O request. Consult the previous
chapter for a discussion of the structure of NT return codes.

The Information field is typically filled with any additional information related
to the requested I/O operation. For example, for a read request of 1024 bytes, the
Information field upon return will contain the actual number of bytes read
even if the Status field indicates STATUS_SUCCESS. Therefore, the Informa-
tion field in this case would contain a value between 0 and 1024 bytes.

File Object
If you develop file system drivers in Windows NT, or if you develop filter drivers
that reside above the file system driver in the driver hierarchy, you should
become very familiar with the structure of a file object. A file object is the I/O
Manager's in-memory representation of an open object. For example, if an open
operation is successfully performed on an on-disk file, the I/O Manager creates a
file object structure to represent that particular instance of the open operation. If
another open operation is performed on the same file stream, the I/O Manager
will allocate a new file object to represent this second open operation, even
though both open operations were performed on the same underlying, on-disk
file stream.

You should conceptualize a file object as the kernel equivalent of a handle
created as a result of a successful open/create request. File objects are not limited
to representing open file streams; rather, they are an abstraction used to represent
any object opened by the NT I/O Manager. Therefore, if you open a logical
volume or a disk drive device object, the open operation will result in the
creation and initialization of a file object data structure.

All I/O operations targeted to on-disk file streams or logical volumes require a file
object structure as the target for the request (you cannot perform a read request in a
vacuum; you must have a target file object representing a previous successful open
operation to which you can direct the read operation). The responsibility for

176 Chapter 4: The NT I/O Manager

creating and maintaining a file object data structure is jointly shared by the NT I/O
Manager and the file system driver.

The file object structure is allocated by the I/O Manager before it passes the open
or a create request to a kernel-mode file system driver. The create/open IRP
contains a pointer to this newly allocated file object structure; it is the responsi-
bility of the kernel-mode file system driver that processes the create/open request
to initialize certain fields in the file object structure.

The file object structure is defined by the NT I/O Manager:

typedef struct _FILE_OBJECT {
CSHORT
CSHORT
PDEVICE_OBJECT
PVPB
PVOID
PVOID
PSECTION_OBJECT_POINTERS
PVOID
NTSTATUS
Struct _FILE_OBJECT
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
ULONG
UNICODE_STRING
LARGE_INTEGER
ULONG
ULONG
PVOID
KEVENT
KEVENT
PIO_COMPLETION_CONTEXT

} FILE_OBJECT;

Type;
Size;
DeviceObject;
Vpb;
FsContext;
FsContext2;
SectionObjectPointer;
PrivateCacheMap;
FinalStatus;
*RelatedFileObject;
LockOperation;
DeletePending;
ReadAccess;
WriteAccess;
DeleteAccess;
SharedRead;
SharedWrite;
SharedDelete;
Flags;
FileName;
CurrentByteOffset;
Waiters;
Busy ;
LastLock;
Lock;
Event;
CompletionContext;

The DeviceObject and Vpb fields in the file object structure are initialized by
the I/O Manager before sending a create or an open request to the file system
driver. The DeviceObject is initialized to the address of the target physical or
virtual device object to which the request is directed. The Vpb field is initialized
to the mounted VPB associated with the target device object.

The FsContext, FsContext2, SectionObjectPointer, and Private-
CacheMap fields are initialized and/or maintained by the file system driver
implementation and the NT Cache Manager. They will be discussed in greater
detail later in this book. The NT I/O Manager does not maintain the contents of

Common Data Structures 177

:;ed by
system
iical or
tialized

.vate-
driver

greater
.tents of

these fields, though it does check for and use the contents of the FsContext
field; this will be discussed in Part 3.

The FileName field is initialized by the I/O manager to a string representing the
file, volume, or physical device to be opened. This name can either be a relative
pathname or an absolute pathname. A relative pathname is indicated by the pres-
ence of a nonnull value in the RelatedFileObject field. This field contains a
pointer to a previously opened file object data structure. The relative pathname
supplied in the FileName field must now be considered relative to the name of
the file represented by the RelatedFileObject. Note that the RelatedFile-
Object field is only valid in the context of a create request. At all other times,
the contents of this field are undefined.

The CurrentByteOf fset field is maintained by file systems for those file
objects that were opened for synchronous access only. This field contains the
current pointer position for the file stream, which is updated upon the successful
completion of read and/or write I/O operations.

The CompletionContext field is used by the NT I/O Manager to send a
message to a Local Procedure Call (LPC) port upon completion of an IRP. The
DeletePending flag is set in the file object structure when a file system
receives a set information IRP specifying that the file stream should be deleted.

The LockOperation field is set to TRUE by the I/O Manager if the thread that
owns the file object structure invoked a byte-range lock operation at least once
while the file was open. This field is later checked when the thread closes the file
object to determine whether or not to send an unlock IRP to the file system driver.

The various access fields (ReadAccess, WriteAccess, and DeleteAccess)
are set and cleared by the I/O Manager. So are the various share access related
fields (SharedRead, SharedWrite, and SharedDelete). The state of these
fields determines how the file is currently opened and also determines whether
subsequent opens requesting certain specific types of access will be allowed to
proceed or will be denied with an error code of STATUS_SHARING_VIOLATION.
There exists an I/O Manager support routine called loCheckShareAccess (),
which maintains the state of these fields. This routine is typically only invoked by
file system drivers and will be described later in this book.

Later in this chapter, you will read about synchronous and asynchronous I/O oper-
ations from the perspective of the file system drivers that must provide the code
to implement such requests. A user can open a file object specifying that all opera-
tions performed on the opened object by that particular file object be executed
synchronously. This is indicated by the presence of a FO_SYNCHRONOUS_FLAG
in the Flags field of the file object structure, which is set by the I/O Manager as
part of the create/open request. One of the effects of requesting synchronous I/O

178_________________________________Chapter 4: The NT I/O Managtt

operations is that the I/O Manager always serializes all I/O operations performed
using that particular file object. To implement this sequential behavior, the NT I/O
Manager uses the Busy and the Waiters fields in the file object data structure,
The Busy field is set when an I/O operation using that particular file object is in
progress. The Waiters field denotes the number of threads waiting to perform
I/O operations using the same file object. These fields should not be of much
interest to other kernel-mode drivers.

The file object is a waitable kernel-mode object, i.e., threads can request asynchro-
nous I/O, and subsequently wait for the completion of the I/O operation. The
Event field in the file object is used by the I/O Manager to maintain the state of
the wait object. This event object is set to the not-signaled state by the I/O
Manager when an I/O operation begins using that file object. It is subsequently
set to be signaled once the I/O is completed, though only if the caller had not
explicitly supplied another event object to wait for.

The Flags field can reflect many values, one of has been described here, and
each describes a state associated with the file object structure. I will defer discus-
sion of each of the possible values of this field until later in the book, when the
field is actually used in our code.

Determining Which Objects to Use
Here are a few simple rules to "put everything together" when developing your
driver:

• When your driver loads, a driver object will be created and sent to your initial-
ization routine by the I/O Manager. You must fill in certain fields in the driver
object, such as the various dispatch routine function pointers, for the function-
ality you wish to support. If you do not fill in the function pointers, your
driver will not receive any requests, because all requests will be handled by
the default routine (lopInvalidDeviceRequest ()) .

• In order to provide any functionality, you will probably create at least one
device object. More than likely, you will create one device object representing
your driver and subsequent other device objects representing other virtual
and/or physical devices you support. Most of the device objects you create
will be named, unless you develop a file system driver, in which case, most
of the device objects will represent logical volumes and will therefore be
unnamed. When requesting a create operation for a device object, you should
also specify a device extension in which you can store global data associated
with each new device object.

• If you write a filter driver, you will create one device object for each target
device object whose I/O requests you wish to intercept. You will then attach

Common Data Structures 179

your device object to the target device object. This procedure of attaching to
the target will actually cause all I/O requests directed to the target to be re-
routed to your device object.*

• If you develop a file system driver, you will have to manipulate the Volume
Parameter Block (VPB) for the physical device object on which you perform a
mount operation. Performing a mount will cause the I/O Manager to make
the physical device object accessible for read/write requests and those
requests will be sent to your device object representing the mounted logical
volume.

• Once you make a device object available for receiving I/O requests, requests
will be sent to you in the form of I/O Request Packets (IRPs). If you develop
a file system driver, you will also receive requests via the fast path (more on
that later in this book).

• When you receive an IRP, you will determine the nature of the I/O operation
your driver is being asked to perform. To do this, you should get a pointer to
the current stack location in the IRP and use it to extract information pertain-
ing to the I/O request. Your driver will then perform appropriate processing
of the IRP, either synchronously or asynchronously.

• Your driver may be able to complete the IRP, or it might determine that the
IRP needs to be forwarded to a driver that is lower in the hierarchy for some
additional processing. In the latter case, you should obtain a pointer to the
next stack location in the IRP and fill in the information that the next driver in
the hierarchy can subsequently extract to determine the nature of processing
it has to perform.

• If your driver will complete the IRP, it must return results of the I/O operation
in the I/O status block structure. The Status field should contain the result,
while the Information field should contain any additional information you
wish to return to the caller.

• Last, but not least, if you develop a file system driver, you will access and pos-
sibly modify the file object structure as part of processing an open request
(and subsequently when processing most IRPs). Each such structure repre-
sents an instance of a successful open operation.

In addition to the objects mentioned in this chapter, if you develop a device
driver, you will be concerned with other objects as well, including controller
objects, adapter objects, and interrupt objects.

Furthermore, your driver will undoubtedly create one or more object types of its
own. For example, file system drivers will create some internal representation of a

* The process of attaching to a target device object is described in detail in Chapter 12.

180 Chapter 4: The NT I/O Manager

file stream in memory. For those familiar with UNIX operating system environ-
ments, think about the vnode structure that is created and maintained by all file
systems. The NT equivalent of this structure is a File Control Block, an object we
will discuss at length in Part 3. In addition, file systems will create a context to
internally represent an instance of a file open operation (similar to the system-
defined file object structure). In Windows NT parlance, this structure is called a
Context Control Block.

Once you start using these objects in your code development, they should
become second nature to you and you will no longer have to spend time trying
to figure out what a device object represents.

I/O Requests: A Discussion
The following discussion provides some additional information that you should
keep in mind as we develop a higher-level kernel-mode driver. This information
will be used not only in the sample drivers provided in this book, but also in any
commercial kernel-mode drivers you design and develop.

Synchronous/Asynchronous Operations
Some I/O operations are always performed synchronously; therefore, any
system driver that you develop only has to design a synchronous method of 1
processing IRPs for such types of requests. Other operations can be handled!
either synchronously or asynchronously; your file system driver must, therefore,
provide both synchronous and asynchronous code paths for processing such I/O j
request packets.

How does a kernel-mode driver determine whether an IRP should be handled!
synchronously or asynchronously?

Before we address that question, it might be useful to see why handling asynchro-j
nous requests correctly is important. Consider a file system driver that you
that does not honor asynchronous requests but performs all requests synchro-!
nously. Your implementation should work correctly most of the time. The onel
problem that might occur is when your driver receives asynchronous paging I/OJ
write requests. These requests typically originate from the NT Modified
Writer. The number of worker threads available to the Modified Page Writer is]
fixed. It may be that the MPW uses only two threads to perform such paging I/0,J
one to the page files and the other to memory-mapped files.

In low-memory and high-stress situations, the VMM tries to quickly flush modif
pages out to secondary storage to make room for other data in the systei
memory. The MPW does this by rapidly issuing asynchronous page write requei

I/O Requests: A Discussion 181

to file systems that manage one or more of the modified pages, either in mapped
files or in page files. If your driver blocks the MPW thread until the I/O is
completed, it slows down the whole process of flushing data out to disk, which
can result in unacceptably long delays to the users of the system.

Therefore, if you develop a higher level kernel-mode driver, it would be prudent
to provide support for asynchronous I/O operations.

Only some I/O system services can be processed asynchronously:

• Read requests
• Write requests

• Directory control requests

• Byte range lock/unlock requests
• Device I/O control requests

• File system I/O control requests

As you may have noticed, all of the types of requests listed above can potentially
take a significant amount of time to complete. Therefore, it is logical that the
caller be allowed to request asynchronous processing for such requests. All of the
other IRP major functions should complete reasonably quickly.

Therefore, if your file system or higher-level filter driver (layered above a file
system) receives an IRP with a major function other than the ones listed here, you
can assume that you are allowed to block in the context of the calling thread.

For the major functions listed, the caller has the option of specifying whether the
request should be performed synchronously or asynchronously. To find out what
the caller wants, your kernel-mode driver can invoke the following I/O Manager
support routine:

BOOLEAN
loIsOperationSynchronous (

IN PIRP Irp

Parameters:

Irp
The I/O request packet sent to your driver. This IRP has flags set by the I/O
Manager that determine whether the IRP can be processed synchronously or
asynchronously. Note that asynchronous operations can always be performed
synchronously (with the slight caveat discussed above); however, even if your
driver performs a synchronous operation asynchronously and therefore
returns STATUS_PENDING to the I/O Manager, the NT I/O Manager will
perform a wait operation in the kernel on behalf of the calling thread.

,

182 Chapter 4: The NT I/O Manager

Functionality Provided:

This simple function call performs the following checks:

• If the IRP_SYNCHRONOUS_IRP flag has been set, the IRP should be exe-
cuted synchronously. All IRP structures that describe major functions other
than the ones listed above will have this flag set in the IRP. The presence of
this flag causes ZoIsOperationSynchronous () to return TRUE.

• As described earlier in this chapter, the caller may have opened the target file
object for synchronous access only. This is denoted by the F0_
SYNCHRONOUS_IO flag being set in the file object data structure; the pres-
ence of this flag causes the loIsOperationSynchronous () routine to
return TRUE.

• The IRP may be a paging I/O read or write request, denoted by the IRP_
PAGING_IO flag in the IRP. Furthermore, even paging I/O requests can be
synchronous or asynchronous. Synchronous paging I/O requests are indicated
by the presence of the IRP_SYNCHRONOUS_PAGING_IO flag in the IRP. If
the latter flag is not set, the I/O Manager knows that this is an asynchronous
paging I/O request and returns FALSE; otherwise, the I/O Manager identifies
the request as a synchronous paging I/O request and returns TRUE.

The NT I/O Manager provides different methods of informing callers when asyn-
chronous I/O operations have been completed. Here are the possible methods:

• The file object structure is a waitable object in Windows NT. When an I/O
operation is initiated on a file object, the object is initially set to the not-sig-
naled state; when the I/O operation completes, the file object is set to the sig-
naled state.

• The asynchronous NT system services provided by the I/O Manager accept an
optional Event object that is initially set to the not-signaled state and is sig-
naled when the I/O operation is completed. In the discussion on IRP comple-
tion, I mentioned that the I/O Manager signals a user-supplied event object
when performing the final postprocessing upon IRP completion in the context
of the calling thread. Note, however, that if an event object is supplied, the
file object will not be signaled.

• Asynchronous NT system services provided by the I/O Manager also accept
an optional caller-supplied APC routine. This routine is invoked via an Asyn-
chronous Procedure Call by the I/O Manager as part of the postprocessing
performed in the context of the calling thread.

One final note about synchronous requests; all synchronous requests made using
the same file object structure are serialized, regardless of whether they are made
by the same thread or by other threads that are part of the same process. The file

I/O Requests: A Discussion 183

system driver also has the responsibility of maintaining a current position pointer
for each file object that is updated whenever a file object is opened for synchro-
nous I/O.

Handling User-Space Buffer Pointers
When you create a device object that can receive and serve I/O requests, your
driver gets the opportunity to specify how it will handle user-supplied buffer
address pointers. You won't fully understand why this information is necessary
until you read the next chapter on the NT Virtual Memory Manager. For now,
however, note that the range of addresses that a user-mode thread can access is
limited to the lower 2GB of the 4GB address space accessible to any process
under Windows NT. Furthermore, this 2GB range of virtual address space is
unique per process (i.e., the addresses used by thread-A do not necessarily refer
to the same physical memory location as do similar addresses used by thread-B).
Of course, threads belonging to the same process do share the same address
space.

A user-mode application typically performs I/O to and from secondary storage
using temporary buffers it has allocated in its own thread context. We will
currently ignore the alternative method used by applications, which involves
using shared memory or memory-mapped files.

For example, consider an application that needs to read some data for a file from
disk. This application will typically allocate a buffer that should be large enough
to contain the amount of requested data. The application will then invoke a read
operation on the open file from which it wishes to obtain data, specifying the
byte offset to read from and the amount of information to be read.

The read request from the application will eventually be translated into an NT
system service call provided by the NT I/O Manager. Among the arguments
received by the I/O Manager will be the pointer to the buffer, supplied by the
user-mode application. This read request now is sent by the I/O Manager to the
file system driver that manages the mounted logical volume on which the open
file object resides.* It is at this point that the I/O Manager finds out how the file
system driver will deal with the user-supplied buffer pointer. This buffer is valid
only in the context of the user-mode thread and does not refer to locked
(nonpaged) memory. The file system can choose from the following possible
options:

' As you go through the rest of the book, you will find out that this statement is not completely true,
since often the I/O Manager bypasses the file system driver completely and instead gets data directly from
the system cache. Let us keep things simple and straightforward for now, though, and ignore that method
of data transfer.

184 Chapter 4: The NT I/O Manager

Request that the I/O Manager always allocates a nonpaged system buffer that
will subsequently be used by the file system driver in the data transfer. It
would then be the responsibility of the I/O Manager to copy any data being
written out to disk from the user-supplied buffer to the system buffer before
dispatching the IRP to the file system driver. Similarly, for I/O operations
where the user-mode application needs to obtain information from the file sys-
tem driver or to read data from disk, the I/O Manager would have to copy
the data back from the system buffer to the user-allocated buffer once the IRP
had been completed.

• This method of handling user-mode buffers by instructing the I/O Manager to
always allocate a corresponding system buffer is called the Buffered I/O method.
The system buffer pointer is passed down to your driver in the Associated-
Irp.SystemBuffer field in the IRP. Note that the I/O Manager will also
often initialize the UserBuffer field in the IRP with the address of the
caller-supplied buffer. Do not attempt to use the contents of this field in your
kernel-mode driver, though, because the SystemBuf fer field already con-
tains the system buffer pointer you can use.

The disadvantage of using buffered I/O is the requirement for extra memory
copies to be performed by the I/O Manager. This is not desirable when you
wish to maximize system performance. However, buffered I/O is the simplest
and therefore most widely utilized method of handling user-supplied buffers.

Another disadvantage of using the buffered I/O method is that the memory
for the system buffer allocated by the I/O Manager is not paged. This results
in unnecessary depletion of the nonpaged pool of memory reserved for the
system. A third problem is that, although the memory is not paged out, if you
wish to use Direct Memory Access to transfer data directly to/from memory
and peripheral devices, a Memory Descriptor List will have to be created by
either your driver or a lower-level driver to describe the physical pages that
back the allocated buffer.
If your driver wishes to avoid the overhead of allocating and copying data to
and from a system buffer, you can instead specify that your driver will use the
direct I/O method. If this method is specified, the I/O Manager will request an
MDL from the VMM that describes the user buffer directly, and it will also
request the VMM to allocate and lock physical pages for the user buffer. The
resulting MDL pointer will be passed to your driver in the MdlAddress field
in the IRP.

The direct I/O method is more efficient than the allocation of an extra buffer
and the resulting copy operations that must be performed. The downside is
that your driver must be capable of working with the MDL directly; i.e., there
is no virtual address pointer that your driver can use when transferring data.

System Boot Sequence 185

Now, this works fine when you simply pass the MDL down to a lower-level
driver, which subsequently uses it in a DMA data transfer. However, if you
need a virtual address pointer that is accessible in the context of the thread
you process the IRP in, your driver will have to use the MmGetSystemAd-
dressForMdl () support routine from the VMM. You must be careful when
using this routine; freeing the Memory Descriptor List will cause all processors
in the system to flush their caches. The reason for this is complex; simply
stated though, obtaining a system virtual address for the MDL is done by dou-
bly mapping the physical pages. This is also known as aliasing, a technique
which, if not handled correctly, causes many cache consistency problems and
resulting headaches for the VMM. If your driver does use the direct I/O
method for handling user-supplied buffers, try to avoid using the MmGetSys-
temAddressForMdl () routine whenever possible.

• The third method is not to specify either direct I/O or buffered I/O as the pre-
ferred method for handling user-supplied buffers. If you do not specify either
of these two methods, the I/O Manager will simply pass down the user
address to your driver in the UserBuf f er field in the IRP.
The responsibility for manipulating the user buffer is on your driver if you
choose this method. File system drivers often use this method, and then make
a decision in their dispatch routines whether they will create an MDL them-
selves or internally allocate a system buffer they can use while processing the
request. Most lower-level drivers, however, prefer to use the direct I/O
method described above.

These methods do not apply to buffers passed in for device or file system IOCTL
(I/O Control) requests. I will discuss IOCTL requests and the buffer manipulation
performed by the I/O Manager for such requests in Part 3.

System Boot Sequence
Before you proceed to the remaining chapters in this book, it might be useful to
understand the steps that are executed from the time you power-on your
Windows NT system until the point where you see the logon screen on the
console.

This information can prove quite useful when you design your driver, because it
determines when your driver will be loaded and what part your driver might be
called upon to play during this process. However, you should also note that the
boot process is highly system-, processor-, operating-system-version-, and architec-
ture-dependent, and the sole objective in listing some of the steps below is simply
to provide you with generic information about "what really happens" when the
system boots, not to prepare you to be able to adapt the boot sequence to a new

186_________________________________Chapter 4: The NT I/O Manager

processor architecture.* Therefore, be warned that the following description is
highly simplified, though mostly correct.

The main problem in examining the system boot sequence is to determine the
starting point. For the purposes of this section, our "beginning" will be the point
at which code provided by Microsoft as part of the NT operating system gets
executed:

1. The NT system startup routine is invoked by the system start-up module. This
routine is passed a BootRecord structure, which contains basic machine
and environment information used later by the OS Loader component.
The NT system startup routine performs some global initialization and deter-
mines the disk drive and partition that the system is booting from. Part of the
global initialization involves initializing memory descriptors for use during this
initial system boot-up stage. The system startup routine also invokes a boot
loader heap initialization routine, which sets up memory descriptors appropri-
ately so that the boot loader can subsequently use that memory during the
system load process.

The boot sequence described so far comprises Phase 1 of the eight phases in
the NT system boot process.

2. The boot loader startup routine is now invoked by the system startup routine.
Note that system startup routine does not expect that the call to the boot
loader startup routine will ever return, since that would indicate that system
boot sequence has failed. However, if this does happen, you will probably
see a hung system, where a hard power reset might be required to restart.
The boot loader startup routine opens the boot partition, which had been
previously identified by the caller, and reads the boot.ini file off it. As part of
attempting to read this file, the boot loader startup routine uses code that has
been compiled in to determine whether the boot partition contains an NTFS,
CDFS, FAT, or HPFS partition. Note that the standard file system drivers have
not been loaded yet, and the boot loader startup routine uses hardcoded
support for only those file systems that Microsoft has chosen to provide boot
support for; these happen to be the standard NT file system implementations.
Since support for boot file systems has to be built into the NT boot loader
startup code, providing a third-party bootable file system implementation is
close to impossible without the active assistance of Microsoft.

* I have described the sequence that executes on the x86 processor architecture. Despite my warnings
above, much of the code executed during system startup has been designed to be relatively portable
across different architectures; therefore, the methodology and principles used are pretty much the same.

System Boot Sequence 187

At this point, the boot loader startup routine makes a real-mode BIOS inter-
rupt call to set the video adapter to 80*50, 16-color, alphanumeric mode. It
also clears the display by writing blanks out to the screen.
The boot loader startup routine reads the entire contents of the boot.ini file
and presents the list of bootable kernels available to the user, as listed in the
boot.ini file. To read the file, the boot loader startup routine once again
employs routines that can recognize NTFS, FAT, CDFS, and HPFS data struc-
tures, and can navigate successfully through the on-disk file system layout. If
the boot.ini file is empty, the default option presented is NT (default) and the
default directory path to boot from is C:\winnt*
The boot loader startup routine now attempts to match the default boot loca-
tion provided by the user in the [boot loader] section of the boot.ini file,
with the options read from the [operating systems] section of the file.
If no default option was specified, the default directory path is searched for.
If the boot loader startup routine does not find a match between the default
boot option and those options listed in the [operating systems] section,
the default boot location chosen is C:\winnt.
The default boot location and the possible options are presented by the boot
loader startup routine to the user using video display support routines. If the
boot kernel path location selected by the user is C:\, the NT loader startup
code assumes that the user wishes to boot into DOS, Windows 3.x, Windows
95, or OS/2; therefore, it attempts to read in the bootsect.dos file and then
reboots the machine into whichever alternative operating system is present.
If the boot location indicates that the user wishes to boot into Windows NT
(this can happen because of a time-out in the selection process, or because of
the user selecting a specific boot system), the boot loader startup routine
attempts to read in the ntdetect.com executable from the root directory of the
boot partition. If ntdetect.com is not found, or if the size of the file seems
incorrect, or if any of the other consistency checks made by the OS loader
startup code fail, the boot process will fail and you will have to reboot the sys-
tem. If, however, a valid executable is found, it is read into memory, and the
system attempts to use the services provided by the hardware manufacturer to
detect the current hardware configuration.
Note that we are well into Phase 2 of the system boot initialization at this
point. The OS loader startup routine now initializes the SCSI boot driver if
required. The ntldr.exe OS loader is now loaded into memory.

* Note that the hoot loader startup routine currently has a bug in that it cannot handle more than 10 en-
tries in the boot.inifile. All entries exceeding this limit are simply ignored. Apparently, this bug has existed
since Windows NT Version 3.5 (and probably since well before that).

188 Chapter 4: The NT I/O Manager

3. The OS loader opens the console input and output devices, and also the
system and boot partitions. It also displays the OS loader identification
message on the console, OS Loader V4. 0.
The loader uses the boot partition information to generate a complete path-
name for the ntoskrnl.exe NT kernel system image file. Note that the system
always expects to find this file in the System32 directory under the boot parti-
tion location. Once the system image has been loaded into memory, the OS
loader loads into memory the hal.dll system file. The HAL (Hardware Abstrac-
tion Layer) isolates platform dependent functionality for the rest of the
Windows NT Executive.

At this point, all DLLs imported by the two loaded system files are identified
and loaded into memory. Now, the OS loader attempts to load the SYSTEM
hive from the NT Registry. At this time, the loader has already made the deter-
mination whether it should load the LastKnownGood control set or the
Default control set from the Registry. This determination is important because
the control set determines the set of boot drivers that will be loaded into the
system.

To load the SYSTEM hive into memory, the OS loader attempts to open and
read the SYSTEM file from the System32\config directory on the boot parti-
tion. If the attempt to open and read in the SYSTEM file fails, an attempt is
made to read in the SYSTEM. ALT file. If neither of these attempts succeed, the
OS loader fails the boot attempt. If the file can be successfully read, the
contents of the file are verified, and in-memory data structures are initialized
to reflect the contents of the on-disk file. Also, note that the system loader
block, which is eventually passed to the loaded system image, is appropri-
ately modified to point to the in-memory copy of the SYSTEM hive.

At this time, the OS Loader determines the list of boot drivers that need to be
loaded into memory. Included among this list is the driver responsible for the
boot partition file system. Note that boot drivers are identified by the Start
value entry (should be equal to 0) associated with the driver's key in the
control set that was loaded into memory. Once the list of boot drivers has
been identified, the OS Loader sorts these drivers based upon the Service-
GroupOrder specified in the Registry; subsequent drivers within a group are
sorted based on the GroupOrderList specified in the Registry and the Tag
value entry associated with each driver key in the Registry.
Once the driver load order has been determined, all boot drivers are loaded.
In the event of an error while loading boot drivers, the ErrorControl value
entry associated with the driver in the Registry is examined. If the driver was
marked as a critical driver for the system boot process, the current boot fails;
otherwise, the OS loader continues loading other boot drivers.

System Boot Sequence 189

Finally, the OS Loader prepares to execute the loaded system image and trans-
fers control to the entry point in the NT kernel.

During Phases 3-5 of the system boot process, the various NT Executive
components and the NT kernel are initialized. Drivers that should be automati-
cally loaded with a Start value entry of 1 are also loaded during Phase 5 of
the system boot process.

The NT kernel initialization routine, KilnitializeKernel (), is invoked
during Phase 3 initialization by the kernel system startup routine (which is the
entry point into the system image that was loaded into memory by the NT OS
loader). This routine initializes the processor control block data structure, the
kernel data structures, and the idle thread and process objects, and invokes
the NT Executive initialization routine. Various spin locks protecting kernel
data structures and kernel linked list structures are initialized here. The
various kernel linked list heads (DPC queue list head, timer notification list
head, various thread table lists, and other similar kernel data structures) are
also initialized here.

Once the kernel idle thread structure has been initialized, the Executive initial-
ization routine is now invoked in the context of this idle thread. Initialization
of the NT Executive and the various subcomponents of the Executive takes
place in two phases.* During Phase 0 of the Executive initialization, the
following subcomponents initialize their internal states:

— The Hardware Abstraction Layer (HAL)
— The NT Executive component

— The Virtual Memory Manager (VMM)

Memory Manager paged and nonpaged pools, the page frame database
(explained in the next chapter), Page Table Entry (PTE) management
structures, and various VMM resources, such as mutex and spin lock data
structures, are initialized at this time. The VMM also initializes the NT sys-
tem-cache-related data structures at this time, including the system cache
working set and the various VMM data structures used to manage the sys-
tem cache.

— The NT Object Manager
— The Security subsystem

* Do not confuse these phases with the system boot sequence Phases 1 through 8. These two phases are
internal and specific to the initialization of the NT Executive and its various subcomponents.

190 Chapter 4: The NT I/O Manager

— The Process Manager
During Phase 0 initialization of the NT Executive, the initial system pro-
cess is created. Note that the idle process was hand crafted by the NT ker-
nel before any of the Executive initialization began. The system process
created at this time is distinct from the idle process that was created ear-
lier. A system thread is also created in the context of the initial system
process at this time. Phase 1, or the remainder of the NT Executive initial-
ization, is now performed in the context of this newly created thread
belonging to the initial system process.

During Phase 1 initialization of the NT Executive and various subcomponents,
all interrupts are disabled and the priority of the thread in whose context the
initialization is performed is raised to a high priority, effectively disabling any
preemption. Also, during Phase 1 of the Executive initialization, the system is
considered fully functional and subcomponents are now allowed to perform
all required operations to complete their initialization. The following subcom-
ponents are invoked (or their operations performed) during Phase 1 initializa-
tion of the NT Executive:

— The Hardware Abstraction Layer (HAL) is invoked to complete
initialization.

— The system date and time are initialized.
— On an multiprocessor system, other processors are started at this time.

— The Object Manager, Executive subsystem, and the Security subsystem
are invoked to perform the remainder of their initialization.

— The Virtual Memory Manager (VMM) Phase 1 initialization is performed.

At this time, the memory mapping functionality is initialized and becomes
available to the rest of the system. VMM threads are also started now. The
VMM can be considered fully functional and ready to service the remain-
der of the system after Phase 1 initialization.

— The NT Cache Manager is initialized after the VMM initialization has been
completed.

You will read more about the NT Cache Manager and the functionality
provided by it later in this book. Note for now, that during Cache Man-
ager initialization, the number of worker threads required for asynchro-
nous operations is determined and created, and the Cache Manager
linked list structures and synchronization resources are initialized.

— The Configuration Manager is invoked to begin its initialization.

The Configuration Manager manages the NT Registry. During this phase
of initialization, the Configuration Manager (CM) makes available the

System Boot Sequence 191

\REGISTRY\MACHINE\SYSTEM and the \REGISTRY\MACHINE\HARD-
WARE hives in the registry. To do this, all of the information obtained by
ntdetect.com earlier, as well as information read into memory by the OS
loader is filled into appropriate entries in the SYSTEM or HARDWARE
hives. Once this phase of initialization has been completed, part of the
Registry name space is available to other system components, particularly
kernel-mode drivers that will soon be loaded; however, the CM will not
write out modifications to the Registry at this time. The kernel-mode driv-
ers that will soon be called upon to perform driver-specific initialization
can use the standard Registry routines to access this information.
The NT I/O Manager is called upon to perform its initialization.
The I/O Manager first initializes internal state objects, including synchroni-
zation data structures, linked lists, and memory pools (e.g., the IRP zone/
lookaside lists). Then, the I/O Manager registers all of its internally
defined object types (i.e. adapter objects, controller objects, device
objects, driver objects, I/O completion objects, and file objects) with the
Object Manager using an internal routine called ObCreateObject-
Type () .* The I/O Manager also creates the \Device, \DosDevices, and
the \Driverroot directories in the object name-space at this time.
Next, the boot drivers loaded by the OS loader are initialized by the I/O
Manager. This includes invoking the driver entry routines for each of
these drivers to perform driver-specific initialization. The raw file system
driver is also loaded at this time. The only other file system driver loaded
is the boot file system driver. Drivers must adhere to the restrictions on
interacting with the NT Registry. Finally, the drivers with a Start value
entry value of 1 are loaded and their driver entry routines invoked for
driver-specific initialization.

Driver reinitialization routines are subsequently invoked for all loaded
drivers that have requested reinitialization. Following this, the NT I/O
Manager assigns drive letters to recognized disk partitions. The drive let-
ters A: and B: are reserved for floppy drives. The I/O Manager examines
the registry for any "sticky" drive letter assignments that need to be main-
tained for CD-ROM drives and for hard disk drive partitions. These drive-
letter assignments are internally reserved so that they will not be used
subsequently when determining dynamic DOS drive letter assignments.

' Note that the Object Manager is not aware of these object types otherwise (i.e., information about I/O
Manager-defined objects is not coded into the Object Manager design). This illustrates the philosophy of
a layered and object-based system, followed by the NT development team.

192 Chapter 4: The NT I/O Manager

Note that before reserving a drive letter for each of the hard disk drives,
the I/O Manager performs an open operation on the physical drive.
Therefore, if you develop a hard disk device driver or a lower-level filter
or intermediate driver, you should expect an open request at this time. If
the open request succeeds, a symbolic link to the device object is created
in NT object name space; the name assigned to this link is of the form
\DosDevices\PhysicalDrive°/od where %d represents the disk drive num-
ber in sequence. The NT I/O Manager also queries partition information
from the disk driver at this time. The following method is used by the I/O
Manager to determine the order in which drive letters are assigned to
fixed disk partitions:

— The NT I/O Manager queries the Registry for any "sticky" drive letter
assignments that need to be maintained.

— Bootable partitions are first assigned dynamic DOS-compatible drive
letters (i.e., a symbolic link is created to the device object repre-
senting the partition, with the name \DosDevices\%c: where %c
represents the drive letter chosen by the NT I/O Manager for the
partition).

— Primary partitions are next chosen for dynamically assigned drive
letters.

— Extended partitions are subsequently assigned DOS drive letters.

— Other (enhanced) partitions are now assigned DOS drive letters. After
drive letters have been assigned to hard disk drive and removable
drive partitions, the NT I/O Manager assigns drive letters to all CD-
ROM drives that were identified during hardware detection.

— The Local Procedure Call (LPC) subsystem and the Process Manager
subsystem now complete their initialization.

— The Reference Monitor and Session Manager subsystem are invoked
next to complete their initialization.

5. At this point, Phases 3-5 of the system boot process have been completed.
Remember that NT Executive components were initialized in the context of
the system worker thread belonging to the system process, which was created
by the NT kernel. This thread now assumes the role of the Memory Manager
zero page thread; this is a very low-priority thread used to asynchronously
zero out pages that are placed on the free list by the VMM. As you will read
in the next chapter, all pages need to be zeroed out before they can be
reused to make the system conform to C2 security defined by the US Depart-
ment Of Defense (DOD).

System Boot Sequence 193

6. The system has been initialized at this point. During Phases 6-8 of the system
boot process, the various subsystems are initialized and other services are
loaded by the Service Controller Manager. This includes the loading of kernel-
mode drivers with a Start value of 2 in the Registry.

We have finished our bird's-eye view of the NT system boot process. This should
have given you a reasonable understanding of the steps executed to bring the NT
system to a stable state so that it can begin responding to user requests.

This chapter has introduced you to the Windows NT I/O Manager and the
Windows NT I/O subsystem. Another important component of the NT Executive
is the NT Virtual Memory Manager, which is the topic of the next chapter.

