
In this chapter:
• Why Use Filter

Drivers?
• Basic Steps in

Filtering
• Some Dos and Don 'ts

in Filtering

Filter Drivers

The Windows NT I/O subsystem was designed to be extensible. One of the ways
in which the capabilities of the I/O subsystem can be extended is by developing
filter drivers. Chapter 2, File System Driver Development, provided an introduction
to filter drivers in Windows NT. This chapter takes a detailed look at designing
and implementing filter drivers for the Windows NT operating system.

First, we'll discuss why you may want to use filter drivers to achieve some of your
objectives. This is followed by a discussion of some fundamental steps involved
in developing filter drivers, including how to attach to a target device object, how
to create your own IRP structures, how to use completion routines to perform
postprocessing upon IRP completion, and how to stop filtering by detaching from
a target device object.

We'll conclude with a discussion of some issues you should be familiar with
when attempting filter driver design and development. The diskette accompa-
nying this book provides a complete sample filter driver implementation that can
be used as a template in designing your own kernel-mode filter driver.

Why Use Filter Drivers?
The fundamental reason for any of us to design and develop kernel-mode soft-
ware for Windows NT is to provide added value beyond what is provided with
the core operating system environment. This is also the motivating factor behind
the design and development of filter drivers.

Two design principles adopted by the NT I/O Manager make developing value-
added software easier than with other operating systems.

615

616_____________________________________Chapter 12: Filter Drivers

First, the I/O Manager design implements a client-server model for the I/O
subsystem. Any user- or kernel-mode component can request the services of prac-
tically any other loaded kernel-mode driver. The requesting module is then the
client of the target driver that will satisfy the request. There are few restrictions
mandated by the I/O Manager on when a client component can invoke a driver
(the server for the request) and what kind of services can be requested.

One example of the usage of this client-server model is when file system drivers
request services from lower-level device drivers. What is more unusual, though
certainly possible, is for file systems to request services from other file system
drivers installed on the machine, or even for lower-level intermediate drivers to
request services from higher-level file system drivers.

You should give careful consideration to the following whenever you design a
driver that requests services from either other higher-level kernel-mode drivers or
kernel-mode drivers at the same level in the calling hierarchy:

• The different scenarios under which your driver can be invoked

• The different scenarios under which your driver would request services from
other kernel-mode modules

• Restrictions on when you can incur page faults within your driver module

• Assumptions made by higher-level drivers, such as file systems; the file sys-
tems adapt their behavior depending on what the top-level component is for
an I/O request

• Resource acquisition hierarchies that must be defined and strictly imple-
mented for resource acquisition across kernel-mode modules

Second, the NT I/O Manager supports a layered driver model. As each IRP is
processed, it passes through various layers of the driver hierarchy until it is finally
resolved by some driver via a call to loCompleteRequest () . Therefore, it's
easy for a third-party driver to insert itself into the existing calling hierarchy and
get the opportunity to process the I/O Request Packets.

In order to cooperate with the I/O Manager in supporting such a layered driver
module, your design must conform to the following basic requirements:

• Always invoke the services of other kernel-mode drivers in the standard man-
ner by using the loCallDriver () function.

• Once an IRP has been sent on to another driver, do not touch it.

• You can, however, register a completion routine to be invoked when the IRP
has been completed.

• Unless you develop tightly coupled drivers that use privately defined lOCTLs
to communicate with each other, you must never depend on whether the

Why Use Filter Drivers? 617

request you have forwarded goes directly to your target driver or is inter-
cepted by another filter driver module.

• The filter driver module must present the same interfaces as those presented
by the original target of the request.

• Treat other driver modules as black boxes.
• Your driver must not be dependent upon how the target driver implements

processing for your I/O request.

What Is a Filter Driver?
A filter driver is a kernel-mode driver. It is developed primarily to intercept
requests targeted to an existing kernel-mode driver, to allow the addition of new
functionality beyond what is currently available.

Figure 12-1 illustrates this concept.

Figure 12-1. Inserting a filter driver to intercept requests

As shown in Figure 12-1, I/O requests targeted to a specific driver are intercepted
by the filter driver module. The filter driver may either use the services of the orig-
inal target of the I/O request, or use the services of other user-mode or kernel-
mode software to provide value-added functionality.

618_____________________________________Chapter 12: Filter Drivers

When Can I Use a Filter Driver?
You should consider designing a filter driver whenever you wish to affect the
current flow of processing for certain I/O requests. Therefore, if you want to
provide some software that will extend, modify, or completely supplant an
existing module and if you wish to maintain complete transparency to the user
when providing your specialized functionality, consider designing a filter driver.

For example, suppose you decide to design and implement on-line encryption/
decryption functionality for the data stored on existing Windows NT file systems.
Currently, the operating system does not provide any such functionality.
However, hypothesize that you possess the technology to implement a secure
encryption algorithm. What you would really like to do is the following:

• Use the services of the Windows NT native file systems to store and retrieve
user data

It would not be cost-effective to design your own file system implementation
to store encrypted data on disk. Besides, users would typically wish to con-
tinue to use native Windows NT file system services for storing their data and
would like to use your software only to encrypt sensitive data stored on such
file systems.

• Intercept all user write requests and encrypt data being stored to disk for tar-
geted files, directories, or complete mounted logical volumes

Given that you will not design a new file system driver, you will want to inter-
cept existing file system requests so that the user can specify files, directories,
or even entire mounted logical volumes to be encrypted on-the-fly. When a
write request issued by the user is received, your software module should
somehow be able to intercept such write requests and encrypt the user-sup-
plied data before it is stored to disk.

• Intercept all user read requests and decrypt data (if required) before returning
it to the user

Now that you have successfully encrypted user-supplied data and stored it on
disk using the services of the native file systems, you must also provide the
services of decrypting the data whenever an authorized user tries to read it.

It seems obvious that a filter driver would serve your purposes admirably in the
preceding example problem. The filter driver would allow you to intercept user I/
O requests and perform your encryption/decryption processing on the data, trans-
parently to the user. Furthermore, it is not necessary to design your own file
system or special device driver to manage and transfer data on secondary storage
devices, and therefore your filter driver would continue to use the services
provided by existing drivers on the system.

Why Use Filter Drivers!' 619

More Examples of Filter Drivers
Other examples of situations where a filter driver could be used include:

To provide virus detection functionality
Imagine for a minute that you want to provide a new virus-detection module
for the Windows NT operating system. This virus-detecting module performs
its tasks in real-time; therefore, it will attempt to detect any viruses in files
being copied to a mounted logical volume and refuse the data transfer if such
a virus is found. How would you go about doing this?

Figure 12-2 illustrates how a filter driver that layers itself above a mounted
logical volume device object managed by a file system driver can perform the
virus detection functionality.

Figure 12-2. Filter driver used in virus detection

The virus detection software module can be implemented as a filter driver
that intercepts I/O targeted to one or more mounted logical volumes. When-

620_____________________________________Chapter 12: Filter Drivers

ever any user's I/O request is received by the Windows NT I/O Manager for a
file residing on a mounted logical volume, the I/O Manager normally
forwards the request to the file system driver managing the mounted logical
volume.

Before forwarding the request, however, the I/O Manager also checks to see
if any other device object has layered itself over the device object repre-
senting the mounted logical volume and redirects the request to that device
object, which is at the top of the layered list of device objects. In order to
intercept I/O requests, the virus-detecting filter driver module has to create a
device object that layers (or attaches) itself to the device object representing
the mounted logical volume.

Therefore, the filter driver module intercepts the I/O before it reaches the file
system. Now, the virus-detection module can check for any virus signatures in
the data being written out to disk. Note that in most cases, read requests can
be immediately forwarded by the filter driver to the file system.

If any virus signature is detected, the filter driver can reject the write request,
protecting the user's physical disks from possible corruption. If no virus signa-
ture is detected, the filter driver can safely forward the IRP to the file system
for further processing.

Note that the file system driver has no idea that some other filter driver is
layered above it. It behaves (as always) as if the user request has been sent
directly to it by the I/O Manager. By the same token, the filter driver must
always be cognizant of the fact that the file system does not know about its
existence and must therefore ensure that it does not do anything that would
violate any fundamental assumptions made by the FSD.

Virus-detection software must also be able to automatically check for viruses
that might be present on existing media (especially on removable media). In
most cases, virus-detection software will also provide functionality that will
scan removable media whenever they are reinserted into a drive on the
machine.

This functionality requires that your virus-detection software layer itself over
the lower-level disk driver (for the removable drive) itself, layer over the file
system (in order to accurately detect media changes), or require the software
to understand and utilize information presented in Chapter 11, Writing a File
System Driver III, on how file system drivers handle volume verification for
removable media.

Implement HSM functionality.
Hierarchical storage management (HSM) means different things to different
people. However, it often involves automatic transfer of infrequently used

Why Use Filter Drivers?__621

data to slower but cheaper secondary storage media and an automatic
transfer back to regular storage if the migrated data files are accessed. Figure
12-3 illustrates how a filter driver could be part of such an HSM solution.

Figure 12-3. HSM filter driver

Consider an HSM filter driver that migrates older, infrequently accessed files
to a slower device. If a user now wishes to access or modify the migrated file,
the HSM driver will typically transfer data back to the local file system before
forwarding the request to the FSD. In this way, the FSD can be completely
ignorant about the migration/retrieval of data performed by the HSM driver.

Often, HSM drivers leave a little stub file on the original file system as a place-
holder, once data has been migrated. The actual size of this stub file is
generally 0 bytes, although it may contain some metadata stored by the HSM
driver for administrative convenience. If a user tries to list the directory
entries for a directory whose files have been migrated, the HSM module may
have to massage the information returned by the FSD (e.g., file size) in

622_____________________________________Chapter 12: Filter Drivers

response to a file information request in order to maintain complete transpar-
ency about the migration operation that was performed. Therefore, the HSM
module may choose to register a completion routine before forwarding direc-
tory control or file information requests to the FSD, allowing it to perform
appropriate modification of the information returned by the FSD before it is
finally returned to the caller.

You could undoubtedly come up with many additional ways in which the func-
tionality provided by the I/O subsystem could be extended. The preceding
examples are simply a sample of the number of ways in which filter drivers can
help you implement your ideas for providing added value to the system.

Basic Steps in Filtering
There are a few operations that you should become familiar with when you
design and implement a new filter driver:

• Attaching to a target device object, to intercept calls directed to that object

• Building IRPs that can be dispatched to drivers managing target device objects
Note that your driver may either build associated IRPs for a master IRP sent to
you or create new master IRP structures.

• Specifying a completion routine to be invoked when an attached driver fin-
ishes processing an IRP

• Detaching from the target device object when appropriate

Attaching to a Target Device Object
Before proceeding with the discussion on how to attach to a target device object,
it is useful to understand the following terms:

• The filter driver is the kernel-mode driver that you design and implement.

• The source device object (also known as the filter-driver device object) is the
device object that you create in order to perform a logical attachment
between your driver and the original target of the I/O requests.

• The target device object is the device object, representing a physical, virtual,
or logical device, to which I/O request packets are currently directed.

Your goal is to intercept the I/O request packets sent to the target device
object.

• The target driver is the kernel-mode driver that manages (and provides the
dispatch functions for) the target device object.

Basic Steps in Filtering_______________________________________623

The process of associating a source device object created by your filter driver with
the target device object, such that the I/O Manager will automatically redirect
requests to your driver is called an attach operation.

As mentioned earlier, filter drivers provide their value-added functionality by inter-
cepting requests targeted to an existing driver. Once a filter driver has begun
intercepting all of the requests targeted to the existing driver module, it can either
augment the functionality provided by the existing driver or supplant it altogether.

There are a few simple steps your driver must perform to successfully attach to a
target device object:

1. Get a pointer to the target device object.

2. Create your own device object that will be used in the attach operation.
3. Ensure that your driver is set up to process the I/O requests, originally

directed to the target device object, that will now be redirected to it instead.
4. Ensure that the fields in your device object are set correctly to maintain

complete transparency to the modules that normally invoke the target driver.
5. Request the I/O Manager to create an attachment between the two device

objects.

Once the attach operation has been completed, the I/O Manager will begin redi-
recting I/O requests to your device object instead of forwarding them to the
driver managing the target device object.

Code Fragment
The following code fragment illustrates how the attach operation can be imple-
mented by your filter driver.

NTSTATUS SFilterAttachTarget(
PUNICODE_STRING TargetDeviceName,
ACCESS_MASK DesiredAccess,
BOOLEAN InvokedFromDriverEntry)

// Declarations ...

try {

// Get a pointer to the target device object. Read the discussion
// provided later in this chapter for information on how to
// ensure that a file system is always mounted
// before you attach to the underlying device object.
if (!NT_SUCCESS(RC = ZoGetDeviceObjectPointer(TargetDeviceName,

DesiredAccess,
&PtrTargetFileObject,
StPtrTargetDeviceObject))) {

624 _____________________________________ Chapter 12: Filter Drivers

try_return(RC) ;

// File Object has been referenced. No need to reference the
// device object, since a successful attach operation will ensure
// that the device object is not deleted without our being
// notified. Further, if you do reference the underlying device
// object, you will effectively exclude all new open operations,
// just in case the device object can be opened exclusively only
// (since the reference will count as an open operation) .

// Now, create a new device object for the attach operation.
if (!NT_SUCCESS(RC = loCreateDevice (

SFilterGlobalData.SFilterDriverObject,
sizeof (SFilterDeviceExtension) ,
NULL, // unnamed device object
PtrTargetDeviceObject->DeviceType,
PtrTargetDeviceObject->Characteristics,
FALSE ,
&(PtrNewDeviceObject)))) {

// failed to create a device object, leave.
try_return (RC) ;

// Initialize the extension for the device object. The extension
// stores any device-object-specific (global) data (e.g., a
// pointer to the device object to which you performed the attach
// operation) .
PtrDeviceExtension = (PtrSFilterDeviceExtension)

PtrNewDeviceObject->DeviceExtension;
SFilterlnitDevExtens ion (PtrDeviceExtension,

SFILTER_NODE_TYPE_ATTACHED_DEVICE) ;
InitializedDeviceObject = TRUE;

// If we were not invoked from the DriverEntry () function, mark the
// fact that this device object is no longer being initialized.
// If the device object is created during driver initialization,
// the I/O Manager will do this for us.
if (! InvokedFromDriverEntry) {

PtrNewDeviceObject->Flags &= ~DO_DEVICE_INITIALIZING;

// Acquire the resource exclusively for our newly created device
// object to ensure that dispatch routines requests are not
// processed until we are really ready.
ExAcquireResourceExclusiveLite (

& (PtrDeviceExtension->DeviceExtensionResource) , TRUE) ;
AcquiredDeviceObject = TRUE;

// The new device object has been created. Perform the attachment.
RC = ZoAttachDeviceByPointer (PtrNewDeviceObject,

PtrTargetDeviceObject) ;
// The only reason we would fail (and possibly get STATUS_NO_SUCH_
// DEVICE)

Basic Steps in Filtering __________________ ________ ___________ 625

II is if the target was being initialized or unloaded and neither
// should be happening at this time.
ASSERT (NT_SUCCESS (RC)) ;

// Note that the AlignmentRequirement, the StackSize, and the
// SectorSize values will have been automatically initialized for
// us in the source device object (the I/O Manager does this as
// part of processing the ZoAttachDeviceByPointer () request).

// We should set the Flags values correctly to indicate whether
// direct I/O, buffered I/O, or neither is required. Typically,
// FSDs (especially native FSD implementations) do not want the I/O
// Manager to touch the user buffer at all.
PtrNewDeviceObject->Flags = (PtrTargetDeviceObject->Flags &

(DO_BUFFERED_IO | DO_DIRECT_IO)) ;

// Initialize the TargetDeviceObject field in the extension.
// This is used by us when (if) we wish to forward I/O requests
// to the target device object.
PtrDeviceExtension->TargetDeviceObj ect = PtrTargetDeviceOb j ect ;
PtrDeviceExtension->TargetDriverObject =

PtrTargetDeviceObject->DriverObject;
// Some bookkeeping.
SFilterSetFlag (PtrDeviceExtension->DeviceExtensionFlags,

SFILTER_DEV_EXT_ATTACHED) ;

// We are there now. All I/O requests will start being redirected
// to us until we detach ourselves.

try_exit: NOTHING;

} finally {
// Cleanup stuff goes here.
if (AcquiredDeviceObject) {

SFilterReleaseResource (& (PtrDeviceExtension->
DeviceExtensionResource)) ;

if (!NT_SUCCESS(RC) && PtrNewDeviceObject) {
if (InitializedDeviceObject) {

// The detach routine will take care of everything.
//A code fragment for the detach routine is provided
// later in this chapter.
SFilterDetachTarget (PtrNewDeviceObject,

PtrTargetDeviceObj ect ,
PtrDeviceExtension) ;

// Dereference the file object. Once you have done so, you can
// forget all about the target file object. But please remember to
// always do this! Failure to dereference the file object will
// result in a dangling file object structure that in turn will
// prevent unloading/dismounting of the target device object.

626 _____________________________________ Chapter 12: Filter Drivers

if (PtrTargetFileObject) {
ObDereferenceObject (PtrTargetFileObject) ;
PtrTargetFileObject = NULL;

return(RC) ;
}

The following definition of a device extension structure, as defined by the sample
filter driver code, will be useful in understanding the previous code fragment:

typedef struct _SFilterDeviceExtension {
// A signature (including device size).
SFilter Identifier Nodeldentif ier;
// This is used to synchronize access to the device extension
// structure.
ERESOURCE DeviceExtensionResource;
// The sample filter driver keeps a private doubly linked list of all
// device objects created by the driver.
LIST_ENTRY NextDeviceObject ;
// See Flag definitions below.
uint32 DeviceExtensionFlags;
// The device object we are attached to.
PDEVICE_OBJECT TargetDeviceObject ;
// Stored for convenience. A pointer to the driver object for the
// target device object (you can always obtain this information from
// the target device object) .
PDRIVER_OBJECT TargetDriverObj ect ;
// You can associate other information here.

} SFilterDeviceExtension, *PtrSFilterDeviceExtension;

#define SFILTER_DEV_EXT_RESOURCE_INITIALIZED (0x00000001)
#define SFILTER_DEV_EXT_INSERTED_GLOBAL_LIST (0x00000002)
tdefine SFILTER_DEV_EXT_ATTACHED (0x00000004)

Notes
The code fragment for the SFilterAttachTarget () function illustrates how
simple it is to perform an attachment between a device object created by your
driver and another named device object. The code fragment follows closely the
sequence of steps listed earlier for performing the attach operation.

You should note that the attachment can be performed as easily if the target
device object is not a named device object. However, you cannot open an
unnamed device object; therefore, in order to be able to attach to an unnamed
device object, your driver must have some other (driver-specific) method devised
to obtain a pointer to the target device object.

The following sections describe some of the support functions provided by the
I/O Manager that will prove useful to you in developing your filter driver (to
perform an attachment between your device object and the target device object).

Basic Steps in Filtering__627

loGetDeviceObjectPointerQ
The arguments for this function are well-described in the DDK:

NTSTATUS
ZoGetDeviceObj ectPointer(

IN PUNICODE_STRING ObjectName,
IN ACCESS_MASK DesiredAccess,
OUT PFILE_OBJECT *FileObject,
OUT PDEVICE_OBJECT *DeviceObject

) ;

The loGetDeviceObj ectPointer () function is often used by filter drivers to
obtain a pointer to a target physical/virtual device object or to the highest-layered
device object attached to the target device object. Here are the steps executed by
the I/O Manager to implement this function:

1. The I/O Manager performs an open operation on the target object, identified
by the ObjectName argument (e.g., \Device\C:).

Note that the open request will typically recurse back into the NT I/O
Manager. The DesiredAccess value determines whether or not a mount
sequence is initiated by the I/O Manager in processing the open operation;
the I/O Manager may choose to initiate a mount sequence if no logical
volume has yet been mounted on the target physical/virtual device when the
open request is being processed.

2. The I/O Manager then obtains a pointer to the file object that is created as a
result of processing the open request.

The open request (if successful) returns a file handle. The I/O Manager uses
the ObReferenceObjectByHandle () function to obtain a pointer to the
associated (referenced) file object.

3. The I/O Manager uses the loGetRelatedDeviceObject () function to get
a pointer to the highest-layered device object that may be attached to the
target device.

The argument to the loGetRelatedDeviceObject () function is the file
object pointer obtained in Step 2.

4. Finally, the I/O Manager closes the file handle obtained in Step 1 before
returning control to the caller.

The I/O Manager can safely return pointers to the file object representing the
successful open operations, as well as to the associated device object, even
though the handle obtained from the open operation has been closed, because
the file object structure is referenced in Step 2.

628_____________________________________Chapter 12: Filter Drivers

What Happens After the Attach Operation?
In order to appreciate the value of attempting an attach operation, you should
understand what happens once you have performed the attach. You know that
the I/O Manager will now reroute the IRPs destined for the target device object to
your driver (and your source device object) instead. But how does the I/O
Manager do this? To answer this question, let's look at the attach operation in
greater detail.

The attach operation

Recall from Chapter 4, The NT I/O Manager, that each device object structure has
a field called AttachedDevice. This field is used by the I/O Manager to keep
track of the linked list of attached devices for a particular target device object.
Note that I mentioned a linked list of attached device objects and not just a single
attached device object; the clear implication is that multiple filter device objects
could potentially exist that are attached to a specific target device object. There-
fore, you can conceive of a chain (or a layer) of attached filter device objects;
each of these attached device objects will have an opportunity to process IRPs
sent to the target device object.

There are three ways in which your driver can request an attach operation:

loAttachDeviceByPointer()
When your driver invokes the I/O Manager to perform an attach between the
target device object and your source device object using loAttachDevice-
ByPointer () , the I/O Manager performs the following sequence of
operations: loAttachDeviceByPointer () , loAttachDeviceToDe-
viceStack(), and loAttachDevice().

a. The I/O Manager will get a pointer to the topmost device object that had
been previously attached to the target device object.

The code used to do this is encapsulated within an I/O Manager routine
called loGetAttachedDevice () , which is available to third-party
developers as well:
PDEVICE_OBJECT
loGetAttachedDevice(

IN PDEVICE_OBJECT DeviceObject
) ;

The implementation of this function appears to be pretty trivial and is
demonstrated in this code fragment:*

* Note that the actual code implemented by the I/O Manager is probably slightly different than the frag-
ment presented here; however, the logic presented here is accurate.

Basic Steps in Filtering_______________________________________629

PDEVICE_OBJECT
IoGetAttachedDevice(PDEVICE_OBJECT TargetDeviceObject) {

PDEVICE_OBJECT ReturnedDeviceObject = TargetDeviceObject;

while (ReturnedDeviceObject->AttachedDevice) {
ReturnedDeviceObject = TargetDeviceObject->AttachedDevice;

}

return(ReturnedDeviceObject);
}
Think of the attached list of device objects as a stack-based list. The last
object inserted into the list will be at the head of the list. Extend this
analogy a bit further, and you can see that the last device object to
perform the attach operation will be the first object to get a crack at the
IRPs sent to the target device object.
In order to maintain this last-in-first-chance-at-IRP ordering, the I/O
Manager gets a pointer to the topmost device object in the linked list of
device objects in order to continue processing the attach request. If,
however, yours happens to be the first attach request for the target device
object, the I/O Manager will directly use the pointer to the target device
object (supplied by you) in the following steps.
Now, the I/O Manager will ensure that the device object you are
attempting to attach to is not being deleted.

If the device object is being deleted or if the corresponding driver has an
unload pending against it, the I/O Manager will immediately reject your
attach request. You can expect to get an error such as STATUS_NO_SUCH_
DEVICE from the I/O Manager. If everything seems to be in order, the I/O
Manager proceeds to the next step.

b. The I/O Manager will physically complete the attach operation.
The following steps are executed by the I/O Manager to complete the
attach operation:

i. The ReturnedDeviceObject->AttachedDevice field is set to
point to the source device object.

ii. The StackSize field in the source device object is set to
(ReturnedDeviceObject->StackSize + 1).
Note that once the attach has been completed, the I/O Manager will
redirect all IRPs sent to the target device object to your driver. The
I/O Manager does not know what you will do with the IRPs; it can
assume the worst case, however, (in terms of I/O stack location
usage) where you may simply perform some preprocessing or
register a completion routine and forward the IRP to the next driver

630_____________________________________Chapter 12: Filter Drivers

in the list of layered drivers. Since the attaching of your device object
could require the IRP to be routed through one more layered driver,
the I/O Manager ensures that the number of stack locations that will
be allocated for all subsequent IRPs directed to the target device
object will be enough to last through all the drivers that may process
the IRP. The I/O Manager will set the AlignmentRecruirement
field and the SectorSize field in the source device object created
by your driver to be the same as those in the target device object.

IoAttachDeviceToDeviceStack()
This function call was first made available in Windows NT Version 4.0. It is
functionally similar to the preceding loAttachDeviceByPointer ()
routine and is invoked in the same manner (i.e., your driver must supply both
the source and target device object pointer values). However, this function
performs one additional task: if the attach operation completes successfully,
IoAttachDeviceToDeviceStack() will return a pointer to the previous
highest-layered device object to which your source device object was
attached.
The returned device object pointer value can prove to be useful if your filter
driver forwards any intercepted IRPs to the next driver in the calling hierarchy.

Note that if your driver happened to be the first to perform an attach opera-
tion to the target device object, the returned device object pointer will be the
same as the target device object pointer supplied by your driver when
invoking the IoAttachDeviceToDeviceStack() function.

NOTE Prior to Version 4.0, your driver could first invoke loGetAt-
tachedDevice () followed by loAttachedDeviceByPoint-
er () to achieve practically the same functionality as is now
provided by the IoAttachDeviceToDeviceStack() function.
Also, the loGetDeviceObjectByPointer () function returns a
pointer to the highest-layered device object attached to the target de-
vice object.

loAttachDevice()
This function is defined as follows:
NTSTATUS
loAttachDevice(

IN PDEVICE_OBJECT SourceDevice,
IN PUNICODE_STRING TargetDevice,
OUT PDEVICE_OBJECT *AttachedDevice

Basic Steps in Filtering______________________________________ 631

The loAttachDevice () function also performs an attachment between
two device objects. However, this function accepts the target device name
instead of a pointer to the target device object. It will open the target device
object on behalf of your driver and use the target device object pointer to
perform the actual attach operation.

The steps executed by this function are as follows:

a. The loAttachDevice () function invokes loGetDeviceObject-
Pointer () internally, to obtain a pointer to the target device object.

The DesiredAccess value is set to FILE_READ_ATTRIBUTES.
b. The loAttachDevice () function executes the same sequence of steps

as those described earlier, in performing an attach operation between the
source device object and the target device object.

Just as in the case of the loAttachDeviceByPointer () function, the
I/O Manager initializes the StackSize, AlignmentRecruirement, and
SectorSize fields in the SourceDevice object structure.

c. The I/O Manager dereferences the file object pointer returned from the
internal call to loGetDeviceObjectPointer ().

d. A pointer to the previous highest-layered device object (for the target
device) is returned to the caller in the AttachedDevice argument.

Note that your driver must have created the source device object before you
can invoke the loAttachDevice () function.

You may be wondering whether it would be preferable to invoke loAttachDe-
vice() directly, instead of invoking loGetDeviceObjectPointer () in your
driver followed by a call to loAttachDeviceByPointer () or loAttachDev-
iceToDeviceStack().

There is one subtle difference between the two methods of performing an attach
operation. This difference is only important if your driver wishes to layer over an
FSD logical volume device object (as opposed to layering over a lower-level
device driver disk device object).

The loAttachDevice () function will always open the target device (identified
by the device name that you supply to the function) with the DesiredAccess
value set to FILE_READ_ATTRIBUTES. This type of open request will not result
in a mount operation being initiated by the I/O Manager on the target physical/
virtual/logical device if such a mount operation has not yet taken place. There-
fore, if your driver wishes to attach to the device object representing the mounted
logical volume on drive C: and if the name supplied by your driver is
\Device\C:, you cannot really be sure that loAttachDevice () will do what

632__________ __________________________Chapter 12: Filter Drivers

you expect, since you may actually end up with your source device object having
been attached to the physical device object identified by \Device\C:.

However, if your driver wishes to ensure that it is always attached to an FSD
device object representing a logical volume mounted on the target drive, then you
can invoke loGetDeviceObjectPointer () function directly from your driver
by specifying the DesiredAccess to some value like FILE_READ_ACCESS.
This type of DesiredAccess value will result in the I/O Manager initiating a
mount process (if no logical volume has yet been mounted on the target device),
and the returned device object pointer will refer to the device object representing
the mounted logical volume.* Your FSD can then request the attach by invoking
loAttachDeviceByPointer() orloAttachDeviceToDeviceStack().

Once you invoke one of preceding three functions, loAttachDevice-
ByPointer () , IoAttachDeviceToDeviceStack(), and loAttach-
Device () successfully, you can be assured that the attach operation has been
completed by the NT I/O Manager.

You must be careful whenever you request an attach operation, since all new
IRPs targeted to the target device object will immediately begin getting rerouted
to you, instead of being sent to the original target of the I/O request. Therefore,
be prepared to handle such requests immediately or block them until you
complete all your initialization.

IRP routing after the attach

Now that you have performed the attach, you should start getting first access to
all the IRPs sent to the target device object, right? Well, not quite. You may get
first chance at IRPs, or you may get called after some other driver has had its way
with the IRP, or your driver may never be called for an IRP sent to the target
device object.

Why? To understand when your filter driver is invoked (and when it is not), you
need to understand the I/O Manager-supplied utility function called loGetRe-
latedDeviceObject () . This function is also available to you when you
develop a kernel-mode driver and is defined as:

PDEVICE_OBJECT
loGetRelatedDeviceObj ect(

IN PFILE_OBJECT FileObject

* Another method that you eould use to ensure that a mount is always initiated (if required) by the I/O
Manager is to speeify a name such as \Device\C: \ instead of \Device\C: only. The trailing \ indi-
cates that you wish to open the root directory (as opposed to performing a direct device open of the target
device) and will force the I/O Manager to initiate a mount sequence.

Basic Steps in Filtering_______________________________________633

The function ZoGetRelatedDeviceObject () is always invoked internally by
the NT I/O Manager whenever it needs to determine where it should send an IRP
for a user-initiated I/O operation (e.g., the NtReadFile () function invoked by a
thread).* The following steps are executed in this function:

1. The I/O Manager checks whether the supplied FileObject has a mounted
Volume Parameter Block (VPB) associated with it.

VPB structures were discussed in detail earlier in this book. You may recall
that when a file system successfully mounts a logical volume, a pointer to the
device object (created by the FSD) representing the mounted logical volume
is stored in the VPB->DeviceObject field.
If the FileObject->Vpb field is nonnull and if the FileObject->Vpb->
DeviceObject field is nonnull, the I/O Manager will invoke the loGetAt-
tachedDevice () function for the FileObject->Vpb->DeviceObject
structure and use the returned device object pointer when invoking
loCallDriver().
The implication here is that if a logical volume has been mounted on a phys-
ical/virtual/logical device object, the I/O Manager will redirect I/O requests to
the highest-layered driver that has performed an attach operation on the
device object created by the FSD to represent the mounted logical volume.

When will the Vpb pointer for a file object not be set to NULL? Well, recall
that the Vpb pointer for a file object is set by the FSD whenever a successful
create/open operation has been performed on the file object (as was
described in Chapter 11, Writing a File System Driver III). Therefore, you
should infer that if a file stream residing on a logical volume has been success-
fully opened, and subsequently an I/O operation is received for the file
stream, this particular check made by the I/O Manager will succeed and the
IRP will be appropriately dispatched.

2. If the preceding check fails because the Vpb pointer is set to NULL, then the I/
O Manager tries harder to determine where to send the IRP.
In the previous case, the Vpb pointer was nonnull because the file stream
had been opened. However, for certain file objects, the Vpb pointer may still
be NULL. In this case, the I/O Manager checks whether the file object has an
associated device object that was mounted by some file system. This can be
done by checking the FileObject->DeviceObject field. If nonnull (indi-
cating that the file object is associated with some "real" device object), and if

* Note that the I/O Manager also uses the loGetRelatedDeviceObject () function internally when
processing a synchronous/asynchronous page write or a synchronous page read request. Therefore, filter
drivers layered over a FSD will get the opportunity to process page faults and/or paging I/O writes (in-
cluding those initiated due to memory-mapped files).

634_____________________________________Chapter 12: Filter Drivers

the FileObject->DeviceObject->Vpb->DeviceObject is nonnull
(indicating that a file system has mounted this device object), then the I/O
Manager will invoke the loGetAttachedDevice () function on the File-
Object->DeviceObject->Vpb->DeviceObject structure and use the
returned device object pointer when invoking loCallDriver ().

3. If both of these checks fail to yield a device object structure pointer, the I/O
Manager uses the device object associated with the file object.

When both the preceding checks fail, more than likely the I/O request is
being issued to an open physical/virtual/logical device that has not yet been
mounted. If an I/O operation is being issued directly to this device object
(e.g., for raw access to the device), the I/O Manager will invoke the
loGetAttachedDevice () function on the FileObject->DeviceOb-
ject structure and use the returned device object pointer when invoking
loCallDriver().

Given this information, you can see that even after you attach to a target device
object, it is not guaranteed that you will receive the IRP before any other driver in
the calling hierarchy. If some other driver has attached itself to your device object,
that driver is ahead of yours in the call chain. Then, it is no longer certain that
you will ever see the IRP, since it is left completely to the discretion of each
driver whether or not it will forward the IRP to the next driver or complete the
IRP itself.

You should also note one important point: what happens if you attach to a device
object representing a physical disk partition after a file system has mounted itself
onto the device object? Well, as you can easily infer, you will not get to process
most IRPs because the I/O Manager will always send the IRP to the file system
driver first (or rather, to the highest-layered device object attached to the file
system volume device object). The FSD, in turn, will forward the IRP (for actual,
physical I/O operations) directly to the target physical/virtual device object (to
which you have attached yourself) via an invocation to loCallDriver (). Your
device object will not even be considered to receive the IRP.

NOTE Most FSD implementations store a pointer to the target physical/vir-
tual device object when they mount a logical volume on the device
object in their VCB structure. They use this device object pointer
•when invoking loCallDriver (). They do not, however, invoke
loGetAttachedDevice () on the target device object pointer be-
fore invoking loCallDriver ().

Basic Steps in Filtering_______________________________________635

Create/open requests

The I/O Manager performs the following actions to determine the target driver to
which the create/open request should be sent, before actually forwarding the
request to a target FSD or filter driver:

• For relative create/open requests, the I/O Manager determines the target
driver from the related file object specified in the create/open request.

Recall from earlier chapters that create/open requests can be specified with a
filename relative to the name contained in the (supplied) previously open
directory file object. For relative file create/open requests, the I/O Manager
obtains a pointer to the target device object by invoking the loGetRelated-
DeviceObject () function on the related file object.

• For all other create/open requests, the I/O Manager sends the request either
to the highest-layered driver attached to the device object representing the
mounted logical volume or directly to the device object representing the tar-
get physical/virtual/logical device.
A create/open request can specify either a device open (e.g., \Device\C:)
or a file/directory on a logical volume mounted on the physical/virtual/logical
device object.
When a request is received by the I/O Manager for a direct device open oper-
ation, the I/O Manager uses the target device object supplied by the Object
Manager and forwards the create/open request to the device driver managing
this device object. Note that any filter driver attached to this target device
object will not get to intercept this create/open request.
For all other create/open requests, the I/O Manager always tries to ensure
that an FSD mounts a logical volume on the target physical/virtual/logical
device. Once an FSD has claimed the device and mounted a logical volume
on the target device object, the I/O Manager uses the loGetAttachedDe-
vice () function to get a pointer to the highest-layered device object
attached to the volume device object created by the FSD. If no filter driver
has attached itself to the volume device object, the create/open request is for-
warded directly to the responsible FSD.

If your driver wishes to intercept all create/open requests that may be sent to a
particular logical volume, ensure that your filter driver creates a device object that
attaches itself to the target device object representing the mounted logical volume
before the IRP for the mount operation is completed but after the FSD has
completed mount-related processing.

The obvious way to accomplish this is to intercept mount requests issued to the
target FSD, register a completion routine to be invoked once the mount request

63 6_____________________________________Chapter 12: Filter Drivers

(IRP) has been completed, and initiate (and complete) the attach sequence from
within your completion routine before returning control to the I/O Manager.

Building IRPs
Whether you develop a file system driver or a filter driver, you will undoubtedly
find it necessary to create IRPs that your driver will subsequently use in
dispatching I/O requests. You can either decide to allocate and initialize such
IRPs yourself, or you could decide to use one of the I/O Manager-supplied utility
functions to help you in these tasks.

The following routines can prove useful when you start creating your own I/O
request packets. Note that the Windows NT DDK also provides a description of
the functions presented here.

loAllocatelrpO
The loAllocatelrp () function is used internally by the I/O Manager to allo-
cate IRPs. It is also available to third-party driver developers. This function is
defined as follows:

PIRP
loAllocatelrp(

IN CCHAR StackSize,
IN BOOLEAN ChargeQuota

) ;
Parameters:

StackSize
The I/O Manager uses the value contained in this argument to determine the
number of I/O stack locations that could possibly be used in processing this
IRP. The I/O Manager must allocate sufficient memory to contain the speci-
fied number of I/O stack locations. Your driver can use the
TargetDeviceObject->StackSize value to pass to the loAllo-
catelrp () function.

ChargeQuota
This determines whether the memory allocated for the IRP should be charged
to the quota allocated to the requesting process. Typically, filter drivers will
set this argument to FALSE (the I/O Manager generally sets it to TRUE when
invoking the function internally to forward user I/O requests to a target FSD).

Basic Steps in Filtering______________________________ ________637

Functionality Provided:

The I/O Manager will allocate an IRP either from a zone containing preallocated
IRPs* or by directly invoking ExAllocatePoolWithQuotaTag ()/ExAllo-
catePoolWithTag () . Once this function returns a success code back to your
driver, you can check the value of the Zoned field in the IRP to determine
whether or not the IRP was allocated from a zone (if you are curious enough to
do so). All IRP structures are always allocated from nonpaged pool.

For reasons of efficiency and to avoid kernel memory fragmentation, the I/O
Manager preallocates two separate zones for IRP structures that require only a
single I/O stack location and for those that require four (or fewer) I/O stack loca-
tions. If, in an invocation to loAllocatelrp (), a thread requests more than
four I/O stack locations, the I/O Manager cannot use either of the two preallo-
cated zones. In this situation, the I/O Manager requests memory via a call to the
NT Executive ExAllocatePool () function.

Of course, in high-stress situations, it is always possible that the IRP zones may be
exhausted and the I/O Manager will resort to requesting memory from the NT
Executive pool management support package.

The loAllocatelrp () function also initializes certain fields in the IRP before
returning the IRP to your driver. Note that the entire structure is zeroed by the
I/O Manager before any fields are initialized. The initialized fields include the
Type, Size, StackCount, CurrentLocation, ApcEnvironment, and
Tail .Overlay .CurrentStackLocation fields.

The I/O Manager tries to ensure that a valid IRP pointer is returned to the thread
that invokes this function. If the IRP can be allocated from a zone, the I/O
Manager tries to get a free IRP structure from the appropriate zone. If the number
of I/O stack locations requested precludes allocation from a zone (i.e., it is greater
than 4)t or if the appropriate zone is exhausted, the I/O Manager allocates the IRP
by invoking the appropriate NT Executive function (listed previously). If no
memory is available for the IRP structure and if the previous mode of the caller is
kernel mode, the I/O Manager will request memory from the NonPagedPool-
MustSucceed memory pool. Therefore, although it is possible that the
loAllocatelrp () function will return NULL if the previous mode happened to

* Beginning with Windows NT Version 4.0, the I/O Manager may decide to use lookaside lists instead of
zones. The Zoned field in the IRP has been renamed to AllocationFlags. The flag value in this field
determines whether the IRP has been allocated from a fixed-size block of memory (e.g., a zone or looka-
side list), from the nonpaged-must-succeed pool, or from the system nonpaged pool. This change, how-
ever, does not fundamentally affect the discussion presented in the chapter.
t The number of I/O stack locations associated with preallocated IRPs is subject to change. Therefore,
your driver must never depend on the fact that the I/O Manager will allocate IRPs with a certain number
of stack locations from a zone.

638_____________________________________Chapter 12: Filter Drivers

be user mode and if system memory was seriously depleted, failure to obtain
memory for an IRP when the caller executes in the context of the system process
will result in a bugcheck.

WARNING Contrary to the documentation in the Windows NT DDK, you
should not invoke the lolnitializelrp () function (described
below) for the new IRP structure obtained by calling loAllo-
catelrp().
As a matter of fact, the lolnitializelrp () function performs ex-
actly the same initialization as will have already been performed by
IoAllocateIrp() for you. Also, part of the initialization per-
formed by lolnitializelrp () involves zeroing the entire IRP
structure. This is unfortunate for those unwary developers that do
call lolnitializelrp () on IRPs obtained via loAllo-
catelrp (), since zeroing the IRP structure will erroneously clear
the Zoned flag in the IRP and will subsequently often lead to a sys-
tem crash at very unexpected times."

lolnitializelrp Q

This function is provided to support drivers that allocate IRP structures themselves
(instead of requesting an IRP from the I/O Manager) and is defined as follows:

VOID
lolnitializelrp(

IN OUT PIRP Irp,
IN USHORT PacketSize,
IN CCHAR StackSize

) ;
Parameters:

Irp
This is the IRP structure to be initialized.

PacketSize
This is the size of the IRP to be initialized. Typically, this will be the value

computed by the ZoSizeOflrpO macro supplied in the DDK.

StackSize
This is the number of I/O stack locations for which memory has been allo-
cated by your driver.

* When the I/O Manager tries to release memory allocated for the IRP, it will check the Zoned flag value
to determine whether memory should be returned back to the zone or should be released back to the
system nonpagecl pool. Even if the IRP had been allocated from a zone, the Zoned flag will have been
cleared by lolnitializelrp () , and the I/O Manager will erroneously return the memory back to
the system nonpaged pool leading to a subsequent system crash.

Basic Steps in Filtering_______________________________________639

Functionality Provided:

Typically, your driver will invoke the lolnitializelrp () after it has allocated
an IRP by directly invoking ExAllocatePool () (or from some zone/lookaside
list maintained by your driver), instead of requesting that the I/O Manager allo-
cate the IRP structure on your behalf.

The lolnitializelrp () function initializes the Type, Size, StackCount,
CurrentLocation, ApcEnvironment, and Tail.Overlay.Current-
StackLocation fields. These are exactly the same fields as those initialized by
invoking loAllocatelrp () (described previously). The IRP is zeroed before
any fields are initialized.

Note that the IRP initialization performed by both the loAllocatelrp () and
the lolnitializelrp () functions is rudimentary. Therefore, your driver is
responsible for performing all of the additional initialization for the IRP. The
actual fields that your filter driver will initialize depends heavily upon the type of
I/O request that you are issuing and the target device object (kernel-mode driver)
to which you will be issuing the request. Read Chapter 4 to understand the nature
of the various fields in the IRP. You should also review the sample filter driver
code provided in the accompanying diskette to see how some of the fields are
initialized.

loBuildAsynchronousFsdRequestQ
PIRP
loBuildAsynchronousFsdRequest(

IN ULONG MajorFunction,
IN PDEVICE_OBJECT DeviceObject,
IN OUT PVOID Buffer OPTIONAL,
IN ULONG Length OPTIONAL,
IN PLARGE_INTEGER StartingOffset OPTIONAL,
IN PIO_STATUS_BLOCK loStatusBlock OPTIONAL

Parameters:

Maj orFunction
The I/O Manager initializes the first I/O stack location with the MajorFunc-
tion code value.

DeviceObject
This is a pointer to the device object that will be the immediate target for the
I/O request. The I/O Manager obtains the number of stack locations to be
allocated from the StackSize field in the DeviceObject structure. Further-
more, for read/write I/O requests (for which the IRP is being created), the
I/O Manager determines the type of buffering required for the target driver
(DO_DIRECT_IO, DO_BUFFERED_IO, or neither of the two).

640_____________________________________Chapter 12: Filter Drivers

Buffer
Your driver can supply the buffer pointer, which is only required for requests
of type IRP_MJ_READ and IRP_MJ_WRITE. Note that for these two Major-
Function types, the Buffer argument is not optional.

Length
This is the length of any Buffer that may have been supplied.

StartingOffset
This is the starting offset for a read/write operation.

loStatusBlock
This contains the results of the operation are returned in this structure (if
supplied).

Functionality Provided:

loBuildAsynchronousFsdRequest () will create and initialize a new IRP
that can be used by your driver to issue an IRP_MJ_READ, IRP_MJ_WRITE,
IRP_MJ_SHUTDOWN, or IRP_MJ_FLUSH_BUFFERS request to another kernel-
mode driver. This function executes the following sequence of steps:

1. It allocates a new IRP using loAllocatelrp ().
2. The MajorFunction field in the first I/O stack location is initialized to the

value supplied by your driver.

3. The Userlosb field in the IRP is initialized to the value contained in the
loStatusBlock argument.
Note that upon IRP completion, the I/O Manager uses the field (pointer)
value to return the status of the I/O operation.

4. For read/write requests, the I/O Manager performs some additional initializa-
tion of the IRP.

The I/O Manager initializes the appropriate values in the first I/O stack location
for read/write requests. For write requests, the Parameters .Write.Length
and Parameters .Write.ByteOff set fields in the first I/O stack location
are initialized to the Length and StartingOf f set arguments (respectively)
supplied by your driver, and for read requests, the Parame-
ters .Read. Length and Parameters .Read. ByteOff set fields are
initialized.

If the Flags field in the DeviceObject structure for the target device
object specifies DO_BUFFERED_IO, the I/O Manager allocates a system
buffer (of the supplied Length) and initializes the AssociatedIrp->
SystemBuffer field to refer to the newly allocated buffer. This buffer will
be automatically deallocated by the I/O Manager when the IRP has been

Basic Steps in Filtering_______________________________________641

completed (and any data obtained has been copied into the supplied Buffer
for IRP_MJ_READ I/O requests). Furthermore, the I/O Manager will copy
data from the supplied Buffer to the allocated system buffer for IRP_MJ_
WRITE requests before returning the newly allocated IRP to your driver.

If the Flags field in the target DeviceObject structure specifies D0_
DIRECT_IO instead, the I/O Manager allocates an MDL describing the
supplied Buffer. The I/O Manager also probes and locks the pages for the
MDL (for write access in the case of IRP_MJ_READ requests and for read
access otherwise). The MdlAddress field in the IRP is initialized to point to
this allocated MDL. You should note that the I/O Manager always frees all
MDLs associated with an IRP as part of the postprocessing performed in the
loCompleteRequest () function.

If neither direct I/O nor buffered I/O has been specified, the I/O Manager
will simply set the UserBuffer field in the IRP to point to the supplied
buffer.

5. The I/O Manager will initialize the Tail .Overlay.Thread field with the
value obtained from KeGetCurrentThread () .

This is required for subsequent, asynchronous processing of media-verify
requests that may be initiated by lower-level disk drivers (in the case of
removable media), or for reporting a hard error to the user.

It is important that your driver be aware of those fields in the IRP that the
loBuildAsynchronousFsdRequest () function does not initialize. The I/O
Manager expects that your driver will initialize the following fields (if appropriate):

RequestorMode
Your driver should typically set this value to KernelMode if you are
executing in the context of a system worker thread. Otherwise, your driver
can use the ExGetPreviousMode () function to determine the value to be
set in this field.

Tail.Overlay.OriginalFileObject
Set this field to point to the file object structure associated with the I/O
request. You will need to do this for all requests except the IRP_MJ_SHUT-
DOWN IRP.

FileObject
Set the field to point to the same value as Tail .Overlay .Original-
FileObject.

Your driver can invoke the loBuildAsynchronousFsdRequest () routine at
a high IRQL (e.g., IRQL DISPATCH_LEVEL). Furthermore, your driver will set a
completion routine to be invoked when the IRP completes, allowing you to

642 Chapter 12: Filter Drivers

trigger any postprocessing that may be required. You can also free the IRP using
the loFreelrp () function after you have completed postprocessing for the
request.

WARNING Remember to set a completion routine that will free the IRP allocat-
ed via a call to loBuildAsynchronousFsdRequest () . Failure
to do so will result in the I/O Manager performing normal comple-
tion-related postprocessing on the IRP (see Chapter 4 for details on
the postprocessing performed by the I/O Manager). This will lead to
unexpected system crashes, since the IRP is not typically set up cor-
rectly for such postprocessing.

loBuildSynchronousFsdRequestQ
PIRP
loBuildSynchronousFsdRequest(

IN ULONG
IN PDEVICE_OBJECT
IN OUT PVOID
IN ULONG
IN PLARGE_INTEGER
IN PREVENT
OUT PIO STATUS BLOCK

MajorFunction,
DeviceObject,
Buffer OPTIONAL,
Length OPTIONAL,
StartingOffset OPTIONAL,
Event,
loStatusBlock

Parameters:

As you can observe in the preceding function definition, this routine takes virtually
the same arguments as those expected by the loBuildAsynchronousFsd-
Request (). The only caveats that you must be aware of are as follows:

• The loStatusBlock argument is no longer optional.

The I/O Manager expects to complete any IRP allocated using loBuildSyn-
chronousFsdRecruest () . Therefore, you should provide a valid pointer to
an IO_STATUS_BLOCK structure when invoking this function. The results of
the I/O operation will be returned to you in this structure.

• Your driver must provide a pointer to an initialized Event object.

Note that by definition, the IRP created by the I/O Manager is expected to be
used for a synchronous call to a some kernel-mode driver. Therefore, the I/O
Manager expects that the caller (your driver) will wish to wait for completion
of the IRP. When the IRP is completed, the I/O Manager will signal the event
object supplied by your driver. Remember to initialize the event object before
invoking the loBuildSynchronousFsdRequest () function (and to set
the event object to the not-signaled state).

Basic Steps in Filtering_______________________________________643

Your driver may choose not to wait for the completion of the request. How-
ever, you must have some means of deallocating the event structure (and the
I/O status block) in this case.

Functionality Provided:

loBuildSynchronousFsdRequest () will create and initialize a new IRP that
can be used by your driver to issue a synchronous I/O request to another kernel-
mode driver. Internally, this routine invokes loBuildAsynchronousFsd-
Request () to do most of the work of allocating and initializing the IRP structure.

After obtaining an IRP structure from the call to IcBuildAsynchronousFsd-
Request (), this function initializes the UserEvent field in the IRP with the
supplied Event pointer value. Finally, the loBuildSynchronousFsd-
Request () function inserts the allocated IRP into the list of pending IRPs for the
current thread using the ThreadListEntry field in the IRP. The IRP is automati-
cally dequeued by the I/O Manager from the list of pending IRPs as part of the
postprocessing performed on the IRP during loCompleteRequest () .*

Your driver can associate a completion routine for synchronous I/O requests
created using the loBuildSynchronousFsdRequest () function. However,
you must be careful if you wish to prevent the I/O Manager from completing the
IRP by returning STATUS_MORE_PROCESSING_REQUIRED from your comple-
tion routine. This is because the IRP is inserted into the list of pending IRPs for
the thread that invoked loBuildSynchronousFsdRequest () and failure to
remove the IRP from this list could cause a system crash at some later time.

TIP If you need to ensure that the IRP is safely removed from the list of
pending IRPs associated with a thread, you should execute the fol-
lowing steps:
— Ensure that you perform the next step in the context of the thread identi-

fied by the Tail .Overlay .Thread field in the IRP. You can do this
by issuing a kernel-mode APC to the target thread (if required).

— At IRQL APC_LEVEL or higher, invoke the RemoveEntryList ()
macro on the Irp->ThreadListEntry field.

loBuildDeviceloControlRequestQ

This function is defined as follows (consult the DDK also for information on this
function).

* Actually, the dequeue operation takes place in the context of the thread that requested the I/O opera-
tion (when performing final postprocessing as part of the APC executed in the context of the requesting
thread). Chapter 4 describes the postprocessing performed by the I/O Manager in greater detail.

644_____________________________________Chapter 12: Filter Drivers

PIRP
loBuildDeviceloControlRequest(

IN ULONG loControlCode,
IN PDEVICE_OBJECT DeviceObject,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength,
IN BOOLEAN InternalDeviceloControl,
IN PREVENT Event,
OUT PIO_STATUS_BLOCK loStatusBlock

) ;

Parameters:

loControlCode
This is the IOCTL code value that will be placed in the Parameters .Devi-
celoControl. loControlCode field is the first I/O stack location of the
newly allocated IRP. The I/O Manager also uses this code to determine the
manner in which data should be transferred between the calling module
(your driver) and the target for the request.

DeviceObject
This is a pointer to the target device object for the request.

InputBuffer
This is used by your driver to send data to the target driver. Supplying an
input buffer is optional, unless the InputBufferLength contains a
nonzero value.

InputBufferLength
This is the length of any InputBuffer supplied by you.

OutputBuffer
Your driver can supply such a buffer to receive data from the target driver.
You can also use this buffer to send information to the target driver if the
method of data transfer is METHOD_IN_DIRECT or METHOD_OUT_DIRECT.*
You must supply a valid buffer pointer if OutputBufferLength contains a
nonzero value.

OutputBufferLength
If this field contains a nonzero value, you must supply a valid Output-
Buffer pointer. This field contains the length of the supplied
OutputBuffer (if any).

* The contents of this buffer (used to send data to the target driver) will naturally be overwritten if the
target driver returns information back to you.

Basic Steps in Filtering_______________________________________645

InternalDeviceloControl
If set to TRUE, the MajorFunction code value in the first I/O stack location
is set to IRP_MJ_INTERNAL_DEVICE_CONTROL, otherwise it is set to IRP_
MJ_DEVICE_CONTROL.

Event
IOCTL requests are considered inherently synchronous; therefore, the I/O
Manager expects you to supply a valid, initialized event object pointer. This
event will be signaled by the I/O Manager when the IRP is completed.

loStatusBlock
Upon IRP completion, the I/O Manager will return the results of the operation
in this argument, supplied by your driver.

Functionality Provided:

The loBuildDeviceloControlRequest () function allocates and initializes
an IRP that can subsequently be used to issue an IOCTL to another kernel-mode
driver. Internally, this function uses the services of loAllocatelrp () to allo-
cate a new IRP structure. This function initializes the following fields in the
allocated IRP (in addition to those initialized by loAllocatelrp ()) :

UserEvent
This field is initialized to the pointer value supplied in the Event argument.
The I/O Manager will set this event to the signaled state upon completion of
the I/O request packet.

Userlosb
This field is initialized to the passed-in loStatusBlock value.

Parameters.DeviceloControl.OutputBufferLength
This field is initialized to the value supplied in the OutputBufferLength
argument.

Parameters.DeviceloControl.InputBufferLength
This field is initialized to the value supplied in the InputBuf ferLength
argument.

Parameters.DeviceloControl.loControlCode
This field is initialized to the passed-in loControlCode value.

646_____________________________________Chapter 12: Filter Drivers

Furthermore, the loBuildDeviceloControlRequest () function also deter-
mines the method of data transfer, based upon the loControlCode value:*

• If the loControlCode indicates that the data transfer method is 0 (METHOD_
NEITHER), the I/O Manager allocates a system buffer if either Input-
Buf ferLength or OutputBuf ferLength are nonzero.

The system buffer allocated has a length that is the greater of the Input-
BufferLength and OutputBufferlength values. The loBuildDevice-
loControlRecruest () function initializes the Associated-
Irp. SystemBuf f er field in the IRP to point to the allocated system buffer.

If InputBufferLength is nonzero, the loBuildDeviceloControlRe-
quest () function will copy the contents of the InputBuf fer into the allo-
cated system buffer. If the OutputBuf ferLength is nonzero, the I/O
Manager will set the IRP_INPUT_OPERATION flag in the IRP, indicating that
the loCompleteRequest () function must copy the contents of the allo-
cated system buffer into the caller supplied output buffer.

Note that the I/O Manager keeps track of the caller-supplied output buffer by
setting the UserBuffer field in the IRP to point to the OutputBuf fer. t
The system buffer allocated by the I/O Manager is automatically deallocated
upon IRP completion.

• If the loControlCode indicates METHOD_IN_DIRECT (value = 1) or
METHOD_OUT_DIRECT (value = 2), the I/O Manager allocates a system buffer
for the InputBuffer and/or creates an MDL to describe the Output-
Buffer.

If the InputBuffer pointer is nonnull, the loBuildDeviceloControl-
Request () function allocates a system buffer of length InputBuf fer-
Length. The Associatedlrp. SystemBuf fer field in the IRP is set to
point to this allocated buffer. The I/O Manager copies the contents of the
caller-supplied InputBuffer into the allocated system buffer. Note that the
system buffer will be automatically deallocated upon IRP completion.

If the OutputBuf fer pointer is nonnull, the loBuildDeviceloControl-
Request () function will create an MDL to describe the supplied Output-

* Recall from Chapter 11, Writing a File System Driver III, that the IOCTL code value determines the meth-
od used in data transfer. The possible methods are METHOD_BUFFERED, METHOD_IN_DIRECT,
METHOD_OUT_DIRECT, or METHOD_NEITHER. The two least-significant bits in the IOCTL code deter-
mine the data transfer method.
t The target driver must not use this buffer pointer directly unless it is completely sure that it has been
invoked in the context of the original user thread. Trying to access this buffer in the context of any cither
thread will lead to system memory/data corruption and also probably a system crash. Moreover, there is
no real reason to use the pointer, since the target driver can access the caller-supplied output buffer di-
rectly via the I/O-Manager-provided MDL.

Basic Steps in Filtering_______________________________________647

Buffer. Furthermore, the I/O Manager will lock the pages described by the
MDL. The MDL will be automatically destroyed by the I/O Manager (and
pages unlocked) upon IRP completion.

• If the loControlCode indicates METHOD_NEITHER (value = 3), the I/O
Manager will initialize the IRP with the caller-supplied buffer pointer values.

The Parameters .DeviceloControl .TypeS InputBuffer field is set to
the pointer value supplied in the OutputBuffer argument. The User-
Buffer field is set to the InputBuffer value.

loMakeAssociatedlrpQ

Filter drivers and file system drivers can use this function to create one or more
associated IRPs for a given master IRP. An associated IRP is just like any other
IRP, except for the fact that it is logically associated with a single master IRP. An
associated IRP can be easily identified by checking for the presence of the IRP_
ASSOCIATED_IRP flag in the IRP.

A master IRP can potentially have several IRPs associated with it, but each associ-
ated IRP must be uniquely associated with a single master IRP (that is, there exists
a one-to-many relationship between a master IRP and its associated IRPs). Associ-
ated IRPs cannot become master IRPs themselves, so an associated IRP cannot
have other IRPs associated with it. The number of associated IRPs outstanding for
a given master IRP can be ascertained by checking the IrpCount field in the
master IRP structure.

The loMakeAssociatedlrp () function is defined as follows:

PIRP
loMakeAssociatedlrp(

IN PIRP Irp,
IN CCHAR StackSize

) ;

Parameters:

Irp
This is a pointer to the master IRP for this associated IRP (to be created).

StackSize
This is the number of stack locations to be allocated for the associated IRP.

Functionality Provided:

The loMakeAssociatedlrp () function returns a newly allocated associated
IRP to your driver. The following steps are executed by the I/O Manager when
you invoke this function.

Chapter 12: Filter Drivers

1. The I/O Manager allocates an IRP either from a zone/lookaside list or by
requesting nonpaged memory from the NT Executive pool management
package.

2. This IRP is initialized in exactly the same manner as described for
lolnitializelrp () .

3. The I/O Manager sets the IRP_ASSOCIATED_IRP flag value in the newly
created IRP.

4. The Associatedlrp.Masterlrp field is initialized to the Irp argument
supplied by your driver.

5. The Tail .Overlay .Thread field is initialized to the Irp->
Tail .Over lay. Thread field value (obtained from the master IRP structure).

If, however, the I/O Manager fails to obtain memory for an IRP structure, it will
return NULL to your driver.

Uses of associated IRP structures

Imagine that you have designed an FSD that breaks up a rather large I/O request
into fixed-sized pieces and issues the I/O requests in parallel to underlying disk
device drivers. You could then decide to simply create multiple associated IRP
structures, each describing a subset of the total I/O request, and then dispatch
them concurrently (for asynchronous I/O) to the underlying device drivers.

Another use for these structures could be an intermediate driver that provides
disk-striping functionality below the FSD. Now, whenever you receive an I/O
request from an FSD to a striped device, you will need to break up this request
into little stripes, and you would probably like to issue each of these I/O requests
concurrently (since typically, each request will be issued to a different physical
disk). Associated IRP structures are a natural choice at this time.

Note that you do not have to create associated IRP structures only when
executing multiple I/O requests concurrently. You could just as well create associ-
ated IRPs that are used in sequential processing. However, associated IRPs lend
themselves well to issuing multiple I/O requests in parallel to satisfy a specific
user request.

Restrictions on the use of associated IRP structures

If you examine the IRP structure defined in the DDK/IPS kit closely, you will
notice that information about associated IRPs is maintained in the following
structure:

union {
struct _IRP *MasterIrp;
LONG IrpCount;

Basic Steps in Filtering_______________________________________649

PVOID SystemBuffer;
} Associatedlrp;

For the master IRP, the count of associated IRPs is maintained in the IrpCount
field. For an associated IRP, a pointer leading back to the master IRP is main-
tained in the Masterlrp field. If neither of these fields are used, the
SystemBuf fer field can potentially contain a pointer to any system buffer allo-
cated by the I/O Manager for buffered I/O requests.

From the structure definition, certain restrictions can immediately be ascertained:

• If your driver supports buffered I/O and receives a system buffer allocated by
the I/O Manager, you will lose the pointer to this buffer in trying to maintain
the associated IRP count in your master IRP.

• An associated IRP cannot be dispatched to a driver that expects to receive
buffered I/O requests.

• An associated IRP cannot become a master IRP.

If you develop a filter/intermediate driver that resides below an FSD, it is
quite possible that the FSD will create an associated IRP and dispatch it to
your driver. If your code tries to create an associated IRP itself (for the IRP
received by you), you will run into all sorts of problems.

Completion of associated IRPs

The I/O Manager invokes completion routines for each of the stack locations
contained in the associated IRP structure. However, once the completion routines
have been invoked (and assuming that none of the completion routines returns
STATUS_MORE_PROCESSING_REQUIRED), the loCompleteRequest () func-
tion performs the following steps for an associated IRP structure:

• The I/O Manager obtains a pointer to the master IRP for the associated IRP
being completed.

• The Associatedlrp.Count field in the master IRP is decremented by 1.

• The memory for the associated IRP structure is freed and so are any MDLs
referred to by the associated IRP.

• If the Associatedlrp.Count field in the master IRP is equal to 0, the I/O
Manager internally invokes loCompleteRequest () on the master IRP.

As is obvious from this list, many of the steps that would normally be performed
when completing a regular IRP structure are skipped by the I/O Manager when
processing the completion for an associated IRP.

650 ___ ____ _____________________Chapter 12: Filter Drivers

NOTE As described earlier, associated IRP structures cannot be used in con-
junction with buffered I/O data transfers. Therefore, the I/O Manag-
er does not have to worry about copying over any data from a
system buffer to a driver/user-supplied buffer. Associated IRPs are
typically only used with the direct I/O method of data transfer, in
which case an MDL describing the user buffer would probably have
been utilized for the data transfer operation (if any).

There are two things your driver can do to prevent this automatic completion of
the master IRP by the I/O Manager (in case you wish to control when the master
IRP is actually freed):

• Your driver can specify a completion routine for the associated IRP.

Your driver should return STATUS_MORE_PROCESSING_REQUIRED from
this completion routine, which will cause the I/O Manager to immediately ter-
minate further processing of the associated IRP. This will prevent manipula-
tion of the associated IRP count by the I/O Manager and thereby also prevent
completion of the master IRP. Completion routines are described in greater
detail in the next section.

• Your driver can increase the Associatedlrp.Count field in the master IRP
before dispatching the associated IRP to a lower-level driver.

Although this may sound repugnant (and like bad software engineering), it
does work. Your driver can simply increase the Associatedlrp.Count
field in the master IRP by 1 before dispatching any associated IRPs that may
have been created. This will result in the count not being equal to 0, even
after IRP-completion processing of all associated IRPs has been performed by
the I/O Manager. Since the count does not equal 0, the I/O Manager will not
complete the master IRP.

Completion Routines
The I/O Manager allows kernel-mode drivers to register completion routines asso-
ciated with I/O stack locations in an IRP. This allows the kernel-mode driver the
opportunity to perform any required postprocessing on the IRP after loComple-
teRecjuest () has been invoked either by the driver itself or by some other
kernel-mode driver.*

* Completion routines are used by many types of kernel-mode drivers, including file system drivers, filter
drivers, and other intermediate drivers.

Basic Steps in Filtering 651

There can be multiple completion routines associated with each IRP, because
completion routines are associated with stack locations in the IRP (and most IRPs
have multiple stack locations). However, only one kernel-mode driver can
process any particular stack location and therefore, only one completion routine
can be associated with each such stack location.

The I/O Manager invokes completion routines in sequence in the loComple-
teRequest () function, starting with invoking the completion routine associated
with the last stack location to be processed (before loCompleteRequest ()
was invoked) and proceeding in reverse sequence until the completion routine
associated with the first I/O stack location in the IRP has been invoked. This
allows for a natural unraveling of I/O stack locations with the last-in-first-out
order being preserved.

Figure 12-4 illustrates the sequence in which completion routines are invoked for
an IRP with four stack locations.

Figure 12-4. I/O manager sequence for invoking completion routines

Specifying a completion routine for IRPs

Your driver should use the loSetCompletionRoutine () macro, which is
made available by the NT I/O Manager. Currently, this macro is defined as follows:

#define loSetCompletionRoutine(Irp, Routine, CompletionContext,
Success, Error, Cancel)

(Cancel) ? (Routine) != NULL : TRUE);
PIO_STACK_LOCATION irpSp;
ASSERT((Success) | (Error)
irpSp = IoGetNextIrpStackLocation((Irp));
irpSp->CompletionRoutine = (Routine);
irpSp->Context = (CompletionContext);
irpSp->Control = 0;
if ((Success)) { irpSp->Control = SL_INVOKE_ON_SUCCESS; }

652__Chapter 12: Filter Drivers

if ((E r r o r)) { irpSp->Control |= SL_INVOKE_ON_ERROR;} \
if ((C a n c e l)) { irpSp->Control |= SL_INVOKE_ON_CANCEL; } }

Parameters:

Irp
This is a pointer to the IRP structure.

CompletionRoutine
This is a pointer to the completion routine, supplied by your driver, of type
PIO_COMPLETION_ROUTINE. This completion function must be defined as
follows:
typedef
NTSTATUS (*PIO_COMPLETION_ROUTINE) (

IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID Context

);
CompletionContext

This is an opaque pointer value that is passed to the completion routine by
the I/O Manager.

InvokeOnSuccess
If set to TRUE and if the returned status code to loCompleteRecruest () is
STATUS_SUCCESS, the completion routine will be invoked.

InvokeOnError
If set to TRUE and if the returned status code to loCompleteRequest ()
does not evaluate to a success value, the completion routine will be invoked.

InvokeOnCancel
If set to TRUE and the IRP has been canceled (i.e., Irp->Cancel is TRUE),
the completion routine will be invoked.

Typically, your driver will request that the completion routine be invoked regard-
less of why the loCompleteRecruest () function was called. Therefore, you
should set InvokeOnSuccess, InvokeOnError, and InvokeOnCancel to
TRUE.

Notice that the completion routine information is placed in the next I/O stack loca-
tion. This is logical, since that is the I/O stack location to be initialized for the
next driver in the calling hierarchy.

Many kernel-mode drivers (especially filter drivers) execute the following steps:

• Allocate a new IRP structure using any one of the I/O Manager-supplied func-
tions described earlier in this chapter.

Basic Steps in Filtering_______________________________________653

• Initialize the first I/O stack location (obtained by using the loGetNextlrp-
StackLocation() function) with appropriate values and set a completion
routine using the loSetCompletionRoutine () function.

The problem with this approach is that when the filter driver completion routine
does get invoked, you will find that the device object pointer supplied to your
completion routine is NULL. The reason for this will become obvious as you read
the following discussion on how the I/O Manager invokes completion routines.
Basically, the problem is that your driver neglected to create a stack location for
itself in the newly allocated IRP structure, and hence the I/O Manager has no way
of determining the device object pointer it should pass on to your completion
routine.

To avoid this potential problem (especially if your driver plans to use the passed-
in device object pointer in the completion routine), ensure that your driver always
creates and initializes a stack location for itself. To do this, you must execute the
following steps after obtaining a new IRP structure:

• Use loSetCurrentStackLocation () to set the IRP pointers to the first
stack location in the IRP.

• Initialize the first stack location (use IoGetCurrentStackLocation() to
obtain a pointer to this stack location) with appropriate values. Note that the I/O
Manager will update this stack location with a pointer to your device object when
you invoke loCallDriver ().

• Use loGetNextlrpStackLocation () to get a pointer to the next stack
location (to be used by the driver you will invoke with the newly allocated IRP).

• Initialize the next IRP stack location with appropriate values and use loSet-
CompletionRoutine () to set your completion routine for the next I/O
stack location.

Invoking completion routines

Completion routines are invoked by the loCompleteRequest () function,
implemented by the I/O Manager. The loCompleteRequest () function, in
turn, is invoked by the kernel-mode driver that will complete processing for the
current IRP. The following pseudocode extract illustrates how the I/O Manager
invokes completion routines associated with the IRP being completed.

while (PtrIrp->CurrentLocation < (PtrIrp->StackCount + 1)) {
currentStackLocation = loGetCurrentlrpStackLocation(Ptrlrp);

// Prepare to process beginning at the next I/O stack location.
/ / If any completion routine returns

654_____________________________________Chapter 12: Filter Drivers

II STATUS_MORE_PROCESSING_REQUIRED and later reissues the
// loCompleteRequest() call, the I/O Manager will begin processing
// at the next stack location (which is the correct thing to do).
(PtrIrp->Tail.Overlay.CurrentStackLocation)++;
(PtrIrp->CurrentLocation)++;

if (PtrIrp->CurrentLocation == (PtrIrp->StackCount + 1)) {
// Some driver has set up a completion routine for the
// last valid I/O stack location itself (probably using an
// associated IRP).
PtrDeviceObject = NULL;

} else {
// Device Object of the driver that set the completion routine.
// Notice that PtrIrp->Tail.Overlay.CurrentStackLocation was
// incremented before we use IoGetCurrentIrpStackLocation()
// here.
PtrDeviceObject =

loGetCurrentlrpStackLocation(Ptrlrp)->DeviceObject;
}
PtrContext = currentStackLocation->Context;

if ((NT_SUCCESS(PtrIrp->IoStatus.Status) &&
currentStackLocation->Control & SL_INVOKE_ON_SUCCESS)
I I

(!NT_SUCCESS(PtrIrp->IoStatus.Status) &&
currentStackLocation->Control & SL_INVOKE_ON_FAILURE)
I I

(PtrIrp->Cancel && currentStackLocation->Control
& SL_INVOKE_ON_CANCEL)) {

// Invoke the completion routine.
RC = currentStackLocation->

CompletionRoutine(PtrDeviceObject,PtrIrp, PtrContext) ,-
if (RC == STATUS_MORE_PROCESSING_REQUIRED) {

return;

} // end of while more stack locations to process.

Notice that the flag values in the Control field for the current stack location,
when combined with state information about why the IRP was completed and the
status code saved in the IRP, determine whether or not the I/O Manager will
invoke a completion routine for that particular stack location. Also note that the
I/O Manager simply starts processing the IRP beginning at the current stack loca-
tion (i.e., the stack location for the driver that invoked loCompleteRequest ())
and continues on until all stack locations have been processed.

Basic Steps in Filtering ______ _____ ___ 655

WARNING The I/O Manager is meticulous about supplying the correct device
object pointer to the driver that sets a completion routine. If your
driver (that must have some device object created to even receive
the IRP in the first place) sets a completion routine, then your com-
pletion routine will be invoked with a pointer to your own device
object. It is possible, however, for your driver to create a new IRP
and immediately set a completion routine in the first I/O stack loca-
tion (to set up for the next driver in the calling hierarchy). In this
case, your completion routine will be invoked with the device ob-
ject pointer set to NULL (since there was no stack location set up for
your driver, there is no device object pointer that the I/O Manager
can supply to you).

Finally, you may have noticed something strange about the preceding
pseudocode fragment. If the completion routine invoked returns a special status
code (STATUS_MORE_PROCESSING_REQUIRED), the I/O Manager simply stops
postprocessing for the particular IRP and returns control immediately to the caller.
This should give you some ideas on how IRPs can be reused by a higher-level
driver even after they have been completed by a lower-level kernel-mode driver.
This issue is discussed in greater detail later in this chapter.

Be careful about a particular bug that manifests itself when your filter driver speci-
fies a completion routine in an IRP and then forwards the IRP to the next driver
in the calling hierarchy. The following code fragment illustrates a methodology
used sometimes by higher-level Windows NT drivers that can result in incorrect
execution:

PtrCurrentloStackLocation = loGetCurrentlrpStackLocation(Ptrlrp);
PtrNextloStackLocation = loGetNextlrpStackLocation(Ptrlrp);
// The following code can cause problems for the driver above
// in the calling hierarchy!!!
*PtrNextIoStackLocation = *PtrCurrentIoStackLocation;
RC = loCallDriver(...);

If you examine this code fragment carefully, you will notice that the driver
executing this code has literally copied the entire contents of the current I/O stack
location into the stack location passed on to the next driver in the calling hier-
archy. The copied data includes information contained in the Control field (the
SL_INVOKE_XXX flag values), as well as the function pointer and context
contained in the CompletionRoutine and Context fields respectively.

The net result is that the completion routine associated with the current I/O stack
location is now also associated with the next I/O stack location and will therefore

656_____________________________________Chapter 12: Filter Drivers

be invoked twice for the same IRP. Both NTFS and FASTFAT implementations in
Windows NT (up until Version 4.0 SP2) contain this bug.*

To protect yourself against such badly behaved drivers, execute the following
code sequence in your completion routine:

NTSTATUS SFilterSampleCompletionRoutine (
PDEVICE_OBJECT PtrSentDeviceObj ect;
PIRP Ptrlrp;
PVOID SFilterContext)
{

// Some declarations above.
PDEVICE_OBJECT SFilterDeviceObject = NULL;

// The following line must exist in all completion routines. Read
// Chapter 4 for more information.
if (PtrIrp->PendingReturned) {

IoMarkIrpPending(Ptrlrp) ;

//To protect myself from bugs in other drivers ... ! ! !
// Ensure that you have some way to get a pointer to your device
// object.
SFilterDeviceObject = . . . ; // assume that we get the value from

// the context.
if (PtrSentDeviceObject != SFilterDeviceObject) {

// We were called erroneously. Return control back to the I/O
/ / Manager .
return;

// Other processing goes here.

Some points to consider regarding completion routines

Completion routines are directly invoked in the context of the thread that calls
loCompleteReguest () . Since your driver cannot be sure about the thread
execution context in which the completion routine is invoked, it must be espe-
cially careful with regard to the memory accessed by the driver or other resources
(e.g., pointers, object handles) that may be accessed. Ensure that the processing
performed by the completion routine can be executed in any arbitrary thread
context.

Also note that completion routines are often invoked at a high IRQL. It is not
unusual to have your completion routine invoked at IRQL DISPATCH_LEVEL.

* It appears as though this behavior is exhibited only in the dispatch routine for IRP_MJ_DEVICE_CON-
TROL as implemented by FASTFAT and NTFS.

Basic Steps in Filtering_______________________________________657

Therefore, your completion routine code cannot be made pageable, nor can it
access paged memory.

Although you may sometimes be able to get away with invoking loCall-
Driver () from within your completion routine, many kernel-mode driver
dispatch entry points are not equipped to handle being invoked at a high IRQL.
Therefore, try to avoid invoking driver dispatch entry points directly from your
completion routine. You could, instead, initiate such processing asynchronously
using a worker thread.

WARNING In Chapter 4, we saw how your driver must always propagate the
pending returned information from your completion routine. Failure
to do this will result in unexpected system behavior, including sys-
tem hangs and crashes. Review the information provided in Chapter
4 to ensure that your completion routine does behave correctly
about propagating such information.

Using completion routines

Filter drivers often use completion routines to perform postprocessing of data
returned by the target driver. For example, an encryption module that you may
develop could decrypt data on-the-fly in a completion routine after the
compressed data has been retrieved by the file system from secondary storage.

There are less esoteric things, as well, that are done using completion routines.
For example, an intermediate driver or a file system driver could break up a rela-
tively large I/O request into more manageable pieces and issue multiple I/O
requests to lower-level disk drivers. The data returned from the disk drivers can
then be collated in a completion routine associated with each IRP sent to the
lower-level drivers.

Sometimes FSDs, filter drivers, or fault-tolerant drivers will use completion
routines to determine whether a specific I/O request must be reissued to the
lower-level driver, in case the I/O failed. This type of retry operation might make
sense under certain circumstances.

Subject to the restrictions discussed previously, the kind of processing that you
can perform in your completion routine is only limited by your imagination.

About this STATUS_MORE_PROCESSINGJREQUIRED business ...

As you must have observed from the pseudocode fragment presented earlier,
when IRP completion postprocessing is being performed by the I/O Manager, the

658_____________________________________Chapter 12: Filter Drivers

postprocessing is abruptly terminated if any completion routine invoked returns a
special return status of type STATUS_MORE_PROCESSING_REQUIRED.

This is a method provided by the I/O Manager to allow any kernel-mode driver in
the calling hierarchy to interrupt the IRP completion. It is possible for the same
IRP to be completed, via loCompleteRecjuest () , once again at some later
time, and the I/O Manager will begin processing (once again) starting at the
current I/O stack location.

By returning STATUS_MORE_PROCESSING_REQUIRED, your kernel-mode driver
essentially informs the I/O Manager that it needs to hold on to and use the IRP
for some additional time. Managing the IRP from that point onward is the respon-
sibility of your driver. This is no different from how your driver would manage an
IRP received in a dispatch routine for the very first time. The only point to note is
that the kind of processing you can perform directly in your completion routine is
limited, since the completion routine is invoked in the context of an arbitrary
thread (possibly) at a high IRQL. However, you can certainly dispatch the same
IRP to some worker thread for further asynchronous processing.

You should note that the only action performed by the I/O Manager, before it
stops the postprocessing of the IRP, is to invoke any completion routines for stack
locations lower in the calling hierarchy. Therefore, the IRP state is completely
maintained when your completion routine gains control of the IRP. The reason
that the I/O Manager terminates processing of the IRP so completely once your
driver returns STATUS_MORE_PROCESSING_REQUIRED is because the I/O
Manager has no idea what your driver intends to do to the IRP (or has already
done to the IRP). Your driver may have just freed the memory allocated for the
IRP (by invoking loFreelrp ()) before returning STATUS_MORE_PROCESSING_
REQUIRED to the I/O Manager and hence any attempt by the I/O Manager to
even read any field in the IRP structure could lead to a system crash.

Synchronous I/O requests and STATUS_MORE_PROCESSING_REQUIRED

There is one potential problem that you must understand if you expect to return
STATUS_MORE_PROCESSING_REQUIRED from a completion routine provided
by your driver. Recall from Chapter 4 that the NT I/O Manager tries to optimize
processing of user I/O requests that are considered inherently synchronous. In the
case of these types of I/O requests, the I/O Manager always blocks the invoking
thread until the request has been completed via loCompleteRequest () .
Because of this, the I/O Manager avoids issuing an APC to perform the final post-
processing in the context of the thread issuing the I/O request. Instead, the
loCompleteRequest () code simply returns control to the caller (after
performing some basic postprocessing), and the invoking thread that is blocked,

Basic Steps in Filtering_______________________________________659

awaiting completion of the request, performs the final postprocessing by invoking
lopCompleteRequest () directly.

For inherently synchronous I/O requests, the I/O Manager code that initially
creates an IRP and forwards it onward to the first kernel-mode driver (typically, a
filter driver that intercepts FSD requests or the FSD itself) executes the following
code sequence:

// Invoke the first driver in the calling hierarchy to process the IRP.
RC = loCallDriver(...);
if (RC == STATUS_PENDING) {

// Wait until the request is completed. The loCompleteRequest()
// code will now be forced to use a kernel-mode APC to complete
// the request.
KeWaitForSingleObject(...);

} else {
// This request completed synchronously. Therefore, I can safely
// assume that the IRP is no longer required. Furthermore, the
// loCompleteRequest() has not issued an APC to perform the final
// postprocessing. Therefore, let me perform such postprocessing
// by invoking the appropriate (internal) routine directly.
lopCompleteRequest(...);
// Note that the call to lopCompleteRequest() above will result in
// memory for the IRP being freed.
}

Sometimes, filter drivers that layer themselves above an FSD write code as follows:

NTSTATUS SFilterBadFSDInterceptRoutine(
...)
{

// Assume appropriate declarations, etc.

// The filter driver sets a completion routine called
// SFilterCompletionf) .
loSetCompletionRoutine (Ptrlrp, SFilterCompletion,

SFilterCompletionContext ,
TRUE, TRUE, TRUE) ;

// Now, simply dispatch the call and return whatever the FSD returns.
// The problem with this (described below) is that the FSD may not
II return STATUS_PENDING . This may cause us headaches later.
return (loCallDriver (...));

NTSTATUS SFilterCompletion(
...)
{

// Assume appropriate declarations, etc.

660_____________________________________Chapter 12: Filter Drivers

// Hardcoded return of STATUS__MORE_PROCESSING_REQUIRED.
return(STATUS_MORE_PROCESSING_REQUIRED);

}

Consider the following situation. The FSD synchronously processes the IRP and
returns an appropriate status, either STATUS_SUCCESS or an error (except
STATUS_PENDING because, from the FSD's perspective, IRP processing has
been completed synchronously). Your filter driver passes the returned status code
to the I/O Manager, believing that the completion routine will be able to intercept
IRP postprocessing by returning STATUS_MORE_PROCESSING_REQUIRED.

Unfortunately, although your filter driver believes that it has stopped IRP comple-
tion postprocessing by returning STATUS_MORE_PROCESSING_REQUIRED from
the completion routine, the previous I/O Manager code fragment will not care
about the abrupt stoppage of the IRP completion and will invoke lopComple-
teRequest () directly, which, in turn, will free the memory for the IRP. This will
lead to a system crash (or corruption) when your filter driver continues
processing the IRP.

To avoid this problem, you may consider the following guiding principles:*

• If you complete an IRP in your driver synchronously, do not invoke loMark-
IrpPendingO and do not return STATUS_PENDING from your dispatch
routine.

• If you pass the IRP to a lower layer, protect yourself from the preceding prob-
lem by always marking the IRP pending and always returning STATUS_
PENDING.

The other way of protecting yourself is to ensure that if you inadvertently for-
warded to the I/O Manager a return code of STATUS_PENDING, you cannot
return STATUS_MORE_PROCESSING_REQUIRED from your completion rou-
tine (unless you are really sure that this is not an inherently synchronous I/O
operation from the I/O Manager's perspective). The next rule formalizes this
behavior.

• If you ever return STATUS_PENDING (regardless of whether it is because
you decide to return this status code yourself or because some lower-level
driver does so and you simply pass-on the return code), you must have
marked the IRP pending.

• If you ever mark the IRP pending, you must return STATUS_PENDING.

* These ideas/guidelines came out of a discussion on a Usenet newsgroup where this topic was hotly
debated. Appendix F, Additional Sources for Help, lists some sources for help during FSD or filter driver
development, including a Usenet newsgroup.

Basic Steps in Filtering_______________________________________661

Here's a simplistic method that can be followed by any filter driver that layers
itself on top of an FSD:

NTSTATUS SFilterBetterFSDInterceptRoutine (
. . .)
{

// Assume appropriate declarations, etc.

// The filter driver sets a completion routine called
// SFilterCompletion().
ZoSetCompletionRoutine(Ptrlrp, SFilterCompletion,

SFilterCompletionContext,
TRUE, TRUE, TRUE);

// Now, invoke the lower-level driver but force synchronous requests to
// always be completed via an APC.
loMarklrpPending(Ptrlrp);
loCallDriver (...)
return(STATUS_PENDING);

}

This code will degrade performance somewhat (though whether such degradation
will be noticeable is debatable), but will always lead to correct handling of the
IRP, even if your completion routine returns STATUS_MORE_PROCESSING_
REQUIRED. As soon as you return STATUS_PENDING (after having marked the
IRP pending), the I/O Manager code invoking your driver will wait for the comple-
tion of the IRP using the KeWaitForXXX() function, and IRP completion (via
lopCompleteRecjuest ()) will only be finished when the IRP is finally
completed and no completion routine returns STATUS_MORE_PROCESSING_
REQUIRED. The downside is that the I/O Manager will be forced to issue an APC
to complete the IRP, which incurs a performance penalty even for synchronous
I/O requests.

Detaching from a Target Device Object
There will be occasions when your driver may wish to stop filtering and would
like to detach itself from the target device object. This may also happen because
the target device object could be in the process of being deleted by the driver that
created it. An example of this is when file system drivers managing removable
media delete a device object representing a mounted instance of a logical volume
because the user has replaced the media in the drive. If a user decides to format a
disk device, the FSD will dismount the logical volume mounted on the device (if
any) at the request of the user application. This will also result in deletion of the
logical volume device object and your driver must be prepared to delete the
attached device object in this case.

662_____________________________________Chapter 12: Filter Drivers

To request that your device object be detached from a target device object, use
the loDetachDevice () function (described in the DDK) supplied by the I/O
Manager. This function expects a single argument, the target device object you
wish to detach from. You must supply the target device object pointer that you
obtained when first attaching to the target.*

Note that your driver must not ever try to detach from a target device object if
another driver has layered itself on top of your device object. You can always
check for this case by examining the AttachedDevice field in your own device
object and declining to detach from the target if the field contents are nonnull.
Failure to do this will not only result in memory leaks, but will break the drivers
that are layered above yours, since their device objects will also get detached
abruptly (without their knowledge or consent). Detaching (when it is not initiated
by the I/O Manager) can only be performed safely in a last-in-first-out fashion,
starting with the highest-layered device object attached to a specific target device
object. The only exception to this rule is when the I/O Manager asks your driver
to perform the following detach.

Starting with Version 4.0 of the operating system, the I/O Manager will request
that you detach from a target device object if the driver managing the target
device object decides to delete the object for some reason. For example, as
mentioned earlier, an FSD may dismount a volume if requested to do so by a user
application and will therefore delete the device object representing the particular
instance of the mounted logical volume.t In this case, the FSD will invoke loDe-
leteDevice () to perform the delete operation. In turn, the I/O Manager will
ask the first driver that has attached a device object to the one being deleted to
detach its own device object. This call will be sent to your driver in the form of a
fast I/O function call.*

Your driver must detach its device object at this time and probably also delete it
as well. If you do choose to delete your device object using loDeleteDe-
vice (), the I/O Manager will now call any driver that has a device object
attached to your device object (being deleted) to detach itself from your device
object. Note that the fast I/O detach call does not accept failure (there is no return

* This is one reason why your driver should always store the target device address in some deviee object
extension field. Also note that the address you supply is the address of the highest-layered device object
that you received when (for example.) your driver invoked the IoAttachDeviceToDeviceStack()
function.
t In Windows NT Version 3.51 and earlier, if the I/O Manager detected a nonnull AttachedDevice
field for a device object on which loDeleteDevice () was invoked, it would bugcheck the system.
This was not very conducive to supporting filter drivers cleanly.
\ Note that I said the first driver will be asked to perform the detach and not the top-layered driver. This
is because the I/O Manager expects each driver (starting with the first one) that had attached to the target
device object to first detach itself and then invoke loDeleteDevice () on itself, resulting in a recursive
detach for the next (higher-layered) attached device and so on.

Some Dos and Don'ts in Filtering________________________________563

value for the function definition), so your driver has no choice but to do the I/O
Manager's bidding. If you fail to perform the detach operation, the I/O Manager
will bugcheck the system.

TIP Even if multiple drivers have attached themselves to a particular tar-
get device object, the method described previously allows each
such driver to cleanly detach and delete its own (attached) device
object when the target device object is being deleted. To make this
happen, however, each driver that has its fast I/O detach function in-
voked must first perform the detach operation and then immediately
perform a delete operation for its device object.

Some Dos and Don'ts in Filtering
Designing filter drivers is often an iterative process. Your filter driver is likely to
encounter unique problems and issues that are specific to the type of driver you
are trying to design and the type of target driver that your filter will attach itself
to. However, there are certain fundamental principles that you should keep in
mind when you begin the process of designing and implementing a filter driver.
Many of these principles were mentioned earlier in this chapter. Here then, is a
recap of some of the basic principles that you should always keep in mind when
designing your filter driver:

Always understand the nature of the driver you wish to filter
This may seem obvious to some of you but it cannot be stressed often
enough. There are some who believe that using a canned approach to
designing filter drivers may be adequate. This may well be the case—some-
times. However, in most cases, if you fail to understand the characteristics of
your target driver, you will end up with problems late in the cycle that could
be difficult to rectify easily.

As an example, consider the situation where you decide to filter all requests
targeted to a specific logical volume managed by a native FSD (e.g., NTFS).
You will layer your own device object over the target device object repre-
senting the mounted logical volume. So far, so good. However, you should
now understand the various ways in which the FSD gets invoked, since those
are exactly the situations in which your dispatch entry points will be invoked.

For example, in Chapter 10, Writing A File System Driver II, you read that the
FSD read/write entry points can be invoked in many different ways: via a
system call from a user application, due to a page fault on a mapped file,
from the Cache Manager due to asynchronous read/write requests, recursively
via the FSD and the Cache Manager due to cached I/O being performed by

664_____________________________________Chapter 12: Filter Drivers

the user application, and so on. The important point to note here is that in
some situations, it may be acceptable for your filter driver to post an I/O
request to be handled asynchronously, but in other situations (e.g., when
servicing a page fault), your filter driver should never try to post the request
for asynchronous handling, since this could lead to a deadlock or hang.
(Remember that the VMM or the Cache Manager may have preacquired FSD
resources.)
Similarly, you must be extremely careful about how your filter driver performs
synchronization, especially when it filters file system I/O requests. As you
read in earlier chapters, the NT VMM and the Cache Manager often preac-
quire FSD resources via fast I/O calls. This is necessary in order to maintain
the system locking hierarchy and avoid deadlock. However, if your filter
driver layers itself on top of an FSD, then by definition your filter driver
becomes part of the intertwined set of kernel modules that are affected by the
locking sequence implemented in processing I/O requests, and therefore, you
must somehow ensure that your filter driver does not violate the locking hier-
archy in any way. You could do this by ensuring that any resources acquired
when processing read/write/create/cleanup/close requests are end-resources
(i.e., you would acquire such a resource and not acquire any other until the
resource was released; furthermore, for filter drivers, you would not pass-on
an IRP unless the acquired resource was released), or you could preacquire
resources yourself in the context of the invoking Cache Manager or VMM
thread when the fast I/O call is intercepted.*

Note that in the event that your filter driver decides to filter lower-level device
objects (e.g., one representing a physical disk device), you might be able to
ignore many complicated issues that you would otherwise face when inter-
cepting file system I/O. There are other issues that a filter driver layering itself
over a disk driver must be careful of; for example, IRPs sent to a lower-level
disk driver may often be associated IRPs created by an FSD, and therefore a
filter driver layering itself over the disk driver must not try to create associated
IRPs itself. Similarly, lower-level disk drivers are often expected to complete
their processing asynchronously by queuing the request and returning control
immediately to the higher-level kernel-mode drivers. Your filter driver must
conform to such expectations or you could risk destabilizing the entire system.
In all situations, more knowledge and experience about the target driver will
prove to be better than less.

* The problem with the second approach is that replacing the lazy-write/read-ahead callbacks obtained
from the file object could turn out to be very difficult.

Some Dos and Don'ts in Filtering ________________________________ 665

Know what your driver attaches itself to
As described earlier in this chapter, your driver may try to attach to a file
system (mounted) logical volume device object but may actually end up
attaching to the physical disk device object if the volume is not mounted.
Therefore, be careful about how you open the target device as a prerequisite
to performing the attach operation.

Beware of maintaining unnecessary references
If you inadvertently maintain an extra reference on a target device object (or
file object obtained when performing the attach), you may prevent all further
open requests to the target and defeat your original goal of intercepting I/O
requests (there will be none to intercept). Furthermore, in the case of FSD-
created device/file objects, you may end up preventing a volume dismount/
lock operation because of such unnecessary references maintained by you
and prevent a user from doing useful things like reformatting a drive or
ejecting a removable piece of media.

Be careful about the thread context in which your dispatch entry point executes
This is a problem that many of us encounter when beginning to design and
implement filter drivers. You may have implemented a kernel-mode filter
driver function that executes as follows:
NTSTATUS SFilterBadFilterRead(

// Declarations, etc. go here.
IO_STATUS_BLOCK LocalloStatus ;
void *LocalBufferPointer;

// Here, I will make the caller wait until I read some data
// from another logical volume. This data will somehow help me in
// processing the caller's request. ZwReadFileO is easy to use
// and therefore I will try to use it.
ZwReadFile(GlobalFileHandle, ...,

SLocalloStatus, LocalBufferPointer, ...);

This code fragment seems reasonable, but there are two problems (at least)
with it that will result in the ZwReadFile () routine returning an error status
back to you. First, the fragment attempts to use a GlobalFileHandle that
was presumably obtained when the target of the read operation was first
opened (probably during driver initialization). Unfortunately, file handles are
process-specific, and therefore, it is highly likely that the previously described
file handle will be invalid in the context of most user threads that invoke the
system service to request I/O. Instead of using the global file handle directly,

666_____________________________________Chapter 12: Filter Drivers

you could create a new file handle in the context of the caller thread (use
ObOpenObjectByPointer () described in Chapter 5, The NT Virtual
Memory Manager, if you had previously stored a pointer to the underlying
file object), or you may open a new handle to the target object in the context
of the calling thread, or you could post the request to be handled in the
context of a thread that can use the handle, or finally, you could avoid using
ZwReadFile () and instead create IRPs that you dispatch directly to the
target of the request.

Similarly, you will notice that the code attempts to use pointers to memory
that is either off the kernel-mode stack or allocated in kernel-mode. When
you try to use ZwReadFile () , the recipient of the request will check the
previous mode of the caller (which in all likelihood is user mode) and will
reject the request if passed-in addresses are kernel-mode virtual addresses
(virtual address with a value > Ox7FFFFFFF).

The point to note, once again, is that the context of the thread in which your
filter driver dispatch routine executes must always be kept in mind as you
design and implement your driver.

Be creative
Imagine that you wish to prevent the Windows NT I/O Manager from auto-
matically assigning drive letters during system boot-up to certain drives
connected to the system.* How would you go about doing that?
If you go back and read the system boot-up sequence overview described in
Chapter 4, you will note that the I/O Manager opens the device object (repre-
senting the physical device) created by the disk device driver in order to
obtain the characteristics of the device before assigning a drive letter to it.
You can then deduce that, perhaps by designing and implementing a filter
driver that layers itself, early in the boot sequence, over the target disk device
objects, you could somehow prevent this drive letter assignment. How?
Maybe, if your driver recognized the I/O Manager open request and failed
this open operation for each target disk device object, the I/O Manager may
conclude that the disks were unusable and (hopefully) decide not to assign
drive letters to these disk drives.t

* This may be necessary if you have a large disk farm connected to the system. You know that there are
a finite number of drive letters available, and you may decide that one method to allow a user to utilize
all of the disks in this large disk farm would be to present logical groupings of disks under a single drive
letter. There are other alternatives, as well, that you may decide to implement that are beyond the scope
of this book.
t Unfortunately, it is not as easy to prevent drive letter assignment as is described here. But the descrip-
tion provided here is definitely a good starting point.

Some Dos and Don 'ts in Filtering________________________________667

There are many ways in which filter drivers can be used. Not all of these
ways have as yet been exploited. Therein lies an opportunity for you to be
creative and design stable, safe software modules that extend the capabilities
of the Windows NT I/O subsystem and provide substantial added value to
your customers.

In this chapter, we discussed filter driver design and development. In order to
understand how to design filter drivers that are reliable and useful, you should
understand the kernel-mode environment in which your filter driver will execute.
The contents of this book and the sample filter driver implementation provided
on the accompanying diskette should help you in creatively designing and imple-
menting your own value-added software for the Windows NT operating system.

