
Writing a File
System Driver III

In this chapter:
• Handling Fast I/O
• Callback Example
• Dispatch Routine:

Flush File Buffers
• Dispatch Routine:

Volume Information
• Dispatch Routine:

Byte-Range Locks
• Opportunistic

Locking
• Dispatch Routine:

File System and
Device Control

• File System
Recognizers

Before continuing with some of the remaining file system dispatch routines, it
would be useful to understand the fast I/O execution path defined by the NT I/O
Manager. Because the FSD must provide support for callback routines that allow
other NT components to preacquire FSD resources, an example of such a callback
routine is provided and discussed in this chapter. Then, we'll discuss some of the
remaining FSD dispatch routines that you should become familiar with before
designing your file system, including the flush file entry point, get/set volume
information support, support for byte-range locks on a file stream, and file system
IOCTL support. We'll also see the NT LAN Manager opportunistic locking
protocol, which you may wish to support in your FSD. I will conclude this
chapter with a short overview of the file system driver load process, implemented
by using a file system recognizer module.

Handling Fast I/O
The fast I/O execution path was apparently developed in response to a recogni-
tion by NT file system driver and I/O subsystem designers that the normal IRP
dispatch mechanism did not meet some of the performance criteria they had set
out to achieve. Although it was originally conceived to handle user read/write
requests more efficiently, the fast I/O method has evolved to encompass the
many different FSD requests that a user could issue, including requests to get or
set file information, request byte-range locks, and request device lOCTLs. It has
also become somewhat of a catch-all mechanism for issuing requests to pre-

532

Handling Fast I/O__533

acquire FSD resources, although this does not appear to be part of the original
fast I/O design.

Chapter 7, The NT Cache Manager II, provides an introduction to the fast I/O
method of data access. Refer to that chapter before proceeding with the following
discussion.

Why Fast I/O?
Let's recall how a typical file system buffered I/O (read/write) request is handled:

1. First, the I/O Manager creates an IRP describing the request.

2. This IRP is dispatched to the appropriate FSD entry point, where the driver
extracts the various parameters that define the I/O request (e.g., the buffer
pointer supplied by the caller and the amount of data requested) and vali-
dates them.

3. The FSD acquires appropriate resources to provide synchronization across
concurrent I/O requests and checks whether the request is for buffered or
nonbuffered I/O.

4. Buffered I/O requests are sent by the FSD to the NT Cache Manager.
5. If required, the FSD initiates caching before dispatching the request to the NT

Cache Manager.

6. The NT Cache Manager attempts to transfer data to/from the system cache.
7. If a page fault is incurred by the NT Cache Manager, the request will recurse

back into the FSD read/write entry point as a paging I/O request.
You should note, that in order to resolve a page fault, the NT VMM issues a
paging I/O request to the I/O Manager, which creates a new IRP structure
(marked for noncached, paging I/O) and dispatches it to the FSD. The orig-
inal IRP is not used to perform the paging I/O.

8. The FSD receives the new IRP describing the paging I/O request and transfers
the requested byte range to/from secondary storage.
Lower-level disk drivers assist the FSD in this transfer.

There were two observations that NT designers made that will help explain the
evolution of the fast I/O method:

• Most user I/O requests are synchronous and blocking (i.e., the caller does not
mind waiting until the data transfer has been achieved).

• Most I/O requests to read/write data can be satisfied directly by transferring
data from/to the system cache.

534__________________________Chapter 11: Writing a File System Driver III

Once they had made the two observations listed, the NT I/O Manager developers
decided that the sequence of operations used in a typical I/O request could be
further streamlined to help achieve better performance. Certain operations
appeared to be redundant and could probably be discarded in order to make user
I/O processing more efficient. Specifically, the following steps seemed
unnecessary:

Creating an IRP structure to describe the original user request, especially if the IRP
was not required for reuse

Assuming that the request would typically be satisfied directly from the
system cache, it is apparent that the original IRP structure, with its multiple
stack locations and with all of the associated overhead in setting up the I/O
request packet, is not really required or fully utilized. It seems to make more
sense to dispense with this operation altogether and simply pass the I/O
request parameters directly to the layer that would handle the request.

Invoking the FSD
This may seem a little strange to you but a legitimate observation made by
the NT designers was that, for most synchronous cached requests, it seems to
be redundant to get the FSD involved at all in processing the I/O transfer.
After all, if all that an FSD did was route the request to the NT Cache
Manager, it seemed to be more efficient to have the I/O Manager directly
invoke the NT Cache Manager and bypass the FSD completely.
This can only be done if caching is initiated on the file stream, so that the
Cache Manager is prepared to handle the buffered I/O request.

Becoming Efficient: the Fast I/O Solution
Presumably, after pondering the observations listed here, NT I/O designers
decided that the new, more efficient sequence of steps in processing user I/O
requests should be as follows:

1. The I/O Manager receives the user request and checks if the operation is
synchronous.

2. If the user request is synchronous, the I/O Manager determines whether
caching has been initiated for the file object being used to request the I/O
operation.*

* The check made by the I/O Manager is simply whether the PrivateCacheMap field in the file object
structure is nonnull. This field is set to a nonnull value by the Cache Manager as part of initializing caching
for the particular file object structure.

Handling Fast I/O_________________________________ _______535

For asynchronous operations, the I/O Manager follows the normal method of
creating an IRP and invoking the driver dispatch routine to process the I/O
request.

3. If caching has been initiated for the file object as determined in Step 2, the
I/O Manager invokes the appropriate fast I/O entry point.

The important point to note here is that the I/O Manager assumes that the
fast I/O entry point must have been initialized if the FSD supports cached file
streams. If you install a debug version of the operating system, you will actu-
ally see an assertion failure if the fast I/O function pointer is NULL.

Note that a pointer to the fast I/O dispatch table is obtained by the I/O
Manager from the FastloDispatch field in the driver object data structure.

4. The I/O Manager checks the return code from the fast I/O routine previously
invoked.

A TRUE return code value from the fast I/O dispatch routine indicates to the
I/O Manager that the request was successfully processed via the fast I/O path.
Note that the return code value TRUE does not indicate whether the request
succeeded or failed; all it does is indicate whether the request was processed
or not. The I/O Manager must examine the loStatus argument supplied to
the fast I/O routine to find out if the request succeeded or failed.

A return code of FALSE indicates that the request could not be processed via
the fast I/O path. The I/O Manager accepts this return code value and, in
response, simply reverts to the more traditional method of creating an IRP
and dispatching it to the FSD.

This point is very important for you to understand. The NT I/O subsystem
designers did not wish to force an FSD to have to support the fast I/O
method of obtaining data. Therefore, the I/O Manager allows the FSD to
return FALSE from a fast I/O routine invocation and simply reissues the
request using an IRP instead.

5. If the fast I/O routine returned success, the I/O Manager updates the
CurrentByteOffset field in the file object structure (since this is a
synchronous I/O operation) and returns the status code to the caller.

The advantage of using the new sequence of operations is that synchronous I/O
requests can be processed without having to incur the overhead of either building
an IRP structure (and the associated overhead of completion processing for the
IRP), or routing the request via the FSD dispatch entry point.

536__________________________Chapter 11: Writing a File System Driver III

Possible Problems in Bypassing the FSD
Not all file system implementations are alike; as a matter of fact, nearly all file
systems have unique characteristics, requirements, and processing needs, specific
to the particular implementation. Therefore, although bypassing the FSD
completely and directly obtaining data from the Cache Manager appears, on the
surface, to be a highly efficient method of data transfer, the following issues must
be considered:

Acquiring FSD resources
It would be nice not to have to worry about FSD resources and simply obtain
data from the Cache Manager. However, as you well know, the FSD tries to
ensure data consistency usually by providing a shared (multiple) reader and
single writer model to file system clients. To do this, the FSD typically
acquires the MainResource either shared or exclusively, and in some cases
(especially if the file size is to be modified), also synchronizes with paging
I/O requests by acquiring the PagingloResource exclusively.
Even if the I/O Manager does bypass the FSD dispatch entry point when
performing fast I/O, appropriate FSD resources should always be somehow
acquired.

Presence of byte-range locks
This is a very obvious problem in the implementation and support of fast I/O
routines that bypass the FSD dispatch entry points. In Chapter 9, Writing a
File System Driver /, the code fragments presented for read/write operations
noted that the FSD dispatch entry points always check to see whether the
caller should be allowed to proceed with the I/O operation, or whether the
operation should be denied, because some or all of the byte range being
accessed/modified has a byte-range lock associated with it.

Since the typical Windows NT byte-range locking model implements manda-
tory byte-range locks, such checks should also be performed in the fast I/O
case. The other alternative is to prevent fast I/O operations if the file stream
has any byte-range locks associated with it.

Opportunistic locks
Opportunistic locking support is discussed in greater detail later in this
chapter. However, just as in the case of byte-range locks, the FSD may wish
to be careful about allowing fast I/O operations to proceed, depending on
the state of the oplocks associated with the file stream.

Other FSD-specific issues
Consider a file system that must perform certain preprocessing before
allowing file write operations to proceed on the file stream. For example,
certain distributed file systems (e.g., DPS) may employ token-based or other

Handling Fast I/O__537

similar methods of ensuring data consistency across geographically dispersed
nodes. For such complex file system implementations, the FSD may not allow
fast I/O support without ensuring that the requisite preprocessing has been
performed.

The first three concerns listed here can be placed into two categories:

• Ensuring acquisition of file system resources for the file stream being accessed

• Allowing the FSD to determine whether fast I/O should be allowed to pro-
ceed on a file stream or not

NT I/O subsystem designers seem to have thought through these issues and have
provided support to FSD designers to address such problems. The solutions
include providing generic fast I/O intermediate routines in the FSRTL package that
always acquire appropriate FSD resources, and also allowing the FSD to specify,
on a per-file-stream basis, whether fast I/O should be allowed for the file stream.

However, for more complex FSD implementations that always need to perform
preprocessing before allowing any sort of I/O to proceed, the FSD designer must
devise an FSD-specific method to also allow fast I/O access to file streams. There
is no easy solution in such a situation.

Ensuring Correct FSD Resource Acquisition
You should either initialize the fast I/O dispatch routine function pointers in the
fast I/O dispatch table to point to intermediate routines in your driver that
perform appropriate FCB acquisition, or use the Windows NT FSRTL-provided
generic routines instead.

In the sample FSD initialization code presented in Chapter 9, you will notice that I
have initialized the fast I/O dispatch routine function pointers to sample FSD-
provided routines (e.g., SFsdFastIoRead(), SFsdFastloWrite () , and so
on). The theory is that these intermediate routines will not allow the I/O Manager
to bypass the FSD completely, but instead will perform any required pre-
processing, such as resource acquisition, before passing the request on to the
Cache Manager (if appropriate).

You will find that this is still a lower overhead I/O operation (even though the
FSD is not being completely bypassed) than the corresponding IRP-based I/O
operation.

There are also some FSRTL-provided intermediate support routines that perform
appropriate FSD resource acquisition and forward the fast I/O request to the NT
Cache Manager. The two most widely used (and Microsoft recommended) are the
FsRtlCopyRead() and FsRtlCopyWrite () utility functions described later. If

538__________________________Chapter 11: Writing a File System Driver III

you decide to use these functions, you should understand the assumptions made
by them and the nature of the processing that they perform. Some file systems
that have a lot of complex preprocessing required before they forward a request
to the Cache Manager may wish to use a combination of their own fast I/O
dispatch routines and the FSRTL-provided functions (one way of doing this is to
have your FSD's fast I/O dispatch routine perform appropriate preprocessing, and
then invoke the FSRTL routine).

Allowing Fast I/O on a File Stream
You must set the IsFastloPossible field, in the CommonFCBHeader for the
file stream, appropriately. You should also provide a callback function and
initialize the FastloChecklfPossible function pointer field in the Common-
FCBHeader to invoke this callback function when required.

One of the methods for an FSD to disable the fast I/O method for a specific file
stream is by initializing the IsFastloPossible field in the CommonFCB-
Header to FastloIsNotPossible. The other method is to set
IsFastloPossible to FastloIsQuestionable, and then, after appropriate
processing, return FALSE from the FastloChecklf Possible () function call-
back invocation.

Here are the three enumerated type values the IsFastloPossible field can
contain:

• FastloIsPossible (enumerated type value = 0)

• FastloIsNotPossible (enumerated type value = 1)
• FastloIsQuestionable (enumerated type value = 2)

The FastloIsNotPossible value results in fast I/O being disabled for the
particular file stream until the contents of the IsFastloPossible field are
changed.

If the IsFastloPossible field is initialized to FastloIsPossible, the inter-
mediate routine (whether your own or that provided by the FSRTL) proceeds with
fast I/O processing for the request. If, however, the IsFastloPossible field is
initialized to FastloIsQuestionable, then the FSRTL-provided intermediate
routine issues a callback to the FSD to determine whether the fast I/O operation
should be allowed to proceed or not (your internal intermediate routine can
follow the same model). The callback function must be provided by the FSD and
the callback function address must be initialized in the FastloChecklf Pos-
sible field of the fast I/O dispatch table (the sample FSD initializes this value to
the SFsdFastloChecklf Possible () function address).

Handling Fast I/O 539

The FSD can determine, in the callback routine, whether the fast I/O operation
should be allowed to proceed. If the FSD returns FALSE from the FastloCheck-
IfPossible field, the FSRTL-provided intermediate routines (and also your
own) will stop processing the fast I/O request and return FALSE to the NT I/O
Manager; otherwise, the intermediate function will continue with processing the
fast I/O request (since the FSD has essentially granted permission for the current
fast I/O operation to proceed).

The following code fragment illustrates the implementation of a typical Fastlo-
Checklf Possible function callback implementation:

BOOLEAN SFsdFastloChecklfPossible(
IN PFILE_OBJECT
IN PLARGE_INTEGER
IN ULONG
IN BOOLEAN
IN ULONG
IN BOOLEAN
OUT PIO_STATUS_BLOCK
IN PDEVICE_OBJECT
{

BOOLEAN
PtrSFsdFCB
PtrSFsdCCB
LARGE INTEGER

FileObject,
FileOffset,
Length,
Wait,
LockKey,
CheckForReadOperat ion,
loStatus,
DeviceObject)

ReturnedStatus = FALSE;
PtrFCB = NULL;
PtrCCB = NULL;
loLength;

// Obtain a pointer to the FCB and CCB for the file stream.
PtrCCB = (PtrSFsdCCB)(FileObject->FsContext2);
ASSERT(PtrCCB);
PtrFCB = PtrCCB->PtrFCB;
ASSERT(PtrFCB);

// Validate that this is a fast I/O request to a regular file.
// The sample FSD, for example, will not allow fast I/O requests
// to volume objects or to directories.
if ((PtrFCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_VCB) / /

(PtrFCB->FCBFlags & SFSD_FCB_DIRECTORY)) {
// This is not allowed.
return(ReturnedStatus);

loLength = RtlConvertUlongToLargelnteger(Length);

// Your FSD can determine the checks that it needs to perform.
// Typically, an FSD will check whether there are any byte-range
// locks that would prevent a fast I/O operation from proceeding.

// ... (FSD specific checks go here).

if (CheckForReadOperation) {
// It would be nice to be able to use the FSRTL's services
// for file lock operations. However, this chapter describes how

540 __________________________ Chapter 11: Writing a File System Driver III

II to design and implement your own file lock support routines.
// Check here whether or not the read I/O can be allowed.
ReturnedStatus = SFsdCheckLockReadAllowed(& (PtrFCB->

FCBByteRangeLock) ,
FileOffset, &IoLength, LockKey, FileObject,
PsGetCurrentProcess ()) ;

} else {
// This is a write request. Invoke the appropriate support routine
// to see if the write should be allowed to proceed.
ReturnedStatus =

SFsdCheckLockWriteAllowed(& (PtrFCB->FCBByteRangeLock) ,
FileOffset, &IoLength, LockKey, FileObject,
PsGetCurrentProcess ()) ;

return (ReturnedStatus) ;
}
A legitimate question that you should have is, when should you modify/update
the IsFastloPossible field in the CommonFCBHeader?

The answer is — it depends. You should initialize the field when creating the FCB
for the file stream, which is when the first open operation is performed on the file
stream. Subsequent updates should always be made after acquiring the MainRe-
source for the file stream exclusively. Typically, if byte-range locks have been
granted on the file stream, or if opportunistic locks have been granted such that
they would prevent fast I/O access, then you should set the IsFastloPos-
sible field value to either FastloIsNotPossible or Fastlols-
Questionable.

A common method that sets the IsFastloPossible field is shown in this
pseudocode fragment:

if ((no opportunistic locks have been granted for the file stream) | |
(if the caller has an exclusive opportunistic lock on the stream) | |
(if my FSD-specific checks tell me that fast I/O is not a good

idea)) {
if ((there are any byte-range file locks) | |

(if my FSD-specific checks tell me that fast I/O is
questionable)) {

/ / Force the FSD to be queried for permission before fast
/ / I /O is allowed to proceed.
IsFastloPossible = FastloIsQuestionable;

} else {
// Fast I/O seems safe at this time.
IsFastloPossible = FastloIsPossible;

}
} else {

// Allowing fast I/O would not be a good idea. Force the IRP route
/ / instead.
IsFastloPossible = FastloIsNotPossible;

Handling Fast I/O__541

Note that there are no set rules that an FSD must follow in determining whether
to allow fast I/O operations or not; the issue is highly FSD-specific. If, however,
you do plan to use the methodology presented here, as opposed to simply
refusing fast I/O outright, then there are a multitude of occasions during file
system execution that you will have to execute the fragment and reevaluate if fast
I/O should be allowed to proceed without question, allowed on a per-occasion
basis, or never allowed.

The specific occasions on which you should reevaluate the status of fast I/O for a
specific file stream include the following:

• At file stream open time

• Whenever read or write requests are dispatched to the file system

• Whenever byte-range lock/unlock requests are processed by the FSD

• Whenever file stream attributes are modified via a set file information request

• Whenever opportunistic locks are granted/broken

• At file stream cleanup

• For removable media, whenever a volume needs to be reverified due to
media change

Of course, your FSD may have some very specific situations, in addition to those
listed, when it may need to reevaluate the status of fast I/O vis-a-vis a specific file
stream.

FSRTL Support for Fast I/O
The NT I/O subsystem designers recommend that FSD implementations use
FSRTL-supplied routines to perform appropriate preprocessing (including
acquiring FSD resources), before invoking the NT Cache Manager to complete a
fast I/O read/write request. Specifically, the following generic support routines
have been provided:*

• FsRtlCopyRead()
• FsRtlCopyWriteO

There are other fast I/O support routines that the NT FSRTL provides (e.g.,
FsRtlQueryBasicInformation(), FsRtlQueryStandardlnforma-
tion (), and so on). The NT IPS kit lists all of the fast I/O support routines that

* The native NT file system implementations follow recommendations and use these FSRTL routines to
perform fast I/O related preprocessing. Therefore, during file system initialization, they initialize the Fas-
tloRead and FastloWrite (function pointer) fields in the fast I/O dispatch table with FsRtlCopy-
Read () and FsRtlCopyWrite () , respectively.

542 ________________________Chapter 11: Writing a File System Driver III

your FSD can use. We will discuss the two I/O-related routines in greater detail
here, because they encapsulate some of the most complex processing related to
fast I/O support. The FSRTL routines provided for file-lock support are also
discussed later in this chapter.

In the initialization code for the sample FSD implementation provided in Chapter
9, you will have noticed that the FastloRead function pointer is initialized to
SFsdFastIoRead(), and the FastIoWrite() function pointer is initialized to
SFsdFastloWrite () . This is not in keeping with the recommendation made
by the NT I/O subsystem designers that these function pointers should be directly
initialized to FsRtlCopyRead() and FsRtlCopyWrite () . The reason for not
following these recommendations is simply to illustrate to the reader that it is
possible for more complex file system implementations to perform any required
pre-processing in their own routines (e.g., SFsdFastIoRead() for the sample
FSD implementation), and then invoke the appropriate FSRTL routine directly
from the FSD fast I/O function. This method is especially useful for more complex
file system implementations such as distributed/networked file system drivers.

Of course, for your FSD implementation, you may choose to initialize the function
pointers with the appropriate FSRTL routines directly.

The FsRtlCopyRead() function is defined as follows:

BOOLEAN
FsRtlCopyRead (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN ULONG LockKey,
OUT PVOID Buffer,
OUT PIO_STATUS_BLOCK loStatus,
IN PDEVICE_OBJECT DeviceObject
) ;
The arguments accepted by the FsRtlCopyRead () function match those
required in the function type definition for a fast I/O read function defined in the
NT DDK. Notice that all of the relevant parameters supplied by the user thread
when invoking the NtReadFileO system service routine are passed directly to
the fast I/O (FSRTL) read routine instead of being inserted into an IRP structure.*

Functionality Provided:

The FsRtlCopyRead () routine executes the following steps:

* Although I did not talk about the LockKey user-supplied argument in Chapter 9 when discussing read/
write dispatch entry point implementations, note for now that it is possible for a user to read/write a
locked byte range if the locker had associated a key with the byte-range lock, and if the reader/writer
knows the key value. Byte-range locks are discussed in greater detail later in this chapter.

Handling Fast I/O__543

• It attempts to acquire the MainResource for the file stream shared.
In case you are wondering how the FSRTL can get to the FCB MainRe-
source pointer, remember that the FsContext field in the file object struc-
ture is always initialized to point to a common FCB header structure of type
FSRTL_COMMON_FCB_HEADER. This structure contains the Resource field,
which is initialized by the FSD to the address of the MainResource (ERE-
SOURCE type) structure.

If the caller is not prepared to block (i.e., the Wait argument has been set to
FALSE), and if the MainResource cannot be acquired immediately without
blocking, the FSRTL routine will simply return FALSE. The I/O Manager will
then reissue the read request to the FSD via the traditional IRP method.

• If the IsFastloPossible field in the CommonFCBHeader is set to Fast-
loIsNotPossible, the FsRtlCopyRead() routine returns FALSE to the
I/O Manager.

• If the IsFastloPossible field in the CommonFCBHeader is set to Fast-
loIsQuestionable, the FsRtlCopyRead() routine queries the FSD (as
described earlier in this chapter) whether it should proceed with fast I/O or
return FALSE to the caller.

• Once the FsRtlCopyRead() has determined that it is safe to proceed, it
invokes the CcCopyReadf)/CcFastCopyRead() function to transfer data
to/from the system cache.
The FSRTL is careful about setting itself as the top-level component for the
request. It sets the TopLevellrp field in the TLS to the FSRTL_FAST_IO_
TOP_LEVEL_IRP constant value. Once the read operation has completed,
the FsRtlCopyRead() function sets the FO_FILE_FAST_IO_READ flag in
the file object structure.

• The FsRtlCopyRead() function releases the MainResource for the file
stream and returns TRUE to the I/O Manager.

The I/O Manager performs appropriate postprocessing (described earlier in
this chapter) and returns control to the caller.

The FsRtlCopyWrite () function is defined as follows:

BOOLEAN
FsRtlCopyWrite (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN ULONG LockKey,
IN PVOID Buffer,
OUT PIO_STATUS_BLOCK loStatus,
IN PDEVICE_OBJECT DeviceObject

544__________________________Chapter 11: Writing a File System Driver III

Functionality Provided:

The FsRtlCopyWrite () routine executes the following steps:

• If the file object has been opened with write-through specified, or if the
Cache Manager CcCanlWrite () function call returns FALSE, this routine
returns FALSE immediately.

The I/O Manager will reissue the write request via the normal IRP method.

• The FsRtlCopyWrite () routine acquires the FCB MainResource either
shared or exclusive.

This routine acquires the MainResource shared, unless the caller wishes to
append to the file stream, or if the write will extend the valid data length for
the file stream. If the FsRtlCopyWrite () routine cannot acquire the Main-
Resource immediately and if Wait is set to FALSE, this routine returns
FALSE to the NT I/O Manager.

• A check is made to determine whether fast I/O write should even be
attempted.

Just as in the case of the FsRtlCopyRead() routine, this function invokes
the FSD to make the final determination on whether fast I/O should be
attempted if IsFastloPossible is set to FastloIsQuestionable.

• The FsRtlCopyWrite () routine also returns FALSE immediately to the I/O
Manager if the file is being extended such that the new file size would exceed
the current allocation size for the file stream, or if the new file size results in a
wrap-around of the allocation size for the file stream from a 32-bit value to a
64-bit value.*

• If the file size is being extended, the FsRtlCopyWrite () routine will
acquire the PagingloResource exclusively, modify the file size in the Com-
monFCBHeader, and release the paging I/O resource.

• A CcZeroData () is performed, if required (i.e., if the current write opera-
tion results in a hole between the current valid data length before the new
write operation was attempted and the starting offset of the new write
request).

* There are valid reasons for these checks. First, allowing a write to proceed without having adequate
disk space preallocated could result in an unexpected out-of-disk-space error code being returned during
a subsequent lazy-write/modified page write operation; this could even happen well after a user process
had closed the file handle and exited, expecting that all of the data had made it (or would.) to secondary
storage. Second, some file systems (e.g., FASTFAT) do not currently support 64-bit file sizes, while others
(e.g., NTFS) do; therefore, the FSRTL package is unsure whether to allow such file I/O operations to pro-
ceed or not.

Handling Fast I/O__545

• The FsRtlCopyWrite() request issues a CcCopyWrite ()/CcFastCopy-
Write () request to actually transfer the data to the system cache.

Just as in the case of the fast I/O read operation, the FsRtlCopyWrite ()
routine is careful to mark itself as the top-level component for the write
request.

• Once the write operation has completed, the FsRtlCopyWrite () routine
marks the fact that a fast I/O write operation was performed by setting the
FO_FILE_MODIFIED flag in the file object structure.

If the file was extended, or if valid data length was changed, the routine also
sets the FO_FILE_SIZE_CHANGED flag in the file object structure.

• The FsRtlCopyWrite () function releases the MainResource for the file
stream and returns TRUE to the I/O Manager.

The I/O Manager performs appropriate postprocessing (described earlier in
this chapter) and returns control to the caller.

Rolling Your Own Fast I/O Routine
Now that you understand the methodology used by the FSRTL in providing
generic fast I/O read/write support routines, you should be able to easily replace
them with your own if required, and also supplement them with appropriate
routines to support the other fast I/O entry points.

There are a couple of issues you should keep in mind when developing your
own fast I/O support routines:

• It would be prudent for your driver to provide appropriate exception han-
dling in your fast I/O routines.

The FsRtlCopyRead() and the FsRtlCopyWrite () functions do provide
exception handlers since it is quite possible for a malicious user thread (or
even a carelessly written application) to send in an invalid buffer, or to deallo-
cate the buffer while the I/O is in progress using another thread, or to change
the buffer permissions in such a way so as to cause an access violation error
condition when the data transfer is attempted by the Cache Manager. Failure
on your part to provide an exception handler could cause the system to crash.

• Your routine should encapsulate the fast I/O support within FsRtlEnter-
FileSystemO and FsRtlExitFileSystem() calls.
This is simply a reminder to you that, just as in the case of the regular IRP dis-
patch routines, your FSD should not allow kernel-mode APCs to be delivered
while executing file system code. This will prevent nasty priority inversion sit-
uations, which could lead to a system deadlock.

546 _________________________Chapter 11: Writing a File System Driver III

NOTE The FsRtlEnterFileSystemf) macro is simply defined to KeEn-
terCriticalRegion(), while the FsRtlExitFileSystem()
macro is defined to KeLeaveCriticalRegion () .

Also remember that the fast I/O path started off as a more efficient method to
transfer data; if you find that certain situations would result in your fast I/O
routine having to perform an inordinate amount of extraneous processing simply
to support this method of data transfer, it could be more efficient to just return
FALSE from the fast I/O routine, since the I/O Manager will then issue a regular
IRP-based request back to your driver.

The Pseudo Fast I/O Routines
You may have rightly noticed that the fast I/O dispatch table contains entries such
as FastloQueryBasicInfo, FastloQueryStandardlnfo, and others that
do not quite follow the original fast I/O model of bypassing the FSD and
obtaining data from the NT Cache Manager. As explained earlier, there were two
goals that the fast I/O method was designed to accomplish: avoiding the over-
head associated with the creation and completion of an IRP structure and
attempting to obtain data directly from the best source for the data, the NT Cache
Manager.

The basic design goal for the fast I/O method is to achieve faster (better) perfor-
mance. To achieve this goal, NT I/O subsystem designers seem to be providing
fast entry points for some of the most frequently used FSD entry points. This is
the reason behind the inclusion of most of the (non-I/O) fast I/O entries,
including those previously listed.

There are also certain callbacks that have been lumped together with the regular
fast I/O entry points in the fast I/O dispatch table, simply because the table
seemed like a good, extensible container for these callback routines. Here are the
specific callbacks:

• AcquireFileForNtCreateSection and ReleaseFileForNtCreate-
Section

• FastloDetachDevice
• AccjuireForModWrite and ReleaseForModWrite
• AccfuireForCcFlush and ReleaseForCcFlush
Only the first pair of callbacks, acquire/release for create section, existed in
Windows NT Version 3.51. The others have been added with Version 4.0.

Handling Fast I/O__547

I presume it's harder for the NT designers to justify the inclusion of these call-
backs in the fast I/O dispatch table. The only rational explanation for including
them where they currently reside is that these seem to be last-minute solutions to
synchronization/deadlock-related problems encountered during late testing, and
the only extensible place where such callbacks could possibly reside, without
breaking existing file system drivers, seemed to be the fast I/O dispatch table.

NOTE Recall from earlier chapters that the fast I/O dispatch table contains
a field called SizeOfFastloDispatch, which is initialized by an
FSD to the size of the structure it knows about (when the driver
was implemented). Since new fast I/O entry points are always add-
ed at the end of the dispatch table (thereby increasing its size), it is
relatively easy for the caller of a fast I/O routine to check whether
the underlying FSD knows about the new entries, by comparing the
size of the dispatch table with the new entries in it to the size value
initialized by the FSD. If the FSD specifies a size that -would include
the particular fast I/O entry, the caller can proceed with the fast I/O
operation; otherwise, the caller can assume that it is dealing with an
older driver and simply skip the particular fast I/O call.
Unfortunately, this isn't a method your driver can use to skip fast
I/O support altogether, since a basic assumption made by the NT
I/O Manager is that your driver at least knows the initial fast I/O ta-
ble, introduced with Version 3.51 of the operating system.

AcquireFileForNtCreateSection/ReleaseFileForNtCreateSection

To map a file stream into its virtual address space, a process must first create a
section object for the file by invoking the NtCreateSection() system call.*
This call is provided by the NT VMM, which performs all of the required
processing to create the appropriate image/data section object for the caller.

The process requesting the create section operation specifies the length (in bytes)
of the section object to be created. As part of processing the request, the VMM
must query the FSD for the current file size associated with the file stream, and
modify the file size as well, if the requested length is greater than the current end-
of-file position. There are other operations that the VMM must perform, which
could also cause the VMM to issue I/O requests to the underlying FSD managing
the mounted logical volume on which the file stream resides.

When issuing file system get/set file size requests, the MmExtendSection ()
internal routine in the VMM acquires certain VMM resources, in order to synchro-

* This routine (actually the kernel-equivalent, ZwCreateSection()) is explained in detail in Chapter
5, 'l"he NT Virtual Memory Manager.

548__________________________Chapter 11: Writing a File System Driver III

nize with other threads trying to perform another create section operation
concurrently.

Unfortunately, though, it is still quite possible for another user thread to concur-
rently issue a cached read request for which the file system initiates caching,
which, in turn, results in the CcInitializeCacheMap () routine in the Cache
Manager possibly invoking the MmExtendSection () internal support routine
provided by the VMM.

Similarly, other user threads trying to change the file size concurrently could
invoke the set file information dispatch routine in the FSD; the FSD, in turn,
would issue a CcSetFileSizes () request, and the Cache Manager would
possibly invoke the MmExtendSection () routine internally.

Here, the stage is being set for a classic deadlock situation. For the thread
performing the create section request, the VMM has acquired some global internal
resources preventing other concurrent operations that could possibly result in any
modifications to the section object. Then, the VMM invokes the FSD get/set file
information entry point. As part of processing this request, the FSD attempts to
acquire the MainResource exclusively, and later, tries to acquire the Paging-
loResource. However, the FSD can be forced to block when attempting the
acquisition of the MainResource if some other thread either performing cached
I/O or changing the file length acquired it first.

The thread performing a cached I/O or file size modification operation would, in
turn, be blocked in the VMM on the same resource that the MmExtendSec-
t ion() routine acquired to prevent concurrent modifications to the file stream
size.

The result is deadlock; the reason is simply because the VMM broke the resource
acquisition hierarchy of acquiring FSD resources for the file object first, before
acquiring its internal resources.

After the NT I/O subsystem designers encountered this problem, they added the
two callbacks to the fast I/O dispatch table. Now the VMM invokes the FSD
AcquireForNtCreateSection () callback before acquiring its internal
resources when processing a create section request. After all of the processing
requiring interaction with the FSD has been completed, the VMM invokes the
ReleaseForNtCreateSection () callback, to request the FSD to release FCB
resources.

Here is the code fragment illustrating the implementation of the AcquireForNt-
CreateSection and ReleaseForNtCreateSection in the sample FSD:

void SFsdFastloAcqCreateSec(
IN PFILE_OBJECT FileObject)

Handling Fast I/O 549

PtrSFsdFCB
PtrSFsdCCB
PtrSFsdNTRequiredFCB

PtrFCB = NULL;
PtrCCB = NULL;
PtrReqdFCB = NULL;

// Obtain a pointer to the FCB and CCB for the file stream.
PtrCCB = (PtrSFsdCCB)(FileObject->FsContext2);
ASSERT(PtrCCB) ;
PtrFCB = PtrCCB->PtrFCB;
ASSERT(PtrFCB);
PtrReqdFCB = &(PtrFCB->NTRequiredFCB);

// Acquire the MainResource exclusively for the file stream
ExAcquireResourceExclusiveLite(&(PtrReqdFCB->MainResource), TRUE);

// Although this is typically not required, the sample FSD will
// also acquire the PagingloResource exclusively at this time
// to conform with the resource acquisition described in the set
// file information routine.
ExAcquireResourceExclusiveLite(&(PtrReqdFCB->PagingIoResource), TRUE);

return;

void SFsdFastloRelCreateSec(
IN PFILE OBJECT FileObject)

PtrSFsdFCB
PtrSFsdCCB
PtrSFsdNTRequiredFCB

PtrFCB = NULL;
PtrCCB = NULL;
PtrReqdFCB = NULL;

// Obtain a pointer to the FCB and CCB for the file stream.
PtrCCB = (PtrSFsdCCB)(FileObject->FsContext2);
ASSERT(PtrCCB) ;
PtrFCB = PtrCCB->PtrFCB;
ASSERT(PtrFCB);
PtrReqdFCB = &(PtrFCB->NTRequiredFCB);

// Release the PagingloResource for the file stream
SFsdReleaseResource(&(PtrReqdFCB->PagingIoResource));

// Release the MainResource for the file stream
SFsdReleaseResource(&(PtrReqdFCB->MainResource));

return;

The FastloDetachDevice callback will be covered in the next chapter when
we discuss filter driver design and implementation.

AcquireForModWrite/ReleaseForModWrite

Before NT Version 4.0 was released, this callback did not exist. As discussed in
detail in earlier chapters, it is extremely important for the NT VMM, the NT Cache

550_______________ __________Chapter 11: Writing a File System Driver III

Manager, and the FSD implementations to ensure that resources are acquired in
the correct order. This callback exists precisely to ensure that the resource acquisi-
tion hierarchy is maintained.

In Chapter 5, we discussed the design and philosophy of the modified/mapped
page writer threads used by the NT VMM to asynchronously flush dirty pages,
allowing the VMM to reuse these pages for other applications. When an asynchro-
nous I/O request is issued to the FSD, the file system implementation may need
to acquire the MainResource and/or the PagingloResource. To pre-acquire
the appropriate resources and maintain the locking hierarchy across modules, the
NT VMM issues a call to the FSRTL FsRtlAcquireFileForModWrite ()
support routine.

In Windows NT Version 3-51, the FSRTL routine simply acquired the file resources
directly. In order to determine which resource to acquire (MainResource or
PagingloResource) and if the resource needed to be acquired shared or exclu-
sively, the FSRTL package depended on the following flag values set by the FSD
in the CommonFCBHeader associated with the file stream:

#define FSRTL_FLAG_ACQUIRE_MAIN_RSRC_EX (0x08)
#define FSRTL_FLAG_ACQUIRE_MAIN_RSRC_SH (0x10)

If the flag FSRTL_FLAG_ACQUIRE_MAIN_RSRC_EX is set by an FSD in the
CommonFCBHeader for the file stream, the FsRtlAcquireFileForMod-
Write() routine acquires the MainResource exclusively; a flag value of
FSRTL_FLAG_ACQUIRE_MAIN_RSRC_SH results in the routine acquiring the
MainResource shared. If neither flag is set, the routine acquires the Paging-
loResource shared if the a resource is present. Finally, in the most degenerate
case of no flag having been set and the PagingloResource pointer in the
CommonFCBHeader being NULL, the routine does not acquire any resource at all.

The fundamental rule that an FSD is supposed to follow in setting appropriate
flag values is that the flag value cannot be changed unless the FSD acquired both
resources before attempting the change; or in other words, if the FSRTL package
managed to acquire either of the two resources, it is guaranteed that the flag
value would stay constant.

You may wish to note that the FASTFAT file system does not appear to set any
flag values at all in Version 3.51, (preferring to rely on the default behavior
instead), and the only native FSD implementation that seems to care about these
flag values and actively modify them is the NTFS file system. Furthermore, it
should not surprise you to know the FsRtlAcquireFileForModWrite ()
jumps through a lot of hoops to acquire the right resource. It initially examines
the flag values in an unsafe fashion and attempts to acquire the designated
resource (without waiting). Once a resource is acquired, it reexamines the flag

Handling Fast I/O__551

values—since they could have changed between the time they were examined in
an unsafe fashion and when the resource was actually acquired—and retries the
resource acquisition after releasing the original resource, if the flag values have
changed. All of this is done within a while (TRUE) { . . . } loop construct.

There were other problems with this implementation as well. It was sometimes
possible for the VMM to want to acquire the FSD resource for write operations
that would extend the valid data length. Unfortunately, if the FSD indicated that
the MainResource should be acquired shared, following the FSD's instructions
possibly leads to a deadlock situation when the write request is actually
dispatched to the FSD. Therefore, the FsRtlAccruirefFileForModWrite ()
routine checks for the condition where the ending offset (starting-offset + write-
length -1) exceeds the current valid data length, and internally ignores the FSD's
instructions, preferring instead to acquire the MainResource exclusively.

It appears as though with Version 4.0 of the operating system, the I/O subsystem
designers have realized just how messy, and FSD-dependent, the preceding imple-
mentation is.* Therefore, they implemented the AcquireForModWrite ()
callback, invoked by the FsRtlAccruireFileForModWrite () routine. Your
FSD should acquire the appropriate resources in response to the callback and also
return a pointer to the resource acquired in the ResourceToRelease argument
passed in to your callback. The ReleaseForModWrite () callback will be
invoked later by the VMM and your FSD can use the ResourceToRelease argu-
ment to determine which resource should be released.t

AcquireForCcFlush/ReleaseForCcFlush

This callback was added with Windows NT Version 4.0. It supports invocations to
CcFlushCache () for a file stream by a component other the FSD. As described
in Chapter 8, The NT Cache Manager III, the CcFlushCache () routine can be
invoked (by an FSD) with driver resources either acquired exclusively, or left
unowned. However, if the routine is invoked by a component other than an FSD,
the potential for deadlock exists if FSD resources are not acquired before Cache
Manager or VMM resources.

* The older method implicitly places a lot of faith in the FSRTL's judgment of what is the correct action
to take under the different scenarios in which the routine can he invoked. This is not a particularly ex-
tensible policy, especially with the development of third-party file system implementations whose require-
ments could he very different from what the FSRTL expects. Therefore, letting the FSD determine what
to do in response to the VMM request to preacquire resources is a step in the right direction.
t There is an additional benefit to having a callback into your FSD. You can now safely determine the
thread ID of the modified/mapped page writer thread when the AcquireForModWrite () callback is
issued and store it in the FCB, if you need such information.

552__________________________Chapter 11: Writing a File System Driver III

Your FSD should ensure that appropriate resources have been acquired to
support a subsequent paging I/O, synchronous write operation that will presum-
able soon follow.

Callback Example
In addition to the fast I/O dispatch routines and the fast I/O callbacks to pre-
acquire FSD resources, the FSD also provides callbacks specifically for the use of
the NT Cache Manager read-ahead thread and the lazy-writer thread. A pointer to
an initialized CACHE_MANAGER_CALLBACKS structure is passed in by the FSD
when invoking the CcInitializeCacheMap () routine (described earlier in
Chapter 8). The callback's structure is defined as follows:

typedef struct _CACHE_MANAGER_CALLBACKS {
PACQUIRE_FOR_LAZY_WRITE AcquireForLazyWrite;
PRELEASE_FROM_LAZY_WRITE ReleaseFromLazyWrite;
PACQUIRE_FOR_READ_AHEAD AcquireForReadAhead;
PRELEASE_FROM_READ_AHEAD ReleaseFromReadAhead;

} CACHE_MANAGER_CALLBACKS, *PCACHE_MANAGER_CALLBACKS;

where:
typedef
BOOLEAN (*PACQUIRE_FOR_LAZY_WRITE) (

IN PVOID Context,
IN BOOLEAN Wait

typedef
VOID (*PRELEASE_FROM_LAZY_WRITE) (

IN PVOID Context

typedef
BOOLEAN (*PACQUIRE_FOR_READ_AHEAD) (

IN PVOID Context,
IN BOOLEAN Wait

typedef
VOID (*PRELEASE_FROM_READ_AHEAD) (

IN PVOID Context
) ;
The AcquireForLazyWrite and ReleaseFromLazyWrite callbacks are
invoked by the NT Cache Manager lazy-writer thread to maintain resource acquisi-
tion hierarchy across the Cache Manager and the FSD modules. Similarly, the
AcquireForReadAhead and ReleaseFromReadAhead callbacks are invoked
by the read-ahead component of the NT Cache Manager.

Callback Example _______ _________________________________ 553

By now, you should have a very good understanding of the motivating forces
behind the design and implementation of these callback functions (i.e., to avoid
deadlock situations due to the incorrect sequence of resource acquisitions). Here
are examples of the AcquireForLazyWrite and ReleaseFromLazyWrite
callback functions for the sample FSD:

BOOLEAN SFsdAcqLazyWrite (
IN PVOID Context,
IN BOOLEAN Wait)
{

BOOLEAN ReturnedStatus = TRUE;

PtrSFsdFCB PtrFCB = NULL;
PtrSFsdCCB PtrCCB = NULL;
PtrSFsdNTRequiredFCB PtrReqdFCB = NULL;

// The context is whatever we passed to the Cache Manager when invoking
// the CcInitializeCacheMaps () function. In the case of the sample FSD
// implementation, this context is a pointer to the CCB structure.

ASSERT (Context) ;
PtrCCB = (PtrSFsdCCB) (Context) ;
ASSERT(PtrCCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_CCB) ;

PtrFCB = PtrCCB->PtrFCB;
ASSERT (PtrFCB) ;
PtrReqdFCB = & (PtrFCB->NTRequiredFCB) ;

// Acquire the MainResource in the FCB exclusively. Then, set the
// lazy-writer thread id in the FCB structure for identification when
// an actual write request is received by the FSD.
// Note: The lazy-writer typically always sets WAIT to TRUE.
if (!ExAcquireResourceExclusiveLite(& (PtrReqdFCB->MainResource) ,

Wait)) {
ReturnedStatus = FALSE;

} else {
// Now, set the lazy-writer thread id.
ASSERT (! (PtrFCB->LazyWriterThreadID)) ;
PtrFCB->LazyWriterThreadID = (unsigned int) (PsGetCurrentThread()) ;

// If your FSD needs to perform some special preparations in
// anticipation of receiving a lazy-writer request, do so now.

return (ReturnedStatus) ;

void SFsdRelLazyWrite(
IN PVOID Context)
{

BOOLEAN ReturnedStatus = TRUE;

PtrSFsdFCB PtrFCB = NULL;

554__________________________Chapter 11: Writing a File System Driver HI

PtrSFsdCCB PtrCCB = NULL;
PtrSFsdNTRequiredFCB PtrReqdFCB = NULL;

// The context is whatever we passed to the Cache Manager when invoking
// the CcInitializeCacheMaps() function. In the case of the sample FSD
// implementation, this context is a pointer to the CCB structure.

ASSERT(Context);
PtrCCB = (PtrSFsdCCB)(Context);
ASSERT(PtrCCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_CCB);

PtrFCB = PtrCCB->PtrFCB;
ASSERT(PtrFCB);
PtrReqdFCB = &(PtrFCB->NTRequiredFCB);

// Remove the current thread id from the FCB and release the
// MainResource.
ASSERT((PtrFCB->LazyWriterThreadID) ==

(unsigned int)PsGetCurrentThreadt));
PtrFCB->LazyWriterThreadID = 0;

// Release the acquired resource.
SFsdReleaseResource(&(PtrReqdFCB->MainResource));

// Your FSD should undo whatever else seems appropriate at this time.

return;
}
Typically, the Cache Manager lazy-writer and read-ahead threads always set Wait
to TRUE before invoking the FSD callback routines.

Dispatch Routine: Flush File Buffers
The flush file buffers dispatch routine is invoked by a user process to try to
ensure that all of the cached information for a file stream or for a group of files
has been either written out to secondary storage or flushed across the network to
the server node.

Logical Steps Involved
The following logical steps are executed by a file system upon receiving a flush
file buffers request:

1. The file system driver must obtain pointers to internal data structures for the
object on which the flush file buffers operation has been requested.

The flush file buffers invocation can be made for three types of objects:

Dispatch Routine: Flush File Buffers_______________________________555

— An open file stream (ordinary file)

— An open directory

— An open volume object representing the mounted logical volume

The FSD typically has different responses for a flush request on each of these
object types.

2. If the flush buffers request is for an open file stream, the FSD should typically
acquire the FCB exclusively and request that the Cache Manager flush the
system cache for the file stream synchronously.

3. If the flush buffers request is on an open directory object, most FSD imple-
mentations simply return success without really doing anything.

The exception to this is if the flush request is made for the root directory of
the mounted logical volume. In this case, an FSD should treat the request as if
it were a flush request for all open files on the mounted volume. The next
step outlines the FSD's response in this situation.

4. If the flush buffers request is made for an open volume object, the FSD
should try to flush all open file streams on the mounted logical volume to
secondary storage devices.

Typically, the caller would like to ensure that cached information for modi-
fied files residing on the logical volume being flushed is written out to
secondary storage before this routine returns control. This is the behavior
implemented by the native NT file system drivers as well. Note that a flush
buffers request on the root directory is always treated in the same manner as
a flush buffers request on the volume object representing a mounted logical
volume.

5. Finally, it would be prudent for the FSD to pass the flush file buffers request
on to the lower-level disk/network drivers, ensuring that any requests queued
there would be processed immediately.

The following pseudocode illustrates how your FSD could implement the flush
file buffers dispatch routine. Note that the code assumes the data structures to be
those defined by the sample FSD. You can, however, substitute your own data
structures (and associated fields) quite easily instead:

get pointer to FCB/VCB from file object;
if (VCB) {

flush the volume;
(this involves flushing all open file streams (see below for example),
updating the directory entries, updating timestamp values,
flushing directories, flushing log files, flushing bitmaps,
and any other in-memory information that you may wish to write
to disk)

} else {

556 __________________________ Chapter 11: Writing a File System Driver HI

if (PtrFCB->FCBFlags & SFSD_FCB_ROOT_DIRECTORY) {
// Treat this exactly the same as a flush volume request.
flush the volume;

} else if (! (PtrFCB->FCBFlags & SFSD_FCB_DIRECTORY)) {
// Flush the file stream from the system cache.
// Note that the following operation is inherently synchronous;
// therefore, if the caller did not wish to block, you should
// have posted the request earlier.
PtrReqdFCB = & (PtrFCB->NTRequiredFCB) ;
CcFlushCache(&(PtrReqdFCB->SectionObject) , NULL, 0,

& (PtrIrp->IoStatus)) ;
// Results of the operation are returned by the Cache Manager
//in the loStatus structure.
RC = PtrIrp->IoStatus . Status;
// All done as far as the Cache Manager is concerned.
// Now, you may wish to update the associated directory
// entry for the file stream (e.g., with the latest file
// size, timestamp values, etc.) and flush that to disk.

}
// We ignore flush requests for normal directories (just as the
// native FSD implementations do).

// Now that the FSD has completed performing its processing, you
// should forward the flush request to lower-level drivers.
// CAUTION: Some drivers will return STATUS_INVALID_DEVICE_REQUEST
// to you. You should "eat-up" that error and simply return the actual
// status from your flush attempts to the caller. To do this you will
// also have to set a completion routine before invoking the lower-level
// driver.

Dispatch Routine: Volume Information
There are two kinds of volume information requests that your FSD should handle:

• Requests to get (query) volume information

• Requests to set (modify) volume information

Let us examine the logical steps involved in processing each of these two types of
volume information requests.

Logical Steps Involved
The I/O stack location contains the following structures relevant to processing the
query volume information and the set volume information requests issued to an
FSD:

typedef struct _IO_STACK_LOCATION {

Dispatch Routine: Volume Information_____________________________557

union {

// System service parameters for: NtQueryVolumelnformationFile
struct {

ULONG Length;
FS_INFORMATION_CLASS FslnformationClass;

} QueryVolume;

// System service parameters for: NtSetVolumelnformationFile
struct {

ULONG Length;
FS_INFORMATION_CLASS FslnformationClass;

} SetVolume;

// . . .
} Parameters;

} IO_STACK_LOCATION, *PIO_STACK_LOCATION;

The type of volume information request dispatched to an FSD can be determined
by examining the major function code contained in the request packet. The two
major function codes of interest are IRP_MJ_QUERY_VOLUME_INFORMATION
and IRP_MJ_SET_VOLUME_INFORMATION. Of course, your FSD could have
separate dispatch routines to handle each kind of volume information request,
unlike the sample FSD presented in this book, in which case the appropriate
request type would be dispatched to the correct file system driver function.

IRP_MJ_QUERY_VOL UME^INFORMATION
The I/O Manager identifies the kind of information requested in the FS_
INFORMATION_CLASS enumerated type value, supplied in the current stack loca-
tion of the query volume information IRP. Note that the Windows NT I/O
subsystem allows any caller to obtain logical volume information. Furthermore,
the caller can supply a handle to any open object associated with the logical
volume (i.e., a file object representing an open instance of the logical volume
itself, a file object representing an open instance of a file or directory contained in
the logical volume, or a file object representing an open instance of the target
device on which the logical volume has been mounted).

The following volume information request types should be supported by your
FSD:

FileFsVolumelnf ormation (enumerated type value = 1)
The caller expects information about the volume to be returned in the FILE_
FS VOLUME INFORMATION structure:

558__________________________Chapter 11: Writing a File System Driver III

typedef struct _FILE_FS_VOLUME_INFORMATION {
LARGE_INTEGER VolumeCreationTime;
ULONG VolumeSerialNumber;
ULONG VolumeLabelLength;
BOOLEAN SupportsObjects;
WCHAR VolumeLabel[1];

} FILE_FS_VOLUME_INFORMATION, *PFILE_FS_VOLUME_INFORMATION;
The fields are quite self-explanatory. The serial number is expected to be a
unique integer value identifying the mounted logical volume. The volume
label can be any string identifier associated with the logical volume. Note that
it is possible that the buffer supplied by the caller may not be large enough to
contain the entire volume label, in which case your FSD should copy over as
much of the label as it can and return a status code of STATUS_BUFFER_
OVERFLOW, indicating to the caller that not all of the information could be
returned.

FileFsSizelnformation (enumerated type value = 3)
The caller expects information about the volume to be returned in the FILE_
FS_SIZE_INFORMATION structure:
typedef struct _FILE_FS_SIZE_INFORMATION {

LARGE_INTEGER TotalAllocationUnits;
LARGE_INTEGER AvailableAllocationUnits;
ULONG SectorsPerAllocationUnit;
ULONG BytesPerSector;

} FILE_FS_SIZE_INFORMATION, *PFILE_FS_SIZE_INFORMATION;
As you can see, the kind of information expected by the caller is fairly
generic and your FSD should be able to return some kind of sensible values
that can translate into a valid total volume size.*

FileFsDevicelnf ormation (enumerated type value = 4)
The caller expects to receive information about the type of physical or logical
device on which the logical volume has been mounted:
typedef struct _FILE_FS_DEVICE_INFORMATION {

DEVICE_TYPE DeviceType;
ULONG Characteristics;

} FILE_FS_DEVICE_INFORMATION, *PFILE_FS_DEVICE_INFORMATION;
The DeviceType field value can be set by your FSD to an appropriate
device type. For example, CDFS specifies the DeviceType value as FILE_
DEVICE_CD_ROM, while FASTFAT and NTFS use FILE_DEVICE_DISK
instead. For a network redirector, the DeviceType field can be set to an
appropriate value depending upon the type of connection made. If, for
example, the query volume information request is issued using a file object

* For read-only volumes (e.g., for those managed by CDFS), the AvailableAllocationUnits value
is set to 0.

Dispatch Routine: Volume Information____________ _______________555

representing an open instance of the network redirector itself, the value could
well be set to FILE_DEVICE_NETWORK_FILE_SYSTEM.

The Characteristics field should be set to an appropriate value from the
following (one or more flag values can be set):
// Volume mounted on removable media.
#define FILE_REMOVABLE_MEDIA 0x00000001
#define FILE_READ_ONLY_DEVICE 0x00000002
#define FILE_FLOPPY_DISKETTE 0x00000004
#define FILE_WRITE_ONCE_MEDIA 0x00000008
#define FILE_REMOTE_DEVICE 0x00000010
ttdefine FILE_DEVICE_IS_MOUNTED 0x00000020
tfdefine FILE_VIRTUAL_VOLUME 0x00000040
Note that if you have designed a network redirector and if you set the FILE_
REMOTE_DEVICE flag in the Characteristics field, the logical volume
cannot be reshared across the LAN Manager Network.

FileFsAttributelnformation (enumerated type value = 5)
The structure used to request file system attribute information is defined as
follows:
typedef struct _FILE_FS_ATTRIBUTE_INFORMATION {

ULONG FileSystemAttributes;
LONG MaximumComponentNameLength;
ULONG FileSystemNameLength;
WCHAR FileSystemName[l];

} FILE_FS_ATTRIBUTE_INFORMATION, *PFILE_FS_ATTRIBUTE_INFORMATION;

The file system attributes can be one or more of the following (note that addi-
tions to these values are likely with different versions of the operating system
that add additional functionality):
#define FILE_CASE_SENSITIVE_SEARCH 0x00000001
ttdefine FILE_CASE_PRESERVED_NAMES 0x00000002
#define FILE_UNICODE_ON_DISK 0x00000004
#define FILE_PERSISTENT_ACLS 0x00000008
#define FILE_FILE_COMPRESSION 0x00000010
#define FILE_VOLUME_IS_COMPRESSED 0x00008000
NTFS, for example, sets all of these attribute values except for the FILE_
VOLUME_IS_COMPRESSED.

The MaximumComponentNameLength field is typically set to 255 characters
by most native FSD implementations. Your FSD can set this field to any appro-
priate value. The FileSystemName field simply identifies the current FSD
processing the request. NTFS, for example, will set the contents of the buffer
to NTFS.

If the buffer supplied by the caller is too small to contain all of the informa-
tion your FSD wishes to return, your driver should return the STATUS_

560__________________________Chapter 11: Writing a File System Driver III

BUFFER_OVERFLOW return code and copy in as many bytes of information
as it possibly can.

There are other volume information request types that have not yet been fully
implemented by the I/O Manager, and they are not yet completely supported,
even by the native FSD implementations. For example, there are query volume
information types such as FileFsQuotaQuerylnformation (enumerated type
value = 6 in Version 3.51 and value = 7 in Version 4.0) and a corresponding
FileFsQuotaSetlnformation (enumerated type value = 7 in Version 3-51
and value = 8 in Version 4.0), which will become part of the set volume informa-
tion request. Your FSD should currently return STATUS_INVALID_PARAMETER
for all query volume information request types other those previously defined.

The sequence of steps followed in processing a query volume information request
is extremely simple:

1. Obtain a pointer to the volume control block for which the request operation
has been dispatched.

2. Acquire the VCB shared.

3. Find out the type of information requested and get a pointer to the caller-
supplied buffer from the current stack location.

The following fields give you this information:

— The Parameters.QueryVolume.FsInformationClass field from
the current stack location will tell you the type of information requested.

— The I/O Manager always supplies a system virtual address for a buffer
allocated by the I/O Manager.

A pointer to this buffer can be obtained from the Associatedlrp. Sys-
temBuf fer field in the IRP. The length of this buffer is given by the
Parameters . QueryVolume. Length field in the current stack location.

4. Ensure that the length of the buffer supplied is at least equal to the size of the
associated structure (appropriate for the type of volume information request).

If the amount of information your FSD returns exceeds the length of the
supplied buffer, then return STATUS_BUFFER_OVERFLOW after filling in as
much information as the supplied buffer can contain.

5. Complete the IRP after releasing any resources that were acquired.

IRP_MJ_SET_VOL UMEJNFORMATION
A user can also request that volume attributes should be modified. Currently, the
only set volume information type request that your FSD should consider
supporting is a request to set the label for the logical volume. This label is a string

Dispatch Routine: Volume Information_____________________________561

identifier, supplied by the user so as to be able to identify the volume more
easily. Although other set volume information request types have been defined
(e.g., FileFsQuotasetlnformation), they have not been well-defined yet,
and they are not supported by the native FSD implementations.

The sequence of steps executed in response to a set volume information request
closely mirrors those followed by the query volume information described
previously.

1. The FSD obtains a pointer to the VCB from the file object supplied with the
request.

2. The VCB should be acquired exclusively.

3. The type of request and a pointer to the caller supplied buffer can be
obtained from the IRP.

The request type for a set volume information request can be determined
from the Parameters.SetVolume.FsInformationClass field in the
current I/O stack location. Currently, the only legitimate request type is
FileFsLabellnf ormation (enumerated type value = 2). The type of struc-
ture passed in by the caller for this request type is defined as follows:
typedef struct _FILE_FS_LABEL_INFOKMATION {

ULONG VolumeLabelLength;
WCHAR VolumeLabel[1];

} FILE_FS_LABEL_INFORMATION, *PFILE_FS_LABEL_INFORMATION;

A pointer to the system buffer allocated by the I/O Manager can be obtained
from the Associatedlrp. SystemBuf fer field in the IRP. The length of
the system-allocated buffer can be obtained from the Parameters. Set-
Volume . Length field.

4. After validating that the length of the caller-supplied buffer is correct, the FSD
should perform appropriate operations to update the label (string) associated
with the logical volume.

5. If the request type is anything other than what is supported by the FSD, an
error code of STATUS_INVALID_PARAMETER should be returned to the
caller.

6. The IRP can now be completed after releasing the VCB resource.

The actual code implementing a query/set volume information request is very
similar to that shown in Chapter 10, Writing A File System Driver II, for handling
query/set file information requests. Study that code example for details on how
the FSD should structure the query/set volume information dispatch entry routine
to execute the logical steps previously detailed.

562__________________________Chapter 11: Writing a File System Driver III

Dispatch Routine: Byte-Range Locks
Windows NT supports mandatory byte-range file locks. The term mandatory
implies that it is the responsibility of the FSD to ensure that access to a byte range
by a thread during I/O operations is validated against any byte-range locks that
have been granted for the file stream. Therefore, two or more threads do not have
to actively cooperate in order to synchronize access to the file stream; as long as
one of the threads is careful about obtaining the appropriate byte-range locks on
the file, it can be ensured that data access (read or write) by any other thread
belonging to other processes will be closely monitored. If such access is not
allowed by the nature of the lock granted (and depending on the type of access
requested), the FSD will deny the I/O operation with an error code of STATUS_
FILE_LOCK_CONFLICT.

The native NT FSD implementations do not appear to check for byte-range lock
conflicts encountered during paging I/O operations. However, if your FSD is even
stricter about checking for locked byte ranges and returns the STATUS_FILE_
LOCK_CONFLICT error code to the VMM, the VMM, in turn, will either raise an
exception, informing the caller about the error, if this happened to be synchro-
nous paging I/O request; or will pop up an error message box, indicating loss of
write-behind data in the case of an asynchronous I/O write operation.

Byte-range locks in general are associated with processes and not with individual
threads within a process. Therefore, if a single thread in the process acquires a
specific byte-range lock, this will not prevent other threads within the same
process from continuing to access the locked byte range even if the type of
access performed conflicts with the nature of the granted byte-range lock. The
byte lock obtained will prevent conflicting accesses by threads belonging to
processes other than the one that obtained the lock.

NOTE It is possible for threads -within a process to obtain thread-specific
byte-range locks by specifying a Key value when performing the
lock operation. The Key argument is described later in this section.
However, you should note that this method is often employed by a
thread to ensure that the byte-range can be accessed only in a very
selective manner by other threads.

The Windows NT I/O subsystem defines the following kinds of byte-range locks:

Read locks obtained for a specific byte range
Multiple processes can potentially obtain a read lock concurrently for the
same byte range or for an overlapping byte range on the same file stream.
The read lock simply guarantees the caller that no write/modify operations

Dispatch Routine: Byte-Range Locks______________________________ 563

are allowed on the file stream as long as the read lock is maintained by the
process.

Write (exclusive) lock obtained for a byte range
Write locks are exclusive locks (i.e., once a process acquires a write lock for
a specific byte range, no other process is allowed either to read or write in
that byte range). By definition, granted write locks are non-overlapping.

Different processes can concurrently lock different byte ranges in the same file
stream. It is also quite possible (and not at all unusual) for a thread to obtain a
byte-range lock starting and/or extending well beyond the current end-of-file.
This is simply a means whereby the process can ensure that appending the file
stream can be performed in some sort of synchronized fashion.

Note that byte-range locking can possibly allow a process to synchronize access
to the byte stream even across multiple nodes, as long as the network protocol
providing remote file system access supports the byte-range locking protocol. For
example, the LAN Manager redirector client and server support the byte-range
locking protocol. The NFS (Network File System) protocol supports only advisory
byte-range locks, whereas the DPS (Distributed File System) protocol can be used
to obtain mandatory file locks.

It may be obvious to you by now that supporting byte-range file locks is not
really an FSD-specific operation. In fact, it can be implemented in a fairly generic
fashion, allowing multiple, installable file systems to take advantage of common
code. The Windows NT I/O subsystem designers recognized this and have actu-
ally implemented file-lock-supporting code in the FSRTL. These routines are used
by the native NT FSD implementations. Unfortunately, for reasons that seem
incomprehensible, the developers do not want to encourage third-party FSD
designers to take advantage of such support provided in the FSRTL. This may (I
hope) change in the future.

In this section, we saw how to provide support for file lock operations if you
have to implement such support yourself. Obviously, if any FSD-independent
code is provided by Microsoft for the support of byte-range lock requests, you
should utilize that code instead.

Type of File Lock Requests Received by an FSD
Broadly speaking, the FSD will receive two types of requests related to byte-range
lock operations:

Requests to obtain a byte-range lock for a file stream
The request could specify either a read or a write lock. Furthermore, the
caller could specify either a blocking or nonblocking lock request. If the

564__________________________Chapter 11: Writing a File System Driver III

caller agrees to block, the IRP describing this request is not completed until
the lock is granted or the IRP is canceled (which could be due to the caller
closing the file handle). If the caller does not wish to wait for the lock to be
granted and if some other thread has already acquired a conflicting lock that
would prevent the current request for a byte-range lock from being
completed successfully, an error code of STATUS_LOCK_NOT_GRANTED is
returned to the caller.

Requests to unlock one or all byte-range locks acquired by the process for a specific
file object

The caller can request that a specific, uniquely identifiable locked byte range
be unlocked, or the caller can request that all byte-range locks on the file
stream acquired using a specific file object and owned by the calling process
be unlocked.

When a process closes all open handles associated with a file object for a file
stream, if the process had ever acquired any byte range locks using that file
object on the file stream, the I/O Manager will issue an unlock-all type of
byte-range unlock request on the file stream, on behalf of the process closing
the handle to the file stream. Similarly, whenever an FSD receives a cleanup
request on a file stream for a specific file object, the FSD is expected to auto-
matically unlock all byte-range locks that may have been acquired by the
calling process using the file object for which the cleanup is being received.*

Lock requests

The lock request is dispatched to the FSD dispatch routine serving as the IRP_
MJ_LOCK_CONTROL major function entry point. The lock request is distinguished
by a minor function code of IRP_MN_LOCK. The arguments supplied to the FSD
as part of the lock request are as follows:

Pointer to the file object
The FSD can easily obtain the file object pointer from the IRP for the open
file stream on which the lock operation has been requested. Note that most
FSD implementations will reject a byte-range file lock request if the object on
which the lock has been requested is not an open, ordinary file. Therefore,
directories, open logical volumes, and other such open objects typically
cannot be locked with byte-range locks.

* There is a subtle point here that you must be aware of: the FSD must not unlock all byte-range locks
owned by the process on the file stream associated with the file object on which the cleanup request has
been received. Rather, only those byte-range locks must be unlocked for which the file object and the
process ID both match.

Dispatch Routine: Byte-Range Locks_______________________________565

ByteOffset
The starting offset for the lock request. This is contained in the Parame-
ters .LockControl .Length field in the current stack location for the I/O
request packet. As noted earlier, this offset could be well beyond the current
end-of-file.

Length
The number of bytes that should be locked for the file stream. Once again,
note that the ByteOffset value plus the Length value could extend well
beyond the current end-of-file. This is a legitimate situation for lock requests.

Key
This is an unsigned long value that the requesting thread can associate with
the lock to be granted. If the lock is granted, subsequent accesses to the byte
range will only be allowed if the process ID and the key value match. You
may recall from the discussion on read/write requests, presented in Chapter
9, Writing a File System Driver 7, that the requesting thread can supply a Key
argument with the I/O request. That argument is subsequently used when
checking whether or not the I/O request will be allowed to proceed.

This is a method where a thread in a process can potentially exclude even
other threads in the same process from accessing the locked byte range.

Process ID
Although not explicitly supplied as part of the IRP sent to the FSD, the FSD
can easily determine the current process ID for the process requesting the
lock operation, by using the loGetRequestorProcess () I/O Manager
service routine. This routine accepts a pointer to the IRP as an argument and
returns a pointer to the process structure (of type PEPROCESS).

Fai1Immediately
This BOOLEAN value can be obtained by checking for the presence of the SL_
FAIL_IMMEDIATELY flag in the Flags field of the current stack location in
the IRP. The presence of the flag indicates that Fail Immediately should
be set to TRUE, which in turn means that the caller would not like to wait if
the lock cannot be immediately granted.

The absence of the flag indicates that the caller does not mind waiting for the
lock request to be granted at some later time. In this case, set the value of
Faillmmediately to FALSE.

WriteLockRequested
The presence of the SL_EXCLUSIVE_LOCK flag in the Flags field of the
current I/O stack location indicates that the caller wishes an exclusive (write)
lock for the byte range specified. In this case, set the value of WriteLockRe-
ques ted to TRUE.

566__________________________Chapter 11: Writing a File System Driver HI

The absence of the SL_EXCLUSIVE_LOCK flag indicates that the caller
wishes to obtain a read (shared) byte-range lock only, and therefore the value
of WriteLockRequested should be set to FALSE.

Unlock requests

The unlock request is distinguished by any one of the following minor function
code values:

IRP_MN_UNLOCK_SINGLE
The FSD must unlock only one byte-range lock. The lock that would be
unlocked (if found) is the single matching lock for which all of the following
passed-in parameters match:

— Process ID associated with the lock, identifying the owner of the byte-
range lock

— File object

— Starting offset

— Length in bytes of the locked range

— Key value

If any of the parameters listed here do not match, then no unlock operation
will be performed.

IRP_MN_UNLOCK_ALL
This is the brute-force approach employed by a process to unlock all of the
byte-range locks acquired by any thread associated with the process using the
target file object. In response to this request, the FSD will unlock all byte-
range locks for which the following match:

— Process ID associated with the lock, identifying the owner of the byte-
range lock

— File object

This request is typically sent by the I/O Manager to an FSD when a process
closes all open handles associated with a file object, but there are other open
handles associated with the same file object belonging to other processes. If
all handles for a file object have been closed, the I/O Manager skips sending
the unlock-all request, since the expectation is that the FSD will generate this
request internally in response to a cleanup request received by the file system
driver.

IRP_MN_UNLOCK_ALL_BY_KEY
A thread or a process can unlock all byte-range locks for a file object owned
by all threads belonging to the process, as long as the supplied key value and
the key stored with the byte-range lock match. Typically, this method is

Dispatch Routine: Byte-Range Locks_______________________________557

slightly less brute-force than the previous one, since this can also be used by
a thread to close a specific set of byte-range locks all identified by the same
key value.

In response to this request, the FSD will unlock byte-range locks for which all
of the following match:
— Process ID associated with the lock, identifying the owner of the byte-

range lock

— File object

— Key value

In order to determine the parameters supplied with the unlock IRP, use exactly
the same fields (and methods) as described earlier for the lock request operations.

Structures Required for File Lock Support
To implement byte-range lock support in your FSD, you will typically require
some variation of the following structures:

typedef struct SFsdFileLockAnchor {
LIST_ENTRY GrantedFileLockList;
LIST_ENTRY PendingFileLockList;

} SFsdFileLockAnchor, *PtrSFsdFileLockAnchor;

typedef struct SFsdFileLocklnfo {
SFsdldentifier Nodeldentifier;
uint32 FileLockFlags;
PVOID OwningProcess;
LARGE_INTEGER StartingOffset;
LARGE_INTEGER Length;
LARGE_INTEGER EndingOffset;
ULONG Key;
BOOLEAN ExclusiveLock;
PIRP PendingIRP;
LIST_ENTRY NextFileLockEntry;

} SFsdFileLocklnfo, *PtrSFsdFileLockInfo;

ttdefine SFSD_BYTE_LOCK_NOT_FROM_ZONE (0x80000000)
•define SFSD_BYTE_LOCK_IS_PENDING (0x00000001)

Typically, you should embed an SFsdFileLockAnchor structure into the FCB
for the file stream. This structure serves as a list anchor for the following two
linked lists:

• A list containing SFsdFileLocklnfo structures, each of which represents a
granted lock for the file stream

• A list containing SFsdFileLocklnfo structures, each of which represents a
pending lock for the file stream

568 __________________________ Chapter 1 1: Writing a File System Driver III

The SFsdFileLocklnfo structure represents an instance of a granted or
pending byte-range lock request. An instance of this request is allocated when-
ever a byte-range lock request is received. The structure is freed only when the
lock is failed immediately, the IRP is canceled (or the file handle closed) while
the lock request is still queued, or an unlock operation is eventually received for
a granted file lock. The OwningProcess, StartingOf f set, Length, Key,
and ExclusiveLock fields are initialized based upon information supplied in
the byte-range lock request as described earlier.

The PendinglRP field is only valid when the request has been queued, awaiting
an unlock operation. This field then points to the IRP received containing the byte-
range lock request for which STATUS_PENDING was returned. The Ending-
Offset field contains a value that is computed and stored for convenience.

The NextFileLockEntry field is used to queue the SFsdFileLocklnfo
structure to either the GrantedFileLockList or the PendingFileLockList
in the SFsdFileLockAnchor structure contained in the FCB for the file stream
on which the lock operation has been requested.

The FileLockFlags field is used internally to determine where the structure
has been allocated from and also to mark a pending lock request for easy
identification.

Logical Steps Involved
The I/O stack location contains the following structure relevant to processing the
lock control request issued to an FSD:

typedef struct _IO_STACK_LOCATION {

union {

// System service parameters for: NtLockFile/NtUnlockFile
struct {

PLARGE_INTEGER Length;
ULONG Key;
LARGE_INTEGER ByteOffset;

} LockControl;

} Parameters ;

IO_STACK_LOCATION, *PIO_STACK_LOCATION;

Dispatch Routine: Byte-Range Locks_______________________________569

Processing a file lock or unlock request is quite a simple operation to implement.
The following steps outline the processing required for file lock operations:

1. Obtain the parameters described earlier that are supplied with a typical byte-
range lock request.

2. Obtain FSD-specific pointers to the FCB and CCB structures for the file stream.

3. Acquire the FCB MainResource exclusively.
4. Allocate and initialize a new SFsdFileLocklnfo structure to contain the

caller-supplied parameters.
5. Check if any conflicting locks have been previously granted.

For an exclusive lock request, the FSD must check if any portion of the
requested byte range overlaps with a byte range on which a file lock had
been previously granted. To check this, the FSD can simply scan through all
of the granted file locks identified by the SFsdFileLocklnfo structures
linked to the GrantedFileLockList in the FCB.
For a shared lock request, the FCB should ensure that no portion of the
requested byte range overlaps with a previously granted exclusively locked
range. Overlaps with previously granted shared byte-range locks are accept-
able if the current request also wants to obtain a lock for shared (read) access.

6. If no conflict has been found, queue the SFsdFileLocklnfo structure to
the GrantedFileLockList to indicate that a new file lock has been
granted and complete the IRP with STATUS_SUCCESS returned to the caller.

7. If a conflict is detected, check whether the caller is prepared to wait to obtain
the file lock.
If the caller is not prepared to wait (i.e., if Fail Immediately is set to
TRUE), then complete the IRP with a status code of STATUS_LOCK_NOT_
GRANTED. Otherwise, queue the IRP to the PendingFileLockList list
anchor, contained within the SFsdFileLockAnchor structure in the FCB.
To properly queue the request, initialize the PendingIRP field in the SFsd-
FileLocklnfo structure to point to the IRP sent to the FSD by the I/O
Manager for the file lock request. Also set the SFSD_BYTE_LOCK_IS_
PENDING flag value in the FileLockFlags field. Mark the IRP itself as
pending, set a cancellation routine for the IRP, and return a status code of
STATUS_PENDING to the I/O Manager.

The expectation is that for queued lock requests, the FSD will complete the
request whenever the lock is granted (i.e., whenever the conflicting condi-
tions have been removed).

570__________________________Chapter 11: Writing a File System Driver III

8. If any file locks have been granted, be sure to update the IsFastloPos-
sible field value to FastloIsNotPossible in the CommonFCBHeader
for the file stream.

9. Release the FCB MainResource and return control back to the I/O Manager.

To process a byte-range unlock request, the FSD typically performs the following
logical steps:

1. Obtain required parameters, depending upon the type of unlock request.
For example, for a IRP_MN_UNLOCK_SINGLE request, the FSD must get all
of the information, described earlier, that is required to uniquely identify the
single byte-range lock for which the unlock request has been received.
However, for the case of IRP_MN_UNLOCK_ALL, the FSD simply needs to
identify the process requesting the unlock operation and the file object for
which the unlock operation has been requested.

2. Obtain FSD-specific pointers to the FCB and CCB structures for the file stream.

3. Acquire the FCB MainResource exclusively.

4. Scan through all of the SFsdFileLocklnfo structures linked to the Grant-
edFileLockList list head in the FCB.
The intent here is simple. If any matching file-lock structures are encountered,
the unlock operation is processed for the structure. Processing the unlock
operation is simple since it only involves unlinking the structure from the
GrantedFileLockList and freeing up the allocated structure.

WARNING Whenever the unlock-all request is issued to the FSD, your driver
must perform one additional step. It must scan through the Pend-
ingFileLockList, searching for any pending, matching file-lock
requests. If such requests are found, your driver must complete the
pending IRP (waiting for the byte-range lock) after removing any
cancellation routine that may have been set, and then the FSD
should unlink the SFsdFileLocklnfo structure from the Pend-
ingFileLockList linked list and free it.

5. Go through all of the entries in the PendingFileLockList to see if any
locks can now be granted.

Since some unlock operations may have been performed in the preceding
step, the FSD should now scan through the list of pending lock requests to
see if any of them can be granted. If any such request can be granted, the
pending IRP associated with the request should be completed with STATUS_
SUCCESS after any cancellation routine that may have been specified is
unset. The SFsdFileLocklnfo structure for the pending request (that has

Opportunistic Locking________ ____ ____________ ___ ________577

now been granted) should also be moved from the PendingFileLockList
to the GrantedFileLockList (and the SFSD_BYTE_LOCK_IS_PENDING
flag should be cleared).

6. If all granted file locks have been removed, be sure to update the IsFastlo-
Possible field value to FastloIsPossible or Fastlolscruestion-
able in the CommonFCBHeader for the file stream.

Note that the actual value will depend on the state of the opportunistic locks
associated with the FCB.

7. Release the FCB MainResource and return control back to the I/O Manager.

If your FSD follows this simple sequence of steps for lock control operations, you
should be able to successfully implement byte-range lock support in your file
system driver implementation.

Opportunistic Locking
Opportunistic locks (oplocks, for short), simply stated, are guarantees made by a
network LAN Manager server node to one or more LAN Manager client nodes
about the types of file stream accesses that will be allowed on a specific file
stream. They are currently valid only within the LAN Manager network environ-
ment and allow a client to perform some type of local node caching, knowing
that it will be protected from returning stale data to the user because of the pres-
ence of these guarantees.

For example, consider a situation where a server on node sen>er_nodel shares a
local drive letter X:. Furthermore, imagine that a user on node client_nodel
connects to this shared drive letter using the LAN Manager network and opens a
regular file foo for both read and write access. In the absence of any server guar-
antees on the file stream foo, every read operation made by the user thread on
the client node would result in the LAN Manager redirector having to issue a
network read request to obtain the latest data from the server node. The LAN
Manager server software, in turn, would have to request the file data from the
local file system driver managing the shared logical volume corresponding to the
drive letter X:. As you could imagine, this would lead to extremely slow access
(and therefore a small throughput value) for the user on the client node.

Similarly, every write operation performed by the user on the client node would
result in the LAN Manager redirector having to send the updated data to the
server node across the network. The LAN Manager server software, in turn, would
have to issue the write to the local file system managing the shared logical
volume corresponding to the drive letter X: on which the file stream foo resides.

572 __ ________ Chapter 11: Writing a File System Driver HI

You can also imagine what this kind of data transfer would do in terms of satu-
rating your network.

Needless to say, the LAN Manager redirector code on the client node could not
hope to use the services of the NT Cache Manager at all, since data could never
be cached locally.

To avoid this sort of constant data transfer to and from the client and server
nodes participating in a LAN Manager network, the network protocol designers
invented a crude form of cache support built into the protocol called opportu-
nistic locking. This caching protocol allows the LAN Manager server to make one
of three kinds of guarantees to the network redirector software on one or more
client nodes:

• If an exclusive oplock is granted to a client node for a file stream, the client
node is assured that no other thread, either executing locally on the server or
on any other client node, will be allowed to access (or even open) the file
stream for which the exclusive oplock has been obtained.

Consider a client node that requests an open operation of file foo on shared
drive letter X: served (say) by the sample FSD on the server. In response to
the client node's open request made by the LAN Manager server locally on
the server node (issued on behalf of the thread of the client that has actually
requested the open), the sample FSD will create FCB and CCB structures, and
also initialize the file object structure passed in by the I/O Manager. Note that
this is no different from any other regular open operation except that the
request originates on the server node in the LAN Manager server software
(which executes in kernel mode) on behalf of a network client.

Now, also imagine that after the open operation completes, the LAN Manager
server asks the sample FSD to issue an exclusive oplock for the file stream
foo. Imagine also that the sample FSD participates in the oplock protocol
implementation, and therefore agrees to the request. Now, it is the responsibil-
ity of the sample FSD to notify the LAN Manager server whenever any thread
requests an open for the file stream foo for either read or write access.* The
reason for this is as follows: when the local FSD (in our case, the sample
FSD) grants an oplock to the LAN Manager server on the server node, the
server software, in turn, grants the oplock to the network redirector client.
For the exclusive oplock, this assures the client that no other thread is
actively reading or writing the same file stream. Now, the client software on
the remote client node can cache file stream data on the remote node without
having to worry about data consistency issues.

* For an exclusive oplock, the FSD is allowed to let threads open the file stream without breaking the
oplock if they only open the file for read attributes and/or write attribute access.

Opportunistic Locking_______________________________________573

Read caching
The network redirector client obtains file stream data from the server
node and then satisfies all read requests from the user thread locally.
Data could even be returned directly from the system cache in this
situation.

Write caching
The user thread could modify the data for the file stream and the network
redirector client would simply cache the modified data in the system
cache on the remote node, from which it would be asynchronously
written out every once in awhile.

As you can see, having an exclusive oplock on a file stream can improve net-
work throughput tremendously.

What happens when another thread, either from the same client node, from
some other client node, or locally from the server node also tries to open file
foo for read and/or write access? The local FSD that granted the oplock (in
our case, the sample FSD) will have to break the oplock (i.e., inform the LAN
Manager server that it should, in turn, inform the client that the client can no
longer run amuck with the file data). Since this is an exclusive oplock, where
the client may actually have modified data cached remotely, the local FSD
must then wait for the client node to flush (and purge) all cached information
to the server. The flush results in write requests being issued to the local FSD
from the server software on behalf of the remote client. Eventually, all of the
data is updated on the server node, and the local FSD on the server can allow
the new open to proceed. The client is also now aware that it no longer has
exclusive access to the file stream and will therefore not try to modify the
data remotely and keep it cached.

Note that the local FSD on the server node makes the new open request wait
until all of the data has been updated by the client to the server node. The
exclusive oplock is considered completely broken only after the data transfer
has been completed.

• There are also shared oplocks that can be granted by a local FSD to the
server software, which will grant the oplock to one or more network redirec-
tor clients.

Consider the situation where multiple threads, residing on one or more client
nodes, including local threads on the server node itself, have file foo open for
read and write access. Although the local FSD will no longer grant an exclu-
sive oplock to the file stream foo, it will allow client nodes to request shared
oplocks. Shared oplocks are the next best thing to exclusive oplocks because
they assure the network redirector software on the client node that as long as

574____________ _____________Chapter 11: Writing a File System Driver III

the oplock is granted, the client node can cache data remotely for read opera-
tions.

Whenever the local FSD on the server node receives a write request, it is
expected to break all of the read oplocks that were granted to all of the client
nodes concurrently accessing the file stream foo. The oplock breaks inform
the network redirector software on the client nodes that the data they have
cached may no longer be valid. The network redirector software on all the cli-
ent nodes will, in response to the oplock break, purge the system cache of all
cached data. The next read request issued by a thread on one of the remote
nodes will cause the network redirector software on that remote node to
request fresh data from the server.

• Finally, due to its DOS heritage, the LAN Manager protocol also provides for
batch oplocks to be granted to client nodes.

Consider the batch files (with extension .bat) that are simple scripts, which
can be executed by the DOS shell on any Windows NT machine. The method
used by the shell to execute the different statements in a batch file follows:

— The shell opens the batch file.

— It reads the next line to be executed.
— It closes the batch file.
This sequence is repeated in a loop until the entire batch file has been exe-
cuted. Now consider the situation where the file opened by a remote client
on the shared drive X: is called foo.bat. Furthermore, imagine that the shell
on the remote client is busily going through the loop where it opens the file
stream, reads a line, and closes the file stream. This would typically result in a
whole lot of open/close requests flying across the network.

Instead, the network redirector client typically requests a batch oplock from
the server software, which in turn requests this oplock from the FSD on the
server node. Once a batch oplock has been granted, the network redirector
software on the client node will no longer close the file handle in response to
a close performed by the user thread (the shell) on that remote node. Instead,
the network redirector will continue to keep the file open, fully expecting the
user thread to come back and rerequest an open operation, once the current
line read from the file stream has been executed. Furthermore, the grant of a
batch oplock has the same characteristics as an exclusive oplock, where the
remote client is assured that it has full and exclusive access to the file stream.

Opportunistic Locking_______________________________________575

NOTE Maintaining cache coherency across multiple nodes for shared file
objects is a difficult problem to solve. A lot of research has been
done on the subject, and you can consult some of the references
provided at the end of the book for more information.
There are also commercially available file system implementations
that do a much more sophisticated job of maintaining cache coher-
ence across nodes. An example of this is the Andrew File System
(AFS) implementation originally designed at Carnegie Mellon Univer-
sity and the OSF DPS (Distributed File System) implementation.
Although I believe that the method devised by the LAN Manager
Network protocol is crude at best, it does work and supporting this
feature could make remote accesses to shared logical volumes man-
aged by your FSD much faster.

Some Points to Remember About Oplocks
When (and if) you decide to support the oplock protocol, keep the following
points in mind:

• Oplocks are typically only requested by the LAN Manager server software on
behalf of a remote client.
There is nothing, however, to prevent some other component from request-
ing an oplock from the FSD.

• Oplocks are requested from the FSD on the server node that manages a
shared logical volume.

Although this may seem obvious, keep sight of the fact that as the FSD manag-
ing the shared logical volume on the server node, you have full control over
whether or not to support the opportunistic locking protocol. Furthermore,
under normal situations, oplock requests will only be issued to your FSD if
the logical volume that your FSD is managing has been shared across the LAN
Manager Network.

• Oplocks have funky semantics that, unfortunately, need to be maintained.
As an example, consider the case when an exclusive oplock is being broken
by the local FSD because another thread wishes to open file foo on the server
for read and/or write access. Your FSD would typically expect to block the
new open request until the client node that has the exclusive oplock com-
pletes the break by flushing all modified data back to the server.
Typically, that is exactly what your FSD should do. However, the engineers
who designed this messy protocol found that, because the LAN Manager
server software on the server node has a fixed number of worker threads that

576__________________________Chapter 11: Writing a File System Driver HI

it uses to service remote requests, it is theoretically possible that all of these
threads get blocked on servicing open requests for file streams that have
opportunistic locks acquired by some remote clients. In such situations, nei-
ther the FSD nor the server software can truly determine when the open
request would complete (with either a success or failure code), since this
would depend on how quickly the client nodes could flush the data back to
the server. It may even be possible for the server to encounter a deadlock if
all threads are blocked because of the presence of exclusive oplocks and
there are no threads available to service the client flush request required to
complete the oplock break sequence.

In typical DOS-style Microsoft fashion, the designers decided to work around
this problem by allowing the LAN Manager server to specify a special flag in
the open request. The flag value of FILE_COMPLETE_IF__OPLOCKED is spec-
ified in the Parameters .Create.Options field in the create IRP. If such
an option has been specified, the FSD is not supposed to block the current
open, even though the oplock break has not yet been completed. Instead, the
FSD must execute the open, returning the STATUS_OPLOCK_BREAK_IN_
PROGRESS return code in the Status field (provided all other conditions
would allow the open request to succeed). This code value is equivalent to
STATUS_SUCCESS (i.e., the macro NT_SUCCESS (STATUS_OPLOCK_BREAK_
IN_PROGRESS) will return TRUE).

The strange thing about the FILE_COMPLETE_IF_OPLOCKED flag is the
semantics associated with this flag value. The FSD allows the open to suc-
ceed, knowing full well that there is now nothing to prevent the caller from
violating the trust and performing read/write operations even before the
oplock break has been completed. However, the expectation is that, since the
caller could only be the LAN Manager server, it will do the right thing and not
issue any I/O requests until the client that has the exclusive/batch lock on the
file stream has flushed all its data, and the oplock break has been completed.

WARNING As an FSD designer, you can never trust any other component to do
the right thing. Therefore, do not buy into this philosophy in gener-
al and always, always, validate before allowing a caller to proceed
with a file system operation.
Unfortunately, when providing support for opportunistic locks, the
FSD may have to conform to the model determined by the I/O sub-
system designers, which requires some trust to be maintained. The
only recourse available to you in this case is not to support oplocks
(which could lead to degraded performance for users of your FSD).

Opportunistic Locking^_______________________________________577

• Your FSD does not have to support oplock requests.

If you have begun to think that oplocks are too strange for your tastes, I
would agree with you. Therefore, note that you do not have to support oppor-
tunistic locking in your FSD. However, if your FSD manages logical volumes
that could potentially be shared, supporting oplocks (oddities and all) would
be a nice feature to have.

• Even if your FSD does provide oplock support, a remote client that tries to
map the file stream in memory will not be able to enjoy any data coherency
guarantees.

As described in Chapter 5 in the discussion on the NT VMM, it is currently not
possible for an FSD (including a network redirector) to purge user-mapped
pages from the system cache. Therefore, processes on remote clients that
decide to map a file stream in memory are effectively shut out from any syn-
chronization/cache coherency guarantees provided by the LAN Manager net-
work protocol.

How Is an Oplock Granted and Broken?
The LAN Manager server issues an oplock request by utilizing the File System
Control (FSCTL) interface (described later in this chapter). Basically, your FSD will
receive FSCTL requests that indicate the server wishes to obtain an exclusive/
shared/batch oplock on a particular file stream identified by the file object used in
the file system control IRP.

If your FSD grants the oplock request, it must mark the IRP as pending and queue
the IRP internally. A return code of STATUS_PENDING to the caller of the file
system control request indicates that the oplock has been granted.*

So, once again, the rules are simple:

• When you receive an oplock request, either return a status code immediately
of STATUS_OPLOCK_NOT_GRANTED, indicating that the request was denied,
or return STATUS_PENDING, which the caller treats as success in obtaining
the oplock.

• An oplock is broken by simply completing the IRP that was queued (and
STATUS_PENDING returned) when the oplock had been previously granted.

Typically, the LAN Manager server software specifies an IRP completion rou-
tine that is invoked whenever the oplock is broken (i.e., the IRP is simply
completed by the FSD, and this is sufficient to indicate that the break has
occurred). This completion routine initiates the break processing across the

* In the wonderfully twisted world that some designers at Microsoft live in, all of this makes perfect sense.

578____ ______________ _____Chapter 11: Writing a File System Driver HI

network, which could result in I/O flush operations from the remote client
node to the FSD. Remember that the LAN Manager server software executes
in kernel mode, is very tightly integrated with the rest of the I/O subsystem,
creates and manages its own IRP structures (just as the I/O Manager does),
and is therefore capable of using all sorts of methods directly without having
to go through the NT I/O Manager.

There are a couple of other return values you should be aware of:

• The special return code status of STATUS_OPLOCK_BREAK_IN_PROGRESS
returned in response to a create/open request, indicating that a break is
underway, and the caller should wait until the break has been completed

• A value of FILE_OPBATCH_BREAK_UNDERWAY, returned sometimes in the
Information field of the loStatus structure when a create/open request
is received
This value is only returned in the Information field if the create/open
request is being denied due to a sharing violation, but your FSD wishes to
inform the caller that a break operation is underway for the file stream. The
intent here is to allow the caller to possibly modify the share access requested
and resubmit the create/open request.

• A value of FILE_OPLOCK_BROKEN_TO_LEVEL_2 (with value = 0x00000007)
returned in the Information field when an IRP is being completed to indi-
cate an oplock break

This is another one of the optimizations added by the oplock protocol design-
ers. If an exclusive or a batch file oplock is being broken, the FSD has the
option of offering a shared oplock to the thread whose exclusive/batch lock
is being broken. The idea here is that even if the original requesting network
redirector code on the remote node can no longer have the absolute power
that an exclusive/batch oplock could provide, it can at least take advantage of
the functionality (and guarantees) that come with owning a shared oplock.

Therefore, when breaking an exclusive/shared oplock, the FSD could (but is
not required to) return the FILE_OPLOCK_BROKEN_TO_LEVEL_2 value in
the Information field. In turn, the network redirector software on the cli-
ent node also has the option of either accepting this newly offered shared
oplock, or not.

• A value of FILE_OPLOCK_BROKEN_TO_NONE (with value = 0x00000008)
returned in the Information field when an IRP is being completed, to indi-
cate an oplock break.

This is the alternative Information field value returned by the FSD when-
ever an oplock is being broken, and it does not offer even a shared oplock in
return.

Opportunistic Locking_______________________________________579

Oplock Processing Sequence
The following sequence of operations is performed in granting an oplock request
from the perspective of an FSD supporting the oplock functionality:

1. The LAN Manager server requests an opportunistic lock on an open file
stream uniquely identified by a file object structure on behalf of a remote LAN
Manager redirector client.

The request is issued to the FSD in the form of a file system control (FSCTL)
IRP. FSCTL requests are discussed in more detail later in this chapter. Note for
now, however, that the major function code in the IRP is IRP_MJ_FILE_
SYSTEM_CONTROL. The minor function is IRP_MN_USER_FS_REQUEST.
The possible FSCTL code values to request an opportunistic lock are:

- FSCTL_REQUEST_OPLOCK_LEVEL_1
This is a request for a Level 1, or an exclusive oplock, on the file stream.
Here is the code value:
CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 0,

METHOD_BUFFERED, FILE_ANY_ACCESS)

- FSCTL_REQUEST_OPLOCK_LEVEL_2
This is a request for a Level 2, or a shared oplock, on the file stream.
Here is the code value:
CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 1,

METHOD_BUFFERED, FILE_ANY_ACCESS)

- FSCTL_REQUEST_BATCH_OPLOCK

This is a request for a batch oplock on the file stream. Here is the code
value:
CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 2,

METHOD_BUFFERED, FILE_ANY_ACCESS)

2. The FSD decides either to grant or deny the request for an oplock.

The rules defined to grant/deny the oplock request are as follows:

- For an exclusive lock or a batch lock:

If there is more than one open handle for the file stream (indicated by
the OpenHandleCount field in the FCB in the case of the sample FSD),
the oplock request is denied. All synchronous oplock requests are always
denied since, by the method employed to grant the oplock (i.e., return
STATUS_PENDING), it would be foolish to grant the oplock request.*

* The I/O Manager always blocks on behalf of the requesting thread for file objects opened for synchro-
nous processing. Granting an oplock in such a situation would result in the invoking thread being blocked
forever in the I/O Manager code.

580_____________ ______________Chapter 11: Writing a File System Driver III

If there is only one open handle for the file stream (representing the
open operation performed by the thread requesting the exclusive/batch
oplock), and if no exclusive/batch oplocks have currently been granted
on the file stream, the request will succeed.

If there is only one Level 2 oplock previously granted to the same thread
now requesting an exclusive oplock, the Level 2 oplock will be broken
and the new exclusive/batch oplock granted.
In any other situation, the oplock request will be denied.

— For a shared oplock:

Just as in the case of the exclusive oplock request, all synchronous
oplock requests are immediately denied. Otherwise, if there are no
oplocks currently outstanding on the file stream or if the only type of
oplocks that have been granted are shared oplocks, the request is
allowed to succeed.

Note that even if an exclusive/batch oplock is currently being broken
(break is underway), the request will be denied.

3. If a decision is made to grant the oplock, the IRP will be marked pending, a
cancellation routine will typically be set for the IRP, the IRP will be queued
by the FSD on some internal list associated with the FCB, and STATUS_
PENDING will be returned to the caller.

4. If a decision is made to deny the oplock request, the IRP will be completed
with a return code value of STATUS_OPLOCK_NOT_GRANTED.

Consider the situation when an oplock (shared/exclusive/batch) has been
granted. The following events will lead to the oplock being broken:

• An exclusive/batch oplock had been granted, and another thread decides to
open the file.

The FSD knows that it must break the exclusive/batch oplock to continue pro-
cessing the open request. The only determination to be made by the FSD at
this time is whether to offer a shared oplock in return or to simply break the
oplock completely. If the file stream is being superseded or overwritten, the
FSD will break the oplock completely, and no shared oplock will be offered.

However, if the file stream is not being overwritten or superseded, a shared
oplock will be offered in lieu of the exclusive/batch oplock that is now being
broken.

• A write request is received by the FSD, and shared oplocks had previously
been granted.

The FSD must break the shared oplocks completely.

Opportunistic Locking_______________________________________581

• A lock/unlock request is received by the FSD, and shared oplocks had previ-
ously been granted.
The FSD must break the shared oplocks completely.

• A read request is received by the FSD, and exclusive/batch oplocks had previ-
ously been granted.

The FSD must break the exclusive/batch oplock and offer a shared oplock
instead.

• A flush buffers request is received, and oplocks had previously been granted.

The FSD must break the oplock and offer a shared oplock instead.
• The end-of-file mark or allocation size value is decreased.

The FSD must break any oplocks granted completely.

• A cleanup request is received for the file object, indicating that all user han-
dles have been closed for the file object.
Any oplocks granted using the particular file object must be completely bro-
ken and outstanding IRPs completed.

• The remote client that requested the oplock no longer needs it.
The remote network redirector client that requested the oplock can request a
break of the oplock. This break notification is issued to the FSD via the LAN
Manager server in the form of a FSCTL request. The code value of the FSCTL
code is FSCTL_OPLOCK_BREAK_ACKNOWLEDGE which is defined as follows:
CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 3, METHOD_BUFFERED, FILE_ANY_ACCESS)
Note that this FSCTL is also used by a client to acknowledge an oplock break
initiated by the FSD (described later). However, an asynchronous (spontane-
ous) FSCTL from a client node with this value indicates that the caller, itself,
wants to break the oplock. When this request is received by the FSD, all it
has to do is complete the IRP that was queued when the oplock was origi-
nally granted, clean up any oplock state maintained, and complete any pend-
ing IRPs that may have been received and blocked awaiting a break.

If the LAN Manager server has requested oplocks on a file stream using a partic-
ular file object on behalf of a remote network redirector client, and the client
decided to perform I/O operations conforming with the state of the oplock that
had been granted, the oplock cannot be broken by the FSD.

Whenever the FSD decides to break an oplock before allowing the current
request to proceed, the current IRP is simply made to block until the oplock
break has been completed.

582__________________________Chapter 11: Writing a File System Driver III

Once the FSD has determined either to break or downgrade the oplock (from an
exclusive/batch oplock to a shared oplock), the following sequence of events
must be executed by the FSD (in each case, the thread that requested the oplock
broken must acknowledge the break as described later).

Oplocks that are completely broken
The FSD will complete the original IRP that was queued when granting the
oplock. The Information field value in the loStatus structure will be set
to FILE_OPLOCK_BROKEN_TO_NONE.

Oplocks that are downgraded to shared oplocks
The FSD will complete the original IRP that was queued when granting the
oplock. The Information field value in the loStatus structure will be set
to FILE_OPLOCK_BROKEN_TO_LEVEL_2.

As previously mentioned, the FSD makes the current IRP (causing the oplock
break to occur) block, awaiting acknowledgment of the oplock break notification.

To acknowledge an oplock break, the LAN Manager server issues a new FSCTL
request to the FSD. The possible FSCTL code values are as follows:

FSCTL_OPLOCK_BREAK_ACKNOWLEDGE
This FSCTL code value is used by the LAN Manager server on behalf of a
remote network redirector client to acknowledge (or initiate) an oplock break
notification.
If this FSCTL code is received by the FSD after it broke or downgraded a
Level 1 (exclusive) or batch oplock, the FSD is assured that the remote client
has completed flushing all of the dirty data that may have been cached
remotely back to the server node.

If the FSD offered a shared oplock to the client in lieu of an exclusive or
batch oplock that was being broken, receipt of this FSCTL code in the IRP
indicates to the FSD that the client node has accepted the new shared oplock
that was offered. The FSD would then perform the following steps:

a. Update internal structures to reflect the fact that the original exclusive/
batch oplock has been broken completely.

b. Process the current FSCTL IRP as if it were a request to obtain a new
shared oplock, mark the IRP pending, set a cancellation routine, and
return STATUS_PENDING to the caller, indicating that a new Level 2
(shared) oplock has been granted.

If the oplock being broken was originally a shared oplock, or if the FSD did
not offer a shared oplock in lieu of the exclusive/batch oplock being broken,
the FSD can simply update internal data structures to indicate that oplock
break processing has been completed. The FSCTL IRP should be completed

Opportunistic Locking____________ ___________ ________ _________583

with a STATUS_SUCCESS return code, and the Information field in the
loStatus structure of the FSCTL IRP should be set to FILE_OPLOCK_
BROKEN_TO_NONE.

Any IRPs that were queued by the FSD awaiting the oplock break can be
allowed to continue processing at this time.

NOTE If the FSCTL request containing the FSCTL_OPLOCK_BREAK_AC-
KNOWLEDGE FSCTL code value is issued as a synchronous I/O re-
quest, the FSD cannot grant any shared oplock and will always
complete the FSCTL IRP with status code set to STATUS_SUCCESS
and the Information field value set to FILE_OPLOCK_BROKEN_
TO_NONE.

FSCTL_OPBATCH_ACK_CLOSE_PENDING
An FSCTL IRP with this FSCTL code value is issued to the FSD by the LAN
Manager server on behalf of a remote network redirector client in response to
an oplock break notification request for either an exclusive or a batch oplock
request.

This FSCTL is issued instead of the FSCTL_OPLOCK_BREAK_ACKNOWLEDGE
FSCTL to indicate that the network redirector client does not want the shared
oplock, offered by the FSD in lieu of the exclusive/batch oplock, being
broken.

The FSD can simply clean up internal data structures to indicate that the
oplock break has been completed and complete the FSCTL IRP with status
code set to STATUS_SUCCESS.

Any IRPs that were awaiting the oplock break notification can be allowed to
proceed once this FSCTL has been processed.

There is one additional FSCTL code that your driver should expect to receive:
FSCTL_OPLOCK_BREAK_NOTTFY. The caller wants to be notified when a Level
1 oplock break operation has been completed. If no Level 1 oplock break opera-
tion is in progress when the request is received, even if there are oplocks
(exclusive/shared/batch) currently granted for the file stream, the IRP should be
immediately completed with STATUS_SUCCESS. However, if a Level 1 oplock
break operation is underway when this request is received, the IRP should be
queued and only completed when the oplock break operation has been
completed.

584__________________________Chapter 11: Writing a File System Driver III

FSRTL Support for Oplock Processing
The native Windows NT FSD implementations use common routines provided by
the FSRTL to provide oplock support. Unfortunately, Microsoft has chosen not to
encourage third-party developers to use the routines exported by the FSRTL
package. However, the description of the functionality expected from your FSD
should help you in designing and developing your own opportunistic locking
support package.

Dispatch Routine: File System and
Device Control
File system drivers receive file system control requests to perform processing that
cannot otherwise be requested via the standard dispatch entry points. Device
control requests are also directed by the I/O Manager to the file system driver that
performs a mount operation on a target physical or virtual device.

Types ofFSCTL Requests
Most file system driver implementations respond to one or more file system
control requests. The I/O Manager dispatches a file system control request (FSCTL
request) to the FSD via an IRP with a major function code value of IRP_MJ_
FILE_SYSTEM_CONTROL. There are four types of distinguishing minor function
codes that the FSD must check for whenever it receives a FSCTL request from the
Windows NT I/O Manager:

IRP_MN_USER_FS_REQUEST
This minor function code is used in the most common case, when a thread
opens a file system object (file/directory/volume/device) and issues a FSCTL
to the file system driver. There is a set of standard system-defined FSCTL
codes (defined by Microsoft) that can be used by user threads; these will be
discussed later in this section.

In addition to the Microsoft-defined FSCTL codes, it is always possible for
FSD designers to develop their own private FSCTL codes, used internally
between helper applications/user threads and the FSD itself. These can be
issued to the FSD either to request some required functionality or to transfer
data to and from the driver and the user-space application processes.

For example, your FSD may provide some special information in response to
specific FSCTL requests issued by a helper application from user space. Or,
your helper application may issue a special FSCTL request to request the FSD
to format a specific disk. To accomplish such functionality, you would typi-

Dispatch Routine: File System and Device Control_______________________585

cally define some private FSCTL codes, to be used only by your helper
applications and the FSD.

Issuing FSCTL requests is the easiest, most private, and most convenient
method of information transfer between a kernel-mode driver and a user
space thread. To use this method of data transfer, simply define a new FSCTL
code, using the guidelines extensively documented in the DDK, implement
support for the specific FSCTL in the kernel-mode FSD, and have a user-space
thread issue the FSCTL whenever required. That is all you have to do to
accomplish the data transfer, or to have the FSD perform some specific opera-
tion requested by the user thread.

IRP_MN_MOUNT_VOLUME
This special request is issued only by the I/O Manager to request a mount
operation, in response to a change in media reported by a lower-level driver
(for removable media only), or more likely, when the first user open is
received for a file/directory residing on a physical disk that has not had a
mount operation performed on it.

Later in this chapter, you can read a detailed discussion on the mount process
and the functionality provided by the FSD in response to a mount request
identified by the IRP_MN_MOUNT_VOLUME minor function code.

IRP_MN_LOAD_FILE_SYSTEM
This request originates in the I/O Manager. It is only issued by the I/O
Manager to special mini-FSD implementations, requesting them to perform a
load of the full file system driver image. Later in this chapter is a discussion
on how you can design and develop a file system recognizer for your FSD.
This FSCTL code is discussed in detail at that time.

IRP_MN_VERIFY_VOLUME
This is also a special type of FSCTL issued by the I/O Manager to an FSD
managing a mounted logical volume on removable media. This request is
issued by the I/O Manager when a lower-level disk driver indicates that the
media in the removable driver appears to have been removed or changed.
We will discuss how an FSD can develop an appropriate response to be
executed in response to this type of FSCTL request.

Methods of Data Transfer for FSCTL Requests
Each FSCTL code value (used with the IRP_MN_USER_FS_REQUEST minor func-
tion) uniquely determines the method used for data transfer for that particular
FSCTL operation, if such data transfer is requested. The two least significant bits
in the FSCTL code value are used to identify the method of data transfer for the
particular FSCTL request.

586_____________ ____________Chapter 11: Writing a File System Driver III

WARNING When a file system driver creates a device object to represent the
file system itself or to represent an instance of a mounted logical vol-
ume, it can specify whether it wishes to receive buffered I/O re-
quests (DO_BUFFERED_IO flag set in the Flags field for the
device object), direct I/O requests (DO_DIRECT__IO flag set), or the
user-supplied buffer pointer (neither of the two flags should be set).
You must note, however, that those flags are not used to determine
the method of data transfer for file system control or device control
requests. The method used in such cases is specific to each FSCTL
or IOCTL sent to the driver and is determined by the FSCTL or
IOCTL code value as described below.

The following are the available options:

• If the FSCTL code is defined with METHOD_BUFFERED, the I/O Manager allo-
cates a system buffer on behalf of the caller.

This method of data transfer can be defined by setting a value of 0 in the two
least significant bits of the FSCTL code.

The caller can supply either an input buffer only (used to transfer information
to the FSD), an output buffer only (used to receive information back from the
FSD), or both (data transfer occurs in both directions). However, the I/O Man-
ager only allocates a single system buffer for the data transfer.

The FSD can obtain the address of this single system buffer allocated by the
I/O Manager from the AssociatedIrp->SystemBuffer field in the IRP.
The Flags field in the IRP is set with the IRP_BUFFERED_IO and the IRP_
DEALLOCATE_BUFFER flag values (used internally by the I/O Manager).

If an input buffer is supplied by the caller, the I/O Manager will copy data
from the input buffer to the I/O Manager-allocated system buffer, before pass-
ing the request to the FSD. If an output buffer is supplied by the caller, the
I/O Manager will set the IRP_INPUT_OPERATION flag value in the Flags
field in the IRP. The I/O Manager will check for the existence of this flag
upon IRP completion and will copy data from the system buffer to the user-
supplied output buffer if this flag is set.

Note that, since the I/O Manager supplies a single buffer for the use of the
FSD, even in the case when a caller may have provided both an input and an
output buffer, the size of the system buffer allocated by the I/O Manager will
be the greater of the size of the input and output buffers provided by the
requesting thread. The initial contents of the I/O Manager-allocated system
buffer will be overwritten by the FSD when it returns information back to the
I/O Manager.

Dispatch Routine: File System and Device Control______________________587

• If the FSCTL code is defined with METHOD_NEITHER, the I/O Manager sim-
ply sends the user-supplied buffer pointers directly to the FSD.

This method of data transfer can be defined by setting a value of 3 in the two
least-significant bits of the FSCTL code.
If the caller provides an input buffer (i.e., a buffer in which the caller has pro-
vided data for the FSD), the I/O Manager initializes the Parameters.Devi-
celoControl .TypeSlnputBuf fer field in the current stack location with
the pointer to the caller-supplied buffer. Your FSD can obtain data provided by
the caller directly from this buffer.
If the caller also wants to receive data back from the FSD, it would provide
an output buffer pointer when invoking the NT system service routine.* In
this case, the I/O Manager initializes the UserBuffer field in the IRP with
the address of the caller-supplied output buffer. The FSD can return data to
the caller by using the address provided in this field to write to the caller-sup-
plied buffer.

Note that the user-supplied buffer pointer addresses are supplied as-is to the
FSD by the I/O Manager. No checks are performed by the I/O Manager on
the user-supplied virtual addresses for either the input or the output buffers
provided by the caller. Therefore, it is FSD's responsibility to ensure that the
virtual addresses are still valid when it tries to perform data transfer for such
requests. If the request is posted for asynchronous processing, the FSD must
lock the input and/or the output buffers itself and also obtain valid system vir-
tual addresses for each buffer.

• If the FSCTL code is defined with either the METHOD_IN_DIRECT or the
METHOD_OUT_DIRECT FSCTL codes, the I/O Manager allocates a system
buffer for the caller-supplied input buffer and creates an MDL for the caller-
supplied output buffer.

The METHOD_IN_DIRECT method of data transfer can be defined by setting
a value of 1 in the least two significant bits of the FSCTL code. The METHOD_
OUT_DIRECT method of data transfer can be defined by setting a value of 2
in the least two significant bits of the FSCTL code.
The caller can supply an input buffer and an output buffer for both types of
data transfer methods. The I/O Manager allocates a system buffer correspond-
ing to the input buffer provided by the caller and copies the caller-supplied
data from the input buffer into the I/O Manager-allocated system buffer. The

* The system service routine provided by the Windows NT I/O Manager for FSCTL requests is called Nt-
FsControlFile (). For more information on this system service, consult Appendix A. The Win32 sub-
system also provides a method of issuing device IOCTL requests to kernel-mode drivers.

588__________________________Chapter 11: Writing a File System Driver III

address of this I/O Manager-allocated system buffer can be obtained by the
FSD from the Associatedlrp. SystemBuf fer field in the IRP.

If the caller supplies an output buffer when invoking the NtFsControl-
File () system service routine, the I/O Manager creates an MDL for the out-
put buffer and also locks the pages for the MDL. The only difference between
the METHOD_IN_DIRECT and the METHOD_OUT_DIRECT methods is that
the pages locked by the I/O Manager are locked with read access specified in
the former case (for METHOD_IN_DIRECT) and write access specified in the
latter (for METHOD_OUT_DIRECT).

Note that the I/O Manager does not copy any data back into the caller-sup-
plied output buffer upon IRP completion; since the output buffer is directly
accessible to the FSD (via the MDL created by the I/O Manager), no such
copy operation is required.

Standard User File System Control Requests
The I/O stack location contains the following structure relevant to processing file
system control requests issued to an FSD:

typedef struct _IO_STACK_LOCATION {

union {

// System service parameters for: NtFsControlFile
// Note that the user's output buffer is stored in the UserBuffer field
// and the user's input buffer is stored in the SystemBuffer field,
struct {

ULONG OutputBufferLength;
ULONG InputBufferLength;
ULONG FsControlCode;
PVOID TypeSInputBuffer;

} FileSystemControl;

} Parameters;

// . . .

} IO_STACK_LOCATION, *PIO_STACK_LOCATION;

The following FSCTL code values are defined by the system and should be
supported by a disk-based FSD. For each FSCTL code mentioned below, there is a
brief description of the type of processing performed by the native FSD implemen-

Dispatch Routine: File System and Device Control_____________________ 589

tations. This should provide you with a fairly good idea of the functionality
expected from your FSD.

Note that each of these standard FSCTL requests is dispatched to the FSD in an
IRP containing a major function code of IRP_MJ_FILE_SYSTEM_CONTROL and
a minor function code of IRP_MN_USER_FS_REQUEST.

FSCTL_LOCK_VOLUME
Most NT FSD implementations typically execute the following steps:

a. If the file object supplied with the request does not refer to an open
instance of the logical volume object, deny the request with an error code
of STATUS_INVALID_PARAMETER.

b. Acquire the resource associated with your volume control block
exclusively.

c. If the VCB state indicates that it is already locked, or if there are any
open/referenced file objects for the logical volume represented by the
VCB, deny the request (complete the IRP after releasing the VCB
resource) with a STATUS_ACCESS_DENIED error code.

d. Mark the VCB as locked, preventing any new file create/open operations.

e. Flush any cached, modified metadata information about the logical
volume (e.g., bitmaps).

f. Release the VCB resource and complete the IRP with a return code of
STATUS_SUCCESS.

For the native FSD implementations, utilities such as chkdsk always lock a
logical volume before beginning processing for the volume. Some FSD imple-
mentations may actually interpret this request as the beginning of a dismount
sequence for a logical volume and prepare themselves accordingly.

FSCTL_UNLOCK_VOLUME
This simply undoes the lock operation performed with the FSCTL_LOCK_
VOLUME request and clears any flags set in the VCB indicating that the
volume has been locked.

Just as in the case of the lock volume request described, the FSD will reject
the request if the file object supplied does not refer to an open instance of
the previously locked logical volume.

FSCTL_DISMOUNT_VOLUME
The FSD will perform checks to ensure that the VCB indicates the logical
volume was previously locked after acquiring the VCB resource exclusively.
The FSD should then tear down all structures allocated to support the
mounted logical volume, including the VCB structure itself. This would also

590__________________________Chapter 11: Writing a File System Driver HI

include uninitializing any cache map for the stream file object created to
cache logical volume metadata information (see the description later in this
chapter about the volume mount sequence). Of course, your FSD should
ensure that all modified information (including log files, bitmaps, etc.) for the
logical volume have been flushed to secondary storage before discarding this
information from memory.

Also, the FSD should somehow indicate in the volume parameter block struc-
ture for the physical/virtual device object on which the volume had been
mounted that the volume is no longer mounted.

There are a variety of ways in which your FSD could accomplish this. One
way is to set the DO_VERIFY_VOLUME flag in the Flags field of VPB struc-
ture for the device object representing the physical/virtual disk. Another
method could be to simply clear the VPB_MOUNTED flag in the VPB structure
for the physical/virtual device object. Finally, your FSD could take drastic
measures and free up the VPB structure allocated for the physical/virtual
device object and replace it with a newly allocated "clean" VPB structure
(remember to allocate it from nonpaged pool).

If you wish to modify flags in the VPB structure for the real device object on
which your FSD mounted the logical volume (e.g., you decide to clear the
VPB_MOUNTED flag), you should consider acquiring a global I/O Manager
spin lock to ensure synchronized access to the structure. Here is the routine
you can invoke to acquire this global spin lock:
VOID
loAcquireVpbSpinLock(

OUT PKIRQL Irql
) ;
This routine will simply acquire the same global spin lock that the I/O
Manager acquires internally before examining any VPB (e.g., to check
whether the VPB is mounted during a create/open operation). Remember to
pass in a pointer to a KIRQL structure so that the I/O Manager can return the
IRQL at which your code was executing before it acquired the Executive spin
lock. You will need this value when you are finished modifying the VPB struc-
ture, and you invoke this corresponding release spin lock routine:
VOID
IcReleaseVpbSpinLock(

IN KIRQL Irql
) ;
Your FSD should check that this routine was invoked by a caller with appro-
priate privileges before allowing the request to be processed. Furthermore, if
the logical volume was mounted on removable media that you had locked

Dispatch Routine: File System and Device Control______________________591

into the drive, do not forget to issue an IOCTL to the removable media disk
driver unlocking the medium from the drive.

FSCTL_MARK_VOLUME_DIRTY
Your FSD should confirm that the file object passed in reflects a valid instance
of an open operation on the logical volume itself. This is simply a request to
ensure that your in-memory and on-disk data structures reflect that the system
memory may contain information that needs to be flushed out to disk. If the
system crashes before your FSD has a chance to perform a flush operation
and clear the on-disk flag reflecting the fact that the volume is dirty, you may
decide to perform the equivalent of a chkdsk operation during the next boot
cycle before allowing a logical volume mount request to complete.

Remember to acquire the VCB exclusively before modifying any in-memory
or on-disk structures indicating that the volume is dirty and needs to be
flushed to disk.

FSCTL_IS_VOLUME_MOUNTED
Ensure as before that a valid file object has been sent to you for this request.
Typically, your FSD would support this FSCTL if you support removable
media. If your FSD supports removable media and has a volume mounted on
some such removable medium, you should perform the equivalent of a verify
volume operation (described later) to ensure that everything is all right with
the volume. An appropriate status code containing the results of the verify
operation should be returned as part of completing the IRP.

F SCTL_IS_PATHNAME_VALID
The AssociatedIrp->SystemBuffer field in the FSCTL IRP will contain
a pointer to this structure:
typedef struct _PATHNAME_BUFFER {

ULONG PathNameLength;
WCHAR Name[1];

} PATHNAME_BUFFER, *PPATHNAME_BUFFER;

Your mission is to examine the characters contained in the pathname to see if
they are supported by your FSD. Return a status code of either STATUS_
OBJECT_NAME_INVALID or STATUS_SUCCESS.

FSCTL_QUERY_RETRIEVAL_POINTERS
This request will only be directed to your FSD if it manages a boot partition
on which a paging file resides. Providing a bootable FSD requires support
from Microsoft. Therefore, we will ignore this FSCTL-type request and return
STATUS_INVALID_PARAMETER to the caller.

In addition to the FSCTL codes listed, your FSD may support many privately
defined file system control codes. Furthermore, if you design a network redirector
driver, you may wish to provide functionality such as:

592__________________________Chapter 11: Writing a File System Driver III

• Starting the redirector on demand

• Binding to transports used by your redirector

• Returning statistics pertinent to your driver

• Enumerating all open connections

• Deleting specific connections to remote shared objects

• Stopping redirector activities

• Unbinding from specific transports

You must determine the sort of functionality your driver will provide and imple-
ment appropriate FSCTL support.

Verify Volume Support
If your FSD supports removable media, there may be occasions when a verify
volume request is issued to your driver. Typically, this happens whenever a user
injects media into the removable drive.

Disk driver's actions

Whenever the media status in the removable drive appears to have changed, the
disk driver performs the following actions for I/O requests targeted to the device.

1. Check if the VPB indicates whether a logical volume had been previously
mounted on the media in the removable drive.

This can be easily determined by the disk driver by the presence/absence of
the VPB_MOUNTED flag in the Flags field in the VPB structure. If the flag is
not set, no logical mount operation has been performed, and the driver
simply returns STATUS_VERIFY_REQUIRED for IRPs sent to the device.

2. If a logical volume had been mounted, indicate that the media needs to be
verified.

The disk driver will OR in the DO_VERIFY_VOLUME flag in the VPB struc-
ture. It will set the return code value for the IRP to STATUS_VERIFY_
REQUIRED. It will then invoke the IoSetHardErrorOrVeriFyDevice ()
function, which will store the pointer to the supplied device object (one of
the arguments to this well-documented function) in the Tail.Over-
lay . Thread->DeviceToVerify field of the IRP.

3. The disk driver will then complete the IRP.

Dispatch Routine: File System and Device Control______________________593

FSD response

Note that most I/O operations to a disk drive with a mounted logical volume asso-
ciated with the media in the drive originate in the FSD. Whenever an FSD gets a
STATUS_VERIFY_REQUIRED error from an I/O request sent to the target device
object for a logical volume, it performs the following actions:

1. Obtain a pointer to the target device object for the verify operation to be
performed.

The FSD should use the loGetDeviceToVerify () function call to get a
pointer to this device object. It should then reset the DeviceToVerify field
in the TLS to NULL by invoking loSetDeviceToVerify () function with
the arguments: (PsGetCurrentThread (), NULL).

2. Initiate a verify operation.

The FSD can simply invoke the loVerifyVolume () function to initiate a
verify operation:
NTSTATUS
loVerifyVolume(

IN PDEVICE_OBJECT DeviceObject,
IN BOOLEAN AllowRawMount

) ;
The FSD can pass in the pointer to the device object for the device to be veri-
fied (obtained earlier from the loGetDeviceToVerify() function call).
The AllowRawMount is typically set to FALSE, unless the user was trying to
perform a create/open operation on the physical device itself, and the FSD
encountered the verify status code when processing this request.
Note that the invocation to loVerifyVolume () will return either STATUS_
SUCCESS or STATUS_WRONG_VOLUME.

I/O manager's response

When an FSD invokes the loVerifyVolume () function call as described, the
I/O Manager will do the following:

1. If the logical volume had not been previously mounted (FALSE in the
scenario described here), simply invoke a mount sequence.

The mount sequence consists of going through the linked list of all registered,
loaded instances of file system drivers and invoking each one of them,
requesting a mount operation. Later in this chapter, you will read a detailed
discussion on how a mount request is processed by the FSD.
Note that a mount request is issued to the FSD via an FSCTL that has a minor
function value of IRP_MN_MOUNT_VOLUME.

594 __________________________ Chapter 11: Writing a File System Driver III

2. Since the logical volume had been previously mounted, issue a verify volume
FSCTL request to the FSD.

The I/O Manager will create a new IRP for the FSCTL request. The minor func-
tion code in the current I/O stack location will be set to IRP_MN_VERIFY_
VOLUME. The I/O Manager will then issue the IRP to the FSD, since it
manages the logical volume device object identified by the DeviceObject
field in the VPB structure for the device object representing the removable
drive to be verified.*

The Parameters. VerifyVolume.Vpb field in the current stack location
of the verify volume IRP dispatched to the FSD contains a pointer to the VPB,
associated with the device object representing the removable drive containing
the media to be verified. The Parameters .VerifyVolume. DeviceOb-
ject field contains a pointer to the logical volume device object created by
the FSD.

3. If the verify volume FSCTL returns STATUS_SUCCESS, there is nothing more
the I/O Manager needs to do.

4. If the verify volume FSCTL returns STATUS_WRONG_VOLUME, the I/O
Manager will initiate a fresh mount sequence for the device.

To initiate a new mount sequence, the I/O Manager will free the original VPB
structure associated with the device object on which the mount operation will
be attempted. It will allocate a new VPB structure and associate it with the
device object. It will then begin the typical mount sequence.

FSD's response to the verify volume FSCTL request

The IRP issued by the I/O Manager to verify the volume can be easily identified
by the FSD by the IRP_MN_VERIFY_VOLUME minor function code value in the
current I/O stack location.

The I/O stack location contains the following structure relevant to processing the
verify volume request issued to an FSD:

typedef struct _IO_STACK_LOCATION {

union {

// Parameters for VerifyVolume
struct {

Sorry if that sounds cryptic but it is true, I promise.

Dispatch Routine: File System and Device Control ______________________ 55*5

PVPB Vpb;
PDEVICE_OBJECT DeviceObj ect ;

} VerifyVolume;

// . . .
} Parameters;

} IO_STACK_LOCATION, *PIO_STACK_LOCATION;

The FSD performs the following sequence of actions in response to the request:

1. Post the request if required.

Note that a verify request is inherently synchronous, and the I/O Manager will
wait in the context of the thread performing the verify operation if STATUS_
PENDING is returned. Your FSD would typically post the request if the lols-
OperationSynchronous () function call returns FALSE.

2. Get a pointer to the VCB structure for the logical volume device object.

3. Acquire the VCB resource exclusively to ensure synchronized access.

4. Check if the RealDevice->Flags field is no longer marked with D0_
VERIFY_VOLUME.

Since multiple IRP requests to the disk driver could fail with a verify volume
status code, one of those requests could have already resulted in a volume
verify operation being completed. There is nothing the FSD needs to do in
this situation but return STATUS_SUCCESS.

5. Issue requests to the disk driver to obtain information from the physical
media.

The steps performed here are similar to those executed during a logical
mount operation described below. Basically, the FSD must obtain whatever
information is required from the physical media, including getting the drive
geometry by issuing IOCTL requests to the disk driver and issuing read
requests to obtain volume metadata information from disk.

In order to ensure that the disk driver does not fail the I/O requests with a
STATUS_VERIFY_VOLUME error code, the FSD must set the SL_OVERRIDE_
VERIFY_VOLUME flag in the Flags field of the stack location it sets up for
the next lower driver in the chain.

If any of the I/O operations sent to the lower-level driver fail, the FSD typi-
cally decides to return STATUS_WRONG_VOLUME. Skip directly to the step
described below detailing the preprocessing required from the FSD before
returning this error code to the I/O Manager.

596 __________________________ Chapter 11: Writing a File System Driver III

6. Check the information obtained from disk.

Your FSD may perform any appropriate checks to decide if the on-disk struc-
tures indicate the same volume as the one you had previously mounted.

7. If it determines that the volume is the same, flush and purge all cached meta-
data structures for the logical volume and reinitialize all cached information.

This is similar to performing a remount operation on the logical volume.
Once it has reinitialized cached data, your FSD should clear the DO_VERIFY_
VOLUME flag in the VPB. Then it should complete the IRP with STATUS_
SUCCESS as the return code.

8. If it decides that the volume is not the same as the one previously mounted,
throw away all cached metadata information for the volume.
Effectively, you will perform a forced dismount of the volume at this time.
You should also clear the DO_VERIFY_VOLUME flag in the VPB. Then your
FSD should complete the IRP with STATUS_WRONG_VOLUME as the return
code. Since you will return the STATUS_WRONG_VOLUME error code, the I/O
Manager will attempt a remount operation for the media.

9. Complete the FSCTL IRP with the appropriate return code value.

Handling Device IOCTL Requests
The I/O stack location contains the following structure relevant to processing the
device IOCTL request issued to an FSD:

typedef struct _IO_STACK_LOCATION {

union {

// System service parameters for: NtDeviceloControlFile
// Note that the user's output buffer is stored in the UserBuffer
// field and the user's input buffer is stored in the SystemBuffer
// field.
struct {

ULONG OutputBufferLength;
ULONG InputBuf ferLength;
ULONG loControlCode;
PVOID Type3InputBuffer;

} DeviceloControl;

} Parameters;

// ...

Dispatch Routine: File System and Device Control 597

} IO_STACK_LOCATION, *PIO_STACK_LOCATION;

Typically, the FSD should simply forward a device IOCTL request to the target
device object for the mounted logical volume. Study the following code fragment
to see how this can be done.

NTSTATUS SFsdCommonDeviceControl(
PtrSFsdlrpContext PtrlrpContext,
PIRP Ptrlrp)

NTSTATUS
PIO_STACK_LOCATION
PIO_STACK_LOCATION
PFILE_OBJECT
PtrSFsdFCB
PtrSFsdCCB
PtrSFsdVCB
BOOLEAN
ULONG
void

RC = STATUS_SUCCESS;
PtrloStackLocation = NULL;
PtrNextloStackLocation = NULL;
PtrFileObject = NULL;
PtrFCB = NULL;
PtrCCB = NULL;
PtrVCB = NULL;
Completelrp = FALSE;
loControlCode = 0;
*BufferPointer = NULL;

try {
// First, get a pointer to the current I/O stack location
PtrloStackLocation = IoGetCurrentIrpStackLocation(Ptrlrp) ;
ASSERT (PtrloStackLocation) ;

PtrFileObject = PtrIoStackLocation->FileObject;
ASSERT (PtrFileObject) ;

PtrCCB = (PtrSFsdCCB) (PtrFileObject->FsContext2) ;
ASSERT (PtrCCB) ;
PtrFCB = PtrCCB->PtrFCB;
ASSERT (PtrFCB) ;

if (PtrFCB->NodeIdentifier.NodeType == SFSD_NODE_TYPE_VCB) {
PtrVCB = (PtrSFsdVCB) (PtrFCB) ;

} else {
PtrVCB = PtrFCB->PtrVCB;

// Get the loControlCode value
loControlCode =

Ptr IoStackLocation->Parameters . DeviceloControl . loControlCode ;

// You may wish to allow only volume open operations.

switch (loControlCode) {
#ifdef __THIS_IS_A_NETWORK_REDIR_

case IOCTL_REDIR_QUERY_PATH:
// Only for network redirectors.
BufferPointer = (void *)

(PtrIoStackLocation->
Parameters.DeviceloControl.TypeSInputBuffer),

// Invoke the handler for this IOCTL.

598__________________________Chapter 11: Writing a File System Driver III

RC = SFsdHandleQueryPath(BufferPointer);
Completelrp = TRUE;
try_return(RC);
break;

#endif // _THIS_IS_A_NETWORK_REDIR_
default:

// Invoke the lower-level driver in the chain.
PtrNextloStackLocation = loGetNextlrpStackLocation(Ptrlrp);
*PtrNextIoStackLocation = *PtrIoStackLocation;
// Set a completion routine.
loSetCompletionRoutine(Ptrlrp, SFsdDevIoctlCompletion,

NULL, TRUE, TRUE, TRUE);
// Send the request.
RC = loCallDriver(PtrVCB->TargetDeviceObject, Ptrlrp);
break;

try_exit: NOTHING;

} finally {

// Release the IRP context
if (!(PtrIrpContext->IrpContextFlags

& SFSD_IRP_CONTEXT_EXCEPTION)) {
// Free-up the Irp Context
SFsdReleaselrpContext(PtrlrpContext);

if (Completelrp) {
PtrIrp->IoStatus.Status = RC;
PtrIrp->IoStatus.Information = 0;

// complete the IRP
loCompleteRequest(Ptrlrp, IO_DISK_INCREMENT);

}
}

}

return(RC);

NTSTATUS SFsdDevIoctlCompletion (
PDEVICE_OBJECT PtrDeviceObject ,
PIRP Ptrlrp,
void *Context)
{

if (PtrIrp->PendingReturned) {
loMarklrpPending (Ptrlrp) ;

return (STATUS_SUCCESS) ;
}

This code also illustrates how z network redirector can provide support for the
IOCTL_REDIR_QUERY_PATH IOCTL issued by the MUP component (discussed

File System Recognizers ______________________________________ 599

earlier in Chapter 2, File System Driver Development). See the following code frag-
ment for a skeletal SFsdHandleQueryPath() routine example.

NTSTATUS SFsdHandleQueryPath(
void *Buf ferPointer)
C

NTSTATUS RC = STATUS_SUCCESS ;
PQUERY_PATH_REQUEST RequestBuf f er = (PQUERY_PATH_

REQUEST) Buf ferPointer ;
PQUERY_PATH_RESPONSE ReplyBuffer = (PQUERY_PATH_

RESPONSE) Buf ferPointer ;
ULONG LengthOfNameToBeMatched =

RequestBuf fer->PathNameLength;
ULONG LengthOfMatchedName = 0;
WCHAR *NameToBeMatched = RequestBuf fer->FilePathName;

// So here we are. Simply check the name supplied.
// You can use whatever algorithm you like to determine whether the
// sent-in name is acceptable.
// The first character in the name is always a "\"
// If you like the name sent-in (probably, you will like a subset
// of the name) , set the matching length value in LengthOfMatchedName.

//if (FoundMatch) {
// ReplyBuf fer->LengthAccepted = LengthOfMatchedName;
// } else {
// RC = STATUS_OB JECT_NAME__NOT_FOUND ;

return (RC) ;

The following definitions are required by the code fragment:

tdefine IOCTL_REDIR_QUERY_PATH \
CTL_CODE (FILE_DEVICE_NETWORK_FILE_SYSTEM, 99 ,

METHOD_NEITHER, FILE_ANY_ACCESS)

typedef struct _QUERY_PATH_REQUEST {
ULONG PathNameLength;
PIO_SECURITY_CONTEXT Secur ityContext ;
WCHAR FilePathName[l] ;

} QUERY_PATH_REQUEST , * PQUERY_PATH_REQUEST ;

typedef struct _QUERY_PATH_RESPONSE {
ULONG LengthAccepted;

} QUERY_PATH_RESPONSE, *PQUERY_PATH_RESPONSE;

File System Recognizers
Simply stated, a file system recognizer is a mini-FSD implementation that loads
initially instead of the full FSD.

600__________________________Chapter 11: Writing a File System Driver III

Functionality Provided by a File System Recognizer
The function of the file system recognizer driver is as follows:

• Help conserve system resources by loading the recognizer instead of the com-
plete FSD.

The mini-FSD is, by definition, a small driver providing almost no functional-
ity (except what is discussed below) and so consuming very few system
resources.

• If a valid logical volume needs to be mounted, load the full (original) FSD so
that it can proceed with mounting the volume and servicing user requests.
Once the full FSD has been successfully loaded into memory, the file system
recognizer essentially becomes dormant and stays out of the way. Because of
the low resource requirements for the mini-FSD, keeping it loaded in memory
even after the full FSD has been loaded is a small price to pay compared to
the benefits of using the mini-FSD in the first place.

Basically, the file system recognizer helps the Windows NT operating system
conserve system resources by obviating the necessity of always loading the entire
FSD even if no logical volumes belonging to the FSD are ever mounted (or used)
by users of the system. For example, consider the CD-ROM drive that exists on
your system. It is possible that you may not use the CD-ROM at all during the
current boot cycle. Or, it is quite possible that you have formatted all of your hard
disk partitions with the NTFS file system format and therefore, you never need to
use the FASTFAT file system driver on your machine until you decide to use a
diskette formatted with the FAT file system format.

In such situations, loading the entire FASTFAT and/or CDFS file system drivers
into memory is an unnecessary operation that is costly in terms of the time
required to boot-up the system as well as the memory consumption associated
with the FSD that is inevitable even for a dormant, loaded FSD.

A mini-FSD is a cost-effective method of always being prepared for the possibility
that a user may require the services of the associated FSD, while not incurring the
performance and resource penalties of actually having a fully functional FSD
loaded in memory until it becomes necessary to do so.

Steps Executed by the File System Recognizer
The mini-FSD (or the file system recognizer, as it is commonly known), executes
the following logical steps once it is loaded into memory:

File System Recognizers _ __________________________________601

1. Create a device object representing the mini-FSD in lieu of the file-system-
type device object that the full fledged FSD would create, had it been loaded.

The file system recognizer creates a device object of type FILE_DEVICE_CD_
ROM_FILE_SYSTEM (for a CD-ROM file system recognizer) or FILE_
DEVICE_DISK_FILE_SYSTEM (for the more common, disk-based file
system recognizer). As you may have noted from the initialization code
presented in Chapter 9, this is similar to the operation generally executed by
the full FSD implementation.

2. Register with the I/O Manager as a file system driver so that the mini-FSD
gets invoked whenever an I/O request is received targeted to a physical
device on which no mount operation has been performed.

Just as in the case of any other fully functional disk-based FSD (as illustrated
in Chapter 9), the mini-FSD also invokes IoRegisterFileSystem() to
inform the I/O Manager that a fully functional FSD has been loaded into
memory.

3. Upon receiving a mount request for a physical/virtual device, check the on-
disk information on the device by performing I/O operations to determine
whether the device contains a valid (recognizable) logical volume.

Recall from earlier chapters the sequence of operations undertaken by the
I/O Manager whenever it receives a create/open request for an object on a
physical/virtual device. For example, consider the situation when a user
decides to open file X:\directoryl\foo. The NT Object Manager receives the
request and translates X: (which is simply a symbolic link) to the linked
object name, e.g., \Device\PhysicalDriveO*

So the complete name of the request as determined by the NT Object
Manager is now \Device\PhysicalDriveO\directoryl\foo. Since the
\Device\PhysicalDriveO name typically corresponds to the device object for
the first partition on hard disk 0 (an object belonging to the I/O subsystem),
the Object Manager recognizes that the request should be forwarded to the
device object managed by the I/O Manager and therefore sends the request
on to the I/O Manager for further processing. The portion of the name sent to
the I/O Manager is \directoryl\foo, with the target device object for the
request being clearly identified by the NT Object Manager.

The I/O Manager, in turn, examines the volume parameter block structure
associated with the physical device object to see if any logical volume has
been mounted on the device object. The presence of a mounted logical

* The \??\... names in Windows NT Version 4.0 are simply symbolic links themselves to the correspond-
ing \I)eince\... entries.

6O2__________________________Chapter 11: Writing a File System Driver III

volume associated with a physical/virtual device object can be detected by
checking for the VPB_MOUNTED flag value in the Flags field of the VPB
structure. If a logical mount operation had been successfully performed, the
I/O Manager will send the create/open request to the FSD that manages the
logical volume (represented by a logical volume device object associated with
the physical device object) to actually process the request.

However, if the VPB indicates that no logical mount operation had been
performed for the target physical/virtual device object, the I/O Manager sends
an IRP with the IRP_MJ_FILE_SYSTEM_CONTROL major function code and
the IRP_MN_MOUNT_VOLUME minor function code to each of the registered
disk/CD-ROM file system drivers loaded in the system. The first FSD to
successfully perform the mount operation causes the I/O Manager to stop
issuing any further mount requests to the remaining FSDs.

Since the mini-FSD has registered itself as a fully functional, loaded FSD, it,
too, receives such mount requests from the I/O Manager. Upon receiving
such a mount request for the physical/virtual device (in our example, the
device object identified by \Device\PhysicalDriveO), the mini-FSD obtains the
disk geometry and device type by issuing IOCTL requests to the device driver
managing the device, and it also reads in the metadata information from
appropriate physical sectors on the media.

The mini-FSD then checks to see whether the information obtained from the
disk matches the expected information that would indicate that a valid,
supported logical volume resides on the physical media (or on the virtual
device).

4. If no valid structures are found on the target physical/virtual device, return an
error code of STATUS_UNRECOGNIZED_VOLUME to the I/O Manager, which
will cause the I/O Manager to pass on the request to the next registered file
system (or mini-FSD).

Any file system recognizer supplied along with your FSD must be capable of
detecting the presence/absence of valid metadata information on the storage
medium, to determine whether or not the disk actually contains a valid logical
volume. These checks need not be conclusive; i.e., as long as the mini-FSD
believes that a valid logical volume exists/does not exist on the disk, it can
choose a reasonable course of action to pursue.

5. If structures (metadata) on the target physical device indicate that a valid
logical volume exists on the device, then return STATUS_FS_DRIVER_
REQUIRED to the I/O Manager.

Returning STATUS_FS_DRIVER_REQUIRED to the I/O Manager results in
the I/O Manager issuing another IRP_MJ_FILE_SYSTEM_CONTROL request

File System Recognizers______________________________________603

to the file system recognizer; this time though, the minor function code will
be IRP_MN_LOAD_FILE_SYSTEM indicating that the mini-FSD should
proceed with attempting to load the full FSD implementation into memory.

6. Upon receiving the FSCTL request with a minor function of IRP_MN_LOAD_
FILE_SYSTEM, attempt to load the full FSD into memory.

This can be accomplished by using the ZwLoadDriver () support routine.
See the sample code fragment provided for an example of the usage of this
routine.

7. Remember the result of the load operation and take appropriate steps.

Typically, if the load request succeeds, the mini-FSD can render itself dormant
by simply unregistering itself from the list of registered file system implemen-
tations maintained by the I/O Manager. This ensures that the I/O Manager
will no longer send mount requests to the mini-FSD.
If the load request fails, it is recommended by the NT I/O subsystem
designers that the mini-FSD remember this failure in a device extension field
and never again (during the current boot cycle) attempt to reload the FSD.
Instead, upon receiving further mount requests, the mini-FSD should simply
reject them immediately with the return code STATUS_UNRECOGNIZED_
VOLUME. This will allow the I/O Manager to try some other loaded FSD
instead.
Note that it is not mandatory for your mini-FSD to remember a previous
failure if it believes that the next time around there is a better chance of the
load request succeeding.

You should note that file system recognizers typically exist only for disk-based
(including CD-ROM-based) file system implementations. Network redirectors typi-
cally do not use a VCB structure, and they also do not typically have mini-FSD
implementations.

The sample code fragment illustrates how you could develop your own file
system recognizer:

Code Sample
NTSTATUS DriverEntry (
PDRIVER_OBJECT DriverObject,
PUNICODE_STRING RegistryPath)
{

NTSTATUS RC = STATUS_SUCCESS;
UNICODE_STRING DriverDeviceName;
UNICODE_STRING FileSystemName;
OBJECT_ATTRIBUTES Obj ectAttributes;
HANDLE FileSystemHandle = NULL;

604 _________ _______________ Chapter 11: Writing a File System Driver III

IO_STATUS_BLOCK loStatus;
PtrSFsRecDeviceExtension PtrExtension = NULL;

try {
try {

// Initialize the IRP major function table
Dr iverObj ect->Ma j orFunc tion [IRP_MJ_FILE_SYSTEM_CONTROL] =

SFsRecFsControl ;
DriverObject->DriverUnload = SFsRecUnload;

// Before creating a device object, check whether the FSD has
// been loaded already. You should know the name of the FSD
// that this recognizer has been created for.
RtllnitUnicodeString (&FileSystemName, L" \\SampleFSD") ;
InitializeObjectAttributes (&ObjectAttributes, &FileSystemName,

OBJ_CASE_INSENSITIVE, NULL, NULL) ;
// Try to open the file system now.
RC = ZwCreateFile(&FileSystemHandle, SYNCHRONIZE,

&ObjectAttributes,
&IoStatus, NULL, 0,
FILE_SHARE_READ FILE_SHARE_WRITE,
FILE_OPEN, 0, NULL, 0) ;

if (RC != STATUS_OBJECT_NAME_NOT_FOUND) {
// The FSD must have been already loaded.
if (NT_SUCCESS(RC)) {

ZwClose (FileSystemHandle) ;
}
RC = STATUS_IMAGE_ALREADY_LOADED;
try_return(RC) ;

// Create a device object representing the file system
// recognizer. Mount requests are sent to this device object.
RtllnitUnicodeString (ScDriverDeviceName,

L"\\SampleFSDRecognizer") ;

if (!NT_SUCCESS(RC = loCreateDevice (
DriverObject, // Driver object for the file

// system rec .
sizeof (SFsRecDeviceExtension) , // Did a load fail?
&DriverDeviceName, // Name used above
FILE_DEVICE_DISK_FILE_SYSTEM,
0, //No special characteristics
FALSE ,
& (PtrFSRecDeviceObject)))) {

try_return(RC) ;

PtrExtension =
(PtrSFsRecDeviceExtension) (PtrFSRecDeviceOb j ect->

DeviceExtension) ;

PtrExtension->DidLoadFail = FALSE;

File System Recognizers 605

II Register the device object with the I/O Manager.
IoRegisterFileSystem(PtrFSRecDeviceObject) ;

} except (EXCEPTION_EXECUTE_HANDLER) {
/* we encountered an exception somewhere, eat it up */
RC = GetExceptionCode () ;

try_exit: NOTHING;
finally {
/* start unwinding if we were unsuccessful */
if (!NT_SUCCESS(RC) && PtrFSRecDeviceObject) {

IoDeleteDevice(PtrFSRecDeviceObject) ;
PtrFSRecDeviceObject = NULL;

return (RC) ;

void SFsRecUnload(
PDRIVER_OBJECT PtrFsRecDriverObject)

// Simple. Unregister the device object, and delete it.
if (PtrFSRecDeviceObject) {

loUnregisterFileSys tern (PtrFSRecDeviceObject) ;
IoDeleteDevice(PtrFSRecDeviceObject) ;

PtrFSRecDeviceObject = NULL;

return;

NTSTATUS SFsRecFsControl (
PDEVICE_OBJECT DeviceObject ,
PIRP Irp)
{

NTSTATUS
PIO_STACK_LOCATION
PtrSFsRecDeviceExtension
PDEVICE_OBJECT
UNICODE_STRING

FsRtlEnterFileSystemf) ;

RC = STATUS_UNRECOGNIZED_VOLUME;
PtrloStackLocation = NULL;
PtrExtension = NULL;
PtrTargetDeviceObject = NULL;
DriverName;

try {
try {

PtrloStackLocation = loGetCurrentlrpStackLocation(Irp) ;
ASSERT (PtrloStackLocation) ;

// Get a pointer to the device object extension.
PtrExtension =

(PtrSFsRecDeviceExtension) (PtrFSRecDeviceObject->
DeviceExtension) ,

606 __________________________ Chapter 11: Writing a File System Driver III

switch (PtrIoStackLocation->MinorFunction) {
case IRP_MN_MOUNT_VOLUME :

// Fail the request immediately if a previous load has
// failed. You are not required to do this, however, in
// your driver.
if (PtrExtension->DidLoadFail) {

try_return (RC) ;

// Get a pointer to the target physical/virtual device
// object.
PtrTargetDeviceObject =

PtrIoStackLocation->
Parameters . MountVolume . DeviceObj ect ;

// The operations that you perform here are highly FSD
// specific. Typically, you would invoke an internal
// function that would
// (a) Get the disk geometry by issuing an IOCTL
// (b) Read the first few sectors (or appropriate sectors)
// to verify the on-disk metadata information.
//To get the drive geometry, use the documented I/O
// Manager routine called ZoBuildDeviceloControlRequest ()
//to create an IRP. Supply an event with this request
// that you will wait for in case the lower-level driver
// returns STATUS_PENDING . Similarly, to actually read on-
// disk sectors, create an IRP using the
// loBuildSynchronousFsdRequest {) function call with a
// major function of IRP_MJ_READ.

// After you have obtained on-disk information, verify the
// metadata. RC =
// SFsRecGetDisklnfoAndVerify(PtrTargetDeviceObject) ;

if (NT_SUCCESS(RC)) {
// Everything looks good. Prepare to load the driver.
try_return(RC = STATUS_FS_DRIVER_REQUIRED) ;

}
break ;

case IRP_MN_LOAD_FILE_SYSTEM:
// OK. So we processed a mount request and returned
// STATUS_FS_DRIVER_REQUIRED to the I/O Manager.
// This is the result. Talk about an ungrateful I/O
// Manager making us do more work!
RtllnitUnicodeStringt&DriverName,

L" \\Registry\\Machine\\System\\CurrentControlSet\\Services\\SFsd") ;
RC = ZwLoadDriver (&DriverName) ;
if ((!NT_SUCCESS(RC)) && (RC !=

STATUS_IMAGE_ALREADY_LOADED)) {
PtrExtension->DidLoadFail = TRUE;

} else {
// Load succeeded. Mission accomplished.
loUnregisterFileSys tern (PtrFSRecDeviceObj ect) ;

File System Recognizers __ 607

break;
default:

RC = STATUS_INVALID_DEVICE_REQUEST;
break;

} except (EXCEPTION_EXECUTE_HANDLER) {
RC = GetExceptionCode () ;

try_exit: NOTHING;

} finally {
// Complete the IRP.
Irp->IoStatus. Status = RC;
loCompleteRequest (Irp, IO_NO_INCREMENT) ;

FsRtlExitFileSystem() ;

return(RC) ;
}
The following structure definitions are used by the code fragment:

typedef struct SFsRecDeviceExtension {
BOOLEAN DidLoadFail;

} SFsRecDeviceExtension, *PtrSFsRecDeviceExtension;

PDEVICE_OBJECT PtrFSRecDeviceObj ect = NULL;
unsigned int SFsRecDidLoadFail = 0;

extern NTSTATUS ZwLoadDriver (
IN PUNICODE_STRING DriverName) ;

Notes
As you can see, developing a file system recognizer (mini-FSD) is not difficult at
all. One point to note, in the event that you do provide a file system recognizer
module with your FSD implementation, is how you should configure the Registry
in order to load the recognizer automatically.

Chapter 9 lists the entries required in the Windows NT Registry to install a full
FSD. You should make the following modifications:

• Modify HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Sample-
FSD\Start to have a value of 4.

• You should also add a new entry for the file system recognizer, e.g., HKEY_
LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\SFsRec.

Chapter 11: Writing a File System Driver HI

This key should at least include the following value entries:

- ErrorControl : REG_DWORD : 0
- Group : REG_SZ : Boot File System
- Start : REG_DWORD : Oxl
- Type : REG_DWORD : 0x8

This indicates that the type of kernel service is SERVICE_RECOGNIZER_
DRIVER (a file system recognizer).

What Happens After the FSD Is Loaded?
Once a file system has been successfully loaded, the mini-FSD returns STATUS_
SUCCESS to the Windows NT I/O Manager. The I/O Manager then queries all the
loaded FSD instances once again, asking each one to mount the logical volume
on the target physical/virtual device object.

This mount request will eventually reach the newly loaded (our sample) file
system driver. The request is dispatched to the driver as a FSCTL request. The IRP
contains a major function code of IRP_MJ_FILE_SYSTEM_CONTROL and a
minor function code of IRP_MN_MOUNT_VOLUME. The Flags field in the current
I/O stack location is a value of (IRP_MOUNT_COMPLETTON | IRP_
SYNCHRONOUS_PAG ING_1 0) .

The I/O stack location contains the following structure relevant to processing the
mount request issued to an FSD:

typedef struct _IO_STACK_LOCATION {

union {

// Parameters for MountVolume
struct {

PVPB Vpb;
PDEVICE_OBJECT DeviceObj ect ;

} MountVolume;

} Parameters;

IO_STACK_LOCATION, *PIO_STACK_LOCATION;

File System Recognizers______________________________________609

The FSD must perform a logical mount operation upon receiving the mount
request. The following sequence of logical steps are typically executed by the
FSD when it receives the mount request:

1. The FSD will obtain the partition information, i.e., the driver geometry, by
building a device IOCTL IRP and issuing it to the driver managing the target
device object.
The loBuildDeviceloControlRequest () support routine, provided by
the I/O Manager, can be used to create an IRP that is then sent to the lower-
level driver. Typically, the IOCTL code used is IOCTL_DISK_GET_
PARTITION_INFO for read/write media.
Note that CDFS issues two separate IOCTL requests to the disk driver with
IOCTL codes specified as IOCTL_CDROM_CHECK_VERIFY and IOCTL_
CDROM_GET_DRIVE_GEOMETRY, respectively.

2. Once partition information has been successfully obtained, the FSD will typi-
cally create a device object representing the instance of the mounted volume.

The device object created would have a specified type of either FILE_
DEVICE_DISK_FILE_SYSTEM or FILE_DEVICE_CD_ROM_FILE_SYSTEM.

Note that the sample FSD defines a volume control block structure repre-
senting an instance of a mounted logical volume. The sample FSD
implementation allocates this VCB structure as the device extension for the
device object created to represent the mounted logical volume. Your driver
does not have to use the same methodology. However, this would be a good
place for your driver to allocate a VCB structure (from nonpaged pool) and
initialize it appropriately.

To see the kind of initialization performed by the sample FSD, consult this
code fragment:
void SFsdInitializeVCB(
PDEVICE_OBJECT PtrVolumeDeviceObj ect,
PDEVICE_OBJECT PtrTargetDeviceObj ect,
PVPB PtrVPB)
{

NTSTATUS RC = STATUS_SUCCESS ;
PtrSFsdVCB PtrVCB = NULL;
BOOLEAN VCBResourcelnitialized = FALSE;

PtrVCB = (PtrSFsdVCB)(PtrVolumeDeviceObject->DeviceExtension);

// Zero it out (typically this has already been done by the I/O
// Manager but it does not hurt to do it again).
RtlZeroMemory(PtrVCB, sizeof(SFsdVCB));

// Initialize the signature fields
PtrVCB->NodeIdentifier.NodeType = SFSD_NODE_TYPE_VCB;
PtrVCB->NodeIdentifier.NodeSize = sizeof(SFsdVCB);

610__________________________Chapter 11: Writing a File System Driver III

II Initialize the ERESOURCE object.
RC = ExInitializeResourceLite(&(PtrVCB->VCBResource));
ASSERT(NT_SUCCESS(RC));
VCBResourcelnitialized = TRUE;

// We know the target device object.
// Note that this is not necessarily a pointer to the actual
// physical/virtual device on which the logical volume should
// be mounted. This is a pointer to either the actual
// device or any device object that may have been
// attached to it. Any IRPs that we send should be sent to this
// device object. However, the "real" physical/virtual device
// object on which we perform our mount operation can be
// determined from the RealDevice field in the VPB sent to us.
PtrVCB->TargetDeviceObject = PtrTargetDeviceObject;

// We also have a pointer to the newly created device object
// representing this logical volume (remember that this VCB
// structure is simply an extension of the created device object).
PtrVCB->VCBDeviceObject = PtrVolumeDeviceObject;

//We also have the VPB pointer. This was obtained from the
// Parameters.MountVolume.Vpb field in the current I/O stack
// location for the mount IRP.
PtrVCB->PtrVPB = PtrVPB;

// Initialize the list-anchor (head) for some lists in this VCB.
InitializeListHead(&(PtrVCB->NextFCB)) ,-
InitializeListHead(&(PtrVCB->NextNotifyIRP));
InitializeListHead(&(PtrVCB->VolumeOpenListHead));

// Initialize the notify IRP list mutex
KeInitializeMutex(&(PtrVCB->NotifyIRPMutex), 0) ;

// Set the initial file size values appropriately. Note that your
// FSD may guess at the initial amount of information you would
// like to read from the disk until you have really determined
// that this a valid logical volume (on disk) that you wish to
// mount. PtrVCB->FileSize = PtrVCB->AllocationSize = ??

// You typically do not want to bother with valid data length
// callbacks from the Cache Manager for the file stream opened for
// volume metadata information
PtrVCB->ValidDataLength.LowPart = OxFFFFFFFF;
PtrVCB->ValidDataLength.HighPart = OxVFFFFFFF;

// Create a stream file object for this volume.
PtrVCB->PtrStreamFileObject = loCreateStreamFileObject(NULL,

PtrVCB->PtrVPB->RealDevice);
ASSERT(PtrVCB->PtrStreamFileObject);

// Initialize some important fields in the newly created file
// object.

File System Recognizers______________________________________611

PtrVCB->PtrStreamFileObject->FsContext = (void *)PtrVCB;
PtrVCB->PtrStreamFileObject->FsContext2 = NULL;
PtrVCB->PtrStreamFileObject->SectionObjectPointer =

&(PtrVCB->SectionObject);

PtrVCB->PtrStreamFileObject->Vpb = PtrVPB;

// Link this chap onto the global linked list of all VCB
structures.

ExAcquireResourceExclusiveLite(&(SFsdGlobalData.GlobalDataResource),
TRUE);

InsertTailList(&(SFsdGlobalData.NextVCB), &(PtrVCB->NextVCB));

// Initialize caching for the stream file object.
CcInitializeCacheMap(PtrVCB->PtrStreamFileObject,

(PCC_FILE_SIZES)(&(PtrVCB->AllocationSize)),
TRUE, // We will use pinned

// access.
&(SFsdGlobalData.CacheMgrCallBacks),
PtrVCB);

SFsdReleaseResource(&(SFsdGlobalData.GlobalDataResource));

// Mark the fact that this VCB structure is initialized.
SFsdSetFlag(PtrVCB->VCBFlags, SFSD_VCB_FLAGS_VCB_INITIALIZED);
return;

}
Remember to perform the following modifications to the device object
created to represent the mounted logical volume instance:

— Check the alignment restriction enforced by the target physical/virtual
device object.
If the alignment requirement mandated by the target device object is
greater than that specified by your FSD, modify the AlignmentRe-
quirement field in the newly created device object to reflect that of the
target device.

— Remember to clear the DO_DEVICE_INITIALIZING flag from the
Flags field in the newly created device object.

For device objects created during driver load time, the I/O Manager auto-
matically performs this task for you. If, however, you forget to clear this
flag value for device objects created by your FSD after the driver initializa-
tion has been completed, your FSD will not receive any IRPs, because the
I/O Manager will fail any requests sent to the device immediately.

— Set the StackSize value in the newly created device object to be equal
to (TargetDeviceObject->StackSize + 1).

612__________________________Chapter 11: Writing a File System Driver HI

3. Set the DeviceObject field in the PtrVPB structure, sent to the FSD as part
of the mount request to point to the new device object.

This is how a logical association is created between the VPB structure and the
logical volume device object created by your FSD. This pointer value is used
by the I/O Manager to determine the target device object whenever a create/
open request is received for a mounted logical volume.

4. Clear the DO_VERIFY_VOLUME flag (if set) in the device object for the real
(physical/virtual) device.

If you do not clear this bit, any read operations issued by your FSD to the
device will fail. Remember, though, if you clear this bit, you must reset it on
your way out of the mount routine.

5. Read in some of the information required to verify that the logical volume can
be mounted by your FSD.

You can simply use CcMapData () to map the sectors described by the on-
disk volume structures. Remember that this routine returns a pointer to a
buffer control block structure and also a buffer pointer to the mapped-in infor-
mation, which is valid as long as the range is not unpinned.

6. Verify that the structures on disk are legitimate, performing additional read
operations if required.

7. Create and initialize an FCB structure to represent the root directory.

Typically, the FSD always maintains an internal reference on the root direc-
tory FCB, to keep it around in memory as long as the volume stays mounted.
The PtrRootDirectoryFCB field in the VCB structure is initialized by the
sample FSD to point to the newly created and opened root directory for the
logical volume.

Note that opening the root directory will involve reading the root directory
contents from disk. Your FSD may use stream file objects created for internal
directory I/O operations.

By this time you should have a fairly good idea of the range that you need to
perform map operations for and you should update the file size values in the
VCB structure appropriately.

8. The native Windows NT FSD implementations appear to read the volume
label off the disk to ensure that the volume was not previously mounted.
If this happens to be a remount request for a previously mounted volume,*
the FSD must remove the newly created VCB and stream file object structures

* Any user/kernel thread with the appropriate privileges may have issued a mount request. The I/O Man-
ager will also issue a mount request if a previously issued verify volume operation (for removable media)
to the FSD had a return code of other than STATUS_SUCCESS.

File System Recognizers______________________________________613

(ensuring that any pinned ranges have been unpinned) and reinitialize the
old VCB structures appropriately. Reinitialization involves setting the
following fields:

— The 01dVCB->PtrVPB->RealDevice must be updated to point to the
PtrVPB->RealDevice field contents.

— The 01dVCB->TargetDeviceObject field must be initialized to refer
to the new TargetDeviceObject, obtained from the current I/O stack
location for the mount IRP.

— The PtrVPB->RealDevice->Vpb field must be reinitialized to
01dVCB->PtrVPB.

— The cache map for the stream file object associated with the OldVCB
must be reinitialized.

— Any other FSD-specific operations should be performed here to ensure
that any cached information from the previous mount has been discarded.

9. Now that the mount/remount operation is nearly finished, you should re-
enable volume verification if you have cleared the DO_VERIFY_VOLUME flag
from the real target device object.

10. Typically, native NT FSD implementations will issue an IOCTL request to the
target device object to lock removable media in the drive (at least, NTFS
appears to do this).

11. Set the appropriate flag value in your VCB structure to indicate that the
mount/remount operation was successful.

For example, the sample FSD will set the SFSD_VCB_FLAGS_VOLUME_
MOUNTED flag in the VCBFlags field.

12. Unpin any byte ranges that were pinned due to an invocation of CcMap-
Data () and release any resources that may have been acquired.

13. Return STATUS_SUCCESS if the mount logical volume operation succeeded.

If your FSD encounters an error during the mount process (e.g., I/O errors
encountered when attempting to read on-disk information), it should return
the appropriate error value after cleaning up any structures that may have
been allocated in processing the mount request.*

If your FSD returns STATUS_SUCCESS to the I/O Manager for the mount
request, the I/O Manager will set the VPB_MOUNTED flag in the VPB structure.

* If a mount request issued by the I/O Manager fails for the physical cleviee objeet representing the system
boot partition, the NT I/O Manager will bugcheck the system with the INACCESSIBLE_BOOT_DEVICE
bugcheck code.

614__________________________Chapter 11: Writing a File System Driver III

Once the logical volume has been mounted by a loaded FSD, the I/O Manager
will send the original create/open request that resulted in all of this processing
being performed. The create/open request will be sent to the newly created
device object representing the mounted instance of the logical volume and
referred to by the DeviceObject field in the VPB structure.

NOTE Mount operations performed on a logical volume are often very
complex, especially for more sophisticated FSD implementations
such as NTFS, which is a log-based file system driver. Therefore,
you should use the steps listed previously as a general guideline to
follow when designing the volume mount operation specific to your
file system driver.

In the next chapter, we'll see how to design and develop filter drivers that could
help provide unique value-added functionality for the Windows NT operating
system.

