
Building Kernel-Mode
Drivers

The BUILD.EXE utility supplied with the Windows NT DDK is the Microsoft-
provided (and supported) program to assist developers in compiling and linking
Windows NT kernel-mode drivers.* BUILD automatically establishes file dependen-
cies, isolates target-dependent (e.g., header file and library include path
information, compiler names and switches, linker switches) and platform-depen-
dent information (x86, PowerPC, MIPS, Alpha platforms), and, thereby, provides a
simple method for creating kernel-mode drivers and libraries and also user-mode
applications (if you so desire).

BUILD expects you to tell it which files need to be compiled, the name and type
information for the target driver or library to be generated, information identifying
the target platform, and any special compilation and/or link options that you
would like to specify. Once you provide this information, BUILD determines the
appropriate file dependencies and uses the services of NMAKE and the installed
compiler to generate your target driver, library, or application.

Inputs
As input, BUILD expects you to supply a text file named SOURCES, in the same
directory as that containing the files to be compiled. The SOURCES file contains
information that identifies your source files, the target to be built and other rele-
vant information. BUILD also uses any environment variables that you may have
specified, and any command-line options that you provide when you invoke
BUILD. Finally, BUILD uses the platform-specific rules and other options specified

* Note once again that the Microsoft DDK does not include a compiler. You must purchase a compiler
separately.

736

Output___737

in the following files that are supplied with the DDK (in the $BASEDIR\INC
directory*):

MAKEFILE.DEF
This is the primary control file used by BUILD. You should study the contents
of this file to better understand how options specified by you can affect the
manner in which your target driver or library is created.

WARNING The MAKEFILE.DEF file is poorly documented and extremely con-
voluted. It is a prime example of how not to implement a makefile.
Unfortunately for us, it is also the only source available if we wish
to understand some of what happens when BUILD is invoked.

MAKEFILE.PLT
This file contains target-platform-specific information. The target platform is
either specified by you as a command-line option to BUILD or determined via
an environment variable.t This file is included by MAKEFILE.DEF.

I386MK.INC / ALPHAMK.INC / MIPSMK.INC / PPCMK.INC
This file contains target-platform-specific build controls and is also included
by MAKEFILE.DEF.

Output
BUILD generates the target driver, library, or application you specified in the
SOURCES file. The BUILD.LOG (containing the list of commands invoked by
BUILD and any compiler- or linker-generated statements), BUILD. WJRN (containing
warnings generated during the build process), and BUILD.EKR (containing errors
that prevent the successful completion of the build process) files are generated as
by-products of the build process.

Two types of Windows NT drivers can be built:

Free build
This is the nondebug version of your driver. This is also the version you will
typically ship to your customers. This version is normally compiled with full
optimization enabled, and I would advise that you strip the free version of all
symbolic information before shipping it.

* The BASEDIK environment variable is automatieally set up for you by the installation utility during the
DDK installation process and its value is set to the base directory path specification where you installed
the DDK.
t The BUILD_DEFAULT_TARCETSenvironment variable is typically initialized to the target platform type
value (e.g., -386).

738 __________________________ Appendix C: Building Kernel-Mode Drivers

The free build environment does not define the DBG environment variable;
therefore, any conditional debug code that you include in your driver can be
automatically filtered out during the compilation process as shown here:
—if DBG

// Include the debug code here. This code is automatically
// filtered out for the free/retail build.

—endif // DBG
Contrary to what you might expect, the free version of your driver does
contain symbolic information. To remove this symbolic information from the
free build, execute the following sequence of steps:
— Execute the command DUMPBIN /HEADERS y our -driver -

name . sys / MORE on the binary.
— Note the value associated with the "image base" in the OPTIONAL

HEADER VALUES section. This value should typically be 10000 (hex).

— Execute the command REBASE -b InitialBaseValue -x Symbol -
Dir-Name y our -driver -name . sys.

— A file by the name of your-driver-name . dbg will be created in the
specified symbol directory, and the free binary will no longer contain any
symbolic information.

Checked build
This is the debug version of your driver that you will typically build and use
during development. Assertions in the driver code, debug print statements,
debug breakpoints, and symbolic information are all compiled into the
checked binary, and optimization is disabled for the debug build.

You should never ship the checked build to your customers or attempt to
execute the checked build without having a debugger attached to the system.
Otherwise, you may experience hangs and/or system crashes when assertions
or breakpoints are hit.

To build the free, or retail, version of your driver, use the free build environment,
which is set up automatically when you invoke the Free Build Command
Window. Similarly, you should use the Checked Build Command Window to
build the checked version of your target driver.

Building Your Driver
1. In your driver source directory, create a file called MAKEFILE containing the

following:
DO NOT EDIT THIS FILE! ! ! Edit .\sources. if you want to add a new
source file to this component. This file merely indirects to the

Building Your Driver_____ _____________________________________739

real make filethat is shared by all the driver components of the
Windows NT DDK

!INCLUDE $(NTMAKEENV)\makefile.def
2. Also in your driver source directory, create a SOURCES file, specifying the

source files to be built, the target type and name, and any other additional
command-line switch values you wish to have passed-on to the compiler and
linker. The \DDK\DOC\SOURCES.TPLfi\e is a template that you should study
and use when attempting to create your own SOURCES file. Below is the
SOURCES file I used in compiling the sample file system driver:
- Execute the "build" command to make the sample FSD driver

The TARGETNAME variable is defined by the developer. It is the name
of the target (component) that is being built by this makefile. It
should NOT include any path or file extension information.

TARGETNAME=sfsd

The TARGETPATH and TARGETTYPE variables are defined by the developer.
The first specifies where the target is to be built. The second
specifies the type of target (either PROGRAM, DYNLINK, LIBRARY,
UMAPPL_NOLIB, or BOOTPGM). UMAPPL_NOLIB is used when you're only
building user-mode apps and don't need to build a library.

TARGETPATH=obj

TARGETTYPE=DRIVER

The INCLUDES variable specifies any include paths that are specific
to this source directory. Separate multiple directory paths with
singlesemicolons. Relative path specifications are okay. The
INCLUDES variable is not required. Specifying an empty INCLUDES
variable(i.e., INCLUDES=) indicates no include paths are to be
searched.
#
NOTE: The "fsdk\inc" refers to the Microsoft-supplied File Systems
Developers Kit.

INCLUDES=. .\inc; \ddk-40\inc; \fsdk\inc-40;

The SOURCES variable is defined by the developer. It is a list of
all the source files for this component. Each source file should be
on a separate line, using the line continuation character. This
will minimize merge conflicts if two developers are adding source
files to the same component. The SOURCES variable is required. If
there are no platform common sourcefiles, an empty SOURCES variable
should be used, (i.e., SOURCES=)

Source files common to multiple platforms

SOURCES=sfsdinit.c \
registry.c \

740 Appendix C: Building Kernel-Mode Drivers

create. c
misc .c
cleanup. c
close. c
read. c
write. c
f ileinfo. c
f lush.c
volinfo.c
dircntrl .c
fscntrl.c
devcntrl . c
shutdown . c
Ickcntrl .c
security. c
extattr .c
fastio.c

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

Next specify any additional options for the compiler.
Define the appropriate CPU type (and insert defines
in the appropriate header file) to get the right
values for "uintS," "uint!6," etc. typedefs.

C_DEFINES= -DUNICODE -D_CPU_X86_

The type of product being built - NT = kernel mode
UMTYPE=nt

3. Since I specified that the obj subdirectory should contain the target driver, I
have created the obj, obj\i386, obj\i386\cbecked, and obj\i386\free directo-
ries on my computer, for creating the x86 version of the driver. Similarly, you
should create the appropriate directories depending upon the target directory
you specify and the target platform that you are compiling for.*

4. Execute BUILD to create your target driver, library, or application.

For More Information
The DDK documentation provides a guide to compiling and linking your kernel-
mode drivers. Consult this documentation, the SOURCES files provided on the
diskette accompanying this book and the SOURCES files that are supplied with
sample source code provided with the DDK for more information.

* If you fail to do so, BUILD will automatically create all of the subdirectories mentioned here, except
the checked and free sub-directories, which you will have to create yourself (manually).

