
MPR Support

The Multiple Provider Router (MPR) exports general networking APIs in Win32
and interacts with underlying network providers to provide the exported
networking services. Applications do not interact with the network provider DLLs
directly; rather, they invoke the common networking APIs and are thereby
protected from the vagaries of specific network providers. Also, a common look
and feel is presented by the MPR to applications that request such networking
services.

If you design and implement a network redirector, you may choose to implement
a network provider dynamic link library (DLL); this will allow you to leverage
existing commands and interfaces (e.g., the net command) that users can utilize
to request services from your network redirector. Such services can include deter-
mining the capabilities of your network, establishing a connection to a remote
resource, getting information about connected resources, closing connections, and
so on.

The MPR will dynamically load your DLL and call the appropriate entry points
whenever your network is active.

Registry Modifications
The MPR examines the contents of the following key in the Registry to determine
the various network provider DLLs that are present and also to determine the
order in which these network providers should be invoked:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\NetworkProvider\order
The order key has a value-entry called ProviderOrder, which is a string-type
value. The string value is a comma-separated list of key names. Each key name

729

730_____________________________________Appendix B: MPR Support

identifies a network provider by referring to the Registry key associated with that
provider. Each key name is actually a relative path from HKEY_LOCAL_
MACHINE\System\CurrentControlSet\Services\, defining a node that
the network vendor would have created during its installation.

As an example, consider the following entry in the Registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet \Control\NetworkProvider\
order\ProviderOrder = "LanmanWorkStation,YourNetworkServiceKeyName"

This informs the MPR that it should expect to find two specific Registry key
entries:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\LanmanWorkStation

and
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\

YourNetworkServiceKeyName

It also informs the MPR that the order in which requests should be directed to the
network providers present on the system is first, to the LAN Manager Work
Station network provider and then your network provider.

You are expected to have the following entries in the Registry associated with the
YourNetworkServiceKeyName key:

• Group:REG_SZ:NetworkProvider
• NetworkProvider (subkey)

The NetworkProvider subkey should have the following values:

Name (REG_SZj
The name of the network provider. This name is displayed to the user as
the name of the network in the browse dialogs.

ProviderPath (REG_EXPAND_SZj>
The full path of the DLL that implements the network provider. MPR will
perform a LoadLibrary () on this path.

Network Provider DLL Implementation
On Windows NT platforms, your network provider can implement one or more of
the following functions:

Function Name
NPGetConnection ()
NPGetCaps () l

NPDeviceMode ()

Ordinal Value
12

13
14

Network Provider DLL Implementation_________ ____ ____ __ 73-?

Function Name Ordinal Value
NPGetUser()
NPAddConnection()
NPCancelConnection()
NPPropertyDialog()
NPGetDirectoryType()
NPDirectoryNotify()
NPGetPropertyText()
NPOpenEnutn ()
NPEnumResource()
NPCloseEnum()
NPSearchDialog()

16
17
18
29
30
31
32
33
34
35
38

1 This is the only function that is mandatory for your network provider to implement since it is the method
by which the user (and the MPR DLL) can determine the capabilities of your network.

Note that your DLL does not need to contain stubs for those functions that are not
supported and/or implemented by your network provider.

When implementing the network provider DLL, you should keep the following
points in mind:

Speed
When your network provider DLL gets invoked, you should quickly try to
determine whether the target resource is one that belongs to you or not. If
your DLL does not own the resource, return WN_BAD_NETNAME (the list of
error code definitions is given later in this appendix) so that the MPR can
continue cycling through the list of available providers.

Validation
Your network provider DLL must validate calls using the following ordering
sequence:

a. First, check if your network has been started (or if your network redi-
rector is loaded and active).

b. Next, check if you support the requested operation.
c. If any network resources are specified, check whether you own such

resources.
d. Validate the supplied parameters to your function call (if any).

Routing
The MPR cycles through all of the network providers listed in the Registry,
until one of them accepts the request and processes it or until all of the avail-
able network providers have been invoked and none of them accepts the

732_____________________________________Appendix B: MPR Support

request. If your network provider is invoked and you do not wish to process
the request, return an appropriate error code (e.g., ERROR_BAD_NETPATH,
ERROR_BAD_NET_NAME, ERROR_INVALID_PARAMETER, ERROR_INVALID_
LEVEL). If, however, your network provider returns an error code that is a
significant error code (e.g., ERROR_INVALID_PASSWORD) that indicates that
the operation was processed unsuccessfully or if your network provider DLL
returns a success code, the MPR DLL conveys the results back to the
requesting application (and stops routing the request to any other network
providers).

Return Values/Errors
Functions implemented in your network provider DLL can return either WN_
SUCCESS or an appropriate error code. If returning an error, the function should
also invoke the WNetSetLastError () or SetLastError () function calls to
report the error. If you are returning a general error (such as insufficient
memory), simply invoke the SetLastError () function; otherwise, use the
WNetSetLastError () function:

VOID WNetSetLastError (
DWORDerror,
LPTSTRlpError,
LPTSTRlpProvider)

where the arguments are as follows:

error
The error code value. If this is a Windows-defined error code, IpError is
ignored. Otherwise, you could set this to ERROR_EXTENDED_ERROR to indi-
cate that a network-specific error is being reported.

IpError
A string describing the network-specific error.

IpProvider
A string naming the network provider that raised the error.

To report general errors, execute the following steps:

// error condition occurs that should be reported.
// error code is contained in providerError.
SetLastError(providerError);
return(providerError);

To report network-specific errors, do the following:

// IpErrorString contains the error to be reported.
WNetSetLastError(ERROR_EXTENDED_ERROR, IpErrorString, IpProviderName);
return(ERROR_EXTENDED_ERROR);

Network Provider DLL Implementation 733

Note that the NtGetCaps () function does not return any error code value;
rather, it returns a capabilities mask value.

Here are the possible status code values that can be returned (your provider,
however, is free to return any Windows-defined error code):

#define WN_SUCCESS
#define WN_NOT_SUPPORTED
#define WN_NET_ERROR
#define WN_MORE_DATA
#define WN_BAD_POINTER
#define WN_BAD_VALUE
#define WN_BAD_PAS SWORD
#define WN_ACCESS_DENIED
#define WN_FUNCTION_BUSY

#define WN_
#define WW_
#define WN_
#define WN_
#define WN_

WINDOWS_ERROR
BAD_USER
OUT_OF_MEMORY
NOT_CONNECTED
OPEN_FILES

#define WN_BAD_NETNAME

OOh // success
Olh // function not supported
02h // miscellaneous network error
03h // warning: buffer too small
04h // invalid pointer specified
05h // invalid numeric value specified
06h // incorrect password specified
07h // security violation
08h // this function cannot be reentered and

// is currently being used, OR
// the provider is still initializing and
// is not ready to be called yet.

09h //a required Windows function failed
OAh // invalid user name specified
OBh // out of memory
30h // device is not redirected
31h // connection could not be canceled

// because files are still open
32h // network name is invalid

Note that the WN_FUNCTION_BUSY code value is also used to indicate that the
network provider DLL is currently initializing itself. When this error code is
returned to the application, it is possible that the application may decide to retry
the operation.

NPGetCapsQ
This function allows your network provider DLL to specify which functions are
supported by your network from the set of functions specified by the caller. This
function is defined as follows:

DWORD NPGetCaps(
IN DWORD nlndex)

Parameters

nlndex
Capability set that the caller is interested in.

The return value is typically a bit mask, indicating which of the specified services
are supported by your network provider DLL. If you return 0, the caller will take
that to mean that none of the specified services are supported by your network.
For certain nlndex values, however, you must return a constant value instead of
a bit mask.

734_____________________________________Appendix B: MPR Support

Possible nindex values

Version information
The nindex value will be set to WNNC_SPEC_VERSION (= 0x01).

Set the high word of the return code to 4 (indicating the major version
number) and the low word to 0 (for the minor version number).

Network provider type
The nindex value will be set to WNNC_NET_TYPE (= 0x02).

The high word of the returned value should contain the provider type and
the low word should contain the subtype (if any). The following types have
been defined by Microsoft:*
#define WNNC_NET_NONE 0x00000
ttdefine WNNC_NET_MSNET 0x10000
#define WNNC_NET_LANMAN 0x20000
#define WNNC_NET_NETWARE 0x30000
#define WNNC_NET_VINES 0x40000

Network provider version
The nindex value will be set to WNNC_DRIVER_VERSION (= 0x03).

Returns your driver version number.
User information

The nindex value will be set to WNNC_USER (= 0x04).

If you support this capability, return the WNNC_USR_GETUSER (= 0x01) con-
stant value.

Connection manipulation
The nindex value will be set to WNNC_CONNECTION (= 0x06).

Set any of the following bit fields:
#define WMNC_CON_ADDCONNECTION 0x01
ttdefine WNNC_CON_CANCELCONNECTION 0x02
#define WNNC_CON_GETCONNECTIONS 0x04
Sdefine WNNC_CON_ADDCONNECTION3 0x08

Provider-specific dialogs
The nindex value will be set to WNNC_DIALOG (= 0x08).

Set any of the following bit fields:
#define WNNC_DLG_DEVICEMODE 0x01
#define WNNC_DLG_PROPERTYDIALOG 0x20 // PropertyText is also

implied.

* You can request Microsoft to assign a provider type value for your use.

Network Provider DLL Implementation_____________________________735

tdefine WNNC_DLG_SEARCHDIALOG 0x40
#define WNNC_DLG_FORMATNETWORKNAME 0x80
#define WNNC_DLG_PERMISSIONEDITOR 0x100

Administrative functionality
The nlndex value will be set to WNNC_ADMIN (= 0x09).
Set any of the following bit fields:
#define WNNC_ADM_GETDIRECTORYTYPE 0x01
#define WNNC_ADM_DIRECTORYNOTIFY 0x02

Enumeration
The nlndex value will be set to WNNC_ENUMERATION (= OxOB).

Set any of the following bit fields:
#define WNNC_ENUM_GLOBAL 0x01
#define WNNC_ENUM_LOCAL 0x02

Startup
The nlndex value will be set to WNNC_START (= OxOC).

The MPR issues this request to determine how long it should wait (.timeout
value) for network providers to start. Therefore, if your network provider is
not responding (or returns busy), the MPR may decide to retry an operation,
depending upon the current timeout value and the elapsed time interval. The
default value is set to 60 seconds for each network provider. The adminis-
trator could, however, change this default value by specifying the HKEY_
LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\NetworPro-
vider\RestoreTimeout value (type REG_DWORD), which determines the
timeout in milliseconds for all network providers.

If you return 0, the MPR will assume that your network provider is disabled.
If you return OxFFFFFFFF, the MPR interprets this to mean that you do not
know how long it will take you to start and will wait for the current default
timeout value (60 seconds or whatever is specified by the administrator).

NOTE There is a single timeout value used by the MPR for all network pro-
viders. If your network provider DLL returns a timeout value that is
greater than the current MPR default timeout (whether specified by
the administrator or not), the MPR will use your specified timeout
value. Therefore, be judicious in determining the appropriate time-
out value you decide to return.

Consult the SDK documentation, and the documentation supplied on the
Microsoft Developers Library CD-ROM for more information on how to implement
the other network provider APIs for the Windows NT operating system.I

