WindowsNT
SystemServices

For various reasons, Microsoft has not documented the native Windows NT 1/0O
services provided by the Windows NT I/O Manager. Application developers are
instead expected to use either the Win32 subsystem APIs, or the APIs provided by
one of the other supported subsystems, e.g., the POSIX subsystem.

This appendix contains a list of most of the exported, native Windows NT 1/0O-
Manager-provided system services. As was mentioned earlier in the book, the
Windows NT system services are quite powerful and comprehensive, and alow
the caller to more easily request certain operations that would often otherwise
require multiple Win32 API calls. The majority of the structure types and flag defi-
nitions required to use the various system services described in this appendix are
provided in the Windows NT DDK. Those definitions that are not provided in the
DDK can be obtained from the header files supplied with the Windows NT IPS
kit. Many such undefined types are described here as well.

NT System Services

The Windows NT system services allow the caller to request normal file stream
manipulation operations. These include requests to create a new file or open an
exiging file stream, requests to perform 1/O on the file, get and st file attributes,
map afile into a process virtual address space, and requests to close a file handle.
Nearly all of the services provided by the native system services can aso be
requested using Win32 API calls or any one of the various APIs provided by the
supported subsystems. However, system and application software developers may
sometimes require functionality that may not be easily (or efficiently) provided by
any one subsystem. As an example, creating a link to an exigting file cannot be
eadly accomplished (if at dl) using the Win32 subsystem. This functionality,
however, is more easily requested if an application were to use the POSIX

671

672 Appendix A: Windows NT System Services

subsystem instead.* In such situations where you may need otherwise hard-to-
request functionality, requesting file system services by using the native system
service calls provided by the 1/O Manager can be quite useful.

Kernel-mode file system and filter driver developers may aso wish to scan
through the system services documented here to get a good sense of how the 1/0
Manager translates user requests into corresponding file system dispatch routine
invocations, and also how user-specified arguments are eventually passed on to
the file system implementation. Descriptions of certain system services aso
include comments on the responsibilities of an FSD processing such a request.

NtCreateFile()

Parameters

Fi | eHandl e
Returned handle (created by the 1/O Manager) if call succeeds.
Desi redAccess
Desired access flags can be one or more of the following:
DELETE

Required if FILE_DELETE_ON_CLOSE is set in CreateOptions below.
File can be deleted by caller.

FILE_READ_DATA

Caller can request to read data.
FI LE WR TE_DATA
Caller may write file data. The caller is also alowed to append to the file.
FI LE_ READ ATTR BUTES
File attributes flags can be read.
FI LE WR TE_ATTR BUTES
The caller can change file attribute flag values.
FI LE_APPEND DATA

The caller can only append data to the filet This access value is not

alowed in conjunction withthe FILE_NO_INTERMEDIATE_BUFFERING
CreateOptions flag.

READ_ CONTRCOL
ACL and ownership information for the file stream can be read.

* Multiple (hard) links to a file stream are currently supported only by the NTFS driver, out of all of the
native file system implementations provided by Microsoft for the Windows NT platform.

t Any byte offset specified in a write operation will be ignored.

NT System Services 673

WRITE_DAC

Discretionary ACL associated with the file can be written.
WR TE_OMER

Ownership information can be written.

FI LE LI ST_D RECTCRY
Caller can list files contained within the directory. Not valid for data files.

FI LE_TRAVERSE
The opened directory can be in the pathname of a file. Not valid for data
files.

FILE_READ_EA
Caller can read extended attributes associated with the file.

FILE WR TE_EA
Required if EaBuffer is not null. Caller may write extended attributes to
the file.

SYNCHRCN ZE
Caller can wait for the returned file handle for completion of asynchro-
nous 1/0 requests. Required if either FILE_SYNCHRONOUS 10_ALERT
or FILE_SYNCHRONOUS |O_NONALERT flags in CreateOptions have
been set. If this flag is not specified, 1/0 completion for asynchronous
I/0O requests must be synchronized by either using an event or an APC
routine.

FILE_EXECUTE
File stream is an executable image. If FILE_EXECUTE is set but neither
FILE_READ_DATA nor FILE_WRITE_DATA are set, then I/O can only
be performed by mapping the file into the process virtual address space.

ObjectAttributes

The caler must allocate memory for this structure of type OBJECT _

ATTRIBUTES. Fields in the structure are initialized as follows:

Length
Size, in bytes, of the structure.

ObjectName
A Unicode string specifying the name of file. The name can be either a
relative name (RootDirectory is nonnull) or an absolute name (Root-
Directory is NULL).

RootDirectory (optional)

The previously opened handle for a directory; ObjectName will be
considered relative to this directory (if specified).

674 Appendix A: Windows NT System Services

SecurityDescriptor (optional)
If nonnull, the specified ACLs will be applied only if the file is created. If
the SecurityDescriptor is NULL and if the file is created, the FSD
determines which (if any) ACLs will be associated with the file (typicaly,
a default ACL associated with the parent directory is propagated to the
created file).

SecurityQuality Of Service (optional)
Specifies the access a server should be given to a client's security context.
Only nonnull when a connection is being established to a protected
Server.

Attributes
Combination of OBJ INHERIT (child processes inherit open handle) and
OBJ CASE_INSENSITIVE (lookups should be processed in a case-insen-
stive fashion).
| oSt at usBl ock
Caller-supplied structure to receive results of create/open request.

AllocationSize (optional)
The initial alocation size of file. Only used when the file is initialy created,
overwritten, or superseded. If the FSD cannot allocate the requested disk
space for the file, the create/open request will fail.

FileAttributes
Attributes are only applied if file is newly created, superseded, or overwritten.
Any combination is alowed but al flag values override the FILE
ATTRIBUTE_NORMAL flag. Attributes can be one or more of the following:

FI LE_ATTR BUTE_NCRVAL
A normal file should be created.

FI LE_ATTR BUTE_READONLY
A read-only file should be created.

FI LE_ATTR BUTE_H DDEN
A hidden file should be created.

FI LE_ATTR BUTE_SYSTEM
The created file should be marked as a system file.

FILE_ ATTRIBUTE_ARCHIVE
Mark the file to-be-archived.

FI LE_ATTR BUTE_TEMPCRARY
The file to-be-created is marked as a temporary file. Note that modified
cached data for the file is often not flushed to secondary storage for
temporary files by the Cache Manager.

NT System Services 675

FILE_ATTRIBUTE_COMPRESSED
The file to be created is a compressed file.

Shar eAccess

The type of share access requested by the caller. The share access can be a
combination of the following:

FI LE_SHARE READ
The file can be concurrently opened for read access by other threads.

FI LE_SHARE WR TE
Other file open operations requesting write access should be allowed.

FILE_SHARE_DELETE
Other file open operations requesting delete access should be allowed.

Note that the share access flags allow the requester to control how the file
can be shared by separate threads and processes. If none of the share values
are specified, no other subsequent open operation will be allowed to proceed
until the file handle is closed (and an IRP_MJ_CLEANUP issued to the FSD).

O eat eDi sposition

The disposition specified by the caller determines the actions performed by
an FSD if a file does or does not exist. Any one of the following values can
be specified:
FI LE_SUPERSEDE
It the file exists, it should be superseded; if the file does not exist, it
should be created.
FI LE_CREATE
If the file does not exist, it should be created; if the file exists, an error
should be returned (typicaly STATUS OBJECT_NAME_COLLISION is
returned).
FILE_OPEN
If the file exists, it should be opened; if the file does not exist, an error
should be returned (often STATUS OBJECT_NAME_NOT_FOUND is
returned).

FILE OPEN | F
Open the file if it exists, create the file if it does not already exist.

FI LE_ OVERWR TE
If the file exists, it should be opened and overwritten. If it does not exist,
the create operation should fail (often STATUS OBJECT_NAME_NOT__
FOUND is returned).

B

678 Appendix A: Windows NT System Services

FI LE_NO EA KNOW.EDGE
The caller does not understand how to handle extended attributes. If
extended attributes are associated with the file being opened, the FSD
must fail the open operation.

FI LE_DELETE_ON_CLOSE
The directory entry for the file being opened should be deleted when the
last handle to the file stream has been closed.

FILE_OPEN_BY_FILE_ID
The file name is actualy a LARGE_INTEGER-type identifier that should
be used to locate and open the target file (see Chapter 9, Wkiting a File
System Driver |, for details).

FILE_OPEN_FOR_BACKUP_INTENT
The file is being opened for backup purposes, and the FSD should
initiate a check for the appropriate privileges and determine whether the
open should be allowed to proceed or be denied.

FI LE_NO _COVPRESSI ON
The file cannot be compressed.

EaBuf fer (optional)

A caler-allocated buffer containing a list of extended attributes to be set on
the file only if the file is being created. Must be set to NULL if the file is only
being opened. The FILE_FULL_EA_INFORMATION structure defines the
format of the extended attributes in EaBuf fer. Each extended attribute entry
must be longword aligned. The NextEntryOffset field in the structures
specifies the number of bytes between the current entry and the next. For the
last entry, the NextEntryOf fset field is zero.

If extended attributes are specified and if the extended attributes for the
newly created file cannot be successfully created, the create/open request will
fail. Therefore, creation of extended attributes is an atomic operation with
respect to creation of the file.

Eal ength

Vaue should be 0 if EaBuffer is set to NULL. Otherwise, it contains the
length (in bytes) of the EAs listed in EaBuf fer.

Return code

STATUS _SUCCESS indicates that the operation succeeded and a valid handle is
being returned; STATUS PENDING indicates that the operation will be performed
asynchronously by the FSD, while STATUS REPARSE indicates that the name
should be parsed again by the object manager (e.g., a new volume has been
mounted).

NT System Services 679

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

e STATUS OBJECT TYPE_MISNATCH

e STATUS NO SUCH_DEVICE

e STATUS _ACCESS _DENIED (acommonly used error code value)
e STATUS FILE_IS A_DIRECTORY

e STATUS NOT_A_DIRECTORY

e STATUS_INSUFFICIENT_RESOURCES

e STATUS OBJECT_NAME_INVALID

e STATUS DELETE_PENDING

e STATUS SHARING_VIOLATION

e STATUS INVALID_PARAMETER

IRP

Overlay.Allocations! ze
Set to the caller-supplied AllocationSize value (if any).

Associatedlrp.SystemBuffer
The EaBuf fer supplied by the caller (if any).

Flags
The IRP_CREATE_OPERATION, IRP_SYNCHRONOUS API, and IRP_
DEFER_|O_COMPLETION flag values are set.

1/O stack location

Maj or Function
| RP_MI_CREATE
M nor Functi on
None.

Fl ags
One or more of SL_CASE_SENSITIVE, SL_FORCE_ACCESS CHECK, SL_
OPEN_PAGING_FILE, and SL_OPEN_TARGET_DIRECTORY..

Control
Irrelevant from the FSD's perspective.

Parameters.Create.Security Context
Points to an 10_SECURITY_CONTEXT structure (allocated by the 1/O
Manager) containing the A ccessState and DesiredAccess (specified by

I ¢

678 Appendix A: Windows NT System Services

FI LE_NO EA KNOW.EDGE
The caller does not understand how to handle extended attributes. If
extended attributes are associated with the file being opened, the FSD
must fail the open operation.

FI LE_ DELETE_ON_CLOSE

The directory entry for the file being opened should be deleted when the
last handle to the file stream has been closed.

FILE_OPEN_BY_FILE_ID
The file name is actually a LARGE_INTEGER-type identifier that should

be used to locate and open the target file (see Chapter 9, Writing a File
System Driver I, for details).

FILE_OPEN_FOR_BACKUP_INTENT
The file is being opened for backup purposes, and the FSD should

initiate a check for the appropriate privileges and determine whether the
open should be allowed to proceed or be denied.

FI LE_NO COWVPRESSI ON
The file cannot be compressed.

EaBuf f er (optional)

A caler-allocated buffer containing a list of extended attributes to be set on

the file only if the file is being created. Must be set to NULL if the file is only
being opened. The FILE_FULL_EA_INFORMATION structure defines the
format of the extended attributes in EaBuf fer. Each extended attribute entry

must be longword aligned. The NextEntryOffset field in the structures
specifies the number of bytes between the current entry and the next. For the
last entry, the NextEntryOf f set field is zero.

If extended attributes are specified and if the extended attributes for the
newly created file cannot be successfully created, the create/open request will
fail. Therefore, creation of extended attributes is an atomic operation with
respect to creation of the file.

Eal ength

Value should be O if EaBuffer is set to NULL. Otherwise, it contains the
length (in bytes) of the EAs listed in EaBuf fer.

Return code

STATUS_SUCCESS indicates that the operation succeeded and a valid handle is
being returned; STATUS _PENDING indicates that the operation will be performed
asynchronously by the FSD, while STATUS REPARSE indicates that the name

should be parsed again by the object manager (e.g., a new volume has been
mounted).

NT System Services 679

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

« STATUS OBJECT TYPE MISMATCH
« STATUS NO_SUCH_DEVICE

STATUS_ACCESS_DENIED (acommonly used error codeval ue)
+ STATUS FILE IS A _DIRECTORY

« STATUS NOT_A_DIRECTORY

« STATUS INSUFFICIENT _RESOURCES
« STATUS OBJECT NAME_INVALID

« STATUS DELETE_PENDING

« STATUS SHARING_VIOLATION

« STATUS INVALID PARAMETER

IRP

Overlay.Allocations! ze
Set to the caller-supplied Allocati onSize value (if any).

Associatedlrp.SystemBuffer
The EaBuf f er supplied by the caller (if any).

Flags
The IRP_CREATE_OPERATION, IRP_SYNCHRONOUS API, and IRP_
DEFER_IO_COMPLETION flag values are set.

I/0O stack location

Maj orFunction
IRP_MJ CREATE

MinorFuncti on
None.

Flags
One or more of SL_CASE_SENSITIVE, SL_FORCE_ACCESS CHECK, SL_
OPEN_PAGING_FILE, and SL_OPEN_TARGET_DIRECTORY.

Control
Irrelevant from the FSD's perspective.
Parameters.Create.SecurityContext

Points to an 10_SECURITY_CONTEXT structure (allocated by the 1/O
Manager) containing the A ccessState and DesiredAccess (specified by

‘

680 Appendix A: Windows NT System Services

the caller). The FSD can validate the access requested by the cdler using the
help of the security subsystem (if the FSD supports access checking).

Par anet ers. Creat e. oti ons
Bits O to 15 contain the caller-specified CreateOptions; bits 16 through 23
are reserved by the 1/0O Manager; and bits 24 through 31 specify the
CreateDisposition.

Parameters.Create.FileAttributes
FileAttributes specified by the caler.

Parameters.Create.ShareAccess
ShareAccess specified by the caller.

Parameters.Create.EalL ength
Eal ength specified by the caler (the buffer supplied—if any—is pointed to
by the Associatedlrp. SystemBuf fer field in the IRP).

Devi ce(hj ect
Points to the FSD-created device object representing either the FSD itsalf or
the mounted logical volume.

Fi | eChj ect
A file object structure allocated by the 1/O Manager for this particular create/
openrequest.

Notes

Create or open requests are inherently synchronous requests. Therefore, the 1/0
Manager will block the calling thread until the request has been processed by the
FSD (even if STATUS PENDING is returned by the FSD) and the IRP_DEFER _
|O_COMPLETION flag will be set in the Irp->Flags field.

The following flags are set in the FileObject->Flags field:

FO_SYNCHRONOUS | O
Set by the 1/O Manager if either FILE_SYNCHRONOUS 10_ALERT or FILE_
SYNCHRONOUS_|O_NONALERT havebeenspecifiedbythecaller.

FO ALERTABLE | O

Set by the 1/0 Manager if FILE_SYNCHRONOUS_IO_ALERT is specified by
the caller.

FO_NO | NTERMED ATE_BUFFER NG
Set by the I/O Manager and by FSDs if FILE_NO_INTERMEDIATE_BUFF-
ERING is specified by the caller.

FO WR TE_THROUGH

Set by the I/0 Manager and by FSDs if FILE WRITE_THROUGH is specified
by the caller.

NT System Services 681

FO SEQUENTI AL_CNLY
Set by the I/O Manager if FILE_SEQUENTIAL_ONLY is specified by the
caller.

FO TEMPORARY _FI LE
Sat by the FSD if FILE_ATTRIBUTE_TEMPORARY is specified by the caller.

FO_FILE_FAST_I0_READ
Set by the FSD if the file is successfully opened for EXECUTE access; also set
by the FSD and by the FSRTL package whenever a cached read operation
completes, indicating that time stamps for the file (directory entry) should be
updated when all handles have been closed.*

NtOpenFile()
NTSTATUS Nt QpenFi | e(
QJT PHANDLE Fi | eHandl e,
IN ACCESS MASK Desi redAccess,

IN PCBJECT_ATTRI BUTES bj ectAttri butes,
QJT Pl O_STATUS BLOXK | oSt at usBl ock,

IN ULONG Shar eAccess,
IN ULONG renpt i ons,
)
Parameters
FileHandle

Returned handle (created by the 1/0 Manager) if the call succeeds.

DesiredAccess
See the description of this argument for the NtCreateFile() system cal
described above.

Obj ectAttributes
The cadler must alocate memory for this structure of type OBJECT
ATTRIBUTES. Fields in the structure are initialized as follows:

Length
The size, in bytes, of the structure.

(bj ect Narre
A Unicode string specifying name of file. The name can be a either a rela
tive name (RootDirectory is nonnull) or an absolute name
(RootDirectory is NULL).

* The FO_FILE_MODIFIED flag is set by the FSRTL package to indicate that time stamps should be up-
dated due to a fast I/O write request.

682 Appendix A: Windows NT System Services

RootDirectory (optional)
The previousy opened handle for a directory; ObjectName will be
considered relative to this directory (if specified).

SecurityDescriptor (optional)
NULL pointer.

SecurityQuality Of Service (optional)
NULL pointer.

Attributes
A combination of OBJ INHERIT (child processes inherit open handle)
and OBJ CASE_INSENSITIVE (lookups should be processed in a case
insensitive fashion).

| oSt at usBl ock
A caller-supplied structure to receive results of create/open request.

Shar eAccess
The type of share access requested by the caller. The share access can be a
combination of the following:

FI LE_SHARE READ
The file can be concurrently opened for read access by other threads.

FI LE_SHARE WR TE
Other file open operations requesting write access should be allowed.

FI LE_SHARE DELETE
Other file open operations requesting delete access should be allowed.

Note that the share access flags allow the requester to control how the file
can be shared by separate threads and processes. If none of the share values
are specified, no other subsequent open operation will be allowed to proceed
until the file handle is closed (and an IRP_MJ CLEANUP is issued to the
FSD).

Qpenpt i ons

Options used when the file is opened. See the description for NtCreateFileO
for more details.

Return code

STATUS SUCCESS indicates that the operation succeeded and a valid handle is
being returned, STATUS PENDING indicates that the operation will be performed
asynchronously by the FSD, while STATUS REPARSE indicates that the name
should be parsed again by the object manager (e.g., a new volume has been
mounted).

NT System Services 683

In the case of an error, an appropriate error code is returned. See the description
for NtCreateFile () for more details.

IRP/I/O stack location

The IRP and 1/O stack location for an open request are set up in essentially the
same manner as that for a NtCreateFile () system cal.

Notes

Time stamps for the file are not affected when an open request is received by the
FSD.

NtReadFile()

NTSTATUS NtReadFile(
I N HANDLE Fi | eHandl e,
I N HANDLE Event CPTI ONAL,
IN Pl O APC_RQUTI NE ApcRout i ne CPTI CNAL,
IN PV D ApcCont ext CPTI ONAL,
QUT Pl O STATUS BLOCK | oSt at usBl ock,
QJr PV D Buf f er,
IN ULONG Lengt h,
I N PLARCE | NTECER Byt eCr f set CPTI ONAL,
IN PULONG Key CPTI ONAL

)

Parameters

Fi | eHandl e

Returned to the caller from a previous successful NtCreateFile() or
NtOpenFile() invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous read request. The event will be signaled by
the 1/0 Manager when the read operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the 1/0O Manager when
the read operation completes.

ApcContext (optional)
The caller-determined context to be passed in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

| oSt at usBl ock
The caller must supply this argument to receive the results of the read opera-

tion. The Information field in the loStatusBlock is set to the number
of bytes actually read by the FSD.

e

682 Appendix A: Windows NT System Services

RootDirectory (optional)
The previoudy opened handle for a directory; ObjectName will be
considered relative to this directory (if specified).

SecurityDescriptor (optional)
NULL pointer.

SecurityQuality Of Service (optional)
NULL pointer.

Attributes
A combination of OBJ INHERIT (child processes inherit open handle)
and OBJ _CASE_INSENSITIVE (lookups should be processed in a case-
insensitive fashion).

| oSt at usBl ock
A cdler-supplied structure to receive results of create/open request.

Shar eAccess
The type of share access requested by the caller. The share access can be a
combination of the following:

FI LE_SHARE READ

The file can be concurrently opened for read access by other threads.
FI LE_SHARE WR TE

Other file open operations requesting write access should be allowed.
FI LE_SHARE DELETE |

Other file open operations requesting delete access should be allowed.
Note that the share access flags allow the requester to control how the file
can be shared by separate threads and processes. If none of the share values
are specified, no other subsequent open operation will be allowed to proceed

until the file handle is closed (and an IRP_MJ CLEANUP is issued to the
FSD).

Qpenpt i ons

Options used when the file is opened. See the description for NtCreateFile ()
for more details.

Return code

STATUS _SUCCESS indicates that the operation succeeded and a valid handle is |
being returned, STATUS PENDING indicates that the operation will be performed
asynchronously by the FSD, while STATUS REPARSE indicates that the name
should be parsed again by the object manager (e.g., a new volume has been
mounted).

NT System Services 683

In the case of an error, an appropriate error code is returned. See the description
for NtCreateFile () for more details.

IRP/1/O stack location

The IRP and 1/0 stack location for an open request are set up in essentially the
same manner as that for aNtCreateFile() system call.

Notes

Time stamps for the file are not affected when an open request is received by the
FSD.

NtReadFile()

NTSTATUS Nt ReadFi | e(
I N HANDLE Fi | eHandl e,
IN HANDLE Event CPTI ONAL,
IN Pl O APC RQUTI NE ApcRout i ne CPTI ONAL,
IN PMaD ApcCont ext CPTI ONAL,
QJT Pl O STATUS BLOXK | oSt at usBl ock,
QJr PvaA D Buf f er,
IN ULLONG Lengt h,
I N PLARGE | NTEGER Byt el f set CPTI ONAL,
IN PULONG Key CPTI ONAL

)

Parameters

Fi | eHandl e

Returned to the caller from a previous successful NtCreateFile() or
NtOpenFile () invocation.

Event (optiond)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous read request. The event will be signaled by
the 1/0 Manager when the read operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the 1/O Manager when
the read operation completes.

ApcContext (optional)
The caller-determined context to be passed in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

| oSt at usBl ock

The cdler must supply this argument to receive the results of the read opera
tion. The Information field in the loStatusBlock is set to the number
of bytes actually read by the FSD.

684 Appendix A: Windows NT System Services
Buffer
A caller-adlocated buffer to receive data read from secondary storage.
Length
The size, in bytes, of the Buffer supplied by the caller.
ByteOffset

The starting byte offset where the read begins. Caller can specify FILE_USE
FILE_POINTER_POSITION rather than an explicit byte offset or pass NULL;
in either case the FSD will perform the read from the current file pointer posi-
tion. The I/O Manager maintains the file pointer position whenever the file
stream is opened for synchronous 1/O, and therefore, specifying a byte offset
effectively results in an atomic seek-and-read service for the caller.
Key (optional)

If the byte range is locked, a matching Key value (if supplied by the caller)
will result in the FSD allowing the read to proceed. This can be used to selec-
tively share data between threads belonging to the same process.

Return code

STATUS SUCCESS indicates that the operation succeeded and some subset of
the range requested by the caler is being returned by the FSD; STATUS

PENDING indicates that the operation will be performed asynchronously by the
FSD.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

- STATUS ACCESS DEN ED

« STATUS | NSUFFI O ENT_RESOURCES
« STATUS | NVALI D_PARAMETER

« STATUS | NVALI D DEV CE_REQUEST
« STATUS END CF FILE

« STATUS FI LE_LOOK CONFLI CT

| RP

Ml Addr ess

Any MDL created by the 1/0O Manager (or by some other kernel-mode compo-
nent) describing the buffer in which data should be returned by the FSD.

NT System Services 685

UserBuffer
A pointer to the user-supplied buffer. This field is effectively overridden by
the presence of any MDL pointer in the MdlIAddress field.*

Flags
One or both of IRP_PAGING IO and IRP_NOCACHE may be set. IRP_
PAGING_IO is only set by the 1/0O Manager if the I/O request is a result of a
synchronous or an asynchronous paging /O operation requested by the
Virtua Memory Manager.

1/O stack location

Maj or Functi on
| RP_MJ_READ

M nor Functi on
One or more of the following:

IRP_MN_DPC
The IRP was dispatched at a high IRQL.

IRP_MN_MDL
The caller wants an MDL returned containing the requested data.

| RP_MN OOMPLETE
The caller has finished with the MDL returned from a previous cal (with
IRP_MN_MDL specified).
IRP_MN_COMPRESSED
The caller does not want any compressed data decompressed.
Flags
One or more of SL_KEY_SPECIFIED and SL_OVERRIDE_VERIFY_VOLUME.

Parameters.Read.L ength
The read Length specified by the caller.

Parameters.Read.K ey
The Key specified by the cadler.

Parameters.Read.ByteOffset
The ByteOf f set specified by the caller.

Devi ce(pj ect
Points to the FSD-created device object representing the mounted logica
volume.

* See Chapter 9 for details. The FSD will check for the presence of an MDL first and will use any MDL
pointed to by the MdlAddress field. If MdIAddress is set to NULL, the FSD will use the UserBuf fer
pointer directly (since typically, FSDs prefer to neither specify DO_DIRECT_IO nor DO_BUFFERED_IO
for handling user buffers).

686 Appendix A: Windows NT System Services

Fi I eChj ect
The file object representing the open instance of the file to be read.
Notes

The LastAccessTime for the file stream being read is typically updated by the
FSD upon completion of the read request.

NtWriteFile()

NTSTATUS Nt Wit eFi | e(
IN HANDLE Fi | eHandl e,
IN HANDLE Event OPTI ONAL,
IN Pl O APC_ROUTI NE ApcRout i ne CPTI ONAL,
IN PvA D ApcCont ext CPTI ONAL,
QUT Pl O STATUS BLOK | 0St at usBl ock,
QJUT PV D Buf f er,
IN ULONG Lengt h,
IN PLARGE | NTEGER Byt eCr f set COPTI ONAL,
IN PULONG Key CPTI ONAL

)

Parameters

Fi | eHandl e

Returned to the caller from a previous successful NtCreateFile() or
NtOpenFile () invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caler) for
completion of the asynchronous write request. The event will be signaled by
the 1/0 Manager when the write operation is completed.

ApcRoutine (optional)
The optional, caller-supplied APC routine invoked by the 1/O Manager when
the write operation completes.

ApcContext (optional)
The caller-determined context to be passed in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

| oSt at usBl ock
The caller must supply this argument to receive the results of the write opera-
tion. The Information field in the loStatusBlock is set to the number
of bytes actually written by the FSD.

Buffer
A caller-allocated buffer containing data to be written to secondary storage.

-

NT System Services 687

Length
The size, in bytes, of the Buffer supplied by the caller.

Byt eX f set

The starting byte offset where the write begins. Caller can specify FILE_USE _
FILE_POINTER_POSITION rather than an explicit byte offset or pass in
NULL; in either case the FSD will perform the write from the current file
pointer position. The I/O Manager maintains the file pointer position when-
ever the file stream is opened for synchronous 1/0 and therefore specifying a
byte offset effectively results in an atomic seek-and-write service for the caller
(the file pointer is updated appropriately according to the starting offset from
where the write begins and the number of bytes written).

In order to simply write to the current end-of-file, the caler can specify
FILE_ WRITE_TO_END_OF_FILEintheByteOffset argument.

If the file was opened for FILE_APPEND_DATA, any caller-supplied byte
offset is ignored.

Key (optional)
If the byte range is locked, a matching Key value (if supplied by the caller)
will result in the FSD allowing the write to proceed. This can be used to selec-
tively alow file modification between threads belonging to the same process.

Return code

STATUS SUCCESS indicates that the operation succeeded and some subset of
the range requested by the caller was written by the FSD; STATUS PENDING indi-
cates that the operation will be performed asynchronously by the FSD.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

« STATUS ACCESS DEN ED

« STATUS | NSUFFI O ENT_RESOURCES
« STATUS | NVALI D PARAMETER

« STATUS | NVALI D DEVI CE_REQUEST
« STATUS FILE_LOCK_CONFLICT

IRP

Mil Addr ess
Any MDL created by the 1/0O Manager (or by some other kernel-mode compo-
nent) describing the buffer containing data to be written. This could aso be a
MDL returned from a previous write request with MinorFunction set to

688 Appendix A: Windows NT System Services

IRP_MN_MDL, in which case the MDL will eventually be freed by the Cache
Manager.

UserBuffer
Pointer to the user-supplied buffer. This field is effectively overridden by the
presence of any MDL pointer in the MdlAddress field.

Flags
One or both of IRP_PAGING_IO and IRP_NOCACHE may be set.

1/O stack location

Maj or Functi on
IRP.M_WR TE
M nor Functi on
One or more of the following:
IRP_MN_DPC
The IRP was dispatched at a high IRQL.
IRP_MN_MDL

The caller wants an MDL returned, which will eventually be filled with
modified data (by the caler).

| RP_MN_COMPLETE
The caller has finished with the MDL returned from a previous call (with
IRP_MN_MDL specified).

| RP_MN_COMPRESSED
The caller is sending compressed data to the FSD.

Flags
One or more of SL_KEY _SPECIFIED and SL_WRITE_THROUGH.

Paranmeters. Wite. Length
The number of bytes to be written specified by the caller.

Paraneters. Wi te. Key
The Key specified by the caller.

Paraneters. Wite. ByteCr f set
The starting ByteOff set specified by the caller.
Devi ce(hj ect
Points to the FSD-created device object representing the mounted logical
volume.
Fi | e(oj ect
The file object representing the open instance of the file to be written.

NT System Services 689

Notes

The LastWriteTime for the file stream being written is typically updated by the
FSD upon completion of the write request. The FSD should set the SL_FT
SEQUENTIAL_WRITE flag before forwarding a write-through write request to the
next driver in the caling hierarchy.

NtQueryDirectoryFile ()

NTSTATUS NtQueryDirectoryFile(

I N HANDLE Fi | eHandl e,
I'N HANDLE Event CPTI QNAL,
IN Pl O APC_ROUTI NE ApcRout i ne CPTI QNAL,
IN Pva D ApcCont ext CPTI ONAL,
QUT Pl O STATUS BLOCK | oSt at usBl ock,
QJr PVa D Fi | el nf ormati on,
IN ULONG Lengt h,
IN FI LE_| NFORVATI ON_CLASS Fil el nformati ond ass,
I N BOCLEAN Ret urnSi ngl eEntry,
IN PUN OCDE_STR NG Fi | eName CPTI ONAL,
IN BOOLEAN Rest art Scan

)i

Parameters

FileHandle

Returned to the caler from a previous, successful NtCreateFile() or
NtOpenFile() invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous query directory request. The event will be
signaled by the 1/O Manager when the query directory IRP is completed by
the FSD.

ApcRoutine (optional)
The optional, caler-supplied APC routine invoked by the 1/O Manager when
the query directory operation completes.

ApcContext (optional)
The caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBl ock
The caller must supply this argument to receive the results of the query direc-
tory operation. The Information field in the loStatusBlock is set to the
number of bytes returned by the FSD (in the buffer pointed to by the
Filelnf ormation argument).

690

Appendix A: Windows NT System Services

Filelnformati on

A caller-alocated buffer to receive information about files contained in the
directory. Alignment requirements for the buffer and the contents of the

buffer (returned by the FSD) are determined by the Filelnformation-
Class of the argument.

Note that the buffer passed to the FSD in the query directory IRP is an 1/O
Manager-allocated system buffer. Copying data from the system buffer to the
actual caller-allocated buffer (pointed to by the Filelnformation argu-
ment) is performed by the I/O Manager upon completion of the IRP.
Length
The size, in bytes, of the buffer supplied by the caller in Filelnformation.
Fi | el nformati ond ass
Specifies the kind of information requested by the caller. This can be one of
the following:

Fi | eNanel nf ormati on

Fi

The supplied buffer must be longword-aligned, as is the returned infor-
mation. The size of the buffer must at least be equal to sizeof (FILE
NAMES INFORMATION). The caller expects to receive the long names of
file entries contained in the directory in the caller-supplied buffer.

The FILE_NAMES _INFORMATION structure is defined as follows;

typedef struct _FILE NAMES | NFCRVATI ON {
ULONG Next Entryf f set ;
ULONG Fi | el ndex;
ULONG Fi | eNanreLengt h;
WHAR Fil eNane[|];
} FILE_NAMES | NFCRVATI QN, *PFI LE_NAMES | NFCRVATI ON

eD rectoryl nformation

The supplied buffer must be quadword-aligned, as is the returned infor-
mation. The size of the buffer must at least be equa to sizeof (FILE_
DIRECTORY _INFORMATION). The caler expects to get basic informa-
tion (such as the filename, file attributes, various time stamps associated
with the file, and s0 on) for the matching directory entries.

HereistheFILE_DIRECTORY _INFORMATION structure:

typedef struct _FILE_DIRECTORY_INFORMATION {
ULONG NextEntryOffset;
ULONG Filelndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;

NT System Services 691

ULONG FileAttributes;
ULONG FileNameL ength;
WCHAR FileName[1];

} FILE_DIRECTORY_INFORMATION, *PFILE_DIRECTORY_INFORMATION;

Fil eFul I D rectoryl nfornmation
The supplied buffer must be quadword-aligned, as is the returned infor-
mation. The sze of the buffer must at least be equal to sizeof (FILE_
FULL_DIR_INFORMATION). The caler expects to get al of the informa-
tion that could be obtained via the FileDirectorylnformation
information class and in addition, expects to get back information about
extended attributes associated with the matching directory entries.

Thisisthe FILE_FULL_DIR_INFORMATION structure:

typedef struct _FILE FULL D R | NFORVATI ON {
ULONG Next EntryOf f set ;

ULONG Fi | el ndex;

LARCE | NTEGER G eati onTi ne;

LARGE | NTEGER Last AccessTi ne;

LARGE | NTEGER Last Wit eTi ne;

LARGE | NTEGER ChangeTi ne;

LARCGE | NTEGER EndO Fi | e;

LARGE | NTEGER Al | ocati onSi ze;

ULONG Fil eAttri butes;

ULONG Fi | eNarreLengt h;

UONG EaSi ze;

WHAR Fi leNare[1] ;

} FILE_FULL_D R I NFORVATI ON, *PFI LE_FULL_D R _| NFORVATI ON,

Fi | eBot hDi rect oryl nf or mati on

The supplied buffer must be quadword-aligned, as is the returned infor-
mation. The size of the buffer must at least be equal to sizeof (FILE_
BOTH_DIR_INFORMATION). The caller expects to get all of the informa-
tion that could be obtained via the FileFullDirect-
orylnformation information class and in addition, expects to get back
83 versions of file names (if such alternate names are supported by the
FSD) for matching directory entries.*

Hereisthe FILE_BOTH_DIR_INFORMATION structure:

typedef struct _FILE BOTH DI R | NFCRVATI ON {
ULONG Next EntryCf f set ;

ULONG Fi | el ndex;

LARGE | NTEGER Creati onTi ne;

* Note that if your FSD docs not support alternate/short (8.3) versions of filenames, the information re-
turned by your driver in the FILE_BOTH_DIR_INFORMATION structure for eaeh matching directory en-
try will essentially he the same as would he returned by your FSU in the FILE_FULL_DIR_
INFORMATION structure; the ShortNameL ength field must be initialized to O for each entry, and the
ShortName pointer field must be initialized to NULL.

692 Appendix A: Windows NT System Services

LARCGE | NTEGER Last AccessTi ne;

LARGE | NTEGER Last Wit eTi re;

LARCGE | NTEGER ChangeTi ne;

LARGE | NTEGER EndCf Fi l e;

LARCGE | NTEGER Al | ocati onSi ze;

UONG Fi |l eAttributes;

ULONG Fi | eNaneLengt h;

ULONG EaSi ze;

CCHAR Short NaneLengt h;

WHAR Short Nare[12] ;

WHAR Fi |l eNane[1] ;

} FILE_BOTH D R | NFCRVATI ON, *PFI LE BOTH DI R | NFCRVATI ON
Once a query directory request for a particular FilelnformationClass
type is submitted by a thread using a specific file handle, the Filelnforma-
tionClass type must not change when any subsequent query directory

requests are submitted using the same file handle.

Ret urnSi ngl eEntry
If TRUE, the caller only wants information on a single matching directory
entry returned.

FileName (optional)

The search pattern, specified by the user, for the first query directory request,
issued using the particular file object (or file handle); the FSD attempts to find
matching directory entries based upon this pattern. If no name is supplied,
the FSD uses "*", awildcard that matches any directory entry.
Rest art Scan

Normally, the FSD begins the search for a matching directory entry from the
last file pointer position (based upon the previous query directory request);
however, this flag dlows the caller to indicate whether the search should
begin from the starting byte offset in the directory.

Return code

STATUS_SUCCESS indicates that the operation succeeded and information on at
least one directory entry is being returned by the FSD; STATUS PENDING indi-
cates that the operation will be performed asynchronously by the FSD.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

« STATUS ACCESS DEN ED

« STATUS | NSUFFI O ENT_RESOURCES

« STATUS | N\VALI D PARAMETER
STATUS | N\VALI D DEVI CE_ REQUEST

NT System Services 693

« STATUS BUFFER OVERFLOW

« STATUS | NVALI D_| NFO COLASS
« STATUS NO SUCH FI LE

- STATUS NO MORE_FI LES

| RP

Ml Addr ess
Any MDL created by the FSD, if the request is dispatched to a worker thread
for asynchronous processing.

UserBuffer
The pointer to the user-supplied buffer. This field is effectively overridden by
the presence of any MDL pointer in the MdlAddress field.

I/O stack location

Maj or Functi on
| RP_MI_Dl RECTCRY_COONTRCL

M nor Funct i on
| RP_MN_QUERY_DI RECTCRY

Fl ags
One or more of SL_RESTART_SCAN, SL_RETURN_SINGLE_ENTRY, and SL_
INDEX_SPECIFIED.

Par anet ers. QueryDi rectory. Lengt h
The Length specified by the caler for the buffer in which information is
received.

Par anet ers. QueryDirectory. Fi | eNarre

The search pattern specified by the caller. The FSD must search for matching

entries in the target directory using this specified pattern. The user-specified
pattern is typically stored by the FSD in the CCB for the target directory for
the particular open operation (of the target directory), when the first such

query directory request is recelved. The caler can temporarily override this
search pattern in subsequent query directory requests by specifying a

different pattern than the one stored by the FSD; however, the behavior of

the FSD in response to such query directory requests containing a new search

pattern is highly FSD-specific and not well-defined by the /O subsystem.
Some FSDs may honor the new search pattern while others may choose to
ignoreit.

Parameters.QueryDirectory.FilelnformationClass
The type of information requested by the caller.

694 Appendix A: Windows NT System Services

Par anet ers. QueryDi rectory. Fi | el ndex
Any starting index, to begin the scan from, specified by the caller.

Devi ce(oj ect
Points to the FSD-created device object representing the mounted logical
volume.

Fi | eQoj ect
File object representing the open instance of the target directory.

Notes

The query directory request is an inherently synchronous request. Therefore, the
I/O Manager will block the requesting thread until the operation has been
completed by the FSD.

The FSD returns information on the following directory entries:

e Information about a single matching directory ent'ry is returned if either
ReturnSingleEntry is TRUE or if the specified search pattern does not
contain any wildcards.

e The number of matching files for which information can be returned in the
caller-supplied buffer, constrained by the length of the buffer.

e The total number of directory entries (files or directories) in the target direc-
tory being queried.

Information on matching directory entries can be returned in any order. Most
returned entries are either quadword-aligned or longword-aligned. See Chapter
10, Wkiting A File System Driver II, for information on how directory control
requests are processed by the FSD. The maximum length of a file name is
constrained (on Windows NT platforms) to be less than or equal to FILE
MAXIMUM_FILENAME_LENGTH.

If no matching entry was found for the very first query directory request received
by the FSD using the particular file object, an error code of STATUS NO_SUCH_
FILE is returned to the caller; if no match is found for any subsequent query
directory request, the STATUS NO_MORE_FILES error codeis returned.

The FSD maintains context about the returned information in the CCB structure
associated with the specified file object. Therefore, requests to obtain directory
information from different threads sharing the same file handle (and sharing the
same file object and correspondingly the same CCB structure) will share (and
affect) the same context maintained by the FSD.

NT System Services 695

NtNotifyChangeDirectoryFile()

NTSTATUS N Noti f yChangeD rectoryFi | e(

I N HANDLE Fi | eHandl e,
I N HANDLE Event CPTI ONAL,
IN Pl O__APC ROUTI NE ApcRout i ne CPTI ONAL,
IN PvA D ApcCont ext CPTI ONAL,
QJT Pl O STATUS BLOCK | oSt at usBl ock,
aJr Pva D Buf f er,
IN ULONG Lengt h,
IN ULONG Conpl etionFilter,
I N BOOLEAN t chTr ee
)i
Parameters
Fi | eHandl e

Returned to the caller from a previous successful NtCreateFile() or
NtOpenFileO invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous notify change directory request. The event

will be signaled by the I/O Manager when the notify change directory IRP is
completed by the FSD.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the notify change directory operation completes.

ApcContext (optional)
Caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

| oSt at usBl ock
The caler must supply this argument to receive the results of the notify
change directory operation. The Information field in the loStatus-
Block is set to the number of bytes returned by the FSD (in the buffer
pointed to by the Fil el nformation argument).

If too many changes have occurred and information about such changes
cannot be returned by the FSD in the supplied buffer, the FSD will set the
Information field to 0 and the STATUS NOTIFY_ENUM_DIR return code
will be returned in the Status field of the loStatusBlock argument.

Buffer
A cdler-allocated buffer to receive information about the names of files
contained in the target directory that have been affected. The format of

696 Appendix A: Windows NT System Services

returned information is defined by the FILE_NOTIFY_INFORMATION struc-
ture, which is defined as follows:

typedef struct _Fl LE NOTI FY_| NFCRVATI ON {
ULONG Next Ent ryf f set
ULONG Acti on; *
ULONG Fi | eNaneLengt h;
WHAR FileName[1];
} FILE_NOTI FY_I NFORVATI QN, *PFI LE_NOTI FY_I NFCRVATI O\

Length
The size, in bytes, of the buffer supplied by the caller.
Conpl etionFilter

Specifies a combination of flags that indicate the changes the caller is inter-
ested in monitoring on the target directory.

These flags can be one or more of the following (see Chapter 10 for details
on how the FSD processes the notify change directory request):
FI LE_NOTI FY_CHANGE _FI LE_NAME
Some file has been added, deleted, or renamed.
FI LE_NOTI FY_CHANCE D R_NAME
Some subdirectory has been added, deleted, or renamed.
FI LE_NOTI FY_CHANGE _NAMVE
A combination of FILE_NOTIFY_CHANGE_FILE_NAME and FILE_
NOTIFY_CHANGE_DIR_NAME.
FI LE_NOTI FY_CHANCE_ATTR BUTES
Attributes of any directory entry (representing either a file or a directory)
have been changed.
FI LE_NOTI FY_CHANGE S| ZE
Allocation size or end-of-file position have been changed for any direc-
tory entry.
FI LE_NOTI FY_CHANGE _LAST WR TE
The last write time stamp value for a directory entry has been changed.
FI LE_NOTTFY_CHANGE LAST ACCESS
The last access time stamp value for a directory entry has been changed.
FI LE_NOTI FY_CHANCE_CREATI CN
The creation time stamp value for a directory entry has been changed.

* The possible values (hit-flags) that can be returned in this field are given in Chapter 10.

NT System Services 657

FI LE_NOTI FY_CHANCGE_EA
Extended attributes associated with a directory entry (file or directory)
have been changed.
FI LE_NOTI FY_CHANCE_SEQUR TY
Security attributes associated with a directory entry have been changed.
FI LE_NOTI FY_CHANGE _STREAM NAME
Applies to FSDs that support multiple byte streams associated with files. A

new file stream may have been added, deleted, or renamed, in which
case the caller should be notified.

FI LE_NOTI FY_CHANGE _STREAM S| ZE
The size of a file stream may have changed.

FI LE_NOTI FY_CHANGE _STREAM WR TE
The contents of an alternate stream have been changed (i.e., the stream
data was modified).

WatchTree

If TRUE, the caller wants to recursively monitor changes to all subdirectories
contained within the target directory.

Return code

STATUS PENDING indicates that the IRP has been successfully queued by the
FSD and will be completed once one or more of the specified changes (being
monitored by the caller) have occurred; STATUS SUCCESS indicates that at least
one monitored change had already occurred before the latest notify change direc-
tory IRP was even received by the FSD, and the caller is being notified of the fact.

Once STATUS PENDING is returned by the FSD, the caller must examine the
contents of the Status field in the loStatusBlock argument to determine the

results of the notify change directory request, once the request has been
completed.

In the case of an error (or a buffer overflow condition), an appropriate error code
is returned. This includes (but is not limited to) the following return code values:

STATUS_ACCESS DEN ED

« STATUS | NSUFFI O ENT_RESOURCES
« STATUS | NVALI D_PARAMETER

« STATUS | N\VALI D_DEV CE_REQUEST
- STATUS NOTI FY_ENUM DI R

698 Appendix A: Windows NT System Services

IRP

UserBuffer
A pointer to the user-supplied buffer. This field is effectively overridden by
the presence of any MDL pointer in the MdIAddress field. If your FSD
supports buffered 1/0O, then the I/O Manager will have alocated a system
buffer for your FSD, and this buffer can be accessed via the Associate-
dlrp. SystemBuf fer field in the IRP.

1/0O stack location
Maj or Functi on
| RP_M_Dl RECTCRY_ CCNTRCOL
M nor Functi on
I RP_MN_NOTI FY_CHANGE Dl RECTCRY
Flags
Can be set with SL_ WATCH_TREE.

Paranet ers. Noti fyDirectory. Length
The Length, specified by the caller, for the buffer in which information is
received.

Parameters.NotifyDirectory.CompletionFilter
The type of changes being monitored by the cdler.

Devi ce(hj ect

Points to the FSD-created device object representing the mounted logica
volume.

Fi | eChj ect
The file object representing the open instance of the target directory being
monitored.

Notes

The notify change directory request interprets a return code of STATUS
PENDING to indicate that the IRP has been successfully queued.

NtQuerylInformationFile()

NTSTATUS Nt Queryl nf or mati onFi | e(

IN HANDLE Fi | eHandl e,

QUT Pl O STATUS BLOK | oSt at usBl ock,
aQJrT PMA D Fi I el nfornati on,
IN ULONG Lengt h,

I'N FI LE_| NFORVATI ON_CLASS Fi | el nformati ond ass

NT System Services 699

Parameters

Fi | eHandl e
Returned to the caler from a previous, successful NtCreateFile() or
NtOpenFile() invocation.

| oSt at usBl ock
The caller must supply this argument to receive the results of the query file
information request. The Information field in the loStatusBlock is set
to the number of bytes returned by the FSD (in the buffer pointed to by the
Filel nf ormation argument).

Fil el nformation
A caller-allocated buffer to receive information about the specified file. The
format of returned information is defined by the FilelnformationClass
argument.

Length
The size, in bytes, of the buffer supplied by the caler.

FilelnformationClass

Used by the caller to specify the type of information requested for the target
file. See Chapter 10 for a detailed discussion on the types of information
provided by file system drivers and for corresponding structure definitions.

Return code

STATUS SUCCESS indicates that the operation succeeded;, STATUS PENDING
indicates that the operation will be performed asynchronously by the FSD.

In the case of an error (or a buffer overflow condition), an appropriate error code
is returned. This includes (but is not limited to) the following return code values:

- STATUS ACCESS DEN ED

« STATUS | NSUFFI O ENT_RESOTJRCES
« STATUS | NVALI D PARAMETER

« STATUS | N\VALI D DEM CE_REQUEST
- STATUS BUFFER OVERFLOW

| RP

Associ at edl rp. Syst enBuf f er
A pointer to an I/O Manager-allocated buffer. The I/O Manager aways allo-
cates a system buffer to contain information returned by the FSD. Contents of
this buffer are copied to the user-supplied buffer by the 1/0O Manager (before
the system buffer is dedlocated by the I/O Manager).

700 Appendix A: Windows NT System Services

Flags
The IRP_BUFFERED_|O, IRP_DEALLOCATE_BUFFER, IRP_INPUT_OPER-
ATION, and IRP_DEFER _10_COMPLETION flags are set. However, these are
only used internally by the I/O Manager.*

I/O stack location
Maj or Functi on
| RP_MJ_QUERY_| NFCRIVATI CN
M nor Functi on
None.
H ags
None.

Par aret er s. QueryFi | e. Lengt h
The Length, specified by the caller, for the buffer in which information is
received.

Parameters.QueryFile.FilelnformationClass
The type of information requested by the user.

Devi ce(hj ect
Points to the FSD-created device object representing the mounted logical
volume.

Fi | e(oj ect
The file object representing the open instance of the file for which informa-
tion has been requested.

Notes

The I/O Manager is responsible for filling in information for some of the Filel n-
formationClass vaues. See Chapter 10 for further details.

NtSetInformationFile()

NTSTATUS Nt Set | nf or mat i onFi | e(

I N HANDLE Fi | eHandl e,

QJT Pl O_STATUS_BLOK | oSt at usBl ock,
QJr PMaA D Fi | el nf or mati on,
IN ULONG Lengt h,

IN FI LE | NFCRVATI ON_CLASS Fi |l el nformati onQ ass

* See Chapter 4, ~lhe NT1/O Manager, for a discussion on the IRP_DEFER_IO_COMPLETION flag.

NT System Services 701

Parameters

Fi | eHandl e

Returned to the caler from a previous, successful NtCreateFile() or
NtOpenFile() invocation.

| oSt at usBl ock
The caller must supply this argument to receive the results of the st file infor-
mation request. The Information field in the loStatusBlock is
initialized to the number of bytes actually set by the FSD (from the buffer
pointed to by the Filelnformation argument).

Fi | el nformation
A caler-allocated buffer, containing information about the modified attributes
of the target file. The format of the supplied information is defined by the
FilelnformationClass argument.

Length
The size, in bytes, of the buffer supplied by the caller.

Fi | el nformationd ass
Used by the caler to specify the type of attributes being modified for the
target file. See Chapter 10 for a detailed discussion on the types of attributes
that can be modified by the caller and for corresponding structure definitions.

Return code

STATUS SUCCESS indicates that the operation succeeded; STATUS PENDING
indicates that the operation will be performed asynchronously by the FSD.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

- STATUS ACCESS DEN ED

« STATUS | NSUFFI O ENT_RESOURCES
« STATUS | NVALI D PARAMETER

« STATUS | NVALI D DEM CE_REQUEST
« STATUS CANNOT _DELETE

« STATUS DI RECTCRY_NOT_EMPTY

| RP

Associ at edl rp. Syst enBuf f er
Pointer to an 1/0 Manager-allocated buffer. The 1/0O Manager always alocates
a system buffer to contain a copy of the user-supplied modified attributes for

702 Appendix A: Windows NT System Services

the file stream. This system buffer is deallocated by the I/O Manager after the
I RP has been completed.

Flags
The IRP_BUFFERED_IO, IRP_DEALLOCATE BUFFER, and IRP_DEFER |10_

COMPLETION flags are set. However, these are only used internaly by the 1/0
Manager.*

1/O stack location

Maj or Functi on
| RP_MJ_SET_| NFCRVATI ON

M nor Funct i on
None.

Fl ags
None.

Parameters. SetFi | e. Lengt h

The Length, specified by the caller, for the buffer in which information
about modified attributes is supplied.

Paraneters. SetFil e. Fil el nfornati onQ ass
The type of attributes for which modified information has been provided by
the user.

Parameters. SetFile. Fi | eChj ect

The file object representing an open instance of the target directory for a
rename/link operation.

Paramet ers. Set Fi | e. Repl acel f Exi sts
Used during rename operations to reflect the value of the Replacel f Ex-
i stsfield in the FILE_RENAME_INFORMATION structure.

Par anet ers. Set Fi | e. Advance(nl y
This flag is set to TRUE for a specid request initiated by the Windows NT
Cache Manager to indicate that the ValidDatal ength for the file stream
has been changed.

Devi ce(hj ect
Points to the FSD-created device object representing the mounted logical
volume.

Fi | eQhj ect
The file object representing the open instance of the file whose attributes are
being modified.

* Sec Chapter 4 for a discussion on the IRP_DEFER_IO_COMPLETION flag.

NT System Services 703

Notes

Some FilelnformationClass types are handled directly by the I/O Manager
(e.g., FilePositionlnformation). See Chapter 10 for further details on how
other Filelnf ormationClass types are supported by file system drivers.

NtQueryEaFile()

NTSTATUS Nt Quer yEaFi | e(
I N HANDLE Fi | eHandl e,
QUT Pl O STATUS BLOCK | 0St at usBl ock,
QurT PVA D Buf f er,
IN ULONG Lengt h,
I N BOOLEAN Ret urnSi ngl eEntry,
IN PvA D EaLi st CPTI QNAL,
IN ULONG EalLi st Lengt h,
IN PULONG Eal ndex QCPTI ONAL,
I N BOOLEAN Rest art Scan

)

Parameters

Fil eHandl e

Returned to the caler from a previous, successful NtCreateFile() or
NtOpenFile() invocation.

loStatusBlock
The caller must supply this argument to receive the results of the query
extended attributes operation. The Information field in the loStatus-
Block is set to the number of bytes returned by the FSD (in the buffer
pointed to by the Buffer argument).

Buffer
A caller-allocated buffer to receive information about extended attributes asso-
ciated with the target file. Information for each matching extended attribute
(returned by the FSD) is longword-aligned and is contained within a FILE_
FULL_EA_INFORMATION structure.

Only complete FILE_FULL_EA_INFORMATION structures are returned by
the FSD. The NextEntryOffset value in the structure (if nonzero) indi-
cates the relative offset of the next entry in the buffer. Note that the FSD
maintains context to determine the next extended attribute for which informa-
tion must be returned.

Also note that the value of each named extended attribute begins after the
end of the EaName (null-terminated) field in the FILE_FULL_EA_INFORMA-
TION structure. The EaNameLength field in the structure does not include
the null-terminator for the extended attribute; therefore, the value for each of

704 Appendix A: Windows NT System Services

the named extended attributes can be located by adding (EaNamelL ength +
1) to the address of EaName.

Length
The size, in bytes, of the buffer supplied by the caller.

Ret urnSi ngl eEntry
If TRUE, the caler only wants information on a single, matching extended
attribute returned.
Eal ist
This optional buffer can contain a list of named extended attributes for which
information must be returned by the FSD. The structure of each entry in this
buffer is of type FILE_GET_EA_INFORMATION and is follows:
typedef struct _FILE GET_EA | NFORVATI ON {
ULONG Next EntryOf f set ;
UCHAR EaNaneLengt h;
CHAR EaNane[1];
} FILE GET_EA | NFORVATI ON, *PFI LE_GET_EA | NFCRVATI O\
The 1/0 Manager checks to ensure that the contents of the EA list are consis
tent; each of the entries contained in the list must be longword-aligned and
each entry must either point to a complete, valid next entry in the list or the
NextEntryOffset value must be set to 0. If errors are encountered, the
/O Manager may return a warning code of STATUS EA LIST
INCONSISTENT.

EaLi st Lengt h
The length of the EalL ist buffer if such a buffer is present; this argument
should be set to O if EaList is set to NULL.

Ealndex
An optional, zero-based index value specified by the caller. The FSD will
return information about extended attributes, beginning with the EA identified
by this index. If, however, EaL ist is nonnull, this argument will be ignored.

Rest art Scan
Normally, the FSD begins the scan for extended attributes from the last
extended attribute returned (based upon the immediately preceding query
extended attributes request); however, this flag allows the caler to indicate
whether the scan should begin with the first EA associated with the file
stream. This flag is ignored if either Eal ist or Ealndex are nonnull.

Return code

STATUS SUCCESS indicates that the operation succeeded and information on at
least one extended attribute is being returned by the FSD; STATUS PENDING
indicates that the operation will be performed asynchronously by the FSD.

NT System Services 705

In the case of an error, an appropriate error code or a warning is returned. This
includes (but is not limited to) the following return code values:

. STATUS ACCESS DEN ED

« STATUS | NSUFFI O ENT_RESOURCES

e STATUS | NVALI D_PARAMETER

e STATUS | NVALI D DEVI CE_REQUEST

. STATUS NO MORE_EAS

e STATUS | N\VALI D EA NAME

« STATUS | NVALI D EA FLAG

| RP

Associ at edl rp. Syst enBuf f er
Any system buffer allocated by the 1/0O Manager to receive information about
EAs from the FSD, if the FSD has specified DO_BUFFERED _10 in the device
object flags.

Mil Addr ess
Any MDL created by the I/O Manager if the FSD has specified DO_DIRECT _
10 in the device object flags.

UserBuffer
Pointer to the user-supplied buffer if neither DO_DIRECT_IO nor DO _
BUFFERED__ 10 have been specified by the FSD. This field is effectively over-
ridden by the presence of any MDL pointer in the MdIAddress field.

I/O stack location

Maj or Functi on

| RP_MI_QUERY_EA
M nor Funct i on

None.

Fl ags
One or more of SL_RESTART_SCAN, SL_RETURN_SINGLE_ENTRY, and SL_
INDEX_SPECIFIED.

Par anet er s. Quer yEa. Lengt h
The Length specified by the caller for the buffer in which information is
received.

Par anet er s. Quer yEa. EalLi st
A list of named EAs supplied by the caller. Note that the actual buffer passed-
in to the FSD is a system buffer that was allocated by the Windows NT 1/0O

706 Appendix A: Windows NT System Services

Manager. The 1/0 Manager copies the user-supplied EA list from the caller's
buffer to the system buffer before sending the IRP to the FSD.

Par aret er s. Quer yEa. EaLi st Lengt h
The EaListLength specified by the caller to NtQueryEaFile () .

Par anet er s. Quer yEa. Eal ndex
The starting index, to begin the scan from, specified by the caller.

Devi ce(hj ect
Points to the FSD-created device object representing the mounted logical
volume.

Fi | e(oj ect
File object representing the open instance of the target file stream.

Notes

The NtQueryEaFile () is an inherently synchronous I/O operation. The 1/O
Manager will block the requesting thread if STATUS_PENDING is received by the
FSD.

The FSD returns information on the following number of extended attributes:

* A single extended attribute if either ReturnSingleEntry is TRUE, or if the
supplied EaL ist describes only a single named extended attribute.

e The number of matching extended attributes for which full information can
be returned in the caller-supplied buffer, constrained by the length of the
buffer.

e The total number of associated extended attributes associated with the target
file stream, or the total number of matching extended attributes as described
by the caler in the EaL ist buffer.

If an error was encountered by the FSD (e.g., an invalid character in an EaName),
the Information field in the loStatusBlock argument contains the byte
offset to the EA entry that caused the failure, otherwise, it contains the number of
bytes of extended attributes information returned by the FSD.

NtSetEaFile()

NTSTATUS NtSetEaFile(
I'N HANDLE Fi | eHandl e,
QJT Pl O STATUS BLOXKX | oSt at usBl ock,
aJr PVA D Buf f er,

IN ULONG Lengt h,

NT System Services 707

Parameters

Fi | eHandl e
Returned to the caller from a previous, successful NtCreateFile() or
NtOpenFile () invocation.

| oSt at usBl ock

The caller must supply this argument to receive the results of the set
extended attributes operation. The Information fied in the loStatus-
Block is set to the number of bytes written by the FSD from the buffer
pointed to by the Buffer argument.
Buffer

A caler-alocated buffer containing the extended attributes to be associated
with the target file. Information about each matching extended attribute must
be longword-aligned and must be contained within a FILE FULL EA
INFORMATION structure. The NextEntryOf fset value in the structure (if
nonzero) must indicate the relative offset of the next entry in the buffer.

As in the case of the NtQueryEaFile () function described earlier, the
value of each named extended attribute must begin immediately after the end
of the EaName (null-terminated) field in the FILE FULL_EA INFORMATION
structure. The EaNameLength field in the structure should not include the
null-terminator for the extended attribute; therefore, the value for each of the
named extended attributes can be located by the FSD by adding (EaName-
Length + 1) to the address of EaName.

Length
The size, in bytes, of the buffer supplied by the caller.

Return code

STATUS SUCCESS indicates that the operation succeeded; STATUS PENDING
indicates that the operation will be performed asynchronously by the FSD.

In the case of an error, an appropriate error code or a warning is returned. This
includes (but is not limited to) the following return code values:

- STATUS ACCESS DEN ED

« STATUS | NSUFFI O ENT_RESOURCES
« STATUS | N\VALI D_PARAMETER

« STATUS | NVALI D DEVI CE_REQUEST
« STATUS | NVALI D EA NAME

« STATUS_| NVALI D_EA_FLAG

708 Appendix A: Windows NT System Services

IRP

Associ at edl rp. Syst enBuf f er
Any system buffer, alocated by the 1/O Manager, containing a copy of the
information about modified/new EAs provided by the caller if the FSD has
specified DO_BUFFERED _10 in the device object flags.

MdlAddress
Any MDL created by the 1/O Manager if the FSD has specified DO_DIRECT _
10 in the device object flags.

UserBuffer
The pointer to the user-supplied buffer if neither DO_DIRECT_1O nor DO _
BUFFERED _10O have been specified by the FSD. This field is effectively over-
ridden by the presence of any MDL pointer in the MdIAddress field.

1/0 stack location

Maj or Functi on
| RP_MJ_SET _EA
M nor Functi on
None.

Par anet er s. Set Ea. Lengt h
The Length specified by the caller for the buffer in which information is
supplied.

Devi ce(hj ect

Points to the FSD-created device object representing the mounted logical
volume.

Fi | e(oj ect
The file object representing the open instance of the target file stream.

Notes

The NtSetEaFile() is an inherently synchronous 1/O operation. The 1/O
Manager will block the requesting thread if STATUS PENDING is received by the
FSD.

The FSD uses the following rules in applying caller-specified EAs to the target file
stream:

» |If a supplied EA has a unique EaName among the existing EAs associated
with the file stream, the FSD adds the new user-supplied EA to the list of EAs
associated with the file.

NT System Services 709

« If the supplied EA has an EaName that matches an existing EA associated
with the file stream and if the supplied EaV aluel ength is nonzero, the FSD
will replace the existing EA with the user-supplied extended attribute.

« If the supplied EA has an EaName that matches an existing EA associated
with the file streeam and if the supplied EaValuelL ength is zero length, the
FSD will delete the existing EA.

If an error was encountered by the FSD (e.g., an invalid character in an EaName),
the Information field in the loStatusBlock argument contains the byte
offset to the EA entry that caused the failure; otherwise, it contains the number of
bytes of extended attributes information applied by the FSD to the file stream.

NtLockFile()
NTSTATUS Nt LockFi | e(
I N HANDLE Fi | eHandl e,
I'N HANDLE Event CPTI ONAL,
IN Pl O APC_RQUTI NE ApcRout i ne CPTI ONAL,
IN PMO D ApcCont ext OPTI ONAL,
QUT Pl O STATUS BLOCK | oSt at usBl ock,
IN PLARGE | NTEGER Byt eCf f set,
I N PLARGE | NTEGER Lengt h,
IN PULONG Key,
I N BOCLEAN Fai | | medi atel y,
IN BOOLEAN Excl usi veLock
)i
Parameters
Fi | eHandl e

Returned to the caller from a previous, successful NtCreateFile() or
NtOpenFileO invocation.

Event (optional)
Caller can wait for the supplied event object (created by the caller) for
completion of the lock request. The event will be signaled by the 1/0
Manager when the lock-file operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the lock-file operation completes.

ApcContext (optional)
A caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

710 Appendix A: Windows NT System Services

| oSt at usBl ock
The caller must supply this argument to receive the results of the lock-file
operation. The Information field in the loStatusBlock is set to the
number of bytes locked by the FSD.

Byt e f set
The starting byte offset for the byte-range to be locked on behalf of the caller.

Length
The number of bytes to be locked.

Key
The Key is a caller-defined (opague) value associated with the locked byte
range. This value can be used to sdectively share data between threads
belonging to the same process (if a unique value is chosen by the requesting
thread).

Fai | | medi atel y
If set to TRUE and if the lock cannot be obtained immediately by the FSD for
the caler (e.g., some other thread was previoudy granted a conflicting lock
on an overlapping byte range), the lock request is completed with an appro-
priate error code. If, however, Faillmmediately is set to FALSE, the
request will block indefinitely until the lock can be obtained (al conflicting
locks held by other threads on overlapping byte ranges have been rel eased).

BExcl usi velLock
Specifies whether an exclusive (write) lock should be acquired or whether a
shared (read) lock is sufficient.

Return code

STATUS SUCCESS indicates that the operation succeeded, and the lock was
granted; STATUS_PENDING is returned if the requesting thread wishes to wait for
the byte-range lock and the lock cannot be immediately obtained (the IRP is
queued by the FSD/FSRTL package).

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

« STATUS ACCESS DEN ED

- STATUS | NSUFFI O ENT_RESOURCES
« STATUS | NVALI D_PARAMETER

« STATUS | N\VALI D_DEM CE_REQUEST
- STATUS LOCK_NOT._GRANTED

NT System Services 711

I/0O stack location

Maj or Functi on
| RP_MJ_LOCK_OONTRCOL
M nor Functi on
| RP_MN LOOK
Fl ags
One or more of SL_FAIL_IMMEDIATELY and SL_EXCLUSIVE_LOCK.
Par anet ers. LockControl . Lengt h
The byte-range Length specified by the caller.

Parameters.L ockControl .Key
The Key specified by the caler.

Par anet ers. LockControl . ByteCt f set
The starting ByteOf f set specified by the caller.

Devi ce(hj ect
Points to the FSD-created device object representing the mounted logical
volume.

Fi | e(hj ect

The file object representing the open instance of the file for which a byte-
range lock has been requested.

Notes

Byte-range locks obtained by a thread on Windows NT platforms are mandatory
locks. Therefore, the FSD is responsible for enforcing the semantics associated
with the lock when subsequent I/O requests are received for the target file
stream. To check whether an 1/0O operation should be dlowed to proceed for a
locked byte range, the FSD uses the following attributes associated with the
locked range:

* The starting byte offset for the locked range

» The number of bytes that have been locked

e The process that owns the locked range

« The Key value associated with the locked range

Byte-range locks are owned by processes and are not associated with individual
threads within a process. Therefore, to control access to locked byte-ranges by
multiple threads within the same process, a unique Key value should be associ-
ated with the locked byte range.

Exclusive locks prohibit any read or write access by any other process other than
the owning process for the locked byte range. Shared locks dlow other processes

712 Appendix A: Windows NT System Services

to continue to read the data contained within the locked range but do not allow
other processes to modify such data. Byte-range exclusve locks requested by a
process cannot overlap with any other locked range within the file.

Note that callers can request byte-range locks that start or extend beyond the
current end-of-file. This allows the requester to control who can extend the file
stream.

NtUnlockFile()

NTSTATUS Nt Unl ockFi | e(
IN HANDLE Fi | eHandl e,
QUT Pl O STATUS BLOCK | oSt at usBl ock,
IN PLARGE | NTEGER Byt eI f set
IN PLARGE | NTEGER Lengt h,
IN PULONG Key

)

Parameters

Fi | eHandl e

Returned to the caler from a previous, successful NtCreateFile() or
NtOpenFileO invocation.

| oSt at usBl ock
The caller must supply this argument to receive the results of the unlock-file
operation. The Information field in the loStatusBlock is set to the
number of bytes unlocked by the FSD.

Byt e f set
The starting byte offset for the byte range to be unlocked on behaf of the
caler. This value must match exactly the starting ByteOffset supplied in a
previous NtLockFile () request.

Length
The number of bytes to be unlocked. This value must match exactly the
Length supplied in a previous NtLockFile () request.

Key
The Key is a caler-defined (opaque) value associated with the locked byte

range. This value must match exactly the Key value supplied in a previous
NtLockFile () request.

Return code

STATUS SUCCESS indicates that the operation succeeded and the lock was
released; STATUS PENDING is returned if the FSD processes the request
asynchronously.

NT System Services 713

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

« STATUS ACCESS DEN ED

- STATUS | NSUFFI O ENT_RESOURCES
« STATUS | NVALI D_PARAMETER

« STATUS | NVALI D DEVI CE_REQUEST
« STATUS RANGE NOT LOCKED

I/O stack location
Maj or Functi on
| RP_MJ_LOCK_COONTRCL
M nor Funct i on
One of the following:
IRP_MN_UNLOCK_SINGLE
The single, locked byte range described in the IRP should be unlocked.
| RP_MN UNLOCK_ALL

All previoudy locked byte ranges owned by the requesting process
should be unlocked.

IRP_MN_UNLOCK_ALL_BY_KEY
All previoudly locked byte-ranges, owned by the requesting process that
match the supplied Key value, should be unlocked.

Flags
None.
Par anet ers. LockControl . Lengt h

The byte-range Length specified by the caler. This should be exactly equal
to the Length value supplied in a previous request to NtLockFile ().

Parameters.L ockControl .Key
The Key specified by the caller.
Par anet ers. LockCont rol . Byt ek f set

The starting ByteOffset specified by the caler. This should be exactly

equal to the ByteOffset value supplied in a previous request to
NtLockFile().

Devi ce(hj ect

Points to the FSD-created device object representing the mounted logical
volume.

714 Appendix A: Windows NT System Services

Fi | e(oj ect
The file object representing the open instance of the file for which an unlock
operation has been requested.

Notes

Only the process that owns a particular byte-range lock can successfully request
that the lock be released. Whenever a process closes al open handles for a partic-
ular file stream, all outstanding byte-range locks owned by the process for the file
stream will be released.

NtQuery VolumelnformationFile()

NTSTATUS Nt Quer yVol urrel nf or nat i onFi | e(

IN HANDLE Fi | eHandl e,
QJT Pl O STATUS BLOXK | oS at usBl ock,
aQJr PMa b Fsl nf or mat i on,
IN ULONG Lengt h,

IN FS_| NFCRVATI ON_CLASS Fsl nf or mat i ond ass
)i

Parameters

Fi | eHandl e
Returned to the caler from a previous, successful NtCreateFile() or
NtOpenFile() invocation for any file or directory contained in the target
logical volume, or from a successful open request on either the target volume
or the underlying device object.

| oSt at usBl ock
The caller must supply this argument to receive the results of the query
volume information operation. The Information field in the loStatus-
Block is set to the number of information bytes returned by the FSD.

Fsl nf or mat i on
A caller-alocated buffer in which volume information is returned. The struc-
ture of returned information depends upon the vaue of the
FsInformationClass argument.

Length
The sze of the Fsl nformation buffer.

Fsl nformati ond ass
The type of information requested by the user. This can be one of the
following:

Fi | eFsVol unel nf or nat i on

The following structure defines the format of the information returned by
the FSD:

NT System Services 715

typedef struct _FILE FS VOLUME | NFORVATI ON {
LARGE_| NTEGER Vol uneCr eat i onTi ne;

ULONG Vol urmeSeri al Nunber ;
ULONG Vol uneLabel Lengt h;
BOCOLEAN Suppor t sChj ect s;
WCHAR Vol uneLabel [1] ;

} FILE_FS_VALUME | NFCRVATI ON, *PFI LE_FS VOLUME | NFCRVATI ON;

Fi | eFsSi zel nformati on

The following structure defines the format of the information returned by
the FSD:

typedef struct _FILE FS Sl ZE | NFCRVATI CN {

LARGE | NTEGER Total All ocationUnits;

LARGE_| NTEGER Avai | abl eAl | ocati onUni ts;

UONG Sect orsPer Al | ocati onUni t;

ULONG Byt esPer Sect or ;

} FILE_FS_SI ZE | NFORMATI ON, *PFI LE_FS_SI ZE | NFCRVATI QN

Fi | eFsDevi cel nfornmati on
The following structure defines the format of the information returned by
the FSD:
typedef struct _FlILE_FS DEVI CE | NFORVATI ON {
DEVI CE_TYPE Devi ceType;
, ULONG Characteri stics;
1 } FILE_FS DEVI CE_| NFCRVATI ON, *PFI LE_FS_DEVI CE_| NFORVATI O\
FileFsAttributel nfornation
The following structure defines the format of the information returned by
the FSD:
typedef struct _FILE FS ATTR BUTE | NFORMVATI ON {
WLONG Fi |l eSystenmttri butes;
LONG Maxi numConponent NaneLengt h;
ULONG Fi | eSyst emNaneLengt h;
WCHAR FileSystemName[1];
} FILE_FS ATTR BUTE_| NFCRVATI ON, *PFI LE_FS ATTR BUTE_| NFCRVATI ON
Return code

STATUS SUCCESS indicates that the operation succeeded and the volume infor-
mation has been returned by the FSD; STATUS PENDING is returned if the FSD
decides to process the request asynchronously.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

- STATUS | NSUFFI O ENT_RESOURCES
« STATUS | NVALI D_PARAMETER

« STATUS INVALID_DEVICE_REQTJEST
. STATUS BUFFER OVERFLOW

716 Appendix A: Windows NT System Services

IRP

Associ at edl rp. Syst enBuf f er
The I/O Manager allocates a system buffer in which the FSD can return the
requested volume information. The I/O Manager copies the returned informa-
tion into the caller's buffer once the IRP is completed by the FSD.

1/O stack location
Maj or Functi on

| RP_MI_QUERY_VOLUME | NFCRVATI ON
M nor Functi on

None.

Fl ags
None.

Par anet er s. Quer yVol urre. Lengt h
The Length of the buffer provided by the caller.

Par anet er s. Quer yVol une. Fsl nf or mat i ond ass
The FsInformationClass value specified by the caller. This determines
the type of information returned by the FSD.

Devi ce(hj ect
Points to the FSD-created device object representing the mounted logical
volume.

Fi | e(oj ect

The file object representing the open instance of a file, directory, volume, or
device using which a query volume information operation has been requested.

Notes

Regardless of the type of access requested in the open request for a file, directory,
device, or volume, the user can always request volume information using the file
handle received from the successful open operation.

NtSetVolumelnformationFile()

NTSTATUS N Set Vol unel nf or mat i onFi | e(

I N HANDLE Fi | eHandl e,
QUT Pl O STATUS BLOK | oSt at usBl ock,
IN PvaQ D Fsl nfornati on,
IN ULONG Lengt h,

IN FS | NFORVATI ON_CLASSFsI nf or nat i ond ass

NT System Services 717

Parameters

Fi | eHandl e

Returned to the caller from a previous successful NtCreateFile() or
NtOpenFile () invocation on the target volume.

| oSt at usBl ock
The caller must supply this argument to receive the results of the set volume
information operation. The Information field in the loStatusBlock is
et to the number of information bytes written by the FSD.

Fsl nf or mati on
A caller-alocated buffer in which volume information is supplied. The struc-

ture of supplied information depends upon the vaue of the
FsinformationClass argument.

Length
The size of the Fslnformation buffer.

Fsl nf or mat i ond ass

The type of information provided by the user. Currently, this can be the
following:

Fi | eFsLabel | nf or mati on

The following structure defines the format of the information supplied by
the user:

typedef struct _FILE FS LABEL | NFORVATI ON {
ULONG Vol uneLabel Lengt h;
WCHAR Vol unelLabel [17];
} FILE_FS_LABEL_| NFCKVATI ON, *PFl LE_FS_LABEL_| NFCRVATI O\

Return code

STATUS _SUCCESS indicates that the operation succeeded; STATUS PENDING is
returned if the FSD decides to process the request asynchronously.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code vaues:

« STATUS ACCESS DEN ED

« STATUS | NSUFFI O ENT_RESOURCES
+ STATUS | N\VALI D_PARAMETER

« STATUS | NVALI D DEVI CE_REQUEST

718 Appendix A: Windows NT System Services

IRP

Associ at edl rp. Syst enBuf f er
The 1/O Manager allocates a system buffer into which the caller-provided
volume information is copied before the IRP is dispatched to the FSD.

1/0O stack location

Maj or Functi on

| RP_MJ_SET_VOLUME | NFCRVATI ON
M nor Functi on

None.
Fl ags

None.

Par anet er s. Set Vol une. Lengt h
The Length of the buffer provided by the caller.

Par anet er s. Set Vol urre. Fsl nf or nat i ond ass
The FsIinformationClass value specified by the caller. This determines
the type of attribute to be modified for the logical volume.

Devi ce(hj ect
Points to the FSD-created device object representing the mounted logica
volume.

Fi | e(hj ect

The file object representing the open instance of the logical volume on which
a set volume information operation has been requested.

Notes

For the FileFsL abelInf ormation Fslnformation class value, a value of O
in the VolumeL abelLength field indicates that the current volume label (if any)
should be removed. The FSD expects that any new volume label supplied by the
caller should be a wide character string.

NtFsControlFile()
NTSTATUS NtFsControlFile(
IN HANDLE Fi | eHandl e,
I'N HANDLE Event CPTI ONAL,
IN PlO APC ROUTINE ApcRoutine CPTI ONAL,
IN PvA D ApcCont ext CPTI ONAL,
QUT Pl O STATUS BLOCK | oSt at usBl ock,
I'N ULONG FsCont r ol Code,
IN PVA D | nput Buf f er CPTI ONAL,

IN ULONG | nput Buf f er Lengt h,

NT System Services 7157

aJr Pva b Cut put Buf f er CPTI CNAL,
IN ULONG Qut put Buf f er Lengt h

)i

Parameters

Fi |l eHandl e

Returned to the caller from a previous, successful NtCreateFile() or
NtOpenFileO invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caler) for
completion of the asynchronous FSCTL request. The event will be signaled by
the 1/0 Manager when the FSCTL operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the FSCTL operation completes.

ApcContext (optional)
The caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

| oSt at usBl ock
The caller must supply this argument to receive the results of the FSCTL oper-
ation. The Information field in the loStatusBlock is set to the number
of bytes returned by the FSD in the OutputBuffer (if any).

FsCont r ol Code
The FSCTL code value specifying the type of file syslem control function
requested.

| nput Buf f er
A caller-alocated buffer in which information to be sent to the FSD is
supplied.

| nput Buf f er Lengt h
The size of the input buffer.

Qut put Buf f er
A cdler-allocated buffer in which the FSD returns information to the caller.

Qut put Buf fer Lengt h
The size of the output buffer.
Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS PENDING is
returned if the FSD processes the request asynchronously.

720

Appendix A: Windows NT System Services

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

| RP
Ass

Ml

STATUS ACCESS DEN ED

STATUS_| NSUFFI O ENT_RESOURCES
STATUS | NVALI D_PARAMETER
STATUS | NVALI D_DEVI CE_REQUEST

oci at edl rp. Syst enBuf f er

If the FSCTL code value specifies METHOD_BUFFERED or METHOD_IN_
DIRECT/METHOD_OUT_DIRECT, the I/0O Manager initializes this field with a
pointer to a system buffer allocated by the /O Manager. For METHOD_BUFF-
ERED, the size of the allocated system buffer is equal to the size of the larger
of the two buffers supplied by the caler (the InputBuffer and the
OutputBuffer).* For METHOD_IN_DIRECT/METHOD_OUT_DIRECT, the
I/O Manager allocates a system buffer to correspond to any InputBuffer
supplied by the caller.

Addr ess

If the FSCTL code value specifies METHOD_IN_DIRECT/METHOD_OUT _
DIRECT and the OutputBuffer argument supplied by the requesting
thread is nonnull, the I/O Manager alocates an MDL describing the caler's
OutputBuffer and initializes the MdlIAddress field with the MDL pointer
value. Note that the physical pages backing this MDL are locked into memory
by the I/O Manager.

UserBuffer

If the FSCTL code value specifies METHOD_ NEITHER, the 1/O Manager initial-
izes this field with the OutputBuffer pointer provided by the caller.

Flags

110
My

Set to IRP_MOUNT_COMPLETION and IRP_SYNCHRONOUS_PAGING_IO for
mount volume and verify volume FSCTL requests.
stack location

or Functi on
| RP_M_FI LE_SYSTEM OONTRCL

* The 1/O Manager copies the contents of the | nputBuffer into the system buffer before dispatching

the |

RP to the FSI). When the IRP is completed and if the caller had provided an OutputBuffer, the

1/0 Manager copies any information returned by the FSD back into the caller's OutputBuffer.

NT System Services 721

MinorFunc ti on
One of the following:
| RP_MN_MOUNT_VOLUMVE
A mount request is being issued to the FSD.
| RP_MN LOAD FI LE_SYSTEM
The FSD is being loaded by a mini file system recognizer.
| RP_MN_VER FY_VCLUMVE
A verify volume request is issued to the FSD.
| RP_MN _USERLFS REQUEST
Set when a user FSCTL request is received by the I/O Manager, via an
invocation to NtFsControlFile(), for either a private FSCTL request
or for one of the sat of public FSCTL requests supported by most FSDs
and/or network redirectors.
Flags
Setto SL_ ALLOW_RAW_MOUNT if a target volume is opened for direct access
whenMinorFunctionisinitializedto IRP_MN_VERIFY_VOLUME.

Mount requests

Par anet er s. Mount Vol urre. Vpb
The VPB associated with the physical, virtual, or logical "red" device object
representing the media on which the logical volume should be mounted.

Par amet er s. Mount Vol une. Devi ce(hj ect
Pointer to the device object representing the partition on the device object on
which the logical volume should be mounted. Note that the pointer may refer
to some intermediate (filter driver) device object structure that has been
attached to the target device object.

Devi ce(hj ect
Points to the FSD-created device object representing the file system driver (or
to the highest-layered filter device object attached to the FSD device object).
Fi | eQoj ect
Initialized to NULL.

Load FSD request

Devi ce(hj ect
Points to the file system recognizer driver-created device object representing
the file system recognizer driver.

Fi | e(oj ect
Initialized to NULL.

722 Appendix A: Windows NT System Services

Verify volume requests

Par anet er s. Veri f yVol une. Vpb
The VPB associated with the physical, virtual, or logical "real" device object
representing the media on which the mounted logical volume should be
verified.

Par arret er s. Veri f y\Vol une. Devi ce(hj ect
Pointer to the device object representing the media containing the mounted
logical volume to be verified.

Devi ce(hj ect
Points to the FSD-created device object representing the mounted volume to
be verified.

Fi | e(oj ect
Initialized to NULL.

User FSCTL requests

Parameters.FileSystemControl .OutputBufferL ength
The OutputBuf f erLength specified by the caller.

Parameters.FileSystemControl .| nputBufferL ength
The InputBuf f erLength specified by the caller.

Parameters.FileSystemControl.FsControl Code
The FsControlCode specified by the caller.
Par anet ers. Fi | eSyst enCont r ol . Type3l nput Buf f er
Used when the FSCTL code value specifies METHOD_NEITHER for handling
user buffers, this field contains a pointer to the user-supplied InputBuf fer.
Devi ce(hj ect
Points to the FSD-created device object representing the mounted volume.
Fi | eChj ect
Initialized to the file object instance representing an open file/directory or
volume.

Notes

When dispatching any /O read request to a lower-level driver while processing a
verify volume request itself, the FSD must st the SL_OVERRIDE VERIFY _
VOLUME flag in the next 1/0 stack location before forwarding the IRP. See
Chapter 11 for a detailed discussion on how FSDs process FSCTL requests.

NT System Services 723

NtDeviceloControlFileO

NTSTATUS Nt Devi cel oControl Fi | e(

I'N HANDLE Fi | eHandl e,
I'N HANDLE Event CPTI ONAL,
IN Pl O APC_ROUTI NE ApcRout i ne OPTI ONAL,
IN PVa D ApcCont ext CPTI ONAL,
QUT Pl O_STATUS BLOCK | oSt at usBl ock,
IN ULLONG | oCont r ol Code,
IN PV D | nput Buf fer CPTI ONAL,
IN ULONG | nput Buf f er Lengt h,
QJr PMa D Qut put Buf f er CPTI QNAL,
IN ULONG Cut put Buf f er Lengt h

)

Parameters

Fi |l eHandl e

Returned to the caller from a previous, successful NtCreateFile() or
NtOpenFile () invocation. The target file or device must have been opened
for Direct Access Storage Device (DASD) access.

Event (optional)
The caller can wait for the supplied event object (created by the caller), for
completion of the asynchronous IOCTL request. The event will be signaled by
the 1/O Manager when the IOCTL operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the 1/0O Manager when
the IOCTL operation completes.

ApcContext (optional)
A caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

| oSt at usBl ock
The caller must supply this argument to receive the results of the IOCTL oper-
ation. The Information field in the loStatusBlock is set to the number
of bytes returned by the FSD in the OutputBuffer (if any).

FsCont r ol Code
The IOCTL code value specifying the type of device 1/0O control function
requested.

InputBuffer
A cdler-allocated buffer in which information to be sent to the FSD is
supplied.

I nput Buf f er Lengt h
The size of the input buffer.

724 Appendix A: Windows NT System Services

Qut put Buf f er
A cdller-alocated buffer in which the FSD returns information to the caller.

Qut put Buf f er Lengt h
The size of the output buffer.

Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS PENDING is
returned if the FSD processes the request asynchronously.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

« STATUS ACCESS DEN ED

« STATUS | NSUFFI O ENT_RESOURCES
« STATUS | N\VALI D_PARAMETER

« STATUS | NVALI D DEVI CE_REQUEST

| RP

Associ at edl r p. Syst enBuf f er

If the IOCTL code value specifies METHOD_BUFFERED or METHOD_IN_
DIRECT/METHOD_OUT_DIRECT, the I/O Manager initializes this field with a
pointer to a system buffer allocated by the 1/0O Manager. For METHOD_BUFF-
ERED, the size of the alocated system buffer is equal to the size of the larger
of the two buffers supplied by the caller (the InputBuffer and the
OutputBuffer).* For METHOD_IN_DIRECT/METHOD_OUT_DIRECT, the
I/O Manager dlocates a system buffer to correspond to any InputBuffer
supplied by the caller.

MdIAddress
If the IOCTL code value specifies METHOD_IN_DIRECT/METHOD_OUT _
DIRECT and the OutputBuffer argument supplied by the requesting
thread is nonnull, the 1/O Manager allocates an MDL describing the caller's
OutputBuffer and initializes the MdlAddress field with the MDL pointer
value. Note that the physical pages backing this MDL are locked into memory
by the I/O Manager.

UserBuffer
If the IOCTL code value specifies METHOD_NEITHER, the 1/O Manager initial-
izes this field with the OutputBuffer pointer provided by the caller.

* The 1/O Manager copies the contents of the InputBuffer into the system buffer before dispatching
the IRP to the FSD. When the IRP is completed and if the caller had provided an OutputBuffer, the
1/0 Manager copies any information returned by the FSD back into the caller's OutputBuffer.

NT System Services 725

I/O stack location

Maj or Functi on

| RP_MJ_DEVI CE_CONTRCL or | RP_MJ_| NTERNAL_DEVI CE_OCNTRCL
M nor Funct i on

None.

Fl ags
Can be set to SL_OVERRIDE_VERIFY_VOLUME by the FSD when requesting
I/O operations from the lower-level driver while processing verify-volume
requests.
Parameters.DeviceloControl .OutputBufferL ength
The OutputBuf f erLength specified by the caller.
Parameters.DeviceloControl .l nputBufferL ength
The InputBuf f erLength specified by the caler.
Parameters.DeviceloControl .FsControlCode
The FsControl Code specified by the cdler.

Par anet er s. Devi cel oCont r ol . Type3l nput Buf f er
Used when the IOCTL code value specifies METHOD_NEITHER for handling
user buffers, this field contains a pointer to the user-supplied InputBuf fer.
Devi ce(hj ect
Points to the FSD-created device object representing the mounted logical
volume or target device.
Fi | e(oj ect
Initialized to the file object instance representing an open file or device.

Notes

Most device IOCTL requests are forwarded by the FSD to lower-level device
drivers managing the physical/virtua/logical device on which the volume has
been mounted. See Chapter 11 for a detailed discusson on how FSDs process
IOCTL requests.

Note that the IRP_MJ SCSI IOCTL code has been defined to be the same as
IRP_MJ_INTERNAL_DEVICE_CONTROL control code value.

NtDeleteFile()

NTSTATUS N Del et eFi | e(
I N PCBIJECT_ATTR BUTES (bj ect Attri butes

)

This sysem cdl is functionally equivalent to invoking NtSetlnformationFileO
with FilelnformationClass st to FileDispositionlnformation.

726 Appendix A: Windows NT System Services

NtFlushBuffersFile()
NTSTATUS N Fl ushBuf fersFi | e(
I'N HANDLE Fi | eHandl e,

QUT Pl O STATUS BLOXK | oSt at usBl ock,
)i
Parameters

Fi | eHandl e
Returned to the caller from a previous, successful NtCreateFile() or
NtOpenFile() invocation.

If the supplied handle represents an open instance of either the mounted
logical volume or the root directory on the mounted logical volume, al
cached data for open files belonging to the mounted logical volume will be
flushed by the FSD. If, however, the handle refers to an instance of any other
open directory on the volume, no data will be flushed to disk.

If the handle represents an open instance of a specific file, the FSD will write
the cached data for the file to secondary storage by the FSD.

| oSt at usBl ock
The caller must supply this argument to receive the results of the flush buffers
operation. The Information field in the loStatusBlock is set to the
number of bytes flushed to secondary storage by the FSD.

Return code

STATUS _SUCCESS indicates that the operation succeeded.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

- STATUS ACCESS DEN ED

« STATUS | NSUFFI O ENT_RESOURCES
« STATUS | N\VALI D_PARAMETER

« STATUS | NVALI D_DEM CE_REQUEST

/O stack location

Maj or Functi on
| RP_M_FLUSH BUFFERS

M nor Functi on
None.

NT System Services 727

Devi ce(j ect
Points to the FSD-created device object representing the mounted logical
volume.

Fi |l e(oj ect
Initialized to the file object instance representing an open file, directory, or
volume.

Notes

Chapter 11 discusses how the flush file buffers IRP is handled by the FSD.

NtCancelloFile()

NTSTATUS Nt Cancel | oFi | e(
I'N HANDLE Fi | eHandl e,
QUJT Pl O STATUS BLOCK | oSt at usBl ock,

)
Parameters

Fi | eHandl e
Returned to the caller from a previous, successful NtCreateFile() or
NtOpenFile () invocation.

| oSt at usBl ock
The caller must supply this argument to receive the results of the flush buffers
operation.

Return code
STATUS SUCCESS indicates that the operation succeeded.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

« STATUS ACCESS DEN ED
« STATUS | N\VALI D_PARAMETER
. STATUS | N\VALI D_DEM CE_REQUEST

Not es

This system call will not return control back to the caller until all pending 1/0
requests initiated by the requesting thread using the particular file handle, have
been either canceled or completed.

Requests initiated by other threads belonging to the same process or by the same
thread but using different file handles will not be affected.

728 Appendix A: Windows NT System Services

This appendix has listed some of the Windows NT 1/O-Manager-provided system
services that you can use ether from a user-space application or from within a
kernel-mode driver. There is a cost, however, associated with using such routines
directly. This cost (especially for user-space applications) is the potential loss of
portability that your software will suffer if and when these system sarvices are
changed and/or made obsolete by Microsoft. The benefit is that certain function-
ality becomes easier to request by using such Windows NT system services
directly.

