
Windows NT
System Services

For various reasons, Microsoft has not documented the native Windows NT I/O
services provided by the Windows NT I/O Manager. Application developers are
instead expected to use either the Win32 subsystem APIs, or the APIs provided by
one of the other supported subsystems, e.g., the POSIX subsystem.

This appendix contains a list of most of the exported, native Windows NT I/O-
Manager-provided system services. As was mentioned earlier in the book, the
Windows NT system services are quite powerful and comprehensive, and allow
the caller to more easily request certain operations that would often otherwise
require multiple Win32 API calls. The majority of the structure types and flag defi-
nitions required to use the various system services described in this appendix are
provided in the Windows NT DDK. Those definitions that are not provided in the
DDK can be obtained from the header files supplied with the Windows NT IPS
kit. Many such undefined types are described here as well.

NT System Services
The Windows NT system services allow the caller to request normal file stream
manipulation operations. These include requests to create a new file or open an
existing file stream, requests to perform I/O on the file, get and set file attributes,
map a file into a process virtual address space, and requests to close a file handle.
Nearly all of the services provided by the native system services can also be
requested using Win32 API calls or any one of the various APIs provided by the
supported subsystems. However, system and application software developers may
sometimes require functionality that may not be easily (or efficiently) provided by
any one subsystem. As an example, creating a link to an existing file cannot be
easily accomplished (if at all) using the Win32 subsystem. This functionality,
however, is more easily requested if an application were to use the POSIX

671

672___________________________Appendix A: Windows NT System Services

subsystem instead.* In such situations where you may need otherwise hard-to-
request functionality, requesting file system services by using the native system
service calls provided by the I/O Manager can be quite useful.

Kernel-mode file system and filter driver developers may also wish to scan
through the system services documented here to get a good sense of how the I/O
Manager translates user requests into corresponding file system dispatch routine
invocations, and also how user-specified arguments are eventually passed on to
the file system implementation. Descriptions of certain system services also
include comments on the responsibilities of an FSD processing such a request.

NtCreateFileQ

Parameters

FileHandle
Returned handle (created by the I/O Manager) if call succeeds.

DesiredAccess
Desired access flags can be one or more of the following:

DELETE
Required if FILE_DELETE_ON_CLOSE is set in CreateOptions below.
File can be deleted by caller.

FILE_READ_DATA

Caller can request to read data.

FILE_WRITE_DATA
Caller may write file data. The caller is also allowed to append to the file.

FILE_READ_ATTRIBUTES
File attributes flags can be read.

FILE_WRITE_ATTRIBUTES
The caller can change file attribute flag values.

FILE_APPEND_DATA
The caller can only append data to the file.t This access value is not
allowed in conjunction with the FILE_NO_INTERMEDIATE_BUFFERING
CreateOptions flag.

READ_CONTROL
ACL and ownership information for the file stream can be read.

* Multiple (hard) links to a file stream are currently supported only by the NTFS driver, out of all of the
native file system implementations provided by Microsoft for the Windows NT platform.
t Any byte offset specified in a write operation will be ignored.

NT System Services___673

WRITE_DAC
Discretionary ACL associated with the file can be written.

WRITE_OWNER
Ownership information can be written.

FILE_LIST_DIRECTORY
Caller can list files contained within the directory. Not valid for data files.

FILE_TRAVERSE
The opened directory can be in the pathname of a file. Not valid for data
files.

FILE_READ_EA
Caller can read extended attributes associated with the file.

FILE_WRITE_EA
Required if EaBuf f er is not null. Caller may write extended attributes to
the file.

SYNCHRONIZE
Caller can wait for the returned file handle for completion of asynchro-
nous I/O requests. Required if either FILE_SYNCHRONOUS_IO_ALERT
or FILE_SYNCHRONOUS_IO_NONALERT flags in CreateOptions have
been set. If this flag is not specified, I/O completion for asynchronous
I/O requests must be synchronized by either using an event or an APC
routine.

FILE_EXECUTE
File stream is an executable image. If FILE_EXECUTE is set but neither
FILE_READ_DATA nor FILE_WRITE_DATA are set, then I/O can only
be performed by mapping the file into the process virtual address space.

ObjectAttributes
The caller must allocate memory for this structure of type OBJECT_
ATTRIBUTES. Fields in the structure are initialized as follows:

Length
Size, in bytes, of the structure.

ObjectName
A Unicode string specifying the name of file. The name can be either a
relative name (RootDirectory is nonnull) or an absolute name (Root-
Directory is NULL).

RootDirectory (optional)
The previously opened handle for a directory; ObjectName will be
considered relative to this directory (if specified).

674___________________________Appendix A: Windows NT System Services

SecurityDescriptor (optional)
If nonnull, the specified ACLs will be applied only if the file is created. If
the SecurityDescriptor is NULL and if the file is created, the FSD
determines which (if any) ACLs will be associated with the file (typically,
a default ACL associated with the parent directory is propagated to the
created file).

SecurityQualityOf Service (optional)
Specifies the access a server should be given to a client's security context.
Only nonnull when a connection is being established to a protected
server.

Attributes
Combination of OBJ_INHERIT (child processes inherit open handle) and
OBJ_CASE_INSENSITIVE (lookups should be processed in a case-insen-
sitive fashion).

loStatusBlock
Caller-supplied structure to receive results of create/open request.

AllocationSize (optional)
The initial allocation size of file. Only used when the file is initially created,
overwritten, or superseded. If the FSD cannot allocate the requested disk
space for the file, the create/open request will fail.

FileAttributes
Attributes are only applied if file is newly created, superseded, or overwritten.
Any combination is allowed but all flag values override the FILE_
ATTRIBUTE_NORMAL flag. Attributes can be one or more of the following:
FILE_ATTRIBUTE_NORMAL

A normal file should be created.

FILE_ATTRIBUTE_READONLY
A read-only file should be created.

FILE_ATTRIBUTE_HIDDEN
A hidden file should be created.

FILE_ATTRIBUTE_SYSTEM
The created file should be marked as a system file.

FILE_ATTRIBUTE_ARCHIVE
Mark the file to-be-archived.

FILE_ATTRIBUTE_TEMPORARY
The file to-be-created is marked as a temporary file. Note that modified
cached data for the file is often not flushed to secondary storage for
temporary files by the Cache Manager.

NT System Services_______________________________________ 575

FILE_ATTRIBUTE_COMPRESSED
The file to be created is a compressed file.

ShareAccess
The type of share access requested by the caller. The share access can be a
combination of the following:
FILE_SHARE_READ

The file can be concurrently opened for read access by other threads.
FILE_SHARE_WRITE

Other file open operations requesting write access should be allowed.

FILE_SHARE_DELETE
Other file open operations requesting delete access should be allowed.

Note that the share access flags allow the requester to control how the file
can be shared by separate threads and processes. If none of the share values
are specified, no other subsequent open operation will be allowed to proceed
until the file handle is closed (and an IRP_MJ_CLEANUP issued to the FSD).

CreateDisposition
The disposition specified by the caller determines the actions performed by
an FSD if a file does or does not exist. Any one of the following values can
be specified:
FILE_SUPERSEDE

It the file exists, it should be superseded; if the file does not exist, it
should be created.

FILE_CREATE
If the file does not exist, it should be created; if the file exists, an error
should be returned (typically STATUS_OBJECT_NAME_COLLISION is
returned).

FILE_OPEN
If the file exists, it should be opened; if the file does not exist, an error
should be returned (often STATUS_OBJECT_NAME_NOT_FOUND is
returned).

FILE_OPEN_IF
Open the file if it exists, create the file if it does not already exist.

FILE_OVERWRITE
If the file exists, it should be opened and overwritten. If it does not exist,
the create operation should fail (often STATUS_OBJECT_NAME_NOT_
FOUND is returned).

678___________________________Appendix A: Windows NT System Services

FILE_NO_EA_KNOWLEDGE
The caller does not understand how to handle extended attributes. If
extended attributes are associated with the file being opened, the FSD
must fail the open operation.

FILE_DELETE_ON_CLOSE
The directory entry for the file being opened should be deleted when the
last handle to the file stream has been closed.

FILE_0PEN_BY_FILE_ID
The file name is actually a LARGE_INTEGER-type identifier that should
be used to locate and open the target file (see Chapter 9, Writing a File
System Driver I, for details).

FILE_OPEN_FOR_BACKUP_INTENT
The file is being opened for backup purposes, and the FSD should
initiate a check for the appropriate privileges and determine whether the
open should be allowed to proceed or be denied.

FILE_NO_COMPRESSION
The file cannot be compressed.

EaBuf fer (optional)
A caller-allocated buffer containing a list of extended attributes to be set on
the file only if the file is being created. Must be set to NULL if the file is only
being opened. The FILE_FULL_EA_INFORMATION structure defines the
format of the extended attributes in EaBuf fer. Each extended attribute entry
must be longword aligned. The NextEntryOffset field in the structures
specifies the number of bytes between the current entry and the next. For the
last entry, the NextEntryOf fset field is zero.

If extended attributes are specified and if the extended attributes for the
newly created file cannot be successfully created, the create/open request will
fail. Therefore, creation of extended attributes is an atomic operation with
respect to creation of the file.

EaLength
Value should be 0 if EaBuf fer is set to NULL. Otherwise, it contains the
length (in bytes) of the EAs listed in EaBuf fer.

Return code

STATUS_SUCCESS indicates that the operation succeeded and a valid handle is
being returned; STATUS_PENDING indicates that the operation will be performed
asynchronously by the FSD, while STATUS_REPARSE indicates that the name
should be parsed again by the object manager (e.g., a new volume has been
mounted).

,

NT System Services___ _ __ _ _____________________________________575*

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_OBJECT_TYPE_MISNATCH

• STATUS_NO_SUCH_DEVICE

• STATUS_ACCESS_DENIED (a commonly used error code value)

• STATUS_FILE_IS_A_DIRECTORY

• STATUS_NOT_A_DIRECTORY

• STATUS_INSUFFICIENT_RESOURCES

• STATUS_OBJECT_NAME_INVALID

• STATUS_DELETE_PENDING

• STATUS_SHARING_VIOLATION

• STATUS_INVALID_PARAMETER

IRP

Overlay.Allocations!ze
Set to the caller-supplied AllocationSize value (if any).

Associatedlrp.SystemBuffer
The EaBuf f er supplied by the caller (if any).

Flags
The IRP_CREATE_OPERATION, IRP_SYNCHRONOUS_API, and IRP_
DEFER_IO_COMPLETION flag values are set.

I/O stack location

Ma j orFunction
IRP_MJ_CREATE

MinorFunction
None.

Flags
One or more of SL_CASE_SENSITIVE, SL_FORCE_ACCESS_CHECK, SL_
OPEN_PAGING_FILE, and SL_OPEN_TARGET_DIRECTORY.

Control
Irrelevant from the FSD's perspective.

Parameters.Create.SecurityContext
Points to an IO_SECURITY_CONTEXT structure (allocated by the I/O
Manager) containing the AccessState and DesiredAccess (specified by

678___________________________Appendix A: Windows NT System Services

FILE_NO_EA_KNOWLEDGE
The caller does not understand how to handle extended attributes. If
extended attributes are associated with the file being opened, the FSD
must fail the open operation.

FILE_DELETE_ON_CLOSE
The directory entry for the file being opened should be deleted when the
last handle to the file stream has been closed.

FILE_OPEN_BY_FILE_ID
The file name is actually a LARGE_INTEGER-type identifier that should
be used to locate and open the target file (see Chapter 9, Writing a File
System Driver I, for details).

FILE_0PEN_FOR_BACKUP_INTENT
The file is being opened for backup purposes, and the FSD should
initiate a check for the appropriate privileges and determine whether the
open should be allowed to proceed or be denied.

FILE_NO_COMPRESSION
The file cannot be compressed.

EaBuf f er (optional)
A caller-allocated buffer containing a list of extended attributes to be set on
the file only if the file is being created. Must be set to NULL if the file is only
being opened. The FILE_FULL_EA_INFORMATION structure defines the
format of the extended attributes in EaBuf fer. Each extended attribute entry
must be longword aligned. The NextEntryOffset field in the structures
specifies the number of bytes between the current entry and the next. For the
last entry, the NextEntryOf f set field is zero.
If extended attributes are specified and if the extended attributes for the
newly created file cannot be successfully created, the create/open request will
fail. Therefore, creation of extended attributes is an atomic operation with
respect to creation of the file.

EaLength
Value should be 0 if EaBuf fer is set to NULL. Otherwise, it contains the
length (in bytes) of the EAs listed in EaBuf fer.

Return code
STATUS_SUCCESS indicates that the operation succeeded and a valid handle is
being returned; STATUS_PENDING indicates that the operation will be performed
asynchronously by the FSD, while STATUS_REPARSE indicates that the name
should be parsed again by the object manager (e.g., a new volume has been
mounted).

NT System Services 679

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_OBJECT_TYPE_MISMATCH

• STATUS_NO_SUCH_DEVICE

• STATUS_ACCESS_DENIED (a commonly used error code value)

• STATUS_FILE_IS_A_DIRECTORY

• STATUS_NOT_A_DIRECTORY

• STATUS_INSUFFICIENT_RESOURCES

• STATUS_OBJECT_NAME_INVALID

• STATUS_DELETE_PENDING

• STATUS_SHARING_VIOLATION

• STATUS_INVALID_PARAMETER

IRP

Overlay.Allocations!ze
Set to the caller-supplied AllocationSize value (if any).

Associatedlrp.SystemBuffer
The EaBuf f er supplied by the caller (if any).

Flags
The IRP_CREATE_OPERATION, IRP_SYNCHRONOUS_API, and IRP_
DEFER_IO_COMPLETION flag values are set.

I/O stack location

Ma j orFunction
IRP_MJ_CREATE

MinorFunc t i on
None.

Flags
One or more of SL_CASE_SENSITIVE, SL_FORCE_ACCESS_CHECK, SL_
OPEN_PAGING_FILE, and SL_OPEN_TARGET_DIRECTORY.

Control
Irrelevant from the FSD's perspective.

Parameters.Create.SecurityContext
Points to an IO_SECURITY_CONTEXT structure (allocated by the I/O
Manager) containing the AccessState and DesiredAccess (specified by

680___________________________Appendix A: Windows NT System Services

the caller). The FSD can validate the access requested by the caller using the
help of the security subsystem (if the FSD supports access checking).

Parameters.Create.Options
Bits 0 to 15 contain the caller-specified CreateOptions; bits 16 through 23
are reserved by the I/O Manager; and bits 24 through 31 specify the
CreateDisposition.

Parameters.Create.FileAttributes
FileAttributes specified by the caller.

Parameters.Create.ShareAccess
ShareAccess specified by the caller.

Parameters.Create.EaLength
EaLength specified by the caller (the buffer supplied—if any—is pointed to
by the Associatedlrp. SystemBuf fer field in the IRP).

DeviceObject
Points to the FSD-created device object representing either the FSD itself or
the mounted logical volume.

FileObject
A file object structure allocated by the I/O Manager for this particular create/
open request.

Notes

Create or open requests are inherently synchronous requests. Therefore, the I/O
Manager will block the calling thread until the request has been processed by the
FSD (even if STATUS_PENDING is returned by the FSD) and the IRP_DEFER_
IO_COMPLETION flag will be set in the Irp->Flags field.

The following flags are set in the FileObject->Flags field:

FO_SYNCHRONOUS_IO
Set by the I/O Manager if either FILE_SYNCHRONOUS_IO_ALERT or FILE_
SYNCHRONOUS_IO_NONALERT have been specified by the caller.

FO_ALERTABLE_IO
Set by the I/O Manager if FILE_SYNCHRONOUS_IO_ALERT is specified by
the caller.

FO_NO_INTERMEDIATE_BUFFERING
Set by the I/O Manager and by FSDs if FILE_NO_INTERMEDIATE_BUFF-
ERING is specified by the caller.

FO_WRITE_THROUGH
Set by the I/O Manager and by FSDs if FILE_WRITE_THROUGH is specified
by the caller.

I

NT System Services___681

FO_SEQUENTIAL_ONLY
Set by the I/O Manager if FILE_SEQUENTIAL_ONLY is specified by the
caller.

FO_TEMPORARY_FILE
Set by the FSD if FILE_ATTRIBUTE_TEMPORARY is specified by the caller.

FO_FILE_FAST_I0_READ
Set by the FSD if the file is successfully opened for EXECUTE access; also set
by the FSD and by the FSRTL package whenever a cached read operation
completes, indicating that time stamps for the file (directory entry) should be
updated when all handles have been closed.*

NtOpenFileQ
NTSTATUS NtOpenFile(

OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK loStatusBlock,
IN ULONG ShareAccess,
IN ULONG OpenOptions,

) ;

Parameters

FileHandle
Returned handle (created by the I/O Manager) if the call succeeds.

DesiredAccess
See the description of this argument for the NtCreateFile () system call
described above.

Obj ectAttributes
The caller must allocate memory for this structure of type OBJECT_
ATTRIBUTES. Fields in the structure are initialized as follows:

Length
The size, in bytes, of the structure.

ObjectName
A Unicode string specifying name of file. The name can be a either a rela-
tive name (RootDirectory is nonnull) or an absolute name
(RootDirectory is NULL).

* The FO_FILE_MODIFIED flag is set by the FSRTL package to indicate that time stamps should be up-
dated due to a fast I/O write request.

682___________________________Appendix A: Windows NT System Services

RootDirectory (optional)
The previously opened handle for a directory; ObjectName will be
considered relative to this directory (if specified).

SecurityDescriptor (optional)
NULL pointer.

SecurityQualityOf Service (optional)
NULL pointer.

Attributes
A combination of OBJ_INHERIT (child processes inherit open handle)
and OBJ_CASE_INSENSITIVE (lookups should be processed in a case-
insensitive fashion).

loStatusBlock
A caller-supplied structure to receive results of create/open request.

ShareAccess
The type of share access requested by the caller. The share access can be a
combination of the following:

FILE_SHARE_READ
The file can be concurrently opened for read access by other threads.

FILE_SHARE_WRITE
Other file open operations requesting write access should be allowed.

FILE_SHARE_DELETE
Other file open operations requesting delete access should be allowed.

Note that the share access flags allow the requester to control how the file
can be shared by separate threads and processes. If none of the share values
are specified, no other subsequent open operation will be allowed to proceed
until the file handle is closed (and an IRP_MJ_CLEANUP is issued to the
FSD).

OpenOptions
Options used when the file is opened. See the description for NtCreateFileO
for more details.

Return code

STATUS_SUCCESS indicates that the operation succeeded and a valid handle is
being returned, STATUS_PENDING indicates that the operation will be performed
asynchronously by the FSD, while STATUS_REPARSE indicates that the name
should be parsed again by the object manager (e.g., a new volume has been
mounted).

NT System Services 683

In the case of an error, an appropriate error code is returned. See the description
for NtCreateFile () for more details.

IRP/I/O stack location

The IRP and I/O stack location for an open request are set up in essentially the
same manner as that for a NtCreateFile () system call.

Notes

Time stamps for the file are not affected when an open request is received by the
FSD.

NtReadFileQ
NTSTATUS NtReadFilet

IN HANDLE
IN HANDLE
IN PIO_APC_ROUTINE
IN PVOID
OUT PIO_STATUS_BLOCK
OUT PVOID
IN ULONG
IN PLARGE_INTEGER
IN PULONG

FileHandle,
Event OPTIONAL,
ApcRoutine OPTIONAL,
ApcContext OPTIONAL,
loStatusBlock,
Buffer,
Length,
ByteOffset OPTIONAL,
Key OPTIONAL

Parameters

FileHandle
Returned to the caller from a previous successful NtCreateFile () or
NtOpenFile() invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous read request. The event will be signaled by
the I/O Manager when the read operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the read operation completes.

ApcContext (optional)
The caller-determined context to be passed in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the read opera-
tion. The Information field in the loStatusBlock is set to the number
of bytes actually read by the FSD.

682___________________________Appendix A: Windows NT System Services

RootDirectory (optional)
The previously opened handle for a directory; ObjectName will be
considered relative to this directory (if specified).

SecurityDescriptor (optional)
NULL pointer.

SecurityQualityOf Service (optional)
NULL pointer.

Attributes
A combination of OBJ_INHERIT (child processes inherit open handle)
and OBJ_CASE_INSENSITIVE (lookups should be processed in a case-
insensitive fashion).

loStatusBlock
A caller-supplied structure to receive results of create/open request.

ShareAccess
The type of share access requested by the caller. The share access can be a
combination of the following:

FILE_SHARE_READ
The file can be concurrently opened for read access by other threads.

FILE_SHARE_WRITE
Other file open operations requesting write access should be allowed.

FILE_SHARE_DELETE
Other file open operations requesting delete access should be allowed.

Note that the share access flags allow the requester to control how the file
can be shared by separate threads and processes. If none of the share values
are specified, no other subsequent open operation will be allowed to proceed
until the file handle is closed (and an IRP_MJ_CLEANUP is issued to the
FSD).

OpenOptions
Options used when the file is opened. See the description for NtCreateFile ()
for more details.

Return code

STATUS_SUCCESS indicates that the operation succeeded and a valid handle is
being returned, STATUS_PENDING indicates that the operation will be performed
asynchronously by the FSD, while STATUS_REPARSE indicates that the name
should be parsed again by the object manager (e.g., a new volume has been
mounted).

NT System Services___683

In the case of an error, an appropriate error code is returned. See the description
for NtCreateFile () for more details.

IRP/I/O stack location

The IRP and I/O stack location for an open request are set up in essentially the
same manner as that for a NtCreateFile () system call.

Notes

Time stamps for the file are not affected when an open request is received by the
FSD.

NtReadFileQ
NTSTATUS NtReadFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK loStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL

Parameters

FileHandle
Returned to the caller from a previous successful NtCreateFile () or
NtOpenFilef) invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous read request. The event will be signaled by
the I/O Manager when the read operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the read operation completes.

ApcContext (optional)
The caller-determined context to be passed in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the read opera-
tion. The Information field in the loStatusBlock is set to the number
of bytes actually read by the FSD.

684___________________________Appendix A: Windows NT System Services

Buffer
A caller-allocated buffer to receive data read from secondary storage.

Length
The size, in bytes, of the Buffer supplied by the caller.

ByteOffset
The starting byte offset where the read begins. Caller can specify FILE_USE_
FILE_POINTER_POSITION rather than an explicit byte offset or pass NULL;
in either case the FSD will perform the read from the current file pointer posi-
tion. The I/O Manager maintains the file pointer position whenever the file
stream is opened for synchronous I/O, and therefore, specifying a byte offset
effectively results in an atomic seek-and-read service for the caller.

Key (optional)
If the byte range is locked, a matching Key value (if supplied by the caller)
will result in the FSD allowing the read to proceed. This can be used to selec-
tively share data between threads belonging to the same process.

Return code

STATUS_SUCCESS indicates that the operation succeeded and some subset of
the range requested by the caller is being returned by the FSD; STATUS_
PENDING indicates that the operation will be performed asynchronously by the
FSD.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES

STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
« STATUS_END_OF_FILE

STATUS_FILE_LOCK_CONFLICT

IRP

MdlAddress
Any MDL created by the I/O Manager (or by some other kernel-mode compo-
nent) describing the buffer in which data should be returned by the FSD.

NT System Services___685

UserBuffer
A pointer to the user-supplied buffer. This field is effectively overridden by
the presence of any MDL pointer in the MdlAddress field.*

Flags
One or both of IRP_PAGING_IO and IRP_NOCACHE may be set. IRP_
PAGING_IO is only set by the I/O Manager if the I/O request is a result of a
synchronous or an asynchronous paging I/O operation requested by the
Virtual Memory Manager.

I/O stack location

MajorFunction
IRP_MJ_READ

MinorFunction
One or more of the following:

IRP_MN_DPC
The IRP was dispatched at a high IRQL.

IRP_MN_MDL
The caller wants an MDL returned containing the requested data.

IRP_MN_COMPLETE
The caller has finished with the MDL returned from a previous call (with
IRP_MN_MDL specified).

IRP_MN_COMPRESSED
The caller does not want any compressed data decompressed.

Flags
One or more of SL_KEY_SPECIFIED and SL_OVERRIDE_VERIFY_VOLUME.

Parameters.Read.Length
The read Length specified by the caller.

Parameters.Read.Key
The Key specified by the caller.

Parameters.Read.ByteOffset
The ByteOf f set specified by the caller.

DeviceObj ect
Points to the FSD-created device object representing the mounted logical
volume.

* See Chapter 9 for details. The FSD will check for the presence of an MDL first and will use any MDL
pointed to by the MdlAddress field. If MdlAddress is set to NULL, the FSD will use the UserBuf fer
pointer directly (since typically, FSDs prefer to neither specify DO_DIRECT_IO nor DO_BUFFERED_IO
for handling user buffers).

686 Appendix A: Windows NT System Services

FileObject
The file object representing the open instance of the file to be read.

Notes

The LastAccessTime for the file stream being read is typically updated by the
FSD upon completion of the read request.

NtWriteFileQ
NTSTATUS NtWriteFile(

IN HANDLE
IN HANDLE
IN PIO_APC_ROUTINE
IN PVOID
OUT PIO_STATUS_BLOCK
OUT PVOID
IN ULONG
IN PLARGE_INTEGER
IN PULONG

FileHandle,
Event OPTIONAL,
ApcRoutine OPTIONAL,
ApcContext OPTIONAL,
loStatusBlock,
Buffer,
Length,
ByteOffset OPTIONAL,
Key OPTIONAL

Parameters

FileHandle
Returned to the caller from a previous successful NtCreateFile () or
NtOpenFile () invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous write request. The event will be signaled by
the I/O Manager when the write operation is completed.

ApcRoutine (optional)
The optional, caller-supplied APC routine invoked by the I/O Manager when
the write operation completes.

ApcContext (optional)
The caller-determined context to be passed in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the write opera-
tion. The Information field in the loStatusBlock is set to the number
of bytes actually written by the FSD.

Buffer
A caller-allocated buffer containing data to be written to secondary storage.

NT System Services___687

Length
The size, in bytes, of the Buffer supplied by the caller.

ByteOffset
The starting byte offset where the write begins. Caller can specify FILE_USE_
FILE_POINTER_POSITION rather than an explicit byte offset or pass in
NULL; in either case the FSD will perform the write from the current file
pointer position. The I/O Manager maintains the file pointer position when-
ever the file stream is opened for synchronous I/O and therefore specifying a
byte offset effectively results in an atomic seek-and-write service for the caller
(the file pointer is updated appropriately according to the starting offset from
where the write begins and the number of bytes written).

In order to simply write to the current end-of-file, the caller can specify
FILE_WRITE_TO_END_OF_FILE in the ByteOffset argument.
If the file was opened for FILE_APPEND_DATA, any caller-supplied byte
offset is ignored.

Key (optional)
If the byte range is locked, a matching Key value (if supplied by the caller)
will result in the FSD allowing the write to proceed. This can be used to selec-
tively allow file modification between threads belonging to the same process.

Return code

STATUS_SUCCESS indicates that the operation succeeded and some subset of
the range requested by the caller was written by the FSD; STATUS_PENDING indi-
cates that the operation will be performed asynchronously by the FSD.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

« STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
• STATUS_FILE_LOCK_CONFLICT

IRP

MdlAddress
Any MDL created by the I/O Manager (or by some other kernel-mode compo-
nent) describing the buffer containing data to be written. This could also be a
MDL returned from a previous write request with MinorFunction set to

688___________________________Appendix A: Windows NT System Services

IRP_MN_MDL, in which case the MDL will eventually be freed by the Cache
Manager.

UserBuffer
Pointer to the user-supplied buffer. This field is effectively overridden by the
presence of any MDL pointer in the MdlAddress field.

Flags
One or both of IRP_PAGING_IO and IRP_NOCACHE may be set.

I/O stack location

Maj orFunction
IRP_MJ_WRITE

MinorFunction
One or more of the following:

IRP_MN_DPC
The IRP was dispatched at a high IRQL.

IRP_MN_MDL
The caller wants an MDL returned, which will eventually be filled with
modified data (by the caller).

IRP_MN_COMPLETE
The caller has finished with the MDL returned from a previous call (with
IRP_MN_MDL specified).

IRP_MN_COMPRESSED
The caller is sending compressed data to the FSD.

Flags
One or more of SL_KEY_SPECIFIED and SL_WRITE_THROUGH.

Parameters.Write.Length
The number of bytes to be written specified by the caller.

Parameters.Write.Key
The Key specified by the caller.

Parameters.Write.ByteOffset
The starting ByteOff set specified by the caller.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the file to be written.

NT System Services 689

Notes

The LastWriteTime for the file stream being written is typically updated by the
FSD upon completion of the write request. The FSD should set the SL_FT_
SEQUENTIAL_WRITE flag before forwarding a write-through write request to the
next driver in the calling hierarchy.

NtQueryDirectory File ()
NTSTATUS NtQueryDirectoryFilef

IN HANDLE
IN HANDLE
IN PIO_APC_ROUTINE
IN PVOID
OUT PIO_STATUS_BLOCK
OUT PVOID
IN ULONG
IN FILE_INFORMATION_CLASS
IN BOOLEAN
IN PUNICODE_STRING
IN BOOLEAN

FileHandle,
Event OPTIONAL,
ApcRoutine OPTIONAL,
ApcContext OPTIONAL,
loStatusBlock,
Filelnformation,
Length,
FilelnformationClass,
ReturnSingleEntry,
FileName OPTIONAL,
RestartScan

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile() or
NtOpenFile() invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous query directory request. The event will be
signaled by the I/O Manager when the query directory IRP is completed by
the FSD.

ApcRoutine (optional)
The optional, caller-supplied APC routine invoked by the I/O Manager when
the query directory operation completes.

ApcContext (optional)
The caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the query direc-
tory operation. The Information field in the loStatusBlock is set to the
number of bytes returned by the FSD (in the buffer pointed to by the
Filelnf ormation argument).

690___________________________Appendix A: Windows NT System Services

Filelnformation
A caller-allocated buffer to receive information about files contained in the
directory. Alignment requirements for the buffer and the contents of the
buffer (returned by the FSD) are determined by the Filelnformation-
Class of the argument.

Note that the buffer passed to the FSD in the query directory IRP is an I/O
Manager-allocated system buffer. Copying data from the system buffer to the
actual caller-allocated buffer (pointed to by the Filelnformation argu-
ment) is performed by the I/O Manager upon completion of the IRP.

Length
The size, in bytes, of the buffer supplied by the caller in Filelnformation.

FilelnformationClass
Specifies the kind of information requested by the caller. This can be one of
the following:

FileNamelnformation
The supplied buffer must be longword-aligned, as is the returned infor-
mation. The size of the buffer must at least be equal to sizeof (FILE_
NAMES_INFORMATION). The caller expects to receive the long names of
file entries contained in the directory in the caller-supplied buffer.

The FILE_NAMES_INFORMATION structure is defined as follows:
typedef struct _FILE_NAMES_INFORMATION {

ULONG NextEntryOffset;
ULONG FileIndex;
ULONG FileNameLength;
WCHAR FileName[l];

} FILE_NAMES_INFORMATION, *PFILE_NAMES_INFORMATION;

FileDirectoryInformation
The supplied buffer must be quadword-aligned, as is the returned infor-
mation. The size of the buffer must at least be equal to sizeof (FILE_
DIRECTORY_INFORMATION). The caller expects to get basic informa-
tion (such as the filename, file attributes, various time stamps associated
with the file, and so on) for the matching directory entries.

Here is the FILE_DIRECTORY_INFORMATION structure:

typedef struct _FILE_DIRECTORY_INFORMATION {
ULONG NextEntryOffset;
ULONG Filelndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;

I

NT System Services___691

ULONG FileAttributes;
ULONG FileNameLength;
WCHAR F i1eName[1];

} FILE_DIRECTORY_INFORMATION, *PFILE_DIRECTORY_INFORMATION;

FileFullDirectoryInformation
The supplied buffer must be quadword-aligned, as is the returned infor-
mation. The size of the buffer must at least be equal to sizeof (FILE_
FULL_DIR_INFORMATION). The caller expects to get all of the informa-
tion that could be obtained via the FileDirectorylnformation
information class and in addition, expects to get back information about
extended attributes associated with the matching directory entries.

This is the FILE_FULL_DIR_INFORMATION structure:
typedef struct _FILE_FULL_DIR_INFORMATION {
ULONG NextEntryOffset;
ULONG Filelndex;
LARGE_INTEGER GreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
WCHAR F i1eName[1];
} FILE_FULL_DIR_INFORMATION, *PFILE_FULL_DIR_INFORMATION;

FileBothDirectorylnformation
The supplied buffer must be quadword-aligned, as is the returned infor-
mation. The size of the buffer must at least be equal to sizeof (FILE_
BOTH_DIR_INFORMATION). The caller expects to get all of the informa-
tion that could be obtained via the FileFullDirect-
orylnf ormation information class and in addition, expects to get back
8.3 versions of file names (if such alternate names are supported by the
FSD) for matching directory entries.*

Here is the FILE_BOTH_DIR_INFORMATION structure:
typedef struct _FILE_BOTH_DIR_INFORMATION {
ULONG NextEntryOffset;
ULONG Filelndex;
LARGE_INTEGER CreationTime;

* Note that if your FSD docs not support alternate/short (8.3) versions of filenames, the information re-
turned by your driver in the FILE_BOTH_DIR_INFORMATION structure for eaeh matching directory en-
try will essentially he the same as would he returned by your FSU in the FILE_FULL_DIR_
INFORMATION structure; the ShortNameLength field must be initialized to 0 for each entry, and the
ShortName pointer field must be initialized to NULL.

692___________________________Appendix A: Windows NT System Services

LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
CCHAR ShortNameLength;
WCHAR ShortName[12];
WCHAR FileName[l];
} FILE_BOTH_DIR_INFORMATION, *PFILE_BOTH_DIR_INFORMATION;

Once a query directory request for a particular FilelnformationClass
type is submitted by a thread using a specific file handle, the Filelnforma-
tionClass type must not change when any subsequent query directory
requests are submitted using the same file handle.

ReturnSingleEntry
If TRUE, the caller only wants information on a single matching directory
entry returned.

FileName (optional)

The search pattern, specified by the user, for the first query directory request,
issued using the particular file object (or file handle); the FSD attempts to find
matching directory entries based upon this pattern. If no name is supplied,
the FSD uses "*", a wildcard that matches any directory entry.

RestartScan
Normally, the FSD begins the search for a matching directory entry from the
last file pointer position (based upon the previous query directory request);
however, this flag allows the caller to indicate whether the search should
begin from the starting byte offset in the directory.

Return code

STATUS_SUCCESS indicates that the operation succeeded and information on at
least one directory entry is being returned by the FSD; STATUS_PENDING indi-
cates that the operation will be performed asynchronously by the FSD.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES

STATUS_INVALID_PARAMETER
. STATUS_INVALID_DEVICE_REQUEST

NT System Services 693

• STATUS_BUFFER_OVERFLOW
• STATUS_INVALID_INFO_CLASS
• STATUS_NO_SUCH_FILE
• STATUS_NO_MORE_FILES

IRP

MdlAddress
Any MDL created by the FSD, if the request is dispatched to a worker thread
for asynchronous processing.

UserBuffer
The pointer to the user-supplied buffer. This field is effectively overridden by
the presence of any MDL pointer in the MdlAddress field.

I/O stack location

Ma j orFunction
IRP_MJ_DIRECTORY_CONTROL

MinorFunc t i on
IRP_MN_QUERY_DIRECTORY

Flags
One or more of SL_RESTART_SCAN, SL_RETURN_SINGLE_ENTRY, and SL_
INDEX_SPECIFIED.

Parameters.QueryDirectory.Length
The Length specified by the caller for the buffer in which information is
received.

Parameters.QueryDirectory.FileName
The search pattern specified by the caller. The FSD must search for matching
entries in the target directory using this specified pattern. The user-specified
pattern is typically stored by the FSD in the CCB for the target directory for
the particular open operation (of the target directory), when the first such
query directory request is received. The caller can temporarily override this
search pattern in subsequent query directory requests by specifying a
different pattern than the one stored by the FSD; however, the behavior of
the FSD in response to such query directory requests containing a new search
pattern is highly FSD-specific and not well-defined by the I/O subsystem.
Some FSDs may honor the new search pattern while others may choose to
ignore it.

Parameters.QueryDirectory.FilelnformationClass
The type of information requested by the caller.

694___________________________Appendix A: Windows NT System Services

Parameters.QueryDirectory.Filelndex
Any starting index, to begin the scan from, specified by the caller.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
File object representing the open instance of the target directory.

Notes

The query directory request is an inherently synchronous request. Therefore, the
I/O Manager will block the requesting thread until the operation has been
completed by the FSD.

The FSD returns information on the following directory entries:

• Information about a single matching directory entry is returned if either
ReturnSingleEntry is TRUE or if the specified search pattern does not
contain any wildcards.

• The number of matching files for which information can be returned in the
caller-supplied buffer, constrained by the length of the buffer.

• The total number of directory entries (files or directories) in the target direc-
tory being queried.

Information on matching directory entries can be returned in any order. Most
returned entries are either quadword-aligned or longword-aligned. See Chapter
10, Writing A File System Driver II, for information on how directory control
requests are processed by the FSD. The maximum length of a file name is
constrained (on Windows NT platforms) to be less than or equal to FILE_
MAXIMUM_FILENAME_LENGTH.

If no matching entry was found for the very first query directory request received
by the FSD using the particular file object, an error code of STATUS_NO_SUCH_
FILE is returned to the caller; if no match is found for any subsequent query
directory request, the STATUS_NO_MORE_FILES error code is returned.

The FSD maintains context about the returned information in the CCB structure
associated with the specified file object. Therefore, requests to obtain directory
information from different threads sharing the same file handle (and sharing the
same file object and correspondingly the same CCB structure) will share (and
affect) the same context maintained by the FSD.

NT System Services___695

NtNotifyChangeDirectoryFileQ
NTSTATUS NtNotifyChangeDirectoryFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO__APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK loStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN ULONG CompletionFilter,
IN BOOLEAN WatchTree

Parameters

FileHandle
Returned to the caller from a previous successful NtCreateFile () or
NtOpenFileO invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous notify change directory request. The event
will be signaled by the I/O Manager when the notify change directory IRP is
completed by the FSD.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the notify change directory operation completes.

ApcContext (optional)
Caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the notify
change directory operation. The Information field in the loStatus-
Block is set to the number of bytes returned by the FSD (in the buffer
pointed to by the Filelnformation argument).

If too many changes have occurred and information about such changes
cannot be returned by the FSD in the supplied buffer, the FSD will set the
Information field to 0 and the STATUS_NOTIFY_ENUM_DIR return code
will be returned in the Status field of the loStatusBlock argument.

Buffer
A caller-allocated buffer to receive information about the names of files
contained in the target directory that have been affected. The format of

696___________________________Appendix A: Windows NT System Services

returned information is defined by the FILE_NOTIFY_INFORMATION struc-
ture, which is defined as follows:
typedef struct _FILE_NOTIFY_INFORMATION {

ULONG NextEntryOffset;
ULONG Action;*
ULONG FileNameLength;
WCHAR FileNametl];

} FILE_NOTIFY_INFORMATION, *PFILE_NOTIFY_INFORMATION;

Length
The size, in bytes, of the buffer supplied by the caller.

CompletionFilter
Specifies a combination of flags that indicate the changes the caller is inter-
ested in monitoring on the target directory.

These flags can be one or more of the following (see Chapter 10 for details
on how the FSD processes the notify change directory request):

FILE_NOTIFY_CHANGE_FILE_NAME
Some file has been added, deleted, or renamed.

FILE_NOTIFY_CHANGE_DIR_NAME
Some subdirectory has been added, deleted, or renamed.

FILE_NOTIFY_CHANGE_NAME
A combination of FILE_NOTIFY_CHANGE_FILE_NAME and FILE_
NOTIFY_CHANGE_DIR_NAME.

FILE_NOTIFY_CHANGE_ATTRIBUTES
Attributes of any directory entry (representing either a file or a directory)
have been changed.

FILE_NOTIFY_CHANGE_SIZE
Allocation size or end-of-file position have been changed for any direc-
tory entry.

FILE_NOTIFY_CHANGE_LAST_WRITE
The last write time stamp value for a directory entry has been changed.

FILE_NOTTFY_CHANGE_LAST_ACCESS
The last access time stamp value for a directory entry has been changed.

FILE_NOTIFY_CHANGE_CREATION
The creation time stamp value for a directory entry has been changed.

* The possible values (hit-flags) that can be returned in this field are given in Chapter 10.

NT System Services___657

FILE_NOTIFY_CHANGE_EA
Extended attributes associated with a directory entry (file or directory)
have been changed.

FILE_NOTIFY_CHANGE_SECURITY
Security attributes associated with a directory entry have been changed.

FILE_NOTIFY_CHANGE_STREAM_NAME
Applies to FSDs that support multiple byte streams associated with files. A
new file stream may have been added, deleted, or renamed, in which
case the caller should be notified.

FILE_NOTIFY_CHANGE_STREAM_SIZE
The size of a file stream may have changed.

FILE_NOTIFY_CHANGE_STREAM_WRITE
The contents of an alternate stream have been changed (i.e., the stream
data was modified).

WatchTree
If TRUE, the caller wants to recursively monitor changes to all subdirectories
contained within the target directory.

Return code

STATUS_PENDING indicates that the IRP has been successfully queued by the
FSD and will be completed once one or more of the specified changes (being
monitored by the caller) have occurred; STATUS_SUCCESS indicates that at least
one monitored change had already occurred before the latest notify change direc-
tory IRP was even received by the FSD, and the caller is being notified of the fact.

Once STATUS_PENDING is returned by the FSD, the caller must examine the
contents of the Status field in the loStatusBlock argument to determine the
results of the notify change directory request, once the request has been
completed.

In the case of an error (or a buffer overflow condition), an appropriate error code
is returned. This includes (but is not limited to) the following return code values:

STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
« STATUS_INVALID_PARAMETER

STATUS_INVALID_DEVICE_REQUEST
• STATUS_NOTIFY_ENUM_DIR

698___________________________Appendix A: Windows NT System Services

IRP

UserBuffer
A pointer to the user-supplied buffer. This field is effectively overridden by
the presence of any MDL pointer in the MdlAddress field. If your FSD
supports buffered I/O, then the I/O Manager will have allocated a system
buffer for your FSD, and this buffer can be accessed via the Associate-
dlrp. SystemBuf fer field in the IRP.

I/O stack location

MajorFunction
IRP_MJ_DIRECTORY_CONTROL

MinorFunction
IRP_MN_NOTIFY_CHANGE_DIRECTORY

Flags
Can be set with SL_WATCH_TREE.

Parameters.NotifyDirectory.Length
The Length, specified by the caller, for the buffer in which information is
received.

Parameters.NotifyDirectory.CompletionFilter
The type of changes being monitored by the caller.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the target directory being
monitored.

Notes

The notify change directory request interprets a return code of STATUS_
PENDING to indicate that the IRP has been successfully queued.

NtQuerylnformationFileQ
NTSTATUS NtQueryInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,
OUT PVOID Filelnformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FilelnformationClass

NT System Services___699

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFile () invocation.

loStatusBlock
The caller must supply this argument to receive the results of the query file
information request. The Information field in the loStatusBlock is set
to the number of bytes returned by the FSD (in the buffer pointed to by the
Filelnf ormation argument).

Filelnformation
A caller-allocated buffer to receive information about the specified file. The
format of returned information is defined by the FilelnformationClass
argument.

Length
The size, in bytes, of the buffer supplied by the caller.

FilelnformationClass
Used by the caller to specify the type of information requested for the target
file. See Chapter 10 for a detailed discussion on the types of information
provided by file system drivers and for corresponding structure definitions.

Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS_PENDING
indicates that the operation will be performed asynchronously by the FSD.

In the case of an error (or a buffer overflow condition), an appropriate error code
is returned. This includes (but is not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOTJRCES

STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
• STATUS_BUFFER_OVERFLOW

IRP

Associatedlrp.SystemBuffer
A pointer to an I/O Manager-allocated buffer. The I/O Manager always allo-
cates a system buffer to contain information returned by the FSD. Contents of
this buffer are copied to the user-supplied buffer by the I/O Manager (before
the system buffer is deallocated by the I/O Manager).

700___________________________Appendix A: Windows NT System Services

Flags
The IRP_BUFFERED_IO, IRP_DEALLOCATE_BUFFER, IRP_INPUT_OPER-
ATION, and IRP_DEFER_IO_COMPLETION flags are set. However, these are
only used internally by the I/O Manager.*

I/O stack location

MajorFunction
IRP_MJ_QUERY_INFORMATION

MinorFunction
None.

Flags
None.

Parameters.QueryFile.Length
The Length, specified by the caller, for the buffer in which information is
received.

Parameters.QueryFile.FilelnformationClass
The type of information requested by the user.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the file for which informa-
tion has been requested.

Notes

The I/O Manager is responsible for filling in information for some of the Fileln-
f ormationClass values. See Chapter 10 for further details.

NtSetlnformationFileQ
NTSTATUS NtSetInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,
OUT PVOID Filelnformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FilelnformationClass

See Chapter 4, ~lhe NT I/O Manager, for a discussion on the IRP_DEFER_IO_COMPLETION flag.

NT System Services 701

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFile() invocation.

loStatusBlock
The caller must supply this argument to receive the results of the set file infor-
mation request. The Information field in the loStatusBlock is
initialized to the number of bytes actually set by the FSD (from the buffer
pointed to by the Filelnformation argument).

Filelnformation
A caller-allocated buffer, containing information about the modified attributes
of the target file. The format of the supplied information is defined by the
FilelnformationClass argument.

Length
The size, in bytes, of the buffer supplied by the caller.

FilelnformationClass
Used by the caller to specify the type of attributes being modified for the
target file. See Chapter 10 for a detailed discussion on the types of attributes
that can be modified by the caller and for corresponding structure definitions.

Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS_PENDING
indicates that the operation will be performed asynchronously by the FSD.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
• STATUS_CANNOT_DELETE
« STATUS_DIRECTORY_NOT_EMPTY

IRP

Associatedlrp.SystemBuffer
Pointer to an I/O Manager-allocated buffer. The I/O Manager always allocates
a system buffer to contain a copy of the user-supplied modified attributes for

702___________________________Appendix A: Windows NT System Services

the file stream. This system buffer is deallocated by the I/O Manager after the
IRP has been completed.

Flags
The IRP_BUFFERED_IO, IRP_DEALLOCATE_BUFFER, and IRP_DEFER_IO_
COMPLETION flags are set. However, these are only used internally by the I/O
Manager.*

I/O stack location

Ma j orFunction
IRP_MJ_SET_INFORMATION

MinorFunction
None.

Flags
None.

Parameters.SetFile.Length
The Length, specified by the caller, for the buffer in which information
about modified attributes is supplied.

Parameters.SetFile.FilelnformationClass
The type of attributes for which modified information has been provided by
the user.

Parameters.SetFile.FileObj ect
The file object representing an open instance of the target directory for a
rename/link operation.

Parameters.SetFile.ReplacelfExists
Used during rename operations to reflect the value of the Replacelf Ex-
ists field in the FILE_RENAME_INFORMATION structure.

Parameters.SetFile.AdvanceOnly
This flag is set to TRUE for a special request initiated by the Windows NT
Cache Manager to indicate that the ValidDataLength for the file stream
has been changed.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the file whose attributes are
being modified.

* Sec Chapter 4 for a discussion on the IRP_DEFER_IO_COMPLETION flag.

NT System Services 703

Notes

Some FilelnformationClass types are handled directly by the I/O Manager
(e.g., FilePositionlnformation). See Chapter 10 for further details on how
other Filelnf ormationClass types are supported by file system drivers.

NtQueryEaFileQ
NTSTATUS NtQueryEaFile(

IN HANDLE
OUT PIO_STATUS_BLOCK
OUT PVOID
IN ULONG
IN BOOLEAN
IN PVOID
IN ULONG
IN PULONG
IN BOOLEAN

FileHandle,
loStatusBlock,
Buffer,
Length,
ReturnSingleEntry,
EaList OPTIONAL,
EaLi s tLength,
Ealndex OPTIONAL,
RestartScan

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFile() invocation.

loStatusBlock
The caller must supply this argument to receive the results of the query
extended attributes operation. The Information field in the loStatus-
Block is set to the number of bytes returned by the FSD (in the buffer
pointed to by the Buffer argument).

Buffer
A caller-allocated buffer to receive information about extended attributes asso-
ciated with the target file. Information for each matching extended attribute
(returned by the FSD) is longword-aligned and is contained within a FILE_
FULL_EA_INFORMATION structure.

Only complete FILE_FULL_EA_INFORMATION structures are returned by
the FSD. The NextEntryOf f set value in the structure (if nonzero) indi-
cates the relative offset of the next entry in the buffer. Note that the FSD
maintains context to determine the next extended attribute for which informa-
tion must be returned.

Also note that the value of each named extended attribute begins after the
end of the EaName (null-terminated) field in the FILE_FULL_EA_INFORMA-
TION structure. The EaNameLength field in the structure does not include
the null-terminator for the extended attribute; therefore, the value for each of

704___________________________Appendix A: Windows NT System Services

the named extended attributes can be located by adding (EaNameLength +
1) to the address of EaName.

Length
The size, in bytes, of the buffer supplied by the caller.

ReturnSingleEntry
If TRUE, the caller only wants information on a single, matching extended
attribute returned.

EaList
This optional buffer can contain a list of named extended attributes for which
information must be returned by the FSD. The structure of each entry in this
buffer is of type FILE_GET_EA_INFORMATION and is follows:
typedef struct _FILE_GET_EA_INFORMATION {

ULONG NextEntryOffset;
UCHAR EaNameLength;
CHAR EaName[1];

} FILE_GET_EA_INFORMATION, *PFILE_GET_EA_INFORMATION;
The I/O Manager checks to ensure that the contents of the EA list are consis-
tent; each of the entries contained in the list must be longword-aligned and
each entry must either point to a complete, valid next entry in the list or the
NextEntryOffset value must be set to 0. If errors are encountered, the
I/O Manager may return a warning code of STATUS_EA_LIST_
INCONSISTENT.

EaListLength
The length of the EaList buffer if such a buffer is present; this argument
should be set to 0 if EaList is set to NULL.

Ealndex
An optional, zero-based index value specified by the caller. The FSD will
return information about extended attributes, beginning with the EA identified
by this index. If, however, EaList is nonnull, this argument will be ignored.

RestartScan
Normally, the FSD begins the scan for extended attributes from the last
extended attribute returned (based upon the immediately preceding query
extended attributes request); however, this flag allows the caller to indicate
whether the scan should begin with the first EA associated with the file
stream. This flag is ignored if either EaList or Ealndex are nonnull.

Return code

STATUS_SUCCESS indicates that the operation succeeded and information on at
least one extended attribute is being returned by the FSD; STATUS_PENDING
indicates that the operation will be performed asynchronously by the FSD.

NT System Services___705

In the case of an error, an appropriate error code or a warning is returned. This
includes (but is not limited to) the following return code values:

• STATUS_ACCESS_DENIED
« STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
• STATUS_NO_MORE_EAS
• STATUS_INVALID_EA_NAME

STATUS_INVALID_EA_FLAG

IRP

Associatedlrp.SystemBuffer
Any system buffer allocated by the I/O Manager to receive information about
EAs from the FSD, if the FSD has specified DO_BUFFERED_IO in the device
object flags.

MdlAddress
Any MDL created by the I/O Manager if the FSD has specified DO_DIRECT_
10 in the device object flags.

UserBuffer
Pointer to the user-supplied buffer if neither DO_DIRECT_IO nor D0_
BUFFERED__IO have been specified by the FSD. This field is effectively over-
ridden by the presence of any MDL pointer in the MdlAddress field.

I/O stack location

Ma j orFunction
IRP_MJ_QUERY_EA

MinorFunc t i on
None.

Flags
One or more of SL_RESTART_SCAN, SL_RETURN_SINGLE_ENTRY, and SL_
INDEX_SPECIFIED.

Parameters.QueryEa.Length
The Length specified by the caller for the buffer in which information is
received.

Parameters.QueryEa.EaList
A list of named EAs supplied by the caller. Note that the actual buffer passed-
in to the FSD is a system buffer that was allocated by the Windows NT I/O

706___________________________Appendix A: Windows NT System Services

Manager. The I/O Manager copies the user-supplied EA list from the caller's
buffer to the system buffer before sending the IRP to the FSD.

Parameters.QueryEa.EaListLength
The EaListLength specified by the caller to NtQueryEaFile () .

Parameters.QueryEa.Ealndex
The starting index, to begin the scan from, specified by the caller.

DeviceObj ect
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
File object representing the open instance of the target file stream.

Notes

The NtQueryEaFile () is an inherently synchronous I/O operation. The I/O
Manager will block the requesting thread if STATUS_PENDING is received by the
FSD.

The FSD returns information on the following number of extended attributes:

• A single extended attribute if either ReturnSingleEntry is TRUE, or if the
supplied EaList describes only a single named extended attribute.

• The number of matching extended attributes for which full information can
be returned in the caller-supplied buffer, constrained by the length of the
buffer.

• The total number of associated extended attributes associated with the target
file stream, or the total number of matching extended attributes as described
by the caller in the EaList buffer.

If an error was encountered by the FSD (e.g., an invalid character in an EaName),
the Information field in the loStatusBlock argument contains the byte
offset to the EA entry that caused the failure, otherwise, it contains the number of
bytes of extended attributes information returned by the FSD.

NtSetEaFileQ
NTSTATUS NtSetEaFilef

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,

NT System Services___707

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFilet) invocation.

loStatusBlock
The caller must supply this argument to receive the results of the set
extended attributes operation. The Information field in the loStatus-
Block is set to the number of bytes written by the FSD from the buffer
pointed to by the Buffer argument.

Buffer
A caller-allocated buffer containing the extended attributes to be associated
with the target file. Information about each matching extended attribute must
be longword-aligned and must be contained within a FILE_FULL_EA_
INFORMATION structure. The NextEntryOf f set value in the structure (if
nonzero) must indicate the relative offset of the next entry in the buffer.

As in the case of the NtQueryEaFile () function described earlier, the
value of each named extended attribute must begin immediately after the end
of the EaName (null-terminated) field in the FILE_FULL_EA_INFORMATION
structure. The EaNameLength field in the structure should not include the
null-terminator for the extended attribute; therefore, the value for each of the
named extended attributes can be located by the FSD by adding (EaName-
Length + 1) to the address of EaName.

Length
The size, in bytes, of the buffer supplied by the caller.

Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS_PENDING
indicates that the operation will be performed asynchronously by the FSD.

In the case of an error, an appropriate error code or a warning is returned. This
includes (but is not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
• STATUS_INVALID_EA_NAME

STATUS INVALID EA FLAG

708___________________________Appendix A: Windows NT System Services

IRP

Associatedlrp.SystemBuffer
Any system buffer, allocated by the I/O Manager, containing a copy of the
information about modified/new EAs provided by the caller if the FSD has
specified DO_BUFFERED_IO in the device object flags.

MdlAddress
Any MDL created by the I/O Manager if the FSD has specified DO_DIRECT_
10 in the device object flags.

UserBuffer
The pointer to the user-supplied buffer if neither DO_DIRECT_IO nor D0_
BUFFERED_IO have been specified by the FSD. This field is effectively over-
ridden by the presence of any MDL pointer in the MdlAddress field.

I/O stack location

Ma j orFunction
IRP_MJ_SET_EA

MinorFunction
None.

Parameters.SetEa.Length
The Length specified by the caller for the buffer in which information is
supplied.

DeviceObj ect
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the target file stream.

Notes

The NtSetEaFile () is an inherently synchronous I/O operation. The I/O
Manager will block the requesting thread if STATUS_PENDING is received by the
FSD.

The FSD uses the following rules in applying caller-specified EAs to the target file
stream:

• If a supplied EA has a unique EaName among the existing EAs associated
with the file stream, the FSD adds the new user-supplied EA to the list of EAs
associated with the file.

NT System Services 709

• If the supplied EA has an EaName that matches an existing EA associated
with the file stream and if the supplied EaValueLength is nonzero, the FSD
will replace the existing EA with the user-supplied extended attribute.

• If the supplied EA has an EaName that matches an existing EA associated
with the file stream and if the supplied EaValueLength is zero length, the
FSD will delete the existing EA.

If an error was encountered by the FSD (e.g., an invalid character in an EaName),
the Information field in the loStatusBlock argument contains the byte
offset to the EA entry that caused the failure; otherwise, it contains the number of
bytes of extended attributes information applied by the FSD to the file stream.

NtLockFileQ
NTSTATUS NtLockFile(

IN HANDLE
IN HANDLE
IN PIO_APC_ROUTINE
IN PVOID
OUT PIO_STATUS_BLOCK
IN PLARGE_INTEGER
IN PLARGE_INTEGER
IN PULONG
IN BOOLEAN
IN BOOLEAN

FileHandle,
Event OPTIONAL,
ApcRoutine OPTIONAL,
ApcContext OPTIONAL,
loStatusBlock,
ByteOffset,
Length,
Key,
FailImmediately,
ExclusiveLock

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFileO invocation.

Event (optional)
Caller can wait for the supplied event object (created by the caller) for
completion of the lock request. The event will be signaled by the I/O
Manager when the lock-file operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the lock-file operation completes.

ApcContext (optional)
A caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

710___________________________Appendix A: Windows NT System Services

loStatusBlock
The caller must supply this argument to receive the results of the lock-file
operation. The Information field in the loStatusBlock is set to the
number of bytes locked by the FSD.

ByteOffset
The starting byte offset for the byte-range to be locked on behalf of the caller.

Length
The number of bytes to be locked.

Key
The Key is a caller-defined (opaque) value associated with the locked byte
range. This value can be used to selectively share data between threads
belonging to the same process (if a unique value is chosen by the requesting
thread).

FailImmediately
If set to TRUE and if the lock cannot be obtained immediately by the FSD for
the caller (e.g., some other thread was previously granted a conflicting lock
on an overlapping byte range), the lock request is completed with an appro-
priate error code. If, however, Faillmmediately is set to FALSE, the
request will block indefinitely until the lock can be obtained (all conflicting
locks held by other threads on overlapping byte ranges have been released).

ExclusiveLock
Specifies whether an exclusive (write) lock should be acquired or whether a
shared (read) lock is sufficient.

Return code

STATUS_SUCCESS indicates that the operation succeeded, and the lock was
granted; STATUS_PENDING is returned if the requesting thread wishes to wait for
the byte-range lock and the lock cannot be immediately obtained (the IRP is
queued by the FSD/FSRTL package).

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

« STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER

STATUS_INVALID_DEVICE_REQUEST
• STATUS LOCK NOT GRANTED

NT System Services___711

I/O stack location

Ma j orFunction
IRP_MJ_LOCK_CONTROL

MinorFunction
IRP_MN_LOCK

Flags
One or more of SL_FAIL_IMMEDIATELY and SL_EXCLUSIVE_LOCK.

Parameters.LockControl.Length
The byte-range Length specified by the caller.

Parameters.LockControl.Key
The Key specified by the caller.

Parameters.LockControl.ByteOffset
The starting ByteOf f set specified by the caller.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the file for which a byte-
range lock has been requested.

Notes

Byte-range locks obtained by a thread on Windows NT platforms are mandatory
locks. Therefore, the FSD is responsible for enforcing the semantics associated
with the lock when subsequent I/O requests are received for the target file
stream. To check whether an I/O operation should be allowed to proceed for a
locked byte range, the FSD uses the following attributes associated with the
locked range:

• The starting byte offset for the locked range
• The number of bytes that have been locked
• The process that owns the locked range

• The Key value associated with the locked range

Byte-range locks are owned by processes and are not associated with individual
threads within a process. Therefore, to control access to locked byte-ranges by
multiple threads within the same process, a unique Key value should be associ-
ated with the locked byte range.

Exclusive locks prohibit any read or write access by any other process other than
the owning process for the locked byte range. Shared locks allow other processes

7/2___________________________Appendix A: Windows NT System Services

to continue to read the data contained within the locked range but do not allow
other processes to modify such data. Byte-range exclusive locks requested by a
process cannot overlap with any other locked range within the file.

Note that callers can request byte-range locks that start or extend beyond the
current end-of-file. This allows the requester to control who can extend the file
stream.

NtUnlockFileQ
NTSTATUS NtUnlockFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,
IN PLARGE_INTEGER ByteOffset,
IN PLARGE_INTEGER Length,
IN PULONG Key

) ;

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFileO invocation.

loStatusBlock
The caller must supply this argument to receive the results of the unlock-file
operation. The Information field in the loStatusBlock is set to the
number of bytes unlocked by the FSD.

ByteOffset
The starting byte offset for the byte range to be unlocked on behalf of the
caller. This value must match exactly the starting ByteOffset supplied in a
previous NtLockFile () request.

Length
The number of bytes to be unlocked. This value must match exactly the
Length supplied in a previous NtLockFile () request.

Key
The Key is a caller-defined (opaque) value associated with the locked byte
range. This value must match exactly the Key value supplied in a previous
NtLockFile () request.

Return code

STATUS_SUCCESS indicates that the operation succeeded and the lock was
released; STATUS_PENDING is returned if the FSD processes the request
asynchronously.

NT System Services 713

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

« STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST
« STATUS_RANGE_NOT_LOCKED

I/O stack location

Maj orFunction
IRP_MJ_LOCK_CONTROL

MinorFunc t i on
One of the following:
IRP_MN_UNLOCK_SINGLE

The single, locked byte range described in the IRP should be unlocked.

IRP_MN_UNLOCK_ALL
All previously locked byte ranges owned by the requesting process
should be unlocked.

IRP_MN_UNLOCK_ALL_BY_KEY
All previously locked byte-ranges, owned by the requesting process that
match the supplied Key value, should be unlocked.

Flags
None.

Parameters.LockControl.Length
The byte-range Length specified by the caller. This should be exactly equal
to the Length value supplied in a previous request to NtLockFile () .

Parameters.LockControl.Key
The Key specified by the caller.

Parameters.LockControl.ByteOffset
The starting ByteOffset specified by the caller. This should be exactly
equal to the ByteOffset value supplied in a previous request to
NtLockFilef).

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

714___________________________Appendix A: Windows NT System Services

FileObject
The file object representing the open instance of the file for which an unlock
operation has been requested.

Notes

Only the process that owns a particular byte-range lock can successfully request
that the lock be released. Whenever a process closes all open handles for a partic-
ular file stream, all outstanding byte-range locks owned by the process for the file
stream will be released.

NtQuery VolumelnformationFileQ
NTSTATUS NtQueryVolumelnformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,
OUT PVOID Fslnformation,
IN ULONG Length,
IN FS_INFORMATION_CLASS FslnformationClass

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile() or
NtOpenFile () invocation for any file or directory contained in the target
logical volume, or from a successful open request on either the target volume
or the underlying device object.

loStatusBlock
The caller must supply this argument to receive the results of the query
volume information operation. The Information field in the loStatus-
Block is set to the number of information bytes returned by the FSD.

Fslnformation
A caller-allocated buffer in which volume information is returned. The struc-
ture of returned information depends upon the value of the
FsInformationClass argument.

Length
The size of the Fslnformation buffer.

FsInformationClass
The type of information requested by the user. This can be one of the
following:

FileFsVolumelnformation
The following structure defines the format of the information returned by
the FSD:

NT System Services___715

typedef struct _FILE_FS_VOLUME_INFORMATION {
LARGE_INTEGER VolumeCreationTime;
ULONG VolumeSerialNumber;
ULONG VolumeLabelLength;
BOOLEAN SupportsObjects;
WCHAR VolumeLabel[1];
} FILE_FS_VOLUME_INFORMATION, *PFILE_FS_VOLUME_INFORMATION;

FileFsSizelnformation
The following structure defines the format of the information returned by
the FSD:
typedef struct _FILE_FS_SIZE_INFORMATION {
LARGE_INTEGER TotalAllocationUnits ;
LARGE_INTEGER AvailableAllocationUnits;
ULONG SectorsPerAllocationUnit;
ULONG BytesPerSector;
} FILE_FS_SIZE_INFORMATION, *PFILE_FS_SIZE_INFORMATION;

FileFsDevicelnformation
The following structure defines the format of the information returned by
the FSD:
typedef struct _FILE_FS_DEVICE_INFORMATION {
DEVICE_TYPE DeviceType;
ULONG Characteristics;
} FILE_FS_DEVICE_INFORMATION, *PFILE_FS_DEVICE_INFORMATION;

FileFsAttributelnformation
The following structure defines the format of the information returned by
the FSD:
typedef struct _FILE_FS_ATTRIBUTE_INFORMATION {
ULONG FileSystemAttributes;
LONG MaximumComponentNameLength;
ULONG FileSystemNameLength;
WCHAR FileSystemNamefl];
} FILE_FS_ATTRIBUTE_INFORMATION, *PFILE_FS_ATTRIBUTE_INFORMATION;

Return code

STATUS_SUCCESS indicates that the operation succeeded and the volume infor-
mation has been returned by the FSD; STATUS_PENDING is returned if the FSD
decides to process the request asynchronously.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER

STATUS_INVALID_DEVICE_REQTJEST

• STATUS BUFFER OVERFLOW

716___________________________Appendix A: Windows NT System Services

IRP

Associatedlrp.SystemBuffer
The I/O Manager allocates a system buffer in which the FSD can return the
requested volume information. The I/O Manager copies the returned informa-
tion into the caller's buffer once the IRP is completed by the FSD.

I/O stack location

MajorFunction
IRP_MJ_QUERY_VOLUME_INFORMATION

MinorFunction
None.

Flags
None.

Parameters.QueryVolume.Length
The Length of the buffer provided by the caller.

Parameters.QueryVolume.FslnformationClass
The FsInformationClass value specified by the caller. This determines
the type of information returned by the FSD.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of a file, directory, volume, or
device using which a query volume information operation has been requested.

Notes

Regardless of the type of access requested in the open request for a file, directory,
device, or volume, the user can always request volume information using the file
handle received from the successful open operation.

NtSetVolumelnformationFileQ
NTSTATUS NtSetVolumelnformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,
IN PVOID Fslnformation,
IN ULONG Length,
IN FS INFORMATION_CLASSFsInformationClass

NT System Services_______ __________________________________7/7

Parameters

FileHandle
Returned to the caller from a previous successful NtCreateFile () or
NtOpenFile () invocation on the target volume.

loStatusBlock
The caller must supply this argument to receive the results of the set volume
information operation. The Information field in the loStatusBlock is
set to the number of information bytes written by the FSD.

Fslnformation
A caller-allocated buffer in which volume information is supplied. The struc-
ture of supplied information depends upon the value of the
FsInformationClass argument.

Length
The size of the Fslnformation buffer.

FsInformationClass
The type of information provided by the user. Currently, this can be the
following:

FileFsLabelInformation
The following structure defines the format of the information supplied by
the user:
typedef struct _FILE_FS_LABEL_INFORMATION {

ULONG VolumeLabelLength;
WCHAR VolumeLabel[l];

} FILE_FS_LABEL_INFOKMATION, *PFILE_FS_LABEL_INFORMATION;

Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS_PENDING is
returned if the FSD decides to process the request asynchronously.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES

STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST

718___________________________Appendix A: Windows NT System Services

IRP

Associatedlrp.SystemBuffer
The I/O Manager allocates a system buffer into which the caller-provided
volume information is copied before the IRP is dispatched to the FSD.

I/O stack location

Maj orFunction
IRP_MJ_SET_VOLUME_INFORMATION

MinorFunction
None.

Flags
None.

Parameters.SetVolume.Length
The Length of the buffer provided by the caller.

Parameters.SetVolume.FslnformationClass
The FsInformationClass value specified by the caller. This determines
the type of attribute to be modified for the logical volume.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
The file object representing the open instance of the logical volume on which
a set volume information operation has been requested.

Notes

For the FileFsLabellnf ormation Fslnf ormation class value, a value of 0
in the VolumeLabelLength field indicates that the current volume label (if any)
should be removed. The FSD expects that any new volume label supplied by the
caller should be a wide character string.

NtFsControlFileQ
NTSTATUS NtFsControlFilef

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK loStatusBlock,
IN ULONG FsControlCode,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,

NT System Services___7/5?

OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength

) ;

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFileO invocation.

Event (optional)
The caller can wait for the supplied event object (created by the caller) for
completion of the asynchronous FSCTL request. The event will be signaled by
the I/O Manager when the FSCTL operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the FSCTL operation completes.

ApcContext (optional)
The caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the FSCTL oper-
ation. The Information field in the loStatusBlock is set to the number
of bytes returned by the FSD in the OutputBuffer (if any).

FsControlCode
The FSCTL code value specifying the type of file system control function
requested.

InputBuffer
A caller-allocated buffer in which information to be sent to the FSD is
supplied.

InputBufferLength
The size of the input buffer.

OutputBuffer
A caller-allocated buffer in which the FSD returns information to the caller.

OutputBufferLength
The size of the output buffer.

Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS_PENDING is
returned if the FSD processes the request asynchronously.

720___________________________Appendix A: Windows NT System Services

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES

STATUS_INVALID_PARAMETER
• STATUS_INVALID_DEVICE_REQUEST

IRP

Associatedlrp.SystemBuffer
If the FSCTL code value specifies METHOD_BUFFERED or METHOD_IN_
DIRECT/METHOD_OUT_DIRECT, the I/O Manager initializes this field with a
pointer to a system buffer allocated by the I/O Manager. For METHOD_BUFF-
ERED, the size of the allocated system buffer is equal to the size of the larger
of the two buffers supplied by the caller (the InputBuffer and the
OutputBuffer).* For METHOD_IN_DIRECT/METHOD_OUT_DIRECT, the
I/O Manager allocates a system buffer to correspond to any InputBuffer
supplied by the caller.

MdlAddress
If the FSCTL code value specifies METHOD_IN_DIRECT/METHOD_OUT_
DIRECT and the OutputBuffer argument supplied by the requesting
thread is nonnull, the I/O Manager allocates an MDL describing the caller's
OutputBuffer and initializes the MdlAddress field with the MDL pointer
value. Note that the physical pages backing this MDL are locked into memory
by the I/O Manager.

UserBuffer
If the FSCTL code value specifies METHOD_NEITHER, the I/O Manager initial-
izes this field with the OutputBuffer pointer provided by the caller.

Flags
Set to IRP_MOUNT_COMPLETION and IRP_SYNCHRONOUS_PAGING_IO for
mount volume and verify volume FSCTL requests.

I/O stack location

Maj orFunction
IRP_MJ_FILE_SYSTEM_CONTROL

* The I/O Manager copies the contents of the InputBuffer into the system buffer before dispatching
the IRP to the FSI). When the IRP is completed and if the caller had provided an OutputBuffer, the
I/O Manager copies any information returned by the FSD back into the caller's OutputBuffer.

NT System Services___727

MinorFunc ti on
One of the following:

IRP_MN_MOUNT_VOLUME
A mount request is being issued to the FSD.

IRP_MN_LOAD_FILE_SYSTEM
The FSD is being loaded by a mini file system recognizer.

IRP_MN_VERIFY_VOLUME
A verify volume request is issued to the FSD.

IRP_MN_USERLFS_REQUEST
Set when a user FSCTL request is received by the I/O Manager, via an
invocation to NtFsControlFile (), for either a private FSCTL request
or for one of the set of public FSCTL requests supported by most FSDs
and/or network redirectors.

Flags
Set to SL_ALLOW_RAW_MOUNT if a target volume is opened for direct access
when MinorFunction is initialized to IRP_MN_VERIFY_VOLUME.

Mount requests

Parameters.MountVolume.Vpb
The VPB associated with the physical, virtual, or logical "real" device object

representing the media on which the logical volume should be mounted.

Parameters.MountVolume.DeviceObject
Pointer to the device object representing the partition on the device object on
which the logical volume should be mounted. Note that the pointer may refer
to some intermediate (filter driver) device object structure that has been
attached to the target device object.

DeviceObject
Points to the FSD-created device object representing the file system driver (or
to the highest-layered filter device object attached to the FSD device object).

FileObject
Initialized to NULL.

Load FSD request

DeviceObject
Points to the file system recognizer driver-created device object representing
the file system recognizer driver.

FileObject
Initialized to NULL.

722___________________________Appendix A: Windows NT System Services

Verify volume requests

Parameters.VerifyVolume.Vpb
The VPB associated with the physical, virtual, or logical "real" device object
representing the media on which the mounted logical volume should be
verified.

Parameters.VerifyVolume.DeviceObject
Pointer to the device object representing the media containing the mounted
logical volume to be verified.

DeviceObject
Points to the FSD-created device object representing the mounted volume to
be verified.

FileObject
Initialized to NULL.

User FSCTL requests

Parameters.FileSystemControl.OutputBufferLength
The OutputBuf f erLength specified by the caller.

Parameters.FileSystemControl.InputBufferLength
The InputBuf f erLength specified by the caller.

Parameters.FileSystemControl.FsControlCode
The FsControlCode specified by the caller.

Parameters.FileSystemControl.Type3InputBuffer
Used when the FSCTL code value specifies METHOD_NEITHER for handling
user buffers, this field contains a pointer to the user-supplied InputBuf fer.

DeviceObj ect
Points to the FSD-created device object representing the mounted volume.

FileObject
Initialized to the file object instance representing an open file/directory or
volume.

Notes

When dispatching any I/O read request to a lower-level driver while processing a
verify volume request itself, the FSD must set the SL_OVERRIDE_VERIFY_
VOLUME flag in the next I/O stack location before forwarding the IRP. See
Chapter 11 for a detailed discussion on how FSDs process FSCTL requests.

T NT System Services___723

NtDeviceloControlFileO
NTSTATUS NtDeviceIoControlFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK loStatusBlock,
IN ULONG loControlCode,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFile () invocation. The target file or device must have been opened
for Direct Access Storage Device (DASD) access.

Event (optional)
The caller can wait for the supplied event object (created by the caller), for
completion of the asynchronous IOCTL request. The event will be signaled by
the I/O Manager when the IOCTL operation is completed.

ApcRoutine (optional)
An optional, caller-supplied APC routine invoked by the I/O Manager when
the IOCTL operation completes.

ApcContext (optional)
A caller-determined context to be passed-in to the ApcRoutine. This argu-
ment should be NULL if ApcRoutine is NULL.

loStatusBlock
The caller must supply this argument to receive the results of the IOCTL oper-
ation. The Information field in the loStatusBlock is set to the number
of bytes returned by the FSD in the OutputBuffer (if any).

FsControlCode
The IOCTL code value specifying the type of device I/O control function
requested.

InputBuffer
A caller-allocated buffer in which information to be sent to the FSD is
supplied.

InputBufferLength
The size of the input buffer.

724____ _____________________Appendix A: Windows NT System Services

OutputBuffer
A caller-allocated buffer in which the FSD returns information to the caller.

OutputBufferLength
The size of the output buffer.

Return code

STATUS_SUCCESS indicates that the operation succeeded; STATUS_PENDING is
returned if the FSD processes the request asynchronously.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

STATUS_ACCESS_DENIED
• STATUS_INSUFFICIENT_RESOURCES
• STATUS_INVALID_PARAMETER

STATUS_INVALID_DEVICE_REQUEST

IRP

Associatedlrp.SystemBuffer
If the IOCTL code value specifies METHOD_BUFFERED or METHOD_IN_
DIRECT/METHOD_OUT_DIRECT, the I/O Manager initializes this field with a
pointer to a system buffer allocated by the I/O Manager. For METHOD_BUFF-
ERED, the size of the allocated system buffer is equal to the size of the larger
of the two buffers supplied by the caller (the InputBuffer and the
OutputBuffer).* For METHOD_IN_DIRECT/METHOD_OUT_DIRECT, the
I/O Manager allocates a system buffer to correspond to any InputBuffer
supplied by the caller.

MdlAddress
If the IOCTL code value specifies METHOD_IN_DIRECT/METHOD_OUT_
DIRECT and the OutputBuffer argument supplied by the requesting
thread is nonnull, the I/O Manager allocates an MDL describing the caller's
OutputBuffer and initializes the MdlAddress field with the MDL pointer
value. Note that the physical pages backing this MDL are locked into memory
by the I/O Manager.

UserBuffer
If the IOCTL code value specifies METHOD_NEITHER, the I/O Manager initial-
izes this field with the OutputBuffer pointer provided by the caller.

* The I/O Manager copies the contents of the InputBuffer into the system buffer before dispatching
the IRP to the FSD. When the IRP is completed and if the caller had provided an OutputBuffer, the
I/O Manager copies any information returned by the FSD back into the caller's OutputBuffer.

NT System Services___725

I/O stack location

Maj orFunction
IRP_MJ_DEVICE_CONTROL or IRP_MJ_INTERNAL_DEVICE_CONTROL

MinorFunc t i on
None.

Flags
Can be set to SL_OVERRIDE_VERIFY_VOLUME by the FSD when requesting
I/O operations from the lower-level driver while processing verify-volume
requests.

Parameters.DeviceloControl.OutputBufferLength
The OutputBuf f erLength specified by the caller.

Parameters.DeviceloControl.InputBufferLength
The InputBuf f erLength specified by the caller.

Parameters.DeviceloControl.FsControlCode
The FsControlCode specified by the caller.

Parameters.DeviceloControl.Type3InputBuffer
Used when the IOCTL code value specifies METHOD_NEITHER for handling
user buffers, this field contains a pointer to the user-supplied InputBuf fer.

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume or target device.

FileObject
Initialized to the file object instance representing an open file or device.

Notes

Most device IOCTL requests are forwarded by the FSD to lower-level device
drivers managing the physical/virtual/logical device on which the volume has
been mounted. See Chapter 11 for a detailed discussion on how FSDs process
IOCTL requests.

Note that the IRP_MJ_SCSI IOCTL code has been defined to be the same as
IRP_MJ_INTERNAL_DEVICE_CONTROL control code value.

NtDeleteFileQ
NTSTATUS NtDeleteFile(

IN POBJECT_ATTRIBUTES ObjectAttributes
);
This system call is functionally equivalent to invoking NtSetlnformationFileO
with FilelnformationClass set to FileDispositionlnformation.

726 ___________________________ Appendix A: Windows NT System Services

NtFlushBuffersFileQ
NTSTATUS NtFlushBuffersFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFile() invocation.

If the supplied handle represents an open instance of either the mounted
logical volume or the root directory on the mounted logical volume, all
cached data for open files belonging to the mounted logical volume will be
flushed by the FSD. If, however, the handle refers to an instance of any other
open directory on the volume, no data will be flushed to disk.

If the handle represents an open instance of a specific file, the FSD will write
the cached data for the file to secondary storage by the FSD.

loStatusBlock
The caller must supply this argument to receive the results of the flush buffers
operation. The Information field in the loStatusBlock is set to the
number of bytes flushed to secondary storage by the FSD.

Return code

STATUS_SUCCESS indicates that the operation succeeded.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
STATUS_INSUFFICIENT_RESOURCES

• STATUS_INVALID_PARAMETER
« STATUS_INVALID_DEVICE_REQUEST

I/O stack location

Ma j orFunction
IRP_MJ_FLUSH_BUFFERS

MinorFunction
None.

NT System Services___727

DeviceObject
Points to the FSD-created device object representing the mounted logical
volume.

FileObject
Initialized to the file object instance representing an open file, directory, or
volume.

Notes

Chapter 11 discusses how the flush file buffers IRP is handled by the FSD.

NtCancelloFileQ
NTSTATUS NtCancelIoFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK loStatusBlock,

) ;

Parameters

FileHandle
Returned to the caller from a previous, successful NtCreateFile () or
NtOpenFile () invocation.

loStatusBlock
The caller must supply this argument to receive the results of the flush buffers
operation.

Return code

STATUS_SUCCESS indicates that the operation succeeded.

In the case of an error, an appropriate error code is returned. This includes (but is
not limited to) the following return code values:

• STATUS_ACCESS_DENIED
• STATUS_INVALID_PARAMETER

STATUS_INVALID_DEVICE_REQUEST

Notes

This system call will not return control back to the caller until all pending I/O
requests initiated by the requesting thread using the particular file handle, have
been either canceled or completed.

Requests initiated by other threads belonging to the same process or by the same
thread but using different file handles will not be affected.

728 ______________________Appendix A: Windows NT System Services

This appendix has listed some of the Windows NT I/O-Manager-provided system
services that you can use either from a user-space application or from within a
kernel-mode driver. There is a cost, however, associated with using such routines
directly. This cost (especially for user-space applications) is the potential loss of
portability that your software will suffer if and when these system services are
changed and/or made obsolete by Microsoft. The benefit is that certain function-
ality becomes easier to request by using such Windows NT system services
directly.

