
Windows Internals

David Solomon (daves@solsem.com)
David Solomon Expert Seminars
www.solsem.com

Mark Russinovich (mark@sysinternals.com)
Winternals
www.winternals.com, www.sysinternals.com

2

About the Speaker: David Solomon
1982-1992: VMS operating systems development at
Digital
1992-present: Researching, writing, and teaching
Windows operating system internals
Frequent speaker at technical conferences 
(Microsoft TechEd, IT Forum, PDCs, …)
Microsoft Most Valuable Professional (1993, 2005)
Books

Windows Internals, 4th edition
PDF version ships with Server 2003 Resource Kit

Inside Windows 2000, 3rd edition
Inside Windows NT, 2nd edition
Windows NT for OpenVMS Professionals

Live Classes
2-5 day classes on Windows Internals, 
Advanced Troubleshooting

Video Training
12 hour interactive internals tutorial
Licensed by MS for internal use

http://solsem.com/videos.html

3

About the Speaker: Mark Russinovich

Co-author of Inside Windows 2000, 3rd
Edition and Windows Internals, 4th edition
with David Solomon
Senior Contributing Editor to Windows IT
Pro Magazine

Co-authors Windows Power Tools column

Author of tools on www.sysinternals.com
Microsoft Most Valuable Professional
(MVP)
Co-founder and chief software architect  
of Winternals Software  
(www.winternals.com)
Ph.D. in Computer Engineering

http://www.sysinternals.com/
http://www.winternals.com/

4

Purpose of Tutorial
Give Windows developers a foundation
understanding of the system’s kernel architecture

Design better for performance & scalability
Debug problems more effectively
Understand system performance issues

We’re covering a small, but important set of core
topics:

The “plumbing in the boiler room”

5
hardware interfaces (buses, I/O devices, interrupts,  

interval timers, DMA, memory cache control, etc., etc.)

System Service Dispatcher

Task Manager
Explorer

SvcHost.Exe
WinMgt.Exe

SpoolSv.Exe

Service  
Control Mgr.
LSASS

Object
Mgr.

Windows
USER,

GDI
File 

 System  
 Cache

I/O Mgr

Environment  
Subsystems

User
Application

Subsystem DLLs

OS/2

System Processes Services Applications

System
Threads

User
Mode

Kernel
Mode

Windows

NTDLL.DLL

Device &
File Sys.
Drivers

WinLogon

Session
Manager

Services.Exe  

POSIX

Plug and
Play Mgr.

Power
Mgr.

Security  
Reference  

Monitor
Virtual 

Memory
Processes  

&
Threads

Local
Procedure

Call
Graphics
Drivers

Kernel
Hardware Abstraction Layer (HAL)

(kernel mode callable interfaces)

System Architecture

Configura-
tion Mgr
(registry)

6

Tools Used To Dig In
Many tools available to dig into Windows OS
internals without requiring source code

Helps to see internals behavior “in action”
Many of these tools are used in labs in the video
and the book

Several sources of tools
Support Tools (on Windows OS CD-ROM in
\support\tools)
Resource Kit Tools
Sysinternals tools (www.sysinternals.com)
Windows Debugging Tools

http://www.sysinternals.com/

7

Live Kernel Debugging

Useful for investigating internal system
state not available from other tools

Previously, required 2 computers  
(host and target)
Target would be halted while host debugger  
in use

XP & later supports live local kernel
debugging

Technically requires system to be booted /
DEBUG to work correctly
But, not all commands work

8

LiveKD
LiveKd makes more commands work on a
live system

Works on NT4, Windows 2000, Windows XP,  
Server 2003, and Vista
Was originally shipped on Inside Windows 2000
book CD-ROM – now is free on Sysinternals
Tricks standard Microsoft kernel debuggers  
into thinking they are looking at a crash dump
Does not guarantee consistent view of  
system memory

Thus can loop or fail with access violation
Just quit and restart

9

Outline

1. System Architecture
2. Processes and Thread Internals
3. Memory Management Internals
4. Security Internals

10

System Architecture

Process Execution Environment
Kernel Architecture
Interrupt Handling
Object Manager
System Threads
Process-based code
Summary

11

Processes And Threads

What is a process?
Represents an instance of a running
program

You create a process to run a program
Starting an application creates a process

Process defined by
Address space
Resources (e.g., open handles)
Security profile (token)

System call
Primary argument to CreateProcess
is image file name (or command
line)

Per-process
address space

System-wide  
address space

Thread

Thread

Thread

12

Processes And Threads

What is a thread?
An execution context within a process
Unit of scheduling (threads run, processes
don’t run)
All threads in a process share the same  
per-process address space

Services provided so that threads can
synchronize access to shared resources
(critical sections, mutexes, events,
semaphores)

All threads in the system are scheduled as
peers to all others, without regard to their
“parent” process

System call:
Primary argument to CreateThread is a
function entry point address

Linux:
No threads per-se
Tasks can act like Windows threads by
sharing handle table, PID and address space

Per-process
address space

System-wide  
address space

Thread

Thread

Thread

13

Processes And Threads
Every process starts with one thread

First thread executes the program’s “main” function
Can create other threads in the same process
Can create additional processes

Why divide an application into multiple threads?
Perceived user responsiveness, parallel/background execution

Examples: Word background print – can continue to edit during print
Take advantage of multiple processors

On an MP system with n CPUs, n threads can literally run at the  
same time
Question: Given a single threaded application, will adding a second
processor make it run faster?

Does add complexity
Synchronization
Scalability well is a different question…

Number of multiple runnable threads versus number CPUs
Having too many runnable threads causes excess context switching

14

2 GB
User

process
space

2 GB
System
Space

32-bit x86 Address Space

3 GB
User

process
space

1 GB
System Space

Default 3 GB user space

32-bits = 4 GB

15

8192 GB
(8 TB)
User

process
space

6657 GB
System
Space

64-bit Address Spaces

7152 GB
(7 TB)
User

process
space

6144 GB
System
Space

x64 Itanium

64-bits = 17,179,869,184 GB
x64 today supports 48 bits virtual = 262,144 GB
IA-64 today support 50 bits virtual = 1,048,576 GB

16

Memory Protection Model

No user process can touch another user process address
space (without first opening a handle to the process, which
means passing through NT security)

Separate process page tables prevent this
“Current” page table changed on context switch from a thread in 1
process to a thread in another process

No user process can touch kernel memory
Page protection in process page tables prevent this
OS pages only accessible from “kernel mode”

x86: Ring 0, Itanium: Privilege Level 0
Threads change from user to kernel mode and back (via a secure
interface) to execute kernel code

Does not affect scheduling (not a context switch)

17

Process Explorer (Sysinternals)
“Super Task Manager”

Shows full image path, command line, environment variables,
parent process, thread details, security access token, open
handles, loaded DLLs & mapped files

18

System Architecture

Process Execution Environment
Kernel Architecture
Interrupt Handling
Object Manager
System Threads
Process-based code
Summary

19

Windows Kernel Evolution
Basic kernel architecture has remained
stable while system has evolved

Windows 2000: major changes in I/O
subsystem (plug & play, power management,
WDM), but rest similar to NT4
Windows XP & Server 2003: modest upgrades
as compared to the changes from NT4 to
Windows 2000

Internal version numbers confirm this:
Windows 2000 was 5.0
Windows XP is 5.1
Windows Server 2003 is 5.2
Windows Vista is 6.0

20

call NtWriteFile
return to caller

do the operation
return to caller

Int 2E or SYSENTER or SYSCALL
return to caller

call NtWriteFile
dismiss interrupt

Windows application

WriteFile
in Kernel32.Dll

NtWriteFile
in NtDll.Dll

KiSystemService
in NtosKrnl.Exe

NtWriteFile
in NtosKrnl.Exe

Example  
Invoking a Win32 Kernel API

Win32-
specific

used by all
subsystems

software interrupt

U

K

call WriteFile(…)

21

NTOSKRNL.EXE
Core operating system image

Contains Executive and Kernel
Four retail variations:

NTOSKRNL.EXE Uniprocessor
NTKRNLMP.EXE Multiprocessor

32-bit Windows PAE versions (for DEP & >4GB
RAM):

NTKRNLPA.EXE Uniprocessor w/extended
addressing support

NTKRPAMP.EXE Multiprocessor w/extended
addressing support

Vista: no uniprocessor kernel

22
hardware interfaces (buses, I/O devices, interrupts,  

interval timers, DMA, memory cache control, etc., etc.)

System Service Dispatcher

Task Manager
Explorer

SvcHost.Exe
WinMgt.Exe

SpoolSv.Exe

Service  
Control Mgr.
LSASS

Object
Mgr.

Windows
USER,

GDI
File 

 System 
 Cache

I/O Mgr

Environment  
Subsystems

User
Application

Subsystem DLLs

OS/2

System Processes Services Applications

Original copyright by Microsoft Corporation. Used by permission.

System
Threads

User
Mode

Kernel
Mode

Windows

NTDLL.DLL

Device &
File Sys.
Drivers

WinLogon

Session
Manager

Services.Exe  

POSIX

Plug and
Play Mgr.

Power
Mgr.

Security 
Reference  

Monitor
Virtual  

Memory
Processes 

&
Threads

Local
Procedure

Call
Graphics
Drivers

Kernel
Hardware Abstraction Layer (HAL)

(kernel mode callable interfaces)

System Architecture

Configura-
tion Mgr
(registry)

23

Executive
Upper layer of the operating system
Provides “generic operating system” functions (“services”)

Process Manager
Object Manager
Cache Manager
LPC (local procedure call) Facility
Configuration Manager
Memory Manager
Security Reference Monitor
I/O Manager
Power Manager
Plug-and-Play Manager

Almost completely portable C code
Runs in kernel (“privileged”, ring 0) mode
Most interfaces to executive services not documented

24

Kernel
Lower layers of the operating system

Implements processor-dependent functions (x86 versus Itanium,
etc.)
Also implements many processor-independent functions that are
closely associated with processor-dependent functions

Main services
Thread waiting, scheduling, and context switching
Exception and interrupt dispatching
Operating system synchronization primitives  
(different for MP versus UP)
A few of these are exposed to user mode

Not a classic “microkernel”
shares address space with rest of kernel-mode components

25

HAL – Hardware Abstraction Layer
Responsible for a small part of “hardware
abstraction”

Components on the motherboard not handled by drivers
System timers, Cache coherency, and flushing
SMP support, Hardware interrupt priorities

Subroutine library for the kernel and device drivers
Isolates OS & drivers from platform-specific details
Presents uniform model of I/O hardware interface to
drivers

Reduced role in Windows 2000
Bus support moved to bus drivers
Majority of HALs are vendor-independent

26

System Architecture

Process Execution Environment
Kernel Architecture
Interrupt Handling
Object Manager
System Threads
Process-based code
Summary

27

Interrupt Dispatching

Interrupt dispatch routine

Disable interrupts

Record machine state (trap  
frame) to allow resume

Mask equal- and lower-IRQL
interrupts

Find and call appropriate ISR

Dismiss interrupt

Restore machine state
(including mode and enabled
interrupts)

Tell the device to stop
interrupting
Interrogate device state, start
next operation on device, etc.
Request a DPC
Return to caller

Interrupt service routine

interrupt !

user or kernel
mode
code

kernel mode

Note, no thread or
process context switch!

28

System Architecture

Process Execution Environment
Kernel Architecture
Interrupt Handling
Object Manager
System Threads
Process-based code
Summary

29

Handles And Security

Process handle table
Is unique for each process
But is in system address space, hence cannot be
modified from user mode
Hence, is trusted

Security checks are made when handle table
entry is created

i.e. at CreateXxx time
Handle table entry indicates the “validated” access
rights to the object

Read, Write, Delete, Terminate, etc.
No need to revalidate on each request

30

Examining Open Handles:
Sysinternals Tools

Process Explorer
View, Lower Pane View, Handles
Right-click column header, select column
"Handle Value"

31

Viewing Open Handles

Handle View
By default, shows named objects

Click on Options->Show Unnamed Objects

Uses:
Solve file locked errors

Can search to determine what process is holding a file or
directory open
Can even close an open files (be careful!)

Understand resources used by an application
Detect handle leaks using refresh difference
highlighting
View the state of synchronization objects (mutexes,
semaphores, events)

32

System Architecture

Process Execution Environment
Kernel Architecture
Interrupt Handling
Object Manager
System Threads
Process-based code
Summary

33

System Threads
Functions in OS and some drivers that need to run as real
threads

E.g., need to run concurrently with other system activity, wait on
timers, perform background “housekeeping” work
Always run in kernel mode
Not non-preemptible (unless they raise IRQL to 2 or above)
For details, see DDK documentation on PsCreateSystemThread

What process do they appear in?
“System” process (Windows NT 4.0: PID 2,  
Windows 2000: PID 8, Windows XP: PID 4)
In Windows 2000 and later, windowing system threads (from
Win32k.sys) appear in “csrss.exe”  
(Windows subsystem process)

34

Examples Of System Threads

Memory Manager
Modified Page Writer for mapped files
Modified Page Writer for paging files
Balance Set Manager
Swapper (kernel stack, working sets)
Zero page thread (thread 0, priority 0)

Security Reference Monitor
Command Server Thread

Network
Redirector and Server Worker Threads

Threads created by drivers for their exclusive use
Examples: Floppy driver, parallel port driver

Pool of Executive Worker Threads
Used by drivers, file systems, …
Accessed via ExQueueWorkItem

35

Identifying System Threads

If System threads are consuming CPU time, need
to find out what code is running, since it could be
any one of a variety of components

Pieces of OS (Ntoskrnl.exe)
File server worker threads (Srv.sys)
Other drivers

To really understand what’s going on, must find
which driver a thread “belongs to”

36

Identifiying System Threads

Process Explorer:
Double click on System
process
Go to Threads tab and  
sort by CPU

To view call stack, must use
kernel debugger

Note: several threads run
between clock ticks (or at
high IRQL) and thus don’t
appear to run

Watch context switch count

37

System Architecture

Process Execution Environment
Kernel Architecture
Interrupt Handling
Object Manager
System Threads
Process-based code
Summary

38

Process-Based Code

OS components that run in separate executables
(.exes), in their own processes

Started by system
Not tied to a user logon

Three types
Environment subsystems (already described)
System startup processes

Note: “system startup processes” is not an official Microsoft
defined name

Windows Services
Let’s examine the system process “tree”

Use Tlist /T or Process Explorer

39

Process-Based NT Code  
System Startup Processes

First two processes aren’t real processes
Not running a user mode .EXE
No user-mode address space
Different utilities report them with different names
Data structures for these processes (and their initial threads) are  
“pre-created” in NtosKrnl.Exe and loaded along with the code  

(Idle) Process id 0  
Part of the loaded system image  
Home for idle thread(s) (not a real process nor real threads) 
Called “System Process” in many displays

(System) Process id 2 (8 in Windows 2000; 4 in XP) 
Part of the loaded system image  
Home for kernel-defined threads (not a real process) 
Thread 0 (routine name Phase1Initialization) launches the first 
 “real” process, running smss.exe... 
...and then becomes the zero page thread

40

Process-Based NT Code  
System Startup Processes

smss.exe Session Manager 
The first “created” process  
Takes parameters from \HKEY_LOCAL_MACHINE\System
\CurrentControlSet 
\Control\Session Manager 
Launches required subsystems (csrss) and then winlogon

csrss.exe Windows subsystem
winlogon.exe Logon process: Launches services.exe & lsass.exe; presents first

login prompt 
When someone logs in, launches apps in \Software\Microsoft
\Windows NT\WinLogon\Userinit

services.exe Service Controller; also, home for many NT-supplied services 
Starts processes for services not part of services.exe (driven by
\Registry\Machine\System\CurrentControlSet\Services)

lsass.exe Local Security Authentication Server
userinit.exe Started after logon; starts Explorer.exe (see \Software\Microsoft

\Windows NT\CurrentVersion\WinLogon\Shell) and exits (hence
Explorer appears to be an orphan)

explorer.exe and its children are the creators of all interactive apps

41

Logon Process
Winlogon sends username/password to Lsass

Either on local system for local logon, or to Netlogon service on a domain
Windows XP enhancement: Winlogon doesn’t wait for Workstation  
service to start if

Account doesn't depend on a roaming profile
Domain policy that affects logon hasn't changed since last logon
Controller for a network logon

Creates a process to run  
HKLM\Software\Microsoft\Windows NT 

\CurrentVersion\WinLogon\Userinit
By default: Userinit.exe
Runs logon script, restores drive-letter mappings, starts shell

Userinit creates a process to run  
HKLM\Software\Microsoft\Windows NT 

\CurrentVersion\WinLogon\Shell
By default: Explorer.exe

There are other places in the Registry that control  
programs that start at logon

42

Processes Started at Logon
Displays order of processes configured to start at log on time
Also can use new XP built-in tool called  
“System Configuration Utility”

To run, click on Start->Help, then “Use Tools…”, then System Configuration
Utility
Only shows what’s defined to start vs Autoruns which shows all places things
CAN be defined to start

Autoruns (Sysinternals)
Msconfig  
(in \Windows\pchealth\helpctr\binaries)

43

Windows Services

An overloaded generic term
A process created and managed by the Service
Control Manager (Services.exe)

E.g. Solitaire can be configured as a service, but is killed
shortly after starting

Similar in concept to Unix daemon processes
Typically configured to start at boot time (if started while
logged on, survive logoff)
Typically do not interact with the desktop

Note: Prior to Windows 2000 this is one way to
start a process on a remote machine (now you
can do it with WMI)

44

Service
Controller/
Manager

(Services.Exe)

Life Of A Service
Install time

Setup application tells Service Controller
about the service  
 
 
 

System boot/initialization
SCM reads registry, starts 
services as directed

Management/maintenance
Control panel can start  
and stop services and  
change startup parameters

Setup
Application

CreateService

Service
Processes

Control
Panel

Registry

45

Viewing Service Processes

Process Explorer colors Services pink
by default

46

Svchost Mechanism

Windows 2000 introduced generic Svchost.exe
Groups services into fewer processes

Improves system startup time
Conserves system virtual memory

Not user-configurable as to which services go in which processes
3rd parties cannot add services to Svchost.exe processes

Windows XP/2003 have more Svchost processes due to
two new less privileged accounts for built-in services

LOCAL SERVICE, NETWORK SERVICE
Less rights than SYSTEM account

Reduces possibility of damage if system compromised

On XP/2003, four Svchost processes (at least):
SYSTEM, SYSTEM (2nd instance – for RPC), LOCAL SERVICE,
NETWORK SERVICE

47

Mapping Services To Service
Processes

Tlist /S (Debugging Tools)
or Tasklist /svc (XP/2003)
list internal name of
services inside service
processes
Process Explorer shows
more: external display
name and description

48

System Architecture

Process Execution Environment
Kernel Architecture
Interrupt Handling
Object Manager
System Threads
Process-based code
Summary

49

Four Contexts For Executing Code
Full process and thread context

User applications
Windows Services
Environment subsystem processes
System startup processes

Have thread context but no “real” process
Threads in “System” process

Routines called by other threads/processes
Subsystem DLLs
Executive system services (NtReadFile, etc.)
GDI32 and User32 APIs implemented in Win32K.Sys (and graphics drivers)

No process or thread context (“arbitrary thread context”)
Interrupt dispatching
Device drivers

50
hardware interfaces (buses, I/O devices, interrupts,  

interval timers, DMA, memory cache control, etc., etc.)

System Service Dispatcher

Task Manager
Explorer

SvcHost.Exe
WinMgt.Exe

SpoolSv.Exe

Service  
Control Mgr.
LSASS

Object
Mgr.

Windows
USER,

GDIFile 
 System 
 Cache

I/O Mgr

Environment  
Subsystems

User
Application

Subsystem DLLs

OS/2

System Processes Services Applications

Original copyright by Microsoft Corporation. Used by permission.

System
Threads

User
Mode

Kernel
Mode

Windows

NTDLL.DLL

Device &
File Sys.
Drivers

WinLogon

Session
Manager

Services.Exe  

POSIX

Plug and
Play Mgr.

Power
Mgr.

Security 
Reference  

Monitor
Virtual  

Memory
Processes 

&
Threads

Local
Procedure

Call
Graphics
Drivers

Kernel
Hardware Abstraction Layer (HAL)

(kernel mode callable interfaces)

System Architecture

Configura-
tion Mgr
(registry)

51

Outline

1. System Architecture
2. Processes and Thread Internals
3. Memory Management Internals
4. Security Internals

52

Core Memory Management Services
Working Set Management
Unassigned Memory
Page Files

Memory Management

53

Shared Memory
Like most modern OSs,  
Windows provides a way for
processes to share memory

High speed IPC (used by LPC,
which is used by RPC)
Threads share address space, but
applications may be divided into
multiple processes for stability
reasons

Processes can also create shared
memory sections

Called page file backed file mapping
objects
Full Windows security

It does this automatically for
shareable pages

E.g., code pages in an .EXE

54

Core Memory Management Services
Working Set Management
Unassigned Memory
Page Files

Memory Management

55

Prefetch Mechanism

File activity is traced and used to prefetch data
the next time

First 10 seconds are monitored
Pages referenced & directories opened

Prefetch “trace file” stored in \Window\Prefetch
Name of .EXE-<hash of full path>.pf

Also applies to system boot
First 2 minutes of boot process logged

Stops 30 seconds after the user starts the shell or 60 seconds
after all services  
are started

Boot trace file: NTOSBOOT-B00DFAAD.pf

56

Prefetch Mechanism

When application run again, system automatically
Reads in directories referenced
Reads in code and file data

Reads are asynchronous
But waits for all prefetch to complete

In addition, every 3 days, system automatically
defrags files involved in each application startup
Bottom line: Reduces disk head seeks

This was seen to be the major factor in slow
application/system startup

57

Core Memory Management Services
Working Set Management
Unassigned Memory
Page Files

Memory Management

58

Managing Physical Memory

System keeps unassigned physical pages on
one of several lists

Free page list
Modified page list
Standby page list
Zero page list
Bad page list – pages that failed memory test at
system startup

Lists are implemented by entries in the “PFN
database”

Maintained as FIFO lists or queues

59

Paging Dynamics

Standby
Page  
List

Zero
Page
List

Free
Page  
List

Working
Sets

page read from
disk or kernel
allocations

demand zero
page faults

working set
replacement

Modified
Page  
List

modified
page
writer

zero
page

thread

“soft”
page
faults

Bad
Page
List

Private pages at
process exit

“global
valid”
faults

60

Memory Management Information  
Task Manager 
Performance tab

“Available” = sum of free,
standby, and zero page
lists (physical)
Majority are likely standby
pages
“System Cache” = size of
standby list + size of
system working set (file
cache, paged pool,
pageable OS/driver code &
data)

Screen snapshot from:  
Task Manager | Performance tab

6

6

61

Outline

1. System Architecture
2. Processes and Thread Internals
3. Memory Management Internals
4. Security Internals

62

Security

Introduction
Components
Logon
Protecting Objects
Privileges

63

Windows Security Support
Microsoft’s goal was to achieve C2, which requires:

Secure Logon: NT provides this by requiring user name and
password
Discretionary Access Control: fine grained protection over
resources by user/group
Security Auditing: ability to save a trail of important security events,
such as access or attempted access of a resource
Object reuse protection: must initialize physical resources that are
reused e.g. memory, files

Certifications achieved:
Windows NT 3.5 (workstation and server) with SP3 earned C2 in
July 1995
In March 1999 Windows NT 4 with SP3 earned e3 rating from UK’s
Information Technology Security (ITSEC) – equivalent to C2
In November 1999 NT4 with SP6a earned C2 in stand-alone and
networked environments

64

Windows Security Support

Windows meets two B-level requirements:
Trusted Path Functionality: way to prevent trojan
horses with “secure attention sequence” (SAS) - Ctrl-
Alt-Del
Trusted Facility Management: ability to assign different
roles to different accounts

Windows does this through account privileges (TBD later)

65

Common Criteria
New standard, called Common Criteria (CC), is the new
standard for software and OS ratings

Consortium of US, UK, Germany, France, Canada, and the
Netherlands in 1996
Became ISO standard 15408 in 1999
For more information, see http://www.commoncriteriaportal.org/
and http://csrc.nist.gov/cc

CC is more flexible than TCSEC trust ratings
Protection Profile collects security requirements
Security Target (ST) are security requirements that can be made
by reference to a PP

Windows 2000 was certified as compliant with the CC
Controlled Access Protection Profile (CAPP) in October
2002

Windows XP and Server 2003 are undergoing evaluation

http://www.commoncriteriaportal.org/
http://csrc.nist.gov/cc
http://csrc.nist.gov/cc

66

Security

Introduction
Components
Logon
Protecting Objects
Privileges

67

Security Components

hardware interfaces (buses, I/O devices, interrupts,  
interval timers, DMA, memory cache control, etc., etc.)

System Service Dispatcher

Original copyright by Microsoft Corporation. Used by permission.

System
Threads

User
Mode

Kernel
Mode

NtosKrnl.Exe

Object
Mgr.

Windows
USER,

GDI
File  

 System  
 Cache

I/O Mgr

Device &
File Sys.
Drivers

Plug and
Play Mgr.

Power
Mgr.

Security  
Reference 

Monitor
Virtual 

Memory
Processes 

&
Threads

Local
Procedure

Call
Graphics
Drivers

Kernel
Hardware Abstraction Layer (HAL)

(kernel mode callable interfaces)

Configura-
tion Mgr
(registry)

WinLogon
MSGINA LSASS

NetLogon Active
Directory

LSA Server SAM Server

MSVC1_0.dl

Kerberos.dll

LSA  
Policy

Event
Logger

Active  
Directory

SAM

68

Security Reference Monitor

Performs object access checks,
manipulates privileges, and generates audit
messages
Group of functions in Ntoskrnl.exe

Some documented in DDK
Exposed to user mode by Windows API calls

Demo: Open Ntoskrnl.exe with
Dependency Walker and view functions
starting with “Se”

69

Demo: Viewing Security
Processes

Run Process Explorer
Collapse Explorer process tree and focus
on upper half (system processes)

70

Security Components
Local Security Authority

User-mode process (\Windows\System32\Lsass.exe)
that implements policies (e.g. password, logon),
authentication, and sending audit records to the
security event log
LSASS policy database: registry key HKLM\SECURITY

WinLogon
MSGINA LSASS

NetLogon Active
Directory

LSA Server SAM Server

MSVC1_0.dl

Kerberos.dll

LSA  
Policy

Event
Logger

Active  
Directory

SAM

71

Demo: Looking at the SAM
Look at HKLM\SAM permissions

SAM security allows only the local system account to access it
Run Regedit
Look at HKLM\SAM - nothing there?
Check permissions (right click->Permissions)
Close Regedit

Look in HKLM\SAM
Running Regedit in the local system account allows you to view the SAM:
psexec –s –i –d c:\windows\regedit.exe
or
sc create cmdassystem type= own type= interact 

binpath= "cmd /c start cmd /k“ 
sc start cmdassystem
View local usernames under HKLM\SAM\SAM\Domains\Account\Users
\Names
Passwords are under Users key above Names

72

73

LSASS Components
Active Directory

A directory service that contains a database that stores
information about objects in a domain
A domain is a collection of computers and their associated
security groups that are managed as a single entity
The Active Directory server, implemented as a service, \Windows
\System32\Ntdsa.dll, that runs in the Lsass process

Authentication packages
DLLs that run in the context of the Lsass process and that
implement Windows authentication policy:

LanMan: \Windows\System32\Msv1_0.dll
Kerberos: \Windows\System32\Kerberos.dll
Negotiate: uses LanMan or Kerberos, depending on which is most
appropriate

74

LSASS Components
Net Logon service (Netlogon)

A Windows service (\Windows\System32\Netlogon.dll) that runs
inside Lsass and responds to Microsoft LAN Manager 2 Windows
NT (pre-Windows 2000) network logon requests
Authentication is handled as local logons are, by sending them to
Lsass for verification
Netlogon also has a locator service built into it for locating domain
controllers

WinLogon
MSGINA LSASS

NetLogon Active
Directory

LSA Server SAM Server

MSVC1_0.dl

Kerberos.dll

LSA  
Policy

Event
Logger

Active  
Directory

SAM

75

Winlogon
Logon process (Winlogon)

A user-mode process running \Windows\System32\Winlogon.exe
that is responsible for responding to the SAS and for managing
interactive logon sessions

Graphical Identification and Authentication (GINA)
A user-mode DLL that runs in the Winlogon process and that
Winlogon uses to obtain a user's name and password or smart
card PIN

Default is \Windows\System32\Msgina.dll
WinLogon
MSGINA

LSASS

NetLogon Active
Directory

LSA Server SAM Server

MSVC1_0.dl

Kerberos.dll

LSA  
Policy

Event
Logger

Active  
Directory

SAM

76

Security

Introduction
Components
Logon
Protecting Objects
Privileges

77

What Makes Logon Secure?
Before anyone logs on, the visible desktop is Winlogon’s
Winlogon registers CTRL+ALT+DEL, the Secure Attention
Sequence (SAS), as a standard hotkey sequence
SAS takes you to the Winlogon desktop
No application can deregister it because only the thread
that registers a hotkey can deregister it
When Windows’ keyboard input processing code sees
SAS it disables keyboard hooks so that no one can
intercept it

78

Logon
After getting security identification (account name,
password), the GINA sends it to the Local Security
Authority Sub System (LSASS)
LSASS calls an authentication package to verify the logon

If the logon is local or to a legacy domain, MSV1_0 is the
authenticator. User name and password are encrypted and
compared against the Security Accounts Manager (SAM) database

Cached domain logons are also handled by MSV1_0
If the logon is to a AD domain the authenticator is Kerberos, which
communicates with the AD service on a domain controller

If there is a match, the SIDs of the corresponding user
account and its groups are retrieved
Finally, LSASS retrieves account privileges from the
Security database or from AD

79

Logon

LSASS creates a token for your logon session
and Winlogon attaches it to the first process of
your session

Tokens are created with the NtCreateToken API
Every process gets a copy of its parent’s token

SIDs and privileges cannot be added to a token
A logon session is active as long as there is at
least one token associated with the session
Lab

Run “LogonSessions –p” (from Sysinternals) to view
the active logon sessions on your system

80

Security

Introduction
Components
Logon
Protecting Objects
Privileges

81

The Access Validation
Algorithm

Access validation is a security equation that takes
three inputs:

Desired Access
Process Token

Or Thread’s token if the thread is “impersonating”
The object’s Security Descriptor, which contains a
Discretionary Access Control List (DACL)

The output is access allowed or access denied

82

Tokens

The main components of a token are:
SID of the user
SIDs of groups the user account belongs to
Privileges assigned to the user (described in
next section)

Group 1 SID

Group n SID
Privilege 1

Privilege 1

Account SID

83

Labs: Viewing Access Tokens
Process Explorer: double click on a
process and go to Security tab

Examine groups list
Use RUNAS to create a CMD process
running under another account (e.g.
your domain account)

Examine groups list
Viewing tokens with the Kernel
Debugger

Run !process 0 0 to find a process
Run !process <PID> 1 to dump the
process
Get the token address and type !token
–n <token address>
Type dt _token <token address> to
see all fields defined in a token

84

Impersonation
Lets an application adopt the security profile another user

Used by server applications
Impersonation is implemented at the thread level

The process token is the “primary token” and is always accessible
Each thread can be impersonating a different client

Can impersonate with a number of client/server
networking APIs – named pipes, RPC, DCOM

Client
Process

Server
Process

Server 
Threads

Object

85

Process And Thread Security Structures

Process

Access Token

Owner SID
Primary Group SID

Default ACL

User’s SID
Group SIDs
Privileges

Access Token

Owner SID
Primary Group SID

Default ACL

User’s SID
Group SIDs
Privileges

Access Token

Owner SID
Primary Group SID

Default ACL

User’s SID
Group SIDs
Privileges

ACL

ACL

ACL

ACL

1

2

3

4

5

6

Thread tokens (where present) completely supersede
process token (basis for “security impersonation”)

Thread 2 Thread 3Thread 1

86

SIDs
Windows uses Security Identifers (SIDs) to identify security principles:

Users, Groups of users, Computers, Domains
SIDs consist of:

A revision level e.g. 1
An identifier-authority value e.g. 5 (SECURITY_NT_AUTHORITY)
One or more subauthority values

Who assigns SIDs?
Setup assigns a computer a SID
Dcpromo assigns a domain a SID
Users and groups on the local machine are assigned SIDs that are rooted
with the computer SID, with a Relative Identifier (RID) at the end

RIDs start at 1000 (built-in account RIDs are pre-defined)

Some local users and groups have pre-defined SIDs (eg. World =
S-1-1-0)

87

Demo: SIDs

Example SIDs

Domain SID: S-1-5-21-34125455-5125555-1251255
First account: S-1-5-21-34125455-5125555-1251255-1000
Admin account: S-1-5-21-34125455-5125555-1251255-500
System account: S-1-5-18

88

DACLs
DACLs consist of zero or more Access Control
Entries

A security descriptor with no DACL allows all access
A security descriptor with an empty (0-entry) DACL
denies everybody all access

An ACE is either “allow” or “deny”

Read, Write,
Delete, ...

SID

Access Mask

ACE Type

89

Security

Introduction
Components
Logon
Protecting Objects
Privileges

90

Privileges
Specify which system actions a
process (or thread) can perform
Privileges are associated with groups
and user accounts

There are sets of pre-defined
privileges associated with built-in
groups (e.g. System, Administrators)

Examples include:
Backup/Restore
Shutdown
Debug
Take ownership

Privileges are disabled by default and
must be programmatically turned on
with a system call

91

Demo: Privileges

Run Secpol.msc and examine full list
Click on Local Policies->User Rights assignment

Process Explorer: double click on a process, go
to security tab, and examine privileges list
Watch changes to privilege list:
1. Run Process Explorer – put in paused mode
2. Open Control Panel applet to change system time
3. Go back to Process Explorer & press F5
4. Examine privilege list in new process that was created
5. Notice in privilege list that system time privilege is

enabled

92

Powerful Privileges
There are several privileges that gives an account that has them full
control of a computer:

Debug: can open any process, including System processes to
Inject code
Modify code
Read sensitive data

Take Ownership: can access any object on the system
Replace system files
Change security

Restore: can replace any file
Load Driver

Drivers bypass all security
Create Token

Can spoof any user (locally)
Requires use of undocumented NT API

Trusted Computer Base (Act as Part of Operating System)
Can create a new logon session with arbitrary SIDs in the token

93

Demo: Powerful Privileges
View the use of the backup privilege:

Make a directory
Create a file in the directory
Use the security editor to remove inherited security and give Everyone full access
to the file
Remove all access to the directory (do not propagate)
Start a command-prompt and do a “dir” of the directory
Run \Sysint\Solomon\PView and enable the Backup privilege for the command
prompt
Do another “dir” and note the different behavior

View the use of the Bypass-Traverse Checking privilege (internally called
“Change Notify”)

From the same command prompt run notepad to open the file (give the full path) in
the inaccessible directory
Extra credit: disable Bypass-Traverse Checking so that you get access denied
trying to open the file (hint: requires use of secpol.msc and then RUNAS)

