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Michael Starbird, Ph.D.

University Distinguished Teaching Professor of Mathematics,
The University of Texas at Austin

Michael Starbird is a professor of mathematics and a University Distinguished
Teaching Professor at The University of Texas at Austin. He received his B.A.
degree from Pomona College in 1970 and his Ph.D. in mathematics from the
University of Wisconsin, Madison, in 1974. That same year, he joined the
faculty of the Department of Mathematics of The University of Texas at Austin
where he has stayed except for leaves as a Visiting Member of the Institute for
Advanced Study in Princeton, New Jersey: a Visiting Associate Professor at the
University of California, San Diego; and a member of the technical staff at the
Jet Propulsion Laboratory in Pasadena, California.

Ey

Professor Starbird served as Associate Dean in the College of Natural Sciences
at The University of Texas at Austin from 1989 to 1997. He is a member of the
Academy of Distinguished Teachers at UT and chairs its steering committee. He
has won many teaching awards, including a Minnie Stevens Piper Professorship,
which is awarded each year to 10 professors from any subject at any college or
university in the state of Texas: the inaugural award of the Dad’s Association
Centennial Teaching Fellowship; the Excellence Award from the Eyes of Texas,
twice; the President’s Associates Teaching Excellence Award; the Jean
Holloway Award for Teaching Excellence, which is the oldest teaching award at
UT and 1s presented to one professor each year; the Chad Oliver Plan II
Teaching Award, which is student-selected and awarded each year to one
professor in the Plan II liberal arts honors program; and the Friar Society
Centennial Teaching Fellowship, which is awarded to one professor at UT
annually and includes the largest monetary teaching prize given at UT. Also, in
1989, Professor Starbird was the Recreational Sports Super Racquets

Champion.

The professor’s mathematical research is in the field of topology. He recently
served as a member-at-large of the Council of the American Mathematical
Society and currently serves on the national education committees of both the
American Mathematical Society and the Mathematical Association of America.

Professor Starbird is interested in bringing authentic understanding of
significant ideas in mathematics to people who are not necessarily
mathematically oriented. He has developed and taught an acclaimed class that
presents higher-level mathematics to liberal arts students. He wrote, with co-
author Edward B. Burger, The Heart of Mathematics: An invitation to effective
thinking, which won a 2001 Robert W. Hamilton Book Award. Professors
Burger and Starbird have written a book that brings intriguing mathematical
ideas to the public, entitled Coincidence, Chaos, and All That Math Jazz:
Making Light of Weighty Ideas, published by W.W. Norton, 2005. Professor
Starbird has produced two previous courses for The Teaching Company, one
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entitled Change and Motion: Calculus Made Clear and a second one with
collaborator Edward Burger entitled The Joy of Thinking: The Beauty and
Power of Classical Mathematical Ideas. Professor Starbird loves to see real
people find the intrigue and fascination that mathematics can bring.
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Meaning from Data: Statistics Made Clear

Scope:

A statistical fact: On average, each American has one testicle and one ovary.

Should we take cholesterol-lowering medication? Evidence for and against is
presented to us in the form of data and statistical conclusions. Should we buy
stocks or sell? Much of the information we use to make the decision is based on
numerical data. Will it rain tomorrow? Will the real estate market rise or fall?
How good a student will Mr. Jones be, if admitted? Should we buy lottery
tickets when the jackpot gets really big? Should a coach leave a player in the
game when he’s in a slump? How can we tell if gender discrimination
influenced college admissions procedures? Trying to understand the economy,
the weather, school systems, grading, the quality of products, risk,
measurements of everything, social trends, marketing, science, and most
practical aspects of our world fundamentally involves coming to grips with data.

The trouble with data is that data do not arrive with meaning. Data are value-
free and useless or actually misleading until we learn to interpret their meaning
appropriately. Statistics provides the conceptual and procedural tools for
drawing meaning from data.

Analyzing data correctly is one of the most powerful tools that we have for
understanding our world. But it is a two-edged sword. Mark Twain attributed to
Benjamin Disraeli perhaps the most famous quip about statistics: “There are
three kinds of lies: lies, damned lies, and statistics.” But an apt rejoinder is: “It
1s easy to lie with statistics, but it is easier to lie without them.” In this course,
we will see the two sides of data—their uses and their misuses.

We will learn basic principles and ideas of statistics and understand how they
can bring meaning to data. We will learn about probability and the central role it
plays in understanding the meaning of statistics. One of the great ideas of
modern quantitative analysis of our world is that the uncertain and the unknown
can be described quantitatively. Random events show global trends in the

aggregate, and probability and statistics can help us describe and measure those
trends.

We present statistics by isolating two major challenges: (1) How can we
describe and draw meaning from a collection of data when we know all the
pertinent data? (2) How can we infer information about the whole population
when we know data about only some of the population (a sample)? These two
questions form the structural backbone of our approach.

The challenge of describing a collection of data when we know all the data
arises, for example, when we have complete records of all students who have
ever attended a given university. We know the incoming Scholastic Aptitude
Test (SAT) scores and high school class rank of all students, and we know their
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grade point averages (GPAs) on graduation. We can ask and answer many

questions regarding those data. Perhaps we would like to know some summary advances continue to bring larger data sets and more detailed techniques of
information, for example, the mean GPA or the range of SAT scores. Maybe we analysis within the range of practicality.

would like to describe how well the SAT scores and high school rank-in-class
predict the students’ future performance. Describing income data, age data,
sports statistics, and a myriad of other examples all present us with the challenge
of taking a mound of figures and assembling them in a fashion from which we
can glean meaning.

Note: Although the data used in this booklet are often real. some have been
created to illustrate particular statistical concepts.

The second challenge is the challenge of statistical inference. Suppose we take a
poll of 1,000 voters before an election to find out how they will vote. We really
want to know how the 100 million voters will vote in the next election. How
confident can we be that the opinions of the 1,000 voters we ask really do reflect
the opinions of the 100 million voters who will vote in the election? That is one
of the challenges of statistical inference. Predicting the future weather given
information about past weather, deducing whether a new drug 1s efficacious,
guessing the future performance of the stock market, and doing scientific
experiments on a few mice and drawing conclusions about all animals are all
examples of the statistical challenge of inferring conclusions about the whole
population when we have information about only a sample of the population.

Part I of this course, Lectures One through Twelve, introduces the concepts of
statistics. Typically, several different application areas are used to illustrate each
statistical concept. Part II, Lectures Thirteen through Twenty-Four, is organized
by application area. Typically, several different statistical concepts are
introduced and used in each application area. Both parts of the course are full of
interesting and entertaining examples from all corners of our world—business
and economics, medicine, education, sports, social science, and many more
areas. For example, we will see how statistics was used to estimate the number
of German tanks in World War II from the serial numbers of captured tanks, and
we will see how a statistical analysis provides strong evidence concerning the
disputed authorship of 12 of The Federalist Papers. Statistics offers unrivaled
scope for connecting inherently intriguing mathematical ideas to the real world.

A typical statistics course in college emphasizes various technical tests. Students
emerge with the impression that statistics amounts to plugging data into a
formula. Although we will introduce important statistical formulas, this course
emphasizes the logical foundations and underlying strategies of statistical
reasoning. We describe why randomness lies at the heart of statistical reasoning,
We explain what it means when the headlines blare, “Candidate A to get 59% ol
the vote with a + or — 3% margin of error.” We differentiate between
statistically significant and significant.

Our goal is to convey an authentic understanding of one of the most useful,
powerful, and pervasive modes of reasoning employed in the world today. We
will see why statistics will become increasingly important as technological

2 ©2006 The Teaching Company Limited Partnership
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Scope:

Lecture One
Describing Data and Inferring Meaning

Trying to understand the economy, the weather, education, politics,
risk, measurement, society, marketing, science, sports, medicine, and
nearly every other aspect of our world fundamentally involves our
ability to work with data in a meaningful way. The statistical analysis
of data has become an integral part of how we describe our world. We
expect data and statistical analysis to support opinions and decisions in
almost every aspect of public and private life. The fundamental
challenge for statistics is to assemble data and to interpret them to
provide meaning. The statistical study of data can be viewed as dealing
with two fundamental questions: (1) How can we describe and
understand a situation when we have all the pertinent data about 1t? (2)
How can we infer features of all the data when we know only some of
the data? The goal of statistical perspectives and methods is to allow us
to draw meaning from data.

Outline

I. Statistics is the study of data.

A!

B.

Politics, including elections, world conflict, economics, and business,
centrally involves data and their interpretation.

Sports, education, the arts, medicine, and science fundamentally rely
on statistical techniques.

II. The trouble with data is that they can be misleading or meaningless.

A. Data by themselves do not have meaning. Deducing the meaning from

B.

C.

D.

data is a necessary step.
Here is a statistical fact: The average American has one testicle and one
ovary.

Perhaps the most famous quotation about statistics is from Mark
Twain, which he attributed to Benjamin Disraeli, namely, “There are
three kinds of lies: lies, damned lies, and statistics.”

There is an apt rejoinder to Twain’s quote, namely, “It is easy to lie
with statistics, but it is easier to lie without them.”

1. The two most fundamental words in the study of statistics, stafistics and
data, share a grammatical issue. Are they singular or plural?

A.

B.

Data is the plural of datum, a single piece of information,

Statistics can be singular or plural, depending on the meaning. For

example, statistics is the study of data or statistics are bits of information.

©2006 The Teaching Company Limited Partnership

IV. Many people, in considering statistics, think about summarizing very
complicated situations in one or two words.

VL

A.
B.

But that is far too simplistic a view of statistical analysis.

Instead, we need to develop tools and vocabulary for describing a
complicated collection of information in ways that do not lose too
much detail, yet in which the summary descriptions are sufficiently
simple that they convey meaning to us.

We can think of the study of statistics as dealing with two basic questions:

A.

B‘i

How do we organize, describe, and summarize a collection of data
when we know all the data?

How do we infer information about the whole population when we
have data about only some members of the population?

This course is divided into two parts.

A-

B-

The first part, Lectures One through Twelve, is organized to present a
logical, conceptual development of the study of statistics.

The second part, Lectures Thirteen through Twenty-Four, considers
different application areas and presents examples of the use of statistics
in those various areas.

Lectures Two and Three together form an introduction to the whole of
analysis of statistics.

Lectures Four through Seven present the basic conceptual tools for
organizing, describing, and summarizing data.

1. We introduce the basic concept of the distribution of data, which
refers to how the whole collection of data is arrayed.

2. We introduce various shapes, such as the bell-shaped curve, that
model many data sets.
Lecture Eight introduces the concept of probability.

1. Probability is the glue that connects our methods for describing
data sets to the idea of statistical inference.

2. Probability is the study of measuring random behavior.

3. Knowing what to expect from random events then allows us to
compare data with randomness to make inferences.

In Lecture Nine, we introduce one of the basic concepts of inference,

namely, a sample.

1. A sample consists of just some of the members of a population.
We obtain data about them.

2. A typical sample is seen when a pollster asks perhaps 1200 voters
how they will vote.

©2006 The Teaching Company Limited Partnership 5




G.

In Lecture Ten, we infroduce a fundamental stafistical strategy for
inferring information about the world called a hypothesis test.

1. The strategy is to do some experiment from which we gather data,
then investigate whether the results accord with a view of the
world that we are evaluating.

2. The logic of hypothesis testing lies at the heart of most statistical
inferences we read about.

H. In Lecture Eleven, we introduce the concept of a confidence interval.

I

1. We have all seen headlines that say, “*Candidate A will receive
59% of the vote with a margin of error of + or — 3%.” We will see
what this phrase means.

2. The headline i1s not complete as written, and we will see what 1s
missing in order to truly understand the meaning of this confidence
interval.

Lecture Twelve describes the design of experiments.

1. In order to gather data from which sound deductions can be drawn,
it is important to think ahead about how those data will be used.

2. Poorly designed experiments can result in a great deal of data from
which almost nothing can be learned.

VIL Part II of the course concerns application areas.
A. Lecture Thirteen deals with applications of statistics in the law. You

=

will be on the jury.

Lectures Fourteen and Fifteen both concern democracy—voting and
elections—and present interesting and paradoxical features of the
simple-sounding idea of following the will of the people.

Lecture Sixteen concerns sports, an arena full of statistically interesting
issues.

Lecture Seventeen discusses risk in war and insurance.

Lecture Eighteen is a case study using real estate. We demonstrate how
data about features of houses can be used to predict the sales prices of
houses.

Lecture Nineteen is full of interesting and amusing examples of how
statistical information can, unintentionally or otherwise, be presented in
misleading ways.

Lecture Twenty concerns social sciences.
Lecture Twenty-One addresses statistics in health matters.

Lecture Twenty-Two explores trends in economics, including the
consumer price index and the stock market.

Lecture Twenty-Three is about statistics in science.

©2006 The Teaching Company Limited Partnership

K. Finally, Lecture Twenty-Four argues not only that the prominence of
statistics is enormous now but that its influence and importance will
increase a great deal over the next decades.

Readings:
Norman L. Johnson and Samuel Kotz, eds., Leading Personalities in Statistical
Sciences: From the Seventeenth Century to the Present. '

David S. Moore, Statistics: Concepts and Controversies, 5" ed.

Questions to Consider:
1. Do the prevalence of data and the universal use of statistical arguments
produce better decisions in our society?

2. Select essentially any topic and explore the Internet to find data and
statistical information that deepen your understanding of the issue.

©2006 The Teaching Company Limited Partnership




Lecture Two
Data and Distributions—Getting the Picture

Scope: Data, data, data. Statistics starts with data. Governments, businesses,

universities, and sports fans amass mounds of data about people,
products, academics, and win-loss records. Age, salary, gender,
position, price, measurements, graduation rates, and world records all
are assembled into massive tables.

The first three rules of statistics are: Draw a picture, draw a picture,
draw a picture. A visual representation of data reveals patterns and
relationships in the data, for example, the distribution of one variable
or an association between two variables. A graph may show important
features of the data, such as the center or spread, or unexpected values,
such as outliers. Graphical representations can be used to tell others the
story embodied in the data. Typically, we describe distributions of data
by characterizing the general shape of the distribution (for example,
bell shaped), finding where the distribution of the data is centered, then
measuring how spread out or how concentrated the data are from the
center.

Outline

I. Lectures Two and Three together provide a global introduction to the
course.

IL

The world is full of tables of data. This lecture describes how we can make
sense of such lists of numbers.

A.
B.

C.

The challenge is to organize, describe, and summarize a set of data.

Organizing a set of data consists of listing the data in useful order and
grouping data effectively, such as with a histogram, which we will
describe and define in this lecture.

More imaginative graphical representations of data can sometimes help
us see patterns, as in Florence Nightingale’s rose charts of 1857,
showing the causes of mortality of soldiers during the Crimean War.

Our first example looks at data on the distribution of the income of
associate professors of statistics.

A.

B.

Putting the numbers in order gives some structure and information,
such as the largest ($105,550) and smallest ($52,290) number.

It is common to summarize a collection of data with a single number.
The mean is one summary of the data,

©2006 The Teaching Company Limited Partnership

1. The mean is obtained by adding up all the numbers and dividing
by the number of data points. In this case, the mean is $68,500.

2. The mean may not be a good summary of the data.

Knowing how many data items there are, we can find the number in the
middle of the ordered list. That number is called the median. In this
example, the median is $65,600.

We can also see how much income marks the dividing line between the

25% of the people that earn the least and the other 75% of the people.

1. This value is called the first quartile and is $63.480.

2. Similarly, the third quartile is the value three-quarters of the way
through the list, in this case, $75.350.

Five values—minimum, first quartile, median, third quartile, and

maximum—give a five-number summary of the data.

1. This information can be displayed graphically by drawing a box
plot with whiskers.

2. Data items that lie far outside the values between the first and third
quartile are called outliers.

TV. Drawing a histogram can give a more detailed view of how the data are
arrayed.

Ar

A histogram is created by dividing the possible values of the data (such
as personal incomes) into disjoint groups and counting how many data
items lie in each group.

A histogram gives a sense of the shape of the data. In this case. the data
are skewed to the right.

The distribution of a set of data is defined as the values that a variable
takes and how often it takes them.

Another example is Scholastic Aptitude Test (SAT) scores of students
at a university. The histogram has a center point at about 1030 and is
somewhat symmetrical about that value.

Another example is the heights of men in the United States. We can see
a symmetrical shape from the histogram, based on 2-inch increments.

Another example is of cars arriving at a tollbooth in the middle of the

day.

1. One thousand one-minute intervals were simulated. and the
number of cars that arrived in each interval was recorded.
Sometimes no car arrived, sometimes 1 car arrived, sometimes 2,
and so forth.

2. The distribution has a shape that is not symmetrical but, instead, is
skewed to the right.

©2006 The Teaching Company Limited Partmership 9
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G. Deaths by mule kicks in the Prussian army are another example of a

distribution of a similar shape.

V. SAT scores of students taking the test at a K—12 private school illustrate
another feature of a distribution.

A.

D.

This is a bimodal distribution, meaning that it has two distinct peaks.
The reason for the two peaks is that all 7" graders and all 11" graders
take the test.

Consider now the distribution of the heights of women. The shape 1s
about the same as the shape for men, but it is shifted to the left; that is,
the center is a smaller height.

Two other examples are baseball players’ batting averages in the year
1920 and in the year 2000. The center point is the same (about .265),

but the spread is different.

These examples illustrate the three main aspects of a distribution:
shape, center, and spread.

VI. Another fundamental aspect of getting meaning from data is the
relationship between two varying aspects of the same individual in a
population.

A.

B.

e

An example is a student’s SAT score and grade point average (GPA) in
college.

Each individual is represented by a dot on the graph, using the person’s
SAT score to determine how far to the right to place the dot and using
the person’s GPA to determine how far up to place the dot.

This graph is called a scatter plot.

In this example, we see that the two quantities, SAT score and GPA,
appear to be somewhat related to one another. The precise meaning of
correlation as used in statistics will be given in Lecture Seven, where
we will learn how to quantify the correlation.

We can add to the graph a line that seems to go in the same direction as
the associated data seem to be going and see the extent to which that
straight-line relationship between the data is reflected from the data.

More than two varying aspects of the same individual can be related,
for example, a person’s SAT score, high school GPA, and college
GPA.

VIL. Our goal is to organize, describe, and summarize collections of data.

10

A,

B.

,

The basic way to get meaning from data involves the concept of
distribution.

The main aspects of a distribution are its shape, center, and spread.

Histograms and box plots are useful graphical aids.

©2006 The Teaching Company Limited Partnership

D. Such quantities as the mean, median, and quartiles are often useful
measures to summarize the data set, but they do not preserve all the
information.

E. Data come in different shapes, some that we will run into often.
F. Associated data can be visualized by graphing a scatter plot.

G. Associated data can sometimes be approximated by a straight line or a
plane.

H. All of these concepts will be quantified in future lectures.

I. This lecture gave a mostly qualitative view of methods of organizing,
describing, and summarizing data sets.

Readings:

David S. Moore and George P. McCabe, Introduction to the Practice of
Statistics, 5" ed.

Edward R. Tufte, The Visual Display of Quantitative Information.
Howard Wainer, A Trout in the Milk and Other Visual Adventures.

. Visual Revelations: Graphical Tales of Fate and Deception from
Napoleon Bonaparte to Ross Perot.

Questions to Consider:
1. What 1s meant by the shape of a set of data?

2. Would you expect the mean and the median to be close to the same value or
quite different when looking at the points scored by all basketball players in

the NBA? Or looking at all the lifetimes of similar light bulbs in a test of
longevity?

©2006 The Teaching Company Limited Partnership 11




Lecture Three
Inference—How Close? How Confident?

Scope: When an election is impending, pollsters ask perhaps 1,000 people how

they will vote, but what we want to know is how the whole population
will vote. The challenge of statistical inference is to infer from the
information about some people what the best guess is about the whole
population. The logic of statistical inference is to compare data that we
collect to expectations about what the data would be if the world were
random in some particular respect. Analyses of randomness and
probability allow us to quantify our confidence in extrapolations from

2. The more men in the sample, however, the more likely it is that
their mean will be an increasingly better approximation to the
population’s mean.

One crucially important principle is that random choice in samples can
lead us to information about the whole population.

How can we estimate how close our sample’s evidence is to the truth in
the whole population?
1. This is a question for probability theory.

2. Probability gives us a quantitative measure for how likely a
random event is.

I some of the data to the whole population. Randomness and probability
are the cornerstones of all methods for testing hypotheses. Here we
1l introduce the rather subtle logic by which statistical inferences flow.

IIl. In order to make a useful conclusion, we have to make a reasonable guess

about how close our random sample is to the population’s values and how
confident we are of being that close.

. A. Political polls are common examples in which statistical inference 1
' Outline el P P S
| I. This lecture introduces the basic concepts and principles of statistical ' 1. Suppose the reality is that 60% of voters favor Candidate A and
‘ inference, namely, how we can use information about just some members of 40% favor Candidate B.

l. a population to infer information about the whole population. 2. Suppose we ask 100 random future voters how they will vote in

A. Randomness is a central idea to the whole of statistical inference. the upcoming presidential election. Some number of those will

| B. The goal of statistical inference is to answer the questions: “How favor Candidate A T *
close?” and “How confident?” 3. Now we run 10 simulations in which we ask 100 voters each time,

with each simulation giving us a number for Candidate A.

fl 1. How close are the shape, center, and spread of just some of the

| population to the shape, center, and spread of the whole 4. It turns out that 95% of samples of size 100 will give a value
|: population? between 50% and 70% in favor of Candidate A. We can be quite

| 2 'How confident are we of that? confident that the true percentage of all voters for Candidate A lies
| within + or — 10% of that percentage in a random sample of size

| II. Suppose we know the heights of only some adult men, but we want to know - 100.

an accurate description of the distribution of heights of all adult men. a. In this case, the answer to “How close?” is 10%.

A. We might just choose a few men whose heights somehow mirror the b. And the answer to “How confident?” is 95%.
heights of all men, but we do not know the whole population’s B. Surprisingly, 95% of the time, a random sample of 1200 people will

distribution to start with. give us an estimate that lies within + or — 3% of the actual truth in the
whole population.

——

i B. On the other hand, we know that representative samples do exist, but

[l how can we find them without knowing what the whole population C. We have seen two important principles:
| looks like in advance? 1. Randomness is involved in statistical inference.
I 1. Suppose we choose one adult male at random and measure him. 2. The conclusion of a statistical inference is an estimate, together

|

Our random man'’s height is not likely to be extremely short
relative to others or extremely tall; a random choice would
generally find someone closer to the middle.

©2006 The Teaching Company Limited Partnership

with a pair of numbers that tell us how close to the true population
value the estimate 1s and how confident we are that the estimate is
that close.

IV. Another kind of challenge for statistical inference is how to tell whether a
coin is fairly balanced and equally likely to come up heads as tails.
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A. In practice, we put the coin “on trial.”

B. We flip the coin 100 times and count how often it is heads and tails; we
are getting random evidence about the frequency with which heads or
tails arises.

V. Statistical inference figures prominently in tests of medications. Suppose
we want to establish that a medicine works.

A. A new medication is given to 1,000 people who have a particular

ailment and a placebo is given to another 1,000 people with the same
aillment.

B. If a much higher proportion of people get well taking the new medicine
than taking the placebo, then that is strong evidence that the medication
has a beneficial effect.

C. If a somewhat higher proportion of people get well taking the new
medicine, then we need to do some mathematical analysis to determine
how persuasive the evidence is that the medication actually has a
beneficial effect.

D. To measure the strength of the evidence, we need to understand how
much variation in results we should expect from the random process of
some people getting well spontaneously.

V1. If we want to see if a deck of cards is complete, we could devise an
experiment.
A. In our experiment, we choose a random card from the deck 3,000 times
and record the card each time.

B. The histogram of our findings reveals whether cards are missing or if
there are multiples of any particular cards in the deck.

VIL. The logic of statistical inference is to compare data that we collect to
expectations about what the data would be if the world were random in
some particular respect.

A. Analyses of randomness and probability allow us to quantify our
confidence in extrapolations from some of the data to the whole

population.
B. Randomness and probability are the cornerstones of all methods for
testing hypotheses.
Readings:

Donald A. Berry, Statistics: A Bayesian Perspective.

David S. Moore and George P. McCabe, Introduction to the Practice of
Statistics, 5™ ed.

14 ©2006 The Teaching Company Limited Partnership

Questions to Consider:

1.

If you read that 53% of people polled favor Candidate A in an upcoming
election, what additional information would you want to know to determine
what you can conclude about Candidate A’s chances of being elected?

Suppose a medicine is subjected to a test against a placebo and 60% of the
patients taking the medicine get better, while only 40% of those taking the
placebo get better. What additional information would you need to know
about the test to determine whether you could conclude that the medicine 1s
effective?
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Lecture Four
Describing Dispersion or Measuring Spread

Scope: This lecture begins a series of four lectures concerning how we extract

16

meaning from data when we know all the data (a population). Later
lectures (Eight through Twelve) will consider how to infer information
about the whole data set from information about just some of the data
(a sample).

To describe a set of data, we need to confront the challenge of taking a
list of numbers and putting some structure on them, through which we
can garner meaning. One basic feature we would like to describe is
how clustered or widely dispersed the data are. We measure this
variability of the data by developing several concepts of dispersion, or
spread. In this lecture, we will define and explore the standard
deviation, which measures how widely the data are spread from the
mean. The various methods of measuring dispersion of data have
different properties, which we need to understand to determine which
is appropriate to use when.

Outline

In this lecture, we begin a four-lecture series concerning principles and
methods for organizing, describing, and summarizing data when we have
all the data in the population. This lecture explores measures of center and
measures of dispersion, or spread, of the data.

A.

S0 W

The mean and the median are both measures of central tendency.

1. The median (the middle number in an ordered list) is not affected
by outliers.

2. The mean has a physical interpretation. It is the value around
which the data items balance.

3. The mean (the sum of the data divided by the number of data
items) is affected significantly by outliers.

A single-number summary is useful in some cases and less so in others.

A histogram shows the shape of the data.

Here is an example that shows why the mean does not tell us all we
would like to know about a data set: The batting averages of baseball
players in 1920 form a distribution whose mean is about the same as
the mean of the batting averages in 2000, but the dispersions are
different.

The challenge of describing how widely a data set is dispersed, or
spread out, leads us to develop several measures of dispersion.
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II. Knowing the maximum, minimum, first and third quartiles, and median
gives some indication of the spread of the data.

A.

B.

This five-number summary, however, does not give a refined sense of
where all the data lie.

A histogram does contain a great deal or all the information about a
data set and does give us a picture of the dispersion.

1. One natural measure of the spread of data is to look at how far each datum
is away from the mean and to take an average of those values.

A.

B.

We must be careful to take the absolute value of the distance of each
datum from the mean.

The average distance from the mean is a potentially useful measure of
dispersion, but it is not the most commonly used measure.

IV. The most common measure of dispersion, or spread, of data is the standard
deviation.

A.

B.

This value will be larger if the data set is more widely spread, smaller if
the data are close to each other.

The standard deviation can be computed as follows:
1. Take the mean of the data.

2. Subtract each datum from the mean and square the result (multiply
the result times itself), getting a positive number (or zero).

3. Add those values and divide by the number of items. This gives a
number called the variance.

4. Take the square root. This gives the standard deviation.

The standard deviation is basically the square root of the average
squared distance from data points to the mean.

In compact form, the standard deviation of the set of data {J:i. } i
i=l.....n
] n
2
Z (x; — 1) Z X,
\ = . where (/= 2=l that is, the mean. The mean is
n n

often represented by ¥ or .

The standard deviation measures how much variation there is in the
data.

> (5, - 1)

i=1

In compact form, the variance is and is usually denoted

n
s* or o (the Greek letter sigma squared).
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1. In some cases, it is more appropriate to divide by » — 1 in the
definition of the variance and the standard deviation, rather than
dividing by n.

2. If we are taking the standard deviation over the whole data set,
then it is appropriate to divide by » as we have written; however, if
we are taking the standard deviation of a sample of the population,
then it is usually more appropriate to divide by n— 1.

G. The variance and standard deviation involve squaring the differences
from the mean. Just looking at the absolute value of the difference from
the mean seems more straightforward. You may ask why the variance
and standard deviation are more commonly used.

H. One reason for squaring the difference rather than using just the
absolute value of the difference is that the population mean then plays a
special role; namely, it is the unique value that minimizes the sum of
the squared differences.

1. This can be shown using calculus.

2. Just like the mean, the standard deviation is affected significantly
by outliers.

The standard deviation gives us the opportunity to understand some
differences in the world that are captured by differences in dispersion of a
set of data.

A. For example, a comparison between salaries in large corporations in
the United States versus Japan reveals differing strategies of incentive
and compensation.

B. Notice that inferring meaning from the statistical evidence is a step of
reasoning requiring an understanding of the context of the situation.
The statistics themselves are a useful tool, but further logic is required
to garner meaning from the data.

. In this lecture, we have discussed the concept of dispersion of data and

introduced the standard deviation, which is a common measure of
dispersion.

A. The most basic idea from this lecture is that the mean and the median,
though useful summaries of a collection of data, do not tell us anything
about how widely spread out the data are.

B. Histograms give us a good visual sense of the distribution, including
how spread out the data are.

C. The five-number summary (minimum, maximum, first and third
quartiles, and median) and associated box plot give some sense of how
the data are spread out.

©2006 The Teaching Company Limited Partnership

D. The standard deviation is a numerical measure of roughly how far the
data are on average from the mean.

Readings:
Stephen J. Gould, Full House: The Spread of Excellence from Plato to Darwin.

David S. Moore and George P. McCabe, Introduction to the Practice of
Statistics, 5" ed.

Questions to Consider:

11-

What aspects of the description of data do quartiles and standard deviation

measure? Which measure is more sensitive to being influenced by outliers?
Why?

Under what circumstances is it important to consider the distribution of the
data rather than just relying on the mean or median as a summary? For
example, would it be important to know the distribution of recovery rates in
guessing how long you will be away from work for a serious illness, or
would the average recovery rate be sufficient? Why?
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Lecture Five
Models of Distributions—Shapely Families

Scope: Any shaped curve at all can correspond to or can model a data set. To

be useful, however, we seek model shapes that are easily described,
both in words and mathematically, and that we expect to correspond to
the phenomena we are describing. Consider the salaries of employees
at a large corporation, Those salaries would have a concentration of
values near the low end with a few salaries that are much higher,
corresponding to the top management. Salaries at a corporation or
household incomes in the United States are examples of skewed
distributions. Consider the intervals of time between arrivals of cars at
a tollbooth. Or consider the time for an atom to decay in a radioactively
decaying substance. Those sets of times will be collections of numbers
whose distributions have a specific, characteristic shape. In this lecture,
we will introduce terms (skewed, bimodal) that are applicable to some
shapes and describe several different characteristically shaped classes
of distributions, including exponential and Poisson. Each naturally
arises in specific settings.

Outline

In this lecture, we continue our four-lecture series concerning principles
and methods for organizing, describing, and summarizing data when we
have all the data in the population. This lecture explores methods for
describing the shape of a collection of data.

A. Our strategy in this lecture will be, first, to identify general types or
categories of shapes that arise commonly.

B. Then, we will describe some collections of graphs that are specifically
defined by mathematical formulas.

1. These specific shapes provide useful models that can give
quantitatively valuable information about data sets that they
approximate.

2. Different types of processes that generate the data typically lead to
data sets that are well modeled by the appropriate mathematical
formula.

. Here are some generic shapes or characteristics of shapes of the histograms
of various data sets:

A. Some collections of data have a single-peaked histogram.

B. Some collections may be symmetric (about the mean).

C. Some collections are skewed, with a tail on one side of the center.
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D. Some collections are bimodal, having two peaks.

E. Ifthe shape of the data can be described by a specific mathematical
formula, then the mathematical description can often give valuable
information about the data.

. The simplest shape that a distribution can have is a flat line. These

distributions are called uniform distributions.

A. A uniform distribution has a simple mathematical formula: f{x) =c, a
constant.

B. The uniform distribution is a mathematical model that approximates
real data about the results of throwing a die many fimes.

1. The approximating function does not fit the data exactly.

2. In this example, we expected the uniform distribution to be a good
model because of our knowledge or assumptions we made about
throwing a fair die.

Suppose that we observe the times that cars arrive at an intersection. The
distributions of data that we expect will have similar shapes.

A. Ifwe plot in a histogram the number of one-minute time intervals in
which 0, 1, 2, etc., cars arrived at an intersection, we typically obtain a
characteristic shape called a Poisson distribution. The shape of the
ideal Poisson histogram is skewed right.

B. There is a mathematical formula that gives this ideal shape.
1. In our example, the proportion of intervals that have k cars equals
e 6" k.
2. The formula gives proportions. To get the actual number of

intervals, we would multiply by a constant coming from the
example.

C. The general formula for a Poisson distribution is e A" / k!. Lambda
( A ) is a parameter. Each different value of lambda gives a different
member of the Poisson family of distributions.

1. This distribution family has one parameter, lambda. That
parameter is the mean of the distribution.

2. That is, if some arrival process has this distribution, then on
average, there will be lambda arrivals per minute.

D. In summary, certain assumptions about a physical phenomenon imply
that there is a family of mathematical functions (in this example, the
Poisson distributions) that apply to summarize the distribution of data
from the phenomenon.

E. The numbers of deaths each year in each corps of soldiers in the
Prussian army from kicks by army mules gives another example of a
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G.

Poisson distribution because the death by a mule kick does not change
the likelihood of a similar death elsewhere.

Another example of a Poisson distribution is from a study by Lewis W.
Richardson of the number of outbreaks of war in each of the years from
1500 to 1931.

The graphs of all these examples will tend to look the same, just with
different widths.

Another useful distribution is the exponential distribution, which is related
to the Poisson distribution. An example of an exponential distribution is
given by radioactive decay.

A.

D.

A radioactive material, such as strontium 89, has the property called its
half-life, which refers to a length of time during which half of the
radioactive material will change to its nonradioactive state. It will take
just as long again for half of the remaining material to decay.

Viewing each radioactive atom individually in the next interval of, say,
10 seconds, the atom has a certain probability of decaying.

No matter how long you wait, if you then consider an atom that is still
radioactive, the probability of its decaying in the next 10 seconds is the
same.

Thinking of the possible lifetimes of an individual radioactive atom,
those possible lifetimes form an exponential distribution.

VL. The binomial distributions constitute another family of distributions.

22

A.

B.

C.

About two-thirds of students who enter high school in the United
States graduate.

Suppose we choose every possible group of 50 students, and for each
such set of 50, we count how many graduated.

We can plot a histogram showing how many groups of 50 students
have 0 graduates, 1 graduate, 2 graduates, ... , up to 50 graduates.
That histogram is a binomial distribution.

1. It has one peak centered at about 33 (two-thirds of 50).

2. It looks basically symmetrical.

3. It has a bell-shaped look to it.

There are many situations in which we would expect the data to have a
binomial distribution.

Whenever we look at all possible samples of a given size from a
population and record how many of the samples have each possible
number of a given attribute, then we will have a binomial distribution.
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1. Consider all possible ways that a coin flipped 15 times can land,
suchas HHTTTHTHHHTTHT T, and count how many
heads come up in each possible sequence of 15 H’s and T’s.

2. Consider every set of 1600 people, and for each set, find out how
many will vote yes on Proposition B in the next election.

G. The fact that all these examples of samples of a given size from a
population give rise to a binomial distribution will be critical in our
later analysis of statistical inference.

H. The binomial distribution has a specific mathematical formula.

1. The general formula for the binomial distribution is:
n! e
p*(1— p)"™ . Here, n represents the number of items
kl(n—k)!
selected (the size of the sample) and p is the proportion of the
whole population that has the property. The formula gives the

proportion of the sets of size n that have a count of k.

2. When n is large, the binomial distribution is somewhat bell
shaped.

VII. In this lecture, we explored ways to describe the shape of a distribution of
data.

A. Generic descriptions of shape included the following:
1. Skewed
2. Bimodal

3. Symmetric

B. Specific families of distributions were modeled by formulas, including:
1. Uniform distributions
2. Poisson distributions
3. Exponential distributions
4. Binomial distributions
C. The basic strategy for describing the shape of a set of data is to find a

mathematical model that approximates the histogram of the data we
have.

Readings:
David S. Moore and George P. McCabe, Introduction to the Practice of
Statistics, 5™ ed.

Educational Testing Service, http://www.ets.org/Media/Education_Topics/
pdf/onethird.pdf.
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Questions to Consider:

1.

24

Why would the numbers of years with 0, 1, 2, 3,... holes in one in
Professional Golfers® Association (PGA) major tournaments resemble the
shape of the numbers of one-minute intervals of time during which 0, 1, 2,
3,... cars arrived at a tollbooth? Similar generating principles lead to
similarly shaped distributions.

Suppose you have a large jar with billions of marbles, 60% white and 40%
black. If you consider every possible collection of 100 marbles and make a
histogram counting how many of those collections have 0 white, 1 white, 2
white, 3 white,..., up to 100 white marbles, you will have a binominal
distribution. If you do the same thing except using all subsets of 100,000
marbles, you will get a different binomial distribution. How would you
describe the difference in shape between the 100-marble binomial
distribution compared to the 100,000-marble binomial distribution?
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Lecture Six
The Bell Curve

Scope: The most famous shape of distributions is the bell-shaped curve, which
is called a normal curve, or a Gaussian distribution. It is symmetrical
and has a specific shape and a specific mathematical formula that
describes it. It arises frequently for several reasons, physical and
mathematical. In this lecture, we will introduce the bell-shaped curve,
explore its properties, and discuss the reasons why it arises so
frequently. In the previous lectures, we examined data sets of various
shapes. One method for using one data set to get another is to take all
the samples of a given size and take the mean of each. That collection
of data (the sample means) gives a new data collection. Basically, no
matter what the shape of the population data with which we start, the
distribution of the sample means will converge to a normal curve. That
observation, known as the central limit theorem, is one of the core
insights on which statistical inference is based.

Outline

I. The most famous shape of distributions is a bell-shaped curve, called a
Gaussian, or normal, distribution. The best introduction to the normal
curve is to just look at examples.

A. Example 1: Heights of men in the United States.

B. Example 2: Heights of women in the United States.

C. Example 3: Major league batting averages in 1920.

D. Example 4: Major league batting averages in 2000.

E. Example 5: Average value of “poker” hands.

F. Example 6: Binomial distributions from the last lecture.

II. The term Gaussian celebrates the famous German mathematician Carl

Friedrich Gauss (1777—-1855). In 1801, Gauss was able to predict a future
position of the asteroid Ceres based on past measured positions.

A. The known observations (as with all measurements) included errors,

B. Gauss fit a curve to the observed data to minimize the error between
the curve and the known observations. This process involved looking
at the distribution of errors.

C. An old name for the Gaussian distribution is the error distribution.

I1. The Gaussian distribution arises not just as the distribution of errors in
measurements.
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A. Lambert Adolphe Jacques Quetelet (1796—1874) was the first to apply
the normal distribution in a setting other than errors.

B. In Sur 'homme et le developpement de ses facultes, essai d'une
physigue sociale (1835), Quetelet introduced the concept of the
average man (/ 'homme moyen).

1. For many characteristics of people, such as height, the histogram
resembles a bell-shaped curve.

2. Quetelet introduced the Body Mass Index (BMI).

IV. One reason that the Gaussian distribution arises so frequently is that many

times, the value we are measuring is the result of many small influences that
randomly increase or decrease the final value.

V. The normal distribution is bell shaped.

A. Two Gaussian distributions can differ in their means (centers). For
example, in the histograms of the heights of men and the heights of
women, the means of the two just shifted over.

B. Two Gaussian distributions can differ in their spread, as well. For
example, the batting averages in 1920 and 2000 are both approximately

normal curves with approximately the same mean but differing in their
spread or standard deviation.

V1. The normal distribution has a specific mathematical formula.

A. The normal distribution’s formula has a formidable and complicated
1 x—,uxz

look: : E_E[ % J

oN27

B. One interesting feature is that it contains both of the most famous
constants in mathematics, 1 and e.

C. It has two parameters, traditionally labeled by the Greek letters £ (mu)
and o (sigma).
1. Any particular choices for 1 and o (& > 0) determine a specific
distribution; that is, we would know its shape exactly.
2. Setting ¢ =0and o =1 gives the standard normal curve.

D. The number # is the mean of the distribution.

E. The number o is the standard deviation, which measures the spread.

F. If we know the standard deviation in a normal distribution, we know
exactly how all the data are spread around the mean.
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1. The proportion of the population whose values differ from the
mean value by less than o is 68%. This is frue for a Gaussian
distribution that is very tight ( & is small) or for one that is spread
out ( o is larger).

2. The proportion of the population whose values differ from the

mean value by less than 2 times ¢ is 95%. The 3- 0 proportion is
99.7%.

VIL. If we have a physical reason for expecting a certain kind of distribution,

then our challenge of getting a good summary of the data is reduced to
knowing the values of the parameters.

A. For example, let’s consider the heights of men. From experience with
such collections of data, we expect such heights to be distributed
normally.

B. Thus, knowing the values of the mean ¢ and the standard deviation o
gives us information about the population.

C. We can compare items in two different normal collections in a
meaningful way by measuring how many standard deviations each is

away from its respective mean; that number of standard deviations
away from the mean called the z-score.

VIII. Every binomial distribution with » at least 5 is bell shaped and is well

approximated by a normal curve.

IX. Approximations of the normal distribution arise when we start with any

shaped distribution and look at the distribution of averages of samples of a
certain size. We will illustrate this idea with an example using a standard
deck of cards.

A. Assign a value to each card: Ace=1,2=2,3=3.....,10= 10, Jack =
11, Queen = 12, and King = 13.

B. For each possible five-card hand in the whole deck, take the average
value of the cards in the hand.

C. Plot a histogram of all the possible average values.
1. Notice that it looks rather bell shaped.

2. The histogram is centered at the mean of the whole deck, which is
8

The central limit theorem says that starting with (almost) any distribution
(such as a Poisson distribution, or a binomial distribution, or a uniform
distribution), if we take many samples of size n, the distribution of the
average values of the samples will be approximately a Gaussian distribution
(assuming » is large).
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A. The standard deviation of the sample population will be the original
population’s standard deviation divided by the square root of n. This
fact will be useful in doing statistical inference.

B. The approximation gets better and better as the sample size n gets
larger and larger.

XI. In this lecture, we introduced the famous bell-shaped curve.

A. This normal, or Gaussian, distribution arises in many settings,
including heights of men, scores on tests, measurements, and sample
means.

B. If we start with any reasonable distribution and take the means of
samples of a certain size, the distribution of those sample means will be
well approximated by a normal distribution.

C. If we know the mean and standard deviation of a normal distribution,
then we know that about 68% of the data will be within one standard
deviation from the mean; 95%, within two standard deviations from the
mean; and 99.7%., within three standard deviations from the mean.

D. Talking about how many standard deviations a value is away from the
mean allows us to meaningfully compare different populations.

Readings:

Donald A. Berry and Bernard W. Lindgren, Statistics: Theory and Methods, 2™
ed.

David S. Moore and George P. McCabe, Introduction to the Practice of
Statistics, 5™ ed.

Questions to Consider:

1. Why would we expect to see a normal distribution of data if we looked at
50 measurements of the speed of light in careful experiments?

2. Suppose you have a data set that tells you the heights of men and you are
selling pants. Suppose you want to stock pants for a certain percentage of
men up to a given height. You consider a business plan calling for
accommodating men up to the 70™ percentile, the 80™ percentile, and the
90™ percentile. Would you need more sizes to move you from the 70"
percentile to the 80" percentile or from the 80" percentile to the 90"
percentile?
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Lecture Seven
Correlation and Regression—Moving Together

Scope: Describing relationships and cause and effect among variables is a
basic strategy for understanding the world. A statistical challenge is to
describe and measure how two variables, such as incoming SAT scores
and college GPAs, are related. Higher SAT scores correspond with
better GPAs in college; however, the SAT scores do not cause higher
grades. In this lecture, we will introduce the ideas of scatter plots,
which give a visual sense of the relationships between two variables;
correlation, which gives a quantitative measure of the strength of the
linear relationship between two varying quantities; and /inear
regression, which produces a straight-line approximation for a set of
paired variables. We will also touch on the idea that more than one
variable might be involved in describing another variable. For example,
perhaps SAT score and high school GPA might together form a better
predictor for college success than either variable alone might do. Such
a situation introduces the idea of multiple regression.

Outline

I. A fundamental strategy by which we attempt to understand our world is to
identify cases of cause and effect.

A. Physics offers clear examples.

B. Everyday life and social situations have examples of cause and effect.

1. A person’s income seems related to the number of years of
education.

2. However, the education may or may not cause the extra income.

C. If a cause and effect relationship is operating, the manifestation is a list
of pairs of numbers.

D. In this lecture, we discuss how statistics can help determine whether in
a list of pairs of numbers, there is a relation between the attribute
measured by the first numbers and the attribute measured by the second
numbers. If the two move together, they are correlated.

E. The question of causation is outside the realm of statistics.

F. The first example we discuss involves SAT scores and college GPA.

II. The first step in determining whether two quantities are correlated is visual.

A. Let’s make a graph, called a scatter plot, in which the horizontal axis
represents one quantity and the vertical axis, the other.

1. For example, the horizontal axis could be SAT scores and the
vertical axis could be GPAs after the first year of college.
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2. For each student, we place a dot on the graph, horizontally
positioned as far to the right as the student’s SAT score and
vertically up as far as his or her GPA.

B. The cloud of dots generally rises as it goes to the right because, in
general, a higher SAT score is associated with a higher GPA.

III. We can quantify the extent to which two variables are related by giving a
number defining the correlation that summarizes the relationship.

A. If one quantity increases and the other quantity tends to increase, the
correlation is called positive, and the opposite is negative.

B. Unlike the scatter plot of SAT scores and GPAs, which demonstrates a
positive correlation, the scatter plot of two negatively correlated
quantities goes down as it goes to the right.

IV. To understand the formula for correlation, we consider the twe quantities
individually at first.

A. For example, we can compute the mean of the SAT scores and the

standard deviation of those scores and perform similar computations
for the GPAs.

B. We say that a data set is perfectly correlated if the distance from the
mean (measured in standard deviations) of one variable corresponds
exactly to that distance (again measured in standard deviations) from
the mean of the other variable.

C. The correlation is denoted r (or p [the Greek letter tho] ). It 1s
computed as follows:

1. For each member of the population (e.g.. student), take the
distance of the first variable (SAT score) from the first variable’s
mean in units of standard deviation (that is, take the z-score of the
SAT score) multiplied by the distance of the second variable
(GPA) from its mean, again measured in units of standard
deviation (that is, multiply by the z-score of the GPA).

2. [Essentially, take the mean of those products over all the students,
(Actually, we divide the sum by one less than the number of pairs.)

3. The formula for correlation, then, is:

i(x,--fJ %=y

i=1 & S},

 —
n—1
The correlation is a number between 1 and —1.
1. If the number of standard deviations from the mean of one variable
corresponds exactly to the same number for the other variable,
then the correlation will have value +1.
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2. In this case, the scatter plot will not be a cloud, but instead, all the
dots will lie on a straight line.

3. The correlation value is closer to zero if the dots are not as close to
lying on a single straight line.

V. The statistical measure of correlation is not quite what we might think.
A. Consider the data set {(1,1), (2,2), (3.3), (4.4). (5.5), (0,7)}.

B. The statistical correlation of the set of all six members has value 0.
Although five members of the data set are perfectly correlated, the
sixth member (0.7) is not at all aligned with the others.

V1. Measuring correlation can reveal some interesting associations, such as in
the 1969 Vietnam War draft lottery.

A. FEach of the 366 capsules containing possible birthdays was drawn out
of a container in a manner intended to be random.

B. We can make a scatter plot of the day of the year (numbered 1 for
January 1, 2 for January 2, and so on) versus the order drawn for the
actual 1969 drawing.

C. The scatter plot looks random, but computing the statistical correlation
gives a value that is statistically unlikely to have occurred by chance
alone. Perhaps the 366 capsules containing the birth dates were not
mixed thoroughly enough when they were placed in the container from
which they were drawn.

VII. We often summarize a scatter plot by a straight line.

A. [If the data set has a high correlation, the straight line will lie near most
of the points.

B. The straight line is a kind of summary of the data.

0

The line is called a linear regression line. It is a line that approximates
the data.
D. We can measure how well the straight line approximates the data set.

1. For each data point, its vertical distance from the line is called its
residual.

2. Squaring each residual and adding them up gives a measure of
how far the data points are from the line.

3. The line that minimizes the sum of squares of the differences
between the actual and predicted vertical values is called the /east
squares regression line.

VII1. Similar mechanisms are used when there are more than two variables.

A. Several explanatory variables can often make better predictions than
any single variable alone.
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B. When two or more variables are used to predict another variable, we
use multiple regression to summarize the situation.

IX. In this lecture, we’ve dealt with a population that has more than one
quantity (variable) associated with each member of the population.

A. We looked at the statistical correlation of any two variables.

B. We looked at regression, which is a way of summarizing data by
computing the best-fit line, plane, or higher dimensional analog of a
line or plane showing the predictive dependency of one variable on the
others.

C. The statistical concept of correlation helps us identify and quantify the
extent to which paired qualities of members of a population vary
together.

D. Statistical correlation indicates an association but does not prove that
there is a causal relationship between the variables. One of the misuses
of statistical information is to mistakenly infer cause and effect from
correlation.

Readings:

B. Bowerman, R. O’Connell, and A. Koehler, Forecasting, Time Series, and
Regression: An Applied Approach, 4™ ed., part 1I.

David S. Moore and George P. McCabe, Introduction to the Practice of
Statistics, 5™ ed.

Questions to Consider:

1. Think of several examples of data sets that you would expect to be
correlated but for which cause and effect would not be a reasonable
explanation.

2. The least squares regression line takes the x-coordinate of every data point,
takes the difference between the y-coordinate of the data point and the y-
coordinate on the regression line with that x-coordinate. squares those
differences, and adds them up. Suppose that we started with the y-
coordinate instead of the x-coordinate. Would we get a different sum of
squares? Does it matter which we choose? Why?
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Lecture Eight
Probability—Workhorse for Inference

Scope: Probability is the bridge between the two ideas of (1) describing data
when we know all the data and (2) inferring characteristics of the
whole population from a sample. Probability is the study of
randomness. Probability accomplishes the seemingly impossible feat of
putting a useful numerical value on the likelihood of random events.
Games of chance, such as dice and cards, form the historical
background and give a clear introduction to the idea of probability. Our
intuition about what to expect from randomness is often far from
accurate. We will see several startling examples in which our intuition
and reality are quite divergent. For the purposes of applications to
statistics, it is vital that we know with quantitative accuracy what
probabilities we should expect from randomness because the basis of
making inferences about statistical data usually amounts to comparing
two sets of data—what we would expect to get in a random situation
versus what we actually measure.

Outline

I. In this lecture, we introduce the concept of random processes and
probability.
A. Probability was introduced in the 17" century.
B. In 1654, the French gambler Antoine Gombaud, the chevalier de Méré,
posed a question about a gambling game to Blaise Pascal, who asked

Pierre Fermat. Pascal and Fermat introduced the basic concepts of
probability.

II. When every possible outcome of an experiment is equally likely, it is easy
to calculate the probability of an outcome.

A. If a coin is equally likely to land heads as tails when flipped, we say the
probability of heads i1s 50% (or 0.5).

B. For a fair die, the probability is 1/6 of rolling a 4, for example.

ITI. For cases where possible outcomes are not equally likely, the probability of
a possible outcome means the fraction of the time that the outcome will
occeur,

IV. Randomness becomes more subtle the more we think about it.
A. When flipping a coin, in what sense is the outcome a random event?

B. Once we let the coin go, physics determines what the outcome will be.
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C.

Interestingly, in quantum physics, the basic model of particles is
inherently probabilistic.

V. We humans have bad intuition about probabilities.

A.
B.

D.

The following is an example that is surprising to most people.

Suppose there are 50 random people in a room. What is the probability
that two of them will have the same birthday? The surprising answer is
that there is a 97% chance that two of them will have the same
birthday.

It is easier to compute the opposite possibility, namely, that no two of
the 50 people have the same birthday.

1. Imagine asking the people one by one for their birth dates.
2. To compute the probability that all the people have different
birthdays, you would multiply as follows:

365 364 363}{.”}{&:{].03.

X X
366 366 366 366

3. The product of all the fractions is about 0.03. Thus, the probability
that no two people have the same birthday is only about 3%.

Hence, the chance that two people do have the same birthday is about
07%.

V1. When two fair dice are thrown and summed, not all possible sums are
equally likely.

A.
B.

C.

Suppose you have a red die and a black die, and each is a fair die.

There are six ways of getting the sum 7: red 1, black 6; red 2, black 3:
and so on.

We can draw a histogram showing how many ways there are to get
each of the numbers 2 through 12. The histogram has a peak over the
value 7.

VII. When three fair dice are thrown and summed, the histogram of possible
sums is more peaked than the histogram for two dice.

VIIL To compare these histograms more easily, we rescale the histograms.
A. Think of a gas station with a peculiar way of setting the price for a

34

gallon of gas:

1. You'll pay between $1 and $6 dollars per gallon, determined by
throwing dice.

2.  You throw the dice and take the average of the values showing on
the dice. That is your price per gallon.

3. It is not the sum of the dice that we will now deal with, but rather,
we’ll deal with their average.
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IX.

=

We will draw the histograms not over the possible values of the sum
but over the possible values of the average (the sum of the dice divided
by the number of dice).

We rescale the vertical axis of the histogram to make the area of the
histogram 1 (i.e., 100%).

If we had four dice, we could likewise draw the histogram showing
what proportion of the possible ways four dice could land given each
of the possible average values of the dice. This histogram is more
peaked than the earlier histograms.

Likewise, the histogram for five dice is even more peaked.

If we do this process with 100 dice, the histogram would be even more
peaked.

Saying that the histogram is more peaked is saying that the standard
deviation is smaller.

A. In fact, the standard deviation for the case of 100 dice is 1/10 of the

B.

standard deviation for the case of a single die.

If we used 1 million dice, we would get an extremely peaked
histogram: The standard deviation would be only 1/1000 of the single-
die case.

The standard deviation decreases proportionately as the square root of
the number of dice increases.

The fact that the histogram becomes more peaked as the number of
thrown dice increases is really an illustration of the central limit
theorem.

If we consider any distribution, the distribution of the sample means will be
peaked (at least for fairly large sample sizes).

A.
B.

The peak will be near the mean of the population.

As the sample size gets larger, the standard deviation of the distribution
of the average value of the sample gets smaller. The histogram gets
more peaked.

The central limit theorem implies that for a fairly large sample size n,
the distribution of the sample means is close to the normal distribution
centered at the same mean as the population mean and with a standard
deviation approximately equal to the standard deviation of the original
distribution divided by the square root of n.

The central limit theorem is one of the workhorses of statistical
inference.
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XL In this lecture, we saw that probability gave us a number between 0 and 1

that measures the likelihood of a random event.
A. Probability can be effectively measured for many random events.

B. The most straightforward cases occur when there are equally likely
events, such as in rolling a fair die.

C. Especially important is that we can measure the probability distribution
of sample means; that is, we think about taking all samples of a certain
size and taking the averages of each sample. These sample means have
a distribution that is approximated by a normal distribution.

D. Inthe next lectures, we will see how our ability to understand

probabilities lies at the heart of the logic of statistical inference.

Readings:
E. T. Jaynes and G. Larry Bretthorst, eds., Probability Theory: The Logic of
Science.

David S. Moore, Statistics: Concepits and Controversies, 5t ed.

Questions to Consider:

1.

36

Suppose someone flips two coins, looks at the coins, and announces, “At
least one of the coins landed heads up.” What is the probability that both

coins are heads? You can perform experiments to confirm that your answer
1S correct.

Suppose there is a 50% probability of rain on each of Saturday and Sunday.
What is the probability that it will rain this weekend?
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Lecture Nine
Samples—The Few, The Chosen

Scope: With this lecture, we begin the investigation of how to infer features of

L

the whole population from information about just some of the members
of the population. A common scenario in which this plays out occurs
when a poll is taken to estimate what proportion of voters favor which
candidate. The poll asks a few hundred or a few thousand people which
candidate they prefer. That information is used to deduce what
percentage of the whole population will vote for one or another. The
backbone of this statistical analysis entails understanding the extent to
which the sample accurately represents the opinions of the whole
population. Many interesting and potentially problematic issues arise in
taking and using samples. We will see several examples of potential
sampling pitfalls, including bias, sample sizes that are too small, and
receiving dishonest responses to questions that may be controversial or
sensitive. Randomness is a key component of obtaining a
representative sample.

Outline

Recall that the structure of our course is to view statistical analysis as
having two basic parts: (1) how to describe, summarize, and organize a
collection of data if we know all the data and (2) how to infer information
about the whole population if we know only part of the data.

A. The term population refers to the whole collection of people or things
being considered.

B. A sample is a subset of the total population, whether people, auto parts,
or anything else we are investigating,

C. We want to infer information about the whole population from
information about the sample.

D. This lecture is about samples.

We might consider several techniques of drawing inferences about the
whole population.

A. We would like to know how the total population feels about something.

B. Because we cannot afford to ask everyone, we need to be content with
asking a subset of people.

C. We might think that in deciding exactly whom to ask, we should
carefully pick people with different specific traits.

D. However, the central characteristic of good sampling involves
randomness rather than intent.
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E.

1. [If we choose a sample randomly, we are likely to get opinions that
represent the whole population.

2. If we intentionally choose certain groups, that choice may reflect
biases we have about what sort of people are likely to have what
opinions, resulting in a sample that 1s not representative of the
whole population.

We would like the proportion of people in the sample who have a
certain opinion to be the same as the proportion of people in the whole
population who have that opinion.

ITL. One pitfall in sampling is bias.

Iv.

38

A.
B.
C.

H.

A famous example concerns the 1936 presidential election.
The Literary Digest took a major poll to determine who would win.

The Literary Digest sent out 10 million surveys and received 2.4
million replies.

Based on the surveys, the Literary Digest predicted that Landon would
win by a landslide, 370 electoral votes to Roosevelt’s 161.

The election was a landslide.

1. However, Roosevelt won, not Landon—3523 electoral votes for
Roosevelt to 8 for Landon.

2. Roosevelt received 62% of the popular vote in the election!

Obviously, the Literary Digest’s sample was not representative of the
population.

1. The Literary Digest used various lists of people, including their
own subscribers and owners of cars and telephones.

2. The Literary Digest poll was biased toward wealthy people, whose
opinions were not representative of the population at large.

George Gallup used a poll of 50,000 people in the 1936 election,
making a correct prediction of the election. Randomness was a key
feature in his sampling technique.

Randomness is a basic ingredient of essentially all standard statistical
techniques.

Another pitfall of the Literary Digest survey was that it was a voluntary
response survey: in other words, only those people who sent back the
surveys had their opinions counted.

A.

This pitfall is illustrated by a decidedly unscientific survey undertaken
by Ann Landers.

In response to a letter she received, she asked people whether, if they
had to do it over again, they would have children; 70% said no.

Subsequent surveys have shown that this result was completely
inaccurate.
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F.

1. A vast majority of people with children—a statically valid survey
estimated 91% —would have them again.

2. The collection of people who had read the Ann Landers question
and went to the trouble of replying was strongly biased toward
those who had a poor experience with child rearing.

Voluntary response polls can lead to results that present a totally
inaccurate view of the whole population.

The simplest way to get a sample that is likely to be representative of
the whole population is to just randomly pick a subset of the
population.

Thas 1s called a simple random sample (SRS).

V. Another potential pitfall of surveys is that people may lie, particularly if
honesty would be embarrassing or worse.,

A. Surprisingly, there is a way to get accurate results that can be done in a

public room. This method allows us to estimate the percentage of
students who cheat without revealing any particular student’s history of
cheating.

Here is the technique.

1. Ask every student to secretly flip a coin.

2. Ask everyone to raise their hand if they either threw a head or they
cheat.

3. Suppose we do this experiment with 1,000 students, and 800 raise
their hands.

4. We can estimate that about 60% of the students cheat because if
500 threw heads, then 300 of the 500 who threw tails cheated—
about 60% (300/500).

VI. In this lecture, we have introduced the idea of a sample from a population.

A. In taking samples, our goal is to obtain samples from which we can

B.

6

accurately infer information about the whole population.

That is, we want our samples to be representative of the whole
population.

Pitfalls to avoid in taking samples include avoiding biased samples and
being wary of results obtained from voluntary response samples.

We can obtain statistical information concerning sensitive information
by using clever techniques in which no individual needs to divulge
sensitive secrets.

The basic purpose of getting data from a sample is to infer information
about the whole population.

How that inference is made is the subject of the next lectures.
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Lecture Ten
Readings:

| David S. Moore and George P. McCabe, Introduction to the Practice of Hypothesis Testing—Innocent Until

| Statistics, 5™ ed.

Il Ann E. Watkins, Richard L. Scheaffer, and George W. Cobb, Statistics in Scope: Hypothesis testing is one of the most common statistical techniques
| | : § | used in education, psychology, social sciences, natural sciences,

jon: ; World of Data. = . S :
|i Action: Understanding a World of Data medicine, law, and every area to which statistics is applied. The

strategy is best illustrated with an example. Suppose we have a
promising new medicine that might be effective in curing athlete’s
foot. We gather 200 itchy people and treat 100 with the new ointment
and 100 with a placebo. If the new cream had no beneficial effect (the
null hypothesis), we would expect about the same number of people to

| Questions to Consider:

1. Why is randomness an important feature for selecting a good sample?

| Wouldn’t it be better to try to make sure that the sample is well balanced by
1l choosing a balanced profile? What are the pros and cons of that approach?

| | 2. Devise a technique using two coins for determining an estimate of the be cured by the ointment as by the placebo. Suppose 80 cream-treated
It fraction of students who cheat without an observer being able to deduce of people are itch-free in a week and 60 placebo-treated people are itch-
| any particular student whether he or she cheats. free. Can we conclude that the cream is effective? To measure the

i strength of the evidence, we compare the data obtained from our

| experiment to the data that are predicted by an appropriate sampling
distribution. Using results from probability, we can quantify the
likelihood that the data we collected were the result of luck alone. In
this lecture, we explain this rather subtle strategy that lies at the heart
of all statistical inference.

Outline

Il I.  This lecture describes hypothesis testing, the most commonly used
1 ‘ procedure in statistical inference.

A. The strategy of hypothesis testing is to make a hypothesis, called the
null hypothesis, that the world is a certain way, then to do an
| i experiment,

B. If the result of the experiment would be very unlikely if the world were
as hypothesized, we conclude that we have gathered strong evidence
that the world is not as hypothesized, and we reject the null hypothesis.

II. We'll first describe how hypothesis testing works in an example.

A. Our null hypothesis is that if we spin a penny, it has a .5 probability of
landing heads up.

I B. At the end of the whole hypothesis testing process. the crux of the
i decision of whether to reject the null hypothesis or not depends on
quantifying how rare different possible outcomes of the experiment
are.

| C. Thus, we need to investigate the possible outcomes of the coin
| experiment and how likely or unlikely each possible outcome is.
|

1. We will spin the penny 100 times.
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2. Under our hypothesis, all possible outcomes are equally likely
because each spin’s landing is independent of that of the other
Spins.
D. We can make a graph in which the x-axis (the horizontal axis) tells
how many heads are in the outcome and the y-axis tells how many of
all the possible outcomes have exactly that many heads.

1. The graph has a bell shape.
2. The curve is an approximation to a normal distribution centered at
50.

II1. Next, we do the experiment and analyze the results.

A. We spin the coin 100 times. The result was 39 heads.

B. We can look at the graph to see where the value 39 fits. The height of
the curve over the value 39 and more extreme values is, visually
speaking, essentially 0.

1. The probability of getting that value or a value further from the
mean is called the p value. It is the probability that under the
assumption of the null hypothesis, an outcome as rare as (or rarer
than) the actual outcome would happen.

2. The smaller the p value, the more extreme the outcome.

C. Our intuition that the result of the experiment is strong evidence
against the null hypothesis is quantified and confirmed by the fact that
the p value is very small.

D. Under the assumption of the hypothesis, the computations show that
the probability of getting the experimental results is very low; thus, the
experimental results are strong evidence for rejecting the null
hypothesis.

E. The phrase reject the null hypothesis is the way of saying that the
hypothesis about the world is unlikely to be true.

|| IV. Another example of hypothesis testing occurs if we are trying to determine

whether or not a particular medication works by giving some people the
medication and some a placebo and seeing whether there is a significant
difference in the number who recover.

A. For our experiment, we’ll take 100 people, all with athlete’s foot, and
have them use the medication for a week. After the week, we count
how many people are free from athlete’s foot.

B. Assume that we know that 40% of the time, a person’s athlete’s foot
will disappear in a week without any medication. Thus, our null
hypothesis is that each person has a 40% probability of cure with or
without the medication (i.e., the medication has no effect).

C. We'll take as the alternative hypothesis that the probability of cure for
people using the medication is different from 40%.
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D.

We also decide how extreme a result of the experiment will have to be
for us to reject the null hypothesis.

1. Our required significance level is 0.05, meaning that if the results
of the experiment are so extreme that under the assumption of the
null hypothesis, only 5 out of 100 experiments would vield a result
that extreme or more extreme, we will reject the null hypothesis.

2. In other words, if the p value is less than the significance level, we
will reject the null hypothesis.

3. We call such a result sratistically significant. In the field of
statistics, significant does not mean “important.” Rather, it simply
means that the significant item or event signifies something.

Suppose that 51 of the 100 people who used the medication are free
from athlete’s foot.

1. In this case, the calculation gives the p value of 0.032, quite small.

2. We conclude that it is very unlikely that the medication had no
effect.

3. Because the p value of 0.032 is less than the significance level of
0.05 that we specified before we did the experiment, we reject the
null hypothesis.

V. As another example, consider the question of whether the typical American
male adult consumes an average of 2,400 calories each day.

A.
B.

We ask 25 American adult males, and they average 2,500,

Unlike the previous examples, knowing just the sample mean is not
enough information. We also need to know something about how
spread out the population’s eating habits are, that is, the standard
deviation of the population.

1. [Ifthere is a huge variation from person to person in number of
calories consumed, then the difference between the sample mean
of 2,500 and the null hypothesis of 2,400 is not as significant.

2. The sample responses themselves give some information about the
standard deviation of the population.

Let’s suppose that the sample standard deviation (i.e., the spread in the
25 responses) is 270 calories.

There is a distribution, called the Student’s t distribution, that applies to
the case with which we are dealing in this example.

1. The t distribution applies when the population distribution is
normal or when the sample size is large, but where we don’t know
the standard deviation.

2. This time, we compare our experimental results to expectations
about the t distribution.

The general idea is exactly the same as in the previous examples.
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1. We do a calculation, based on the t distribution, that determines
how extreme our sample is, assuming the null hypothesis is true.

2. It turns out that a sample of mean 2,500 calories and standard
deviation 270 calories is not extreme, assuming the null hypothesis
of 2,400 calories and requiring a 0.05 level of significance.

3. The p value is 0.085, greater than 0.05.

4. We do not reject the null hypothesis. That is, the data would not
warrant a conclusion that the average number of calories
consumed by an American adult male is different from 2,400.

V1. This lecture has been on hypothesis testing, describing the strategy and
some terminology. The steps are as follows:

A.

State a hypothesis about the way the world is. The hypothesis is called
the null hypothesis and is often the opposite of what we actually think
might be true.

State an alternative hypothesis. In the case where the null hypothesis is
that the probability of something is a certain value, three standard
possible alternative hypotheses exist:

1. The probability is different from the value stated in the null
hypothesis.

2. The probability is greater than the value stated in the null
hypothesis.

3. The probability is less than the value stated in the null hypothesis.

Declare what level of significance we require to reject the null
hypothesis.

Do the experiment, gather the results, and compute the probability that,
under the assumption of the null hypothesis, the results would be as
extreme as (or more extreme than) the result we actually obtained. This
gives a p value.

If the result is rare (p value smaller than our required level of

significance), then we assert that the results are statistically significant,
and we reject the null hypothesis.

1. Rejecting the null hypothesis means concluding that it is false.

2. Rejecting the null hypothesis also means concluding that the
alternative hypothesis is true.

If the result is not rare (p value larger than our required level of

significance), then we do not reject the null hypothesis.

This style of reasoning, comparing a hypothesized state of the world
with the experimental data that we gather, 1s a fundamental strategy of
statistical inference.
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Readings:
Vic Bamett, Comparative Statistical Inference.

E. T. Jaynes and G. Larry Bretthorst, eds., Probability Theory: The Logic of
Science.

David S. Moore and George P. McCabe, Introduction to the Practice of
Statistics, 5™ ed.

Questions to Consider:

1. Suppose in reality a medication cures 1% more people than a placebo does.
Could a hypothesis test ever find statistically significant results that
determine that such a medication works?

2. In a hypothesis test, it is customary to use a p < 0.05 level for statistical
significance. Why wouldn’t we instead use a p < 0.5 level, arguing that

such a result would imply that the null hypothesis is more apt to be wrong
than right?
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Lecture Eleven

Confidence Intervals—How Close? How Sure?

Headlines at election time frequently trumpet, “Candidate A will
receive 59% of the vote with a margin of error of + or — 3%.” In this
lecture, we will see what such a statement means and why it is
incomplete as written. The actual meaning uses the same subtle
reasoning that we encountered in hypothesis testing in the previous
lecture. The meaning boils down to trying to ascertain how confident
we are that the data about our sample (the poll) do, in fact, accurately
reflect the facts about the whole population. A key to both confidence
intervals and hypothesis testing comes from the central limit theorem,
which tells us how likely it is that the mean of the sample is close to the
mean of the population.

Outline

I. One of the most common statistical statements that we read in the
newspapers will say something like, “Candidate A will receive 59% of the
vote with a margin of error of 3%.” In this lecture, we’ll see what such a
statement means and why it is incomplete as written.

II. Suppose there is an election coming up between two candidates, A and B.

A,
El‘

L

Imagine that we find out how 1,000 random people will vote.

What we really want to know is how the population of perhaps 100
million voters will vote.

The topics of this lecture are the concepts of confidence intervals and
margin of error. Namely, what can we conclude from the information
we learn from the 1,000 people about the 100 million people?

We have actually done the substance of this whole analysis before.
This repetition is intentional because this idea is so central to statistical
inference.

ITI. Now, let’s start our analysis.

A.

B.

46

Suppose we choose 1,000 people at random.

1. The 1,000 people we choose may, by luck, have a larger or smaller
percentage who will vote for A than the percentage in the
population.

2. This lecture gets at the question of what the probability is that the
percentage of people for A in the sample will be “close to” the
percentage of the population for A and what “close to” means.

If we ask 1,000 people and 59% of them will vote for A, then we know
that 59% of the people in the sample will vote for A.

©2006 The Teaching Company Limited Partnership

C. But how confident can we be that the whole population percentage that

will vote for Candidate A is close to 59%?

IV. To get across the ideas, we’ll consider the exaggerated situation in which
we ask only 10 voters instead of 1,000.

A. We can make a graph, putting on the x-axis (the horizontal axis) the

numbers 0, 0.1, 0.2, ..., 1.0, each being the percentage of the 10-person
sample that is for A, and for each such makeup of A supporters, draw a
point whose height is the percentage of the possible groups of 10
people that would have that makeup.

From these calculations, we see that there is a significant chance that a
group of 10 people chosen at random will have a makeup (that is, a
certain percentage for Candidate A) significantly different from the
general population’s percentage of 60%.

V. Now, let’s do the same analysis with larger samples.
A. As we choose larger samples, 100, then 1,000, then 10,000, the graphs

B.

become increasing more peaked, always centered close to the
population’s true mean, which we will assume is 60%.

For a sample of size 1,000, the vast majority of samples of size 1,000
have a percentage for A that is very close to the population’s 60%.

VL. We can now explain what is meant by the report: “The poll shows that
Candidate A will receive 59% + or — 3% of the votes.”

A,

=

E.

F.

It means that the poll has taken a sample of sufficient size so that we
are 95% confident that the actual population percentage of voters for A
lies in the range 56% to 62%.

The 95% is called the confidence level.

It is traditional that if no confidence level is explicitly mentioned in
reporting a poll’s result (or any other result of some measurement) as a
value plus or minus a margin of error, then 95% is understood.

The range reported is called a 95% confidence interval.

If we want to be more confident than 95% that the interval we report
contains the population’s true value, we need to report a larger interval.

Another way to be more confident is to use a bigger sample size.

VII. Mathematical analysis can tell us how big a sample needs to be.
A,

Recall that the central limit theorem tells us that the standard deviation
(which is related to the width of the bell-shaped curve) declines by the
square root of the sample size.

1. Taking four times as large a sample makes the standard deviation
half as large.

2. Larger samples give a tighter range.
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| i B. It turns out that to get a margin of error of 3% (i.e., to report a range of
|

percentages +/— 3%) at a confidence level of 95% requires a sample
size of about 1,200.

VIII. Notice that the required sample size does not depend significantly on the

size of the whole population if the population is large.

A. To do apoll in a municipal election with 100,000 voters requires the
same number of people in the sample as in a national election with 100
million voters to get the same size range with the same level of
confidence.

B. A random sample of size 1,200 in a poll of two candidates is large

enough for us to report a value to within 3 percentage points with 95%
confidence, no matter how large the population is.

IX. In the case of estimating the mean of a population with unknown variance,

the meaning of the confidence interval and its level of confidence is related
to the ideas of hypothesis testing discussed in the previous lecture.

In this lecture, we have learned why a headline of the form “Poll shows
Candidate A to receive xx% +/— yy%"™ is incomplete.

A. It has an unstated level of confidence of 95%.
B. It means that the method used to calculate the stated range will come

up with a range that contains the true population mean for 95% of the
possible samples used in the poll.

Readings:
Vic Barnett, Comparative Statistical Inference.

E. T. Jaynes and G. Larry Bretthorst, eds., Probability Theory: The Logic of
Science.,

David S. Moore and George P. McCabe, Introduction to the Practice of
Statistics, 5™ ed.

Questions to Consider:

1.

43

What is the relationship between making a histogram of all possible ways
of choosing 1,000 marbles from a collection of 100 million marbles, of
which 60% are white and 40% are black, and the probability of choosing
various percentages of supporters of Candidate A versus Candidate B if
60% of the voters are for Candidate A, if we take a random sample of size

1,000 from a voting population of size 100 million?

Suppose 100 polls are conducted, each of which has a confidence interval
of + or — 3%. How many of those polls would you expect to fail to contain
the actual voters” preferences?
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Lecture Twelve
Design of Experiments—Thinking Ahead

Scope: We have seen in the previous several lectures how we can interpret

data about samples to support or refute hypotheses about features of a
population. Often, experiments are undertaken for the express purpose
of obtaining a sample to analyze. The design of such experiments is
crucial to being able to make confident conclusions. One goal of good
experimental design is to be able to separate influences of factors that
are not of interest from those that are. Other goals are that the sample
represented by the subjects of the experiment be representative of the
population intended for inference and that the amount of data obtained
allows us to make confident inferences. Practical considerations, such
as cost, add to the challenge of experimental design. This lecture
introduces such strategies as double-blind experiments as ways to meet
these goals and explores where randomness has a role in experimental
design.

Outline

I. In previous lectures, we’ve talked about statistical inference.
A. We've discussed random sampling, hypothesis testing, and the notion

B.

of confidence levels,

We want to design experiments so that the information we get is most
accessible to the mathematical analysis that will allow us to make
inferences of interest.

II. Ronald Fisher pioneered experimental design in the early part of the 20™
cenfury.

A. A famous case involving Fisher is told of a tea party where a lady

B.

claimed to be able to taste a cup of tea and tell whether the milk had
been poured in first, then the tea added or whether the tea had been
poured in first, then the milk added.

1. Fisher took 20 cups and paired them up.

2. In the first cup, out of sight of the lady, he randomly determined
(perhaps by flipping a coin) whether to pour tea first, then milk or
milk, then tea, and he used the opposite order for the second cup.

3. He presented the two cups to the lady, asking her to determine
which of the two cups had the tea poured first. He recorded
whether she was right or wrong.

4. He then repeated this experiment using the second pair of cups and
so on for a total of 10 pairs (20 cups).

This resulted in 10 data points (10 instances of “right” or *“wrong™).
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B. One problem with reality is that variables are not fixed. Maybe soil

C. The lady was reportedly correct each time—convincing evidence that varies from place to place in the same field. Trying to control all the

she could tell a difference.

II1. The context of the experiment and our beliefs and understanding of possible
causes or lack of causes influence how we interpret experimental results.

A. If we can think of no physical or chemical reason for a difference, then

variables may not be possible.

VII. When more than one variable is of interest, one approach to experimental
design is to deal with all possible combinations.

: : , : A. Suppose we’'re interested in three variables: kind of fertilizer, type of
we might be very skeptical of the result. For example, we might think EGEIP and soil type (hill or valley). P
that the lady saw how Fisher filled each cup, or that someone else told i _ + .
her, or that the “witness” wanted to make a good story. B. A good experiment, proposed by Fisher, is to alternate corn types row

But thinking further, one may be able to imagine a physical reason that
makes the difference a reality. For example, perhaps adding milk to hot
tea scalds the milk in a way that could be tasted.

If we can think of no possible physical difference that 1s potentially
detectable by the woman, then we might remain quite skeptical of her
abilities even after the experiment.

from an experiment:

[‘ IV. There are two types of ways we can go wrong in inferring a conclusion

50

A. A type I error is where we reject the null hypothesis when, in fact, it is

true,

B. A type Il error is where we do not reject the null hypothesis when, in

fact, it is false.

were some of the variables.

2. To confidently assign an effect to a kind of fertilizer, for example,
we need to be able to disentangle its possible effects from the
effects of the other variables.

V1. When focusing on one variable, one basic experimental design is to fix all
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by row, in both the valley and the hill, and alternate the kind of
fertilizer by pairs of rows.

1. The effect on an individual factor can be more easily seen. For
example, if all the patches using one kind of fertilizer did better,
regardless of the soil fype or corn type, then the fertilizer is
probably the feature that made the difference in the level of
growth.,

2. In designing an experiment, we want to avoid being in the position
of not being able to disentangle possible causes.

3. We want to avoid confounded variables.

VIII. In medical experiments, real effects often come from no physical cause,
and those effects must be taken into account when testing new medications;
that is, we need to consider the placebo effect.

A. The fact of a placebo effect makes testing of drugs more difficult. If we
V. Fisher began as a statistician at an agricultural research center. give some people a new drug for, say, curing the common cold, and
A. When he arrived, he found there was lots of information about crop they get over their colds more quickly than people who did not take a

yields, rainfall, fertilizer, and so forth, but the way the information had drug, was it the drug or the placebo effect that shortened the cold?

been collected made it difficult to draw useful conclusions from the B. Double-blind experiments avoid the placebo effect.

data. 1. The patient, the people who directly contact the patient or

Many of the variables involved were confounded with each other, administer the drug, and the people who make judgments on the

meaning several different aspects of the growing conditions were progress of the patient are all blind as to whether a real drug or a

changing at once, so it was difficult to tell which feature was causing placebo is being used for that patient.

what result. 2. Any possible psychological bias, intentional or not, is removed.

1. The kind of fertilizer, the kind of soil, and the amount of water C. Double-blind experiments are the gold standard, although the other

qualities of design are still important, such as random selection from
the population of who will be given the drug.

IX. The Hawthorne effect is another famous example of difficulty in
experimental design.

_ A. Studies were done of the Hawthorne Plant of the Western Electric
other variables. Company in Cicero, Illinois, between 1927 and 1932 to determine the
A. We can compare contrasting experiments involving two kinds of effect of lighting, humidity, and other factors on worker productivity.

fertilizer, for example, to see which one yields information from which : ; :
we can glean meaning. B. It was discovered that the mere fact of doing the experiments,

independent of which environmental factors were being changed, had a
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| significant positive effect on the workers’ ability to perform their tasks.
Perhaps workers liked the extra attention.

|l X. Lurking variables are another challenge to good experimental designs.
| Lurking variables are variables that aren’t being studied or controlled for
but that have an effect on experimental results.

| 1 A. For example, suppose that data show that married people in the
workforce typically have a higher income than unmarried people in the
, workforce.

I B. We might deduce that being married is a cause of higher income.

1. But thinking further, we realize that married people are, on
average, older: hence, they have been in the workforce longer.
2. Inthis case, age is a lurking variable.

C. Placebo effect and Hawthorne effect are also examples of lurking
Il variables.

_ |
"r' XI. The hallmarks of experimental design are as follows:

Il A. Control: Try to control all of the variables other than the one of interest
‘ or have a fixed number of variables operate independently of each
I other so that the results can be disentangled.

B. Randomization: Do not introduce your own bias during sample
selection.

C. Replication: Ensure that the experiment is replicable.

| XII. This lecture concludes Part I of this course. In the second part, we will look
ll: | at application areas of statistics, starting with Lecture Thirteen on the law.

| Readings:
| |I William S. Peters, Counting for Something: Statistical Principles and
|

Personalities.

David Salsburg, The Lady Tasting Tea: How Statistics Revolutionized Science
\in the Twentieth Century.

Questions to Consider:

| 1. In the lady tasting tea experiment, the lady was given 10 pairs of tea cups:
each pair had one cup into which the tea was poured first and the other cup
into which the milk was poured first. Do you think it would have been more
I or less persuasive an experiment if she had just been presented with 20 cups
of tea, half milk first, half tea first, and asked to decide each one?

2. What are some of the reasons that experiments about the effects of child-
il rearing techniques and the nature versus nurture debate are so difficult to
| conduct?
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Timeline

.. First weekly data collected on deaths in London.

...Beginning of official data collection on baptism,

marriages, and deaths in France.

...Beginning of the Parish Registry in Sweden.

...John Graunt publishes Natural and Political

Observations Mentioned in a Following Index
and Made upon the Bills of Mortality, which
inifiated the idea that vital statistics can be used
to construct life and mortality tables for the
relevant population.

... First modern national demographic census

(conducted in Canada).

...Jacob Bernoulli publishes the law of large

numbers, a mathematical statement of the fact
that when an experiment is repeated a large
number of times, the relative frequency with
which an event occurs will equal the probability
of the event.

... Bdmund Halley publishes Estimate of the

Degrees of Mortality on Mankind, which
contained the mortality tables for the city of
Breslau, Poland. It was one of the earliest works
to relate mortality and age in a population and
was highly influential in the future production of
actuarial tables in life insurance.

...Nicholas Bernoulli edits and publishes Ars

Conjectandi (The Art of Conjecture), written by
his uncle, Jacob Bernoulli, in which the work of
others in the field of probability was reviewed
and thoughts on what probability really is were
presented.

... SIr Isaac Newton publishes The Chronology of

Ancient Kingdoms Amended, in which he gives a
65% confidence interval for the length of a
king’s reign.

..Abraham de Moivre publishes an account of the

normal approximation for the binomial
distribution for a large number of trials. This
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Meaning from Data: Statistics Made Clear

Scope:

A statistical fact: On average, each American has one testicle and one ovary.

Should we take cholesterol-lowering medication? Evidence for and against is
presented to us in the form of data and statistical conclusions. Should we buy
stocks or sell? Much of the information we use to make the decision is based on
numerical data. Will it rain tomorrow? Will the real estate market rise or fall?
How good a student will Mr. Jones be, if admitted? Should we buy lottery
tickets when the jackpot gets really big? Should a coach leave a player in the
game when he’s in a slump? How can we tell if gender discrimination
influenced college admissions procedures? Trying to understand the economy,
the weather, school systems, grading, the quality of products, risk,
measurements of everything, social trends, marketing, science, and most
practical aspects of our world fundamentally involves coming to grips with data.

The trouble with data is that data do not arrive with meaning. Data are value-
free and useless or actually misleading until we learn to interpret their meaning
appropriately. Statistics provides the conceptual and procedural tools for
drawing meaning from data.

Analyzing data correctly is one of the most powerful tools that we have for
understanding our world. But it is a two-edged sword. Mark Twain attributed to
Benjamin Disraeli perhaps the most famous quip about statistics: “There are
three kinds of lies: lies, damned lies, and statistics.” But an apt rejoinder is: “It
is easy to lie with statistics, but it is easier to lie without them.” In this course,
we will see the two sides of data—their uses and their misuses.

We will learn basic principles and ideas of statistics and understand how they
can bring meaning to data. We will learn about probability and the central role it
plays in understanding the meaning of statistics. One of the great ideas of
modern quantitative analysis of our world is that the uncertain and the unknown
can be described quantitatively. Random events show global trends in the
aggregate, and probability and statistics can help us describe and measure those
trends.

We present statistics by isolating two major challenges: (1) How can we
describe and draw meaning from a collection of data when we know all the
pertinent data? (2) How can we infer information about the whole population
when we know data about only some of the population (a sample)? These two
questions form the structural backbone of our approach.

The challenge of describing a collection of data when we know all the data
arises, for example, when we have complete records of all students who have
ever attended a given university. We know the incoming Scholastic Aptitude
Test (SAT) scores and high school class rank of all students, and we know their
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grade point averages (GPAs) on graduation. We can ask and answer many
questions regarding those data. Perhaps we would like to know some summary
information, for example, the mean GPA or the range of SAT scores. Maybe we
would like to describe how well the SAT scores and high school rank-in-class
predict the students’ future performance. Describing income data, age data,
sports statistics, and a myriad of other examples all present us with the challenge
of taking a mound of figures and assembling them in a fashion from which we
can glean meaning.

The second challenge is the challenge of statistical inference. Suppose we take a
poll of 1,000 voters before an election to find out how they will vote. We really
want to know how the 100 million voters will vote in the next election. How
confident can we be that the opinions of the 1,000 voters we ask really do reflect
the opinions of the 100 million voters who will vote in the election? That is one
of the challenges of statistical inference. Predicting the future weather given
information about past weather, deducing whether a new drug is efficacious,
guessing the future performance of the stock market, and doing scientific
experiments on a few mice and drawing conclusions about all animals are all
examples of the statistical challenge of inferring conclusions about the whole
population when we have information about only a sample of the population.

Part I of this course, Lectures One through Twelve, introduces the concepts of
statistics. Typically, several different application areas are used to illustrate each
statistical concept. Part II, Lectures Thirteen through Twenty-Four, is organized
by application area. Typically, several different statistical concepts are
introduced and used in each application area. Both parts of the course are full of
interesting and entertaining examples from all corners of our world—business
and economics, medicine, education, sports, social science, and many more
areas, I'or example, we will see how statistics was used to estimate the number
ol German tanks in World War I from the serial numbers of captured tanks, and
we will see how a statistical analysis provides strong evidence concerning the
disputed authorship of 12 of The Federalist Papers. Statistics offers unrivaled
scope lor connecting inherently intriguing mathematical ideas to the real world.

A lypical statistics course in college emphasizes various technical tests. Students
emerge with the impression that statistics amounts to plugging data into a
lormula. Although we will introduce important statistical formulas, this course
emphasizes the logical foundations and underlying strategies of statistical
reasoning. We describe why randomness lies at the heart of statistical reasoning.
We explain what it means when the headlines blare, “Candidate A to get 59% of
the vote with a + or — 3% margin of error.” We differentiate between
statistically significant and significant.

Our goal is to convey an authentic understanding of one of the most useful,
powerful, and pervasive modes of reasoning employed in the world today. We
will see why statistics will become increasingly important as technological
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advances continue to bring larger data sets and more detailed techniques of
analysis within the range of practicality.

Note: Although the data used in this booklet are often real, some have been
created to illustrate particular statistical concepts.
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B.

Scope:

Lecture Thirteen
Law—You’re the Jury

The law provides many examples of instances in which statistical data
and inferences are central to the decisions being made. We'll look at
two main examples of courtroom drama where we imagine ourselves
on the jury. We’ll present the facts, and i1t will be up to us to determine
what conclusions are appropriate to draw. We begin with a hit-and-run
accident. The star witness gives crucial testimony with a high degree of
credible confidence. But our interpretation of the significance of the
testimony requires a little more thought. By viewing the witness’s
observations as a sample, we can understand the significance of the
evidence in a quantitative way. The second courtroom example
involves a gender-discrimination case. Do the data support an
allegation of illegal discrimination on the basis of gender or do the data
suggest a mere random association with gender? This example
illustrates a surprising statistical anomaly known as Simpson’s
Paradox.

Outline

I. This lecture begins the second part of the course, in which we look at
applications of statistics to different situations and subject areas. This
lecture deals with the law.

A. Statistical data and inferences are used frequently in the law and in

making legal decisions.

We will present the evidence; you determine the verdict.

II. Case 1 is a hit-and-run accident.

A,

B.
C.

Mr. Jones witnessed a hit-and-run accident involving a cab.
Mr. Jones stated that he thought the cab was blue.

The jury has come to the conclusion that a guilty verdict hangs on
whether or not Mr. Jones’s testimony implies that the probability that
the cab was blue i1s over 50%.

1. We did some experiments to determine how accurate Mr. Jones’s
vision was. He was able to correctly identify the blue cabs as blue
80% of the time and the green cabs as green 80% of the time.

2. The prosecutor summarized the situation by saying that Mr. Jones
is 80% sure the cab was blue; therefore, the jury should convict.

Some additional information was presented:
1. There are exactly 100 cabs in the city.
2. 90 are green cabs and 10 are blue.
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3. Let’s do the following thought experiment: Suppose instead of
having one accident, all 100 cabs in the city simulated this
accident. Each one did it once. How many times would Mr. Jones
have testified that the cab was blue?

4. TFollowing the logic, we see that he would testify “blue” 26 times,
but only 8 of those times would the cab actually be blue.

I11. Another case that demonstrates the same statistical issue about testing for
rare events arises when considering random drug testing in a company.

A.

Suppose the company has 280,000 employees, of whom 500
employees actually use the illegal drugs that are the target of this

policy.
Suppose the drug test will correctly read positive for 95% of people

who actually use those drugs; thus, 475 employees who use drugs
would receive a positive test result.

Now suppose that the test gives a false positive 1% of the time; of the
279,500 employees who do not use drugs, 1% will get a false-positive
result. That is, the drug test will read positive for 2,795 employees who
do not, in fact, use drugs.

The total number of employees whose drug tests are positive will be
475 + 2,795 = 3,270 employees.
1. Therefore, if an employee gets a positive test result, his or her
475
3270

2. Thus, there is a great danger of inappropriate firings or accusations
based on positive drug testing.

chance of actually using drugs is . or less than 15%.

IV. We now turn to gender discrimination.

A

B.

To determine discrimination by gender, race, religion, or age, it is
natural to look at data about treatment of specific groups.

Let’s consider a case of admissions to a program at a university. For
the purposes of this example, let’s assume that 1,000 men applied and
1,000 women applied to the program and that all 2,000 applicants had
exactly the same qualifications. Here are the facts:

There was a 70% acceptance rate for the men and only a 40%
acceptance rate for the women.

1. It appears that the women were clearly discriminated against, and
of course, we are outraged.

2. The chi-square test can identify the acceptance rate you would
expect from random chance alone.

But let’s look at the case more deeply. Suppose the total program to
which the 2,000 applied actually had two subprograms.
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1. One subprogram was an Excellent Program to which 200 men
applied and 800 women applied.

2.  The other subprogram was a Mediocre Program to which 800 men
applied and 200 women applied.

Of the 200 men who applied to the Excellent Program, 20% were
accepted.

Of the 800 women who applied to the Excellent Program, 25% were
accepted.

In the Mediocre Program, 800 men applied and 82.5% were accepted,
while 200 women applied to the Mediocre Program and 100% were
accepted.

In each subprogram, a higher percentage of women were accepted.
This situation is an anomaly, because overall, it appeared that the
women were being discriminated against; however, looking at the
subprograms we see a different picture.

This scenario is an illustration of a phenomenon known as Simpson’s
Paradox, that is, a situation where both subprograms indicate that the
women are being treated better, yet overall, the men appear to be
treated better.

V. Given that the women actually had a higher acceptance rate in each
subprogram, let’s think about how we would decide whether the differences
in acceptance rates are serious enough to be viewed as clear discrimination
or whether the differences could be reasonably accounted for as the result
of simple random luck.

A. Let’s look at a table that records the data:
Excellent  Accept Reject Total Accept
Program Rate

Men 40 160 200 20%

Women 200 600 800 25%

Total 240 760 1,000 24%

Mediocre Accept Reject Total Accept
Program Rate

Men 660 140 800 82.5%

Women 200 0 200 100%

Total 860 140 1,000 86%
B. How rare an event would it be to have one acceptance rate as much as

5% less than the other?
6 ©2006 The Teaching Company Limited Partnership

C.

To determine how surprised we should be at getting a 5% difference in
acceptance rates, we can look at a normal probability curve that tells us
the probability of different deviations.

V1. The gender discrimination case illustrated a statistical anomaly known as

Simpson’s Paradox.

A.

B.

Simpson’s Paradox is an example of a possible effect of a lurking
variable.

In that case, the lurking variable was the existence of the subprograms.

VII. Two other examples of legal issues arose during the O. J. Simpson trial.

A.

E.
F.

After evidence had been presented that O. J. had been guilty of wife
beating, his lawyer, Johnnie Cochran, presented evidence that only 1 in
1.000 wife beaters went on to kill their wives.

Given that O.J. beat his wife, Cochran argued, there is only a 1 in
1,000 chance that he went on to commit the murder.

There are two fallacies here. The first regards the relative frequency of
murders by wife-beaters compared to murders by non-wife-beaters.

1. The fact that 1 in 1,000 wife-beaters go on to murder their wives
needs to be compared with the rate of non-wife-beaters who
murder their wives.

2. The rate of murder among non-wife-beaters is much smaller than

among wife-beaters; thus, evidence of wife-beating increases the
likelihood of murder relative to others in the population.

The second fallacy in Cochran’s argument is that a wife was actually
murdered. The relevant question would be, if a wife is murdered, what
is the probability that she had previously been beaten?

The idea of using wife beating as exculpatory evidence is ridiculous.

Statistics never proves ridiculous conclusions.

VIIIL. Another statistical issue about trials is the following: DNA evidence is not
in itself damning if the DNA was used to find the culprit.

A.

B.

Suppose everyvone’s DNA were on file. A crime is committed, and the
perpetrator’s DNA is found on the scene. One out of a million has a
specific matching DNA type. The data bank is combed. and someone
matching the DNA type is arrested. At the trial, the prosecutor says,
“There is only a one in a million chance that the DNA type would
match.” But that is bad reasoning, because DNA type was used to
arrest the person.

Instead, if there are 10 in the large city with that DNA type, then the
probability of guilt would be only 1 in 10.

IX. The law provides many opportunities in which statistics plays a significant
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role in the dispensation of justice.

Lecture Fourteen

A. In this lecture, we saw how a witness’s testimony was not as o i

compelling as it at first appeared. | Democracy and Arrow’s Impossibility Theorem
B. We saw that universal or random drug tests present problems because | s "

of false positives. Scope: The most fundamental idea of democracy is that the government

G s ds to the will of th le. Usually, the will of th le i
C. In the gender-discrimination case, we saw an example of Simpson’s responds to the will of the people. Usually, the will of the people is

; ji : ool el S ¢
Paradox; we also saw how the principles of hypothesis testing helped ascertained through voting. An election takes the individual opinions o

- . o el _ each voter and assembles those many opinions into one societal
5 eI e R 10 TR Ve QL QisLERIINALORY, PEACIICes D 10\, decision, the election winner—the will of the people. In this lecture, we

il D. In the next two lectures, we turn to statistical anomalies involved with will consider an unfortunate and counterintuitive reality about the

| voting. election process. An election’s outcome may have less to do with the

| voters’ preferences about the candidates than with the voting method
Readings: employed. A method by which the voters’ preferences are combined to

determine the winner is a means of making a statistical summary of

_ data. We will see that such summaries are fraught with peril. Arrow’s
David S. Moore and George P. McCabe, Introduction to the Practice of | Impossibility Theorem proves that every election method has

Statistics, 5™ ed.

Donald A. Berry, Statistics: A Bayesian Perspective.

undesirable features.
uestions to Consider: :
< . Sl . . Outline
1. Suppose two eyewitnesses had identified the cab as blue in the car accident
case. What would be the probability that the cab was actually blue? Would - L. The most fundamental idea of democracy is that the government responds
you convict in that case? to the will of the people, but what do we mean by “the will of the people™?
2. Isit possible to devise an example in which a higher percentage of men A. An election takes the individual opinions of each voter and assembles
than women are admitted to a program, but upon looking at two those many opinions into one societal decision—the will of the people.
subprograms, a higher percentage of women are accepted than men in both B. We will see that that idea has some serious inherent difficulfies.
subprograms, and upon looking at two sub-subprograms in each of the b : : S . s
subprograms, in all four sub-subprograms, the men have a higher C. From a statistical point of view, an election is a process of summarizing
acceptance rate than the women? a set of data.
D. In this lecture, we will consider two counterintuitive realities in the
election process.

| 1. First, the voters’ preferences about the candidates may have less to
do with an election’s outcome than the actual voting method
employed.

2. Second, every voting method is seriously flawed, and in some
sense, the only self-consistent voting method is a dictatorship.

E. These results about the election process provide a cautionary tale about
difficulties associated with summaries of data.

| II. Elections take the choices of each member of the population and return one
| societal choice.

A. At first, it seems there is nothing to discuss—an election is held;
whoever gets the most votes wins.

B. We will soon see that this method of voting, called plurality voting,
works great when there are two candidates.

8 ©2006 The Teaching Company Limited Partnership
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C. When a third candidate wades into the election, problems arise.

ITI. Let’s consider a municipal election among three candidates—two
Republicans and one Democrat.

A. In this city, let’s assume that Republicans prefer any Republican
candidate over any Democratic candidate and Democrats prefer any
Democratic candidate over any Republican candidate.

B. Let’s suppose that there are a few more Republicans than Democrats in
the city. In fact, to ground our discussion, let’s assume that there are
only 22 voters total—10 Democrats and 12 Republicans.

C. Suppose an important election is held and there are three candidates:
Ron Republican, Rick Republican, and Dan Democrat.

D. The voters’ preference orders are recorded in the following table:

V. Let’s see how the various candidates fare under these different possible
election methods and record the outcomes in the following table.

A. With plurality voting, we simply read across the top row of the
preference table. Dan is the winner using plurality voting.

B. With the vote-for-two method, we count how many voters put each
candidate in one of the top two rows. Rick wins using the vote-for-two
method.

C. To compute the Borda Count, we give 2 points whenever a candidate
appears in first place, 1 point for a second-place vote, and 0 for a third-
place vote. Ron wins using the Borda Count method.

Voting Method Ron Rick Dan Winner
Plurality 8 4 10 Dan
Vote-for-Two 16 18 10 Rick
Borda Count 24 22 20 Ron

Rank | 8 Republicans | 4 Republicans | 6 Democrats | 4 Democrats
prefer prefer prefer prefer
Ron Rick Dan Dan
g Rick Ron Rick Ron
g Dan Dan Ron Rick

E. Who should be declared the winner?

IV. There are several reasonable methods for determining the winner of an
election. Let’s introduce three of them in this situation.
A. Simply count the number of first-place votes.

1. First-place votes are, of course, the votes a person would get if
each voter just got to vote for one candidate, which is the usual
method.

2. This method of counting the votes is called plurality voting.
B. Another method would take into account the second-place preferences,
as well.

1. We could let each person vote for two candidates and declare the
winner to be the person who gets the most votes.

2. This vote-for-two method avoids electing someone who 1s viewed
as the last-place candidate by a lot of people.

C. The third method we will consider weights the preferences of the
voters. That is, each voter gives 2 points to his or her first-place
candidate, 1 point to the second-place candidate, and 0 points to the
third-place candidate.

1. This method is called a Borda Count.

2, Jean-Charles de Borda was a French scientist who was one of the
pioneers in the study of voting methods.

1 G000 The Teaching Company Limited Partnership

VI. The voting method determined different winners even though the voters’
opinions did not change.

VII. We have not considered all methods. Let’s now think about the possibility
of a run-off.

A. We can construct an example in which getting more support causes a
winning candidate to become a losing candidate.

B. Better is not necessarily better in a run-off method of voting.

VIIL Yet another method of voting is called pair-wise sequential voting.

A. The idea is that the candidates are put in some order, Candidate 1,
Candidate 2, Candidate 3, Candidate 4, and so on.

B. Then, an election is held between Candidate 1 and Candidate 2.
C. The winner then goes head-to-head against Candidate 3.

D. That winner then goes head-to-head against Candidate 4, and so on,
until we are through all the candidates.

E. This voting method can elect someone when every single voter prefers
a specific alternative candidate.

F. This method fails to go along with the consensus of all the voters.

IX. Here are three desirable characteristics that we would like to see in a voting

system:

A. Go Along with Consensus (Pareto condition): If everyone prefers one
candidate to another, the lower ranked one should not win. The pair-
wise sequential voting system fails this condition.

©2006 The Teaching Company Limited Partnership 11
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B. Better Is Better: If more people vote for a winner, that person shouldn’t
lose. The run-off method fails to have this feature.

C. Irrelevant Is Irrelevant: Suppose a candidate wins the election, then
some losing candidate is eliminated; the winner should not then
become a loser. Plurality fails this condition.

X. Arrow’s Impossibility Theorem proves that no voting method is possible
that satisfies the three desirable qualities:

A. Go Along with Consensus
B. Better Is Better

C. Irrelevant Is Irrelevant

D.

Arrow’s Impossibility Theorem makes us realize that the concept of
democratic choice is an intrinsically problematic issue. In the next
lecture, we will see that the situation, if possible, gets worse still.

Readings:
Donald G. Saari, Chaotic Elections! A Mathematician Looks at Voting.

Questions to Consider:

1. Track meets often score overall team winners by awarding perhaps 5 points
for first-place finishes, 3 points for second, and 1 point for third. In other
words, a Borda Count method is used, in which different weights are given
to the different places. Can you devise a list of voter preferences among
three candidates so that under the 2. 1, 0 weighting of votes for first,
second, and third choice, Candidate A wins, whereas with the 3, 3, 1
weighting, Candidate B wins?

Lecture Fifteen
Election Problems and Engine Failure

Scope: This lecture begins as a continuation of the previous lecture by looking

at some famous real elections in which we might wonder whether the
will of the people prevailed. The challenge of choosing an election
winner can be thought of as taking voters’ rank orderings of the
candidates and returning a societal rank ordering. An analogous and
mathematically similar situation occurs in a totally different setting.
Suppose we are trying to determine which type of engine lasts longest
among several competing versions. One statistical strategy for making
such a selection is to run several of each type of engine until they
expire, then to put the experimental results in order of longevity. Of
course, all is well if one type of engine always lasts longer than the
others. However, in reality, the correspondence of lifetime-to-type
might be less consistent. Combining those data into one choice of
engine with longest expected life incurs the same paradoxical
difficulties that we previously encountered in our analysis of elections.

Outline

I. In this lecture, we begin with a case study involving real data from an

important election.

A. Here is a chart that summarizes the voting preferences of the
population, giving for each candidate the percentage of the population
that ranked the candidate first, second, and so on.

2. Arrow’s Impossibility Theorem is often portrayed as a limitation on
democracy. How fundamental an issue do you find it with respect to the
concept of a society responding to the will of the people?

12
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Candidate | % of 1 | % of 2™ | % of 1+2 | % of 3 | % of 1+2+3
A 40 14 54 16 70
B 13 406 59 33 02
C 18 18 36 3 39
D 29 22 51 48 99
Total % 100 100 200 100 300

B. What follows is a summary of how well each candidate would have

done under each voting scheme.

1. In plurality voting, A would win.

2. In the vote-for-two scheme, B would win.

3. Using a run-off, D would win.

4. Using the Borda Count method, D would win.

©2006 The Teaching Company Limited Partnership
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II. What candidate do you think best represents the will of the people?
A. Many people feel that Candidate D is the best choice.

B. Before telling you who actually won this election, let me tell you that
this election was a presidential election; thus, there is one more column
to be added to the table, namely, the Electoral College votes.

1. Inthe Electoral College, Candidate A won handily with 180
electoral votes.

2. Interestingly Candidate C, who was not a contender in any of the
other schemes presented, actually received the second highest
number of electoral votes.

3. Perhaps now is the time to tell you what election this was: It was
the presidential election of 1860,

4. Candidate A is Abraham Lincoln, B is Bell, C is Breckinridge, and
D is Douglas.

C. The percentages of people who rated the candidates in second and third
places are estimates obtained from historians of the Civil War.

D. Itis intriguing to think about the consequences of the statistical issue of
how to summarize the data of the voters’ opinions.

Candidate | Plurality | Vote-for- Run-Off Borda Electoral
Two Count College

A 40% 27% 46% 164 180

B 13% 30% 165 39

L 18% 18% 92 72

D 29% 25% 54% 179 12

Winner A B D D A

ITI. We have seen lots of bad news about election problems. Now, if possible, it
gets worse. Next, we will discuss the Condorcet Paradox.

A. Let’s look at an example of an election among three candidates, A, B,

and C.
B. The following chart summarizes the views of the 30 voters about these
candidates.
Rank 10 Voters 10 Voters 10 Voters
' A B 3
T B C A
i ® A B
C. For every candidate, two-thirds of the people have a specific alternative
candidate whom they prefer.
14 ©2006 The Teaching Company Limited Partnership

D. We can produce even worse cases—with 10 candidates, for example,
when no matter who is declared the winner, there is a specific
alternative candidate who is preferred by 90% of the voters.

IV. Many people feel that if there is a specific candidate who would beat every
other candidate in a head-to-head contest, then that candidate, the
Condorcet winner, should be declared the victor.

A. Marie Jean Antoine Nicolas Caritat, marquis de Condorcet, wanted to
point out a weakness of the Borda Count method.

1. He did so by producing the following famous voters’ profile:

Rank 30 10 10 1 29 1
™ A B C A B &
> B 3 A C A B
- e A B B 2 A

2. B wins with the Borda Count.
3. But A is the Condorcet winner.

B. Thus, the Borda Count method does not always select the Condorcet
winner.

C. However, in a sort of voting theory double-reverse, recently, Donald
Saari has pointed out an interesting further analysis of this old
example.

1. If we first erased collections of voters whose votes canceled one
another, then B should win.

2. Perhaps the Borda Count method chose the right winner.

- lleli—

O | > |9 | 82

0
A
C
B

=y | | =
erlie-S Y l—

el 1rd b

D. This example shows again the subtleties of summarizing data
meaningfully.

V. The voting method was decisive in choosing the location of the 2000
Olympic Games.

A. The method used was plurality voting, in which the bottom-ranked
choice is systematically eliminated and the remaining cities are voted
upon.
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B. Here's what happened:

2,

Starting with five cities, in the first three contests, Beijing was the
victor,

In the final vote, Sydney won.

C. Sydney, not Beijing, hosted the 2000 Olympics.

City 1* Vote 2™ Vote 3" Vote 4" Vote
Beijing 7 37 40 43
Sydney 30 30 : 45-Win
Manchester 11 13 @

Berlin 9 9
Istanbul ¥

Eng.1 | Eng.2 | Eng.3 | Eng.4 | Eng.5 | Tota
1
A’s Failure 1 3 8 11 14 37
Order
B’s Failure 2 6 i 10 13 38
Order
C’s Failure 4 5 9 12 15 45
Order

D. The Kruskal-Wallis technique has defects similar to those we saw in
voting methods.
1. In this example, suppose we eliminate C’s engines.
2. Then, the recomputed Kruskal-Wallis test would indicate that B’s

VI. These voting paradoxes are examples of trying to summarize a set of data
that has reflections beyond voting.

A. Another example: How can we tell which of three engine brands lasts
longest?

B. There is variability among the engines produced by each of the three
contenders, of course, so we can’t just run one engine from each

engines are superior.

company and see which lasts longest.
C. Here is a method called the Kruskal-Wallis test.

1. We take several engines, say five for illustrative purposes, from

each company.

2.  We run all the engines until they fail.

3. We score the engines 1, 2, 3, ..., 15 based on how long they lasted,

with the longest lasting scored 1.

4. We add up the scores for each company’s engines.
5. The lowest number wins.

Eng.1 | Eng.2 Eng. 3 Eng. 4 Eng. 5
A’s Time to 1.137 903 472 256 207
Failure
B’s Time to 1,088 659 493 259 238
Failure
C’s Time to 756 669 372 240 202
Failure

16
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Eng.1 | Eng.2 | Eng.3 | Eng.4 | Eng.5 | Tota

1

A’s Failure 1 3 6 8 10 28
Order

B’s Failure 2 4 5 7 9 27
Order

E. All the examples in the last two lectures suggest that summaries of
complex situations require contextual arguments to decide among
them.

1. Statistical and logical analysis can help a great deal in choosing
which arguments to find most persuasive and which systems to use
in which settings.

2. Voting theory is an intriguing topic for further study.

Readings:
Donald G. Saari, Chaotic Elections! A Mathematician Looks at Voting.

Questions to Consider:

1. Strategic voting is encouraged when some people are better off voting for
someone they don’t really want in order to elect the ones they do want. In
which of these voting methods—the Borda Count, run-offs, plurality, vote-
for-two—is strategic voting encouraged? Are some methods more
susceptible to strategic voting than others?

2. A voting method we did not discuss much is approval voting, in which each
voter can vote for as many or as few candidates as the voter finds
acceptable. Many people find this an attractive system. What are the pros
and cons of this system?
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Lecture Sixteen
Sports—Who’s Best of All Time?

Scope: Analyzing sports statistics is a sport of its own. We record statistics
about the performances of individuals and teams, then use those data to
bolster our arguments about sports prowess. In this lecture, we will
examine a couple of statistical questions that illustrate principles
applicable well beyond their sporting origins. We will discuss the

| question: “Who is the best hitter in baseball history?” This question

| immediately presents statistical challenges that concern comparisons of

| performance in different eras and different circumstances. Next, we

will consider the question of streaks. Do athletes enter “the zone™ and
have a “hot hand” for periods of time? What is the correct

1 interpretation of slumps and streaks? Such questions force us to

-Ii confront our understanding—or misunderstanding—of what to expect

from randomness. The question, “What is random?” lies at the heart of
the issue of streaks and slumps.

I Outline

I. Statistics about sports are fun. They also help us to understand sports and
appreciate and evaluate the success of individuals and teams.

A. Statistics are useful in discussing relative performance and in making
managerial decisions.

1 B. Sports statistics form good illustrations of key statistical ideas.

I II. Who was the best hitter in the history of major league baseball?

A. This question forces us to clarify the relationship between what is
measured and what quality we are trying to describe.

1. The batting average is basically defined as the number of times the
batter gets a hit divided by the number of times he is at bat.

2. We’ll also assume that we mean the batting average over a single
season.

3. And we’ll ignore those players who didn’t have many at-bats over
the course of the season.

4. All of the 18 highest batting averages in a season in the history of
professional major league baseball occurred before 1942, Why?

B. We might suspect, for example, that batting averages in general, that is,
the averages of all major league players, were higher in the earlier
years of baseball than in recent years.

18 ©2006 The Teaching Company Limited Partnership

C.

Comparing the 1920 histogram to the histogram of batting averages in
2000, we find that the center, the mean, of the two is about the same
(about .265), but the 1920 histogram is more spread out.

1. The standard deviation of the 1920 data set is .050, larger than the
standard deviation of the 2000 data set, which 1s .038.

2. Recall that we expect 68% of the data to be within 1 standard
deviation of the mean and 95%., within 2 standard deviations of the
mean.

Comparing standard deviations away from the mean is a method of
normalizing the comparisons over the different eras. In a sense, it
measures how well a person performed relative to his contemporaries.

1. The number of standard deviations that a batting average is away
from the mean is not necessarily an integer. Every batting average
in any given year could be described by how many standard
deviations it is above or below the mean.

2. Recall that the number of standard deviations away from the mean
is the z-score.

One way to measure across eras would be to measure how many
standard deviations above the mean a batter’s average is.

1. For example, given that Joe Jackson of the Chicago White Sox had
a batting average in 1920 that is 2.36 standard deviations above the
mean for that year and that Moises Alou of the Houston Astros had
a batting average in 2000 that is 2.31 standard deviations above the
mean for the year 2000, we might consider those two players about
equally good batters.

2. They are about equally extreme outliers.

We could list the 10 batters whose batting averages were the greatest
number of standard deviations above the mean for their years and
declare a winner on that basis.

Stephen Jay Gould opines that pitching, fielding, and batting have all
gotten better over the years, and their approach to human limits of
perfection accounts for the lower standard deviation. Making an
interpretation such as Gould’s can be helpful in understanding the data.

III. Another complication to the question of who is the best hitter in baseball

history is the fact that doubles, triples, and homeruns are more valuable
than singles. Likewise, walks are not recognized, although extremely
important.

A.

Other measures of offensive prowess, such as slugging percentage and
on-base percentage, can be used.

©2006 The Teaching Company Limited Partnership 19
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B. People come up with various formulas combining these sorts of raw
statistics, attempting to get a measure that is highly correlated with
helping the team to win games.

IV. Our second statistical issue from sports is the question of the “hot hand.”

A. A commentator is often heard to say, “This player is on a streak. He
can’t seem to miss.”

B. Is there really such a thing as a “hot hand,” meaning that the player is
better for a period of time? Or are the streaks (which are real)
accounted for by random luck alone?

C. Suppose I flip a coin.

1. If I flip lots of coins over and again, there will be, from time to
time, long streaks of heads.

2.  We would not ascribe the streaks of H’s and T"s in the flipped
coins to some property that has changed in the coin for that time.

D. Likewise, if we have an NBA player whose lifetime percentage of
making a shot is, say, 0.4, we would expect him, just by randomness, to

have some intervals when he makes a fairly large number of baskets in
d row.

V. The question is whether the streaks that are seen for real basketball players
are explainable by randomness alone.

A. One possible way to analyze the question of whether streaks are
explainable by randomness alone is this: Suppose that when a player
makes a basket, his probability of making a basket on the next shot is
higher than his average.

1. Most real data of this sort do not indicate the reality of a hot hand.

2. As usual, our strategy 1s to compare the data that we find with
distributions of data that we would expect to arise from

randomness alone, that is, that would arise under the assumption of
no hot hand.

3. If the data are so extreme that they and their more extreme
versions would happen only rarely given the assumption of no hot
hand, we would take the data as evidence that there is a hot hand
phenomenon.

4. The statistical test used to measure rarity in this example is called a
chi-square test.

B. Inthe example considered in the lecture, the data were not sufficiently
extreme to reject the assumption of no hot hand. Thus, the data do not
warrant the conclusion that there is a hot hand.
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VL. Trying to distinguish randomness from some other cause is difficult.

A. There are many ways to look at a string of data and ask whether the
string is explained best as a random process or as a process that 1s
influenced by something internal to it.

B. There are many ways of looking for patterns.

C. There is room for interpretation.

VIL. These two examples of sports analysis have brought up many statistical
issues.

A. Trying to find the greatest hitter in baseball history brought up
questions about the relationship between what we measure, what we
want to know, and how to compare performances in different eras or
under different circumstances.

B. The hot hand issue brought up fundamental questions about the nature,
meaning, and measure of randomness.

Readings:
Jim Albert and Jay Bennett, Curve Ball: Baseball, Statistics, and the Role of
Chance in the Game.

Stephen J. Gould, Full House: The Spread of Excellence from Plato to Darwin.
Michael Lewis, Moneyball: The Art of Winning an Unfair Game.

Questions to Consider:

1. What method would you use to select the greatest athlete of the 20"
century? (I choose the 20™ century rather than all time because we would
not have much reliable data on earlier athletes.)

2. Ifrandomness with a certain probability really accounts for sports
performance, does that lessen the interest in watching sports? Would it
change the approach to sports psychology and the training strategies?
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Scope:

Lecture Seventeen
Risk—War and Insurance

In World War I1, the serial numbers on captured Mark V German tanks
were used to deduce the number of Mark V tanks produced altogether.
We will use that scenario to introduce a variety of methods of inference
and to analyze how different plausible methods might be compared for
expected accuracy. Risk closer to home occurs when we deal with
insurance. Insurance is an industry based on probability. In determining
whether buying an insurance premium or extended warranty on a
product is a good investment, we deal with the statistical ideas of
expected value and the distribution models of product lifetimes.

Outline

|’j L.  In World War 11, one of the challenges of the Allied intelligence officers

B.

A,

l B.

| C.
I D.

A.

B.

22

was to estimate the strength of the German fighting machine.
A. In particular, one wanted to estimate the number of tanks that the

Germans had manufactured and were using in battle.

During World War II, when a German tank was captured, analysts
noticed that the tanks had serial numbers and it appeared that the serial

numbers were consecutive, starting with 1 and increasing as each new
tank was built.

‘ Il. Statisticians approached the situation as a statistics question. We know
some information about part of the population, and we wish to infer
information about the whole population.

We assume there are a certain number of tanks in the German army,
numbered from 1 to V.

We assume that the tanks captured are a random sample from the
whole population of tanks.

We would like to estimate the total number of tanks.

We'll look at possible estimators, that is, methods or strategies for
calculating an estimate.

I1I. Let’s do a specific example. Suppose we’ve captured tanks whose numbers
’ are {68, 35, 38, 107, 52}. What estimate for the number of total tanks
would we make?

One idea might be to take the mean of the five numbers, double the
result, and subtract 1—giving an estimate of 119.

Another method for estimating the midpoint of the numbers 1 to N
would be to take the median value of the sample. Then, we would
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double that, giving an estimate of 104. This estimate is clearly too
small, because it is less than the number on a tank we actually
captured.

C. In fact, both of these strategies can produce an estimate that is less than
the highest numbered tank we have actually captured.

D. Another strategy for guessing the midpoint of the total tank numbers
would be to add the biggest and smallest numbers that we’ve captured

(107 + 35) and take their average (71).
1. We would double that average to get our estimate (142),

2. This method always produces a number bigger than the largest in
our sample. Thus, this estimator doesn’t suffer the previous
method’s flaw.

E. These various estimators each have some intuition behind them, but
there are actually other strategies that are superior.

IV. We’ll discuss what qualities different estimators can have in order to guide
our decision about which method, among reasonable-sounding methods, to

LSE,

A. One feature that a particular method of generating estimates (an
estimator) can have is that the method maximizes the probability of

choosing the sample we actually got.

B. N =107, the maximum number on a captured tank, would maximize
the chance of capturing our collection. However, our intuition tells us
that a good estimator would estimate a larger number of tanks than the
largest number we have actually captured.

C. In this case, the maximum likelihood estimator (as such an estimator is
called) doesn’t seem to be reasonable.

V. One property that we might want a method to have is that in performing the
method many times and taking the average of the estimates the method
produced, we would, on average, get the true number of tanks.

A. This average of the estimates is called the expected value of the
estimator.

B. An estimator whose expected value is the correct value is called an
unbiased estimator.

C. For example, the 2 x sample mean — 1 estimator is unbiased because
the sample mean is an unbiased estimator of the population mean. But
we saw that this estimator had other drawbacks (namely, producing
values that are definitely wrong).

D. Can we think of a strategy (an estimator) that is unbiased and doesn’t
give us answers that are definitely wrong? Yes, we can.
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_ k+1
1. Estimate= ——max(x,,X,,X;,...,X; ) — 1. In our example,

k

E-;f-lmax(ﬁs,35,33,107,52) ~1= gm ~1=1274.

2. This method is unbiased. That is, if we use this computation on

every possible sample, then the average of those estimates will be
N,

3. The expected value of the estimator is N, the quantity we are trying
to estimate. That is, we can’t be sure that the estimator will give
the correct value, but on average, it will give the correct value.

VI. Another desirable quality of an estimator is to have as small a variance as

possible, because that would mean that the estimator is, on average, close to
the true value.

A. It turns out that the estimator previously defined (that multiplies the

maximum of the sample by and subtracts 1) is the minimum

variance unbiased estimator.

B. This study of tanks brought up the idea of expected value, which is a
central idea in the risky business of buying and selling insurance.

VIIL. One of the practical ways of tempering the vagaries of risky life is through
insurance.

A. The whole concept of insurance is based on statistics.

B. We can view insurance as a game of chance.

C. Our decisions on whether to buy an extended warranty, health
insurance, or other insurance are best based on understanding the

distributions of the foreseen calamities that the insurance is aimed to
mitigate.

D. But most people are generally not good at gauging large numbers or
rare events.
VIIL. We can view an insurance company that sells insurance to many people as
playing the same game with many people.
A. The company needs to consider the distribution of possible payouts.

B. To illustrate, we’ll consider the following game: We shuffle a deck of
52 cards. You draw a card. If it is the queen of spades, the insurance
company pays you $100.

C. Ifthe game is played by 1.000 customers, the distribution of the
number of payouts is binomial, with p = 1/52 and » = 1,000. Thus, we
would expect about 20 people out of 1,000 to be winners.
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D. For that distribution, 98.7% of the time, the number of winners
(payouts) will be between 0 and 29.

E. If the company has enough money on hand to settle 29 claims, it will
be 98.7% sure that it won’t run out of money.

IX. Now, let’s take the example of extended warranties on electronic items.

A. The distribution of the time to failure on a new electronic item is not
just a smooth distribution that declines over time. Instead, it may be
more like a bimodal distribution.

1. Flectronic items that are going to fail sooner than average will tend
to fail almost immediately because they were never made properly.

2. But if they are working after a few months, then they are likely to
continue to work until much later, when they come to the end of
their expected life.

B. Thus, the distribution is bimodal, with one peak near the beginning of
use and another after some prescribed length of service.

1. The extended warranty really only covers the period between the
end of the manufacturer’s warranty and the time when the
manufacturer thinks that second peak will occur.

2. That tends to indicate that those kinds of insurance policies may be
particularly poor values.

X. From risks in war to risks in insurance, statistical analyses pay good
dividends.

Readings:
David S. Moore and George P. McCabe, Introduction to the Practice of
Statistics, 5" ed.

Questions to Consider:

1. Suppose you captured tanks numbered 25, 64, 253, 135, and 85. Assm_l:ming
that you were selecting tanks randomly from ones numbered sequentially,
what would be your best guess for the number of tanks that exist
altogether?

2. None of the methods we talked about concerning guessing the number of
tanks made use of the order of the numbers of the captured tanks. Under the
conditions of the question, that is, that the tanks are captured randomly,
could the order in which the tanks were captured be a relevant factor?
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Lecture Eighteen
Real Estate—Accounting for Value

Tax authorities often need to set valuations for each house in the tax
district. Because some of the houses have sold during the year, their
market values are known; however, most houses were not sold. The
challenge is to use the data about the sold houses to assess the values of
all the houses. This situation is a classic example of statistical
inference. Using multiple linear regression, we can find a formula that
predicts the selling price of a house based on measurable quantities,
such as square footage, number of bathrooms, distance from the city

center, and so on. A case study illustrates how such multiple linear
regressions are done.

Outline

The goal of this lecture is to give some sense of the types of issues that we
confront when actually doing a real-life problem. Probably you will not feel

the need to follow every detail, but you will get a sense of the thythm of a
multiple regression analysis.

A.

In this lecture, we confront the real-life problem of producing
assessments of the market values of houses in a city.

In most of our lectures so far, we have dealt with one or, at most, two
varying quantities.

Our goals here are to organize, describe, and summarize data when
multiple variables are involved.

We wish to know which quantities affect, explain, or are related to
which others (and to what degree). Square footage, lot size, number of
bedrooms, number of bathrooms, distance from city center, and other
factors all influence the market value of a house.

The square footage seems likely to be the most influential single variable.

Our data consist of the square footages and the selling prices of a
collection of 113 houses sold during the last year in our example city.

We first describe a linear regression using square footage as the
explanatory variable and selling price as the response variable.

One step 1s to look at the two variables independently.

1. Specifically, we can draw a histogram and compute the mean and

the standard deviation of the square footages and perform similar
calculations for the sales prices.

2. The resulting graphs look similar and both have right skew.
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III. We can visualize the relationship between these two variables by making a
scatter plot of the two variables.

A.
B.

The cloud of points looks roughly linear going up to the right.
We can approximate the scatter plot by the least squares regression

line.

1. The difference between the regression line’s second coordinate
and the data pair’s second coordinate is the residual.

2. Squaring each such difference and adding them up gives a sum of
squares. That is, we are taking the sum of the squares of the

residuals.
The least squares regression line is the line for which the sum of the
squares of the residuals is least.
1. Software can compute a formula for this line.
2. In our example, the equation is:
Price = $161 x square footage — $63,600.

The slope of the regression line tells us how much change in the y
variable is expected from each unit change in the x variable.

1. In other words, the slope tells us how much more we would pay
with each additional square foot.

2. In our example, that slope is $161 per square foot.

IV. The view of how we are thinking of the data is summarized by:
Data = Model + Residuals.

V. How well does that summary capture the actual data set?

A.

,

We know that the values of the second coordinate (in our example, the

house prices) vary.

1. The variance (the square of the standard deviation) of the house
prices is a measure of how spread out those prices are.

2. Recall that correlation measures how closely two quantities move
together. In this example, the correlation between square footage
and house price is .835.

Now we see how the variance of the house prices compares to the
variance of the amounts that the house prices differ from the values
predicted by the regression line.

The square of the correlation is equal to the fraction of the variation in
the prices that is explained by the square footage.

VL. We now turn our attention to what we do when there are more variables
being used to explain a variable, in this case the selling price of the house.

©2006 The Teaching Company Limited Partnership 27




A. Suppose for a collection of houses we know:
1. Age of the house in years

2. Number of bedrooms

3. Number of bathrooms

4. Distance from city center in miles

5. Number of garage parking spaces

6. Size of the lot in acres

7.  Number of floors of living space in the house

8. One response variable, the selling price of the house
B. How can we deal with this more complicated situation?

VIIL. We do a multiple linear regression. Here’s what that means.

A. Multiple linear regression is a technique by which we can approximate

or summarize a situation where there are several explanatory variables
influencing the response variable.

B. We will use the concepts that we developed for the case of paired

variables, such as square footage and price, and follow the same pattern
of analysis for several variables.

VIIIL. We know already that square footage is correlated with house price:
however, if we did not already know that one or more of our variables had

predictive value, we would do an analysis of variance (ANOVA), which
determines such predictive value.

IX. The idea of multiple regression is that we find coefficients for each of the
explanatory variables so that they combine to predict the house price.

A. The output of running a multiple regression program gives us the least
squares coefficients for each of the variables.

1. [Each coefficient can be interpreted as the expected amount of
difference in the price of the house from increasing the
explanatory variable by one.

2. For example, one more acre raises the house price, on average, by
$49.200.

3. On the other hand, adding a bedroom appears to decrease the value
of the house, perhaps because in given houses with the same
square footage, one with fewer bedrooms has larger rooms, a
feature generally associated with higher-quality houses.

B. The point is that the multiple linear regression produces a way to
predict house prices if we are given values of the explanatory variables.

X. The output of a multiple regression program typically also provides
additional information,
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A. Among other information, the output includes an R° value, which tells
us what fraction of the variation in the house prices is captured by this
model.

B. In our case, 77.7% is captured by the model, which means that 77.7%
of the variation in house prices is explained by our predictive model
that used square footage, lot size, distance from center of town, and
number of bedrooms.

XI. The strategy of doing a multiple regression analysis is that we find a model

that predicts the response variable as a combination of the explanatory
variables.

A. We measure how well the model fits by measuring how much
difference there is between the predicted values and the actual data.

B. We can determine what percentage of the variation of the actual value
is explained by each variable or by any set of variables.

C. Having established such a model for house prices based on all the
houses that were actually sold during a year, the model might be used
by the tax department to produce market valuations of all houses in the

city.

Readings:
B. Bowerman, R. O’Connell, and A. Koehler, Forecasting, Time Series, and
Regression: An Applied Approach, 4™ ed., part IL.

R. Dennis Cook and Sanford Weisberg, Applied Regression Including
Computing and Graphics.

David S. Moore and George P. McCabe, Introduction fo the Practice of
Statistics, 5" ed.

Questions to Consider:

1. In our example of multiple regression, the constant term was negative. That
seems to imply that if the house had 0 square feet, 0 bathrooms, etc., then it
would cost some negative amount. Does that feature imply that the model is
wrong? What is an interpretation of it?

2. In linear regression, the scatter plot is approximated by a line. Can we
interpret the multiple regression approximation in some geometrically
meaningful way?
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Lecture Nineteen
Misleading, Distorting, and Lying

Scope: There are three kinds of lies: lies, damned lies, and statistics.
—attributed to Disraeli by Mark Twain.

In this lecture, we will learn some effective ways to lie with statistics.
Lying with statistics means one of several things. We might, of course,
simply present false data. But more interesting methods involve taking
perfectly valid data and distorting their meaning by using misleading
presentations or by drawing improper inferences. Here’s one example
of several we’ll explore: A large college wishes to advertise that it has
small classes, so it creates 99 one-student classes, then makes one class
contain the remaining 901 students. Because the college has 100
classes and 1,000 students, it advertises that its average class size is 10.
But 901 of the 1,000 students experience a class size of 901. The mean
often does not suggest a meaningful story. By examining several
misleading uses of statistics we learn to recognize the inadvertent or
purposeful misuse of statistics.

Outline

I.  Mark Twain attributes the following quotation to Disraeli: “There are three
kinds of lies: lies, damned lies, and statistics.” Techniques of analyzing and
presenting statistical data can be misused, intentionally or unintentionally,
to give distorted views of the world.

II. Here’s a misleading statistical fact: The average American has one testicle
and one ovary.
A. The statement is correct but completely misleading.

B. There is a lurking variable: sex. Bringing the lurking variable to light
gives quite a different view of the data.

C. For many cases of existing data, we don’t know whether or not there is
a lurking variable.

I11. Here's an example showing that outliers can have so large an effect on the
mean that merely stating the mean gives a distorted view of the actual
income distribution.

A. Inarecent year, the mean increase in net worth of graduates of
Lakeside High School in Seattle was more than $2,000,000.

B. But the reason is not that a lot of the graduates make millions of dollars
a year.
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C.

D.

The reason, instead, is that the average included Bill Gates and Paul
Allen, graduates of Lakeside High School and the founders of
Microsoft Corporation—extraordinarily wealthy outliers whose net
worth greatly distorted the mean.

A much better measure of the center than the mean would be the
median, which is not affected by outliers.

IV. Even something as simple as class size in a university is a bit tricky to

summarize.

A. Let’s do an extreme example, making the unrealistic assumption that
each student at the university takes just one class.

B. Suppose there are 1,000 students, with 901 in one class and with each
of the remaining 99 students individually tutored.

C. The mean class size is 10, an accurate but misleading summary.

D. The median class size is 1, which also is misleading.

E. A better summary value for expressing the average experience of class
size by a student is to add the class size experienced by each student
(901 x 901 + 99 x1) and divide by 1,000. The result is 811.9, a better
summary number.

F. The median “class size as experienced by the students™ is 901, also a

good summary.

V. Biased samples, some intentional, some not, are common.

A.

Using a sample that is not representative of the whole population gives
a distorted view. In an earlier lecture, we saw the example of the
Literary Digest’s biased sample.

As a source of understanding our world, our friends form a biased
sample.
1. The people we know, on average. tend to be like us.

2. We can easily believe that everyone thinks like us because every
time we ask our friends about something, they tend to agree with

us more or less.

VI. The wording of questions in a survey can influence results.

A.

Bq-

Surveys can either intentionally or unintentionally have questions
worded in ways that affect the way people answer them.

Consider this question: “Would you rather have: the very risk-taking
Smith, or Jones, who is likely to save us from desolation?”

VIL Virtually any news source is biased, in the sense that its contents are
chosen for interest.

A. Frequently, the interest in a story comes from being rare and being bad.

©2006 The Teaching Company Limited Partnership 31




B. Television news i1s biased toward stories with visual content.

C. Inarecent year, the rate of death from terrorist attacks in Israel was
00038, which is one-third the rate of death from traffic accidents in the
United States. But terrorist attacks are better news stories.

D. Any news source is biased, but we must realize that an unbiased news
reporting system would be dull.

VIIL Through selective reporting, statistics can be manipulated to persuade
people that a particular drug is effective, even though it is not, or to predict
falsely the future of stock market prices.

IX. People can answer surveys with wrong answers,

A. Sometimes people give the answer to a question that they think the
questioner would like to hear.

B. Many studies showed that child molesters were frequently molested as
children.
1. Some recent studies put those data into question.

2. Child molesters may gain some advantages in the legal system by
claiming to have been molested as children.

X. Graphs or phrasings can be distorted.

A. To make a change that is small percentage-wise look large in a graph,
omit from the graph most of the possible range of the quantity.

B. Another way to have accurate graphs that are misleading is to draw
them so that the height of the graphical symbol accurately represents
the issue, but it is drawn to look like a three-dimensional thing; we
intuitively think of the thing’s volume, which of course, increases
much faster than its height does.

C. Consider this statement: “People who eat a particular food have a 30%
higher chance of contracting a certain rare disease.”

1. The rate may go up from 1 in 10,000,000 people getting the
disease to 1.3 in 10,000,000.

2. Yes, this is a 30% increase, but the increase may be insignificant
or it may not. The simple statement “30% increase” doesn’t tell the
story.

D. Likewise, suppose we read that Company X has increased its profits by
50% over the last quarter. This impressive statistic is not necessarily so
impressive if the profit in the preceding quarter was $1,000.

XI. Extrapolating trends mindlessly can give ridiculous conclusions.

A. Some of the scare stories we hear are the result of extrapolating trends.
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B. Trends in economic growth or population growth are a common
subject of inappropriate extrapolation.

C. In sports, world-record running times cannot continue a linear trend
because there are physical limits to how fast people can possibly run.

XII. Confusing correlation with causation is a big source of the misleading use
of statistical information.

A. People often start with a true correlation but then derive a false causal
relationship from it.

B. Lurking variables often underlie such misconceptions.

X111 Statistics can be an incredibly useful tool; however, we must be cautious

as consumers of statistics to avoid being taken in by the Pitfalls
intentionally or unintentionally included in the presentation or

interpretation of statistical information.

Readings:
Darrell Huff, How to Lie with Statistics.

Questions to Consider:

1. Many prisoners cannot read. Is it an important insight or a logical fallacy to
argue that programs that teach reading to prisoners might reduce rates of
recidivism?

2. To some extent the use of statistics should come with a “buyer beware”™
label. Where should the ethical and legal responsibility lie with regard to
the presentation of statistics in a meaningful way? For example, should
misleading (but technically correct) graphs be prohibited along with
literally false advertising, or not?
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Lecture Twenty
Social Science—Parsing Personalities

Scope: Social policy and social sciences rely on the interpretation of statistical

34

data. This lecture discusses two separate topics related to the
application of statistics to social science. The first is a statistical
technique, factor analysis, which can shed light on what quality several
correlated, measured quantities all might be measuring. The technique
seeks to identify underlying latent factors that explain correlation
among a larger group of measured quantities. The other topic is
possible limitations of hypothesis testing.

Outline

In this lecture, we will discuss two aspects of statistics that arise in the
social sciences.

A. The first is a technique called factor analysis.

B. The second part of the lecture discusses an issue within the social

sciences community concerning the over-reliance on hypothesis testing
and its validity.

Factor analysis is a statistical technique that tries to find whether data
comprising a number of variables can be summarized, or explained, by a
smaller number of “factors.”

A. Charles Spearman, studying intelligence, is credited with inventing the
technique of factor analysis about 100 vears ago.

B. He hypothesized that there is one underlying factor of general
intelligence (called the g factor) that underlies results of various other
measures of mathematical and verbal skills.

The assumption underlying factor analysis is that there is a small group of
latent factors that accounts for the correlation among a larger group of
observed variables.

A. For example, a questionnaire might ask 50 questions about emotions,
each with a numeric answer, such as, “How much fear are you
feeling?” *How much control are you feeling?”” and so on, yielding 50
observed variables.

B. The factors found in factor analysis are chosen specifically so that they
have no correlation. They represent independent characteristics (of a
person).

C. A successful factor analysis would yield a small number of factors that
explain much of the total variation in the original data.
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IV. We’'ll begin by looking at the famous Myers-Briggs Personality Type
Indicator.

A.

QW

After answering about 100 multiple-choice questions, the Myers-
Briggs test presents us with a summary of our personality or
preferences using four scales: (1) extraversion/introversion, (2)
sensing/intuition, (3) thinking/feeling, and (4) judging/perceiving.
The results show us where on each scale our answers put us.

A technique called factor analysis, though not used historically in the
development of the Myers-Briggs indicators, describes how the 100
questions give rise to four axes.

The idea is that the answers to the 100 questions can be combined in
specific ways to reveal a separate rating for extraversion/introversion;
another combination gives the answer to thinking/feeling, and so on.

V. Finding the combinations that give uncorrelated combinations is a
mathematical procedure.

Ai

B.

The researcher calls each factor an evocative summary name,
depending on the ingredient variables.

For example, in a study of jealousy, 20 measures of qualities were

reduced to 3 factors, called by the researcher Reactive Jealousy,

Anxious Suspicion, and Interpersonal Insecurity.

1. The correlations between each of these 3 factors and the 20
original variables served to divide the 20 into 3 groups. The
variables in the first group are highly correlated to the first factor

and usually have low correlation with the other two factors, and so

on.

2. Part of the intent is that something has been learned about
jealousy, namely, that there are 3 principal ingredients that
underlie the original 20 variables.

Care must be taken in interpretation, but insight can be gained about
the psychological or social issue being studied, as reflected in the
factors that are a good mathematical model or summary of the data.

V1. We now turn to some issues concerning hypothesis testing.

A.

Hypothesis testing is an example of a strategy for testing features of
our world, but some social scientists and many others feel that there
has traditionally been too heavy a reliance on hypothesis testing as a
way of adducing and interpreting evidence.

Another model of progressing toward a clearer understanding of our
world may be closer to the way we often proceed in real life.

1. How do we come to evaluate people in our world? We have a
sense of a range of what they might be like, but we don’t know.
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2. Then, we update our view. This strategy underlies a statistical
point of view known as Bayesian statistics.

C. Perhaps the best way to understand the distinction between this
updating model and standard hypothesis testing is to examine the
following three experiments—all hypothesis-testing experiments with
statistically identical results.

1. In the first experiment, a musicologist is presented with 10 pairs of
sheet music, and he must determine if the composer is Mozart or
Haydn. He is correct 10 times out of 10.

2. We are already familiar with the second experiment of the lady
tasting tea, in which a lady was able to taste 10 pairs of cups of tea
with milk and tell correctly each time whether the milk or the tea
had been poured in first.

3. In the third experiment, a drunk claims he can tell whether a coin

will land heads or tails every time it is flipped. And, indeed, he
does guess correctly 10 times out of 10.

D. Most people would say that the Mozart/Haydn experiment was very
persuasive and the lady tasting tea less so. With the drunk person, we
retain a good deal of skepticism. We are updating the prior assessment
of our view of reality.

E. In the Bayesian point of view, we view our assessment of the world as
a probability graph rather than a fixed number. It is an interesting
philosophical perspective that takes our everyday experience and
captures it on a mathematically sound footing.

Readings:
Vic Barnett, Comparative Statistical Inference.

Donald A. Berry, Statistics: A Bayesian Perspective.

Donald A. Berry and Bernard W. Lindgren, Statistics: Theory and Methods, 2™
ed.

David S. Moore and George P. McCabe, Introduction to the Practice of
Statistics, 5™ ed.

B. K. Gehl and D. Watson, Defining the Structure of Jealousy through Factor
Analysis (available at http://www.psychology.uiowa.edu/students/
gehl/definingjealousy.doc).

Questions to Consider:

1. What combination of environmental and genetic factors most influences a
person’s desire to learn? What data would you seek to specify such
combinations?
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2.

Suppose you flip a coin and cover it up before seeing how it landed. Do you

believe it is meaningful to say, “There is a 50% chance it is heads?” or do

you feel that because it is either heads or it’s not, an assertion about its
“headedness” is not susceptible to a probabilistic analysis?
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Lecture Twenty-One
Quack Medicine, Good Hospitals, and Dieting

Scope: We make decisions every day about our personal health. If our

Note:

L.

cholesterol is above some number, our doctor is likely to suggest a

medication to supplement healthful eating and exercise. Such a
recommendation is commonly based on statistical results of studies that

show a correlation between high cholesterol and increased risk of heart

attack. Aspects to consider in applying results of such a study to |
ourselves include how like us the people in the study are and the

difference between correlation and causation. Another statistical |
concept, regression to the mean, explains why quack medicine may

appear to work often.

References to specific diseases and treatments and all data and

interpretations are used solely for the purpose of illustrating ideas of
statistics and are in no way designed to be used as medical references
for the diagnosis or treatment of medical illnesses or trauma.

Outline

Every day, we make decisions about our personal health.

A. Our state of health is measured by data about us (our weight, our
cholesterol, levels of various chemicals in our blood).

B. Part of our decision-making about such questions as whether to take
cholesterol-lowering medication is done by comparing our numbers to
those reported in studies that have been conducted with a large number
of people.

1.  We may need to evaluate studies to see if they reveal significant
and important information or if they yield only statistically
significant information, meaning a difference is detectable, but not
important.

2. As well, the studies frequently involve many people who in many [
ways, such as age, weight, inheritance, or gender, are not like us.

—

II. What we would really like is a study involving people who are as much like
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us as possible, because their experience with, say, a medication is more apt
to be similar to ours.

A. We'd like to condition the overall study data on several variables,

looking at the subset of the study data that matches us with respect to
those variables.

1. In general, the concept of conditioning the data on some criteria
means that we look at only the data with a certain feature.
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2. We prefer to respond to the statistical results conducted on people
most similar to us so that we would have a sense that the studies
pertained most specifically to us.

An intriguing possibility is to use the computational capabilities of
modern technology to find people who were in the scientific studies
and whose characteristics are similar to our own.

1. We’'d then perform statistical analysis on that subpopulation for,
say, the effect of a cholesterol-lowering drug.

2. With that approach, we might get rather different statistical results
than results based on the larger population.

Tailoring the statistics to our individual personal health situation could
conceivably provide a greater increase in personal health than would
improvements in treatments themselves.

1. Of course, doctors are aware that different patients react

differently, and to some extent, they try to tailor their treatments to
the individual.

2. Using their experience to modify the results of the studies can be
good, but it can also be problematic, because an individual doctor
sees many fewer patients than there are in some studies.

IIL. Another statistical issue arises when we need to decide which of two
hospitals to go to for heart surgery.

A. Suppose we have the following chart summarizing how successful each

hospital is with each of three subcategories of patients: those entering
in fair condition, in serious condition, and in critical condition.

Patient Hospital A | Hospital B | Survivors from | Survivors
Condition A% from B/%
Fair 700 100 600/86% 90/90%
Serious 200 200 100/50% 150/75%
Critical 100 700 10/10% 300/43%
Total 1,000 1,000 710/71% 540/54%

B. Looking at the data broken down in this way, we see that B has a

higher success rate in all three categories of difficulties.

C. When averaged all together, however, the impression is that hospital A

is superior, with a 71% survival rate. But hospital B is superior in each
of the three categories.

Notice that mathematically, this is the same kind of example as one we
saw in an earlier lecture on gender discrimination. This is Simpson’s
Paradox.
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IV. Another statistical question arises when trying to distinguish between a

V.

quack medicine and a real medicine.

A. The reason that quack medicines sometimes seem to work 1s that
usually people recover from a minor disease even without medicine.

B. Quack medicines appear to work because of the phenomenon called
regression to the mean: An ill person usually expects to return to his or
her mean health situation.

A similar example arises in childrearing.

A. Suppose (somewhat tongue-in-cheek perhaps) that what you say to
your child has no effect on the child’s behavior.

B. Under that supposition, after praise or punishment, the child will
usually return to his or her average behavior (this follows from the
definition of average).

C. It will appear that punishment works (because the child who was
misbehaving will usually improve), but praise has the opposite of its
intended effect (because the child who just did something extra good
and got praise will usually return to his or her average behavior).

D. This is similar to quack medicine; both are examples where something
appears to have an effect, but the explanation is really regression to the
mean.

E. Other examples of regression to the mean are athletes doing poorly

after appearing on the cover of Sports Hlustrated, tall people having
children somewhat shorter than themselves, and short people having
children somewhat taller than themselves.

VI. A common issue in the realm of personal health management concerns
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dieting and weight.
A. Many quantities, including weight, have an innate variability.

1. Ifyou weigh yourself daily and chart the results, you’ll notice that
the readings can differ by a pound or two, even if you didn’t
“gain” or “lose” weight.

2. If you weigh yourself to the nearest half a pound, then make a
histogram over the readings, you get a somewhat normal-shaped
picture distributed around a central value.

=

A weight chart is a time series, a value for different times.

0

In the case of a person losing weight, the weight chart shows a
downward trend, but it does not always go down uniformly each day.

D. We can summarize the chart by drawing a straight line, the least
squares regression line.
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E. The weight loss data illustrate how we use a mathematical model (the

straight line) that captures the spirit and look of the data to summarize
the data.

VII. Several statistical issues are related to everyday health issues.

A. We discussed the notion of conditioning on subpopulations that match

a person of interest, which can give different results than analysis over
the whole population.

B. We illustrated Simpson’s Paradox by the example of choosing a
hospital.

C. We illustrated how regression to the mean can be the explanation for

quack medicine seeming to work and for punishment to work but
praise not to work.

D. We saw how to summarize a time series by a straight line.

Readings:

David S. Moore and George P. McCabe, Introduction to the Practice of
Statistics, 5™ ed.

Ann E. Watkins, Richard L. Scheaffer, and George W. Cobb, Statistics in
Action: Understanding a World of Data.

Questions to Consider:

1.

Suppose you have not gained or lost weight in many months. Suppose you
notice that for a period of a week, your daily weight is always less than
your traditional average. Can you conclude that you have lost weight?
Suppose a month passes in which you are always below your traditional

average. Where is the cut-off line at which you will assert that you actually
weigh less?

What data about a medicine would you most like to know before taking the
medicine? Your answer might include rates of spontaneous recovery,
seriousness of the disease, measurement variation to determine that you
have the disease, characteristics of the treatment studies, or other values.
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Lecture Twenty-Two
Economics—“One” Way to Find Fraud

Scope: Economics is one of the most common arenas in which statistical data

are important. Data arise when we measure incomes and wealth, the
balance of trade, the deficit, the stock market, the consumer price
index, and employment levels. All these data are indications of the
economic condition of the world and make real differences in our daily
lives. The consumer price index influences such things as tax rates and
Social Security benefits. Looking at historical trends is a suggestive
method of getting a sense of how the world is changing. However, in
some cases, looking at historical trends is a poor method for predicting
the future. For example, it is a bad strategy to buy mutual funds based
on last year’s performance.

A surprising feature of tables of data in economics is that the leading
digits of numbers do not occur with equal frequency. This unexpected
reality, whose full formation is called Benford’s Law, gives us an
unexpected statistical method for detecting fraud.

Outline

Economic indicators tell us something about our financial well-being.

The consumer price index (CPI) shows how the value of the dollar
changes.

The national debt reflects one aspect of the country’s financial
situation.

The Dow Jones Average reflects the business sector of the economy.

We will look at trends of these indicators over time to get a historical
perspective.

1. To produce the CPI, a specified collection of goods and services is
used, called the market basket.

2. Each month, people go out and see how much it would cost to buy
that market basket.

3. The cost from month to month is compared.

There are certainly many features that complicate the simple basic idea
of the CPL

1. One change is that people buy different things as different
products come on the market.

2. It would not be sensible to compare only the items in the 1965
market basket with the costs of those same items today.

3. Some items produced then would not be purchased today at all.

4. Many items, such as computer-based goods, would not have been
invented in 1965, yet form a significant part of consumer
purchasing today.

S. All these features lead to complicated strategies for adding and
removing items from the market basket.

If, over a certain number of years, it costs twice as much to buy the
same collection of things, then we would be able to assert that inflation
has doubled the prices. The CPI, then, gives us a sense of what a dollar
is worth.

When we say that, in 1970, a beginning teacher earned a particular
amount and, today, a beginning teacher earns a different, undoubtedly
higher, dollar amount, how do we know whether teachers’ pay has
increased or decreased?

L. We would not know until we compared the value of a 1970 dollar
to today’s dollar,

2. We would find that the CPI tells us that $1.00 in 1970 is
equivalent, in some sense, to about $4.50 today.

3. Thus we could find out if teachers’ beginning salaries have, on

average, decreased, increased, or remained about the same now as
then.

II. The CPI is an important economic indicator.

A. The CPI measures the change over time in the price of the items that
people buy in day-to-day living. L. Many social programs are legally influenced by the CPL
1. The basic idea of the CPI is that it looks at how much various i

: Social Security benefi illi inients *
items cost from month to month. y benefits for 50 million recipients are adjusted by a

i formula that uses the CPI.
2. If the cost of items goes up, then the CPI records the amount more

that we must pay to purchase the same items. B. Federal civil service and military pension payments change based on

the CPL

C. The Food Stamp program changes the payment to the more than 20
million Food Stamp recipients.

B. The CPI has the goal of giving a sense about how much, more or less,
it costs real people in the United States to buy a cross-section of goods

and services.
D. The CPI changes the cost of school lunches.
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The CPI is used in the federal income tax to adjust tax brackets and the
standard deduction.

Many collective bargaining agreements involve the CPI to protect
salaries and benefits from the effects of inflation.

IV. If we want to understand how various parts of the economy are changing
independent of inflation, we can use the CPI to put measures of wealth,
income, and so forth in terms of constant dollars, thus allowing us to

compare economic conditions over fime in a more meaningful way.

V. A graph of the CPI over time tells us the value of a dollar at each time
during the last 100 years.

V1. The national debt also shows trends that we can graph over time.

VII. Now we can look at the Dow Jones average, which is the sum of the costs
of a particular set of stocks.

A,

B.

A

It shows a consistent increase, and even if we adjust for inflation, we
still see a very sharp increase in the late 1990s.

Looking at the Dow Jones average causes us to think about stocks and
investing.

Investing involves looking at data and trying to predict future
performance.

VIIL. Data mining refers to the process of looking at an existing collection of
data to find patterns or trends.

A. Data mining can be a very valuable strategy for identifying features of

the world; however, there are dangers.

1. In large sets of data, we expect there to be patterns that occur by
random chance alone.

2. We would also expect rare events to occur by chance.

The appropriate use of data mining is to find patterns, then undertake

new experiments to confirm or reject the hypothesis suggested by the
mined data.

IX. Suppose we use a data-mining technique as a means to choose a good
investment opportunity.

A. Owr goal in choosing a mutual fund is to find one that is likely to go

up.

B. It is a natural strategy to simply look at which mutual fund increased in

value most during the last year and buy it.

C. Unfortunately, that reasonable-sounding strategy is a poor investment

strategy.
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D.

If we look at how well we would have done had we adopted the “buy
the best of last year” strategy, we would see that our investments would
actually lose money in many years and definitely be a poor investment

overall.
An analogy that makes this point very clearly is the lottery.

1. Suppose that, among investment strategies, we included buying
lottery tickets.

2.  We would find that, among the possible investments, there was
one $1 investment that earned $100 million.

3. Following the logic of investing in the manner that worked best
last year, we would invest in lottery tickets—perhaps we would
choose to select the same numbers as the winning ticket.

4. This investment decision is unlikely to be a good one.

X. Data mining leads us to an interesting phenomenon in economics:
Benford’s Law.

A.

Physicist Frank Benford did a study of some 20,000 various data sets
of numbers and discovered that approximately 30% of the numbers
began with 1, rather than about 11%, as expected (1 out of 9),

1. He formulated Benford’s Law: The proportion of numbers

s g ok 1
beginning with 1 is log,,(1+ T) =301 (around 30%); with 2 it
: 1
is log,,(1+ 5) =176 (17.6%); with 3 it is
1
log,,(1+ 5) =.125 (12.5%); and so forth, until with 9, when

1
the proportion is log,,(1+ a) =046 (4.6%).

2. Ifyou doubt the veracity of this law, pick a random list of numbers
and you will likely see that the number 1 appears
disproportionately often as the lead number.

Let’s take an example. Suppose you deposit $1.00 in a bank account
that offers a 10%-per-year growth rate.

1. Inlooking at your growing deposit through the years, you will find
a preponderance of leading 1s at first, because when we start with
a number that begins with 1, 10% more still has a leading 1, 10%
more still does, and so forth. When you arrive at numbers starting
with the digit 2, you start to make bigger jumps, so you have fewer
numbers with leading 2s, and so forth until you arrive at the teens:
at that point, you are back to leading 1s for quite some time as
compared to the 20s, 30s, and so forth.
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2. If we begin with a number that starts with, say, 9, then 10% often
pushes it bevond starting with 9 and definitely does so on the next
occurrence.

People who might be called “forensic accountants™ have used
Benford’s Law to detect fraud. When data are false, people tend to
make up numbers that have many more leading 5s and 6s than would
be expected under the distribution predicted by Benford’s Law.

Benford’s Law is another example in which we can expect regularity in
the aggregate that arises from randomness.

XI. This lecture has presented some familiar economic indicators.

A. Much of the way we measure our financial situation involves statistical

presentations of the economic conditions of our lives.

We must interpret data appropriately to know where we stand. Because
dollars change in value over time, comparing a dollar from one time
with a dollar from another does not capture the meaning we seek.

We must be careful to avoid the pitfalls of drawing mmappropriate
conclusions from data-mining methods.

Readings:
B. Bowerman, R. O’Connell, and A. Koehler, Forecasting, Time Series, and
Regression: An Applied Approach, 4" ed.

John A. Paulos, 4 Mathematician Plays the Stock Market.

Questions to Consider:

1.

46

There is considerable debate about whether having a large national debt is
bad for the economic health of the country. What data would you gather
and what statistical analysis would you undertake to inform your decision
on this question?

One of the criteria used in stock management literature concerns modifying
the risk of a portfolio by including a balance of stable and volatile stocks.
What statistical indicators would you look for in data about a stock to
assess where that stock fits on the stable-volatile spectrum?
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Lecture Twenty-Three
Science—Mendel’s Too-Good Peas

Scope: Advances in empirical science depend on drawing deductions from

L

data. In many cases, a scientific theory is tested by comparing
experimental results to predictions of the theory. Randomness can enter
in two ways. First, measurement error (noise) in experimental results
adds randomness to otherwise definite predictions. Second, some
theories, such as Mendel’s theory of trait inheritance over generations
of pea plants, are inherently probabilistic. In fact, reported results with
too little fluctuation can be evidence of fraudulent data. On the other
hand, a measurement much different from other measurements (an
outlier) can indicate either that some gross error in measuring has
occurred, in which case the measurement should be discounted, or that
some fundamental assumption is incorrect. Study of the ozone layer in
the atmosphere supplies a cautionary example.

Outline

Statistics is involved in essentially all scientific matters, from weather
reports to quantum physics.

A. During the last 400 years, we humans have fundamentally altered our

B.

conception of the universe and our position in it, in many cases as a
result of some scientific advance that ultimately is based on the
analysis of data.

In this lecture, we’ll look at several examples of scientific
developments and the role of statistics in them.

The first example involves Johannes Kepler, the famous astronomer,
working in about 1600 as assistant to the astronomer Tycho Brahe, who had
amassed vast amounts of data about the locations of planets and stars.

A. Kepler computed that the data fit a model of the solar system in which
the planets revolve around the Sun following elliptical orbits.

1. In devising his laws of planetary motion, Kepler used the statistical
technique of creating a mathematical model to summarize the data.

2. Later, Isaac Newton formulated his universal law of gravitation,

which implies that two masses will follow elliptical orbits about
one another.

B. Science frequently progresses in this way.
1. Observations are made that are well summarized by a

mathematical equation or model, based on statistical curve-fitting
techniques.

©2006 The Teaching Company Limited Partnership 47




_—

o

2. Later, a more basic understanding of causes and effects can
explain that physical model.

III. Hubble’s observations about the red shift in spectra from receding stars
form another example of statistics playing a prominent role in science. The
pattern for a receding star is shifted toward longer wavelengths. The faster
the star is receding, the greater the shift.

IV. Another example in astronomy is the 3-degree radiation left over from the
Big Bang.

A,

B.

Researchers were trying to build a precise radio telescope and kept
sensing background noise.

After many attempts to fine-tune their instruments to avoid that “error,”
the researchers discovered that the background noise was a real
phenomenon: the 3-degree Kelvin radiation left over from the Big
Bang at the creation of the universe.

V. Randomness is at the heart of quantum physics.

A.

B.
il

Modern theories of physics postulate the very unintuitive concept that a
subatomic particle, such as an electron, is not in a precise location at a
particular time.

Instead. the location of an electron is a probability distribution.

These theories put the statistical and probabilistic nature of existence in
a fundamental position in our understanding of the world.

VL. Measurements and interpretations of measurements are very basic to the
scientific process. For example, measurements of the thickness of the ozone
layer in the stratosphere or upper atmosphere illustrate another aspect of

statistics.

A.

B.

D.

When data on this subject were collected by satellite in the 1970s, the
values near the South Pole seemed surprisingly small,

At first, these were deemed to be bad readings, reflecting some
problem in the measuring process, and were omitted from the data
summaries.

With later measurements, however, it was discovered that the
measurements were correctly reporting a real phenomenon, the ozone
hole.

When one has a lot of data and most of the data are consistent,
decisions must be made about what to do with the outliers.

VIL. Science proceeds by developing models based on data, then testing the
models by comparing experimental results to predictions of the model. In
many cases, a scientific theory is tested by comparing experimental results
to predictions of the theory.
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VIIL. Another example of statistics in science is Mendel’s famous experiments
with peas.

A. Mendel noted statistical patterns in data concerning hereditary traits of

pea plants.
1. Yellow is the dominant gene.

2. Ifhomozygous yellow pea plants (those with two yellow genes)
and homozygous green pea plants (those with two green genes) are
crossed, the first-generation offspring all look yellow, being
yellow heterozygous plants (those with one yellow gene and one
green gene).

3. The second-generation offspring, however, which are the result of

{:ru_ssin_g yellow heterozygous plants, are about one-quarter green,
indicating homozygous green pea plants.

This was the fundamental observation that led to the concepts of
genetic mheritance and dominant and recessive genes.

1. Two genes, one from each parent plant, combine to form the
genetic makeup governing the color of the offspring.

2. Yellow is the dominant gene; thus, only if both genes in a plant are
for green will the plant be green.

3. Assuming that one of the genes is randomly selected from each

parent plant, we would expect that about, but not exactly, one-
quarter of the time, both contributions will be green.

4. To determine whether a yellow plant was heterozygous or
homozygous, Mendel took the yellow plants and bred them with
themselves 10 times. If the plant was homozygous, on each of
those 10 times, he would always get a yellow plant. However., if he
had a heterozygous plant, he reasoned that the chances were very
good that in 10 breedings, 1 of the self-breedings would contribute
both green genes, and the plant would come out green.

S. If we performed many experiments, with 800 yellow plants in the
second generation, we would expect different numbers of
homozygous yellow plants in different experiments, with the
center of the distribution around 200 but with occasional outliers.

Statisticians have looked at Mendel’s reported results and have
discovered that it would be very unusual, given the amount of his data,
that all of the results would be in the narrow bounds he reported. In
short, Fisher believed that the data that Mendel got were too good.

1. Ronald Fisher, to whom we were introduced in Lecture Twelve,
found that Mendel’s results lie within 1 standard deviation of the
mean much more often than the expected 68% of the time.
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2. Fisher also noted that Mendel used the method of cross-breeding
yellow plants with themselves 10 times to identify whether they
were homozygous or heterozygous.

3. In an interesting twist, this method implies that we should have
expected Mendel to misclassify a certain percentage of plants;
however, Mendel’s reported data are closer to the data expected if
all the plants were classified correctly.

D. Mendel’s work illustrates all aspects of statistics, including design of

experiments and interpretation of data, and may illustrate the
possibility that the data were made to look somewhat better than they

actually were.

IX. Using carefully executed statistical capture-recapture methods, scientists

can estimate quantities as diverse as the population of tigers in a jungle, the
volume of water in a lake, and the size of a natural gas deposit in the
ground.

Statistical analysis of experimental data is key to validating or invalidating
a scientific theory.

Readings:
E. T. Jaynes and G. Larry Bretthorst, eds. Probability Theory: The Logic of
Science.

R. A. Fisher, “Has Mendel’s work been rediscovered?” Annals of Science
(available at http://www.library.adelaide.edu.au/digitised/fisher/144.pdf).

Questions to Consider:

1.

50

Measurements are never exact. As instruments improve, would you expect
the distributions of measurements of physical constants to have less
variation, have a different mean, or both?

Suppose data are found that reject a scientific theory with a high level of
statistical significance, Under what circumstances would you tend to reject
the data rather than reject the theory? Is that ever a good idea?
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Lecture Twenty-Four
Statistics Everywhere

Scope: Statistics is a subject that permeates essentially every area of our lives

L

and world. It is a powerful tool for seeing our world in a more detailed
fashion and for making informed decisions, although its subtleties and
potential misuses caution us to avoid thoughtless acceptance of
statistical conclusions. The recent and expected future development of
computer speed and capacity allow us to imagine using statistics with
ever more scope and effect. How much information and understanding
can we hope to gather from statistical data? How much more meaning
would better statistical techniques allow us to find? Statistics is a tool
with wide applicability. It has limits that need to be acknowledged and
respected, but its potential for helping us find meaning in our data-
driven world is enormous and growing.

Outline

Often, data can contribute decisive evidence in an otherwise difficult matter
to resolve.

A. For example, during the debate about ratification of the Constitution,
Alexander Hamilton, James Madison, and some others anonymously
wrote The Federalist Papers.

1. People disputed the authorship of about a dozen of these essays.
2. Arguments based on philosophy and style were not persuasive.

B. Discriminant analysis, that is, statistical analysis concerning the
frequency of the use of specific common words (for example, on

instead of upon, where appropriate) provided powerful arguments for
Madison’s authorship.

This Federalist Papers example is satisfying in that it suggests that seeking
data to find persuasive arguments is a valuable method for coming to
conclusions.

A. Sometimes it is not clear what data are pertinent.

B. In the case of The Federalist Papers dispute, it would not be
immediately obvious that counting the frequency of trivial words
would be the road to decision on the authorship issue.

C. Of course, the technique can be applied to other authorship questions,
such as whether the works of Shakespeare were actually written by

Marlowe or Bacon and whether Shakespeare wrote a newly discovered
poem attributed to him.

1. In the latter instance, the new poem was discovered in 1985.
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2. Instead of looking for frequency of common words, as with The
Federalist Papers controversy, statisticians looked for new,
original words because Shakespeare was well known for inventing
words.

3. Because 9 new words appeared in this 429-word poem, these

statisticians were able to deduce that, in fact, this poem was very
possibly written by Shakespeare.

D. The results in those cases, however, do not seem as clear-cut as in The
Federalist Papers dispute.

E. Data and appropriate interpretation are powerful arguments not easily
refuted without further data.

ITI. The evidence for the determination that Madison wrote the anonymous

52

articles would be evaluated differently by Bayesian statisticians versus
frequentist statisticians.

A. A Bayesian would be willing to say that, given the word usage in The
Federalist Papers, there is a 99.9% chance that it is written by

Madison.

B. Frequentists would say that the articles are either written by Madison
or not.

C. Both camps would probably agree to a statement something like this:
“The probability is only 2.4% of getting no upons when randomly
selecting a collection of 1,000 words from a person’s writing that
generally has 6 upons per 1,000.”

Using data and statistical analyses will become an even more prominent
part of our world in the future than it is now. The principal reason is the
continuing development of computer technology.

A. With the computer, it is now possible to deal with large databases and
use techniques that would have been computationally impossible

previously.
B. Some such techniques involve simulation as a means to understand a
collection of data.

C. Often, such methods are computationally intensive and, consequently,
become increasingly valuable as computer power increases.

D. One such technique is called the Monte Carlo method, which involves
using random processes by a computer to generate thousands of
scenarios, enabling statistical techniques to derive the distribution of
the behavior of a system.

E. Today on a home computer, it is possible to do amazing statistical
analyses essentially instantly.
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1. Early textbooks on statistics would emphasize methods for
reducing computation.

2. Now, with computers, those techniques are not so important.

V. Let us now consider some observations about the statistical enterprise
altogether.

A.

B.

H.

A.

B.

First, there is often a difference between statistical knowledge and
understanding based on deeper principles.

Second, statistics is used more than it is understood, as evidenced in
the blind application of statistical tests.

1. Any attempt to reduce data to a formulaic adherence to following
tests is likely to be misleading and can often produce nonsensical
arguments. Recall the mean levels of wealth of graduates at
Lakeside High School in Seattle.

2. Statistical reasoning is subtle and prone to counterintuitive
examples; understanding the underlying logic is necessary in order
to have confidence in the result. Recall the exercise of choosing
the best hospital.

Hypothesis testing has issues of its own, such as the arbitrariness of the
level of rarity that we deem statistically significant.

The persuasive strength of a statistical argument requires a clear
understanding of the statistical reasoning, the context of the situation,
and the details about the study or data that allow us to interpret the
meaning of the statistical data and arguments with conviction.

Unless we have high confidence that a survey was conducted
appropriately, then the statistical result may not be as strong as
reported. Recall the results of the Literary Digest poll.

Good statistical results and inferences are far superior to anecdotal
evidence on an issue, but we need to be critical consumers.

Statigical knowledge is, by its very nature, an admission of ignorance.
Dealing with statistics often means that we do not have the whole

story.

Statistics is a collection of profoundly powerful methods for
understanding our world with more detail and more meaning.

VI. We have seen statistics as having two basic parts:

Organizing, describing, and summarizing a collection of data when we
know all the data.

Inferring information about the whole population when we have data
about only a sample of the population.
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VIL. When we make an estimate of the value of a feature of the whole
population given data about a sample, our challenge is to describe how
accurate our estimate is likely to be by answering the following questions:

A. How close is our estimate to the correct value?

B. How confident are we that our estimate is, in fact, that close?

VIII. Statistics is a powerful tool for understanding our world. We end the
course with a statistic about the course: Among people who learn
something about statistics, 100% appreciate our world with more clarity.

Readings:
Norman L. Johnson, and Samuel Kotz, eds. Leading Personalities in Statistical
Sciences: From the Seventeenth Century to the Present.

William S. Peters, Counting for Something: Statistical Principles and
Personalities.

Theodore M. Porter, The Rise of Statistical Thinking, 1820-1900.

David Salsburg, The Lady Tasting Tea: How Statistics Revolutionized Science
in the Twentieth Century.

Questions to Consider:

1. As a practical matter, how can a more sophisticated understanding of
statistical reasoning come into play on an everyday basis? Can we apply
pressure on the media to make the details of studies more readily available
so that we have a better chance of determining whether the statistical

reasoning is sound?

2. Being attuned to statistical reasoning adds depth to our appreciation of the
world around us. Choose an 1ssue in which you have an interest and find
data that are pertinent to your appreciation of it. Then apply the techniques
of organizing, describing, and summarizing the data and inferring meaning
from the data to understand that part of the world better.
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Timeline

...... First weekly data collected on deaths in London.

... Beginning of official data collection on baptism,

marriages, and deaths in France.

....Beginning of the Parish Registry in Sweden.
...John Graunt publishes Natural and Political

Observations Mentioned in a Following Index
and Made upon the Bills of Mortality, which
initiated the idea that vital statistics can be used
to construct life and mortality tables for the
relevant population.

... First modern national demographic census

(conducted in Canada).

...Jacob Bernoulli publishes the law of large

numbers, a mathematical statement of the fact
that when an experiment is repeated a large
number of times, the relative frequency with
which an event occurs will equal the probability
of the event.

... Edmund Halley publishes Estimate of the

Degrees of Mortality on Mankind, which
contained the mortality tables for the city of
Breslau, Poland. It was one of the earliest works
to relate mortality and age in a population and
was highly influential in the future production of
actuarial tables in life insurance.

...Nicholas Bernoulli edits and publishes Ars

Conjectandi (The Art of Conjecture), written by
his uncle, Jacob Bernoulli, in which the work of
others in the field of probability was reviewed
and thoughts on what probability really is were
presented.

... S1r Isaac Newton publishes The Chronology of

Ancient Kingdoms Amended, in which he gives a
65% confidence interval for the length of a
king’s reign.

...Abraham de Moivre publishes an account of the

normal approximation for the binomial
distribution for a large number of trials. This
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work improves on Jacob Bernoulli’s law of large
numbers. The account will be included in the
1756 edition of de Moivre’s The Doctrine of
Chances, a treatise on probability first published
in 1718,

... The beginning of demographic data collection in

Norway.

... Publication in France of tables based on

mortality data.
Sweden’s first complete demographic census.
Austria’s first complete demographic census.

First publication of Sweden’s mortality tables.

..... enmark and Norway’s first complete

demographic census.

....Giammaria Veneziano Ortes publishes

Reflessioni sulla popolazione delle nazioni per
rapporto all’'economia nazionale (Reflections on
the Population of Nations in Respect to National
Economy).

America’s first federal demographic census.

......Britain’s first complete demographic census.

......France’s first complete demographic census.

Pierre-Simon Marquis de Laplace publishes a
fairly general statement of the central limit
theorem.

..... Benjamin Gompertz publishes On the Nature of

the Function Expressive of the Law of Human
Mortality, in which he uses logarithmic
regression to show that the mortality rate
increases exponentially as people age.

... Pierre-Simon Marquis de Laplace publishes a

paper on multiple regression analysis with
applications to lunar tides and the atmosphere.

....Belgium’s first complete demographic census.

..... Establishment of the Statistical Society of

London (later the Royal Statistical Society).
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...Adolphe Quetelet publishes Swur I'homme et le

développement de ses facultés, essai d’'une
Physique sociale, in which he presents his
conception of the average man as the central
value about which measurements of a human
trait are grouped according to the normal
distribution.

......SImeon Denis Poisson publishes Recherches sur

la probabilité des jugemenis en matiére
criminelle et matiéere civile, which introduces the
expression law of large numbers and in which
the Poisson distribution first appears.

..Public data collection of the demographic

statistics in England. Establishment of the
Registrar General Office.

...Organization of the American Statistical

Association.

... Verhulst publishes a nonlinear differential

equation describing the growth of a biological
population, which he deduced from data. The
equation predicts that population growth is
limited by forces that increase with the square of
the rate at which the population grows, rather
than being unlimited exponential growth.

... Augustin-Louis Cauchy presents an outline of

the first rigorous proof of the central limit
theorem.

...Adolphe Quetelet organizes the first

international statistics conference.

..Italy’s first complete demographic census.
......Pafnutii Lvovich Chebyshev publishes a paper,

On Mean Values, which uses Bienaymé’s
inequality to give a generalized law of large
numbers.

... Establishment of the Sociéré de Statistique de

Paris (the Statistical Society of Paris).

...Establishment of the International Statistical

Institute in the Netherlands.

... Patnutii Lvovich Chebyshev publishes On Two

Theorems, which gives the basis for applying the
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theory of probability to statistical data,
generalizing the central limit theorem of de
Moivre and Laplace.

......Francis Galton publishes Natural Inheritance, in

which he presents a summary of the work he had
done on correlation and regression that included
the idea of regression to the mean, discovered
through his 1875 experiments with sweet peas.

...LLV. Sleshinsky publishes the first complete

rigorous proof of the central limit theorem, based
on the outline by Cauchy.

...Karl Pearson begins the publication of 18 papers

entitled Mathematical Contributions to the
Theory of Evolution, which contain his most
valuable work in the form of contributions to
regression analysis, the correlation coefficient,
and the chi-square test of statistical significance.
This work lasts through 1912.

...George Udny Yule publishes On the Theory of

Correlation, in which he begins the development
of his approach to correlation via regression with
a conceptually new use of least squares that
would later dominate applications in the social
sciences.

... Publication of the first issue of Biometrika, a

journal founded by Karl Pearson and Francis
Galton.

... William Sealy Gosset, under the pseudonym

*Student,” publishes the t-distribution as the
sampling distribution of the mean when the
population variance is unknown,

Ronald A. Fisher introduces the concept of
maximum likelihood. In 1922, he would redefine
statistics such that its purpose was the reduction
of data. Fisher identified three fundamental
problems: (1) specification of the kind of
population from which the data came, (2)
estimation, and (3) distribution.

... Establishment of the Institute of Mathematical

Statistics and the appearance of Annals of
Mathematical Statistics in the United States.
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1966 ....

1967 ...

...

...Establishment of the Indian Statistical Institute.
...Jerzy Neyman and Egon Pearson publish On the

Problem of the Most Efficient Tests of Statistical
Hypotheses and The Testing of Statistical
Hypotheses in Relation to Probabilities a Priori,
capping five productive years of research on
statistical hypothesis testing,

....Ronald A. Fisher publishes the first edition of

The Design of Experiments, which revolutionizes
the use of statistics in agriculture.

...George W. Snedecor and William G. Cochran

publish Statistical Methods.

...Harald Cramer publishes Mathematical Methods

of Statistics, which joins the science of statistical
inference with the theory of classical probability
and was reprinted as recently as 1999,

..Ronald A. Fisher publishes Statistical Tables.
.....Foundation of the Working Party on Statistical

Computing, which published guidelines for
program development, descriptions, and code for
statistical programs.

... W. 1. Hammerle publishes Statistical

Computations on a Digital Computer, the first
textbook devoted to statistical computing.

...... The American Statistical Association forms a

section for statistical computing. In the following
years, the use of computers in statistics will
allow statisticians to generate, collect, organize,
and analyze larger data sets and increase the
complexity of the models fitted to the data.
Displays become more impressive, using color
and perspective. In the realm of hypothesis
testing, permutation testing undergoes a
resurgence. Computing power allows
statisticians to develop theory using Monte Carlo
simulation studies.
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Glossary

analysis of variance (ANOVA): A procedure of statistical analysis by which
differences in means of two or more groups can be assessed after eliminating
variance that is due to other factors.

Bayesian statistics: The view in which probability is interpreted as a measure
of degree of belief. In this view, the concept of probability distribution is
applied to a feature of a population, such as the population mean, to indicate
one’s belief about possible values of that feature. The principal result of
experiments is to update such a probability distribution, indicating a change in
belief. The Bayesian viewpoint is in contrast to the frequentist view.

bias: The extent to which the statistical method used in a study does not
estimate the quantity to be estimated or may not test the hypothesis to be tested.

binomial distribution: The probability distribution of the number of successes
in n Bernoulli trials. For a series of events to be considered Bernoulli trials, they
must satisfy three conditions: (1) the trials are independent of each other, (2)
each trial has exactly two possible outcomes, and (3) the probability associated
with each outcome is constant throughout all of the trials.

box plot: A graphical display for numerical data that shows the maximum and
minimum values, the median, and the quartiles of the data.

central limit theorem: Statistical theorem that states the following: Starting
with almost any disiribution (such as Poisson, binomial, or uniform distribution)
with a finite standard deviation &, if we take many samples of size n, the
distribution of the average values of the samples will be approximately a
Gaussian distribution (assuming » is large) with the same mean as the original

a
distribution and with standard deviation T
H

chi-square distributions: A family of distributions that take only positive
values and are skewed to the right. Each chi-square distribution is specified by
its degrees of freedom. The higher the degrees of freedom, the more skewed the
distribution is. The chi-square family of distributions occurs often in hypothesis
testing about categorical variables.

chi-square test for independence: A process used to test the hypothesis that
two categorical variables have no relationship. The test statistic that is calculated
has a chi-square distribution.

confidence interval: A range of values, constructed from information obtained
from a sample of the population, that is believed, with a specified probability, to
contain the value of the population parameter.
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correlation coefficient: The quantification of the strength of linear association
that exists between two numeric variables. The correlation coefficient takes
values between —1 and 1, where negative correlations mean that as the value of
one variable rises, the other falls, and positive correlations mean that the values
of the two variables rise together. Values of the correlation coefficient near 1 or
—1 indicate a strong linear relationship between the two variables. Values near 0
indicate no linear relationship between the two variables.

dispersion: The variation among values when the data values in a sample are
not all the same.

estimator: A statistic, calculated based on the information from a sample, that is

used to estimate the value of a parameter associated with the population from
which the sample was selected.

event: An outcome or set of outcomes from a random process.

expected value: The average outcome that might be expected from a long run of
trials of a probabilistic event.

experimental design: Procedures and planning used in an experimental study.
In general, these procedures are designed to reduce bias, promote replication,

use randomization in order to initiate study of causality, and ensure appropriate
sample size.

extrapolation: The process of using the data to make estimates about values
that lie beyond the range of the existing data.

factor analysis: A set of statistical procedures used to analyze multivariable
data when many variables are known about the subjects. The underlying
principle behind factor analysis is that variables that are highly correlated with
each other are grouped together and separated from variables that are not highly

correlated with the group. Each group represents a factor, thought to be a single
underlying construct.

five-number summary: A numerical summary of data that includes the
minimum and maximum values, the median, and the upper and lower quartiles.
T'he five numbers divide the data into four groups, each containing the same
number of data points. Often used to describe data that have skew.

frequentist statistics: The view in which probability is defined in terms of
long-run frequency or proportion in outcomes of repeated experiments. The
concept of probability is applied to outcomes of actual or hypothetical
experiments because there is a random element to those. But in the frequentist
view, probability is not used as a measure of knowledge or belief of the possible
values of a quantity, such as the true population mean, that does not have a
random element. The frequentist viewpoint is in contrast to the Bayesian view.

Gaussian distribution: See normal (Gaussian) distribution.
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histogram: A graphical display for numerical data in which vertical bars show
the number of observations that have a value between the values given on the x-
axis at the base of the bar.

hypothesis test: The process of assessing whether observed data are consistent
with some claim about the population in order to determine whether the claim
might be false.

independent events: Two events are independent if knowing the outcome of
one tells us nothing about the other. There is no relationship between the two
events.

interquartile range (IQR): A measure of spread. The difference between the
upper quartile and lower quartile. Also used in rules of thumb for identifying
outliers.

lurking variable: A variable that has an important effect on the relationship
among variables considered in a study but that is not, itself, considered in the
study.

mean: A measure of the location of the center of numerical data. Also called the
arithmetic average. It is computed by summing the values of the data and
dividing by the number of data points. Conceptually, it is the balance point of
the data when they are represented by a line plot. Because the mean is not
particularly resistant to outliers, it is used mainly when the data have a roughly

symmetric distribution.

median: A measure of the location of the center of numerical data. Once the
data are ordered by their value, the median is the value taken by the data point
that is in the middle, such that there are the same number of data points larger
than the median as smaller than the median. If there is an even number of data
points, then the median is the average of the values of the two in the middle.
The median is also the 50" percentile and the second quartile. Because the
median is particularly robust to outliers, it is used when the data are skewed or

contain outliers.

Monte Carlo method: A numerical modeling procedure that makes use of
random numbers to simulate processes that involve an element of chance. In
Monte Carlo simulation, a particular experiment is repeated many times with
different randomly determined data to allow statistical conclusions to be drawn.

nonparametric test: [ll-defined term used generally to describe processes for
inference that may be used either when the assumptions underlying parametric
procedures, such as chi-square and one- and two-sample tests, are not met or
when responses are difficult to quantify or contain rankings rather than
meaningful numerical values.

normal (Gaussian) distribution: A family of single-peaked, symmetric
probability distributions described as bell shaped. It is the distribution associated
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with errors in measurement, with heights and weights, and with standardized
test scores, for example.

null hypothesis: A proposition or set of propositions to be tested.

observation: The value associated with one member of a sample.

one-sample test for means: A process for testing the hypothesis that the mean
value of some quantitative aspect of a population has a particular value. The test
statistic exhibits a roughly t-distribution when the standard deviation of the
value 1n the population is not known.

one-sample test for proportions: A process for testing a hypothesis about the
percent of members of a population who have a particular characteristic or
opinion. The test statistic has a roughly normal distribution.

outlier: A data point with value that differs markedly from the rest of the values
in the data set.

p-value: In a hypothesis test, the probability of obtaining the results that were

obtained from a sample or results more unusual if the null hypothesis represents
the truth about the population.

parameter: A numerical value about data that is calculated from the values of a
population.

percentiles: The percentiles are the observations that divide the data into 100
groups, each with the same number of observations. For example, scoring in the
85" percentile on the SAT means that one has outscored 85% of those tested.

Poisson distribution: A right-skewed probability distribution that describes the
number of occurrences of an event in a given time period.

population: A population is any entire collection of people, animals, plants, or
things from which we may collect data. It is the entire group in which we are
interested and that we wish to describe or draw conclusions about.

power: The power of a hypothesis test is the ability of the test to accurately
reject the null hypothesis when the null hypothesis is, indeed, false. One wants
tests to have high power. However, as the power of a test increases, so does the
probability of a type I error, that is, the rejection of the null hypothesis when it
is actually true. The statistician must find a reasonable balance between power
and the probability of a type I error.

probability distribution: A probability distribution is a table, function, or
graph that assigns a probability to each possible outcome.

quartiles: The quartiles are the values of the data that divide the observations
into four equal-sized groups. To find the quartiles, list the values of the data in
order from smallest to largest. The second quartile (median) is the observation
in the middle. The first quartile is the observation that divides the lower half of

©2006 The Teaching Company Limited Partnership 63




the data, between the minimum and the median, into two equal-sized groups.
The third quartile is the observation that divides the top half of the data,
between the maximum and the median, into two equal-sized groups.

regression analysis: A statistical process by which a model is created that
predicts the value of a response variable through an equation using the values of
one or more explanatory variables.

residual: The difference between the actual (observed) value of a response
variable and that calculated from a regression equation.

sample: A subset of a population that is used to infer information about the
population.

sample mean: The value of the mean of a sample.

sampling bias: Error that is introduced in a statistical study by the method of
sampling. For example, the use of voluntary sampling, such as online polls,
introduces bias because the respondents tend to be those who are passionate
about the topic, rather than a random sample of people with all types of
opinions.

sampling distribution: The theoretical distribution of the statistic calculated
from a sample. The generation of this distribution is based on the calculation of
the statistic from every possible sample from the population.

scatter plot: A two- or three-dimensional graph in which each axis represents
one variable that is associated with an observation. Used in regression analysis
as a visual display of patterns that may exist among variables in the data.

significance level: In a hypothesis test, a prespecified value at which the null
hypothesis may be rejected. Sometimes used to describe the p-value of a
hypothesis test, that is, the probability of obtaining the value that was obtained
from a sample if the null hypothesis about the population from which the sample
was selected is true.

simple random sample (SRS): A sample of a population that is chosen in such
a way that each member of a population has an equal chance of being selected.

skewness: The lack of symmetry exhibited by a distribution. The direction of
skew, left or right, tells the direction of the tail that causes the lack of symmetry.

standard deviation: The most commonly used measure of dispersion (spread)
for numerical data. It is the square root of the variance. Like the variance and
the mean, its calculation is not resistant to outliers and extreme skew.

standard error: The standard deviation of the sampling distribution of a
statistic.

statistic: A numerical value about data that is calculated from the values of a
sample.
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stochastic: A synonym for random; the adjective applied to any phenomenon
obeying the laws of probability.

stratified sample: A method of sampling by which the population is first
divided into groups, or strata, based on common characteristics, such as gender

or income. If a random sample is then selected from each group, the term
stratified random sample may be used.

t-distribution: The t-distribution is the theoretical distribution of a sample mean
calculated from a sample taken from a population whose standard deviation is

not known. Its shape is roughly symmetric and similar to that of a normal
distributed variable, but the tails are thicker.

two-sample test for means: A process for testing the hypothesis that two

different populations have the same mean. The calculated test statistic is
theorized to have a t-distribution.

two-sample test for proportions: The process for testing the hypothesis that
two different populations share the same value for a binomial process (such as a
yes-no question). The calculated test statistic has a roughly normal distribution.

type I error: Rejection of the null hypothesis when it is true.
type II error: Acceptance of the null hypothesis when it is false.

uniform distribution: A distribution in which every possible value is equally

likely. The histogram of a uniform distribution has all of the bars the same
height.

variance: A measure of dispersion (spread) for numerical data. It is roughly the
average squared distance of the data values from the mean. It is calculated by
summing the square of the differences between the data and the mean. To
calculate a population variance, one divides by the number of elements in the
population. To calculate the sample variance, one divides by one fewer than the
number of observations in the sample.
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Biographical Notes

Bayes, Thomas (1701-1761). British nonconformist minister. Little is known
about Bayes’s life save that he was the son of a nonconformist minister,
educated at Edinburgh University, and a member of the Royal Society. His
major contribution to the field of statistics was the work he did on the inverse
probability problem. At the time, the calculation of the probability of a number
of successes out of a given number of trials of a binomial event was well
known. Bayes worked on the problem of estimating the probability of the
individual outcome from a sample of outcomes and discovered the theorem for
such a calculation that now bears his name.

Bernoulli, Jacques (often called Jacob or James) (1654—-1705). Professor of
mathematics at Basel and a student of Leibniz. He formulated the law of large
numbers in probability theory and wrote an influential treatise on the subject.

Cauchy, Augustin-Louis (1789-1857). French mathematician and engineer.
Professor in the Ecole Polytechnique and professor of mathematical physics at
Turin. Cauchy worked in number theory, algebra, astronomy, mechanics, optics,
and analysis. His contribution to statistics was the production of the outline of
the first rigorous proof of the central limit theorem in 1853, in the course of a
controversial debate during meetings of the Academy of Sciences and in the
pages of its journal with Irenée-Jules Bienaymé (1796—-1878). The debate
started as a result of a critique made by Cauchy of the work of Laplace.
Bienaymé, a student of Laplace, took exception to the criticism of his mentor,
on whose work much of Bienaymé’s was based, and a debate ensued. Although
Cauchy only sketched his proof, 1. V. Sleshinsky was able to fill in the details
and missing steps. He produced a complete, rigorous proof of the central limit
theorem based on the outline by Cauchy in 1892.

Chebyshev, Pafnutii Lvovich (1821-1894). Russian mathematician, founder of
the St. Petersburg School of Mathematics. The culmination of his career of
study in probability and statistics occurred in 1887, with his use of the method
of moments to prove the first version of the central limit theorem for sums of
independent but not identically distributed variables.

Cox, Gertrude Mary (1900-1978). American statistician and administrator.
Cox’s main contributions to the field of statistics were in the areas of
experimental design and analysis of psychological data. In addition, in 1949 she
became the first woman elected to the International Statistical Institute. Cox was
the first head of the department of experimental statistics at North Carolina State
University. She was a founding member of the Biometrics Society and editor of
the journal Biometrics for 10 years.

Cramer, Harald (1893-1985). Swedish mathematician and statistician. Chair
of the actuarial mathematics and mathematical statistics department and, later,
president of Stockholm University, Cramer served as chancellor of the Swedish
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university system. He wrote several seminal books that expressed probability
theory in a manner more useful in its application to statistical theory than had
previously been articulated. Working as an actuary with the Svenka Life
Insurance Company early in his career led Cramer to investigate stochastic
processes as they related to insurance. His text, Collective Risk Theory, is
concerned with the progress over time of monetary funds, with inputs, such as
premiums and interest, and outputs, such as claims, as special cases of general
stochastic processes.

Deming, W. Edwards (1900-1993). American statistician and quality-control
expert. Trained as a physicist, Deming became interested in statistics while
working at the U.S. Department of Agriculture. He then took a post at the U.S.
Bureau of Census as the Head Mathematician and Advisor in Sampling. He is
credited with importing the replicate subsampling method from India, which
forms part of the national sampling plan used by the U.S. Bureau of Census and
by polling corporations, such as Gallup. After World War II, Deming was
assigned to General MacArthur’s Supreme Command of the Allied Powers in
Tokyo. While there, Deming undertook a systematic education of quality-
control principles and techniques in the Japanese workforce. The Japanese
altention to quality control as introduced to them by Deming is credited as the

primary force behind that country’s emergence as an industrial leader among
nations.

Fisher, Ronald Aylmer (1890-1962). British statistician. Trained in
mathematics and physics, Fisher is known as the father of modern statistical
methods. Through correspondence with W. S. Gosset, Fisher was the first to
derive the general sampling distribution of the correlation coefficient. His major
contributions to statistics were in the area of design of experiments. He
introduced the concept of randomization and the process of analysis of variance
(ANOVA) now widely used by statisticians. He was a fellow of the Royal
Slatistical Society and was elected to the American Academy of Arts and
sciences, the American Philosophical Society, the International Society of
Haematology, the National Academy of Sciences of the United States, and the
Deutsche Akademie der Naturforscher Leopoldina. He was awarded honorary
degrees from many institutions, including Harvard University (1936),
University of Calcutta (1938), University of London (1946), University of
Glasgow (1947), University of Adelaide (1959), University of Leeds (1961),
and the Indian Statistical Institute (1962). Fisher was knighted in 1952,

Galton, Francis (1822-1911). British explorer and anthropologist. Cousin to
Charles Darwin. He was the first to calculate a quantitative value for correlation

and a pioneer of the use of the variable r for correlation coefficient, although his
calculation differs from that used by modern statisticians. He was the first
person to document the phenomenon known as regression to the mean, which
he discovered through experiments with sweet peas. His ideas strongly
influenced the development of statistics, particularly his proof that a normal
mixture of normal distributions is itself normal. Galton may be described as the
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founder of the study of eugenics. His principal contributions to science
consisted of his anthropological inquiries, especially into the laws of heredity.
In 1869, in Hereditary Genius, he endeavored to prove that genius is mainly a
matter of ancestry via the application of statistical methods.

| Gauss, Karl Friedrich (1777-1855). German mathematician and astronomer,
nicknamed the “Prince of Mathematicians.” His mathematical work included the
concept of a distribution of errors that originally was known as the error
distribution and later became known as the Gaussian distribution, or the normal
distribution.

Gosset, William Sealy (1876-1937). British chemist who, while working at the
Guinness Brewery in Dublin, Ireland, began a study of statistical methods as
applied to small samples. Asked by the brewery to investigate the relationship
between the quality of materials, barley and hops, for example, and production
conditions on the product, beer, the corporation required him to publish his
results under a pseudonym to preserve the anonymity of the brewery. Gosset
chose the name “Student™ under which to publish his results about the
derivation and use of a t-distribution in inference, leading to its being referred to
as the Student s t distribution. In later work at the brewery, Gosset would come
to support the use of a balanced design in agricultural applications, rather than
either of the two available competing designs. Unfortunately, Gosset would pass
away before this disagreement could be resolved.

Laplace, Pierre-Simon Marquis de (1749-1827). French mathematician and
astronomer. Professor at Ecole Normale and Ecole Polytechnique. Primarily

| known for his contributions to calculus, analysis, and physics, toward the end of
| his life, he turned to research in statistics and obtained a fairly general statement
| of the central limit theorem in 1810. Between 1818 and his death, Laplace
investigated multiple regression analysis as related to lunar fides and the
atmosphere and published a comparison of absolute versus least-squares
deviations and their use in regression analysis and the notion of a sufficient
statistic,

Markov, Andre Andreevich (1856-1922). Russian mathematician. Member of
the St. Petersburg Academy of Science. Markov was a student of Chebyshev
and spent most of his career studying probability distributions, random
variables, the weak law of large numbers, and the central limit theorem.
Markov’s significant contribution to probability theory was the introduction of
the concept of a Markov chain as a model for studying the behavior of random
variables. One example of a Markov chain is known as a simple random walk.
In a random walk, each direction in which a “man™ may step is assigned a
probability. The paths that may occur and their assigned probabilities make up
the “behavior™ of this particular random variable. In modern statistical practices,
Markov chains are used in conjunction with Monte Carlo methods to solve
problems that are analytically complicated by generating suitable random
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numbers and observing the fraction of those numbers that obey some property
or properties.

Mendel, Johann Gregor (1822-1884). Czech monk. Mendel was the first to
apply statistical methods to biology in his calculation of ratios of genotypic
structures. The application of his work to the field of genetics was not
recognized until the 1930s, 50 years after his death. The validity of Mendel’s
most famous work, on the hybridization of peas, has come under question.
Fisher initially concluded that Mendel’s description of experimental design was
correct but that the data lacked an appropriate amount of random variation and
were likely fabricated or sanitized. Later authors have exonerated Mendel based
on his use of sequential procedures and the inclusion of meteorological data.

Moivre, Abraham de (1667-1754). French-English mathematician. Born in
France and educated at the Sorbonne in mathematics and physics, de Moivre, a
Protestant, emigrated to London in 1688 to avoid further religious persecution.
A future fellow of the Royal Society of London, de Moivre supported himself in
England as a traveling mathematics teacher and by selling advice in coffee
houses to gamblers, underwriters, and annuity brokers. De Moivre is recognized
in statistics as the first to publish an account of the normal approximation to the
binomial distribution. In fact, some of de Moivre’s methods are so ingenious as
{0 be shorter than modern demonstrations of solutions to the same problems.

Moore, David. Prolific and lucid author of statistics textbooks. His work was
influential in redefining the common presentation of statistics in colleges, de-
emphasizing the mathematical theory, and focusing on real data.

Newton, Sir Isaac (1642-1727). English mathematician and scientist known for
the discovery of the law of gravity and as one of the fathers of calculus. Within
the field of probability, Newton is known for his proof of the binomial theorem.
There is also evidence that he gave thought to the variability of the sample
mean, the basis for the central limit theorem. In his last work, The Chronology
aof Ancient Kingdoms Amended, published posthumously in 1728, Newton
estimated the mean length of a king’s reign to be between 18 and 20 years. In
fact, the mean reign was 19.1 years, and the standard deviation of his sample

was 1.01 years; thus, Newton’s range of 18 to 20 years roughly corresponds to a
05% confidence interval (Johnson and Kotz).

Neyman, Jerzy (1894-1981). Polish statistician. Reader at University College
in London and founder of the department of statistical sciences at the University
of California at Berkeley. Elected to the International Statistical Institute and the
LJ.S. National Academy of Sciences. Neyman’s work in statistical inference
leads some to call him the father of modern statistical methods. In a paper co-
authored with Karl Pearson, Neyman explained the logical foundation and
mathematical basis for the theory of hypothesis testing. Through his work, the
theory of confidence intervals was developed from the theory of hypothesis
lesting. Neyman also contributed to innovative and precise use of statistics in
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fields ranging from agriculture and astronomy, biology, and social insurance to
weather modification.

Nightingale, Florence (1820-1910). British nurse. Commonly known as the
“Lady of the Lamp™ for her work as a nurse for British troops during the
Crimean War, Nightingale saved more soldiers through the use of statistics than
medicine. Utilizing both statistical methods and innovative graphical techniques,
she was able to convince the British army of the importance of hygiene and
sanitation in hospitals, which led to widespread army hospital reform.

Pareto, Vilfredo Federigo Samaso (1848-1923). French-Italian engineer and
economist. His contributions to statistics include work on interpolation and
fitting curves to data and actuarial calculations in insurance and pensions.
However, Pareto’s most significant contribution to statistics was in his
discovery of the first stable probability distribution other than the Gaussian
(normal) distribution, named the Pareto distribution in his honor. Not only does
the Pareto fit naturally arising situations, such as income distribution, but it also
has theoretical applications. When conditions for the central limit theorem do
not apply because the population distribution has heavy tails and, therefore,
does not have finite variance, a modification of the central limit theorem may be
applied if the behavior of the tail of the population distribution has roughly a
Pareto distribution.

Pearson, Karl (1857-1936). British mathematician. Chair of the applied
mathematics department at London’s University College. Influenced by Galton
(see above) and Walter Frank Raphael Weldon, a Darwinian zoologist who
worked to make biology a more rigorous and quantitative science, Pearson
became interested in developing mathematical methods for studying heredity
and evolution. Together, the three founded the journal Biometrika. Pearson
worked out the mathematical properties of both the product-moment correlation
coefficient and simple regression used to measure the relationship between two
continuous variables. Later in his career, he explored relationships between two
categorical variables and mixtures of categorical and continuous variables and
developed the chi-square test.

Poisson, Simeon Denis (1781-1840). French mathematician. He published
Recherches sur la probabilite des jugements en matiere criminelle et matiere
civile in 1837, marking the first appearance of the Poisson distribution,
originally found by de Moivre, which describes the probability that a random
event will occur in a time or space interval under the conditions that the
probability of the event’s occurring is very small. Poisson also introduced the
expression law of large numbers, by which he meant that for a larger number of
trials, the proportion of successful outcomes exhibits statistical regularity even if
the probability of success does not remain constant. Although we now rate this
work as of great importance, it found little favor at the time, the exception being
in Russia, where Chebyshev developed Poisson’s ideas.
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Quetelet, Lambert Adolphe Jacques (1796-1874). Belgian mathematician,
astronomer, and meteorologist. In the first recorded attempt to summarize
characteristics of the population, Quetelet coined the term social physics and
used data collected from the national population to describe the average man,
I"homme moyen. This led Quetelet to the notion that nature was attempting to
create the average man as a prototype and that deviations from the average were
errors. Working for the government, Quetelet collected and analyzed statistics
on crime and mortality and devised improvements in census taking. Influenced
by Laplace and Fourier, he was the first to use the normal curve other than as an
error law. The distributions of measurements, such as chest circumferences of
Scottish soldiers and heights of French conscripts, illuminated the appearance of
normally distributed measures in nature and inspired work in fields as diverse as
astronomy and physics. At an observatory in Brussels that he established in
1833 at the request of the Belgium government, Quetelet worked on statistical,
geophysical, and meteorological data; studied meteor showers: and established
methods for the comparison and evaluation of data. His studies of the numerical
consistency of crimes stimulated wide discussion of free will versus social
determinism. His work produced great controversy among social scientists of
the 19" century. Finally, the internationally used measure of obesity, the Body
Mass Index (BMI), is derived from the Quetelet index.

Spearman, Charles Edward (1863-1945). British psychologist under whose
leadership at University College emerged the “London School” of psychology,
distinguished by its rigorous statistical and psychometric approach. Spearman
formulated a two-factor theory of human intelligence, in which one factor is
¢ommon to all mental activities and the other is task specific. He came to
identify the first factor through the intercorrelations that existed between scores
ol subjects on various tests of intelligence. This quantifiable factor has come to
be called g by cognitive psychologists. Spearman’s model was based on a
mathematical formulation that laid the groundwork for the statistical methods of
lactor analysis and contributed to research in test reliability.

Wilcoxon, Frank (1892-1965). American chemist who worked most of his
career in industry researching fungicides and insecticides for the Boyce
Thompson Institute, the Atlas Powder Company, and the American Cyanamid
Company. He was a fellow of the American Statistical Association and the
American Association for the Advancement of Science. Wilcoxon studied R. A.
Fisher’s Statistical Methods for Research Workers, which interested him in the
application of statistics in experimentation, but through his research, he would
seek statistical methods that were numerically simple and more easily
understood and applied. Wilcoxon’s main contribution to statistics was the
development of nonparametric statistical processes, particularly the sign rank

lests for two-sample and matched-pairs experiments and his method for multiple
comparisons,

Yule, George Udny (1871-1951). Scottish statistician. Secretary, president, and
fellow of the Royal Statistical Society. A student of Karl Pearson, Yule made
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fundamental contributions to the theory of regression and correlation, Bibliography
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