

Reference number
ISO/PAS 22720:2005(E)

© ISO 2005

PUBLICLY
AVAILABLE
SPECIFICATION

ISO/PAS
22720

First edition
2005-12-01

ASAM Open Data Services 5.0

ASAM Services de Données Ouvertes 5.0

ISO/PAS 22720:2005(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2005
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2005 – All rights reserved

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved iii

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, a
technical committee may decide to publish other types of normative document:

— an ISO Publicly Available Specification (ISO/PAS) represents an agreement between technical experts in
an ISO working group and is accepted for publication if it is approved by more than 50 % of the members
of the parent committee casting a vote;

— an ISO Technical Specification (ISO/TS) represents an agreement between the members of a technical
committee and is accepted for publication if it is approved by 2/3 of the members of the committee casting
a vote.

An ISO/PAS or ISO/TS is reviewed after three years in order to decide whether it will be confirmed for a
further three years, revised to become an International Standard, or withdrawn. If the ISO/PAS or ISO/TS is
confirmed, it is reviewed again after a further three years, at which time it must either be transformed into an
International Standard or be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/PAS 22720 was prepared by Technical Committee ISO/TC 184, Industrial automation systems and
integration, Subcommittee SC 4, Industrial data, based on a description of the Version 5.0 prepared by the
Association for Standardization of Automation and Measuring Systems — Open Data Services.

ASAM ODS
VERSION 5.0

ISO-PAS

CHAPTER 1

INTRODUCTION

Association for Standardization of
Automation and Measuring Systems

Dated: 30.09.2004

© ASAM e.V.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1

ASAM ODS VERSION 5.0

ASAM ODS VERSION 5.0

Status of Document

Reference: ASAM ODS Version 5.0 Introduction

Date: 30.09.2004

Author: Rainer Bartz

Type: Information

Doc-ID: ASAM_ODS_50_CH01_Introduction.PDF

Status: Release

Note: ASAM ODS has invoked a Formal Technical Review (FTR) process which
intends to continuously improve the quality and timeliness of its specifications.
Whenever an error is identified or a question arises from this specification, a
corresponding note should be sent to ASAM (odsftr@asam.net) to make sure
this issue will be addressed within the next review cycle.

Disclaimer of Warranty

Although this document was created with the utmost care it cannot be guaranteed that it is
completely free of errors or inconsistencies.

ASAM e.V. makes no representations or warranties with respect to the contents or use of this
documentation, and specifically disclaims any expressed or implied warranties of

merchantability or fitness for any particular purpose. Neither ASAM nor the author(s)
therefore accept any liability for damages or other consequences that arise from the use of

this document.

ASAM e.V. reserves the right to revise this publication and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes.

ISO/PAS 22720:2005(E)

2 © ISO 2005 – All rights reserved

mailto:odsftr@asam.net

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-1

Contents

1 INTRODUCTION TO ASAM ODS 1-3

1.1 GOALS AND BENEFITS OF ASAM ODS .. 1-4
1.1.1 POSITIONING OF ASAM ODS WITHIN ASAM.. 1-4
1.1.2 DRAWBACKS OF CURRENT SYSTEMS.. 1-6
1.1.3 BENEFITS OF ASAM ODS ... 1-7

1.2 TECHNICAL APPROACH .. 1-8
1.2.1 THE DATA MODEL.. 1-8
1.2.2 THE INTERFACES.. 1-10
1.2.3 THE PHYSICAL STORAGE ... 1-11
1.2.4 THE ASAM TRANSPORT FORMATS (ATF) .. 1-12
1.2.5 APPLICATION MODELS ... 1-12

1.3 IMPACT ON PRODUCTS ... 1-14
1.4 TECHNOLOGICAL LEVEL FOR IMPLEMENTATION .. 1-15
1.5 THE ODS DATA MODEL – A DEEPER INSIGHT .. 1-16

1.5.1 THE BASE MODEL.. 1-16
1.5.2 THE APPLICATION MODEL .. 1-19
1.5.3 THE INSTANCES ... 1-21

1.6 THE ODS APPLICATION PROGRAMMING INTERFACE (API) - A DEEPER INSIGHT.... 1-23
1.6.1 THE OBJECT-ORIENTED API (OO-API) .. 1-25
1.6.2 THE PROCEDURAL API (RPC-API) .. 1-30

1.7 THE PHYSICAL DATA STORAGE - A DEEPER INSIGHT.. 1-32
1.8 THE ASAM TRANSPORT FORMAT (ATF) - A DEEPER INSIGHT.............................. 1-36

1.8.1 ATF/CLA .. 1-37
1.8.2 ATF/XML .. 1-38

1.9 APPLICATION MODELS - A DEEPER INSIGHT ... 1-39
1.9.1 THE NVH APPLICATION MODEL... 1-39
1.9.2 THE CALIBRATION APPLICATION MODEL.. 1-39
1.9.3 THE VSIM APPLICATION MODEL ... 1-39

1.10 STATUS AND FUTURE STEPS .. 1-40
1.10.1 STATUS ... 1-40
1.10.2 FUTURE STEPS .. 1-40

1.11 REVISION HISTORY... 1-41

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 3

ASAM ODS VERSION 5.0

1-2 ASAM ODS VERSION 5.0

Scope

This document is a brief description of ASAM ODS Version 5.0.

Intended Audience

This document is intended for people interested in ASAM ODS Version 5.0. It shall be used
as a brief overview of the features of ASAM ODS Version 5.0.

This document is part of a series of documents referring to ASAM ODS Version 5.0 and must
not be used as a stand-alone document. The documents referenced below build the
technical reference of ASAM ODS Version 5.0 as a whole. They may be requested from the
ASAM e.V. at www.asam.net.

ASAM ODS Specification

The following chapters build the technical reference for ASAM ODS Version 5.0:

 ASAM ODS Version 5.0, Chapter 1, Introduction

 ASAM ODS Version 5.0, Chapter 2, Architecture

 ASAM ODS Version 5.0, Chapter 3, Physical Storage (1.1)

 ASAM ODS Version 5.0, Chapter 4, Base Model (28)

 ASAM ODS Version 5.0, Chapter 5, ATF/CLA (1.4.1)

 ASAM ODS Version 5.0, Chapter 6, ATF/XML (1.0)

 ASAM ODS Version 5.0, Chapter 7: N/A ('Security' moved to Chapter 2)

 ASAM ODS Version 5.0, Chapter 8, MIME Types and External References (1.0)

 ASAM ODS Version 5.0, Chapter 9, RPC-API (3.2.1)

 ASAM ODS Version 5.0, Chapter 10, OO-API (5.0)

 ASAM ODS Version 5.0, Chapter 11, NVH Model (1.3)

 ASAM ODS Version 5.0, Chapter 12, Calibration Model (1.0)

Normative References

 ISO 10303-11: STEP EXPRESS

 Object Management Group (OMG): www.omg.org

 Common Object Request Broker Architecture (CORBA): www.corba.org

 IEEE 754: IEEE Standard for Binary Floating-Point Arithmetic, 1985

 ISO 8601: Date Formats

 Extensible Markup Language (XML): www.w3.org/xml

ISO/PAS 22720:2005(E)

4 © ISO 2005 – All rights reserved

www.asam.net
www.omg.org
www.corba.org
www.w3.org/xml

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-3

1 INTRODUCTION TO ASAM ODS

The rapid progress in hard- and software leads to storage of data in many different data base
systems as well as under different hardware and/or server generations – not only within the
automotive industry, but also within the supplying industry.

During development and production of vehicles, a huge mass of data is produced. Today,
data are stored within the automotive industry in a standardised format specified by the
ASAM ODS workgroup. ASAM stands for „Association for Standardisation of Automation and
Measuring Systems“, and ODS stands for „Open Data Services“.

The ASAM ODS standard has the fundamental quality of storing data with an architecture-
independent method. This leads to great advantages when exchanging data between
different sources and possible prospective customers.

This document shall provide an overview of the goals of ASAM ODS as well as the technical
approaches made to achieve these goals.

It is intended for readers with some technical background that want to get an impression on
what ASAM ODS really standardizes and how the standards work. Readers may get an
impression on what it means to implement these standards and what real benefit they may
draw from using the standards.

Furthermore this document may be a starting point for implementers, before they dive into
the detail standards documentation itself.

This chapter must NOT be seen as a specification; it is an introduction with some details to
provide an overview to the interested reader.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 5

ASAM ODS VERSION 5.0

1-4 ASAM ODS VERSION 5.0

1.1 GOALS AND BENEFITS OF ASAM ODS

1.1.1 POSITIONING OF ASAM ODS WITHIN ASAM

The overall ASAM standards structure is shown in the figure, illustrating components which
typically can be found in an automotive testing environment, and how these components use
ASAM interfaces to communicate and interact with each other.

ASAM ODS is that part of the ASAM standards which focuses on persistent storage and
retrieval of data.

ASAM ODS describes service interfaces. They can be used by any component of the testing
environment to store its data and/or retrieve data required for proper operation.

Components using these interfaces are typically

 data acquisition systems, collecting data from a vehicle, an engine, etc.

 test control systems, used for running test procedures

 optimization tools, looking for an optimum set of calibration parameters

 analysis and reporting tools, presenting data to engineers and decision makers

 evaluation tools, supporting research and development tasks

Data stored and retrieved are typically

 test procedure configurations of a test control system,

 descriptive data of the test equipment and of the unit under test

 data measured during a test of an engine on a test bench, a vehicle in the wind tunnel,
etc.

 data produced during a simulation run

Data
Control-
System

Application-
System

ACS

 ASAM standards in an example testing environment

CEA

C
C

C

ULI/ACI ODS

GDI

MCD

ISO/PAS 22720:2005(E)

6 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-5

 data resulting from test evaluation tools

 calibration data for engine or vehicle parts

The regular way to access ASAM ODS interfaces is, as the figure shows, through ASAM
CCC (this is true for ASAM GDI/ACI and ASAM CEA as well).

ASAM CCC has proposed a server access based on the OMG-specified CORBA standard
which requires object oriented system design.

CORBA does not specify what kind of services an interface provides; this is up to the specific
service provider (in this case: ASAM ODS). Instead, CORBA specifies how an interface can
be identified, found and connected to by any component that intends to use it. Thereby
CORBA cares for a transparent network transfer, if required.

CORBA is an open standard and is wide-spread in all kinds of large-scale industrial and
business processes. ASAM ODS specified an object oriented (OO-)API which can be
implemented with the CORBA approach; however the defined interfaces are not restricted to
CORBA and it may happen in the future that servers based on new technologies come up
providing the same interfaces.

Because the first ASAM ODS interface specification used RPC as communication method
and came up before ASAM CCC started its work, a lot of implementations still base on the
RPC-API. For compatibility reasons the RPC-API will still be supported by ASAM ODS in the
future, though the object oriented OO-API will be the main focus.

Since the access to a persistent data store typically requires network transfer, ASAM ODS is
not generally optimized for realtime performance. However, ASAM ODS does not prevent
realtime operation; time-related behavior depends on the design/implementation decision of
a specific ODS-server as well as on the Object Request Broker (the ORB) used.

ASAM ODS specifies interfaces; the way data is finally stored persistently is not exclusively
defined. While using some kind of object oriented or relational data base (with a common
database model) might be reasonable, that decision is up to the ODS-server implementation.

Although ASAM ODS is the data storage/retrieval oriented part within the ASAM set of
standards, it does not claim exclusive rights to specify file or database formats. Other ASAM
standards may do so as well, if necessary. E.g. it may be required to store configuration or
measurement data of a control system locally during operation. Or it may be required to use
other internationally accepted data formats to exchange data with regulatory institutions (as
e.g. is required for ASAM MCD aspects).

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 7

ASAM ODS VERSION 5.0

1-6 ASAM ODS VERSION 5.0

1.1.2 DRAWBACKS OF CURRENT SYSTEMS

Current systems in test, evaluation, and simulation environments within the automotive
industry have in most cases their own proprietary formats to store data. These formats
usually are very different from each other regarding the description of the configuration (unit
under test, test sequence, test equipment, etc.) as well as the way results are stored
(database, binary files, etc.).

View of the users:

Installations have grown during the past decades. Providers of the early days were replaced
by others, each new one bringing in a new storage philosophy and another incompatible
format. Accessing data from such a diversity of systems results in the need for a large variety
of interface adaptors and converters - most of them individually developed or extended for
each new project. The increasing complexity of the underlying systems causes expensive,
specialized, isolated, and thus increasingly uneconomical solutions.

This is contradictory to the general desire within the automotive industry to develop and use
easily manageable applications, which provide valuable information to other departments
and systems within the company and to suppliers.

Additionally, even if alternative providers offer technically advanced systems, they often
cannot be taken into account because of the amount of follow-up work required to link the
already existing systems to them.

View of the providers:

Since each customer has built up a specific variety of systems, and interaction with these
systems is usually strongly required with each new product being introduced, much of the
development work of a new product is spent to become compatible. And not only the amount
of work spent but also the knowledge required (and mostly gained through experience) is a
critical issue. Thus the capability to connect into an existing environment often depends on
the availability of specific people.

Moreover different customers require a different interaction scenario. Product releases
become customer specific, version control becomes a major job.

New companies trying to contribute new ideas and solutions hardly have a chance to place
any product; either they invest a lot into the connectivity issues or they will always play a
minor role. This inhibits innovation in the automotive industry and finally jeopardizes
competitiveness.

ISO/PAS 22720:2005(E)

8 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-7

1.1.3 BENEFITS OF ASAM ODS

The main objectives for a standardization of data access interfaces are to reduce costs and
risks within projects, and to provide a reliable basis for implementations in the area of data
storage and data usage. Using standardized interfaces and common structures minimizes
the efforts for the system integration within the heterogeneous environments discussed
above and makes it much easier to exchange data.

To overcome the mentioned problems ASAM ODS provides:

 A common data model (base model) for the
unambiguous and complete storage of data. This
base model can be viewed as a rough data
classification, thereby adding semantics to the
data, which finally allows different systems to
interpret same data in the same way. The data
model covers the needs of a multitude of
application areas and is adaptable to individual
requirements of a specific system or even project
by building a so called ‘application model’ from
the base model.

 Interfaces (Application Programmer's Interfaces,
APIs) to access data of ASAM-compatible
systems and tools in a standardized way.
Interfaces (APIs) to create and access a self-
explanatory description (meta-information) of the
actual application model. This allows systems to
operate on very different ASAM ODS data.

 A database model for the (wide-spread) relational databases. This specifies physical
storage of the data,. It also allows to exchange database files between systems with the
same DBMS. Finally (in case an appropriate ODS server application is not available) it
provides easy access through SQL commands even on different platforms, and between
different DBMSs.

 A standardized, easy to use, text-based exchange format (ASAM Transport Format, ATF)
in order to exchange ASAM ODS data (including its meta-information) between different
systems and different platforms. The ASAM ODS Version 5.0 now supports both, the
classic ATF (ATF/CLA) as well as the XML based ATF/XML.

 A set of application models that reflect typical scenarios for the use of ASAM ODS and
that easily allow a mapping between data originating from different companies.

Another benefit of such a standardization is its impact on product quality. The standards
specified will allow to measure products’ implementations. Certification procedures are
defined, another way to check the interoperability of products is to do crosstests, which were
already undergone with very good results. Both approaches shall lead to product conformity
with the standards.

Finally ASAM ODS provides the opportunity to integrate data of the whole lifecycle of
automotive products. Though the kind of relevant information in the areas research,
development, production, and after-sales are very different from each other, ODS allows to
store them (each with their specific application models) and retrieve them, thereby keeping
the meaning of the data items. And the ODS interfaces allow tools to combine information
from each of those areas, analyze dependencies, generate overall reports etc..

ASAM ODS

Application

Data Model

Application Interfaces

Physical Storage

Transport Format

Data Storage

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 9

ASAM ODS VERSION 5.0

1-8 ASAM ODS VERSION 5.0

1.2 TECHNICAL APPROACH

ASAM ODS standardizes data access regarding five important aspects:

 The data model

 The interfaces

 The physical storage

 The transport formats

 Application Models

1.2.1 THE DATA MODEL

The first and most important aspect of ASAM ODS is its data model.

Typically there are different levels to exchange a data item.

 Two systems or software packages might not be able to exchange this data item at all.
This is the case if e.g. system A expects the data item to be represented as a 4-byte
floating point number while system B expects it to be represented by a 2-byte integer
value.
The drawback is obvious: no automatic data exchange can be set up without changing
either of the systems (that is: its software).

 Two systems or software packages may be able to exchange this data item as a number
because the data representation of the item is the same on both systems. This capability
often is the result of some standardization effort, specifying universal data formats. An
example is the wide-spread CSV (comma separated values) format, where data items
are represented by an ASCII string, and consecutive data items are separated from each
other by a comma. System A may produce such a CSV file and system B may be able to
read it and know about the numbers contained in it.
The drawback is still obvious: without additional knowledge about the meaning of the
data item its value is quite useless.

 Similarly two systems or software packages may be able to exchange this data item as a
number with a name e.g. because a common database is used. In this case system A
stores the value of the data item in some place in a table, using a row and/or column
name; this is typically done through some database interfaces. System B may now use
the same database interfaces, identify the data item by its name and/or location in the
table and thus get back its value.
The drawback is not very obvious; it seems that the data item is fully described by (i) its
value and (ii) its name. However, its value is only useful if the retrieving system B knows
about the meaning of the data item’s name. This requires additional conventions on
naming of data items. And questions like “What unit belongs to the value?”, “Is this the
most recent of a set of available values for the data item?” etc. still remain open.

 Some data exchange solutions overcome this drawback by specifying everything.
Examples can be found looking at some serial interface protocol specifications or at
some quite fixed database models. Though this provides a maximum of information
provision, such solutions proved to be very inflexible and are tailored to the needs of one
specific task.

ISO/PAS 22720:2005(E)

10 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-9

ASAM ODS headed for an optimum compromise.

On the one hand the specifications shall be applicable to a variety of application areas. Data
gathered from small vehicle parts shall be accessible in the same way as those of complete
vehicles. Data taken in overseas shall be available together with on-site data (regardless of
the language, unit schemes, etc.). Data from research projects as well as from production
processes or even after-sales information shall be exchangeable. All systems involved in any
of those steps shall be able to store and retrieve data based on the ASAM ODS data model.
And, since large amounts of data already are existing all over the companies, ASAM ODS
should provide some means to integrate them into the new approach.

On the other hand the information stored shall still be valuable and contain enough meaning
to allow some automatic retrieval and data analysis. There should be a relation between a
data value (the number) and a corresponding unit in order to know about the real physical
value. There should be a relation between the data item and the vehicle or part where it was
taken, and with what equipment it has been taken, and who has taken it, and so on.

This finally led to the current data model of ASAM ODS. It distinguishes between a so called
‘base model’ and an ‘application model’.

The base model is a set of defined base elements and a set of base relations between them.

Each base element represents a type of information. E.g. ‘AoUnit’ is the base element that
represents information on a physical unit (like Newton, Kelvin,...), ‘AoMeasurementQuantity’
is the base element that represents information on a measured physical quantity (like force,
temperature,...), and so on.

Each base relation represents a link with a specific meaning between two such base
elements. E.g. AoMeasurementQuantity and AoUnit are linked together and the relation tells
which of all possible units is the current unit of that quantity.

The base model is unique for all kinds of applications that use ASAM ODS.

The application model is application specific. A test system for wind tube tests may have a
different application model than a system running engine endurance tests.

The application model specifies which elements are really in use by the application. For
example, an engine test shall measure a temperature, a pressure, and a force and will use
the SI units Kelvin, Pascal, and Newton. These six instances are quantities going to be
measured (thus belong to the base element AoMeasurementQuantity) or units (thus belong
to the base element AoUnit). Each of them is an individual application element (derived from
the corresponding base element), and there is a relation between each such quantity used
and an appropriate unit.

Though each application may have its own application model, all application elements in that
model know of which base element type they are. And any software accessing such an
application element knows more about it than just name and value: it knows the type of
information this element carries, it knows in which unit its values currently are expressed and
so on.

The data model is explained in more detail in section 1.5.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 11

ASAM ODS VERSION 5.0

1-10 ASAM ODS VERSION 5.0

interface

Client
Application

Server
Application

1.2.2 THE INTERFACES

The second aspect of ASAM ODS is its set of interfaces.

It is obvious that storing and retrieving information needs some kind of physical storage
medium (like a disk, a tape, etc.). Again, there are different levels to store/retrieve
information.

Usually there is an operating system which provides a basic interface to read and write single
data items to/from files on the storage medium. This is a quite low level of interface, which
requires that each single byte within that file is uniquely specified. Otherwise, though system
A could write its information to file in some way, system B would probably not be able to read
it back. Besides the huge amount of specification work required, there is still a big chance
that system implementers will misunderstand or misinterpret the specifications and produce
incompatible files, especially if there are dependencies between data items in the files.

A more convenient way is to use a DBMS (database management system) and to store the
information in a database. Today, relational databases are quite wide-spread, and access to
the contained information can be gained by using the standardized SQL (structured query
language) interface provided by the DBMS. In this case applications don’t have to care for
the exact file representation of their data; they just use the SQL-commands to store and
retrieve data items, and the DBMS takes care for that a data item stored by system A can be
retrieved by system B.

Data in relational databases are organized in tables which may be related to each other.
Thus specification work has to concentrate on specifying the tables and their relationships.
ASAM ODS has done so (see the ‘physical storage’ description below).

However a drawback of a solely database oriented standard is that all preexisting data not
contained in databases will not be accessible as ASAM ODS data unless they are
converted/imported into a database.

Another drawback is that a DBMS will never know about ASAM ODS specific aspects and
thus cannot guarantee consistency of the database contents regarding ASAM ODS criteria.

Additionally DBMSs typically require some amount of administrative work (and adequate
personnel) and involve license fees. This may become a problem for some small scale
application areas.

The most promising solution is to provide a specific interface standard that is closely coupled
with the ASAM ODS data model specification. An interface separates a client application
from a server application. The server application holds and organizes
the data; the client application stores or retrieves the data. If the
interface considers the ASAM ODS specific characteristics, one can
expect an optimal co-operation between clients and servers.

This is the concept ASAM ODS has adopted.

The server provides interfaces to store or retrieve data.
The client may use these interfaces. The way a server internally stores
the data persistently is completely up to him. The quality of the server
implementation will influence its behavior regarding performance,
overall data amount, simultaneous access from several clients, and
others.

Due to the complete encapsulation of the data store, the server application may decide to
use a relational or object oriented database for persistent storage. Alternatively, just a flat file
storage system may be used, if this seems more appropriate for the intended application

ISO/PAS 22720:2005(E)

12 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-11

area; clients will not recognize any differences in functionality. Moreover this encapsulation
allows to build server applications which can access preexisting data (in whatever storage
format) and present them to any client application as if they were proper ASAM ODS data.

Version 5.0 of the ASAM ODS standard includes two different types of interfaces:

 a procedural interface based on the RPC technology and further on referenced as the
RPC-API.

 an object-oriented interface further on referenced as the OO-API. This is currently based
on the CORBA architecture but may in the future be expanded to other technologies.

The RPC-API will still be supported by ASAM ODS in the future, though it currently is frozen;
no further revisions of that API are expected to come up.

The interfaces are explained in more detail in section 1.6.

1.2.3 THE PHYSICAL STORAGE

The third aspect of ASAM ODS is the specification of a format for physical storage.

Originally several different physical storage formats were intended to be specified: one for
(relational) database oriented storage, one for storage using a set of individual files (‘flat-
file’), one for a so-called ‘mixed mode’, where mass data reside in files while descriptive data
are contained in a database.

Up to now ASAM ODS has specified how a relational database should internally be
constructed to store information in ASAM ODS compatible way. This includes defining which
tables must be set up, what information they have to keep, which columns are keys (and thus
have to be unique) and so on.

It is not really necessary to specify a physical storage format, to come to a standardized data
storage concept.

Moreover, the major benefits from the ASAM ODS standards can be achieved by just
implementing the data model and the interfaces, without regarding any specifications on
physical storage formats (products will still seamlessly interact).

However specification of such a physical storage format provides some benefits.

 First of all, if different server applications use the same DBMS on the same platform, and
their data have to be exchanged, the database files may directly be copied. No time
consuming export-import procedures are required to transfer the data from one server
application to the other.

 Additionally regular SQL-based tools (browsers, analyzers, report generators) may be
used to access the data, bypassing the server application. Such tools are available from
a variety of vendors, are often easy to handle, not very expensive, and sometimes the
existing staff is already familiar with their usage. Though there is no ASAM ODS specific
interpretation of the data available, such tools may be sufficient (especially for simple
tasks); in this case no ASAM ODS server application needs to be licensed and installed.

 Finally the ODS-server itself may be exchanged without loss of data or the need to export
the data out of the original server and import them into the new one again.

The physical storage is explained in more detail in section 1.7.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 13

ASAM ODS VERSION 5.0

1-12 ASAM ODS VERSION 5.0

1.2.4 THE ASAM TRANSPORT FORMATS (ATF)

The fourth aspect of ASAM ODS is the specification of a transport format, the so called
‘ASAM Transport Format’ ATF. It is intended to be usable on all available platforms and
operating systems and shall allow data transfer between different systems without loosing
any information.

Since there is hardly a system or platform where plain ASCII text is not available as
information representation, ASAM ODS decided to specify the ATF based on ASCII text. The
specified syntax allows to carry all information of the data model.

ASAM ODS transport format files may become quite large due to their ASCII nature;
therefore the specification allows to separate the complete information into several single
ASCII files and moreover allows to place mass data into separate binary files whose internal
structures then are described within the ASCII file.

It is expected that ASAM ODS server applications will allow to import ATF files and to export
all or part of their information into ATF files. This applies also to ASAM ODS clients using the
API to import and export ATF files.

The ATF will typically be used to transfer e.g. measured data from a stand-alone in-vehicle
measurement system to the department’s ODS server, or to transfer parts of an ODS server
(or its whole content) from one platform to another, in case there is no CORBA-capable
network connection available. Because it is ASCII-text, the ATF can also be used to
manually analyze or modify specific data items.

Another benefit of the ATF is that it can easily be created by any application. There is no
need to know about CORBA or RPC nor to have experience with software interfaces or data-
bases. Thus it may be a first and easy step for any product to become ASAM ODS
compatible.

Version 5.0 of the ASAM ODS standard includes two different transport formats:

 the first one specified is the so-called classic ASAM transport format (ATF/CLA). It has
been used by servers and clients for years and is a stable and reliable way for ASCII
based data exchange.

 with XML becoming a base language for describing data storage in a huge variety of
application areas, ASAM ODS has now introduced the ATF/XML, an XML based
definition of file contents that allows exchange of data between ASAM ODS compliant
applications.

The ATF/CLA will still be supported by ASAM ODS in the future, though no further revisions
of that ATF type are expected to come up.

The ATF is explained in more detail in section 1.8.

1.2.5 APPLICATION MODELS

The ASAM ODS Version 5.0 now also includes application models to allow implementers to
easily implement application models which are very common. At the time of publishing this
documentation, the following application models are available or under development:

 NVH (Noise, Harshness, Vibration)

 Calibration Data

 VSIM (Vehicle Safety Information Model)

ISO/PAS 22720:2005(E)

14 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-13

 Engine

 Emissions

Application models defined up to now are explained in more detail in section 1.9.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 15

ASAM ODS VERSION 5.0

1-14 ASAM ODS VERSION 5.0

1.3 IMPACT ON PRODUCTS

ASAM ODS will influence already existing software-based products which perform
measurement, simulation, and control tasks, or which organize and analyze data or create
reports:

 Large automation, data acquisition, or analysis products will be extended to use the ODS
interfaces to connect to an ODS server. They will store their configuration information as
well as the test results using the ODS server.

 Data acquisition products with rather small functionality might show up with only an ATF
file as output data; implementing the ASAM ODS interfaces to connect to a server may
be too expensive for them.

 Simulation tools may be extended to not only perform simulation based on their internal
stimulation processes but also based on already existing data from previous test; those
may easily and uniquely accessed through the ODS interfaces.

 Calibration and optimization packages may combine actual measurement results of a
data acquisition system with results taken in the past and stored in an ODS server
(accessing them through the ODS interfaces). This may help reduce overall time amount
for testing and may increase reusability of data.

 Report generators and presentation tools now can access data from any testing
environment in a standardized way through the ODS interfaces and thus more easily. A
comparison of results between tests from different facilities will become available
independent from the equipment that produced the results.

ASAM ODS will provide opportunities for new products:

 ASAM ODS server applications will be developed. They may range from small Windows-
NT based solutions for a limited number of similar test cells to large enterprise oriented
systems which will be able to manage data from very different sources. Some may
decide to use a relational database and exactly the specified physical storage format,
others will base on their own proprietary format (using e.g. object oriented databases or
just a set of ‘flat files’)

 Data browsers and editors may provide a quick overview over the contents of the ODS
data store. Some may be capable to combine the data of several ODS servers into one
view. Others may only be capable to work with ATF files.

 Connectors between existing universal packages like EXCEL®, MATLAB®, etc. and the
ODS data store will be offered (e.g. through the use of VBA).

 Analysis tools and report generators may come up as CORBA or RPC (software)
components; they are quite lightweight and focus on a specific task, but can be combined
with other components within an adequate framework to build up an individual tool with
exactly the functionality needed.

ISO/PAS 22720:2005(E)

16 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-15

1.4 TECHNOLOGICAL LEVEL FOR IMPLEMENTATION

Besides good software development skills and the knowledge of the ASAM ODS
specification some key technologies are required to understand and implement ASAM ODS:

 The ASAM ODS data model is specified using the STEP EXPRESS syntax. Being
familiar with this syntax is beneficial. Though there is a graphical illustration of the
relationship between ODS elements, which can be understood quite easily, those
diagrams don’t contain all information. Experience with data modeling tools, entity
relationship models etc. is helpful.

 The ASAM ODS interfaces use CORBA IDL or the RPC IDL as interface definition
language. To understand the interfaces’ functionality typically requires no extra
knowledge.
To use them as a client requires a CORBA ORB implementation (only needed when
using the OO-API based on CORBA; such an ORB is available from different suppliers),
an ODS server (some are already available from ASAM members) and some experience
with this specific way of working with remote objects and their local proxies.
To implement them as an ODS server is a much more demanding task. It requires
experience with CORBA server implementations, or, in case of the RPC-Interface, with
RPC server implementations.

 The currently specified physical storage is based on relational databases. An appropriate
DBMS is required to use it. Additionally, some experience with administration of DBMSs
and experience using SQL should be available.

 Implementing an import/export from/to an ATF/CLA file does not require anything
specific. Implementing it with ATF/XML requires knowledge about the XML technology.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 17

ASAM ODS VERSION 5.0

1-16 ASAM ODS VERSION 5.0

Base Elements

AoTest

AoSubTest

AoMeasurement

AoSubmatrix

AoLocalColumn

AoMeasurementQuantity

AoQuantity

AoQuantityGroup

AoUnit

AoUnitGroup

AoPhysicalDimension

AoUnitUnderTest

AoUnitUnderTestPart

AoTestEquipment

AoTestEquipmentPart

AoTestDevice

AoTestSequence

AoTestSequencePart

AoUser

AoUserGroup

AoLog

AoParameter

AoParameterSet

AoNameMap

AoAttributeMap

AoAny

1.5 THE ODS DATA MODEL – A DEEPER INSIGHT

This section will give more detailed information on
the first aspect of the ASAM ODS standard.
However, to implement this standard will require
to study chapters 2 and 4 of the ASAM ODS
Version 5.0 documentation.

The data model of ASAM ODS distinguishes
between a ‘base model’ and an ‘application
model’. Both are describing the structure of the
data stored. Real values are finally stored in
instances of application elements. The data model
thus is a three-layer model, and an introductory
example (without any further discussion) is shown
in the figure. These subjects will be explained in
this section.

1.5.1 THE BASE MODEL

The base model is completely defined by ASAM ODS. It
consists of a set of base elements and a set of base relations
between them.

Base elements are something like information classes. The
table and the figure show the base elements currently
specified, and how they are grouped together. The prefix Ao
represents a shortcut for ASAM ODS.

Base relations are links between those base elements; each of
these links carries a specific meaning.

AoTest, AoSubTest, and AoMeasurement are used to
organize measurements and corresponding input/output data.
These three elements allow applications to build up an
organizational hierarchy for the tests performed and manage
the test results.

AoSubMatrix and AoLocalColumn are the base elements
where test results are stored. ASAM ODS assumes that result
data can be arranged in tables (submatrices) where each
column represents the values of a measurement quantity and
each row the values of subsequent measurement points.

A measurement may contain several such submatrices; they
may be combined to one large measurement matrix (which
typically will have quite large empty areas; this is why storing
the results is done through a set of submatrices rather than
through one measurement matrix).

AoQuantity is used to keep information on a physical quantity
that may be of relevance for any or all of the tests kept in the
database. AoQuantity is linked to AoUnit which means that
there is a default unit for each quantity.

Base Model

Application Model

Instances

AoMeasurement

AE_PowerMaps

hp

measuring

tq

measuring

AoUnitUnderTest

AE_Engines

MOT456MOT457

MOT123

ISO/PAS 22720:2005(E)

18 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-17

AoMeasurementQuantity represents those quantities that are used in a measurement (e.g.
where test results are available for). AoMeasurementQuantity is linked to AoQuantity and
AoUnit.

AoUnit and AoPhysicalDimension are used to keep information on the relationship
between result values (plain numbers) and the corresponding units, thereby caring for correct
result values (even in case the unit system is changed e.g. between english and metric).

The pairs {AoUnitUnderTest, AoUnitUnderTestPart}, {AoTestEquipment,
AoTestEquipmentPart}, and {AoTestSequence, AoTestSequencePart} contain
information on

 what has been tested (UnitUnderTest, UUT)

 with which equipment the test has been performed (TestEquipment, TE)

 which sequence of steps was processed during the test (TestSequence, TS)

The base relations within each of these pairs are specified by the base model in a way that
real applications may build up a hierarchical tree; the root element is e.g. a UUT, which may
have one or more UnitUnderTestParts which again may have one or more
UnitUnderTestParts and so on.

AoUser and AoUserGroup are base elements used for security aspects.

As ASAM ODS is undergoing a continuous development, the ASAM ODS Version 5.0
incorporates the following new base elements: AoLog, AoParameter, AoParameterSet,
AoNameMap, and AoAttributeMap.

AoLog is foreseen for logging purposes.

AoUnit AoQuantity

AoQuantity
Group

AoUnit
Group

AoPhysical
Dimension

AoMeasurement

AoMeasure
ment

Quantity

AoSub
matrix

AoLocal
Column

AoTest
Abstract

AoTest

AoSubTest

AoUnitUnderTest
Abstract

AoUnit
UnderTest

AoUnit
UnderTest

Part

AoTestSequence
Abstract

AoTest
Sequence

AoTest
Sequence

Part

AoTestEquipment
Abstract

AoTest
Equipment

AoTest
Equipment

Part

AoAny

Dimensions
and Units

Descriptive Data Other
Administration

Measurements

AoTest
Device

AoEnvironment

Environment

AoUser
Group

AoUser

Security

AoNameMap AoAttributeMap

AoLog

AoPara
meter

AoPara
meterSet

AoExternal
Component

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 19

ASAM ODS VERSION 5.0

1-18 ASAM ODS VERSION 5.0

AoParameter and AoParameterSet: They can be used e.g. to avoid redundancy by storing
information that is used by several elements only once. Alternatives would be to add
application attributes or instance attributes, which would create a lot more data.

AoNameMap holds any number of alias names for an application element (e.g. for language
versions). The list allows different language versions switched by the application software.

AoAttributeMap specifies any number of alias names for an application attribute..

AoAny, finally, is a base element that does not carry a specific meaning. It may be used to
store all information that does not fit to the other base elements’ meanings. However it
should be used carefully; using any other base element to store information should be
preferred.

Besides the specified base relations between the base elements, each base element has a
well defined set of base attributes. These are characteristic values that describe the element
in more detail. Base attributes may be mandatory or optional.

Each base element has at least the base attributes ‘name’ and ‘ID’ and may have attributes
like ‘version’, ‘version_date’ and ‘description’.

Some base elements have specific attributes: e.g. AoMeasurement is characterized by the
attributes ‘measurement_begin’ and ‘measurement_end’, AoMeasurementQuantity has the
additional attributes ‘datatype’, ‘type_size’, ‘rank’, and ‘dimension’ which are required to
handle the data that are stored for this quantity.

ISO/PAS 22720:2005(E)

20 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-19

1.5.2 THE APPLICATION MODEL

The application model must use the base elements to model the information that a real
application intends to store or retrieve through ASAM ODS. Building an application model
means specifying a set of application elements, each being related to one of the base
elements, such that each information item to be stored can be placed into one application
element.

The figure shows an extract from an example application model and the related part of the
base model.

The base model extract shows the base elements AoMeasurement, AoUnitUnderTest, and
AoUnitUnderTestPart. The lines between the base elements are the base relations.

The cardinality of the relations (which is not shown in the figure) is in this case

 [0,n] for all relations to/from AoMeasurement;

 an AoUnitUnderTest as well as an AoUnitUnderTestPart may have [0,n]
AoUnitUnderTestParts

 an AoUnitUnderTestPart may belong to one or more AoUnitUnderTest(s) or
AoUnitUnderTestPart(s).

The application model extract shown is one possible setup and in this example it is dedicated
for engine testing. The designer of this application model has made following decisions:

 He called each measurement action an ‘Acquisition’ and thus has put an application
element ‘Acquisition’ into his application model; it is of base type AoMeasurement.

 He decided, that though his main testing focus is on engines, some information on the
vehicle, and other parts are relevant (e.g. for some post processing). Therefore he has
put the application element ‘Vehicle’ as the root element of his test object description; it is
of base type AoUnitUnderTest.

 He has decided that (at least for his processing needs) the vehicle consists of three
different types of parts: the engine, the gearbox, and the tires. He thus put three
application elements of type AoUnitUnderTestPart into his application model. Each of
them is related to one vehicle.

AoUnitUnderTest

AoUnitUnderTestPart

AoMeasurement

Base Model (extract) Application Model (extract)

Vehicle

Engine

Acquisition

GearboxTire

Crankshaft Cylinder

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 21

ASAM ODS VERSION 5.0

1-20 ASAM ODS VERSION 5.0

Application Element

AppAttr1

AppAttr2

AppAttr3

...

AppRel1

AppRel2

AppRel3
...

 He has decided that (at least for his processing needs) the engine itself consists of two
different types of parts: the crankshaft and the cylinder. He thus put two more application
elements of type AoUnitUnderTestPart into his application model. Each of them is related
to one engine.

 He has decided that an acquisition action should be related to the engine from which data
are collected. The ‘Acquisition’ should know about which engine was mounted and the
engine should know about which ‘Acquisitions’ have already been collected.

 These decisions led to the above displayed application model extract.

Besides the specified base relations between the base elements, which appear again in the
application model as relations between application elements, the designer of an application
model may introduce new relations between application elements (especially relations
between application elements whose corresponding base elements are not related). Thus
the whole set of application relations consists of those between elements that are already
related in the base model and those that are added and extend the base model.

The same is true for application attributes: Each application element has a set of attributes
that quantify its characteristics. The mandatory base attributes must also appear in each
corresponding application element, the optional base attributes may appear in the application
elements.

Besides these base attributes the designer of an application model may add application
attributes that don’t appear in the corresponding base element. This will usually be the case,
since base attributes cannot be specific; they must be useful for the whole variety of possible
application elements.

In the example shown above, the designer could have decided to add the application
attribute ‘weight’ to the application element ‘Vehicle’, to add the attribute
‘number_of_cylinders’ to the element ‘Engine’, and to add the attributes ‘bore’, ‘stroke’, and
‘spark_plug_type’ to the element ‘Cylinder’ etc..

The figure summarizes the application element as the building block of the application model:

 Each application element corresponds to one base element (“is type of”).

 Each application element has attributes that
further quantify its characteristics; some are
already specified in the corresponding base
element, others are added.

 Each application element has application
relations to other application elements; some
are already specified in the base model as
relations between the corresponding base
elements, others are added.

With these considerations in mind one can state that there are several aspects within the
ODS data model where meaning is transported with the data:

 Application elements get a meaning by the base element they correspond to.

 Application attributes get a meaning by the base attribute they eventually correspond to;
even if they don’t correspond to a base attribute, they contain some meaning because
they belong to an application element with meaning.

ISO/PAS 22720:2005(E)

22 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-21

Engine
Name
ID
NumOfCyl

Acquisition
AcqName
AcqID
MeaBegin
MeaEnd

Cylinder
Name
ID
Bore
Stroke
IgnitionDelay

Application Model (extract)

Name=NewEngine

ID=*

Name=Cyl4
ID=*
Bore=80mm
Stroke=75mm
IgnitionDelay=360°

Name=Cyl3
ID=*
Bore=80mm
Stroke=75mm
IgnitionDelay=180°

Name=Cyl2
ID=*
Bore=80mm
Stroke=75mm
IgnitionDelay=540°

Name=Cyl1
ID=*
Bore=80mm
Stroke=75mm
IgnitionDelay=0°

AcqName=Acq1
AcqID=*
MeaBegin=22.Jun.00 23:00
MeaEnd=22.Jun.00 23:07

 Application relations get a meaning by the base relations they eventually correspond to;
even if they don’t correspond to a base relation, they contain some meaning because
they belong to an application element with meaning.

1.5.3 THE INSTANCES

Once an application model is designed, the structure of the data stored/retrieved is defined.
Neither base model nor application model store any (measured or descriptive) values. They
just provide ‘meta-information’ to know about the structure of the data store.

Whenever real values have to be stored, an instance element must first be created from an
application element.

Instance elements can store values for each application attribute of the corresponding
application element. Additionally new instance attributes may be added that do not appear at
the application element.

Instance elements can store relations (identifiers) to instances of other application elements;
each application relation between two application elements AE1 and AE2 may result in one
or more relations between instance elements of AE1 on one side and instance elements of
AE2 on the other side. Additionally new relations between two instance elements may be
added that do not have a counterpart between the corresponding application elements.

With the application model in the figure a measuring system may
start to create instances as follows (the values for the ID
attributes are set by the ODS server):

 one instance element of application
element ‘Engine’:

 four instance elements of application element ‘Cylinder’ :

 one instance element of application element ‘Acquisition’

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 23

ASAM ODS VERSION 5.0

1-22 ASAM ODS VERSION 5.0

Further on, the measurement system will set a relation attribute of each of the cylinders to
point to ‘NewEngine’, four relations of the engine to point to ‘Cyl1’, ‘Cyl2’, ‘Cyl3’, and ‘Cyl4’
respectively, one more relation of the engine to point to the ‘Acq1’ instance and finally one
relation of the ‘Acq1’ instance to point to ‘NewEngine’.

For each subsequent measurement that will be performed a new instance of the application
element ‘Acquisition’ will be created, having a new name, a new (server-provided) ID and
specific values for MeaBegin and MeaEnd.

(Actually, the measurement system will do a lot more things. For example, it will create
instances of the application elements that finally store the sampled data. Those application
elements are of base type ‘AoSubmatrix’ and ‘AoLocalColumn’ and were not contained in
this small example. And it will create instances for measurement quantities, and units, and
test equipment, ...)

ISO/PAS 22720:2005(E)

24 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-23

1.6 THE ODS APPLICATION PROGRAMMING INTERFACE (API) - A DEEPER

INSIGHT

This section will give more detailed information on the second aspect of the ASAM ODS
standard. However, to implement this standard will require to study chapter 9 (resp. 10) of
the ASAM ODS Version 5.0 documentation.

ASAM ODS provides two different types of interfaces:

 a procedural interface (RPC-API), which has been established as the first official ASAM
ODS interface, and which is used by the majority of ASAM ODS servers and clients
operating today.

 an object oriented interface (OO-API), which provides state-of-the-art access to data and
more comfortable methods to work with the data. Currently available implementations
base on the OMG’s object model and the CORBA platform though other technologies
may be supported in the future as well.

An ASAM ODS compatible server must implement either the full functionality of the OO-API
or of the RPC-API. He may implement both. The product description of a server must clearly
state which of the APIs (and what version of them) are implemented; otherwise he may not
claim to be ASAM ODS compliant.

An ASAM ODS compatible client may implement a subset of either API. There are no
minimum functionality requirements; however, what is implemented must be implemented
completely according the API specifications. The product description of a client must clearly
state which of the APIs (and what version of them) are used (and thus required from a server
for interaction); otherwise he may not claim to be ASAM ODS compliant.

From time to time ASAM ODS offers the opportunity for cross tests. Several clients will be
connected with servers and the behavior of them within a predefined scenario is investigated.
The results are further discussed and may be used for verification and further development
steps. Server and client implementers may register with ASAM for participation within such a
cross test.

There is one definition file for each of the APIs, available from ASAM: The OO-API is defined
in ods.idl, the RPC-API is defined in aods.x.

All modules and functions of the OO-API are explained in detail in chapter 10 (including
purpose, calling sequence, return values, and example code) . All methods defined for the
RPC-API are described in chapter 9.

There are some differences between the functionality of the two APIs. The functionality of the
RPC-API is a subset of that of the OO-API. The following list gives an overview on the major
functionality aspects missing in the RPC-API:

 No methods to create/change the application model (read-only-access)

 AoSubmatrix and AoLocalColumn are handled through special methods (in the OO-API
they can be accessed as normal application elements)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 25

ASAM ODS VERSION 5.0

1-24 ASAM ODS VERSION 5.0

 Client/Server access to ASAM-ODS information

 Data types used for transporting sequences of application-attribute values (e.g.
DS_LONG) are not supported (though sequences are supported within measurement
data)

 No iterators on instances (queries return all data in one return-structure)

 No value matrix on the server (submatrices must be merged by the client)

 No transactions

 No locking

The ASAM ODS APIs separate client applications from the server application. The figure
shows the principle of operations.

Within an ASAM-ODS server there are two major types of information:

 the data themselves (measurement data, descriptive data for test equipment, ...)

 the information about content and organization of those data (so-called meta-
information), represented by the application model, which itself relies on the base model.

Both types of information may be accessed through client applications. Thereby the typical
sequence of usage for a client that wants to read data from the server will be:

 connect to the server

 read the meta-information

 access the data themselves

When specifying an API for ASAM ODS several general and functional requirements have to
be considered.

The major general requirements are:

 The API shall hide any network used to connect the clients with the server.

meta-
information

measurement
data

ASAM ODS
server

Application A
(client)

Application B
(client)

ISO/PAS 22720:2005(E)

26 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-25

 The API shall take into account that some clients may want to exchange huge amounts of
data with the server while other clients may want to access data items one by one. Both
scenarios should not unnecessarily load neither the server nor the network.

 The API shall be available for all major platforms and programming languages. This
allows both client and server implementations to decide on platform and operating
environment independent from the API specification.

 The API shall allow to perform transactions. This means that from a sequence of actions
using the API either all actions succeed or all actions may be withdrawn by the client (as
if they were never initiated). This shall guarantee data consistency.

The major functional requirements were:

 The API should provide access to all information regarding the base model, the
application model, and the instances.

 The base model is provided as information only; it cannot be modified through the
interfaces.
Application model and instances must be available for read and write operation.

 The API shall care for that the rules defined for the ASAM-ODS data model are kept.

 The API shall provide means for access control. Some operations on the data should be
restricted to clients with specific rights.

 The API shall provide a basic search and selection functionality to reduce network load.

The following sections present a short introduction to the APIs and should give a rough
overview on the underlying principles and on how to start with an application. There is no
way around the specification chapters 9 resp. 10 to correctly use the APIs.

1.6.1 THE OBJECT-ORIENTED API (OO-API)

The ASAM-ODS OO-API is actually a set of interfaces that are used to access data in an
ASAM-ODS data storage. The OO-API has been specified considering the above general
and functional requirements.

Investigations of an ASAM working group found that CORBA is the only non-proprietary
distributed object-oriented transport mechanism that allows to define an API that fulfills the
requirements listed above. CORBA is a standard specified by the OMG (Object Management
Group), an organization created and supported by major IT companies. The basic idea of
CORBA is to provide a transparent communication mechanism that resides on a set of
systems and cares for the mediation of services between applications running on those
systems. A kernel, the so-called ORB (Object Request Broker), is running on each of the
systems. Whenever there is an application on a system that provides an interface (that is:
provides means to instantiate an object and use the object’s methods) it informs its ORB
about this interface and will be regarded as a server application. Any application on the same
or another system may now connect to this server as a client (either statically or dynamically
by asking the ORB for available servers) and use this interface.
As a consequence, interacting objects residing on different platforms may communicate
transparently over a network. The object implementations remain free of any transport-
related code; transport is solely in the responsibility of the ORB.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 27

ASAM ODS VERSION 5.0

1-26 ASAM ODS VERSION 5.0

ORB implementations are available for different platforms from several vendors, including
some license-free products. CORBA 2.3 or higher is required; it guarantees the
interoperability of ORBs from different vendors.

For more information on CORBA and the OMG please refer to the appropriate
documentation and literature available (www.omg.org, www.corba.org).

The specification of the OO-API uses CORBA IDL (Interface Definition Language). There are
language mappings to several common programming languages (like C, C++, JAVA) and
IDL compilers that translate the interface specifications into e.g. C++ header files or JAVA
files which can immediately be used to produce client stub or server skeleton code.

Upward compatibility is guaranteed in that existing interface definitions will only be extended
if changed in the future.

The following sections describe the main aspects of the OO- API. This is not more than a
brief overview, does not cover all interfaces, and it is strongly recommended to read the
detailed specification documents to further learn about how to apply the API.

THE ENTRY POINT

As is state of the art for modern systems architectures, the API provides a factory interface

AoFactory {...}

Whenever an ASAM-ODS server is available in the network and registered with an ORB, it
will expose this factory interface and allow a client to ask for general information on the
server as well as to initiate a session with that server (by using an authentication string with
user name and password).

A session itself exposes an interface

AoSession {...}

The main purpose of a session is to

 provide access to the base model, application model, and instances within the ASAM-
ODS server (this includes a reference to those interfaces that allow to define and execute
queries that further narrow the interesting set of instances),

 provide access to possible options (so-called context variables) regarding the behavior of
the ASAM-ODS server, and some default settings when working with instance elements.

 manage transactions and thus allow the client to invoke a sequence of interface actions
that must either succeed or must be withdrawn by the server as a whole.

The session interface allows to access the application model via the interface
ApplicationStructure (described below) either by returning a reference to it or by completely
returning it by value. This is finally an issue of server and network load, and it is up to the
client to decide whether during this session only a part of the application structure or the
whole information will likely be needed.

ISO/PAS 22720:2005(E)

28 © ISO 2005 – All rights reserved

www.omg.org
www.corba.org

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-27

ACCESS TO THE BASE MODEL

Access to the base model is provided through the interfaces

BaseStructure {...}

BaseElement {...}

BaseAttribute {...}

BaseRelation {...}

A reference to the base model can be requested from the session.

The BaseStructure interface allows to access all base elements and all base relations
(between two base elements); the client may specify several selection criteria (‘patterns’) to
browse through the base model as is needed.

The version number of the ASAM-ODS base model is available from this interface as well.

A base element knows about (and can be requested to provide) all its base attributes, its
base relations, and those other base elements to whom it is related.

A base attribute knows about (and can be requested to provide) its data type, name, whether
it is a mandatory attribute, and others. It can only be accessed through the base element
where it belongs to.

A base relation can be viewed as a special kind of base attribute with a specific interface. It
describes a directed link between two base elements and holds (besides others) a reference
to the first and second base element (start- and endpoint), the type of the relation (e.g.
FATHER, CHILD, INFO, ...), and the range of the relation (e.g. [0,1], [1,MANY], ...). It knows
about an inverse relation (where the elements are the same but the direction is opposite), if
one exists.

These interfaces of the base model provide all information on the specific objects, but do not
allow to modify them.

ACCESS TO THE APPLICATION MODEL

Access to the application model is provided through the interfaces

ApplicationStructure {...}

ApplicationElement {...}

ApplicationAttribute {...}

ApplicationRelation {...}

A reference to the application model can be requested from the session.

The ApplicationStructure interface allows to access all application elements and all
application relations (between two application elements); the client may specify several
selection criteria (‘patterns’) to browse through the application model as is needed.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 29

ASAM ODS VERSION 5.0

1-28 ASAM ODS VERSION 5.0

Additionally the ApplicationStructure interface allows to add or remove application elements
and application relations.

The ApplicationStructure interface provides access to instances, again allowing to specify
selection criteria that shall be applied by the ASAM ODS server.

Finally, the client may ask the application model to check itself for consistency.

An application element allows a variety of actions, they include:

 browse through the application structure, finding related application elements, application
relations, instances, corresponding base element, ...

 create or delete application attributes or instances of this application element

 request or specify the access rights to the application element and its instances

An application attribute knows about (and can be requested to provide) its data type, name,
whether it is a mandatory attribute, and others. It will be linked to a specific unit; access
rights may be specified, allowing only restricted access to the application attribute. In
contrast to a base attribute, all this information may be set initially or changed later by a
client.

An application relation can (similarly to a base relation) be viewed as a special kind of
application attribute with a specific interface, holding the same kind of information as a base
relation above. It specifies a directed link between two application elements. However, a
client may not only request information on the application relation but may change it.

ACCESS TO GENERAL INSTANCES

The application elements and the application model itself can be used to get a reference to
instances. In case more than one instance is referenced, an iterator interface is provided to
ease the navigation through the list of instances.

The instances themselves provide the interface

InstanceElement {...}

In case a set of instances has to be worked with, this can be done through the interface

InstanceElementIterator {...}

Instances may be asked for their name, ID, relations to other instances and other
characteristics.

Relations may be set to other instances. Additional attributes may be added to or removed
from an instance, and the instance attributes may be set to specific values (with units).

Furthermore there are methods to handle the access rights to the instance.

ACCESS TO RESULT DATA

Result data are typically mass data and are therefore treated differently. They are kept within
the ASAM-ODS storage as instances, but these instances show a specific behavior and
therefore are accessed through the following special interfaces:

ISO/PAS 22720:2005(E)

30 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-29

Measurement {...}

SubMatrix {...}

ValueMatrix {...}

SMatLink {...}

Column {...}

The interfaces ‘Measurement’ and ‘SubMatrix’ show the behavior of instances (are derived
from the instance interface) but allow additional actions to be performed.

In order to use these five interfaces, it is important to understand how result data are
organized:

The results of a measurement are values of quantities at subsequent measurement points.
However not all quantities are necessarily sampled at the same measurement points; some
may be sampled at a higher rate/density than others; some may be sampled only during a
part of the whole duration of the measurement. Storing the measurement in one (large)
matrix may leave large parts of that matrix empty, which results in a waste of memory.

Therefore ASAM-ODS allows to store results of one measurement into a set of matrices
(called ‘submatrices’). Each of them contains data of quantities that are sampled in the same
way and thus don’t lead to irrelevant (empty) matrix positions.

The access to those result data can be manifold:

 The complete measurement data can be accessed through the ‘Measurement’-interface.
In this case a ValueMatrix is returned, which then can be asked to provide one or more
result data (including its units). It is possible to either request all or part of the data of the
same measurement point (row) or all or part of the data of the same measurement
quantity (column). Data may be added, modified, or removed. This includes adding or
removing complete rows and columns of the matrix.

 Data of one submatrix may be accessed through the ‘SubMatrix’-interface. Similarly to
above, a ValueMatrix is returned which then can be asked to provide one or more result
data (including its units). However, this value matrix will only provide data from the
submatrix.

 How the individual submatrices have to be combined to get a (partly empty) complete
measurement matrix, can be set as well as requested by using the ‘SMatLink’-interface.

 The meaning of a column within a submatrix as well as additional information on the
column can be found using the ‘Column’-interface.

QUERIES

The ASAM-ODS API allows a client application to narrow the information it requests from a
server through a set of conditions. Only those instances are returned by the server that
comply to the conditions. This method to work with huge amounts of data is called ‘query’.

Conditions are specified through the use of comparison operators like ‘>’, ‘<’, ‘=’ (including
operators like ‘contained in set’ or ‘not contained in set’ for e.g. enumeration type attributes)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 31

ASAM ODS VERSION 5.0

1-30 ASAM ODS VERSION 5.0

together with logical operators like AND, OR, and NOT (with the possibility to place
brackets).

Queries are performed by a server in synchronous mode; the client must wait until the server
has completed the query execution.

In order to process queries the following interface is exposed by an ASAM-ODS server:

ApplElemAccess {...}

1.6.2 THE PROCEDURAL API (RPC-API)

Compared to the OO-API, the RPC-API has only a few methods that may be invoked by a
client and will be submitted to the server through a network using the ONC-RPC (open
network computing remote procedure call) mechanisms. Quite sophisticated structures are
typically handed over when calling the methods; the server itself returns the service results
also by means of structures.

The principal sequence a client must obey to contact and use a server is similar to the OO-
API:

 The client first has to create a session using AOP_OpenEnv(..)

 The client may then request the application model using AOP_GetApplInf(..). This returns
the complete application model including a list of all application elements and relations.
He may ask for information on all application attributes of each of the application
elements through AOP_GetAttr(..).

 The client may request a list of all instances of an application element by calling
AOP_GetInstRef(..).

 The client may request the values of application or instance attributes with
AOP_GetVal(..), AOP_GetInstAttr(..), and AOP_GetValE(..). Selection mechanisms are
built in so that only those values are transferred that match user-specific criteria.

 The client may delete or add instances or modify attribute values using AOP_PutVal(..).

 Measurement data are read from or fed into the server using specific methods that work
on submatrices. To access them is done through AOP_GetValAttr(..), AOP_GetValInf(..),
AOP_GetValVal(..), AOP_PutValVal(..).

 Finally the client must close the session with AOP_CloseEnv(..).

There are some more methods that allow to set or retrieve security information (and thus
restrict the access to specific user groups), to manage personal settings, and for other
purposes.

Though there are minor extensions in the interface definition file compared to earlier
versions, there has been no change in the methods and their parameters since version 3.2 of
the RPC-API, and no changes are planned in the future.

Interoperability is guaranteed with only few restrictions as

ISO/PAS 22720:2005(E)

32 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-31

 old clients will still work with a server that builds upon the latest interface definition though
they may not be able to access the latest base elements, since the corresponding base
identifiers will probably not be known to them.

 new clients will work with both new and old servers; however it may happen that they
cannot access the latest base elements when connecting to old servers, since the base
identifiers will probably not be known to the old servers.

Both restrictions might be fixed by a minor change to any old client or server.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 33

ASAM ODS VERSION 5.0

1-32 ASAM ODS VERSION 5.0

1.7 THE PHYSICAL DATA STORAGE - A DEEPER INSIGHT

This section will give more detailed information on the third aspect of the ASAM ODS
standard. However, to implement this standard will require to study chapter 3 of the ASAM
ODS Version 5.0 documentation.

Currently there is a specification for a physical storage format using relational databases and
mixed-mode storage. While all data are stored within the database tables according to the
basic ASAM ODS physical data storage, the mixed mode storage allows to source out mass
data into separate files.

Storing information using a relational database requires to specify which tables must be
available in the database, what columns they need to have, which table entries must be
unique (because they are used as keys) etc.. This has been done for ASAM ODS information
and is roughly described in this section.

First of all, as the figure indicates, a distinction must be made between the storage of meta-
information and the storage of real values (that is: all measurement data as well as the
instance elements’ attribute values and relations).

Information on the base model is not stored at all in the database; instead it is kept
somewhere (e.g. in the source code) within the ODS server.

Information on the application model is stored using mainly three tables:

a) the application elements table (also referenced as SVCENT)

This table contains a list of all application elements and for each of them allows to keep the
information on

 the identifier of the application element (which is provided by the ODS server and must
be unique within this table),

 its name (given by the user/application model designer),

 the identifier (BE-ID) of the base element to which this application element belongs
(which is uniquely defined by ASAM ODS when specifying the base model),

 the name of the table where the instances of that application element are stored.

meta-
information

measurement
data

ASAM ODS
server

ISO/PAS 22720:2005(E)

34 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-33

AE-ID AE-Name BE-ID InstTabName

1 Acquisition 3 AcqInst
2 Vehicle 21 VehicInst
3 Engine 22 EngInst
4 Cylinder 22 CylInst
...

AE-ID AA/AR-Name BA-Name AET-ID InstColName DT-ID ...

1 AcqName name AcqNCol 1 ...
1 AcqID id AcqIDCol 6 ...
1 MeaBegin measurement_begin MeaBCol 10 ...
1 MeaEnd measurement_end MeaECol 10 ...
1 Acq_Eng units_under_test 3 Acq_Eng_Col 6 ...
3 Name name NameCol 1 ...
3 ID id IDCol 6 ...
3 NumOfCyl NumOfCCol 2 ...
3 Eng_Acq measurement 1 Eng_Acq_Col 6 ...
3 Eng_Cyl children 4 Eng_Cyl_Col 6 ...
4 Name name NameCol 1 ...
4 ID id IDCol 6 ...
4 Bore BoreCol 3 ...
4 Stroke StrokCol 3 ...
4 IgnitionDelay IgnDelCol 3 ...
4 Cyl_Eng parent_unit_under_test 3 Cyl_Eng_Col 6 ...
...

The figure shows the structure of this table, together with some example entries:

b) the application attributes table (also referenced as SVCATTR)

This table contains a list of the application attributes of all application elements. It also
includes all application relations that are [0,n]- or [1,n]-relations. Its structure allows to store
information like

 the name of the application attribute or relation (AA/AR-Name) (which is supplied by the
application model designer and must be unique within the application attributes/relations
of the same application element),

 the identifier (AE-ID) of the corresponding application element; this is the same as given
in table SVCENT,

 (in case this application attribute shall represent a base attribute:) the name of the
corresponding base attribute (BA-Name) (this name is defined by ASAM ODS when
specifying the base model),

 (in case the entry describes an application relation:) the identifier of the application
element to which this application relation points (AET-ID, target),

 the name of the column of the instances table, where the values of this application
attribute/relation are contained,

 the identifier (DT-ID) of the data type with which this application attribute/relation is stored
in the instances table,

The figure shows the structure of this table, together with some example entries:

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 35

ASAM ODS VERSION 5.0

1-34 ASAM ODS VERSION 5.0

NameCol IDCol BoreCol StrokCol IgnDelCol Cyl_Eng_Col

Cyl1 100 80.0 75.0 0 110
Cyl2 101 80.0 75.0 540 110
Cyl3 102 80.0 75.0 180 110
Cyl4 103 80.0 75.0 360 110

c) the application relations table (also referenced as SVCREF)

This table contains all relations between application elements that are of type [n,m].
Relations of type [0,n] or [1,n] can be handled like attributes and are contained in the above
described table SVCATTR. The table SVCREF contains information on

 the identifier (AE1-ID) of one of the two application elements that have a [n,m]-relation

 the identifier (AE2-ID) of the other application element within this [n,m]-relation,

 the name of the table where each single relation instance is stored.

Separated from these three (more or less static) tables are a set of tables that contain the
real values (the instances):

A) Tables containing instance elements and their attributes

There is one table for each application element, holding its instances. The name of the table
is given in SVCENT.

Each column contains the values for one application attribute/relation. The relationship
between the application attribute/relation and the corresponding column is given by the
column name and specified in SVCATTR.

Each row contains one instance of that application element.

The figure shows a simple example for such a table (“CylInst”; the IDs are usually server-
defined):

B) Tables containing instance relations in case of [n,m]-relation types

There is one table for each [n,m]-type application relation within the application model.

Each of the two columns contains instance elements of only one application element.

Each row specifies which two instance elements are related. The same instance element will
typically appear more than once in the table.

C) Tables containing instance attributes that don’t have corresponding application
attributes

Attributes/relations that are added to instances and thus do not exist in the corresponding
application elements cannot be contained in the tables according to A). Therefore a separate
table (named SVCINST) is set up to hold all these instance attributes/relations. Each row
contains one instance attribute/relation; the columns store information about the name, the
unit identifier, the value, and the identifier of the instance element they belong to.

ISO/PAS 22720:2005(E)

36 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-35

D) Tables containing measurement results (mass data)

There are tables in the database that hold the measurement data. Measurement data are
composed of several submatrices that together build up an (usually sparse) overall
measurement matrix. Each column of a submatrix (a so-called “local column”) contains data
of one measurement quantity. Each row of a submatrix contains data of all measurement
quantities sampled at the same measurement point (typically point of time).

E) Tables containing security information

To restrict or allow access to ASAM ODS data, the physical storage holds three tables:
SVCACLI, SVCACLA and SVCTPLI. SVCACLA holds the security data for the instance
protection, SVCACLA holds the security data for the attribute and element protection, and
SVCTPLI holds the ACL templates for security.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 37

ASAM ODS VERSION 5.0

1-36 ASAM ODS VERSION 5.0

1.8 THE ASAM TRANSPORT FORMAT (ATF) - A DEEPER INSIGHT

This section will give more detailed information on the fourth aspect of the ASAM ODS
standard. However, to implement this standard will require to study chapter 5 (resp. 6) of the
ASAM ODS Version 5.0 documentation.

The ATF is a specification of a syntax to describe ASAM ODS information so that it can be
transported as a text file. It is typically used to

 transport whole or part of the contents of one ODS database to another one.

 import information from a system into an ODS database in case that system is not
capable to interface to the server through the ODS API or is currently not connected to
the server through a network.

ATF allows to transport the complete application model as well as the instance elements with
their attributes and relations. Since the base model is standardized it is not necessary to
include it in the ATF. In order to handle changes in the base model standard over time,
provisions will be made to include the assumed base model version in ATF.

ATF is specified as a plain ASCII text format (characters 3210..25510). Thus it is very likely
that it can be transported onto every available platform (operating system). Advanced
versions of the ATF specification will probably base on the UTF8 character set.

The ATF specification allows to split the whole information into a set of individual files, each
one except the first being ‘included’ by another file. This has several benefits:

 If the transport media are limited regarding file size, transport can take place in several
consecutive steps.

 If the transport takes place over a noisy channel, it is often easier to transfer several
small files than one rather large file.

 If parts of the whole information are always constant (e.g. the application model, or some
descriptive data) only the variable parts of the information require additional disk space;
the constant parts can be included wherever they are needed.

The ATF specification allows to source out mass data, which typically appear when
LocalColumn information (the real measured values) have to be transported. Since
transporting data in ASCII format requires several times the space than binary data, ATF
allows to transport mass data in binary format. For this purpose the corresponding ATF
ASCII file contains a specification of the structure of those binary files as well as information
on the sequence of bytes for standard data types (i.e. is high or low byte written first to the
file stream? etc.).

There are two different ATF specifications contained within the ASAM ODS Version 5.0
documentation: The classic ATF/CLA and the new ATF/XML. While the ATF/CLA is a proven
standard for data exchange and has been used for years, the ATF/XML is expected to
benefit from the expanding XML technology.

The ATF/CLA will still be supported by ASAM ODS in the future, though no further revisions
of that ATF type are expected to come up.

ISO/PAS 22720:2005(E)

38 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-37

1.8.1 ATF/CLA

The syntax of the classic ATF is completely specified in chapter 5 using syntax diagrams.
The macroscopic structure of ATF/CLA is shown in the following figure.

A (logical) ATF/CLA file is divided into five main parts, as shown:

 version: provides information on the ATF/CLA version.

 files (optional): provides a list of physical files that together build the complete logical
ATF/CLA file.

 applelem: is a description of an application element and may be repeated for each
application element that is going to be transported by this ATF/CLA file.

 instelem (optional): is a description of an instance of an application element; it appears
once for each instance that is transported by this ATF/CLA file. In case the ATF/CLA file
carries only meta-information, the number of instelem is zero.

 endfile: provides the information that there is no further ATF-relevant information in the
file.

Each of these syntax elements is further specified in the ATF/CLA documentation down to a
level of sequences of single characters out of the ASCII character set.

Attention must be paid to semantics. The ATF/CLA specification is a syntax specification and
does not care much about semantics. However any application working with ATF/CLA files
does care.

E.g. according to the ATF/CLA syntax definition it is possible to create a syntactically correct
ATF/CLA file

 with an instance element that is related to a non-existing application element, or

 with an application element that does not contain mandatory base attributes, or

 with an application or instance element that has no relation to any other element and is
not related by any other element in the ATF/CLA file.

All these examples are conform to the syntax, but importing them into an ODS server will
immediately create problems.

Thus there is no way to generate a proper ATF/CLA file without knowing about the ASAM
ODS data model.

version

files

applelem

instelem

endfile

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 39

ASAM ODS VERSION 5.0

1-38 ASAM ODS VERSION 5.0

1.8.2 ATF/XML

Since with XML standards for text-based data exchange have come up during the past few
years, the ASAM ODS workgroup also defined a standard for ATF based on XML. This
exchange format is completely specified in chapter 6 using XML schema.

For an easy upgrade the keywords of ATF/XML are defined close to those for ATF/CLA.

XML tools allow for a more detailed automatic verification of an ATF/XML file than is possible
with ATF/CLA.

ISO/PAS 22720:2005(E)

40 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-39

1.9 APPLICATION MODELS - A DEEPER INSIGHT

This section will give more detailed information on the fifth aspect of the ASAM ODS
standard. However, to implement this standard will require to study chapters 11 to 13 of the
ASAM ODS Version 5.0 documentation.

Whenever different products base on the same application model data may be exchanged
between them very easily. A common application model guarantees that products store the
same information with the same data formats in the same way, and thus the meaning of this
information can be generally understood.

Currently three specific application models have been specified and released by ASAM ODS.
They cover areas that are of great importance in the automotive industry. These models are
based on the ASAM ODS base model, and are intended to be minimal application models.
This means that anyone who creates a company specific application model can use the
proposed model and add company specific items.

1.9.1 THE NVH APPLICATION MODEL

NVH stands for 'Noise, Vibration and Harshness', and it is a specific field of activity in the
industry, where a lot of simulation results and measurement data exist. Since there exist
quite a lot of software solutions for problem solving in the NVH field, being able to share data
between all these solutions is of high importance to the users of such software.

The data that are typically measured and processed in this domain are very diverse in
nature, and in order to be able to correctly interpret these data, some descriptive information
is typically added to the data in form of extra parameters.

1.9.2 THE CALIBRATION APPLICATION MODEL

The calibration data model is intended as a schema to structure calibration data obtained
from the calibration process of test stand components like sensors, amplifiers, … etc. The
main usage of an ASAM ODS server is to store and retrieve measuring data of different kind
(vehicle data, engine data, NVH data, … etc.). A measuring data analysis relies implicitly on
a perfectly calibrated test bed, respectively its measuring components operating permanently
fault free in same quality over arbitrary long periods. This application model defines how
calibration information should be stored in an ASAM ODS server.

1.9.3 THE VSIM APPLICATION MODEL

VSIM stands for 'Vehicle Safety Information Model'. The VSIM application model
standardizes the data storage for the area of vehicle safety tests. It specifies a list of
application elements and their attributes and relations. It includes mechanisms to describe
and reference externally stored diagrams, test reports, photos, and movies of the tests and
relate them to the test data within the ASAM ODS server.

The VSIM application model has already been specified in 2001 within the ISO
TC22/SC12/WG3 as ISO/TS 13499. It is thus not contained in the current ASAM ODS
documentation and may be requested from the ISO.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 41

ASAM ODS VERSION 5.0

1-40 ASAM ODS VERSION 5.0

1.10 STATUS AND FUTURE STEPS

1.10.1 STATUS

ASAM ODS has released stable specifications for the ASAM ODS data model (using STEP
EXPRESS), the physical storage for relational databases and mixed-mode storages, the
interfaces (using RPC and CORBA IDL), and the transport format.

Additionally, ASAM ODS has prepared application-specific data models, e.g. for NVH (Noise,
Vibration and Harshness), calibration data, VSIM, etc.. More models are expected to come
up in the future.

For detail information contact the ASAM office (e.g. via the ASAM website www.asam.net).

Several implementations (ASAM ODS Servers, data browsers, evaluation packages, and
other tools) based on these specifications are available from different vendors and are used
in projects in the automotive industry. Please contact the ASAM office or look into the ASAM
website to find companies involved in the ASAM standardization process.

Over the time, ASAM ODS has proven to be a very stable standard. Based on the
experience made in the last years, there is no need for excessive changes or extensions of
the kernel structure. ASAM ODS is now concentrating on applications and data models for
applications (see above).

1.10.2 FUTURE STEPS

ASAM ODS will continuously keep on improving and consolidating its standards and will
continue to observe the IT trends and integrate applicable upcoming standards.

At the time of publishing this document, ASAM ODS is undergoing the so-called Harvesting
Procedure within the ISO group TC184/SC4 to become an ISO standard in the future.

ISO/PAS 22720:2005(E)

42 © ISO 2005 – All rights reserved

INTRODUCTION TO ASAM ODS

ASAM ODS VERSION 5.0 1-41

1.11 REVISION HISTORY

Date
Editor

Changes

2003-10-10
R. Bartz

ATF/XML has been introduced.
The APIs have been explained in more detail.
The RPC Interface has been included.
The description of the Query capabilities has been changed.
Specific application models are introduced: Calibration, NVH.
Minor textual changes have been made.

2003-10-17 The FTR meeting agreed to the current text with two modifications required
2003-10-18
R. Bartz

A figure to further explain the base model has been included.

2003-12
R. Bartz

A reference to the VSIM model has been made.
Minor textual changes have been introduced.

2003-12-30
R. Bartz

The Release version has been created

2004-09
R. Bartz

Minor textual changes have been introduced

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 43

ASAM e.V.

Arnikastr. 2

D-85635 Hoehenkirchen

Germany

phone: (+49) 8102 – 895317

fax: (+49) 8102 – 895310

e-mail: info@asam.net

internet: www.asam.net

ISO/PAS 22720:2005(E)

44 © ISO 2005 – All rights reserved

ASAM ODS
VERSION 5.0

ISO-PAS

CHAPTER 2

ARCHITECTURE

Association for Standardization of
Automation and Measuring Systems

Dated: 30.09.2004

© ASAM e.V.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 45

Status of Document

Reference: ASAM ODS Version 5.0 Architecture

Date: 30.09.2004

Author: Peter Dornhofer, AVL; Horst Fiedler, TIFFF; Dr. Helmut
Helpenstein, National Instruments; Gerald Sammer, AVL; Karst
Schaap, HighQSoft

Type: Specification

Doc-ID: ASAM_ODS_50_CH02_Architecture.PDF

Revision
Status:

Release

Note: ASAM ODS has invoked a Formal Technical Review (FTR) process which
intends to continuously improve the quality and timeliness of its specifications.
Whenever an error is identified or a question arises from this specification, a
corresponding note should be sent to ASAM (odsftr@asam.net) to make sure
this issue will be addressed within the next review cycle.

Disclaimer of Warranty

Although this document was created with the utmost care it cannot be guaranteed that it is
completely free of errors or inconsistencies.

ASAM e.V. makes no representations or warranties with respect to the contents or use of this
documentation, and specifically disclaims any expressed or implied warranties of

merchantability or fitness for any particular purpose. Neither ASAM nor the author(s)
therefore accept any liability for damages or other consequences that arise from the use of

this document.

ASAM e.V. reserves the right to revise this publication and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes.

ISO/PAS 22720:2005(E)

46 © ISO 2005 – All rights reserved

mailto:odsftr@asam.net

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-1

Contents

2 ASAM ODS ARCHITECTURE 2-5

2.1 INTRODUCTION... 2-5
2.2 ELEMENTS OF THE BASE MODEL .. 2-7

2.2.1 OVERVIEW ... 2-7
2.2.2 ENVIRONMENT ... 2-7
2.2.3 DIMENSIONS AND UNITS ... 2-8
2.2.4 ADMINISTRATION.. 2-8
2.2.5 MEASUREMENTS .. 2-8
2.2.6 DESCRIPTIVE DATA .. 2-8
2.2.7 SECURITY .. 2-9
2.2.8 OTHER DATA ... 2-9

2.3 RULES FOR THE APPLICATION MODEL .. 2-10
2.3.1 NAMES OF APPLICATION ELEMENTS ... 2-10
2.3.2 BUILDING THE APPLICATION MODEL ... 2-10
2.3.3 MAPPING BASE MODEL AND APPLICATION MODEL 2-13

2.4 ATTRIBUTES IN ODS MODELS.. 2-14
2.4.1 RULES FOR ATTRIBUTES .. 2-14
2.4.2 ATTRIBUTES OF ALL ELEMENTS ... 2-14

2.5 DATA TYPE USAGE IN ASAM ODS .. 2-15
2.5.1 GENERAL NOTES TO DATA TYPES IN ASAM ODS 2-15
2.5.2 DATA TYPES OF THE BASE MODEL AND THE APIS 2-17
2.5.3 ALTERNATIVES TO DATA TYPES OF BASE ATTRIBUTES 2-18
2.5.4 ALTERNATIVES TO RELATION RANGES OF BASE RELATIONS................... 2-19
2.5.5 THE STANDARDIZED ASAM DATA TYPES ... 2-19

2.6 THE APPLICATION INTERFACES .. 2-22
2.6.1 BASIC INFORMATION .. 2-22
2.6.2 WORKING WITH THE APPLICATION INTERFACE.. 2-27

2.7 INHERITANCE SUPPORT.. 2-33
2.7.1 SOFTWARE DESIGN CLARIFICATIONS AND LIMITATIONS 2-33
2.7.2 EFFECTS WHEN USING INHERITANCE... 2-33
2.7.3 APPLICATION MODEL ... 2-34
2.7.4 PHYSICAL STORAGE .. 2-34
2.7.5 RESTRICTIONS OF THE RPC-API .. 2-36
2.7.6 INSTANCE ATTRIBUTES .. 2-37
2.7.7 RELATIONS .. 2-37

2.8 THE USE OF ATF IN THE ODS ARCHITECTURE ... 2-38
2.9 SECURITY CONCEPTS OF ASAM ODS ... 2-39

2.9.1 GENERAL... 2-39

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 47

ASAM ODS VERSION 5.0

2-2 ASAM ODS VERSION 5.0

2.9.2 BASIC CONCEPT ...2-39
2.9.3 EXPLANATION OF BASIC TERMS..2-39
2.9.4 ACCESS CONTROL FOR DATA OBJECTS ..2-40
2.9.5 BASIC RIGHTS ..2-44
2.9.6 CHECKING THE ACCESS RIGHTS FOR A DATA OBJECT.............................2-46
2.9.7 CREATING A NEW DATA OBJECT...2-46
2.9.8 OTHER BASIC RULES..2-48
2.9.9 PHYSICAL DATA MODEL ...2-50
2.9.10 ACL...2-50
2.9.11 CONFIGURATION OF ACL PROTECTION ...2-51
2.9.12 ACL TEMPLATE..2-51
2.9.13 USERS AND USER GROUPS...2-52
2.9.14 ATF FORMAT ...2-52

2.10 GLOSSARY ...2-54
2.11 REVISION HISTORY ...2-56

ISO/PAS 22720:2005(E)

48 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-3

Scope

This document describes the Architecture of ASAM ODS Version 5.0.

Intended Audience

This document is intended for implementers of ASAM ODS Version 5.0. It shall be used as a
reference on the architecture of ASAM ODS. It describes in detail the base elements with
their corresponding base attributes, base relations etc..

This document is part of a series of documents referring to ASAM ODS Version 5.0 and must
not be used as a stand-alone document. The documents referenced below build the
technical reference of ASAM ODS Version 5.0 as a whole. They may be requested from the
ASAM e.V. at www.asam.net.

ASAM ODS Specification

The following chapters build the technical reference for ASAM ODS Version 5.0:

 ASAM ODS Version 5.0, Chapter 1, Introduction

 ASAM ODS Version 5.0, Chapter 2, Architecture

 ASAM ODS Version 5.0, Chapter 3, Physical Storage (1.1)

 ASAM ODS Version 5.0, Chapter 4, Base Model (28)

 ASAM ODS Version 5.0, Chapter 5, ATF/CLA (1.4.1)

 ASAM ODS Version 5.0, Chapter 6, ATF/XML (1.0)

 ASAM ODS Version 5.0, Chapter 7: N/A ('Security' moved to Chapter 2)

 ASAM ODS Version 5.0, Chapter 8, MIME Types and External References (1.0)

 ASAM ODS Version 5.0, Chapter 9, RPC-API (3.2.1)

 ASAM ODS Version 5.0, Chapter 10, OO-API (5.0)

 ASAM ODS Version 5.0, Chapter 11, NVH Model (1.3)

 ASAM ODS Version 5.0, Chapter 12, Calibration Model (1.0)

Normative References

 ISO 10303-11: STEP EXPRESS

 Object Management Group (OMG): www.omg.org

 Common Object Request Broker Architecture (CORBA): www.corba.org

 IEEE 754: IEEE Standard for Binary Floating-Point Arithmetic, 1985

 ISO 8601: Date Formats

 Extensible Markup Language (XML): www.w3.org/xml

 ANSI SQL89: Database Language - SQL with Integrity Enhancements. American
National Standard X3.135, American National Standards Institute, 1989.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 49

www.asam.net
www.omg.org
www.corba.org
www.w3.org/xml

ASAM ODS VERSION 5.0

2-4 ASAM ODS VERSION 5.0

ISO/PAS 22720:2005(E)

50 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-5

2 ASAM ODS ARCHITECTURE

2.1 INTRODUCTION

The specifications of ASAM ODS Version 5.0 are structured into 4 components, which
depend on each other. These structures are:

1. The data model (consisting of the base model and the rules for deriving an application
model)

2. The physical storage

3. The Application Programmers Interfaces (APIs)

4. The ASAM Transport Format (ATF)

The data model is the basis, all other components are harmonized with the data model. The
following simplified figure shows the relations of data model, application, application
interfaces, physical storage, transport format and application model.

Data
Model

Base
Model

+

Rules

Application Model

ASAM ODS API

Application

Physical Storage

(e.g. RDB, File,.....)

Transport Format
(ATF)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 51

ASAM ODS VERSION 5.0

2-6 ASAM ODS VERSION 5.0

All specifications depend on the base model and the rules (generic data model).

The concept enables to handle all application models derived from the base model within the
whole system. The control is done by meta information (application model and mapping to
the base model).

For example, the physical storage for a relational database is specified in a way, that the
meta information is stored in fixed specified tables. Also for the transport format (ATF) the
storage of the meta information is specified and for the access layer corresponding methods
are defined.

Since the data model is the basis of all specifications, the elements of this model are
described within this chapter. The specification of the data model includes the definitions for

the base model

the rules for deriving a project-specific application model

the rules for building instances from the application model.

Base Model Application Model Instances

ISO/PAS 22720:2005(E)

52 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-7

2.2 ELEMENTS OF THE BASE MODEL

2.2.1 OVERVIEW

The following figure shows the ASAM ODS base model:

The base model incorporates the following base elements, from which the application
elements may be derived. These elements are grouped according to their usage within
automation and measurement systems. A detailed description of each base element is
contained in chapter 4.

2.2.2 ENVIRONMENT

The following elements are used to describe the environment of an ASAM ODS server and
data storage:

AoEnvironment

AoNameMap

AoAttributeMap

AoUnit AoQuantity

AoQuantity
Group

AoUnit
Group

AoPhysical
Dimension

AoMeasurement

AoMeasure
ment

Quantity

AoSub
matrix

AoTest
Abstract

AoTest

AoSubTest

AoUnitUnderTest
Abstract

AoUnit
UnderTest

AoUnit
UnderTest

Part

AoTestSequence
Abstract

AoTest
Sequence

AoTest
Sequence

Part

AoTestEquipment
Abstract

AoTest
Equipment

AoTest
Equipment

Part

AoAny

Dimensions
and Units Descriptive Data

Other
Administration

Measurements

AoTest
Device

AoEnvironment

Environment

AoUser
Group

AoUser

Security

AoNameMap AoAttributeMap

AoLog

AoPara
meter

AoPara
meterSet

AoLocal
Column

AoExternal
Component

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 53

ASAM ODS VERSION 5.0

2-8 ASAM ODS VERSION 5.0

2.2.3 DIMENSIONS AND UNITS

The following elements are used to build a catalog of units and define the relation to SI units
(via AoPhysicalDimension):

AoUnit Units

AoQuantity Quantities and their properties

AoPhysicalDimension Physical Dimensions

AoUnitGroup Unit groups

AoQuantityGroup Quantity groups

2.2.4 ADMINISTRATION

The following elements are used to build a tree structured administration of measurements
and acquired (or evaluated) data, enabling several levels of subtests:

AoTest (derived from AoTestAbstract)

AoSubtest (derived from AoTestAbstract)

2.2.5 MEASUREMENTS

The following elements are used to build structures to store measurement (and evaluation)
results:

AoMeasurement Measurements as bundle of measurement
quantities and arrays of AoLocalColumn

AoMeasurementQuantity Measurement quantities in measurements

AoSubmatrix Array of LocalColumn

AoLocalColumn Measurement vector

AoExternalComponent Reference to a measurement vector in external files

2.2.6 DESCRIPTIVE DATA

The following elements are used to build structures for supplementary descriptions of the
tests:

for the Tested Object

AoUnitUnderTest (derived from AoUnitUnderTestAbstract)

AoUnitUnderTestPart (derived from AoUnitUnderTestAbstract)

for the Test Sequence

AoTestSequence (derived from AoTestSequenceAbstract))

AoTestSequencePart (derived from AoTestSequenceAbstract)

for the Test Equipment

AoTestEquipment (derived from AoTestEquipmentAbstract)

ISO/PAS 22720:2005(E)

54 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-9

AoTestEquipmentPart (derived from AoTestEquipmentAbstract)

AoTestDevice (derived from AoTestEquipmentPart)

2.2.7 SECURITY

The following elements are provided for the storage of security data (which allows to restrict
the access to the content of an ASAM ODS server):

AoUser

AoUserGroup

2.2.8 OTHER DATA

The following elements are provided for the storage of other data:

AoAny

AoLog

AoParameter

AoParameterSet

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 55

ASAM ODS VERSION 5.0

2-10 ASAM ODS VERSION 5.0

2.3 RULES FOR THE APPLICATION MODEL

To derive an application model from the base model several rules are to be followed. There
are rules for deriving application elements from base elements, for naming the derived
elements and for including additional attributes.

2.3.1 NAMES OF APPLICATION ELEMENTS

Base Model Application Model

e.g.: AoMeasurement EnduranceTest

The derived application elements may be named according to the project-specific
requirements. The relation to the base model must be maintained and is stored within the
meta information. The names of application elements must never begin with “Ao” (this is
reserved for base element names).

2.3.2 BUILDING THE APPLICATION MODEL

There are different rules for deriving one or more application elements from the base model.
Additional specifications control which relations are allowed or even prescribed. Please note
that there are 3 groups of base elements for which different derivation rules are provided:

 Single derivation

 Tree structure at instance level

 Tree structure at application level.

SINGLE DERIVATION

From the following base elements only one application element may be derived. These
elements are the most precisely specified base elements (through base attributes) within the
base model:

AoEnvironment
AoMeasurement
AoMeasurementQuantity
AoPhysicalDimension
AoQuantity
AoQuantityGroup
AoTest
AoUnit
AoUnitGroup
AoUser
AoUserGroup
AoSubmatrix
AoLocalColumn

ISO/PAS 22720:2005(E)

56 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-11

TREE STRUCTURE AT INSTANCE LEVEL

The following base elements may be used to allow a tree structure at the instance level

Base Model Application Model

From AoTest exactly one application element may be derived, and from AoSubtest exactly
one application element per hierarchical level (1...n) may be derived. On instance level the
tree structure is built by multiple instantiation of an application element. As a special case it is
allowed to have no application elements of the type AoSubtest. The application element
derived from AoMeasurement is only appended to the lowest element of the “test” family.
This makes it possible to get a tree-structured administration of measurements
(AoMeasurement) at the instance level.

AoTest

AoSubTest

Testname

SubTestname 1

SubTestname n

AoMeasurement Measurementname

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 57

ASAM ODS VERSION 5.0

2-12 ASAM ODS VERSION 5.0

TREE STRUCTURE AT APPLICATION LEVEL

With the following base elements tree structures may be built on application level.

For the Test Equipment

Base Model Application Model

This applies also to AoTestDevice (for the hierarchical arrangement of test devices).

For the Test Sequence

Base Model Application Model

For the Test Unit

Base Model Application Model

AoTestEquipment

AoTestEquipmentPart

TestEquipmentname

TestEquipment-
Partname 1

TestEquipment-
Partname n

TestEquipment-
Partname 1.1

TestEquipment-
Partname 1.m

TestEquipment-
Partname n.1

TestEquipment-
Partname n.q

AoTestSequence

AoTestSequencePart

TestSequencename

TestSequence-
Partname 1

TestSequence-
Partname n

TestSequence -
Partname 1.1

TestSequence -
Partname 1.m

TestSequence -
Partname n.1

TestSequence -
Partname n.q

AoUnitUnderTest

AoUnitUnderTestPart

UnitUnderTestname

UnitUnderTest-
Partname 1

UnitUnderTest-
Partname n

UnitUnderTest-
Partname 1.1

UnitUnderTest-
Partname 1.m

UnitUnderTest-
Partname n.1

UnitUnderTest-
Partname n.q

ISO/PAS 22720:2005(E)

58 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-13

In these cases it is allowed to build a tree structure already at the application level by
deriving several application elements from AoTestEquipmentPart, AoTestSequencePart and
AoUnitUnderTestPart. Additionally, from AoTestEquipment, AoTestSequence and
AoUnitUnderTest as many application elements as needed may also be derived. In this way
it is possible to define as many tree structures at application level as appropriate.

For Application Elements derived from AoAny

The base element AoAny may be derived as often as needed. In connection with application
references arbitrary application models may be built.

2.3.3 MAPPING BASE MODEL AND APPLICATION MODEL

The storage of the alternative names (e.g for different languages) takes place within the two
entities “AoNameMap” and “AoAttributeMap”.

AoNameMap

Within the instances of “AoNameMap” all entities of the application model (the “application
elements”) are stored together with their relation to the corresponding base entities. It is
possible to build a list of alias names. Additionally a list with the “attribute maps” for this
application element is stored.

AoAttributeMap

Each instance of "AoAttributeMap" contains one attribute of an application element
respectively. If an attribute was derived from a base attribute, the corresponding relation is
also stored. It is further possible to build a list of alias names and to define a unit and a
relation to a quantity.

AoEnvironment

Of this entity only one instance should appear in any data set. It is used as bracket for the
AoNameMaps (which in turn work as bracket for the AoAttributeMaps) and to store some
global statements:

 Number of hierarchy levels for the test,

 Meaning of the alternatives within the alias names.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 59

ASAM ODS VERSION 5.0

2-14 ASAM ODS VERSION 5.0

2.4 ATTRIBUTES IN ODS MODELS

2.4.1 RULES FOR ATTRIBUTES

Analogous to elements there are rules for the attributes at application and instance level.
Due to the wide range of application areas it is not possible to specify all attributes within the
base model. Therefore the following rules control the naming of base attributes and the
addition of application-specific attributes.

At the transition from one model level to the next one attributes may be added.

Base Model Application Model Instances

Base attributes Base attributes Base attributes

Application attributes Application attributes

Instance attributes

Remarks

1. The names of the base attributes may be changed within the application model. This
information is stored within the meta information.

2. Project-specific application attributes may be added within the application model. Also
this information is stored within the meta information.

3. All application attribute names must be stored within the meta information.

4. Attributes may also be added to any instance. In this case attribute name, type and value
are required. They are stored within the data.

2.4.2 ATTRIBUTES OF ALL ELEMENTS

All base elements (and therefore also all application elements) possess the following main
base attributes:

id Unique ID for the instances of an application element
name Name of the instance, only unique within its predecessor in a hierarchy
description Describing text for the instance (optional)
version Version of the instance (optional)
version_date Date of the version change (optional)

Most of the other base attributes control the relations between the base elements. A base
attribute is automatically passed down to all the application elements derived from that base
element.

Each Base element has a (ASAM ODS defined) base ID (BID) which uniquely allows to
identify the base element without the need to compare strings (names).

In the following sections the base elements, their BIDs, and their base attributes are
described.

ISO/PAS 22720:2005(E)

60 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-15

2.5 DATA TYPE USAGE IN ASAM ODS

2.5.1 GENERAL NOTES TO DATA TYPES IN ASAM ODS

Data types appear nearly everywhere within the ASAM ODS specification chapters. Special
care must be taken to understand and correctly use them.

First of all, only basic data types will be considered in this section (‘data type’ thus will exactly
mean ‘basic data type’). However distinguishing between basic types and non-basic types is
not easy.
From an object-oriented point of view, every class or interface can be considered to be data
type. This section will not treat classes or interfaces as basic data types.
From a data modeling point of view each data structure (even the most complex ones) can
be considered to be a data type. Again, this section will treat them as basic data types only if
their structure is quite simple (thereby knowing that this is a quite vague definition of ‘basic’).

ASAM ODS clearly distinguishes between a data type and its number.

Each data type is given a name (e.g. T_SHORT) and a type definition. The type definition
relates the data type to the a priori known primitive types. What is a primitive type depends
on the specific context. Defining data types for a Java context requires to relate them to the
predefined Java data types, defining them for a CORBA context requires to relate them to
the CORBA predefined data types (which themselves are further related to language
dependent primitive data types through the CORBA language binding), defining them for a
STEP EXPRESS context requires to relate them to the predefined STEP EXPRESS data
types, and defining them for a RPC context requires to relate them to the RPC predefined
data types, etc.. That is why the data type definitions will differ in the subsequent chapters of
the ASAM ODS specification.

Most of the data types are given a unique number (within an enumeration of the available
data types) so that it can be referenced at run time by its number. This allows to tell about
the types of data that are exchanged through an interface or the types of data that are
contained in a physical storage (database, file) at run time. The data type of the
measurement values (of e.g. engine speed) that are kept in the data store thus do not need
to be specified in advance for all future cases. Instead the application producing them may
decide in each case about the preferred data type; its number will be delivered at the API or
to the physical storage together with the data and the receiving application will be able to
treat the data appropriately according to their current data type.
The numbers are also given a name each (e.g. DT_SHORT); those names should not be
confused with the names of the data types (though there is a 1:1 relationship between them).
Names for data type numbers ease the understanding of enumerations used in switch-case-
constructs; instead of ‘case 2:’ one would rather read ‘case_DT_SHORT’. Names for data
type numbers are also often presented to the user interfaces; people therefore tend to talk of
‘the data type DT_SHORT’ (which, strictly speaking, is not correct, but tolerable).

Data types are defined in

 the base model (see chapter 4 for details). These are the most general and
implementation independent types and are used to specify application models. They are

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 61

ASAM ODS VERSION 5.0

2-16 ASAM ODS VERSION 5.0

defined by an appropriate ENTITY construct of the STEP EXPRESS notation and thereby
related to primitive types of STEP EXPRESS.

 the RPC-API (see chapter 9 for details). Not all of the data types defined by the base
model may be used in the RPC-API due to implementation restrictions. This may have a
major impact on the visibility and accessibility of data through the RPC-API. Thus the
RPC-API should only be used when the application model does not contain unsupported
data types. On the other hand, when designing an application model that will be
accessed through the RPC-API no unsupported data types should be used.

 the OO-API (see chapter 10 for details). This API is much more flexible. Besides the data
types defined in the base model it defines and uses additional data types. Most of these
additional types are sequences of the base model types (or even sequences of
sequences) and thus allow an easier and more generic programming to access data.

 the ATF/CLA (see chapter 5 for details). In order to store not only the information itself
but also the data type with which it is placed in the ATF file, ATF/CLA specifies a keyword
for each of the data types used. These keywords match the names of the data type
numbers (the enumeration names!) of all data types defined in the base model.

 the ATF/XML (see chapter 6 for details). In order to store not only the information itself
but also the data type with which it is placed in the ATF file, ATF/XML specifies a
keyword for each of the data types used. These keywords match the names of the data
type numbers (the enumeration names!) of all data types defined in the base model, but
also contain several data types that are only used in the OO-API.

 the physical storage specification (see chapter 3 for details). The physical storage
provides a specification of tables in a relational database that finally shall hold the
information on tests, measurements, etc.. The data types of the information stored
however is usually not predefined. Thus the database must not only store the information
but also store the data type that is used. For this purpose, only the data type numbers are
stored. The physical storage allows to specify all basic data types that are defined in the
base model, and the first order sequence data types that are specified in the OO-API.

 the application models that are already specified or will come up in the future (see e.g.
chapters 11-13 for details). Data types used here must match the data types that are
defined in the base model. Exceptions are explained in section 2.5.3 and 2.5.4.

Names of data types are written in uppercase. Names of the data type enumerations are also
given in uppercase letters throughout the ASAM ODS specification.

Data type numbers are always the same if they stand for the same data type (the
enumeration is defined in the same order throughout the ASAM ODS specification). The
mapping of data types to their physical representation should be identical within any context.
This means that e.g. T_SHORT should be mapped to a 16 bit Integer data type no matter
whether it is implemented in Java, C++, Pascal, or whatever language and platform is used.

In the subsequent sections special aspects of data type usage are further explained.

Section 2.5.2 describes the relationship between the API data types and the base model
data types.

Section 2.5.3 describes, in which cases the data types of application attributes may differ
from the data types of the corresponding base attributes.

ISO/PAS 22720:2005(E)

62 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-17

Section 2.5.4 explains how base relations (which can be seen as special attributes) may be
modified regarding the relation range when defining an application model.

Thus an ASAM ODS server and client have to be aware that attributes may have a different
data type than defined in the base model.

The data types of all attributes that are not explicitly mentioned in these sections must match
the default data types defined in the base model.

Section 2.5.5 finally explains how some ASAM-wide standardized data types match the
ASAM ODS data types and how ASAM ODS will use these ASAM data types in the future.

2.5.2 DATA TYPES OF THE BASE MODEL AND THE APIS

The names of the data types in the base model and the APIs as well as the names of the
data type enumerations are not always identical. The following table compares data type
names and their numbers of the base model with those in the APIs.

OO-API

data type enumeration

RPC-API

data type enumeration

Base model

data type enumeration

-- DT_UNKNOWN (=0) -- DT_RESERVED (=0) -- DT_UNKNOWN (=0)

T_STRING DT_STRING (=1) char[] DT_STRING (=1) t_string DT_STRING (=1)

T_SHORT DT_SHORT (=2) short DT_SHORT (=2) t_short DT_SHORT (=2)

T_FLOAT DT_FLOAT (=3) float DT_FLOAT (=3) t_float DT_FLOAT (=3)

T_BOOLEAN DT_BOOLEAN (=4) t_boolean DT_BOOLEAN (=4)

T_BYTE DT_BYTE (=5) unsigned char DT_BYTE (=5) t_byte DT_BYTE (=5)

T_LONG DT_LONG (=6) long DT_LONG (=6) t_long DT_LONG (=6)

T_DOUBLE DT_DOUBLE (=7) double DT_DOUBLE (=7) t_double DT_DOUBLE (=7)

T_LONGLONG
DT_LONGLONG (=8)

t_longlong DT_LONGLONG (=8)

-- DT_ID (=9) -- DT_ID (=9)

T_DATE DT_DATE (=10) char[] DT_DATE (=10) t_date DT_DATE (=10)

T_BYTESTR DT_BYTESTR (=11) bstream DT_BYTESTR (=11) t_bytestr DT_BYTESTR (=11)

T_BLOB DT_BLOB (=12) Blob DT_BLOB (=12) t_blob DT_BLOB (=12)

T_COMPLEX DT_COMPLEX (=13) t_complex DT_COMPLEX (=13)

T_DCOMPLEX
DT_DCOMPLEX (=14)

t_dcomplex DT_DCOMPLEX (=14)

S_STRING DS_STRING (=15)

S_SHORT DS_SHORT (=16) b)

S_FLOAT DS_FLOAT (=17) b)

S_BOOLEAN DS_BOOLEAN (=18) b)

S_BYTE DS_BYTE (=19) b)

S_LONG DS_LONG (=20) b)

S_DOUBLE DS_DOUBLE (=21) b)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 63

ASAM ODS VERSION 5.0

2-18 ASAM ODS VERSION 5.0

OO-API

data type enumeration

RPC-API

data type enumeration

Base model

data type enumeration

S_LONGLONG
DS_LONGLONG (=22)

a)

S_COMPLEX DS_COMPLEX (=23) c)

S_DCOMPLEX
DS_DCOMPLEX (=24)

c)

-- DS_ID (=25)

S_DATE DS_DATE (=26) a)

S_BYTESTR DS_BYTESTR (=27) b)

T_ExternalReference
DT_EXTERNALREFERENCE (=28)

t_externalreference
DT_EXTERNAL_REFERENCE (=28)

S_ExternalReference
DS_EXTERNALREFERENCE (=29)

a)

T_LONG DT_ENUM (=30) DT_ENUM (=30)

S_LONG DS_ENUM (=31)

Sequence data types of the OO-API may be represented in STEP EXPRESS as
LIST [0:?] OF ### (in cases a) above)
LIST [1:?] OF ### (in cases b) above)
LIST [2:?] OF ### (in cases c) above)

where ### denotes an appropriate basic data type.

2.5.3 ALTERNATIVES TO DATA TYPES OF BASE ATTRIBUTES

In the base model, all base attributes have strictly defined data types. Normally the
application attributes derived from the base attributes must have the same data type. There
are some data types which are compatible, so ASAM ODS will in some cases allow the
designer of the application model to overload the data type of the base attributes.

The following base attributes can be used with the given allowed alternative data type, any
other data type conversion can cause an error. The server and the client must not support
any other data type conversion for any base attribute. It is up to the application model
designer to decide which data type will be used.

For the following base attributes, the server can deliver the accepted alternative. These
accepted alternatives are available in existing and installed application models and servers.
These accepted alternatives cannot be used in new designed application models.

Base attribute name Default data type enum name Allowed alternative

external_references DS_EXTERNALREFERENCE DT_EXTERNALREFERENCE

dimension DS_LONG DT_LONG

ISO/PAS 22720:2005(E)

64 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-19

2.5.4 ALTERNATIVES TO RELATION RANGES OF BASE RELATIONS

The base relations are special base attributes; they can be treated as a set of attributes.
Each of those attributes (each relation) also has an inverse relation.

There are information relations which are defined in the base model as N:M relations. It is
allowed to reduce these relations from an N:M relation to a 1:N relation.

2.5.5 THE STANDARDIZED ASAM DATA TYPES

In 2000, the ASAM e.V. started a project to harmonize the data types used in different
working areas (ACI, GDI, MCD, ODS etc.).

This lead to a harmonization paper officially released in 2002, which compared the existing
ASAM ODS data types with the ones defined for usage throughout the whole ASAM, and
specified ASAM wide standardized data types (the ‘ASAM data types’). Detailed information
on the complete set may be requested from the ASAM e.V.. This section compares the
ASAM ODS data types with the ASAM data types and explains the migration path towards
the ASAM data types.

MAPPING BETWEEN ASAM ODS AND ASAM DATA TYPES

The following table shows those ASAM ODS data types that have an identical ASAM data
type counterpart (only the name of the data type is different); these may be used without
touching programming logic by simply renaming them; they are binary compatible to each
other. Whoever starts to implement ASAM ODS servers or clients may use these ASAM data
types instead of the ASAM ODS data types.

Base attribute name Default data type enum name Allowed alternative

id DT_LONGLONG DT_LONG

factor DT_DOUBLE DT_FLOAT

offset DT_DOUBLE DT_FLOAT

superuser_flag DT_SHORT DT_BYTE

version DT_STRING DT_LONG

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 65

ASAM ODS VERSION 5.0

2-20 ASAM ODS VERSION 5.0

Remark: ASAM ODS did not specify a separate data type for enumerations but used
T_LONG instead. However to distinguish enumerations from numeric information a specific
data type number was given: DT_ENUM (=30).

Some of the ASAM ODS data types differ from the ASAM data types:

Date and time: The ASAM ODS data type T_DATE is specified as zero-terminated string
with a specific semantic: the date and time components year (YYYY), month (MM), day (DD),
hour (hh), minute (mm), second (ss), millisecond (lll), microsecond (ccc), nanosecond (nnn)
etc. are coded as “YYYYMMDDhhmmsslllcccnnn...”, terminated by 0x00. Starting from the
left, as many components as required may be used, the other may be omitted. Thus the
minimum information is YYYY.

An ASAM data type which comes close to this specification is A_TIME_STRUCT. It is a
binary representation of date and time and is defined as:

struct A_TIME_STRUCT
 {
 A_INT16 n16Year;
 A_INT8 n8Month;
 A_INT8 n8DayOfMonth;
 A_INT8 n8Hour;
 A_INT8 n8Minute;

ASAM ODS data type ASAM data type Description

T_STRING A_ASCIISTRING zero-terminated character field; ASCII
coded (ISO-8859-1(Latin-1))
maximum length 232-1 plus delimiter 0x00

T_SHORT A_INT16 signed integer (16 bit)

T_FLOAT A_FLOAT32 float, IEEE 754 single precision (32 bit)

T_BOOLEAN A_BOOLEAN boolean (8 bit); 0x00=FALSE, any other
value means TRUE

T_BYTE A_INT8 signed integer (8 bit)

T_LONG A_INT32 signed integer (32 bit)

T_DOUBLE A_FLOAT64 float, IEEE 754 double precision (64 bit)

T_LONGLONG A_INT64 signed integer (64 bit)

T_COMPLEX A_COMPLEX32 complex; structure (2x32 bit); consisting of
two elements of single precision float
values (see above), one giving the real, the
other giving the imaginary part.

T_DCOMPLEX A_COMPLEX64 complex; structure (2x64 bit); consisting of
two elements of double precision float
values (see above), one giving the real, the
other giving the imaginary part.

T_LONG A_ENUM enumeration

ISO/PAS 22720:2005(E)

66 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-21

 A_INT8 n8Second;
 A_INT16 n16MilliSecond;
 A_INT16 n16MicroSecond;
 A_INT16 n16NanoSecond;
 A_INT32 n32TimeZoneDiff; // Time difference between UTC and local time in
 // seconds(-13 hours to 13 hours)

 };

Conversion methods must be used that allow to translate one representation into the other.

Binary data streams appear in ASAM ODS in two data types:

T_BYTESTR: is a sequence of bytes; the way the length information is stored and
interpreted depends on the specific context (CORBA, RPC, ...).

T_BLOB: is a zero-terminated string (that may contain a header or other information),
followed by a sequence of bytes; as above, the way the length information is stored and
interpreted depends on the specific context.

Among the ASAM data types A_BYTEFIELD is thought to map to them. It is defined as

struct A_BYTEFIELD
{

A_UINT32 un32Bytes ; // number of bytes in bytefield [1 .. 2^32 – 1
A_UINT8 aun8Field[un32Bytes];

};

Conversion methods must be used that allow to translate one representation into the other.

Other ASAM ODS data types like T_EXTERNALREFERENCE (which consists of three
strings) and all sequence data types do not have a counterpart in the list of ASAM data
types. Therefore these ASAM ODS data types will be further used as they are.

The enumerations 0..29 are defined in the ASAM data type specification as they are defined
in ASAM ODS.

MIGRATION PATH

In many parts of the ASAM ODS specification the names of the data type enumeration
elements (e.g. DT_SHORT) are used, which are harmonized ASAM-wide. This is the case
for ATF/CLA, ATF/XML, the physical storage, and the application models for specific
application areas.

As ASAM ODS has a long history with lots of implementations worldwide, it turned out that it
is nearly impossible to change the data types within the existing implementations. Therefore,
ASAM ODS decided to further support the ASAM ODS data types within the OO-API and the
RPC data type primitives that are specified by the ONC and that are directly used by the
RPC-API.

At some point of time in the future, the base model may either switch to the ASAM data types
or support both.

Future ASAM ODS specifications will build upon the ASAM data types and thus allow to write
applications that combine a variety of ASAM interfaces more easily.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 67

ASAM ODS VERSION 5.0

2-22 ASAM ODS VERSION 5.0

2.6 THE APPLICATION INTERFACES

2.6.1 BASIC INFORMATION

ASAM ODS provides Application Interfaces (APIs) to give any application a standardized and
effectively designed access to the data.

LOCATING THE APPLICATION INTERFACE (API) IN ASAM ODS

An analysis of the present data formats for measurement and automation systems shows
that unification to one fixed format is not possible; however, there is a common ground. In
ASAM ODS this common ground is supported by the base model. This base model is a
general, application independent, logical data model, already clearly defining the structure of
data to be processed within ASAM ODS, but it only roughly outlines the information to be
stored.

In addition to the base model, methods are defined in ASAM ODS that help an application to
create from the base model an application specific data model. This application model

describes the complete data model of the application. Other methods, also provided by
ASAM ODS, are used to access the instances, that is the data stored in the application
model.

Location of the API

As the figure shows, an application accesses ASAM ODS data solely by calling the functions
of the ASAM ODS API. The API hides any network transfer; in cases where the application
and the physical data storage reside on different systems, either the CORBA (when using the
OO-API) or the RPC (when using the RPC-API) technology cares for the correct translation
of the client-side requests into server-side requests and the transport of the response data.

The API provides the hardware-independent and data-format(e.g. file or database)-
independent part of ASAM ODS; all API data accesses will be forwarded by the ASAM ODS
API to the data servers. The ASAM ODS API abstracts, in the course of this, from the
hardware specific representation of the ASAM data types (e.g. 4-byte-Integer) on the
different computer platforms. The ASAM ODS API exchanges the data from the server
specific representation into a client specific representation; the informational contents and
the structure will not be changed by the ASAM ODS API. The data server, at last, abstracts

Network (if any)

Client Application
ASAM ODS API

Physical Data
Storage

ODS-Server
(CORBA / RPC)

ISO/PAS 22720:2005(E)

68 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-23

the data format and the physically used data types; this means, it converts data in an ASAM
conform structure and in ASAM internal types.

ODS servers implement the actual access routines to data. Typically, the ASAM transport
format (ATF) and the ASAM data base format (physical storage) will be supported, but in
addition to this, also existing formats - foreign formats - ought to be supported as long as
they can be provided to the client through the ASAM ODS API. The purpose of the API and
its interfaces to the application will be described in the next sections.

TASK OF THE API AND GENERAL CONSIDERATIONS

The API defined in this concept provides functions to support the application.

There are functions to create the application model according to the rules of the base model.
Some basic information about the application model will be stored with the data by ASAM
ODS in the environment. If this environment is accessed, this information may be used to
set up the application model automatically.

Functions for writing, reading and changing data are also part of the API.

The API operates with objects subdivided mainly of the following three groups:

 base elements
 application elements
 instance elements

Base elements and application elements define the data types to be processed by the
application. The base elements are the data structures defined in ASAM ODS which build up
the base model. They define all relations between the individual data objects supported by
ASAM ODS. Also, for each base element they define a number of application independent
base attributes which are contained in every application element derived from that base
element. The application is able to add further application specific attributes to each
application element.
All information about the application model is encoded in the application elements. The data
to be processed by the application will be stored in instances of these application elements
as attribute values. An instance is able to contain own, instance specific attributes besides
attributes clearly defined by the corresponding application element.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 69

ASAM ODS VERSION 5.0

2-24 ASAM ODS VERSION 5.0

EXAMPLE: BASE ELEMENT, APPLICATION ELEMENT, AND INSTANCE

The following figure shows the base element with two of its base attributes.
From it, an application element 'Vehicle' has been built which uses the base
attributes 'name' (unchanged) and 'description' (now named 'shortdesc'), and
adds two more attributes (application attributes) 'driver' and 'vehicletype'.
Neither the base element nor the application element holds values for the
attributes. Instead, for that purpose instances of the application element
'Vehicle' are built. One of the instances is shown; it contains a value for each
of the application attributes and besides them, it adds another attribute (an
instance attribute) named 'color' with a corresponding value. This instance
attribute is specific to the very instance; other instances may miss it.

The interface towards the application, the Application Programming Interface (API),
provides the methods for creating, storing and reading an application model, and the
instances. The methods for storing and reading of data stored in these models are also a
part of this interface. The base model is implicitly or explicitly known by the server and may
only be read.

For an ASAM ODS application, running on a certain computer, it ought to be possible to
access data stored on other computers or even other platforms. Therefore, a client-server
architecture is used.

REQUIREMENTS GIVEN BY THE DATA MODEL

ASAM ODS defines the base model; from it the application model has to be built up. During
definition of a new application model, the ASAM ODS server has to guarantee the
accordance with the base model and its rules. While reading, a stored application model has
to be rebuilt with lowest effort (for the application).

As already described above (for technical reasons) not all data of one measurement will be
stored together as a complete matrix; it will be distributed into different submatrices. For the
application however, an easy access to the complete data needs to be provided. The
application usually does not care for data storage efficiency. That is why the value matrix is
provided to the application; it needs to be combined out of the single submatrices during
runtime by the ASAM ODS server automatically.

Part of the base model contains information that allow very versatile mechanisms for an
(optional) access control to ASAM ODS objects.

AoUnitUnderTestPart

name
description

Vehicle

name
shortdesc
driver
vehicletype

name=“Herbie“
shortdesc=“...“
driver=“me“
vehicletype=“car“
color=“white“

Base Element Application Element Instance

ISO/PAS 22720:2005(E)

70 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-25

APPLICATION-BASED API REQUIREMENTS AND TYPICAL USAGE

There are a number of different application types which have partly different requirements to
the API. The most common application types will be characterized by their typical actions:

Measurement definition: Set-up of a new application model; for each environment this
has to be done only once.
Measurement preparation: Creating test descriptions, creating pattern structures,
changing test descriptions.
Measurement data recording: Writing measurement data.
Visualization of data: Reading all measured data of a measurement quantity, reading
attributes.
Analysis of data: Reading measurement data; creating new data, sequential reading;
reading implicit time information, reading on a given time grid like t0- t-grid (e.g.
mathematical processes).
Preparation of data: Reading selected measurement data or groups of attributes to be
further processed (sorting, compressing, calibrating, etc.).
Editing of data: Reading and changing single measured values (e.g. data editor).
Converter for data stocks: Reading or writing all data (once).

Data recording during a measurement is often a time-critical process where the
measurement values have to be stored within a very short time period. Even though it is not
the (main) purpose of ASAM ODS to support those time-critical operations, ASAM ODS can
be used within its limitations for measurement recording.

Furtheron most applications have to be able to process an existing application model; which
means to determine the set-up of the application model from the API, to navigate within it
and to find the required data.

These different actions of the specific application types have the following requirements to
the functionality of the API:

1. Processing the application model

 Navigating through the application model.

2. Processing the data

 Sequentially reading all data of one or several measurement quantities; in this
case, the processing time is most important.

 Reading selected measurement data; here, the comfort of the selection criteria
takes the first place but the processing time also plays an important role.

 Sequentially writing measurement data.

 Random access writing or changing single measured data; as the value matrix is
(usually) combined of several submatrices, changing measurement values is only
possible under some restrictions.

 Reading attributes; single ones as well as in groups.

 Writing or changing attributes.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 71

ASAM ODS VERSION 5.0

2-26 ASAM ODS VERSION 5.0

REQUIREMENTS GIVEN BY THE PHYSICAL STORAGE

The requirements by a physical storage are actually requirements by the data server
supporting the corresponding file format on the corresponding platform. The following
requirements ought to be named:

 Not all data servers can write data.
 Data servers, especially foreign format servers, do often not support all data types

provided in ASAM ODS for writing; during reading, of course, only those data types have
to be supported which are needed for the data that is stored.

GENERAL REQUIREMENTS

Besides the previous requirements, there are several general requirements:

 The API functions have to be machine-independent.
 The calls of the API functions have to be independent from their implementation.
 The functions are not permitted to assume that the data to be processed can be stored

completely in their memory. Portioning, especially during sorting and joining, often leads
to huge time delays and, therefore, it ought to be avoided.

 The set-up of the value matrix and the views is partly very complex and time-consuming
(e.g. join, merge or sort), enough information needs to be stored in memory so that the
set-up has not to be performed at each data access.

 A version management needs to be integrated to consider the version of the base model
from which the current application model is derived.

ISO/PAS 22720:2005(E)

72 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-27

2.6.2 WORKING WITH THE APPLICATION INTERFACE

In this section, the main functionality of the application interface will further be described.

Besides processing the application model, management and evaluation of access rights, the
management of all data relevant for a measurement is the main function of ASAM ODS. The
information to be handled during a measurement can be quite different, therefore, it is
separated into the two categories measurement data and attributes:

 In measurement data, all data is combined which consists of a complete data vector
(often a time flow) for usually one measurement quantity; this category includes the
actual measurement results, the reference quantities, and processed data (like the
results of mathematical calculations).

 The term attributes covers all information in the framework of a measurement, e.g.
information on the measured quantities (names, units,...), the unit under test, the test
equipment used, etc.. This type of data usually consists of a small number of values.

The most important functions of the API can be divided into four fields:

 Processing the application model
 Managing the measurement data
 Managing the attributes

Before explaining these requirements for the API, some general information on how to
access the ASAM ODS data will be described. For details please refer to chapters 9 and 10.

ACCESSING ASAM ODS DATA

To access an existing application model or its attributes, the application needs to connect to
an ASAM ODS server. Depending on which API and which underlying distributed technology
is used, the details of this connection process may differ.

Using the OO-API with CORBA typically requires to connect to the CORBA name service
and ask for an ASAM ODS factory object (AoFactory); this allows to create a new session
with the ASAM ODS server, which then provides access to the base model, application
model, and instances.

Using the RPC-API, a client has to be created (providing a node name and a RPC number).
This client will establish a session (which is called environment in that context) with the
server; the env_Id exchanged during that process is further used by the client to access the
application model and the instances.

PROCESSING THE APPLICATION MODEL

The application model is a logical, application specific data model to provide the description
of the application data managed by ASAM ODS. Processing the application model by
different applications may be divided into two sections: creating or modifying application
models, and navigating through an application model.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 73

ASAM ODS VERSION 5.0

2-28 ASAM ODS VERSION 5.0

Creating / modifying application models

The example below shows a part of the base model and a possible application model derived
from it. Two important aspects of the ASAM ODS architecture are shown, to clarify the
creation of an application model:

 The allocation of application specific names for application elements makes it possible to
use an application specific terminology instead of the general terminology of the base
model.

 By the creation of hierarchies from a recursively defined base element (e.g. the unit
under test part), a complete tree of application elements can be created.

EXAMPLE: CREATING AN APPLICATION MODEL

A third aspect of ASAM ODS in the context of defining the application model is not contained
in this example (see example in previous section):

 The definition of application specific attributes, which enable a more specific description
of the application elements.

Navigating through the application model

Some applications, especially those for evaluating data, have to be able to operate with any
application model. Therefore, methods are provided with which the application is able to ask
for the setup of the model or to navigate within the application model, analogous to a
directory tree. This includes listing all children of an application element or all children
derived from a certain base element. Also part of it is listing all instances of this application

AoUnitUnder
TestPart

TestCandidateAoUnitUnder
Test

Vehicle

BodyworkEngine
Complete

Wheel

n

1

n1

Base Model Application Model

ISO/PAS 22720:2005(E)

74 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-29

element. For these lists, search patterns for the element or instance names may be specified
to restrict the selection.

All elements of an application model have a unique name; this means, an application
element is sufficiently qualified by its name.

For processing the application model, the following functionality is provided through the API:

 Finding all application elements
 Finding all attributes of an application element
 Asking for attribute information (data type, etc.)
 Finding all children of an application element (with search pattern)
 Finding all children of an application element which has been derived from a certain base

element (with search pattern)
 Finding all instances of an application element (with search pattern)

MANAGING THE MEASUREMENT DATA

The main task of ASAM ODS is to manage the measurement data. According to the ASAM
ODS data model, measurement data will be kept within instances of AoLocalColumn. A local
column contains data of exactly one measurement quantity. A measurement generally will
produce data of more than one measurement quantity; they are put into one local column
each. Local columns that contain data being generated similarly (that is which have the same
number of data values and where the corresponding data values are all related to e.g. the
same time stamp) are related to the same submatrix; submatrices finally are related to the
measurement where they were created.

The measurement data have important properties (e.g. a unit, a data type, ...); for this
reason, the measurement quantity is provided as an independent application element
containing the corresponding attributes. An attribute (the so-called value flags) of the local
column contains additional important information about the values; e.g. whether they are
valid, modified or should be cut out during visualization. This attribute can either hold a single
value to be valid for all values of the measurement quantity or it is inserted as a complete
vector with all the information for each value stored in it.

Solely for the convenience of the programmer during reading access, a complete matrix
containing all values of all measurement quantities of a measurement will be generated by
the ASAM ODS server: the value matrix; the columns of the matrix correspond to the
measurement quantities, the rows to e.g. the time stamps (or the sensor locations, ...).

For the data storage only submatrices are used. This is due to the fact that a value matrix will
typically contain bigger gaps (undefined values) as not all measurement quantities are
measured simultaneously throughout the measurement. Therefore, the value matrix will be
divided into parts (the submatrices) so that each of the submatrices does not contain gaps
anymore. Submatrices are homogeneous and thus require the least possible amount of
memory. Only the submatrices of a value matrix are actually regarded during storage; the
only additional information required are the rules for set-up of the value matrix from the
individual submatrices (the submatrix links).

This type of storage has two advantages:

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 75

ASAM ODS VERSION 5.0

2-30 ASAM ODS VERSION 5.0

 The gaps in the value matrix do not require space on the server.
 This separation typically corresponds very well to the physical conditions during a

measurement: data is often given as submatrices, because measurement devices used
during a test store the measured data locally and not necessarily in the same time
resolution as other devices.

EXAMPLE: SUBMATRICES AND VALUE MATRIX

In this example, two homogeneous submatrices are combined into one
value matrix by merging the time information. The value matrix contains
gaps.

The access to measurement data is quite different during reading, writing, changing and
deleting:

Reading:

 Data is requested from a concrete measurement; the submatrix from which this data
is taken will not be named.

 Several measurement quantities may be read at once (if needed).
 The required local columns will be selected by a selection criterion.

Writing (adding of new quantities or new local columns to the measurement):

 Several local columns will be written in parallel.
 The local columns can be stored as new or added to existing submatrices.
 Appending/adding one or more measured points at a given position in a submatrix.
 The submatrix to which the data should be stored, has to be known.

Changing (of existing quantities and existing local columns):

 The values themselves and also the flags of the values, such as visualization and
validity, can be changed.

 It will be changed point-wise (one or more measured points out of a submatrix).
 Typically, one local column (resp. measurement quantity) will be changed at a time.
 Only the measurement will be named; the submatrix is internally known.
 A selection criterion can be given.
 Changed data can be stored as a new version of the quantity; old data may be kept.

Time QuantityA

0.1 xxx1

0.2 xxx2

0.3 xxx3

0.4 xxx4

Time QuantityB

0.22 yyy1

0.24 yyy2

0.26 yyy3

0.28 yyy4

0.30 yyy5
0.32 yyy6

Time QuantityA QuantityB

0.1 xxx1

0.2 xxx2

0.22 yyy1

0.24 yyy2

0.26 yyy3

0.28 yyy4

0.30 xxx3 yyy5

0.32 yyy6

Submatrix Submatrix MeasurementMatrix

ISO/PAS 22720:2005(E)

76 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-31

Deleting

 A complete submatrix may be deleted.
 One or more measured points may be deleted from a submatrix.
 The submatrix from which the local column is taken has to be specified by the client.

During all accesses to data, besides the value also the value flags will be read or written; the
value flags cannot be accessed themselves. If all values own the same flags; e.g. all values
are valid, visible and modified, the flags will be handled as one scalar for all values; if flags
are different for different values, an own set of flags will be inserted for each value, which
means, the value flags build up a complete vector.

These different types of accesses result in a quite diverse set of API methods.

MANAGING THE ATTRIBUTES

Attributes can be managed in ASAM ODS for almost all base elements; some elements only
have the purpose to manage attributes, e.g. the elements unit under test, unit under test part,
test equipment, etc..

The attributes are stored with the corresponding objects in form of name-value pairs. A unit
from the unit catalog can be assigned to an attribute.

Processing the predefined attributes

Each instance inherits a number of attributes from the corresponding application element;
these are a combination of the base attributes already defined by the base element and the
application specific attributes of the corresponding application element. The values of these
attributes can be read by the application and changed (if requested). As every instance of an
application element can also contain additional instance attributes, an application may want
to list all attributes of an instance; for convenience, a search pattern for the attribute names
may be used.

The base attributes may be renamed within an application model. An application has to be
able to determine the relation between base name and application name of the base
attributes. Access to base attributes has to be possible via both names.

Processing of instance specific attributes

Additionally to the pre-defined attributes, an application is able to store further attributes as
instance specific attributes in an instance element. Methods are provided for creating and
deleting of instance specific attributes. The values of instance attributes will be set directly
during creation.

The instance specific attributes are not different from the pre-defined attributes during
reading and searching (see next section).

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 77

ASAM ODS VERSION 5.0

2-32 ASAM ODS VERSION 5.0

Processing relations

Relations (which may be regarded as a specific kind of attributes to en element) enable to
specify how instances link to each other (e.g., the relation between measurement quantity
and the corresponding unit).

These relations can be divided into three types:
Father-child relation: Some application elements and their associated instance
elements have exactly one father in the hierarchy of the data model. This relation type is
used to describe the reference between them.
Property relation: This relation is used if an instance element has a certain property,
e.g. as a measurement quantity has a certain unit, in which it will be measured.

Informational relation: Some information is not stored individually with every
corresponding instance element. Instead a separate object is created, that can be used
several times, e.g. the description of a unit under test or a quantity group. Informational
relations typically describe those links.

Which relations are possible is defined in the base model; which ones are actually available
will be defined in the application model. The mandatory relations have to be available in each
application model.

Relations may be created or deleted by the use of the API.

Search via the attribute values

In many cases, it is not useful to list all instances of an application element; typical
requirements are:

 „List all vehicles of model year 1993“
 „List all units which belong to base unit ‘abc’ “
 „List all measurements in which engine ‘xyz’ was involved“

To restrict the result of a method call to a limited number of items, the method to list
instances includes a select condition to qualify the requested instances by values of their
attributes. It is possible to specify the selection criterion not only by using the attributes of the
instances themselves but also attributes of instances of other application elements that are
related to this instance.

The provided functionality

The following list is a summary of the most important functionality for processing attributes:
 Reading attribute values
 Writing attribute values
 Creating instance specific attributes
 Reading instance specific attributes
 Deleting instance specific attributes
 Listing all existing attributes of an instance element (with wildcards)
 Assigning relations
 Deleting relations
 Distinguishing between mandatory and optional relations
 Selection using attribute values

ISO/PAS 22720:2005(E)

78 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-33

2.7 INHERITANCE SUPPORT

Inheritance relations are currently represented in the model by several application elements
with special attributes. As, at the moment, only one application element can be requested at
a time and as only values of attributes from this specific application element can be
requested, an "object" from an inherited class must be loaded in a procedure that is
comprised of several steps.

These circumstances call for more support through the sever in the future. When accessing
instances of an inherited class, the server should also be able to return the attributes of the
superclass. In addition, when accessing the superclass, it should be possible to obtain all
information (attributes) concerning the instances in a subclass.

The inheritance depth is limited to one step, i.e. inheritance is only possible from the
superclass, but not from a subclass.

2.7.1 SOFTWARE DESIGN CLARIFICATIONS AND LIMITATIONS

 A subclass can only be inherited from one superclass. No multiple inheritance allowed.

 Superclasses are not abstract classes, they are instantiable.

 For the storage of inherited classes the ATF specification need not be extended.

2.7.2 EFFECTS WHEN USING INHERITANCE

When using inheritance one will observe following effects:

 Application model: The information returned also includes information about inherited
application elements.

 Reading access through the RPC-API: The full support can only be provided in
connection with AOP_GetValE. Accessing application elements through AOP_GetVal
only allows to query information about one application element, i.e. either that portion of
the superclass that is common to all types or only the instances of one type can be
queried with one request.

 Writing access through the RPC-API (AOP_PutVal): The application element must be
specified in the request. The server distributes the attributes to the relevant physical
database tables according to the superclass and subclass definitions.

 Instance attributes: These are stored with the relevant application element.

 References: [1(optional):1] relation between subclass and superclass.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 79

ASAM ODS VERSION 5.0

2-34 ASAM ODS VERSION 5.0

2.7.3 APPLICATION MODEL

Inherited classes are defined as application elements with separate application element IDs.
The same base ID is assigned to these application elements (subclass) as to the superclass.
The connections between the superclass and subclass (inheritance relation) are determined
via the references (see 2.7.7 Relations). The [1(optional):1] relation is relevant, which points
from the ID attribute in the subclass to the superclass.

The list of attributes includes the attributes of the superclass and subclass.

The application element representing the superclass is extended by an attribute that
describes the instance type. A base attribute (objecttype) is dedicated for this purpose, so
that clients that use the AOP_GetVal function to access application elements (superclass
and subclass) know which subclass they should address in order to get all attributes of an
instance. The AID of the application element of the class (superclass, subclass) to which the
instance belongs is used to identify the type.

Attention: The definition of the inheritance support allows multiple use of base IDs that so
far could be used only once in the model (e.g.: BE_MEA – measurement). This is because
the inherited subclasses have the same base ID as the superclass.

2.7.4 PHYSICAL STORAGE

A subclass of an application element is implemented in the database using a new table
which maintains the additional attributes. The assignment between the superclass and
subclass is done via the ID attribute which is also available in the subclass table. For each
inherited application element that represents a subclass, a view of the tables of the
superclass and subclass is created. These two tables are joined via the ID and the instance
type, i.e. the common part of an instance has the same ID in the superclass as the specific
part in the inherited application element.

The name of the table implementing the subclass is stored in SVCENT as DBTNAME. The
name of the view is derived from the table name, preceded by the prefix "SVC_“.

For inherited application elements there are no sequences for ID creation because the ID of
the superclass is used instead.

In SVCATTR only the attributes of the subclass are entered (including the ID attribute), i.e.
only the attributes of the inherited application element as well as the attributes of the
superclass (not including the ID attribute) are added internally. The special handling of the ID
attribute is necessary because the ID attribute in the superclass and the subclass can have
different implementation names. In addition, the ID attribute of the subclass constitutes a
"foreign key“ to the superclass (also see section 2.7.7 Relations) which is also stored in the
meta information.

When defining the application elements (superclass, subclasses) it must be ensured that no
naming conflicts occur. The application and implementation names for the application
attributes in the database tables must be unique within the superclass and the inherited
subclass.

Attributes of the type DT_BLOB are only allowed either in the superclass or the subclass -
one instance can always have only one attribute of the type DT_BLOB.

Note: The type DT_BYTESTR must not be used as data type for attributes of an application
element.

ISO/PAS 22720:2005(E)

80 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-35

EXAMPLE: STORAGE OF INHERITED ELEMENTS

The application element "Drivevalues" is a specialization of the application
element "Capture“. This circumstance should now be implemented by means
of the Inheritance Support.
The keywords used (like create, alter,...) are taken from the SQL89
specification (see normative references) and are typically used to manage
tables in databases.

The application element "Capture“ is extended by the attribute
"ObjectType“:

alter table CAPTURE add (OBJECTTYPE number(10) default 4);
create index IDX_CAPTURE_OBJECTTYPE on CAPTURE(OBJECTTYPE);
insert into svcattr (aid,attrnr,aaname,baname,adtype,dbcname)
 values (4,4001,'ObjectType','OBJECTTYPE',6,'OBJECTTYPE');

 Creation of the table for the attributes of the inherited class. The new table
is very similar to the table for the "Drivevalues“; an attribute that holds the
"CaptureID“ is used instead of the ID attribute "DrivevaluesID“. Thus, the
attribute "DrivevaluesID“ is no longer required:

create table CAPTURE_S1 (
 ID_CP1 number(10) not null constraint PK_CAPTURE_S1 primary key,
 TRACENAME VARCHAR2(30),
 VEHICLETYPE VARCHAR2(30),
 ENGINETYPE VARCHAR2(30),
 ENGID_CALC VARCHAR2(30),
 GEARBOXTYPE VARCHAR2(30),
 GEARBOX_I NUMBER,
 TYRETYPE VARCHAR2(30),
 REMAX_I NUMBER,
 GEARNR NUMBER(2),
 SLOPE NUMBER,
 VEHICLEMASS NUMBER,
 DESCRIPTION VARCHAR2(255),
 CREATEDATE VARCHAR2(20),
 CHANGEDATE VARCHAR2(20),
 CREATORNAME VARCHAR2(20),
 foreign key(ID_CP1) references CAPTURE(CAPTUREID) on delete
 cascade);

 Inclusion of the new application element in SVCENT:

insert into SVCENT (aid,aname,bid,dbtname,security)
 values (401,'Drivevalues',3,'CAPTURE_S1',1);

Excerpt from SVCENT:
AID ANAME BID DBTNAME
--
 12 Capturegroups 2 CAPGROUP
 4 Capture 3 CAPTURE
401 Drivevalues 3 CAPTURE_S1
 5 Measquantities 4 MEASQUAN
 7 Quantities 11 QUANT

 Inclusion of the subclass attributes in SVCATTR. The ID attribute is taken
over from the superclass, the subclass attributes are taken over from the
original application element "Drivevalues“ (except for the ID attributes):

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 81

ASAM ODS VERSION 5.0

2-36 ASAM ODS VERSION 5.0

insert into svcattr(aid,attrnr,aaname,baname,faid,funit,adtype,
 aflen,dbcname)
select 401,attrnr,aaname,baname,4,funit,adtype,aflen,'ID_CP1'
 from svcattr
 where aid=4 and dbcname = 'CAPTUREID';
insert into svcattr(aid,attrnr,aaname,faid,funit,adtype,aflen,dbcname)
select 401,attrnr,aaname,faid,funit,adtype,aflen,dbcname
 from svcattr
 where aid=25 and upper(dbcname) not in('CAPTUREID',
 'DRIVEVALUESID');

Excerpt from SVCATTR:
 AID ATTRNR AANAME BANAME FAID FUNIT ADTYPE AFLEN DBCNAME
 --
 401 108 CaptureID ID 4 0 6 ID_CP1
 401 362 DvTraceName 0 1 TraceName
 401 364 DvEngineType 0 1 EngineType
 401 365 DvEngid 0 1 Engid_Calc
 401 366 DvGearboxType 0 1 GearboxType
 401 367 DvGearbox_I 0 3 Gearbox_I
 401 368 DvTyreType 0 1 TyreType
 401 369 DvRemAx_I 0 3 RemAx_I
 401 370 DvGearNr 0 6 GearNr
 401 371 DvSlope 0 3 Slope
 401 372 DvVehicleMass 0 3 VehicleMass
 401 373 DvDescription 0 1 Description
 401 374 DvVehicleType 0 1 VehicleType
 401 375 DvCreateDate 0 1 CreateDate
 401 376 DvChangeDate 0 1 ChangeDate
 401 377 DvCreatorName 0 1 CreatorName

 Creation of a view of superclass and subclass:

create or replace view SCV_ CAPTURE_S1 as
 select ID_CP1,…. (all attributes of the superclass and subclass –
 but only one ID attribute)
 CHANGEDATE,
 CREATORNAME
 from CAPTURE,CAPTURE_S1
 where ID_CP1 = CAPTUREID
 and OBJECTTYPE = 401;

2.7.5 RESTRICTIONS OF THE RPC-API

READING ACCESS THROUGH AOP_GETVALE

Full inheritance support can only be implemented with help of AOP_GetValE(). This function
offers the possibility to return the result in several parts (result sets). Result sets are
necessary because the list of attributes depends on the instance type. A separate,
homogeneous result set is created for each instance type.

The interface handling differs, depending on whether a superclass or subclass is accessed.

Subclass: For access to a subclass, all attributes, both of the superclass and of the
subclass, are available. This means that, if the report list is empty (Select *),
all attributes for the instances of this subclass are returned as well.

ISO/PAS 22720:2005(E)

82 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-37

Superclass: When accessing the superclass and subclass(es), the result can consist of
several parts. The superclass and subclass(es) are accessed if the request
structure of AOP_GetValE() specifies either the application element IDs of the
superclass and of one or more subclass or attributes from the superclass and
from one or more subclass(es) in the report list. For each class that appears in
the result, a separate result set is returned. The instances are combined into
homogeneous result sets according to the instance type. If only attributes from
the superclass are requested, the result is returned in one single result set.

If only the application element ID of the superclass or attributes of the
superclass are specified in the request structure, only information from the
superclass will be accessed. However, all instances are visible, also those
belonging to a subclass. If the result is to be restricted to the instances of the
superclass, a selection (application attribute with basic attribute name
OBJECTTYPE = application element ID of the superclass) needs to be
specified explicitly.

READING ACCESS THROUGH AOP_GETVAL

When accessing an application element by using AOP_GetVal() that represents a
superclass, only the attributes of the relevant application element may be used. For access
to a subclass, however, all attributes (from superclass and subclasses) are available. The
function can only return information from the application element that has been addressed.
When the superclass is accessed, all instances are visible, also those belonging to a
subclass. As in the new interface, by explicitly specifying a selection criterion, the view can
be limited in such a way that only the instances of the superclass are accessed.

WRITING ACCESS

When writing, the application element ID for the given instance type must be indicated. The
server distributes the attributes among the relevant application elements and database tables of
the superclass and subclass and enters the proper instance type (class AID) in the type
attribute (base attribute name: OBJECTTYPE) of the superclass. The instance's ID is
determined by means of the superclass sequence and is used for both the superclass part and
the subclass part.

2.7.6 INSTANCE ATTRIBUTES

Instance attributes are stored in the SVCINST table using the key application element ID and
instance ID, i.e. the AID of the relevant class is stored as key in SVCINST.

2.7.7 RELATIONS

Only relations to a superclass and from a superclass are allowed. The inheritance from a
superclass automatically establishes a [1(optional):1] relation between the superclass and
subclass (inheritance relation), which is also entered in the meta information. The application
element ID of the superclass is entered as "foreign“ application element ID (FAID) of the ID
attribute of the subclass. No further relations to a subclass, or from a subclass, are allowed.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 83

ASAM ODS VERSION 5.0

2-38 ASAM ODS VERSION 5.0

2.8 THE USE OF ATF IN THE ODS ARCHITECTURE

The use of the ASAM Transport Format (ATF) is described in detail in ASAM ODS Version
5.0, Chapter 5, ATF/CLA and ASAM ODS Version 5.0, Chapter 6, ATF/XML.

ISO/PAS 22720:2005(E)

84 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-39

2.9 SECURITY CONCEPTS OF ASAM ODS

2.9.1 GENERAL

ODS access control for data objects is included in both APIs (the OO-API and the RPC-API).

2.9.2 BASIC CONCEPT

2.9.3 EXPLANATION OF BASIC TERMS

AoUser:

 An instance of an application element derived from the base element AoUser denotes an
individual user as used by a client for identification when accessing data via the ODS
interface.

AoUserGroup:

 An instance of an application element derived from the base element AoUserGroup
denotes a user group that share the same access rights..

 A user may belong to one or more than one user group.

 A user's right to access data objects is defined by his membership to user groups.

 A user group is an abstract term, which, from its concept, does not refer to particular
organizational units.

 This concept does not provide any further structuring of user groups (i.e. no sub-groups).

Notes:

 Depending on company conventions, a user group may assume different meanings,
for example: “Project”, “Department”, “Role”.

 Depending on company conventions, organizational structures can be reflected by
using naming conventions for user groups, for example: “DepartmentX_Engineer”,
“ProjectY_Operator”.

AoUser AoUserGroup

0..*0..* 0..*0..*
Data Object

ACL
0..*

1..*

0..*

1..* 1

0..1

1

0..1

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 85

ASAM ODS VERSION 5.0

2-40 ASAM ODS VERSION 5.0

Data Object:

 The access rights of user groups for a data object are defined using an Access Control
List (ACL).

Access Control List (ACL):

 The Access Control List determines the access rights that particular user groups are
granted for a data object.

2.9.4 ACCESS CONTROL FOR DATA OBJECTS

Access to data objects is controlled as follows:

Instances and attributes (except references) are protected via an ACL.
Attributes are protected for a whole application element, not for a single instance.

In case of instances which are not protected via an ACL but by a parent-child-relationship,
the instance inherits the access protection from the parent instance

Notes:

 Only instances are protected via ACL but not the references to instances.

 Application attributes of single instances are not protected individually.

 Instance attributes are not protected.

 Application elements (e.g. adding new attributes) may only be changed by superusers.

 Only a superuser may configure how ACLs are used to protect the data.

EXAMPLE:

Let the instance "MyMeasurement" be child of "MyTest".

If the instance “MyMeasurement” does not have an ACL of its own but is
defined via the application model as child of “MyTest”, the access protection
for “MyTest” will be assumed implicitly.

An application attribute like “measurement_begin” of the instance
“MyMeasurement” cannot be protected individually. Either they are
protected for all instances or for no instance.

The instance attribute “MyAttribute” of the instance “MyMeasurement” is not
protected at all.

ISO/PAS 22720:2005(E)

86 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-41

ACCESS PROTECTION VIA ACL

The three data objects described in the following can be protected via an ACL. It must be
configured which of these data objects should actually be protected in a system.

ACL Protection on an Application Element (Protection of all of its instances)

In this case all instances of that application element will be protected by the ASAM ODS
server according to the access rights specified in the corresponding ACL. In case the
physical storage is implemented according to chapter 03 (Physical Storage) all instances of
an application element are stored in one table (one row for each instance, application
attributes being placed in one column each) and protection is set to the complete table of that
application element (marked orange in the figure).

This type of access protection will be referenced by "element security" throughout this
chapter.

ACL on application element:
 protect all entries in a table

ACL

 application attributes

 in
st

a
n

ce
s

EXAMPLE:

The ACL entry “Test: GroupX (Read)” defines read access to all tests for
this user group.

ACL Protection on an Instance Element (individual protection on an instance)

In this case only one instance of an application element will be protected by the ASAM ODS
server according to the access rights specified in the corresponding ACL. In case the
physical storage is implemented according to chapter 03 (Physical Storage) all instances of
an application element are stored in one table (one row for each instance, application
attributes being placed in one column each) and protection is set to one row in the table of
the application element (marked orange in the figure).

This type of access protection will be referenced by "instance security" throughout this
chapter.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 87

ASAM ODS VERSION 5.0

2-42 ASAM ODS VERSION 5.0

ACL on instance
 protect a single entry (row) in a table

ACL

 application attributes

 in
st

a
n

ce
s

EXAMPLE:

The ACL entry “MyTest: GroupX (Read)” defines read access to exactly this
test for this user group.

ACL Protection on an Application Attribute

In this case only one application attribute of an application element will be protected by the
ASAM ODS server according to the access rights specified in the corresponding ACL.
Protection however will cover the application attribute for all instances of that application
element. In case the physical storage is implemented according to chapter 03 (Physical
Storage) all instances of an application element are stored in one table (one row for each
instance, application attributes being placed in one column each) and protection is set to one
column in the table of the application element (marked orange in the figure).

This type of access protection will be referenced by "element security" throughout this
chapter.

ACL on application attribute:
 Protect a column for all entries in a table

ACL

 application attributes

 in
st

a
n

ce
s

EXAMPLE:

The ACL entry “measurement_begin: GroupX (Read)” defines read access
to the attribute “measurement_begin” in all measurements for this user
group.

ISO/PAS 22720:2005(E)

88 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-43

Hint for implementation:

The ACL on an application element (access protection for all of its instances) is mainly
required to control the insert right for data that is not structured hierarchically. For the sake of
clarity, it is recommended not to configure “ACL on application element” and “ACL on its
instances” at the same time in a data model.

CONFIGURATION OF ACL ACCESS PROTECTION

Simple configuration keeps administration easy whereas selective (complex) configuration
meets selective requirements.

ACL access protection for a particular element and its attributes is configured using the
SVCENT table (see 0):

For each application element:

 Are all associated instances protected (via ACL on application element) ?

 Is each individual instance of the application element protected (via ACL on the instance
element itself) ?

For each application attribute:

 Is this attribute protected in all instances (via ACL on application attribute) ?

If access protection has been enabled for instances of an element, all instances of this
element must have an ACL.

If access protection has been enabled for attributes of an element, all attributes of this
element must have an ACL.

Example of simple access protection configuration:

Test series: Instance protection via ACL (test series can be protected individually).

Test: Instance protection via ACL (tests can be protected individually).

Measurements and subordinate measurement data: No protection (access protection
inherited from tests).

Attributes: No protection (no protection on single attributes).

Other: Application element protection via ACL (e.g. general protection on quantities).

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 89

ASAM ODS VERSION 5.0

2-44 ASAM ODS VERSION 5.0

2.9.5 BASIC RIGHTS

Five basic rights are distinguished:

Read Update Insert Delete Grant

Read:
 Read-right on application element: The client may read all instances of this application

element.
 Read-right on instance: The client may read this instance.
 Read-right on attribute: The client may read this attribute of all instances of the

application element.

Update
 Update-right on application element: The client may modify all instances of this

application element.
 Update-right on instance: The client may modify this instance.
 Update-right on attribute: The client may modify this attribute of all instances of the

application element.

Insert:
 Insert-right on application element: The client may create new instances of this

application element.
 Insert-right on instance: The client may create child instances for this (parent) instance.
 Insert-right on attribute: This does not make sense and will be ignored by the server

(should not be supported by administration tool).

Notes:
 Creating a child-instance means creating a new instance or reassigning an existing

child to a different parent.

 An Insert-right on an instance for an application element which is not a parent in any
parent-child relationship does not make sense and will be ignored by the server
(should not be supported by administration tool)

Delete:
 Delete-right on application element: The client may delete any instance of this application

element.
 Delete-right on instance: The client may delete the specific instance.
 Delete-right on attribute: This does not make sense and will be ignored by the server

(should not be supported by administration tool).

Grant
 Grant-right on application element, instance or attribute: Access rights may be passed

on. This right is interpreted by the server as follows: If a user group has GRANT right on
a data object, any of its members may pass the group’s rights on the data object to other
user groups.

ISO/PAS 22720:2005(E)

90 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-45

The following table shows the possible combinations of the access rights:

Read Update Insert Delete Meaning:

0 0 0 0 No access
0 0 1 0 (Invalid combination)
0 0 0 1 (Invalid combination)
0 0 1 1 (Invalid combination)
0 1 0 0 (Invalid combination)
0 1 1 0 (Invalid combination)
0 1 0 1 (Invalid combination)
0 1 1 1 (Invalid combination)
1 0 0 0 Read
1 0 1 0 Read and Insert (perhaps for

test bed operator)
1 0 0 1 Read and Delete (e.g.

administrator)
1 0 1 1 Read, Delete and Insert (e.g.

administrator)
1 1 0 0 Read and Update (e.g.

engineer)
1 1 1 0 All except Delete (e.g. engineer)
1 1 0 1 All except Insert
1 1 1 1 All access rights

To avoid “blind access”, all combinations of Update, Insert and Delete rights without granting
the Read right are considered to be invalid (Configuration tools should not accept such
combinations). In case of such combinations, the server will deny access and return an error
message.

Note:

Every desired right needs to be entered separately. There is not a hierarchy of rights in the
sense of “Right A automatically implies Right B”.

Hint for implementation:

To avoid complex and unnecessary attribute protection, access to some particular attributes
(IDs, references) should be denied by client application programs rather than via attribute
protection. Client Log-on to the Server

When a session is opened, the client logs on by indicating the userID and password. The
server checks if the information is valid (please see section 2.9.8, “Authentication”). If the
information is invalid, an error message will be returned.

For client requests during the same open session, it is no longer necessary for the client to
provide userID and password.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 91

ASAM ODS VERSION 5.0

2-46 ASAM ODS VERSION 5.0

2.9.6 CHECKING THE ACCESS RIGHTS FOR A DATA OBJECT

When a client accesses an instance element/attribute, the server performs the checks
described below. What will actually be checked depends on the configuration in the SVCENT
table. For the details of these checks, please also see section 2.9.5, “Basic Rights”.

The desired access is only permitted if all of the following checks are ok (restrictive
approach!), otherwise the server will return an error message.

1. ACL on application element: Is it permitted to access any instances of this application
element?

2. ACL on application attribute: Is it permitted to access this attribute of the application
element?

3. ACL on instance element: Is it permitted to access this instance element (in case of
Insert: this parent instance element)?

or (if the instance element has no ACL of its own but is the child of a parent instance):

4. ACL on parent instance element: Is it permitted to access the parent instance element
(This check may be repeated over several levels)?

In case of elements which do not have element security or instance security of their own and
for which a parent-child relationship is defined by the base model, the server will search the
hierarchy until an element with element security or instance security is found or until the
highest element in the hierarchy is reached. If no element is found even in the highest
element, access will be granted for all elements in the hierarchy.

Note: When accessing measurement data (SVCVAL) the access control on MEQ will be
used.

2.9.7 CREATING A NEW DATA OBJECT

The following rules are valid for elements/attributes which, according to configuration in
SVCENT, need to have an ACL of their own.

To create a new instance element, the access rights for the new object need to be defined. In
this connection, different requirements on the part of the various vehicle manufacturers must
be met. The rules described below are to fulfill all of these requirements.

Hint for implementation:

To avoid complex configuration, a system will preferably be configured in such a way that
only one of these rules is applied to each element.

To determine the access rights for newly created data, the server applies the rules described
below (in the indicated sequence).

EXPLICIT SPECIFICATION OF THE NEW ACL BY THE WRITING CLIENT

If the writing client explicitly specifies the desired ACL prior to the insertion, the server will in
any case use the indicated ACL.

ISO/PAS 22720:2005(E)

92 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-47

IMPLICIT RULES FOR THE NEW ACLS

The server applies the following rules in the indicated sequence:

If the criteria below are met, … … the access rights will be as follows:

1. The application element of the new
instance has a configured “ACL
template” reference to an instance of
some application element.

The ACL template of the referenced
instance will be copied as the ACL of the
new instance.

2. An ACL template exists for the
application element.

The ACL template of the application
element will be copied as the ACL of the
new instance.

3. This instance has a parent instance,
and this parent instance has an ACL.

The ACL of the parent will be copied as
the ACL of the new (child) instance.

EXAMPLE: FOR CASE 1

For “Measurement”, we want to define an appropriate reference to “Test”:
For a new measurement “MyMeasurement”, the system will search this
reference for an appropriate test “MyTest” and will then use the ACL
template attached to this test as the ACL for “MyMeasurement”.

EXAMPLE: FOR CASE 1

For “Test”, we want to define an appropriate reference to "TestOrder”: For a
new test “MyTest”, the system will search this reference for an appropriate
test order “MyTestOrder” and will then use the ACL template attached to this
test order as the ACL for “MyTest”.

For application elements which are not organized hierarchically in parent-child relationships,
it makes sense to attach an ACL template to the application element and thus use case 2.

EXAMPLE: FOR CASE 2

All quantities may be created using the same ACL. It is possible to modify
access protection (e.g. define tighter protection) for individual quantities at a
later time.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 93

ASAM ODS VERSION 5.0

2-48 ASAM ODS VERSION 5.0

Case 3 is modeled according to the Windows NT® file system handling, in which the ACL of a
parent instance (NT: of a directory) is copied as the ACL of the child instance (NT: of the file
in the directory).

EXAMPLE: FOR CASE 3

An administrator creates new test series and adjusts their ACLs to the
desired access rights: all new subordinate tests will be created automatically
with the same access rights.

PROCEDURE IF NONE OF THE SPECIFIED RULES APPLIES

If new instances are to be created (for which instance protection has been defined in
SVCENT) and if no ACL template is available (error during system setup!), the instance will
be created with an empty ACL (nobody has access) and an error message will be output to
the client. The superuser can modify the ACL later.

An empty ACL contains no entries for the specified data object.

Note for server implementation:

If the rights for some data object are set to 0 (no access) for some particular user group the
server should remove this ACL entry from the ACL, because a missing ACL entry has the
same meaning as “no access “.

2.9.8 OTHER BASIC RULES

RULES FOR IMPLEMENTING ODS SECURITY

The following rules must be implemented by the ODS server to support ODS security:

1. The attribute password of AoUser must not be transmitted through the API. It must not be
visible in the model information.

2. Regardless of the security settings (READ bit) the server must return the following base
elements:

 AoUser
 AoUserGroup
 AoEnvironment
 AoTest
 AoSubTest
 AoMeasurement
 AoMeasurementQuantity
 AoQuantity
 AoUnit
 AoPhysicalDimension

3. Regardless of the security settings (READ bit) the server must return the following base
attributes:

ISO/PAS 22720:2005(E)

94 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-49

 ID
 Name
 Version
 All basic reference attributes
 Objecttype

The above mentioned rules 2.) and 3.) apply only for the READ bit of the ACL. The server
must return these elements and attributes even when the READ bit is NOT set. On the other
side, the server must check all other security bits (UPDATE, DELETE, INSERT, GRANT)
properly. Security Manager Clients can use this rules and should not allow the READ bit to
be removed from the above mentioned elements/attributes.

AUTHENTICATION

The server performs authentication via userID and password.

 A server must be able to read a password from a database (password attribute of
AoUser).

 If the password comparison with the password from the database fails, the server will
refuse to open a client session.

 Passwords must be stored encrypted except when they are initialized for the first time.
With the first password-change the changed password must be stored encrypted.
An ASAM ODS server must behave as follows: First he must check against the plain
password. If this check fails he must check against the encrypted password.

A column in the corresponding database table is named "Password". The encrypted
password is stored. In addition, the column is locked for normal ODS access.

The password cannot be read via ODS but can only be set (using an appropriate method).

Note: Currently no external authentication is supported.

OWNER

The Owner of a data object is not part of the ODS access control concept. The Owner can be
defined as an application attribute for information purposes.

The server sets the value of this attribute at the time when a new instance is created. For
clients the attribute is read-only: this is automatically handled by the server.

AUTOMATIC PROGRAMS

For ODS clients working in batch mode in the background, the regular access rules apply:
The client needs to log on to the relevant server by indicating the userID and password and
is then given the relevant data access rights.

The rules for ACLs of data objects that are newly to be created also apply to these clients.

Hint for implementation:

As, in automatic operation, data objects are usually created for someone, not by someone,
automatic clients will be given rather privileged UserIDs for log-on at starting. It is up to client

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 95

ASAM ODS VERSION 5.0

2-50 ASAM ODS VERSION 5.0

implementation and system configuration to provide the client with the required rights once it
has been started.

SUPERUSER

The “Superuser” user group has automatically full access rights to all data.

Only members of this user group are allowed to add further users to the "Superuser" user
group.

The “Superuser” user group is identified by a “superuser_flag” base attribute in the
AoUserGroup application element. Exactly one user group may have this flag. This must be
configured (outside ODS) at system setup, and it is not accessible via the ODS interface.

At least one user must be allocated to this user group. This must be configured (outside
ODS) at system setup. The server does not allow the removal of the last existing user in this
group.

INSTALLATION OF ACCESS CONTROL

In a system without access control, it must be possible to set up the data access control
information via ATF file and then activate it.

SYSTEMS WITH/WITHOUT ACCESS CONTROL

If a server recognizes a system for which access control is defined, it will apply the relevant
rules for access protection within this system.

Systems can be set up with or without access control.

2.9.9 PHYSICAL DATA MODEL

The physical data model is described in detail in Chapter 3 - Physical Storage.

The impact of security on the ASAM Transport Format (ATF) is described in Chapter 5 -
ASAM Transport Format Classic (ATF/CLA) and Chapter 6 - ASAM Transport Format XML
(ATF/XML).

2.9.10 ACL

An ACL entry creates a reference between a group and a data object and describes the
associated rights via a bit mask. All of these entries for a data object form the ACL of this
data object. There are the following ACL tables:

 Table SVCACLI for instance protection

 Table SVCACLA for attribute and element protection

SVCACLI:

ISO/PAS 22720:2005(E)

96 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-51

Logical: Group ID Appl. Element ID Instance ID Rights

Database-
column:

USERGROUPID AID IID RIGHTS

SVCACLA:

Logical: Group ID Appl. Element ID Attr. Name Type Rights

Database-
column:

USERGROUPID AID AANAME TYPE RIGHTS

Rights:

In this field (Type = short integer), the five basic rights Read, Update, Insert, Delete, Grant are
entered as bits. “Bit set” means “right granted”. Sequence of the rights:

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4

Read Update Insert Delete Grant

2.9.11 CONFIGURATION OF ACL PROTECTION

ACL access protection for a particular element and its attributes is enabled/disabled in the
new integer-type column SECURITY in the SVCENT table via bit code (bit 0 = off, 1 = on).

Bit # Decimal Configuration of:

0 1 ACL on application element (= protection on all instances)

1 2 ACL on the element's instances (= protection individually
on each instance)

2 4 ACL on the element's attributes (= protection on each
attribute)

2.9.12 ACL TEMPLATE

An ACL template is a model of an ACL, which describes the rights of a user group to access
a (newly to be created) data object.

ACL templates are stored in the same format as ACLs, with the difference that, for the ACL
template, the indicated instance element is the one at which the ACL template is stored
whereas for the ACL, this is the one that is to be protected by the ACL.

ACL templates are stored as follows:

In the table SVCTPLI for ACL templates, which are attached to instances or application
elements.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 97

ASAM ODS VERSION 5.0

2-52 ASAM ODS VERSION 5.0

SVCTPLI:

Logical: Group ID Appl. Element ID Instance ID Ref. Appl-ID Rights

Database-
column:

USERGROUPID AID IID REFAID RIGHTS

If an entry in SVCTPLI is attached to an application element only, the InstanceID must be set
to 0.

In the SVCATTR table a new column ACLREF with data type short-integer (values: 0/1)
must be added. This flag tells the server which reference-attribute(s) must be resolved to find
the ACL-Template that will be used while creating a new instance.

Note: The server will set REFAID to the application element id that refers to AID/IID, to
distinguish between different ACL-Templates for different (more than one) referencing
elements.

2.9.13 USERS AND USER GROUPS

For checking username and password a mandatory base attribute “password” is included in
AoUser.

Both, username and password are case sensitive.

Exactly one user group must be the superuser-group. To identify the superuser-group a
mandatory base attribute “superuser_flag“ is included in AoUserGroup. The “superuser_flag”
is read-only (a client cannot set/change the value of “superuser_flag”).

2.9.14 ATF FORMAT

Optionally, access protection information can be saved in the ATF file in such a way that it
can be restored completely in the database during later import. It should be noted that the
access control information will appear as plain ASCII text within the ATF file.

 Depending on the purpose of the ATF export two cases can be distinguished:

 Export for data exchange with other systems, companies, etc.:
Saving of the data access control information in ATF is not required.

 Export for archiving and later re-import into in the same system:
The data access control information is saved in the ATF file (-the information must be
saved in such a way that it can be interpreted completely during a later import).

This also has influence on the import of ATF files:

 Import of exported files (without data access control information):
For the creation of access rights the same rules apply as for the creation of new data.

 Import of archived files (including data access control information):
During ATF file import it is necessary to take over the ACL information for data objects
from the ATF file and enter it into the database. If groups do not/no longer exist that have
been referenced in the ATF file, the ACL entries will be skipped. However, the data
objects themselves must be imported in any case (if necessary, with an empty ACL).

ISO/PAS 22720:2005(E)

98 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-53

The following (if any) is stored in the ATF file:

 ACL of instances

 ACL templates of instances

For the export/import of data from/into a database into/from the ATF file, the user is required
to have the necessary rights to access data objects in the database (for access to the ATF
file, no right is required). In general, the user needs to have the following access rights:

 for export: Read,

 to delete exported data objects: Delete,

 for import: Insert and Update.

Notes:

 ACLs and initial rights lists of application elements or application attributes are not stored
in ATF because such information always refers to all instances of an application element
whereas ATF export concerns only one or several individual instances.

 For data exchange between different systems it makes sense not to store the access
protection information and, for import into the database, to set up application dependent
rules for access to the imported data.

 For the archiving and later re-import of the data in the same system it makes sense to
store the information in such a way that it will be completely available after import at a
later time.

 For export, the ATF file is not encrypted.

For a description of the format for the data access control information in ATF, see the
document Chapter 5 - ASAM Transport Format Classic (ATF/CLA) or the document Chapter
6 - ASAM Transport Format XML (ATF/XML).

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 99

ASAM ODS VERSION 5.0

2-54 ASAM ODS VERSION 5.0

2.10 GLOSSARY

Activity of Access Control The activity of the access control describes the handling
of access information stored in ASAM ODS by the API.

API The application programming interface (API) provides
methods for the application to create, store and read the
application model and methods to store and read data
stored with this application model.

Application element Element of the application model which defines the
application-specific attributes in addition to the base
attributes inherited from the base element.

Application model The application model is an application-specific data
model which is created from the base model.

ASAM ODS OO-API The ASAM ODS OO-API defines platform-independent
accesses to the ODS data storage using an object-
oriented approach.

ASAM ODS-Data Server Standard data server of ASAM ODS for access to the
storage formats defined by ASAM ODS (database, file,
...)

ASAM ODS-interpretable Data
Format

An (existing) data format which is different from ASAM
ODS will be called ASAM ODS-interpretable if it is
possible to access the format by adding meta-
information to an ASAM ODS-server without the need
to create an own foreign format server.

Attributes The term attributes combines all information which arises
during a measurement and which does not belong to
measured data, which means it is not stored in the

value matrix. This kind of data usually contains only
single values per measurement and not a value vector.
The attributes are stored within instance elements.

Base Element Element of the base model; it specifies the generally
available attributes of all derived application elements.

Base Model The base model is a general, application-independent,
logical data model which defines the structure of the data
to be processed by ASAM ODS.

Data Server The data server manages the actual accesses to the
corresponding data formats.

Environment An environment consists of a specific application
model and all data stored in it.

Foreign Formats (Existing) data formats are called foreign formats if they
can be accessed through the ASAM ODS APIs using a
special data server.

Instance Element A data set of an application element.

ISO/PAS 22720:2005(E)

100 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-55

Local Column A local column corresponds to a column in the value
matrix; a column will be identified by the local column
number.

Measured Data All data which is stored in the value matrix is called
measured data, this means all data of the mea-
surement quantities. Usually, these are complete data
vectors. They include the actual measurement results
and reference quantities and also the processed data
(which are results of mathematical calculations). All
measured data of a measurement will be combined in the
value matrix.

Value Matrix Virtual matrix (not physically existing in the ODS server)
which combines all measured data that belong to a
measurement.

Measurement Quantity Base element which contains the information of a
measured quantity; the data of a measurement quantity
form a column of the value matrix.

Meta Information Standardized description of an (existing) data format;
using this, an ASAM ODS-data server is able to access
data of such a format.

Submatrix Submatrices are usually homogeneous parts of the
value matrix, which means sections without gaps

(undefined values); only the submatrices will be stored
physically.

Submatrix Links Rules for the set-up of the value matrix from the single
submatrices.

Value Matrix The value matrix is a data structure which is used for the
exchange of measured data between the application
and the API. The value matrix provides logically a
matrix but is able to contain different data types at the
same time. The value matrix contains, besides the pure
data including the value flags also minimal information of
the measurement quantities (quantity ID, value type
and data type), to enable access.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 101

ASAM ODS VERSION 5.0

2-56 ASAM ODS VERSION 5.0

2.11 REVISION HISTORY

Date
Editor

Changes

2003-06
P. Voltmann

New base elements AoLog, AoParameter, AoParameterSet, AoNameMap,
AoAttributeMap and AoExternalComponent added

Description of Data Type Conversion added
Tables for Base Elements completed and extended
Description of ASAM Data Type harmonization added

2003-10-16
R. Bartz

Several errors have been fixed and explanations have been changed to
make things clearer

Duplicate sections have been deleted
2003-11-22
R. Bartz

Completely restructured and extended the information on data types

2003-12
R. Bartz

The section on the APIs and the section on Inheritance has been
restructured and revised

The section on parameters has been extended
The glossary and some information on ‘old’ vs. ‘new’ APIs has been

revised
Several missing base attributes have been added to the base elements

descriptions
2003-12-30
R. Bartz

The Release version has been created

2004-05
R. Bartz

The detailed description of Base Elements has been moved to Chapter 4
The information on Security (former Chapter 7) has been introduced as

section 2.9
Minor textual changes have been introduced

ISO/PAS 22720:2005(E)

102 © ISO 2005 – All rights reserved

ASAM ODS ARCHITECTURE

ASAM ODS VERSION 5.0 2-57

ASAM e.V.

Arnikastr. 2

D-85635 Hoehenkirchen

Germany

phone: (+49) 8102 – 895317

fax: (+49) 8102 – 895310

e-mail: info@asam.net

internet: www.asam.net

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 103

ASAM ODS
VERSION 5.0

ISO-PAS

CHAPTER 3

PHYSICAL STORAGE
Version 1.1

Association for Standardisation of
Automation and Measuring Systems

Dated: 30.09.2004

© ASAM e.V.

ISO/PAS 22720:2005(E)

104 © ISO 2005 – All rights reserved

Status of Document

Reference ASAM ODS Version 5.0 Physical Storage

Date: 30.09.2004

Authors: Horst Fiedler, TIFFF; Gerald Sammer, AVL; Karst Schaap,
HighQSoft

Type: Specification

Doc-ID: ASAM_ODS 50_CH03_Physical_Storage.PDF

Revision
Status:

Release

Note: ASAM ODS has invoked a Formal Technical Review (FTR) process which
intends to continuously improve the quality and timeliness of its specifications.
Whenever an error is identified or a question arises from this specification, a
corresponding note should be sent to ASAM (odsftr@asam.net) to make sure
this issue will be addressed within the next review cycle.

Disclaimer of Warranty

Although this document was created with the utmost care it cannot be guaranteed that it is
completely free of errors or inconsistencies.

ASAM e.V. makes no representations or warranties with respect to the contents or use of this
documentation, and specifically disclaims any expressed or implied warranties of

merchantability or fitness for any particular purpose. Neither ASAM nor the author(s)
therefore accept any liability for damages or other consequences that arise from the use of

this document.

ASAM e.V. reserves the right to revise this publication and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 105

mailto:odsftr@asam.net

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-1

Contents

3 PHYSICAL STORAGE 3-3

3.1 INTRODUCTION... 3-3
3.1.1 GENERAL... 3-3
3.1.2 DATA TYPES USED ... 3-4

3.2 DESCRIPTION OF SVC TABLES ... 3-5
3.2.1 SVCENT... 3-5
3.2.2 SVCATTR... 3-7
3.2.3 SVCREF... 3-12
3.2.4 SVCVAL... 3-14
3.2.5 SVCINST .. 3-17
3.2.6 SVCENUM.. 3-18
3.2.7 SVCACLI.. 3-25
3.2.8 SVCACLA .. 3-26
3.2.9 SVCTPLI .. 3-27

3.3 STORAGE OF THE ATTRIBUTE VALUES.. 3-28
3.3.1 STORAGE OF SINGLE VALUES .. 3-28
3.3.2 STORAGE OF BYTESTREAM VALUES... 3-28
3.3.3 STORAGE OF BLOB VALUES... 3-28
3.3.4 STORAGE OF ARRAY VALUES AND OBJECT VALUES FOR ATTRIBUTES 3-28
3.3.5 STORAGE OF ATTRIBUTE VALUE FLAGS ... 3-30
3.3.6 STORAGE OF RELATIONS TO THE SUPERCLASS 3-31

3.4 THE MIXED-MODE-SERVER .. 3-32
3.4.1 MODEL OF MIXED-MODE-SERVER... 3-32
3.4.2 USE CASES.. 3-33
3.4.3 APPROACH FOR SPECIFYING MIXED-MODE-SERVER 3-35
3.4.4 SEGMENTATION WITHIN THE MIXED-MODE-SERVER................................. 3-37
3.4.5 USE-CASES ... 3-39
3.4.6 CONSIDERATIONS FOR MIXED-MODE SERVER IMPLEMENTATIONS 3-40

3.5 REVISION HISTORY... 3-41

ISO/PAS 22720:2005(E)

106 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-2 ASAM ODS VERSION 5.0

Scope

This document describes the Physical Storage of the ASAM ODS Version 5.0 including some
examples and the impact on the APIs (especially the RPC-API).

Intended Audience

This document is intended for implementers of ASAM ODS Version 5.0 server. It shall be
used as a technical reference with examples how to store the required additional information
used in ASAM ODS Version 5.0.

This document is part of a series of documents referring to ASAM ODS Version 5.0 and must
not be used as a stand-alone document. The documents referenced below build the
technical reference of ASAM ODS Version 5.0 as a whole. They may be requested from the
ASAM e.V. at www.asam.net.

ASAM ODS Specification

The following chapters build the technical reference for ASAM ODS Version 5.0:

 ASAM ODS Version 5.0, Chapter 1, Introduction

 ASAM ODS Version 5.0, Chapter 2, Architecture

 ASAM ODS Version 5.0, Chapter 3, Physical Storage (1.1)

 ASAM ODS Version 5.0, Chapter 4, Base Model (28)

 ASAM ODS Version 5.0, Chapter 5, ATF/CLA (1.4.1)

 ASAM ODS Version 5.0, Chapter 6, ATF/XML (1.0)

 ASAM ODS Version 5.0, Chapter 7: N/A ('Security' moved to Chapter 2)

 ASAM ODS Version 5.0, Chapter 8, MIME Types and External References (1.0)

 ASAM ODS Version 5.0, Chapter 9, RPC-API (3.2.1)

 ASAM ODS Version 5.0, Chapter 10, OO-API (5.0)

 ASAM ODS Version 5.0, Chapter 11, NVH Model (1.3)

 ASAM ODS Version 5.0, Chapter 12, Calibration Model (1.0)

Normative References

 ISO 10303-11: STEP EXPRESS

 Object Management Group (OMG): www.omg.org

 Common Object Request Broker Architecture (CORBA): www.corba.org

 IEEE 754: IEEE Standard for Binary Floating-Point Arithmetic, 1985

 ISO 8601: Date Formats

 Extensible Markup Language (XML): www.w3.org/xml

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 107

www.asam.net
www.omg.org
www.corba.org
www.w3.org/xml

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-3

3 PHYSICAL STORAGE

3.1 INTRODUCTION

3.1.1 GENERAL

This chapter describes how measurement data and results are (physically) stored in a
relational database to comply with the ASAM ODS standard.

For the physical storage of ASAM ODS information nine tables are used in addition to those
that hold the result data.

These tables are named SVCxxx, where xxx describes the kind of table.

The nine tables are:

SVCENT for storage of application elements (metamodel)

SVCATTR for storage of application attributes (metamodel)

SVCREF for storage of references (metamodel)

SVCVAL for storage of values (submatrix and local column)

SVCINST for storage of instance attributes

SVCENUM for storage of enumerations

SVCACLI for storage of security data for protection of instances

SVCACLA for storage of security data for protection of elements and attributes

SVCTPLI for storage of ACL templates

The sections describe those tables in detail. The scripts in that section are specified for
Oracle database systems version 7.3 and higher. They should serve as examples for other
database systems.

A subsequent section describes how the values of application attributes are stored,
especially if they cannot be placed immediately into the corresponding tables.

A final section explains the storage mechanism in the so-called "mixed-mode", where mass
data are stored externally while most application model information is kept in the relational
database.

ISO/PAS 22720:2005(E)

108 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-4 ASAM ODS VERSION 5.0

3.1.2 DATA TYPES USED

ASAM has specified standardized ASAM data types which have been published end of 2002.
These data types show standardized names, always beginning with A_. Those data types
will be used by ASAM ODS consistently in all new specifications in the future.

The Physical Storage based on relational databases has been developed and specified
several years ago. At that time no standardized data types have been available ASAM-wide.
Therefore ASAM ODS decided to define data types that cover the needs of ASAM ODS.
These data types always start with either T_ (in case they are single valued/structured types)
or S_ (in case they are sequences resp. arrays of single valued/structured types).

The Physical Storage described in this chapter has been implemented in ODS servers and
installed in a quite large number of companies. Replacing the T_ types by the A_ types
would require to modify and exchange those installed servers and the underlying database
designs, and also to modify the clients accessing the servers.

That is why ASAM ODS has decided to not introduce the standardized ASAM data types
(A_) in the Physical Storage description.

Instead, chapter 2 of the ASAM ODS specification describes the relationship between the T_
types and the A_ types. One should note that the enumeration of the data types and their
enumeration names are identical to those specified in the ASAM data type specification, and
that the data types themselves are in most cases binary compatible. So a one-to-one
mapping is easily possible, if needed.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 109

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-5

3.2 DESCRIPTION OF SVC TABLES

3.2.1 SVCENT

This table holds the descriptions of the different application elements. The syntax for creating
this table is as follows:

create table svcent
(

AID integer NOT NULL, /* Identifier */
ANAME char(30) NOT NULL, /* Unique(!) name of application element */
BID integer NOT NULL, /* ID of base element, only internal) /*
DBTNAME char(30) NOT NULL, /* Name of the table */
SECURITY integer, /* Security mode (bit masked) */

);

This specification restricts the length of application elements to a maximum of 30 characters.
The respective Base Element IDs (BIDs) are shown in the following table:

BID Base Element Name

0 AoAny

47 AoAttributeMap

1 AoEnvironment

40 AoExternalComponent

39 AoLocalColumn

43 AoLog

3 AoMeasurement

4 AoMeasurementQuantity

46 AoNameMap

44 AoParameter

45 AoParameterSet

15 AoPhysicalDimension

11 AoQuantity

12 AoQuantityGroup

38 AoSubmatrix

2 AoSubTest

36 AoTest

37 AoTestDevice

23 AoTestEquipment

24 AoTestEquipmentPart

25 AoTestSequence

26 AoTestSequencePart

13 AoUnit

14 AoUnitGroup

21 AoUnitUnderTest

22 AoUnitUnderTestPart

34 AoUser

35 AoUserGroup

ISO/PAS 22720:2005(E)

110 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-6 ASAM ODS VERSION 5.0

The base element ID is to be delivered at the API.

The column DBTNAME holds the name of the respective table. For array tables, the naming
convention is “<Table name>_ARRAY”. The length of the complete table name must not
exceed the maximum allowed length within the data base. This means e.g. for Oracle data
bases the length of <Table name> must not exceed 24 characters (the maximum table name
is 30 characters minus the six characters “_ARRAY”).

The column SECURITY holds the access protection for a particular element and its
attributes. It is enabled/disabled via a bit code (bit 0 = off, 1 = on).

Bit # Decimal Configuration of:

0 1 ACL on application element (= protection on all instances)

1 2 ACL on the application element's instances (= protection
individually on each instance)

2 4 ACL on the application element's attributes (= protection on
each attribute)

Example for a SVCENT table:

AID ANAME BID DBTNAME SECURTITY

1 TestObject 21 (AoUnitUnderTest) HEADER 0

2 TestRun 36 (AoTest) STEP_NAMES 0

3 Capture 3 (AoMeasurement) TEST_STEP 0

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 111

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-7

3.2.2 SVCATTR

This table holds the descriptions of the different application attributes. The syntax for creating
this table is as follows:

create table svcattr
(
AID integer NOT NULL, /* Identifier of the element */
ATTRNR integer NULL, /* Attribute number for the sequence */
AANAME char(30) NOT NULL, /* Unique(!) name of AE attribute */
BANAME char(30) NULL, /* Name of base attribute */
FAID integer NULL /* Reference to foreign application element */
FUNIT integer NULL, /* Reference to unit, if always the same */
ADTYPE integer NULL, /* Data type of attribute, (eg. float, long)*/
AFLEN integer NULL, /* Max. length of strings or streams */
DBCNAME char(30) NOT NULL, /* Name of column in the respective table */
ACLREF integer, /* attribute for ACL-Template reference */
INVNAME char(30) NOT NULL, /* Inverse name of AE attribute */
FLAG integer /* Flags of the attribute. */
ENUMNAME char(30) NULL /* Name of the enumeration in case ADTYPE is DT_ENUM,
otherwise unused */
);

This specification restricts the length of application attributes to a maximum of 30 characters.

FUNIT is the reference to the Id of the unit given in the table of the application element with
the base type AoUnit.

In comparison to the ASAM ODS Version 4.0, this table was extended to hold the following
additional information: Storage of the inverse relation name for the relations and storage of
the application attribute flags, like UNIQUE, OBLIGATORY and AUTOGENERATE.

In the ASAM ODS base model all relations have an inverse relation name. To store the
inverse relation name, an additional column had to be defined in the tables svcattr and svcref
(see next section) to store the inverse relation name of a relation. The name of the relation is
the name given in the column aaname of the table svcattr or in the column refname in the
table svcref. Therefore, the tables svcattr and svcref were extended with a column called
INVNAME to store the inverse relation name.

The relation attributes of the forward references will have the defined database column name
DBCNAME = “NULL”. This will indicate that this attribute is not physically available as a
column in the table. The same definition will be used for the attribute values, flags and
generation_parameters of AoLocalColumn, because these attributes are also not physically
available in a table column but stored in the table SVCVAL (or the external component file
when using a mixed-mode-server).

In the ASAM ODS base model the base- and application attributes have flags like UNIQUE
or OBLIGATORY. These flags must be stored in the table svcattr. Therefore, the column
FLAG was added to the table svcattr which contains the information of the application
attribute flags.

ISO/PAS 22720:2005(E)

112 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-8 ASAM ODS VERSION 5.0

The following table shows the bits set in this column and their respective meaning:

Bit Meaning

0 (UNIQUE) This flag tells the server that the values of this attribute have to be unique.
1 means the values must be unique. The server can check this behaviour by database
constraints.

1 (OBLIGATORY) This flag tells the server that the values of this attribute are obligatory.
1 means the values must be set. The server can check these behaviour by database
constraints.

2 (AUTOGENERATE) This flag tells the server that the values of this attribute has to be
generated by the server, e.g. the Id. For each column, there will be a trigger defined
within the database or the server.

There is no impact on the ASAM ODS Version 5.0 RPC-API definition. The definitions of the
tables for the Version 5.0 RPC-API do not change. All columns of the tables svcattr and
svcref are still available. After the tables are modified, an ASAM ODS ODS-Server Version
5.0 RPC-API is still able to run with the modified physical storage, the new columns of the
tables will be ignored.

For details of the flag AUTOGENERATE see the document ASAM ODS Version 5.0, Chapter
10, The OO-API, section 10.2.5, items ApplicationAttribute_isAutogenerate and
ApplicationAttribute_setIsAutogenerate.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 113

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-9

THE DATA TYPES OF THE COLUMN ADTYPE

The column ADTYPE specifies the data type with which values of this application attribute
will be coded in the database. Instead of specifying the data type as a string it is given as a
number (representing its data type enumeration value). The relationship between the
enumeration and the data type itself is shown in the following table, where T_xxx are basic
data types, S_xxx are sequences of the basic data types, and DT_xxx (resp. DS_xxx) are the
names of the data type enumeration:

Name of Data Type Enumeration Name of Data Type Description

DT_UNKNOWN (=0) Unknown data type.

DT_STRING (=1) T_STRING String.

DT_SHORT (=2) T_SHORT Short value (16 bit).

DT_FLOAT (=3) T_FLOAT Float value (32 bit).

DT_BOOLEAN (=4) T_BOOLEAN Boolean value.

DT_BYTE (=5) T_BYTE Byte value (8 bit).

DT_LONG (=6) T_LONG Long value (32 bit).

DT_DOUBLE (=7) T_DOUBLE Double precision float value (64 bit).

DT_LONGLONG (=8) T_LONGLONG LongLong value (64 bit).

DT_ID (=9) T_ID LongLong value (64 bit). Not used.
DT_LONGLONG is used instead.

DT_DATE (=10) T_DATE Date.

DT_BYTESTR (=11) T_BYTESTR Bytestream.

DT_BLOB (=12) T_BLOB Blob.

DT_COMPLEX (=13) T_COMPLEX Complex value (32 bit each part).

DT_DCOMPLEX (=14) T_DCOMPLEX Complex value (64 bit each part).

DS_STRING (=15) S_STRING String sequence.

DS_SHORT (=16) S_SHORT Short sequence.

DS_FLOAT (=17) S_FLOAT Float sequence.

DS_BOOLEAN (=18) S_BOOLEAN Boolean sequence.

DS_BYTE (=19) S_BYTE Byte sequence.

DS_LONG (=20) S_LONG Long sequence.

DS_DOUBLE (=21) S_DOUBLE Double sequence.

DS_LONGLONG (=22) S_LONGLONG Longlong sequence.

DS_COMPLEX (=23) S_COMPLEX Complex sequence.

DS_DCOMPLEX (=24) S_DCOMPLEX Double precision complex sequence.

DS_ID (=25) S_ID LongLong sequence. Not used.
DS_LONGLONG is used instead.

DS_DATE (=26) S_DATE Date sequence.

DS_BYTESTR (=27) S_BYTESTR Bytestream sequence.

DT_EXTERNALREFERENCE (=28) T_EXTERNALREFERENCE External reference.

DS_EXTERNALREFERENCE (=29) S_EXTERNALREFERENCE Sequence of external reference.

DT_ENUM (=30) T_LONG Enumeration

DS_ENUM (=31) S_LONG Sequence of enumerations

This definition of data types is compliant with the one for ASAM ODS 4.1. The data type is
also delivered at the RPC interface. The value of the data type is identical to the value of the
attribute ‚data type‘ in AoMeasurementQuantity and ‚default_data type‘ in ‚AoQuantity‘. The

ISO/PAS 22720:2005(E)

114 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-10 ASAM ODS VERSION 5.0

values of these constants are described in the document ASAM ODS Version 5.0, Chapter
10, The OO-API, section 10.3.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 115

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-11

ENUMERATION HANDLING IN SVCATTR

An enumeration is a bundle of fixed name value pairs, an enumeration is used to make a
data item readable for humans by using the string representation. The computers will use the
value representation because of the more compact storages and the faster comparability.

The column ADTYPE of the table SVCATTR may have the value DT_ENUM or DS_ENUM.
Therefore, the column ENUMNAME was added to the table SVCATTR. This column holds
the name of the enumeration. This name matches the name in the column ENUMNAME of
the new table SVCENUM.

For more information on enumerations in the physical storage see section 3.2.6, SVCENUM.

Example for a SVCATTR table:

AID ATTRNR AANAME BANAME FAID FUNIT ADTYPE AFLEN DBCNAME ACLREF INVNAME FLAG ENUM
NAME

1 1 HeadId id 6 HEAD_
INDEX

5

1 2 SerialNo name 1 32 PART_ID

3 1 TestId Id 6 TEST_
INDEX

5

3 2 TestObj_rel 1 6 HEAD_
INDEX

1 3 State 1 32 HEAD_
STATUS

The ID is generated by the server and must be unique, so the flag of the attributes HeadId
and TestId are set to 5 (0101).

ISO/PAS 22720:2005(E)

116 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-12 ASAM ODS VERSION 5.0

3.2.3 SVCREF

This table holds the descriptions of the different references (relations) of the application
elements. In comparison to ASAM ODS 4.0, this table was extended with the column
INVNAME to hold the inverse relation name (see also 3.2.2 SVCATTR) and the columns
BANAME and INVBANAME to hold the base relations for n:m relations and their inverse.

The name of the base relation for 1:N relations is stored in the column baName of the table
svcattr. As there is no entry in the svcattr for N:M relations, the meta information of these
relations are stored in the table svcref. Therefore, the table svcref was extended with the
column baName.

There is no impact on the ASAM ODS Version 5.0 RPC-API definition. The definitions of the
tables for the ASAM ODS Version 5.0 RPC-API does not change. All columns of the tables
svcattr and svcref are still available. After the tables are modified, an ASAM ODS Server
based on the Version 5.0 RPC-API is still able to run with the modified physical storage, the
new columns of the tables will be ignored.

The syntax for creating this table is as follows:

create table svcref
(
AID1 integer NOT NULL, /* ID of the first application element */
AID2 integer NOT NULL, /* ID of the first application element */
REFNAME char(80) NOT NULL, /* Name of the reference (relation) */
DBTNAME char(30) NOT NULL, /* Name of the table */
INVNAME char(30) NOT NULL, /* Inverse name of AE relation */
BANAME char(30) NOT NULL, /* base relation name of AE relation */
INVBANAME char(30) NOT NULL /* inverse base relation name. */
);

This table has three columns: two named like the Id in the table svcattr and REFNAME.
Assuming the table SVCENT contains the following entries:

AID ANAME BID DBTNAME SECURITY

3 Unit 0

4 UnitGroup 0

... 0

and SVCATTR contains the following entries:

AID ATTRNR AANAME BANAME FAID FUNIT ADTYPE AFLEN DBCNAME ACLREF INVNAME FLAG

3 1 Unitid id 6 UID 5

3 2 Unit name 1 32 UNIT

4 1 UnitGroupId Id 6 UGID 5

4 2 UnitGroup name 1 32 UNITGROUP

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 117

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-13

and the SVCREF contains the following entries:

AID1 AID2 REFNAME DBTNAME

3 4 Unit_to_Groups UNITTOGROUPS

...

then the table UNITTOGROUPS would look like this:

UID UGID REFNAME

ID of instance of Unit ID of instance of UnitGroup Unit_To_Groups

ID of instance of Unit ID of instance of UnitGroup Unit_To_Groups

... ... ---

ISO/PAS 22720:2005(E)

118 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-14 ASAM ODS VERSION 5.0

3.2.4 SVCVAL

This table holds the measured data and the value flags of the data. The syntax for creating
this table is as follows:

create table svcval
(

MEQID integer NOT NULL, /* ID of Measurement Quantity */
PMATNUM integer NOI NULL, /* ID/number of submatrix */
SEGNUM integer NOT NULL, /* Number of segment */
VALINDEP integer NULL, /* Independent Flag */
VALEXIMP integer NULL, /* Implicit/Explicit Flag /*
VALBLOBLEN integer NOT NULL, /* Length of the BLOB */
VALBLOB long raw NOT NULL, /* Data of the column */

);

The name of the local column is identical with the name of the measurement quantity. The
data type of the data of the column is given in the attribute derived from the base attribute
“data type” of the measurement quantity. The ID/Number (PMATNUM) of the submatrix is
given. All local columns with the same length have the same ID/Number of the submatrix. If
the same measurement quantity is measured in different rates, there are different entries in
the table SVCVAL which differ in the ID/Number of the submatrix.

The number of the segment (SEGNUM) is the number of the data segment. It is not
necessary to store all data of one local column into one blob, the data may be split into
different segments. The segment number starts with one (1).

The two flags describe the kind of the local column:

 VALINDEP Flag for independent column

 VALEXIMP Flag for implicit column

The independent column flag (VALINDEP) marks columns within submatrices which are
regarded to be independent (Set values, scales). .

The implicit column flag changes the interpretation of the values itself. Usually values are
stored explicitly. For some kind of data (e.g. timestamps on time driven sampling) the value
for each row may be calculated. Following variants are provided (n = row number of
submatrix):

value count value in row n meaning

1 xn = x1 constant

2 xn = x1 + (n -1) * x2 linear expression

3 xn = x1 + ((n - 1) mod (x3 - x1)/x2) * x2 saw curve

Only numerical types are allowed for implicit storage. The calculation is done using the type
defined for the column. The expression (x3 - x1)/x2 is truncated to integer to start each saw
curve cycle at x1.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 119

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-15

The multidimensional case where multiple scalings are required is not yet defined in this
version of ASAM ODS.

VALBLOBLEN gives the number of data items in the field VALBLOB. VALBLOB has the
following structure:

Length Values Possible Gap Flags

In the blob only values and flags are stored. The delivered length depends on the type of
access (Oracle Inline Code or ODBC).

The Endian Order is identical to the Endian Order of the server.

The length is a four (4) bytes field which gives the real number of bytes in the blob.
VALBLOBLEN gives only the number of data items.

EXAMPLE:

VALBLOBLEN = 2500
Data type = DT_FLOAT (4 byte)

 Length = 2500 * 4 = 10.000

The maximum length of a segment is always limited to 10.000.
This length can be also used for data items of strings. Strings are stored as sequence with
the delimiter “\0”. Example: Hallo\0Peter\0Test\0 gives a length of 17, VALBLOBLEN
is 3.

If the length is greater than the number of bytes required for the data item, flags are stored in
VALBLOB. The number of bytes for flags is the difference between the length and the
number of bytes required for the data items. One flag is two (2) bytes or one (1) short. The
flags are right aligned in VALBLOB. If the length of VALBLOB is greater than the number of
bytes required for the data items and the flags, there will be a gap between the values and
the flags. The order of the data items and the flags is left aligned.

EXAMPLE: 2.500 FLOAT VALUES WITH FLAGS

1. Blob:

1666 Values + 1666 Flags = 6664 Bytes for Values + 3332 Bytes for Flags.

If the blob length is set to 10.000, the gap will be 4 Bytes.

If the blob length is set to the actual length of 9996, there will be no gap.

2. Blob:

834 Values (2500-1666).

Blob length = 5004 results in no gap.

If Blob length is from 5006 to 10.000, there will be a gap.

ISO/PAS 22720:2005(E)

120 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-16 ASAM ODS VERSION 5.0

An ASAM ODS server must always be able to read blobs of this kind, but it is up to the
server manufacturer whether the server can write blobs of this kind.

HANDLING OF GENERATION_PARAMETERS IN VALBLOB AND VALBLOBLEN

In ASAM ODS Version 5.0 the data are stored with

 a) generation_parameters for implicit data

 b) the value_sequence for explicit data

 c) both for raw data

On the API there shall be no difference. Generation_parameters is a legal attribute for which
the client can ask; the server must do the conversion between the physical data and the API.

There is a need to store raw data on external components. Therefore, the sequence
representation enumeration must be extended with raw_linear+external and
raw_polynomial+external.

In case of raw_polynomial the order of the polynomial is stored in the first parameter and the
coefficient-0 is stored as the second parameter (and the coefficient-n as the n+2nd
parameter). For formulas, the data will contain a string.

For ASAM ODS Version 5.0 with the RPC-API:

Implicit definition in SVCVAL

Constant: IMPLFLAG = 1 and one value in value-sequence
Linear: IMPLFLAG = 1 and two values in value-sequence
Raw: IMPLFLAG = 1 and three values in value-sequence

For ODS Version 5.0 with the OO-API:

impl Gen.par 1 Gen.par 2 Gen.par 3

expl Value1 Value 2 Value 3 ...

raw Gen. Par 1 Gen. Par 2 Gen. Par 3 Value1 Value2 …

formula Formula (string)

Definition of the parameters:

Impl. Linear Impl. Const Raw linear Raw polynomial

1 Start value Const value Offset Order

2 Increment factor Coeff0

3 Coeff1

4 Coeff2

5 Coeff3

…

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 121

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-17

3.2.5 SVCINST

This table holds the instance attributes. The syntax for creating this table is as follows:

create table svcinst
(
 AID integer NOT NULL, /* Application element id */
 IID integer NOT NULL, /* Application instance id */
 NAME char(30) NOT NULL, /* Instance attribute name */
 AODT integer, /* AODS Data type */
 UNITID integer, /* Unit-ID */
 NUMVAL number(38,10) /* Numeric with maximum precision */
 TXTVAL varchar2(255) /* String value */
);

The table looks like this:

Logical: Appl. Element ID Appl. Instance ID Inst. Attr,
Name

Data type Unit ID Numeric
Value

Text
Value

Database-
column:

AID IID NAME AODT UNITID NUMVAL TXTVAL

UNITID is the reference to the Id of the unit given in the table of the application element with
the base type AoUnit.

ISO/PAS 22720:2005(E)

122 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-18 ASAM ODS VERSION 5.0

3.2.6 SVCENUM

This table holds the enumeration data. The syntax for creating this table is as follows:

create table svcenum
(
ENUMID integer NOT NULL, /* Id of the enumeration. */
ENUMNAME char(30) NOT NULL, /* Name of the enumeration. */
ITEM integer NOT NULL, /* Value of the item. */
ITEMNAME char(128) NOT NULL /* Name of the item. */
);

COMMENT ON TABLE svcenum IS 'ASAM ODS enumeration definitions';

This specification restricts the length of enumeration names to a maximum of 30 characters
and enumeration items to a maximum of 128 characters.

The new table SVCENUM has been added to the definition of the physical storage.

DEFINITION OF ASAM ODS ENUMERATION

In ASAM ODS there are several enumerations defined, such as data type enum or
seq_rep_enum. In the ATF specification there is a definition how to handle the enumeration,
but there was no corresponding definition in the physical storage of relational databases or
the API. These enumerations are all ASAM ODS defined enumerations.

An enumeration is a bundle of fixed name value pairs; it is used to make a data item
readable for humans by using the string representation. The computers will use the value
representation because of the more compact storages and the faster comparability.

Up to now in ASAM ODS the enumerations were represented by a T_LONG value, except in
ATF, where they are stored as T_STRING.

The ASAM ODS server needs a definition how to store the bundle of name value pairs.
There is a fixed structure for these name value pairs, so a new SVC-Table had to be defined,
named SVCENUM. This table has four fixed defined columns:

ENUMID, ID of the enumeration.

ENUMNAME, the name of the enumeration.

ITEM, the value of the item.

ITEMNAME, the name of the item.

The column ADTYPE of the table SVCATTR may have the value DT_ENUM or DS_ENUM.
Therefore, the column ENUMNAME was added to the table SVCATTR. This column holds
the name of the enumeration. This name matches with the name in the column ENUMNAME
of the new table SVCENUM.

Each enumeration must have a name, so people know the meaning; this name is stored in
the column ENUMNAME of the new table SVCENUM.

As already mentioned, an enumeration is a fixed name value pair, therefore, the name is
stored in the column ITEMNAME and the value will be stored in the column ITEM.

As soon as an ASAM ODS server finds a value DT_ENUM or DS_ENUM in the column
ADTYPE of the table SVCATTR, the server will give the data type DT_ENUM of the attribute
to the client. A new method getEnumerationDefinition at the interface ApplicationAttribute will
give an object to the client via the new interface EnumerationDefinition. This new interface
allows the client to access the name value pairs.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 123

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-19

There are also methods to get the list of all possible names of the items and methods to
translate the readable string into a value and the vice versa.

If an attribute has the data type DT_ENUM, the API will use the computer optimized
representation of the values and expect a value of type T_LONG at the methods getValue
and setValue. It is up to the client to transfer these values in the readable string
representation. For performance reasons it will be wise for the client to cache the
enumeration definition, otherwise a lot of client/server network traffic will be produced. If this
attribute will be used as sorting criteria, also the value (of type T_LONG) will be used for
sorting, not the string representation.

ASAM ODS servers allow the client to create or modify the application model using the OO-
API. The new interface EnumerationDefinition also has some methods to modify the name or
fixed name value pairs of the enumeration. These methods modify the application model and
may only be used by superusers (nobody else is allowed to modify the application model).

A method setEnumerationDefinition at the ApplicationAttribute allows the client to set the
enumeration of an certain attribute.

The methods CreateEnumerationDefinition and RemoveEnumerationDefintion at the
interface ApplicationStructure allow the client to create a new or remove an existing object.
Methods like getEnumerationDefinition and listEnumerationDefinition at the interface
ApplicationStructure interface allow the client a general access to the enumerations.

For a detailed description of the methods to handle enumerations, see the document ASAM
ODS Version 5.0, Chapter 10, The OO-API, section 10.2.5, ApplicationAttribute and 10.2.16,
EnumerationDefinition.

Note: The enumerations defined by ASAM ODS should be handled the same way as the
application specific enumerations.

The values of the enumeration items start with 0 and have no gap.

ISO/PAS 22720:2005(E)

124 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-20 ASAM ODS VERSION 5.0

The following example shows the enumeration seq_rep_enum given in the base model.

ENUMID ENUMNAME ITEM ITEMNAME

1013 seq_rep_enum 0 EXPLICIT

1013 seq_rep_enum 1 IMPLICIT_CONSTANT

1013 seq_rep_enum 2 IMPLICIT_LINEAR

1013 seq_rep_enum 3 IMPLICIT_SAW

1013 seq_rep_enum 4 RAW_LINEAR

1013 seq_rep_enum 5 RAW_POLYNOMIAL

1013 seq_rep_enum 6 FORMULA

1013 seq_rep_enum 7 EXTERNAL_COMPONENT

1013 seq_rep_enum 8 RAW_LINEAR_EXTERNAL

1013 seq_rep_enum 9 RAW_POLYNOMIAL_EXTERNAL

1013 seq_rep_enum 10 RAW_LINEAR_CALIBRATED

1013 seq_rep_enum 11 RAW_LINEAR_CALIBRATED_EXTERNAL

This table is extensible.

In the base model the names of the items are lower case, programmers normally use upper
case names for the enumeration items, but it is up to the creator of the model what to use. It
is important that the name of the item is case sensitive.

The new definition DT_ENUM was added to the data type enumeration. Also the definition
DS_ENUM was added to store a sequence of enumerations in an attribute, e.g. values of
AoLocalColumn.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 125

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-21

ENUMERATION DATA TYPES

The new definitions DT_ENUM and DS_ENUM (for storage of a sequence of enumerations,
e.g. values of the AoLocalColumn) were added to the data type enumeration:

/*
* The ASAM ODS data types.
* DT_xxx Basic data types.
* DS_xxx Sequence of basic data type.
* ||
* |+- T == Type, S == Sequences.
* +-- D == DataType.
*/
enum DataType {
DT_UNKNOWN, // Unknown data type.
DT_STRING, // String.
DT_SHORT, // Short value (16 bit).
DT_FLOAT, // Float value (32 bit).
DT_BOOLEAN, // Boolean value.
DT_BYTE, // Byte value (8 bit).
DT_LONG, // Long value (32 bit).
DT_DOUBLE, // Double precision float value (64 bit).
DT_LONGLONG, // LongLong value (64 bit).
DT_ID, // LongLong value (64 bit). Not used. DT_LONGLONG is used
 // instead.
DT_DATE, // Date.
DT_BYTESTR, // Bytestream.
DT_BLOB, // Blob.
DT_COMPLEX, // Complex value (32 bit each part).
DT_DCOMPLEX, // Complex value (64 bit each part).
DS_STRING, // String sequence.
DS_SHORT, // Short sequence.
DS_FLOAT, // Float sequence.
DS_BOOLEAN, // Boolean sequence.
DS_BYTE, // Byte sequence.
DS_LONG, // Long sequence.
DS_DOUBLE, // Double sequence.
DS_LONGLONG, // LongLong sequence.
DS_COMPLEX, // Complex sequence.
DS_DCOMPLEX, // Double complex sequence.
DS_ID, // LongLong sequence. Not used. DS_LONGLONG is used instead.
DS_DATE, // Date sequence.
DS_BYTESTR, // Bytestream sequence.
DT_EXTERNALREFERENCE, // External reference.
DS_EXTERNALREFERENCE, // Sequence of external reference.
DT_ENUM, // The enumeration data type.
DS_ENUM // The enumeration sequence data type.
};

ISO/PAS 22720:2005(E)

126 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-22 ASAM ODS VERSION 5.0

IMPACT ON TS_UNION AND TS_UNIONSEQ

The unions TS_Union and TS_UnionSeq have as discriminator a value of type DataType.
When the enumeration nv DataType is extended with the new definition DT_ENUM and
DS_ENUM, the unions also need the extension for that new data types. For optimal
computer performance the value of the enumeration will be given, the value is of type
T_LONG, so the cases in the unions will be identical with the DT_LONG and DS_LONG
cases.

This results in the following new definition:

/*
The Union definition for all data types.
*/
union TS_Union switch (DataType) {
case DT_STRING: T_STRING stringVal;
case DT_SHORT: T_SHORT shortVal;
case DT_FLOAT: T_FLOAT floatVal;
case DT_BYTE: T_BYTE byteVal;
case DT_BOOLEAN: T_BOOLEAN booleanVal;
case DT_LONG: T_LONG longVal;
case DT_DOUBLE: T_DOUBLE doubleVal;
case DT_LONGLONG: T_LONGLONG longlongVal;
case DT_COMPLEX: T_COMPLEX complexVal;
case DT_DCOMPLEX: T_DCOMPLEX dcomplexVal;
case DT_DATE: T_DATE dateVal;
case DT_BYTESTR: T_BYTESTR bytestrVal;
case DT_BLOB: T_BLOB blobVal;
case DS_STRING: S_STRING stringSeq;
case DS_SHORT: S_SHORT shortSeq;
case DS_FLOAT: S_FLOAT floatSeq;
case DS_BYTE: S_BYTE byteSeq;
case DS_BOOLEAN: S_BOOLEAN booleanSeq;
case DS_LONG: S_LONG longSeq;
case DS_DOUBLE: S_DOUBLE doubleSeq;
case DS_LONGLONG: S_LONGLONG longlongSeq;
case DS_COMPLEX: S_COMPLEX complexSeq;
case DS_DCOMPLEX: S_DCOMPLEX dcomplexSeq;
case DS_DATE: S_DATE dateSeq;
case DS_BYTESTR: S_BYTESTR bytestrSeq;
case DT_EXTERNALREFERENCE: T_ExternalReference extRefVal;
case DS_EXTERNALREFERENCE: S_ExternalReference extRefSeq;
case DT_ENUM: T_LONG enumVal;
case DS_ENUM: S_LONG enumSeq;
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 127

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-23

/*
Define a union with sequences of a certain type. Using this
union instead of sequence <TS_Union> gives much better
performance.
*/

union TS_UnionSeq switch (DataType) {
case DT_STRING: S_STRING stringVal;
case DT_SHORT: S_SHORT shortVal;
case DT_FLOAT: S_FLOAT floatVal;
case DT_BYTE: S_BYTE byteVal;
case DT_BOOLEAN: S_BOOLEAN booleanVal;
case DT_LONG: S_LONG longVal;
case DT_DOUBLE: S_DOUBLE doubleVal;
case DT_LONGLONG: S_LONGLONG longlongVal;
case DT_COMPLEX: S_COMPLEX complexVal;
case DT_DCOMPLEX: S_DCOMPLEX dcomplexVal;
case DT_DATE: S_DATE dateVal;
case DT_BYTESTR: S_BYTESTR bytestrVal;
case DT_BLOB: S_BLOB blobVal;
case DS_STRING: SS_STRING stringSeq;
case DS_SHORT: SS_SHORT shortSeq;
case DS_FLOAT: SS_FLOAT floatSeq;
case DS_BYTE: SS_BYTE byteSeq;
case DS_BOOLEAN: SS_BOOLEAN booleanSeq;
case DS_LONG: SS_LONG longSeq;
case DS_DOUBLE: SS_DOUBLE doubleSeq;
case DS_LONGLONG: SS_LONGLONG longlongSeq;
case DS_COMPLEX: SS_COMPLEX complexSeq;
case DS_DCOMPLEX: SS_DCOMPLEX dcomplexSeq;
case DS_DATE: SS_DATE dateSeq;
case DS_BYTESTR: SS_BYTESTR bytestrSeq;
case DT_EXTERNALREFERENCE: S_ExternalReference extRefVal;
case DS_EXTERNALREFERENCE: SS_ExternalReference extRefSeq;
case DT_ENUM: S_LONG enumVal;
case DS_ENUM: SS_LONG enumSeq;
};

Remark: The server and client should also accept DT_LONG or DS_LONG for compatibility
reasons.

For a detailed description of Unions in ASAM ODS, see the document ASAM ODS Version
5.0, Chapter 10, The OO-API, section 10.3.16, ASAM ODS UNIONS.

ISO/PAS 22720:2005(E)

128 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-24 ASAM ODS VERSION 5.0

IMPACT ON THE PHYSICAL STORAGE OF EARLIER VERSIONS

The definition of the physical storage for relational databases is not downward compatible,
therefore, servers of previous versions will find values DT_ENUM or DS_ENUM in the
column ADTYPE of the table SVCATTR and do not know how to handle these. So once the
physical storage is upgraded to the ASAM ODS Version 5.0 using enumerations, the server
must be exchanged.

When servers with the newer version work on previous versions of the physical storage, they
will not find the table SVCENUM. It is recommended to check the existence of the table
before this table will be used. If the table SVCENUM does not exist and the new methods of
the interface ApplicationStructure or EnumerationDefinition are called, the exception
AO_NOT_IMPLEMENTED should be thrown.

It is recommended that a server compliant to this definition should work properly even if the
column ENUMNAME does not exist in the table SVCATTR.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 129

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-25

3.2.7 SVCACLI

This table holds the security data for the instance protection. The syntax for creating this
table is as follows:

create table svcacli
(
 USERGROUPID integer NOT NULL, /* Reference to a UserGroup instance */
 AID integer NOT NULL, /* Application element id */
 IID integer NOT NULL, /* Application instance id */
 RIGHTS integer NOT NULL /* Rights value (bit masked) */
);

The column RIGHTS holds the five basic rights Read, Update, Insert, Delete, and Grant as a
bit masked value. If the respective bit is set, it means the respective right is granted. The
following table shows the sequence of the rights:

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4

Read Update Insert Delete Grant

The table looks like this:

Logical: Group ID Appl. Element ID Instance ID Rights

Database-
column:

USERGROUPID AID IID RIGHTS

ISO/PAS 22720:2005(E)

130 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-26 ASAM ODS VERSION 5.0

3.2.8 SVCACLA

This table holds the security data for the attribute and element protection. The syntax for
creating this table is as follows:

create table svcacla
(
 USERGROUPID integer NOT NULL, /* Reference to a UserGroup instance */
 AID integer NOT NULL, /* Application element id */
 AANAME char(30), /* Application attribute name */
 TYPE char(5) NOT NULL, /* Selector ("AA" or "AE") for rights on
 attribute or element */
 RIGHTS integer NOT NULL /* Rights value (bit masked) */
);

The column TYPE holds the selector for the security data, whether they are given for the
Application Attribute (AA) or the Application Element (AE).

The column RIGHTS holds the five basic rights Read, Update, Insert, Delete, and Grant as a
bit masked value. If the respective bit is set, it means the respective right is granted. The
following table shows the sequence of the rights:

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4

Read Update Insert Delete Grant

The table looks like this:

Logical: Group ID Appl. Element ID Attr. Name Type Rights

Database-
column:

USERGROUPID AID AANAME TYPE RIGHTS

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 131

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-27

3.2.9 SVCTPLI

This table holds the ACL templates for security. The syntax for creating this table is as
follows:

create table svctpli
(
 USERGROUPID integer NOT NULL, /* Reference to a UserGroup instance */
 AID integer NOT NULL, /* Application element id */
 IID integer NOT NULL, /* Application instance id */
 REFAID integer NOT NULL, /* Referencing application element */
 RIGHTS integer NOT NULL /* Rights value (bit masked) */
);

The table looks like this:

Logical: Group ID Appl. Element ID Instance ID Ref. Appl-ID Rights

Database-
column:

USERGROUPID AID IID REFAID RIGHTS

If an entry in SVCTPLI is attached to an application element only, the InstanceID must be set
to 0.

In the SVCATTR table a new column ACLREF with data type short-integer (values: 0/1)
must be added . This flag tells the server which reference-attribute(s) must be resolved to
find the ACL-Template that will be used while creating a new instance.

ISO/PAS 22720:2005(E)

132 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-28 ASAM ODS VERSION 5.0

3.3 STORAGE OF THE ATTRIBUTE VALUES

3.3.1 STORAGE OF SINGLE VALUES

Most attributes are single value attributes. These values are stored directly in the column
given in the table svcattr. The ASAM ODS data type corresponds with the data type of the
database engine.

3.3.2 STORAGE OF BYTESTREAM VALUES

The values of the attributes with the data type T_BYTESTR are stored in a column of the
database with the data type ‘long raw’. The length of the bytestream corresponds with the
length of the ‘long raw’ field.

3.3.3 STORAGE OF BLOB VALUES

The values of the attributes with the data type T_BLOB are stored in two columns of the
table. The header of the Blob is stored in a column whose name is given in the column
dbcname of the table svcattr. The database data type of this column is ‘varchar’. The body of
the Blob attribute is given in a separate column, with a fixed name, called ‘Blob’. This column
has the data type ‘long raw’.

Only one attribute of the type T_BLOB for each element can be stored in the physical
storage for relational databases.

3.3.4 STORAGE OF ARRAY VALUES AND OBJECT VALUES FOR ATTRIBUTES

In ASAM ODS Version 5.0 OO-API it is defined that attribute values may be an array of
values or objects (DT_EXTERNALREFERENCE). In the specification of the physical storage
there is no definition how to store these values, only the storage of the array values of the
local column is defined.

Therefore, the values or the fields of the objects should be stored in a separate table. For
each element there will be one table for all object or sequence attributes defined. The name
of the table will be the name of the table from the element given in the table svcent
concatenated with the extension “_ARRAY”. The length of the complete table name must
not exceed the maximum allowed length within the database. This means e.g. for Oracle
data bases the length of <Table name> must not exceed 24 characters (the maximum table
name is 30 characters minus the six characters “_ARRAY”). This table has columns for the
instance element id (called IID), the ordinal number of the value (called ORD) and a column
with the values for each attribute. The name of the column with the attribute values is given
in the column dbcname of the table svcattr. The data type of the column with the values
corresponds with the data type given in the column adtype of the table svcattr. If there are
more then one sequence- or object-attribute-values available, the values are ‘packed’ in the
table.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 133

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-29

EXAMPLE: TABLE: TEST_ARRAY

The Instance of Test with the Id 1 has two sequence attributes, a sequence
of 4 double values, and a sequence with 2 long values. The Instance of Test
with the Id 2 has two sequence attributes, a sequence of 2 double values,
and a sequence with 4 long values.

IID ORD DOUBLE_SEQ LONG_SEQ
1 1 1.0 2
1 2 2.0 4
1 3 3.0
1 4 4.0
2 1 1.0 2
2 2 2.0 4
2 3 6
2 4 8

The attribute values of objects (like the data types T_EXTERNALREFERENCE,
T_COMPLEX, T_DCOMPLEX) have their own ordinal number for each field.

The ordinal number is starting with 0.

The object attribute values of type T_EXTERNALREFENCE, T_COMPLEX and
T_DCOMPLEX are stored in this table. Each field of this object has his own ordinal number.

Type Field Ordinal Number Field data type

T_EXTERNALREFERENCE description 0 T_STRING

T_EXTERNALREFERENCE mimeType 1 T_STRING

T_EXTERNALREFERENCE location 2 T_STRING

T_COMPLEX r 0 T_FLOAT

T_COMPLEX I 1 T_FLOAT

T_DCOMPLEX r 0 T_DOUBLE

T_DCOMPLEX i 1 T_DOUBLE

The ASAM ODS RPC-API is not able to handle attributes with array values. A modification of
the application model is required, so that there are no existing data storages with attributes
with array values. As soon as the application model will be modified it cannot be accessed by
the RPC-API anymore. There is no impact on all the existing data storages without this
feature.

ISO/PAS 22720:2005(E)

134 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-30 ASAM ODS VERSION 5.0

3.3.5 STORAGE OF ATTRIBUTE VALUE FLAGS

The ASAM ODS Version 5.0 OO-API allows the client to set value flags for attribute values
like the value flags of the measurement data values. The following value flags are defined for
the measurement data:

Abbreviation Value Description

AO_VF_VALID 0x01 Value is valid.

AO_VF_VISIBLE 0x02 The value has to be visualized.

AO_VF_UNMODIFIED 0x04 Value is not modified.

AO_VF_DEFINED 0x08 Value is defined. If the value in a value matrix is
not available this bit is not set.

Therefore, an additional database-column (hidden on the interface) called
‘ATTRIBUTEFLAGS’ of type VARCHAR(255) is added, where each position in the string
holds a hexadecimal number (0-9 & A-F) encoding the flags for each attribute, like the coding
of the value flags. The attribute number ATTRNR of the table SVCATTR should be the index
into this "array" of characters.

Example: element-name: Test, with attributes: ID, NAME, DESC, TESTBEGIN, TESTEND.
The database column is ATTRIBUTEFLAGS. The value in ATTRIBUTEFLAGS could look
like: "FFFFE". Here the attribute TESTEND is INVALID (value of FLAGS[4]=0xE). If the
whole ATTRIBUTEFLAGS value is NULL or a zero-string, the whole instance is valid
(compatibility to already stored instances). If the FLAG of the base attribute "ID" is set to
INVALID, the whole instance is invalid (easy method to implement flags for instances).

Impact on ASAM ODS RPC-API : Check the numbering of column ATTRNR in the table
SVCATTR. It may be required to modify the numbering starting with 0 and to be continuous.
Check that there is no column with the name “ATTRIBUTEFLAGS”. If one of the two check
fails this can be corrected and the tables SVCENT and SVCATTR can be modified so the
ODS-Server with RPC-API can be run again. The column ATTRIBUTEFLAGS is hidden to
the interface, so it will not be called in the table SVCATTR, therefore, a ODS-Server with
RPC-API will not see this table.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 135

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-31

3.3.6 STORAGE OF RELATIONS TO THE SUPERCLASS

The physical storage for relational databases is not able to store a relation to a super class.
A relation from an application element of type AoTestEquipmentPart has a relation to the
parent AoTestEquipmentAbstract. The “Abstract”-elements are not part of the physical
storage. It is not possible to store these kind of relations in the physical storage because the
column faid of the table svcattr expects an application element Id. There is no application
element Id of the “Abstract”-element and there may be a lot of application element Ids of the
derived application elements.

Therefore, an own entry in the table svcattr for each possible parent with all the same base
relation names in the column baName of that table should be used. Then there will be a
change of the base model, and base relations may be used more than once. The client has
to take care which relation has a valid value.

The ODS-Server with RPC-API will deliver both relation attributes with the same base name,
the client has to take care which attribute must be used while reading the instances. The
ODS-Server with OO-API hides this information for the client when the object oriented
methods are used and the server has to take care. When the client uses the structure
oriented function the client has to take care, like the client must do it with the RPC-API. The
ODS-Server with RPC-API will have no problems to serve this information.

ISO/PAS 22720:2005(E)

136 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-32 ASAM ODS VERSION 5.0

3.4 THE MIXED-MODE-SERVER

As the number of measurement data to be stored increased rapidly during the last years,
there is a strong demand to store these data in separate files outside the database.
Currently, mass data often are stored as blobs in the RDB. The disadvantage is obvious:
searching for specific data often is extremely time-consuming due to the restrictions (e.g.
Oracle has to process blobs within a database).

The solution is to hold mass data in separate files and the description of the data within the
database. This approach automatically leads to a Mixed-Mode-Server.

A Mixed-Mode-Server must fulfill the following requirements:

 Access to RDB

 Storage of mass data in separate files outside the database

 Transparency to API

 Asynchronous access

3.4.1 MODEL OF MIXED-MODE-SERVER

The following figure shows the model of a Mixed-Mode-Server:

The data stored in separate files will be restricted to mass data only (e.g. measurement data
leading to problems within the RDB).

Client

Client-API

Server-Kernel

RDB File

RDB

Files
Files

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 137

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-33

3.4.2 USE CASES

The following tables show some use cases of measurement data gained:

HOMOGENOUS SUBMATRIX

Homogenous submatrices with measurements taken from different channels at the same
time intervals:

Time interval Channel 1 Channel 2 Channel 3

1 Val 1 Val 1 Val 1

2 Val 2 Val 2 Val 2

3 Val 3 Val 3 Val 3

...

LOCAL COLUMN

Local Column with sequential measurements at the same time interval:

Time interval Channel 1

1 Val 1

2 Val 2

3 Val 3

...

VALUE MATRIX

A lot of measurements in blocks from different channels at the same time interval:

Time interval Channel 1 Channel 1 Channel 2 Channel 2 Channel 3 Channel 3

1 Val 1 Val 2 Val 1 Val 2 Val 1 Val 2

2 Val 3 Val 4 Val 3 Val 4 Val 3 Val 4

3 Val 5 Val 6 Val 5 Val 6 Val 5 Val 6

....

The parameters needed for accessing the measurement data in respect to the above
mentioned three use cases are:

 Number of measurement values

 Start Offset

 Type (implicit length)

ISO/PAS 22720:2005(E)

138 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-34 ASAM ODS VERSION 5.0

 Number of block values

 Skip

The following table shows the correlation of the parameters and the three use cases:

Use Case 1 Use Case 2 Use Case 3

Number of measurement values n n n

Start Offset 0 0 0

Type (implicit length) F F F

Number of block values 1 n 2

Skip 1,2,3,... N/A 6

A fourth use case was also discussed:

A lot of channels measured block-wise at different time intervals leading to a table similar to
the following:

Time interval Channel 1 Channel 2 Channel 3 ...

1 Val 1 Val 1 Val 1

2 Val 2

3 Val 2 Val 3 Val 2

4 Val 3

5 Val 4 Val 4 Val 3

6 Val 4

....

It was decided not to specify this case for a Mixed-Mode-Server. There should be converters
to solve the problems with this use case.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 139

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-35

3.4.3 APPROACH FOR SPECIFYING MIXED-MODE-SERVER

It was decided to use the binary component from ATF to specify the format for separate files
in a Mixed-Mode-Server environment (see ASAM ODS Version 5.0, Chapter 5, The ASAM
Transport Format Classic (ATF/CLA), section 5.7.22, Structure of component).
The binary file must fulfill the following requirements:

 There must be an optional mini header for general information. This header will not be
evaluated by the server.

 The stored binary file will hold the mass data, while the descriptive data are stored in the
RDB.

MAPPING OF REQUIRED ATTRIBUTES FROM ATF

The following table shows the attributes from the ATF description that will be used for
specifying the binary file within a Mixed-Mode-Server environment:

Attribute Description

Identifier Filename (URL)

Type-Specification Data type and byte order

Length specification Number of values

IniOffset Start Offset

Blocksize Size of a row of the block, also defining the offset for the
next value (if local column holds only one value)

ValOffsets Offset from begin of block to respective value

ValPerBlock Number of values/block

ISO/PAS 22720:2005(E)

140 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-36 ASAM ODS VERSION 5.0

APPROACH FOR STORING THE ATTRIBUTES

To store the requested attributes, the base element AoExternalComponent was added, and a
change of AoLocalColumn was necessary. The following listing shows the base element as
well as the related attributes and type definitions, described with STEP EXPRESS (see also
ASAM ODS Version 5.0, Chapter 4, The ODS Base Model):

ENTITY AoExternalComponent (* BID=40 *)
 SUBTYPE OF (asam_base_entity);
 filename_url : STRING;
 start_offset : INTEGER;
 blocksize : INTEGER;
 valuesperblock : INTEGER;
 value_offsets : LIST [1:?] OF INTEGER;
 flags_filename_url : STRING;
 flags_start_offset : INTEGER;
UNIQUE
 UR1: SELF\asam_base_entity.id;
END_ENTITY;

TYPE seq_rep_enum = ENUMERATION OF (
 explicit,
 implicit_constant,
 implicit_linear,
 implicit_saw,
 raw_linear,
 raw_polynomial,
 formula,
 external_component (* <--- NEW *)
 (* extendible!! *)
);

ENTITY AoLocalColumn (* BID = 39 *)
 SUBTYPE OF (asam_base_entity);
 flags : OPTIONAL LIST [1:?] OF t_short;
 global_flag : t_short;
 independent : BOOLEAN;
 minimum : OPTIONAL t_double;
 maximum : OPTIONAL t_double;
 sequence_representation : seq_rep_enum;
 generation_parameters : OPTIONAL LIST [1:?] OF t_double;
 values : OPTIONAL value_sequence;
 external_component : OPTIONAL AoExternalComponent;
INVERSE
 submatrix : AoSubmatrix for local_columns;
 measurement_quantity : AoMeasurementQuantity for local_columns;
 (* existent rules omitted here *)
 (* rules to be added:
 If attribute "external_component" has a value, then the
 attributes "generation_parameters" and "values" must be
 empty;
 if one of these has a value then "external_component"
 must be empty.
 If attribute "external_component" has a value, then the
 attribute "flags" must be empty.
 *)
END_ENTITY;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 141

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-37

IMPACT ON ODS-SECURITY

The impact on the ODS-Security will be the following:

 The rights of the measurement will be inherited.

 The storage of the binary file must be done via the API of ASAM ODS (copy).

MODE-SWITCHING OF MIXED-MODE-SERVER

To enforce the writing of an external file or the storage within the database of the server, an
additional parameter is needed. This parameter must be set in AoSession as context variable
(see ASAM ODS Version 5.0, Chapter 10, The ASAM ODS Version 5.0 OO-API), section
AoSession_SetContext). The value will be write_mode with these possible values:
database (default) / file.

3.4.4 SEGMENTATION WITHIN THE MIXED-MODE-SERVER

There is a need for the possibility to split one local column into several pieces when using
external components. This section shows one method to include segmentation of an external
component file. Segmentation is used to split one big binary "external-component-file" into
several smaller ones to improve performance, concurrency and file-handling.

Therefore, the data model needs to be extended. The current version of AoLocalColumn-
AoExternalComponent looks like this:

0:1

AoExternalComponent

ID

Name
filename_url
start_offset
blocksize
valuesperblock
value_offsets
flags_filename_url
flags_start_offset
local_column (FK)

AoLocalColumn

ID

Name
global_flag
independent
sequence_representation
submatrix
measurement_quantity
external_component

ISO/PAS 22720:2005(E)

142 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-38 ASAM ODS VERSION 5.0

This new approach including segmentation looks like this:

0:n

AoExternalComponent

ID

Name
filename_url
start_offset
blocksize
valuesperblock
value_offsets
flags_filename_url
flags_start_offset
local_column (FK)

AoLocalColumn

ID

Name
global_flag
independent
sequence_representation
submatrix
measurement_quantity
external_component

Changes in the basemodel:

Relationship changed from "zero or one" to "zero, one or many".

Each instance of the application element LocalColumn may have one or more child-
instances of ExternalComponent.

PHYSICAL IMPLEMENTATION (RDBMS)

Each instance in ExternalComponent must be numbered with an appropriate attribute
segment_nr. The first segment starts with the value 1. The sequence of segment_nr must
start with 1 for each LocalColumn instance. segment_nr is a mandatory attribute and must
hold a value greater or equal 1.

PARAMETER FOR DEFINING THE FILE SIZE OF EACH SEGMENT

A new server-side parameter must be introduced that can be modified by the client. This
parameter is called EXT_COMP_SEGSIZE (DT_LONG) and defines the maximum file size
of new segments in bytes. When the client changes the value of this parameter, all following
write operations must use the new definition. The default value of this parameter should be
set at server-start-up-time to an appropriate value by using a server-side configuration
mechanism (e.g. start-up-file, or start-up-parameters).

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 143

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-39

3.4.5 USE-CASES

CREATE A NEW LOCALCOLUM WITH INITIAL VALUES

 Create new external-component file with values.
 Create additional segments, depending on the number of values to write and the file size of

the external-component-file.

APPEND VALUES TO A LOCALCOLUMN

 Check number of values and file-size in the existing (last) external-component-file and
decide whether to append the values to the file or to create a new file (segment).

INSERT VALUES IN A LOCALCOLUMN

 Check number of values and file size in the existing external-component-file and decide
whether the file can hold the total number of values after inserting the new values into one
file.

 If the values can be inserted into the existing file without splitting, the file must be read
completely and written back including the new values.

 If the file must be splitted into one or more segments, the affected file (segment) must be
read completely and the new files must be written back to disk.

MODIFY VALUES IN A LOCALCOLUMN

 For numerical data type (fixed length), direct update in the file is possible without moving
data.

 For strings, byte-streams and blobs the file must be read and written back according to the
above described Use Case "Insert values in a LocalColumn".

DELETE VALUES IN A LOCALCOLUM

 The values in the affected files are deleted.
 If all values are deleted inside one segment, the file and ExternalComponent-instance and

LocalColumn instance in the database must be deleted.

DELETE WHOLE LOCALCOLUMN

 Check, if the external-component-file holds values of other LocalColumns, too.
 If this is the case, the whole file may be read and written back completely to remove the

values physically. The instance in LocalColumn and ExternalComponent must be deleted in
the database.

 Otherwise, the whole external-component-file must be deleted.

ISO/PAS 22720:2005(E)

144 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

3-40 ASAM ODS VERSION 5.0

3.4.6 CONSIDERATIONS FOR MIXED-MODE SERVER IMPLEMENTATIONS

 The server must insure the consistency of the data after any write operation on the external-
component file. E.g. if the client sends a delete request on some values of one LocalColumn
and not on the remaining LocalColumns inside one partial matrix, the server must detect this
inconsistency and must be able to do a "rollback" (keep a file copy or detect it before writing,
etc.).

 The server must lock the file during modification (Shared lock – no write access on the
involved files, only read access). The server must hold a private working copy of the file and
place an exclusive lock on the involved files during the "commit"-phase.

 The server must support some error recovery on start-up after a system crash.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 145

PHYSICAL STORAGE

ASAM ODS VERSION 5.0 3-41

3.5 REVISION HISTORY

Date
Editor

Changes

2003-06
P. Voltmann

Description of Mixed-Mode-Server added
Description of segmentation within Mixed-Mode-Server added
Description of table SVCENUM added
Description of enumerations extended (affecting SVCATTR)
Description of additional column ENUMNAME in SVCATTR added
Description of data type conversion added
Several descriptions in SVCACLA and SVCACLI added
Description of generation_parameters within the physical storage added
(affecting SVCVAL)

2003-10-11
R. Bartz

Several errors have been fixed and explanations have been changed to
make things clearer
Duplicate sections have been deleted

2003-10-17 The FTR meeting agreed to the current text with one modification required
2003-11-21
R. Bartz

Some changes related to data types have been introduced

2003-12
R. Bartz

Ambiguity of ADTYPE resolved by introducing ENUMID
Minor textual changes have been introduced

2003-12-30
R. Bartz

The Release version has been created

ISO/PAS 22720:2005(E)

146 © ISO 2005 – All rights reserved

ASAM e.V.

Arnikastr. 2

D-85635 Hoehenkirchen

Germany

phone: (+49) 8102 – 895317

fax: (+49) 8102 – 895310

e-mail: info@asam.net

internet: www.asam.net

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 147

ASAM ODS
VERSION 5.0

ISO-PAS

CHAPTER 4

BASE MODEL
 Version 28

Association for Standardization of
Automation and Measuring Systems

Dated: 30.09.2004

© ASAM e.V.

ISO/PAS 22720:2005(E)

148 © ISO 2005 – All rights reserved

Status of Document

Reference: ASAM ODS Version 5.0 Base Model

Date: 30.09.2004

Author: Dr. Helmut Helpenstein, National Instruments; Karst Schaap,
HighQSoft; Gerald Sammer, AVL

Type: Specification

Doc-ID: ASAM_ODS_50_CH04_Base_Model.PDF

Revision
Status:

Release

Note: ASAM ODS has invoked a Formal Technical Review (FTR) process which
intends to continuously improve the quality and timeliness of its specifications.
Whenever an error is identified or a question arises from this specification, a
corresponding note should be sent to ASAM (odsftr@asam.net) to make sure
this issue will be addressed within the next review cycle.

Disclaimer of Warranty

Although this document was created with the utmost care it cannot be guaranteed that it is
completely free of errors or inconsistencies.

ASAM e.V. makes no representations or warranties with respect to the contents or use of this
documentation, and specifically disclaims any expressed or implied warranties of
merchantability or fitness for any particular purpose. Neither ASAM nor the author(s)
therefore accept any liability for damages or other consequences that arise from the use of
this document.

ASAM e.V. reserves the right to revise this publication and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 149

mailto:odsftr@asam.net

THE BASE MODEL

ASAM ODS VERSION 5.0 4-1

Contents

4 THE BASE MODEL 4-5

4.1 INTRODUCTION TO THE BASE MODEL.. 4-5
4.1.1 OVERVIEW ... 4-5
4.1.2 PRINCIPLE OF DERIVATION ... 4-6
4.1.3 GENERAL REMARKS... 4-6

4.2 DESCRIPTION OF BASE ELEMENTS FOR ENVIRONMENT ... 4-7
4.2.1 AOENVIRONMENT (BID = 1) ... 4-7
4.2.2 AONAMEMAP (BID = 46) ... 4-9
4.2.3 AOATTRIBUTEMAP (BID = 47) ... 4-10

4.3 DESCRIPTION OF BASE ELEMENTS FOR DIMENSIONS AND UNITS 4-11
4.3.1 OVERVIEW ... 4-11
4.3.2 INFORMATION ABOUT QUANTITIES AND UNITS IN ASAM ODS................. 4-11
4.3.3 AOQUANTITY (BID = 11).. 4-13
4.3.4 AOUNIT (BID = 13).. 4-15
4.3.5 AOPHYSICALDIMENSION (BID = 15) ... 4-17
4.3.6 AOQUANTITYGROUP (BID = 12) .. 4-19
4.3.7 AOUNITGROUP (BID = 14)... 4-20
4.3.8 CONVERSION OF UNITS .. 4-21

4.4 DESCRIPTION OF BASE ELEMENTS FOR MEASUREMENTS...................................... 4-23
4.4.1 OVERVIEW ... 4-23
4.4.2 AOMEASUREMENT (BID = 3).. 4-24
4.4.3 AOMEASUREMENTQUANTITY (BID = 4) .. 4-26
4.4.4 SUBMATRICES AND THE VALUE MATRIX.. 4-28
4.4.5 AOSUBMATRIX (BID = 38) ... 4-30
4.4.6 AOLOCALCOLUMN (BID = 39) ... 4-31
4.4.7 AOEXTERNALCOMPONENT (BID = 40) ... 4-35

4.5 DESCRIPTION OF THE BASE ELEMENTS FOR ADMINISTRATION............................... 4-37
4.5.1 AOTEST (BID = 36) ... 4-37
4.5.2 AOSUBTEST (BID = 2)... 4-38

4.6 DESCRIPTION OF THE BASE ELEMENTS FOR DESCRIPTIVE DATA 4-39
4.6.1 AOUNITUNDERTEST (BID = 21) ... 4-40
4.6.2 AOUNITUNDERTESTPART (BID = 22)... 4-41
4.6.3 AOTESTSEQUENCE (BID = 25) .. 4-42
4.6.4 AOTESTSEQUENCEPART (BID = 26) .. 4-43
4.6.5 AOTESTEQUIPMENT (BID = 23) ... 4-44
4.6.6 AOTESTEQUIPMENTPART (BID = 24) ... 4-45
4.6.7 AOTESTDEVICE (BID = 37).. 4-46

4.7 DESCRIPTION OF THE BASE ELEMENTS FOR SECURITY ... 4-47

ISO/PAS 22720:2005(E)

150 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-2 ASAM ODS VERSION 5.0

4.7.1 AOUSER (BID = 34) ...4-47
4.7.2 AOUSERGROUP (BID = 35) ..4-48

4.8 DESCRIPTION OF THE BASE ELEMENTS FOR OTHER DATA4-49
4.8.1 AOANY (BID = 0) ...4-49
4.8.2 AOLOG (BID = 43) ...4-50
4.8.3 PARAMETERS AND PARAMETER SETS ...4-51
4.8.4 AOPARAMETER (BID = 44)...4-55
4.8.5 AOPARAMETERSET (BID = 45)...4-56

4.9 FORMAL DESCRIPTION OF THE ASAM ODS BASE MODEL4-57
4.9.1 WHY STANDARDIZED REPRESENTATION..4-57
4.9.2 METAMODEL DESCRIPTION IN ISO 10303..4-58
4.9.3 BASE MODEL REPRESENTATION IN EXPRESS ..4-60
4.9.4 BASE MODEL REPRESENTATION IN EXPRESS-G4-96

4.10 REVISION HISTORY ...4-107

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 151

THE BASE MODEL

ASAM ODS VERSION 5.0 4-3

Scope

This document describes the ASAM ODS Base Model 28 for ASAM ODS Version 5.0

Intended Audience

This document is intended for implementers of ASAM ODS Version 5.0. It shall be used as a
reference on how the base model is built and which base elements, base attributes, relations
etc. are available.

This document is part of a series of documents referring to ASAM ODS Version 5.0 and must
not be used as a stand-alone document. The documents referenced below build the
technical reference of ASAM ODS Version 5.0 as a whole. They may be requested from the
ASAM e.V. at www.asam.net.

ASAM ODS Specification

The following chapters build the technical reference for ASAM ODS Version 5.0:

 ASAM ODS Version 5.0, Chapter 1, Introduction

 ASAM ODS Version 5.0, Chapter 2, Architecture

 ASAM ODS Version 5.0, Chapter 3, Physical Storage (1.1)

 ASAM ODS Version 5.0, Chapter 4, Base Model (28)

 ASAM ODS Version 5.0, Chapter 5, ATF/CLA (1.4.1)

 ASAM ODS Version 5.0, Chapter 6, ATF/XML (1.0)

 ASAM ODS Version 5.0, Chapter 7: N/A ('Security' moved to Chapter 2)

 ASAM ODS Version 5.0, Chapter 8, MIME Types and External References (1.0)

 ASAM ODS Version 5.0, Chapter 9, RPC-API (3.2.1)

 ASAM ODS Version 5.0, Chapter 10, OO-API (5.0)

 ASAM ODS Version 5.0, Chapter 11, NVH Model (1.3)

 ASAM ODS Version 5.0, Chapter 12, Calibration Model (1.0)

Normative References

 ISO 10303-11: STEP EXPRESS

 Object Management Group (OMG): www.omg.org

 Common Object Request Broker Architecture (CORBA): www.corba.org

 IEEE 754: IEEE Standard for Binary Floating-Point Arithmetic, 1985

 ISO 8601: Date Formats

 Extensible Markup Language (XML): www.w3.org/xml

ISO/PAS 22720:2005(E)

152 © ISO 2005 – All rights reserved

www.asam.net
www.omg.org
www.corba.org
www.w3.org/xml

ASAM ODS VERSION 5.0

4-4 ASAM ODS VERSION 5.0

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 153

THE BASE MODEL

ASAM ODS VERSION 5.0 4-5

4 THE BASE MODEL

4.1 INTRODUCTION TO THE BASE MODEL

4.1.1 OVERVIEW

The following figure shows the base model of ASAM ODS:

The base model incorporates the following base elements, from which the application
elements may be derived. These elements are grouped according to their usage within
automation and measurement systems.

AoUnit AoQuantity

AoQuantity
Group

AoUnit
Group

AoPhysical
Dimension

AoMeasurement

AoMeasure
ment

Quantity

AoSub
matrix

AoLocal
Column

AoTest
Abstract

AoTest

AoSubTest

AoUnitUnderTest
Abstract

AoUnit
UnderTest

AoUnit
UnderTest

Part

AoTestSequence
Abstract

AoTest
Sequence

AoTest
Sequence

Part

AoTestEquipment
Abstract

AoTest
Equipment

AoTest
Equipment

Part

AoAny

Dimensions
and Units Descriptive Data

Other
Administration

Measurements

AoTest
Device

AoEnvironment

Environment

AoUser
Group

AoUser

Security

AoNameMap AoAttributeMap

AoLog

AoPara
meter

AoPara
meterSet

AoExternal
Component

ISO/PAS 22720:2005(E)

154 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-6 ASAM ODS VERSION 5.0

4.1.2 PRINCIPLE OF DERIVATION

Any ASAM ODS model should be able to carry measurement data together with the testing
context and administration of the measurements. Since such data appear in many
companies or divisions they cannot be mapped to the same model. On the other hand it has
been found necessary to exchange data between different companies or divisions or
between different applications.

To enable an exchange of data between various repositories the data models in these
repositories must not be too different, even if differences are needed to comply with the
special needs of certain applications or companies.

In ASAM ODS this contrast was dealt with by creating one base model from which all
application-specific data models can be derived. Such derivation includes:

 subtyping (create a new type from an existing one (the supertype) and adding more
properties or attributes)

 inheritance (a subtype inherits automatically all properties and attributes of the supertype)

 rules (the supertype provides rules to which the subtype must conform)

The derived model is usually typical for an application, therefore it is called application
model, its entities are called application elements while the entities of the base model are
called base elements.

4.1.3 GENERAL REMARKS

Characterizing an attribute or relation as OPTIONAL means both,

 an application model may omit this attribute.

 if an application model has specified this attribute then instances may have values for this
attribute or may leave it empty.

All other attributes or relations are required. This means

 they must be included in the application model, and

 the instances must provide a value for them.

 In case the attribute or relation is a SET[0,..] or LIST[0,..], it may happen that the list or
set is empty.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 155

THE BASE MODEL

ASAM ODS VERSION 5.0 4-7

4.2 DESCRIPTION OF BASE ELEMENTS FOR ENVIRONMENT

4.2.1 AOENVIRONMENT (BID = 1)

The following table describes the base attributes of AoEnvironment:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the ASAM ODS server

description DT_STRING
OPTIONAL
Describing text for the ASAM ODS server

version DT_STRING
OPTIONAL
Version of the ASAM ODS server

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs. Should not be
used here because inheritance is not useful for application
elements of type AoEnvironment

meaning_of_aliases DT_STRING
LIST[0:?]

max_test_level DT_LONG
OPTIONAL

base_model_version DT_STRING
OPTIONAL
schema name (e.g. 'asam27')

application_model_type DT_STRING
OPTIONAL
may contain many names, comma-separated

application_model_version DT_STRING
OPTIONAL
any operator-supplied name

Relations:

entity_mapping INFO_FROM
SET[0:?] OF AoNameMap

ISO/PAS 22720:2005(E)

156 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-8 ASAM ODS VERSION 5.0

tests CHILD
SET[0:?] OF AoTest

uuts CHILD
SET[0:?] OF AoUnitUnderTest

equipments CHILD
SET[0:?] OF AoTestEquipment

sequences CHILD
SET[0:?] OF AoTestSequence

Of this entity only one instance may occur in any data storage.

Only instances of the top entities of the following 4 hierarchical trees are collected in the sets:

 AoTest

 AoUnitUnderTest

 AoTestEquipment

 AoTestSequence

In “entity_mapping” all maps are to be collected. The set contains one AoNameMap per
entity. An “alias_index” in the application software allows to use the appropriate “alias_name”
from the given lists. In this way language versions can be switched easily.

For each position in the lists of alias names a string should be provided in
“meaning_of_aliases"; this allows for name mapping to different languages.

The attribute "max_test_level" shows the number of levels in the test hierarchy.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 157

THE BASE MODEL

ASAM ODS VERSION 5.0 4-9

4.2.2 AONAMEMAP (BID = 46)

The following table describes the base attributes of AoNameMap:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

entity_name DT_STRING
alias_names DT_STRING

LIST[0:?]

Relations:

environment INFO_TO
AoEnvironment
INVERSE FOR entity_mapping

attribute_mapping CHILD
SET[0:?] OF AoAttributeMap

Within the instances of “AoNameMap” all entities of the application model (the “application
elements”) are stored together with their relation to the corresponding base entities. It is
possible to build a list of alias names. Additionally a list with the “attribute maps” for this
application element is stored.

For the entity name any number of alias names (e.g. for language versions) may be
specified. The list allows different language version switched by the application software.

The length of the list shall be equal to the list "meaning_of_aliases" in AoEnvironment.

For each entity a name mapping may be given.

For each attribute of the entity an attribute mapping may be given.

ISO/PAS 22720:2005(E)

158 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-10 ASAM ODS VERSION 5.0

4.2.3 AOATTRIBUTEMAP (BID = 47)

The following table describes the base attributes of AoAttributeMap:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance, only unique within its predecessor in a
hierarchy

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

attribute_name DT_STRING
alias_names DT_STRING

LIST[0:?]

Relations:

name_mapping FATHER
AoNameMap
INVERSE FOR attribute_mapping

Each AoAttributeMap contains one attribute of an application element respectively. If an
attribute was derived from a base attribute, the corresponding relation is also stored. It is
further possible to build a list of alias names and to define a unit and a relation to a quantity.

Each instance of AoAttributeMap specifies any number of alias names for the attribute
"attribute_name". The length of the list of alias names shall be equal to the length of that list
in AoNameMap.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 159

THE BASE MODEL

ASAM ODS VERSION 5.0 4-11

4.3 DESCRIPTION OF BASE ELEMENTS FOR DIMENSIONS AND UNITS

4.3.1 OVERVIEW

The following figure shows those base attributes which build relations between the base
elements of the dimension/unit family. The arrows show the direction of the attributes, the
text at the arrows shows the attribute name and the cardinality. The word “INV” precedes the
same declarations for the inverse attributes (opposite to the direction of the arrow). S[a:b]
marks a set with at least a and at most b elements. The question mark “?” means “any
number”.

4.3.2 INFORMATION ABOUT QUANTITIES AND UNITS IN ASAM ODS

The definition and the usage of quantities and their names:

In measurement and test systems used today various information is coded in quantity
names, which are often additionally restricted to e.g. 8 characters.

Such information may be:
 the name of the physical quantity itself (strength, time, concentration)
 the location where such a quantity typically is related to (jointed shaft in the front, on the

left)

 the processing mode which is typically used to determine such a quantity from other
quantities(averaged, filtered).

Such coding of information makes it practically impossible to automatically let the computer
process the quantities on the basis of partial information (e.g. list all quantities which
describe the characteristics of an object in the front on the left). Moreover there is often no
distinction made between the description of a quantity and the description of the
configuration established and the results obtained when measuring such a quantity.

AoUnit AoQuantity

AoQuantity
Group

AoUnit
Group

AoPhysical
Dimension

AoMeasure
ment

Quantity

u
n

its
S

[0
:?

]

IN
V

 g
ro

u
p

s
S

[0
:?

]

q
u

a
n

tit
ie

s
S

[0
:?

]

IN
V

 g
ro

u
p

s
S

[0
:?

]

default unit

Phys_dimension
INV units S [0:?]

quantity
unit

ISO/PAS 22720:2005(E)

160 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-12 ASAM ODS VERSION 5.0

Another feature which is demanded for quantities is the requirement to use the same names
for standard quantities in the whole environment; for this purpose the names should be put
into a list (as a catalog for standard quantity names).

On the other hand it does not make sense to define a global name for a quantity which is
measured only once.

The use of quantities within ASAM ODS:

Quantities in ASAM ODS form a list of things that may be measured; they are ordered in a
hierarchical relation.

Each of the "quantities" may be used in two ways: in a "measurement quantity" belonging to
a "measurement", and in the hierarchy of "quantities" serving as predecessor. Note that
ASAM ODS distinguishes between a quantity itself (as a neutral descripton) and the subject
of a measurement. Whenever the measurement of a quantity like force, pressure, ... shall be
initiated, a "measurement quantity" has to be instantiated and connected (by setting a
reference) to a "quantity" first. The "measurement" only knows about its "measurement
quantities". Each "measurement quantity" points to a "quantity" and thus provides information
on what is currently measured; it refers to a quantity and receives from it several parameters,
like its physical dimension and a default unit. Studying the attributes and relations of
"AoMeasurement", "AoMeasurementQuantity" and "AoQuantity" will further clarify their
interdependence.

The highest quantities in the hierarchy, i.e. those which do not have a predecessor, must be
physical quantities to which a unit can be attached. In a normal case this would be a physical
feature (e.g. force) rather than a location, a substance or the like (e.g. FL or CO). Thus it is
guaranteed that every "quantity" possesses a unit and that it may be used in a
"measurement quantity" (in this sense "dimensionless" or "[-]" is also seen as a unit).

It should be noted that the quantity hierarchy does NOT rely on the naming conventions but
on the references of the instances of "quantity" to each other; these references (successor,
predecessor) are embedded in the ASAM ODS base model.

An abbreviation can be attached to every quantity for the purpose of quick identification; it
must be unique.

"Quantities" can be combined in "quantity groups" and one "quantity" can be member of
many groups. This allows to group "quantities" according to application specific aspects
(examples of "quantity groups": set values, temperatures, exhaust gas values).

Every "quantity" may be used one or more times in a measurement. If the "quantity" is used
once in a single measurement, it is identified through the measurement and the connected
measurement quantity names. An additional "measurement"-specific name may be defined.
As a default for that "measurement quantity name" the "default measurement quantity name"
(attribute “default_mq_name”) of the "quantity" should be used. If a "quantity” is used
repeatedly in a single measurement, a different “measurement quantity name” must be given
to every “measurement quantity”, to which the “quantity” is attached.

In that way local quantities (with respect to one "measurement") may be defined. For
example if three temperatures, which are of no significance to other measurements, should
be measured, then the referenced "quantity" is T and "measurement quantity names” may be
generated like T1, T2 and T3. The “quantity” T has the function of a quantity type, which for
instance supplies the unit.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 161

THE BASE MODEL

ASAM ODS VERSION 5.0 4-13

4.3.3 AOQUANTITY (BID = 11)

The following table describes the base attributes of AoQuantity:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

quantity_classification quantity_class_enum
OPTIONAL
one of the enumeration values „measured“ or „state“;
default value is "measured"

default_mq_name DT_STRING
Default name for a measurement quantity, to be used if no
own name has been explicitly attached to the measurement
quantity.

default_datatype datatype_enum
Default format in which the data is stored

default_rank DT_LONG
Default rank of a tensor, number of value dimensions

default_dimension DT_LONG
LIST[0:?]
Default number of values for each rank

default_type_size DT_LONG
Default length limit of a value, for example the maximum
length of a string or a bytestream

Relations:

default_unit INFO_TO
AoUnit

ISO/PAS 22720:2005(E)

162 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-14 ASAM ODS VERSION 5.0

successors CHILD
SET[0:?] OF AoQuantity

groups INFO_REL
SET[0:?] OF AoQuantityGroup
INVERSE FOR quantities

measurement_quantities INFO_FROM
SET[0:?] OF AoMeasurementQuantity
INVERSE FOR quantity

predecessor FATHER
SET[0:1] OF AoQuantity
INVERSE FOR successors

A “quantity” is a named test variable with its features like
– unit, physical meaning
– data type of the value (real, integer, boolean, string, matrix, and others)

A quantity is not a measurement channel, it rather describes a physical phenomenon.

EXAMPLE: 4.3.3.1 QUANTITIES

 torque (Real)
 time (Real)
 estimated temperature range {"cold", "warm", "hot”}
 ignition on (Boolean)
 ignition characteristic curve (which is applicable for a work point) (matrix

of Real values).

A quantity may be used by many “measurement quantities“, even if these belong to the same
“measurement“.

The quantities may be ordered in a hierarchical relationship to one another (using the
successor/predecessor attribute), and there might occur quantities which are never assigned
to a “measurement quantity“.

EXAMPLE: QUANTITY HIERARCHY

Quantity name Successors Predecessor Measurement Quantity

m CO - no
CO CO before, CO after m no
CO before - CO yes
CO after - CO yes

All 4 are instances of the same application element (e.g. “quantity“), only “CO
before“ and “CO after“ are used by measurement quantities, which get their
default values for names, units, etc. from these quantities.

Please note that there are quantities that do not have a unit, e.g. strings, boolean quantities,
percentages, etc.; for such purposes usually one “empty“ unit (e.g. with name “-“) shall be
provided.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 163

THE BASE MODEL

ASAM ODS VERSION 5.0 4-15

4.3.4 AOUNIT (BID = 13)

The following table describes the base attributes of AoUnit:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

factor DT_DOUBLE
Factor to get the SI unit

offset DT_DOUBLE
Offset to get the SI unit

Relations:

phys_dimension INFO_TO
AoPhysicalDimension

groups INFO_REL
SET[0:?] OF AoUnitGroup
INVERSE FOR units

quantities INFO_FROM
SET[0:?] OF AoQuantity
INVERSE FOR default_unit

factor is the (value using SI unit) when (value using this unit) = 1

offset is the (value using SI unit) when (value using this unit) = 0

(value using this unit) multiplied by (factor) = (value using SI unit)

(value using this unit) plus (offset) = (value using SI unit)

(value using this unit) multiplied by (factor) then plus (offset) = (value using SI unit)

ISO/PAS 22720:2005(E)

164 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-16 ASAM ODS VERSION 5.0

EXAMPLE: CALCULATING SI VALUE FROM GIVEN NON-SI VALUE

(4200) 1/min = (4200 * factor) 1/s = (70) 1/s [factor=0.016667]

(20) deg.C = (20 + offset) K = (293.15) K [offset=273.15]

(68) deg.F = (68 * factor + offset) K = (293,15) K [factor=0.55555]
[offset=255.372]

(200) mm = (200 * factor) m = 0.2 m [factor=0.001]

This entity specifies in which unit a measurement quantity has been measured. While the
Physical Dimension is constant (e.g. mass) the units may vary (e.g. "g", "mg", "kg", "lbs").
"Units", which refer to the same "Physical Dimension", can be converted to each other by
means of “Unit Offset” and “Unit Factor”. Two units may refer to the same physical
dimension, only if the conversion between these units makes sense.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 165

THE BASE MODEL

ASAM ODS VERSION 5.0 4-17

4.3.5 AOPHYSICALDIMENSION (BID = 15)

The following table describes the base attributes of AoPhysicalDimension:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

lenght_exp DT_LONG
nominator of exponent for length

mass_exp DT_LONG
nominator of exponent for mass

time_exp DT_LONG
nominator of exponent for time

current_exp DT_LONG
nominator of exponent for electric current

temperature_exp DT_LONG
nominator of exponent for temperature

molar_amount_exp DT_LONG
nominator of exponent for molar amount

luminous_intensity_exp DT_LONG
nominator of exponent for light

lenght_exp_den DT_LONG
OPTIONAL
denominator (length)

mass_exp_den DT_LONG
OPTIONAL
denominator (mass)

time_exp_den DT_LONG
OPTIONAL

ISO/PAS 22720:2005(E)

166 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-18 ASAM ODS VERSION 5.0

denominator (time)
current_exp_den DT_LONG

OPTIONAL
denominator (electric current)

temperature_exp_den DT_LONG
OPTIONAL
denominator (temperature)

molar_amount_exp_den DT_LONG
OPTIONAL
denominator (molar amount)

luminous_intensity_exp_den DT_LONG
OPTIONAL
denominator (light)

Relations:

units INFO_FROM
SET[0:?] OF AoUnit
INVERSE FOR phys_dimension

A "physical dimension" is represented by the seven dimensional exponents of the SI base
dimensions length, mass, time, temperature, current, molar amount, light intensity (measured
in SI base units m, kg, s, K, A, Mol, cd). Usually many of the exponents are zero, particularly
the dimensionless units (e.g. "%") have all exponents=0.

Please note that several physical dimensions may exist that have the same set of exponents.

EXAMPLE: SIMILAR PHYSICAL UNITS

Following physical dimensions may relate to the exponent set
“length2 * mass1 * time-2”:

 “energy“, used by units “Nm“, “kWh“,...
 “torque“, used by units “Nm“, “Nmm“,...

Following physical dimensions may relate to an exponent set of plain zeros:
 “proportion” used by units “%”, “ppm”,...
 “angle” used by units “°”, ”rad”,...

In most cases dimensional exponents are integers, i.e. their denominators are =1. This is
automatically assumed if denominators are omitted.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 167

THE BASE MODEL

ASAM ODS VERSION 5.0 4-19

4.3.6 AOQUANTITYGROUP (BID = 12)

The following table describes the base attributes of AoQuantityGroup:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

Relations:

quantities INFO_REL
SET[0:?] OF AoQuantity

A "quantity group" describes the feature of a "quantity" set. One "quantity" may belong to
many “quantity groups”; through that a net of relationships may be created.

EXAMPLE: GROUP ASSIGNMENT OF QUANTITIES

The quantity "F.FL" belongs, as indicated in its hierarchical name structure, to
the forces ("F") and to a position “front left” ("FL").
It may additionally belong to the quantity groups: "length force", "calculated
quantity", "filtered quantity" and “front left phenomena“.

ISO/PAS 22720:2005(E)

168 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-20 ASAM ODS VERSION 5.0

4.3.7 AOUNITGROUP (BID = 14)

The following table describes the base attributes of AoUnitGroup:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

Relations:

units INFO_REL
SET[0:?] OF AoUnit

AoUnitGroup allows grouping of "units" according to free criteria.

Examples: "MKS", "USA", "outdated".

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 169

THE BASE MODEL

ASAM ODS VERSION 5.0 4-21

4.3.8 CONVERSION OF UNITS

Every local unit is presentable through the product
7

1i

Expn

iBU-SI
i of SI units, where the

SI base units (SI-BU) {length in m, mass in kg, time in s, current in A, temperature in K, molar
amount in mol and luminous intensity in cd} are supplied with a signed (in most cases
integer) exponent (Expn), for example: acceleration in m s-2. If a SI base unit is not needed
for presentation, its exponent equals zero.

In order to convert values given in local units into SI units, normally a multiplication by a
conversion factor is required. For example the conversion of acceleration from g into m/s²
results in a multiplication by the factor 9.81 (1g=9.81m s-2). At least in case of temperatures
one additionally has to deal with a unit related offset, because the base unit for temperature
is Kelvin and its zero point in terms of Centigrade is –273.15 °C.

EXAMPLE: UNIT CONVERSION

273.15K
C

K
1.0Centigrade=Kelvin

255.37K
F

K
0.556Fahrenheit=Kelvin

In the first example the factor is 1.0 and the offset is 273.15;
in the second example the factor is 0.556 and the offset is 255.37.

To conclude, the equation for converting a local value "Value" in a "local unit" into a "SI
value" in a "SI unit" is as follows:

BUSIOffset
 UnitLocal

BUSI
Factor UnitLocalValueBUSIValueSI i

i

Expn

i

7

1i

Expn

i

7

1ii
Expn

i

7

1i

The following information has to be stored:

 the name of the local unit (an Ascii text)

 all seven signed integer exponents of the SI base units,

 the factor and

 the offset (both as real numbers).

ISO/PAS 22720:2005(E)

170 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-22 ASAM ODS VERSION 5.0

Table of SI units:

Index Quantity kind unit name symbol

1 Length Meter m

2 Mass Kilogramme kg

3 Time Second s

4 Current Ampere A

5 Temperature Kelvin K

6 Molar Amount mol mol

7 Luminous Intensity Candela cd

The exponents for the dimensions of all seven SI base units must be stored as attributes of
“AoPhysicalDimension”. If the corresponding SI base unit does not contribute to the physical
dimension, 0 will be stored in that attribute).

Remark on quantities without units and units of dimensionless quantities

"Quantities" with certain "value formats" e.g. Character or Bit do not possess any "units".
In contrast to that there exist dimensionless "quantities", which possess "units" with all
exponents = 0 (e.g. [-], [%], or others).

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 171

THE BASE MODEL

ASAM ODS VERSION 5.0 4-23

4.4 DESCRIPTION OF BASE ELEMENTS FOR MEASUREMENTS

4.4.1 OVERVIEW

Besides these, the base element AoExternalComponent provides a means to store mass
data in external files and reference them within the ASAM ODS model.

Please note the distinction in the cardinality specifications:

S[0:?] = set of zero to many, order of elements in the set is irrelevant

L[0:?] = list of zero to many, order is maintained

test

is_scaled_by L[1:?] AoMeasureme
ntQuantity

AoSub
matrix

AoLocal
Column

local_columns S[0:?]

INV submatrix

measurement_quantities S[0:?]

INV measurement

local_columns S[0:?]

INV measurement_quantities

quantity

AoMeasurement

units_under_test
sequences
equipments

channel

submatrices S[0:?]

INV measurement

ISO/PAS 22720:2005(E)

172 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-24 ASAM ODS VERSION 5.0

4.4.2 AOMEASUREMENT (BID = 3)

The following table describes the base attributes of AoMeasurement:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance, only unique within its predecessor in
a hierarchy

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

measurement_begin DT_DÀTE
OPTIONAL
Time stamp at measurement begin

measurement_end DT_DÀTE
OPTIONAL
Time stamp at measurement end

Relations:

test FATHER
AoTestAbstract

units_under_test INFO_REL
SET[0:?] OF AoUnitUnderTestAbstract

sequences INFO_REL
SET[0:?] OF AoTestSequenceAbstract

equipments INFO_REL
SET[0:?] OF AoTestEquipmentAbstract

measurement_quantities CHILD
SET[0:?] OF AoMeasurementQuantity

submatrices CHILD
SET[0:?] OF AoSubmatrix

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 173

THE BASE MODEL

ASAM ODS VERSION 5.0 4-25

AoMeasurement is the linking point for all data that relate to one test run.

AoMeasurement has references to

 the descriptive data of that test run. This includes the equipment used and its settings,
the subject that is being tested and its configuration, and the sequence of steps
performed during that test run.

 the result data of the test run. They contain all measurement results, calculation results,
status results and also eventually the predefined setpoints. This additionally includes a
description of all those quantities that were observed, calculated, or used as setpoint
variables.

ISO/PAS 22720:2005(E)

174 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-26 ASAM ODS VERSION 5.0

4.4.3 AOMEASUREMENTQUANTITY (BID = 4)

The following table describes the base attributes of AoMeasurementQuantity:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance, only unique within its predecessor in a
hierarchy

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

datatype datatype_enum
Format in which the data is stored

rank DT_LONG
OPTIONAL
Rank of a tensor, number of value dimensions

dimension DT_LONG
LIST[0:?]
OPTIONAL
Number of values for each rank

type_size DT_LONG
OPTIONAL
Length limit of a value, for example the maximum length of a
string

interpolation interpolation_enum
OPTIONAL
Which type is used when needed, during interpolation

minimum DT_DOUPLE
OPTIONAL
Minimum value

maximum DT_DOUPLE
OPTIONAL

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 175

THE BASE MODEL

ASAM ODS VERSION 5.0 4-27

Maximum value
average DT_DOUPLE

OPTIONAL
Average

standard_deviation DT_DOUPLE
OPTIONAL
Standard deviation

Relations:

quantity INFO_TO
AoQuantity

unit INFO_TO
AoUnit

local_columns INFO_FROM
SET[0:?] OF AoLocalColumn

channel INFO_TO
AoTestEquipment OR AoTestEquipmentPart OR AoTestDevice
OPTIONAL

is_scaled_by INFO_FROM
LIST[1:?] OF AoMeasurementQuantity
OPTIONAL
Used for scaling the cells. For multidimensional scaling (rank>1)
the rightmost index is incremented in the innermost loop

measurement FATHER
AoMeasurement
INVERSE FOR measurement_quantities

scales INFO_TO
SET[0:1] OF AoMeasurementQuantitiy
INVERSE FOR is_scaled_by

A "measurement quantity" further describes a column of the value matrix. It expresses the
use of a "quantity" during "measurement". The specified "measurement quantity" appears
only once in one "measurement". The "measurement quantities" may be related to each
other, i.e. one quantity may be depending on another one. Particularly for time flow
measurements this relation is used between a measurement quantity and the corresponding
time quantity.

EXAMPLE: DEPENDENCIES BETWEEN MEASUREMENT QUANTITIES

A measurement quantity may depend on the
 torque in a "full load" measurement
 time in a time series measurement during a test cycle

ISO/PAS 22720:2005(E)

176 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-28 ASAM ODS VERSION 5.0

4.4.4 SUBMATRICES AND THE VALUE MATRIX

For a better understanding of the two base elements AoSubmatrix and AoLocalColumn, the
following sections are intended to explain the interdependencies of submatrices, value
matrices and local columns.

"Submatrices" are the objects which physically store mass data. Their use is based on
technical reasons for storing: While the “large” value matrix has the advantage of
transparency and immediate access to the order of measurement points, the submatrices
hold the values in a much more compact storage area by not storing “no values” for all
positions in the value matrix, in which “measurement quantities” have not been measured at
certain “measurement points”.

"Submatrices" are generally homogenous subareas of a value matrix. In this context
“homogenous” means that all values exist, while “inhomogenous” matrices may have “holes”,
i.e. areas for which no values are provided. The inhomogenous value matrix of the
"measurement" may be created out of the corresponding "submatrices" using the specified
"link instructions" stored in the "measurement".

There are link instructions for the submatrices:

1. Two submatrices are assigned to each other through the measurement quantity "time"
("time" belongs to both submatrices as a column!). The link instruction is stored and is
executed each time when reading data. The instruction implies global "measured points",
which are not, however, stored and because of that they do not exist explicitly (e.g. as
measured point number).

2. The global "measured point" is stored. The rows of the submatrices are assigned using
the global "measured point". The link instruction has therefore not to be executed once
again while reading.

Mixed forms of both cases may appear (example wind-tunnel: the place measurement is
linked to the real measurement through a link instruction using the quantity "place number".
The "submatrices" that build the real measurement are linked through "measured point
numbers”).

The API supports both methods: It stores and executes the link instructions as well as
generates and stores measured points by the aid of the link instruction.

EXAMPLE: 4.4.4.1 CREATING MEASURED POINTS

With ‘Start_Measured_Point’ a new "measured point number" is generated.
While writing each of the submatrices TM1 and TM2 with

‘Write_Submatrix_Row’ a "measured point number” is stored in every
submatrix.

Start_Measured_Point

Write_Submatrix_Row(TM1)

Write_Submatrix_Row(TM2)

End_Measured_Point

The following example shall explain the use of matrices by displaying them as tables. This
should enable tracing of particular values on their way from measurement to submatrices
and value matrix.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 177

THE BASE MODEL

ASAM ODS VERSION 5.0 4-29

EXAMPLE: 4.4.4.2 CONSTRUCTING A VALUE MATRIX

Two devices perform measurements independently from each other.
Each of the devices stores the measured values locally, and thus two

submatrices are created.
The assignment of measured values is done using the time (each device has

its own time measurement, the devices can be synchronized to one point
in time).

The two submatrices are mixed with regard to the time:

Submatrix 1 Submatrix 2

Time Quantity_A Time Quantity_B

0.1 xxx 0.22 yyy

0.2 xxx 0.24 yyy

0.3 xxx 0.26 yyy

0.4 xxx 0.28 yyy

0.5 xxx 0.30 yyy
0.32 yyy
0.34 yyy
0.35 yyy
0.38 yyy
0.4 yyy
0.42 yyy

The resulting value matrix is:

Time Quantity_A Quantity_B

0.10 xxx
0.20 xxx
0.22 yyy
0.24 yyy
0.26 yyy
0.28 yyy
0.30 xxx yyy
0.32 yyy
0.34 yyy
0.36 yyy
0.38 yyy
0.40 xxx yyy
0.42 yyy
0.50 xxx

The two submatrices are stored separately and linked together afterwards

ISO/PAS 22720:2005(E)

178 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-30 ASAM ODS VERSION 5.0

4.4.5 AOSUBMATRIX (BID = 38)

The following table describes the base attributes of AoSubmatrix:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance, only unique within its predecessor in a
hierarchy

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

number_of_rows DT_LONG
number of „measured points“ in this submatrix

Relations:

local_columns CHILD
LIST[0:?] OF AoLocalColumn

measurement FATHER
AoMeasurement
INVERSE FOR submatrices

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 179

THE BASE MODEL

ASAM ODS VERSION 5.0 4-31

4.4.6 AOLOCALCOLUMN (BID = 39)

The following table describes the base attributes of AoLocalColumn:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance, only unique within its predecessor in a
hierarchy

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

global_flag DT_SHORT
A 2-byte integer whose bits have specific meanings

flags DT_SHORT
LIST[1:?]
OPTIONAL
List of 2-byte integers with bitwise meaning, the length must
be the same as the length of “values” and must coincide with
the attribute “number_of_rows” in the submatrix.

independent DT_SHORT
1 – independent
0 – dependent
only one local_column per submatrix may be independent

minimum DT_DOUBLE
OPTIONAL
Minimum

maximum DT_DOUBLE
OPTIONAL
Maximum

sequence_representation seq_rep_enum
Enumeration with possible values: “explicit”, “implicit_linear”,
“implicit_constant”, “implicit_saw”, “raw_linear”, “raw_poly-

ISO/PAS 22720:2005(E)

180 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-32 ASAM ODS VERSION 5.0

nomial”, “formula”
generation_parameters DT_DOUBLE

LIST[1:?]
OPTIONAL
List of parameters necessary to calculate the values for
implicit and raw local columns. Omitted for explicit
local_columns.
Length of list and meaning:

[n=position in sequence]
[x=sequence to be generated]
[y=sequence given in value_sequence]

explicit x[n] = y[n] (i.e. no action!)
implicit_constant x[n] = a
implicit_linear x[n] = a + b * (n-1)
implicit_saw x[n] = a + b * ((n-1) mod c)
raw_linear x[n] = a + b * y[n]
raw_polynomial x[n] = a + b * y[n] + c * y[n]^2 + ...
formula x[n] is calculated elsewhere based on y[1]

raw_datatype datatype_enum
OPTIONAL
The optional datatype enumeration value that describes the
datatype of the raw data; must be one of the enumeration
items of datatype_enum.

Relations:

values value_sequence
OPTIONAL
a value_sequence containing a value for each “measured
point“, the number of values is given in the attribute
“number_of_rows” in the submatrix. Omitted for implicit local
columns.

external_component CHILD
LIST[1:?] OF AoExternalComponent
OPTIONAL

submatrix FATHER
AoSubmatrix
INVERSE FOR local_columns

measurement_quantity INFO_TO
AoMeasurementQuantity
INVERSE FOR local_columns

A column which is local to a submatrix.

The attribute “sequence_representation” may have one of the following enumeration values;
they are defined as “seq_rep_enum”:
 explicit (=0)
 implicit_constant (=1)
 implicit_linear (=2)
 implicit_saw (=3)
 raw_linear (=4)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 181

THE BASE MODEL

ASAM ODS VERSION 5.0 4-33

 raw_polynomial (=5)
 formula (=6)
 external_component (=7)
 raw_linear_external (=8)
 raw_polynomial_external (=9)
 raw_linear_calibrated (=10)
 raw_linear_calibrated_external (=11)
This enumeration may be extended by ASAM ODS in the future.

The “seq_rep_enum” determines what can be expected to be in the attributes of
AoLocalColumn. The following table gives an overview:

seq_rep_enum parameters values external_component

explicit --- final values ---

implicit gener.param gener.param ---

raw gener.param raw values ---

ext_comp --- values from file ext.comp.description

raw + extern gener.param raw values ext.comp.description

The generation parameters shall contain for:
explicit ---
implicit_constant constant value (offset)
implicit_linear start_value+increment
implicit_saw start_value+increment+number_of_values_per_saw
raw_linear offset + factor
raw_polynomial N(order) + coeff0 + coeff1 + ... + coeffN
external_component ---
raw_linear_external const.value+gradient (offset+factor)
raw_polynomial_external N(order) + coeff0 + coeff1 + ... + coeffN
formula ---
raw_linear_calibrated offset + factor + calibration
raw_linear_calibrated_externaloffset + factor + calibration

The data shall contain for:
explicit all the data
implicit_constant constant value (offset)
implicit_linear start_value+increment (offset+factor)
implicit_saw start_value+increment+number_of_values_per_saw
raw_linear raw data
raw_polynomial raw data
external_component all the data
raw_linear_external raw data
raw_polynomial_external raw data
formula the formula string
raw_linear_calibrated raw data
raw_linear_calibrated_external raw data

ISO/PAS 22720:2005(E)

182 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-34 ASAM ODS VERSION 5.0

The attribute external_component is required and contains one or more references to
AoExternalComponent for:
external_component
raw_linear_external
raw_polynomial_external
raw_linear_calibrated_external

and empty for all other choices.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 183

THE BASE MODEL

ASAM ODS VERSION 5.0 4-35

4.4.7 AOEXTERNALCOMPONENT (BID = 40)

The following table describes the base attributes of AoExternalComponent:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance, only unique within its predecessor in a
hierarchy

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

ordinal_number DT_LONG
OPTIONAL
Ordinal Number

length_in_bytes DT_LONG
Length in Bytes

filename_url DT_STRING
URL of the File Name

value_type typespec_enum
See description below for details on this enumeration.

start_offset DT_LONG
Start Offset

block_size DT_LONG
Block Size

valuesperblock DT_LONG
Values per Block

value_offset DT_LONG
Value Offset

flags_filename_url DT_STRING
OPTIONAL
URL of the File Name with Flags

flags_start_offset DT_LONG

ISO/PAS 22720:2005(E)

184 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-36 ASAM ODS VERSION 5.0

OPTIONAL
Offset where the Flags begin

Relations:

local_column FATHER
AoLocalColumn
INVERSE FOR external_component

The meaning of “typespec_enum” is the enumeration of
 DT_BOOLEAN,
 DT_BYTE,
 DT_SHORT,
 DT_LONG,
 DT_LONGLONG,
 IEEEFLOAT4,
 IEEEFLOAT8,
 DT_SHORT_BEO,
 DT_LONG_BEO,
 DT_LONGLONG_BEO,
 IEEEFLOAT4_BEO,
 IEEEFLOAT8_BEO,
 DT_STRING,
 DT_BYTESTR,
 DT_BLOB
This enumeration may be extended by ASAM ODS in the future.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 185

THE BASE MODEL

ASAM ODS VERSION 5.0 4-37

4.5 DESCRIPTION OF THE BASE ELEMENTS FOR ADMINISTRATION

The following elements are used to build a tree structured administration for measurements
enabling several levels of subtests:

AoTest (derived from AoTestAbstract)

AoSubtest (derived from AoTestAbstract)

4.5.1 AOTEST (BID = 36)

The following table describes the base attributes of AoTest:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

Relations:

children CHILD
SET[0:?] OF AoSubTest OR SET[0:?] OF AoMeasurement

environment FATHER
SET[0:1] OF AoEnvironment
INVERSE FOR tests

ISO/PAS 22720:2005(E)

186 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-38 ASAM ODS VERSION 5.0

4.5.2 AOSUBTEST (BID = 2)

The following table describes the base attributes of AoSubTest:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance, only unique within its predecessor in a
hierarchy

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

Relations:

parent_test FATHER
AoTest OR AoSubTest

children CHILD
SET[0:?] OF AoSubTest OR SET[0:?] OF AoMeasurement

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 187

THE BASE MODEL

ASAM ODS VERSION 5.0 4-39

4.6 DESCRIPTION OF THE BASE ELEMENTS FOR DESCRIPTIVE DATA

The following elements are used to build structures for complementary descriptions of the
tests:

for the Tested Object

AoUnitUnderTest (derived from AoUnitUnderTestAbstract)

AoUnitUnderTestPart (derived from AoUnitUnderTestAbstract)

for the Test Sequence

AoTestSequence (derived from AoTestSequenceAbstract))

AoTestSequencePart (derived from AoTestSequenceAbstract)

for the Test Equipment

AoTestEquipment (derived from AoTestEquipmentAbstract)

AoTestEquipmentPart (derived from AoTestEquipmentAbstract)

AoTestDevice (derived from AoTestEquipmentPart)

ISO/PAS 22720:2005(E)

188 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-40 ASAM ODS VERSION 5.0

4.6.1 AOUNITUNDERTEST (BID = 21)

The following table describes the base attributes of AoUnitUnderTest:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

Relations:

children CHILD
SET[0:?] OF AoUnitUnderTestPart

environment FATHER
SET[0:1] OF AoEnvironment
INVERSE FOR uuts

measurement INFO_REL
SET[0:?] OF AoMeasurement
INVERSE FOR units_under_test

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 189

THE BASE MODEL

ASAM ODS VERSION 5.0 4-41

4.6.2 AOUNITUNDERTESTPART (BID = 22)

The following table describes the base attributes of AoUnitUnderTestPart:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance, only unique within its predecessor in
a hierarchy

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

Relations:

children CHILD
SET[0:?] OF AoUnitUnderTestPart

measurement INFO_REL
SET[0:?] OF AoMeasurement
INVERSE FOR units_under_test

parent_unit_under_test FATHER
AoUnitUnderTest
INVERSE FOR children
May not exist if parent_unit_under_test_part exists.

parent_unit_under_test_part FATHER
AoUnitUnderTestPart
INVERSE FOR children
May not exist if parent_unit_under_test exists.

ISO/PAS 22720:2005(E)

190 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-42 ASAM ODS VERSION 5.0

4.6.3 AOTESTSEQUENCE (BID = 25)

The following table describes the base attributes of AoTestSequence:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

Relations:

children CHILD
SET[0:?] OF AoTestSequencePart

environment FATHER
SET[0:1] OF AoEnvironment
INVERSE FOR sequences

measurement INFO_REL
SET[0:?] OF AoMeasurement
INVERSE FOR sequences

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 191

THE BASE MODEL

ASAM ODS VERSION 5.0 4-43

4.6.4 AOTESTSEQUENCEPART (BID = 26)

The following table describes the base attributes of AoTestSequencePart:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance, only unique within its predecessor in
a hierarchy

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

Relations:

children CHILD
SET[0:?] OF AoTestSequence Part

measurement INFO_REL
SET[0:?] OF AoMeasurement
INVERSE FOR sequences

parent_sequence FATHER
SET[1:1] OF AoTestSequence
INVERSE FOR children
May not exist if parent_sequence_part exists.

parent_sequence_part FATHER
SET[1:1] OF AoTestSequencePart
INVERSE FOR children
May not exist if parent_sequence exists.

ISO/PAS 22720:2005(E)

192 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-44 ASAM ODS VERSION 5.0

4.6.5 AOTESTEQUIPMENT (BID = 23)

The following table describes the base attributes of AoTestEquipment:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

Relations:

children CHILD
SET[0:?] OF AoTestequipmentPart OR AoTestDevice
The set may contain instances of both base types.

environment FATHER
SET[0:1] OF AoEnvironment
INVERSE FOR equipments

measurement INFO_REL
SET[0:?] OF AoMeasurement
INVERSE FOR equipments

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 193

THE BASE MODEL

ASAM ODS VERSION 5.0 4-45

4.6.6 AOTESTEQUIPMENTPART (BID = 24)

The following table describes the base attributes of AoTestEquipmentPart:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance, only unique within its predecessor in
a hierarchy

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

Relations:

children CHILD
SET[0:?] OF AoTestEquipmentPart OR AoTestDevice
The set may contain instances of both base types.

measurement INFO_REL
SET[0:?] OF AoMeasurement
INVERSE FOR equipments

parent_equipment FATHER
AoTestEquipment
INVERSE FOR children
May not exist if parent_equipment_part exists.

parent_equipment_part FATHER
AoTestEquipmentPart
INVERSE FOR children
May not exist if parent_equipment exists.

ISO/PAS 22720:2005(E)

194 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-46 ASAM ODS VERSION 5.0

4.6.7 AOTESTDEVICE (BID = 37)

The following table describes the base attributes of AoTestDevice:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance, only unique within its predecessor in a
hierarchy

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

Relations:

children CHILD
SET[0:?] OF AoTestDevice

measurement INFO_REL
SET[0:?] OF AoMeasurement
INVERSE FOR equipments

parent_equipment FATHER
AoTestEquipment
INVERSE FOR children
May not exist if parent_equipment_part exists.

parent_equipment_part FATHER
AoTestEquipmentPart OR AoTestDevice
INVERSE FOR children
May not exist if parent_equipment exists.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 195

THE BASE MODEL

ASAM ODS VERSION 5.0 4-47

4.7 DESCRIPTION OF THE BASE ELEMENTS FOR SECURITY

The following elements are provided for the storage of security data:

AoUser

AoUserGroup

4.7.1 AOUSER (BID = 34)

The following table describes the base attributes of AoUser:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

password DT_STRING
Contains the password

Relations:

groups INFO_REL
SET[0:?] OF AoUserGroup
INVERSE FOR users

ISO/PAS 22720:2005(E)

196 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-48 ASAM ODS VERSION 5.0

4.7.2 AOUSERGROUP (BID = 35)

The following table describes the base attributes of AoUserGroup:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

superuser_flag DT_SHORT
Flag, which indicates whether being Superuser or not

Relations:

users INFO_REL
SET[0:?] OF AoUser

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 197

THE BASE MODEL

ASAM ODS VERSION 5.0 4-49

4.8 DESCRIPTION OF THE BASE ELEMENTS FOR OTHER DATA

The following elements are provided for the storage of other data:

AoAny

AoLog

AoParameter

AoParameterSet

4.8.1 AOANY (BID = 0)

The following table describes the base attributes of AoAny:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

Relations:

parent FATHER
SET[0:1] OF AoAny
INVERSE FOR children

children CHILD
SET[0:?] OF AoAny
OPTIONAL

If the parent relation does not exist, the combination of name and version must be unique
within the ASAM ODS environment.

ISO/PAS 22720:2005(E)

198 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-50 ASAM ODS VERSION 5.0

4.8.2 AOLOG (BID = 43)

The following table describes the base attributes of AoLog:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

date DT_DATE
Date of the Logbook entry

Relations:

parent FATHER
SET[0:1] OF AoLog
INVERSE FOR children

children CHILD
SET[0:?] OF AoLog

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 199

THE BASE MODEL

ASAM ODS VERSION 5.0 4-51

4.8.3 PARAMETERS AND PARAMETER SETS

ASAM-ODS already defined several rules and possibilities to store any type of measurement
data (e.g. MIME type, implicit channels, independent channels, ...).

Especially the ways for “normal” data like X-Y-Values are very well defined. So it is possible
to load and UNDERSTAND data with every ASAM ODS compliant client written by another
compliant product before.

But there are lots of other data, e.g. data coming out from an analysis like statistics or other
algorithms (FFT, Classifications, ...). ASAM ODS has already reached the goal of accessing
any data, but what is with the goal of “UNDERSTANDING” the data written by another client?
These data normally have to be described and handled by additional information and implicit
knowledge about the semantics, the parameters and special attributes.

There should be a way defined by ASAM ODS how this can be handled by interested
companies. They have to be able to handle those kind of data in ASAM ODS by using the
rules and possibilities in an ODS-conform way without any contradictions.

The User’s goal is clear: Not only X-Y-data should be saved in a product-independent way.
Any result of analysis data should be accessible (already done by ASAM ODS) but
furthermore understandable from every product knowing about the data type.

Example:

Imagine there are some test data with measurements in an ODS database. The
measurement data are time series of some measurement channels (e.g. durability test in the
automotive industry).

Especially in this environment it is quite normal to reduce the amount of data by calculating a
very special statistical matrix, the so called “Rainflow matrix”.

There are several products on the market supporting this algorithm and data but every
product in another format/way. Only storing the matrix inside an ODS database would lead to
accessibility but not to an understanding between matrices of different products. The same
understanding can only be reached by a companion standard based on the ODS definitions.

Therefore, ASAM ODS has to support a uniform way for handling such companion standards
and describing any kind of data including the semantics via any parameters.

For this purpose ASAM ODS supports the base elements „AoParameter“ and
“AoParameterSet”.

4.8.3.1 DESCRIPTION OF AOPARAMETER

AoParameter holds one parameter of any ODS-conform type. It has a name (the name of the
parameter) and a value (of any type). Base attributes are besides the standard ODS base
attributes:

 pvalue: the value of the instance, stored as a string representation.

 parameter_datatype: The data type of pvalue, given as enumeration value out of the
possible values of the DataType enumeration. It is used to interpret pvalue correctly.

ISO/PAS 22720:2005(E)

200 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-52 ASAM ODS VERSION 5.0

4.8.3.2 DESCRIPTION OF AOPARAMETERSET

The AoParameterSet is a “grouping object” for parameters. It holds a set of AoParameter
referring to it. Base attributes are the standard ODS base attributes.

4.8.3.3 RELATIONS IN THE BASE MODEL

AoParameterSet has a relation to:

 any number of AoParameter (so that it knows which AoParameter are grouped within it)

AoParameter has relations to:

 exactly one AoParameterSet (the one it belongs to)

 an AoUnit that gives a means to calculate the physical value out of the value information
stored for the AoParameter

4.8.3.4 USAGE OF PARAMETERS IN APPLICATION MODELS

Parameters are thought to be linked to any other elements and thereby to describe their
characteristics more precisely. The base model however does not include a base relation
that may be used for this link. (If it did, one would find a relation to nearly all other base
elements, which is not useful. In this aspect it behaves similar to AoAny.)

Instead, an application model typically will build application elements of type AoParameter
and add application relations to them depending on the information that they carry and for
which other application elements this information is of importance.

It is possible to have

 either an application element of type AoParameterSet (that is referenced by a set of
application elements of type AoParameter)

 or an application element of type AoParameter

referring to any other application element.

The following figure shows the situation where an application element of type AoParameter
refers to another ODS application element. This is typically used for small numbers of
parameters.

ODS
ApplElement

AppEl of AoParameter

name

pvalue

parameter_datatype

...

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 201

THE BASE MODEL

ASAM ODS VERSION 5.0 4-53

The following figure shows the situation where an application element of type
AoParameterSet refers to another ODS application element, and where a set of application
elements of type AoParameter refer to it:

4.8.3.5 COMPARISON WITH ALTERNATIVE APPROACHES

There are in principle three alternatives to add specific information to application elements:

 One may want to add application attributes that carry the additional information required.
In this case the names of the attributes and their data types must be specified at the time
the application model is defined.
Moreover each instance will have to carry the value of that attribute (even in case the
same attribute is relevant for a couple of instances).

 One may want to not model the additional information at all within the application model,
but to add it by means of instance attributes to all those instances that need the
information.
Again, each instance that needs the information will have to carry the value of that
attribute (even in case the same information is relevant for a couple of instances).

 Finally there is the option to define application elements of type AoAny and link them to
those elements that required further descriptive information. This is the least specific
approach; it does not provide a uniform method of grouping, and attributes that carry the
value and the data type and that link to a unit are not provided; they must be added when
defining the application model.

By supporting / using the base elements AoParameter and AoParameterSet ASAM ODS can
integrate nearly every result type including the descriptive parameters in a flexible but
uniform way.

AppEl of
AoParameterSet

AppEl of AoParameter

name

pvalue

parameter_datatype
ODS
ApplElement

ISO/PAS 22720:2005(E)

202 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-54 ASAM ODS VERSION 5.0

EXAMPLE: RAINFLOW DATA

The following parameters are necessary for the interpretation of rainflow
classifications; they are defined as instances of an application element of type
AoParameter for the Rainflow Classification Type.
All these instances must be related to an instance of an an application
element of type AoParameterSet.
The column „Flag“ shows if the information is mandatory (M) or optional (O);
the name is reserved anyway.

Name Flag Range/Type Exception Remark

Class
Minimum

M -oo …. + oo

FLOAT

Minimum>Maximum
 Wrong extremes

Minimum of the
Classification Range

Class
Maximum

M -oo …. + oo

FLOAT

Minimum>Maximum
 Wrong extremes

Maximum of the
Classification Range

NClasses M 1...100

SHORT
INTEGER

<1
 no valid nClasses

Number of Classes,
alternative to BinSize;
NClasses=(ClassMaximum
– ClassMinimum)/BinSize

BinSize O -oo … +oo

FLOAT

binSize > (Max–Min)
 no valid BinSize

Number of Classes,
alternative to NClasses;
BinSize=(ClassMaximum
–ClassMinimum)/NClasses

Amplitude
Suppression

M 1.0 ...
nClasses

FLOAT

AS < binSize
 no valid

amplitude
suppression

Range of the filter in
BinSize (1.0=1 BinSize)
Default = 1.0

Symmetric O True, False

BOOL

- If set it is a symmetric
matrix
Default, if not set = True

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 203

THE BASE MODEL

ASAM ODS VERSION 5.0 4-55

4.8.4 AOPARAMETER (BID = 44)

The following table describes the base attributes of AoParameter:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance, only unique within its predecessor in a
hierarchy

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

parameter_datatype datatype_enum
pvalue DT_STRING

The parameter values are always expressed as a string, non-
string types are converted accordingly.

Relations:

unit AoUnit
parameter_set FATHER

AoParameterSet
INVERSE FOR parameters

The parameter_datatype may contain any enumeration element of the base model data type
enumeration described in section 2.5.2.

ISO/PAS 22720:2005(E)

204 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-56 ASAM ODS VERSION 5.0

4.8.5 AOPARAMETERSET (BID = 45)

The following table describes the base attributes of AoParameterSet:

Base Attributes Meaning

id DT_LONGLONG
Unique ID for the instances of an application element

name DT_STRING
Name of the instance

description DT_STRING
OPTIONAL
Describing text for the instance

version DT_STRING
OPTIONAL
Version of the instance

version_date DT_DATE
OPTIONAL
Date of the version change

mime_type DT_STRING
OPTIONAL
The MIME type of the instance

external_references DT_EXTERNALREFERENCE
LIST[0:?]
References to external information

objecttype DT_LONGLONG
OPTIONAL
Contains the ID of the application element (subclass or
superclass) to which the instance belongs.

Relations:

parameters CHILD
SET[0:?] OF AoParameter

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 205

THE BASE MODEL

ASAM ODS VERSION 5.0 4-57

4.9 FORMAL DESCRIPTION OF THE ASAM ODS BASE MODEL

Using the methodology of ISO 10303 the ASAM ODS base model is defined here. Some
explanations are given between the definitions and a graphical representation is added to
support comprehension.

4.9.1 WHY STANDARDIZED REPRESENTATION

The task of defining one base model for a large number of different but harmonizing
application models requires a description with high demands regarding precision and
processing. To avoid inaccuracies in understanding a strictly defined language must be used
for description. Using a worldwide standard guarantees a long life-cycle and high reliability of
the model description and furthermore offers worldwide available tools to process the
description to automate derivations and implementations.

Such internationally standardized description is available in ISO 10303 (“Standard for the
Exchange of Product Model Data”, short: STEP). This standard contains a data description
language called “Express” accompanied by

 a graphical representation (Express-G),

 prescriptions for physical data storage and access,

 a great variety of data models (basic models called “resources” and derived modes called
“application protocols”)

A large number of tools is available, including Express compilers, parsers for both metadata
and data, and many applications e.g. in CAD, engineering, or process industry.

For reasons of description precision and international compliance the ASAM ODS base
model was described using ISO 10303-11 (Express).

ISO/PAS 22720:2005(E)

206 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-58 ASAM ODS VERSION 5.0

4.9.2 METAMODEL DESCRIPTION IN ISO 10303

This section shall give an introduction to the Express language and the way how entities are
defined and represented.

Express is a language for data modeling standardized in ISO 10303 Part 11. In Express the
appearance, representation and handling of the data are described in form of a model
schema. A model in Express contains the entities (i.e. data types) with their names and
attributes, rules, functions and definitions. There are two representations of Express:

 a complete one in ASCII format (given in the first part of the next section),

 a simplified one in graphical format and therefore called Express-G (given in the second
part of the next section).

An entity definition in Express can easily be understood by using an example:

EXAMPLE:

This example shows the definition of a simple 3D point. As can be seen, a
3D_point has three attributes (with names “x”, “y”, “z”) and each of them is
of type REAL.

ENTITY 3D_point; 3D_point
 x : REAL;
 y : REAL x y z
 z : REAL;
END_ENTITY; REAL REAL REAL

Writing data models in Express requires to give each attribute a name and a type. Such
attributes may also be relationships, in which case the type of the attribute is the name of the
entity to which the relationship points. Unlike in relational database management systems, in
data modeling there is no principle difference between attributes that point to primitive data
types (like integer, boolean, string,...) and attributes that point to other entities.

EXAMPLE:

A point may be a member of a line. In that case it is related to an entity "line"
which can be expressed by:

ENTITY point; point
 is_member_of : line; is_member_of
END_ENTITY; line

If a relationship is needed in both directions, this can be modeled by explicitly specifying the
inverse of an attribute. A definition of an inverse attribute is preceded by the keyword
“INVERSE”.

Express allows also to describe derivation of entities, i.e. creating subtypes of an existing
entity that inherit all attributes from their supertype and may have further attributes of their
own.

In Express-G entity-attribute relationships are represented by thin lines, while supertype-
subtype relationships are represented by thick lines.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 207

THE BASE MODEL

ASAM ODS VERSION 5.0 4-59

EXAMPLE:

This example shows the difference between attribute and inheritance
relationships. The truck has two attributes: number_of_wheels (inherited
from the supertype vehicle) and net load.

ENTITY vehicle; vehicle
 number_of_wheels : INTEGER; number_of_wheels
END_ENTITY; INTEGER
ENTITY truck truck
 SUBTYPE OF vehicle; net_load
 net_load : REAL;
END_ENTITY; REAL

ASAM users know the process of derivation of application elements from base elements.
This is a typical supertype-subtype relationship and is mapped to Express as follows:

 each ASAM ODS base element is represented in Express by an ENTITY.

 each ASAM ODS application element is represented in Express by an ENTITY, too.

 each ENTITY representing an application element is specified in Express as being a
subtype of the ENTITY representing the corresponding base element.

Very often the usage of attributes is subject to constraints regarding the allowed values
(value range), the types, or the number of items. In Express such restrictions are formulated
in rules. Rules are preceded by the keyword “WHERE”.

Sometimes within these rules it is necessary to perform calculations, checks or evaluations.
This is usually done in separate functions, often located in a separate section of the Express
file.

A data model written in Express is called „schema“. Several tools are available that examine
such a schema, check it, and configure a data repository accordingly; such tools are called
„Express compilers“.

Writing data models in Express and processing such schemas is part of the methodology of
ISO 10303 – the “STEP methodology”.

ISO/PAS 22720:2005(E)

208 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-60 ASAM ODS VERSION 5.0

4.9.3 BASE MODEL REPRESENTATION IN EXPRESS

SCHEMA asam28;

(*

ASAM-ODS Base Model 25 Mar 2004

25.03.2004: AoLocalColumn has been extended by an attribute raw_datatype

24.11.2003: Little adjustments in comments

- writing of DT_EXTERNALREFERENCE and dt_bytestr

- upper case for T_XXX

- STRING as attribute type replaced by T_STRING

20.3.2003 Model 27 for ASAM ODS 4.2 (due in June 2003)

- sequence_representation extended by "calibrated"

13.12.2002 Model 27

- adjust where rules and uniqueness rules

- remove blob sequence, add boolean and longlong sequence

17.10.2002 Model 27 for ASAM ODS 4.2 (preliminary)

- extend seq_rep_enum

- new elements AoNameMap/AoAttributeMap and

 AoParameter/AoParameterSet

- AoEnvironment extended by Application_model_type and rules

- some attributes in AoMeasurement and AoMeasurementQuantity

 become optional

(9.5.2002) Model 26 for ASAM ODS 4.2 (study)

- AoLog added

- Modifications in AoExternal component

 * new attributes ordninal_number and length_in_bytes

 * attribute "blocksize" changed to "block_size"

 * value_type added / value_offset changed in AoExternalComponent

 plus addition of typespec_enum

- AoAny extended with father/child relation

- Data type DT_ENUM added for enumerations

- still to do: rephrase unique rules

(19.9.2001) Extended AoEnvironment + modified Instance Attrs

(03.9.2001) Model 25 with improved relationship types and more

 inverse attributes

(12.7.2001) Model 25 for Discussion

(10.7.2001) For ODS-Version 4.1

- ModelMapper commented out

- independent (flag in AoLocalColumn) is t_short

- superuser_flag (in AoUserGroup) is t_short

- AoEnvironment corrected and old Environment integrated

- instance attributes of all types with units

- integration of attributes of all types with units and flags

- relation types given for reference attributes

(30.5.2001) Corrections for inheritance support:

- Attribute "objecttype" of asam_base_entity with "optional"

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 209

THE BASE MODEL

ASAM ODS VERSION 5.0 4-61

 declarator.

- Rules for Test and Measurement were adjusted to avoid

 contradictions.

(20.02.2001) To be used for ODS-API 4.1

- Derived from models 22 (3.2) and 23 (4.0)

- Proposed entities added: AoEnvironment, AoModelMapper,

 AoExternalComponent

(14.09.00) Base Model version 23 valid for ODS-API 4.0

 (derived from version 21) ===========

(7.9.2000) Derived version 22 (from 21) only valid for ODS-API 3.2

(13.07.00) Changes in version 21 (from version 20):

- To be used for Version 3.2 and prepared for Version 4.0

- Several attributes marked as "optional", some enumerations cut,

- Several entities marked as "NOT FOR VERSION 3.2" are not to

 be used by API before Version 4.0

- no 64-bit integer, no complex, no boolean numbers

- AoEnvironment inserted provisionally for compatibility

 reasons and for eventual future use.

(15.06.00) Changes in version 20 (from version 19):

- Security added again

- Simple data types more precise

(20.01.00) Changes in version 19 (from version 17):

- Adding MimeTypes and ExternalReference

- No security entities

(17.05.99) Changes in version 18 (from version 17):

- Adding security entities

(03.02.99) Changes in version 17 (from version 16):

- Implicit, raw data and formula data added in AoLocalColumn

- subtypes "implicit_sequence" and "formula_sequence" removed

- division in numeric and textual sequences

(30.10.98) Model 16.

Dr. Helmut J. Helpenstein, National Instruments Engineering

phone 02408 1438 525 or 0049 2408 1438 525

fax 02408 1438 190 or 0049 2408 1438 190

e-mail helmut.helpenstein@ni.com or 100135.2174@compuserve.com

*)

ENTITY asam_base_entity

 ABSTRACT SUPERTYPE OF (ONEOF(

 AoEnvironment,

 (*AoModelMapper,*)

 AoTestAbstract,

 AoMeasurement,

 AoMeasurementQuantity,

 AoSubmatrix,

 AoLocalColumn,

 AoExternalComponent,

 AoUnitUnderTestAbstract,

ISO/PAS 22720:2005(E)

210 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-62 ASAM ODS VERSION 5.0

 AoTestEquipmentAbstract,

 AoTestSequenceAbstract,

 AoQuantity,

 AoUnit,

 AoPhysicalDimension,

 AoQuantityGroup,

 AoUnitGroup,

 AoUser,

 AoUserGroup,

 AoLog,

 AoParameter,

 AoParameterSet,

 AoNameMap,

 AoAttributeMap,

 AoAny

));

 name : T_STRING;

 id : T_LONGLONG;

 version : OPTIONAL T_STRING;

 description : OPTIONAL T_STRING;

 version_date : OPTIONAL T_DATE;

 mime_type : OPTIONAL T_STRING;

 external_references : LIST [0:?] OF T_EXTERNALREFERENCE;

 instance_attributes : SET [0:?] OF instance_attribute;

 objecttype : OPTIONAL T_LONGLONG;

 (*appl_id for inheritance*)

END_ENTITY;

(*

 This supertype lets all base entities inherit the attributes

 that each of them needs. Being an "abstract" supertype it is

 not to be instantiated.

 name,id: used for identifying any instance of an Asam entity

 The mime types are special strings with the following pattern:

 application/x.asam.ods.AOAOAO.XXXXXX

 with AOAOAO = name of an AsamOds base element

 and XXXXXX = user defined name of a specialisation

 external_reference usually points to files, but may also point

 to remote documents (e.g. available via WWW)

 The objecttype supports implementations that handle IDs of

 application elements for convenience reasons.

*)

(* ---------------------------------- *)

(* types and auxiliary entites *)

(* ---------------------------------- *)

TYPE T_EXTERNALREFERENCE = LIST[3:3] OF T_STRING;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 211

THE BASE MODEL

ASAM ODS VERSION 5.0 4-63

 (* 1st string: description

 2nd string: mime type

 3rd string: location (asam path or URL)

 *)

END_TYPE;

ENTITY AoNameMap (* BID=46 *)

 SUBTYPE OF (asam_base_entity);

 entity_name : T_STRING;

 alias_names : LIST[0:?] OF T_STRING;

 attribute_mapping : SET [0:?] OF AoAttributeMap; (*CHILD*)

INVERSE

 environment : AoEnvironment FOR entity_mapping;(*INFO_TO*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

WHERE

 WR1: SIZEOF(SELF.alias_names) =

 SIZEOF(SELF.environment.meaning_of_aliases);

END_ENTITY;

(*

 For the entity name any number of alias names (e.g. for

 language versions) may be specified.

 The list allows different language version switched by

 the application software.

 The length of the list shall be equal to the list

 "meaning_of_aliases" in AoEnvironment (Where Rule 1).

 For each entity a name mapping may be given;

 For each attribute of the entity an attribute mapping may be given.

*)

ENTITY AoAttributeMap (* BID=47 *)

 SUBTYPE OF (asam_base_entity);

 attribute_name : T_STRING;

 alias_names : LIST[0:?] OF T_STRING;

INVERSE

 name_mapping : AoNameMap FOR attribute_mapping; (*FATHER*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

WHERE

 WR1: SIZEOF(SELF.alias_names) =

 SIZEOF(SELF.name_mapping.alias_names);

END_ENTITY;

(*

 Specifies any number of alias names for the attribute

 "attribute_name".

 The length of the list of alias names shall be equal to the

 length of that list in AoNameMap (Where Rule 1).

*)

ISO/PAS 22720:2005(E)

212 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-64 ASAM ODS VERSION 5.0

ENTITY AoParameter (* BID=44 *)

 SUBTYPE OF (asam_base_entity);

 unit : AoUnit;

 parameter_datatype : datatype_enum;

 pvalue : T_STRING;(*always string, other types are converted*)

INVERSE

 parameter_set : AoParameterSet for parameters; (*FATHER*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

END_ENTITY;

ENTITY AoParameterSet (* BID=45 *)

 SUBTYPE OF (asam_base_entity);

 parameters : SET [0:?] OF AoParameter; (*CHILD*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

END_ENTITY;

TYPE instance_attribute = SELECT

 (byte_inst_attribute,

 short_inst_attribute,

 long_inst_attribute,

 float_inst_attribute,

 double_inst_attribute,

 complex_inst_attribute,

 dcomplex_inst_attribute,

 string_inst_attribute,

 time_inst_attribute);

END_TYPE;

(*

 Instance attributes allow giving one or more values with a

 specific meaning to any instance.

 The meaning shall be expressed in their attribute "name".

 The value(s) shall be put into the "values" attribute of

 one of the subtypes according to the data type.

 The entities for the instance attributes are defined in the

 family of attribute_object.

*)

ENTITY attribute_object

 ABSTRACT SUPERTYPE OF (ONEOF(

 byte_abs_attribute,

 short_abs_attribute,

 long_abs_attribute,

 float_abs_attribute,

 double_abs_attribute,

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 213

THE BASE MODEL

ASAM ODS VERSION 5.0 4-65

 complex_abs_attribute,

 dcomplex_abs_attribute,

 string_abs_attribute,

 time_abs_attribute));

 unit : OPTIONAL AoUnit;

 flag : OPTIONAL T_SHORT;

END_ENTITY;

(*

 For each datatype we provide three instanciable subtypes

 of attribute_object:

 xxxx_attribute with 1.unit,2.flag,3.svalue

 xxxx_seq_attribute with 1.unit,2.flag,3.values

 xxxx_inst_attribute with 1.unit,2.flag,3.values,4.name

 (xxxx = float/long/string/...)

 These attribute objects can be used for

 a) instance attributes

 b) application attributes -> then their data type is not

 primitive (e.g. plain float or list of float) but it

 is an object with

 - in case of instance attributes: a name

 - a value (or values)

 - an optional unit

 - an optional flag (16 bits)

 An attribute "quantity" was not provided.

 An application attribute may always be

 - a simple (primitive) attribute: a value or list of values

 - an attribute object like described above.

 This must be valid also for those application attributes

 which are inherited from base attributes.

 Therefore a select type containing all options is created for

 each datatype, its name is:

 xxxx_attr_select (xxxx = float/long/string/...)

*)

ENTITY byte_abs_attribute

 ABSTRACT SUPERTYPE OF (ONEOF(

 byte_seq_attribute,

 byte_attribute))

 SUBTYPE OF (attribute_object);

END_ENTITY;

ENTITY byte_attribute

 SUPERTYPE OF (byte_inst_attribute)

 SUBTYPE OF (byte_abs_attribute);

 svalue : T_BYTE; (* "svalue" represents a single value *)

 (* ("value" would be a reserved word) *)

END_ENTITY;

ISO/PAS 22720:2005(E)

214 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-66 ASAM ODS VERSION 5.0

ENTITY byte_seq_attribute

 SUBTYPE OF (byte_abs_attribute);

 values : LIST[1:?] OF T_BYTE;

END_ENTITY;

ENTITY byte_inst_attribute

 SUBTYPE OF (byte_attribute);

 name : T_STRING;

END_ENTITY;

ENTITY short_abs_attribute

 ABSTRACT SUPERTYPE OF (ONEOF(

 short_seq_attribute,

 short_attribute))

 SUBTYPE OF (attribute_object);

END_ENTITY;

ENTITY short_attribute

 SUPERTYPE OF (short_inst_attribute)

 SUBTYPE OF (short_abs_attribute);

 svalue : T_SHORT;

END_ENTITY;

ENTITY short_seq_attribute

 SUBTYPE OF (short_abs_attribute);

 values : LIST[1:?] OF T_SHORT;

END_ENTITY;

ENTITY short_inst_attribute

 SUBTYPE OF (short_attribute);

 name : T_STRING;

END_ENTITY;

ENTITY long_abs_attribute

 ABSTRACT SUPERTYPE OF (ONEOF(

 long_seq_attribute,

 long_attribute))

 SUBTYPE OF (attribute_object);

END_ENTITY;

ENTITY long_attribute

 SUPERTYPE OF (long_inst_attribute)

 SUBTYPE OF (long_abs_attribute);

 svalue : T_LONG;

END_ENTITY;

ENTITY long_seq_attribute

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 215

THE BASE MODEL

ASAM ODS VERSION 5.0 4-67

 SUBTYPE OF (long_abs_attribute);

 values : LIST[1:?] OF T_LONG;

END_ENTITY;

ENTITY long_inst_attribute

 SUBTYPE OF (long_attribute);

 name : T_STRING;

END_ENTITY;

ENTITY float_abs_attribute

 ABSTRACT SUPERTYPE OF (ONEOF(

 float_seq_attribute,

 float_attribute))

 SUBTYPE OF (attribute_object);

END_ENTITY;

ENTITY float_attribute

 SUPERTYPE OF (float_inst_attribute)

 SUBTYPE OF (float_abs_attribute);

 svalue : T_FLOAT;

END_ENTITY;

ENTITY float_seq_attribute

 SUBTYPE OF (float_abs_attribute);

 values : LIST[1:?] OF T_FLOAT;

END_ENTITY;

ENTITY float_inst_attribute

 SUBTYPE OF (float_attribute);

 name : T_STRING;

END_ENTITY;

ENTITY double_abs_attribute

 ABSTRACT SUPERTYPE OF (ONEOF(

 double_seq_attribute,

 double_attribute))

 SUBTYPE OF (attribute_object);

END_ENTITY;

ENTITY double_attribute

 SUPERTYPE OF (double_inst_attribute)

 SUBTYPE OF (double_abs_attribute);

 svalue : T_DOUBLE;

END_ENTITY;

ENTITY double_seq_attribute

 SUBTYPE OF (double_abs_attribute);

 values : LIST[1:?] OF T_DOUBLE;

ISO/PAS 22720:2005(E)

216 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-68 ASAM ODS VERSION 5.0

END_ENTITY;

ENTITY double_inst_attribute

 SUBTYPE OF (double_attribute);

 name : T_STRING;

END_ENTITY;

ENTITY string_abs_attribute

 ABSTRACT SUPERTYPE OF (ONEOF(

 string_seq_attribute,

 string_attribute))

 SUBTYPE OF (attribute_object);

END_ENTITY;

ENTITY string_attribute

 SUPERTYPE OF (string_inst_attribute)

 SUBTYPE OF (string_abs_attribute);

 svalue : T_STRING;

END_ENTITY;

ENTITY string_seq_attribute

 SUBTYPE OF (string_abs_attribute);

 values : LIST[1:?] OF T_STRING;

END_ENTITY;

ENTITY string_inst_attribute

 SUBTYPE OF (string_attribute);

 name : T_STRING;

END_ENTITY;

ENTITY time_abs_attribute

 ABSTRACT SUPERTYPE OF (ONEOF(

 time_seq_attribute,

 time_attribute))

 SUBTYPE OF (attribute_object);

END_ENTITY;

ENTITY time_attribute

 SUPERTYPE OF (time_inst_attribute)

 SUBTYPE OF (time_abs_attribute);

 svalue : T_DATE;

END_ENTITY;

ENTITY time_seq_attribute

 SUBTYPE OF (time_abs_attribute);

 values : LIST[1:?] OF T_DATE;

END_ENTITY;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 217

THE BASE MODEL

ASAM ODS VERSION 5.0 4-69

ENTITY time_inst_attribute

 SUBTYPE OF (time_attribute);

 name : T_STRING;

END_ENTITY;

ENTITY complex_abs_attribute

 ABSTRACT SUPERTYPE OF (ONEOF(

 complex_seq_attribute,

 complex_attribute))

 SUBTYPE OF (attribute_object);

END_ENTITY;

ENTITY complex_attribute

 SUPERTYPE OF (complex_inst_attribute)

 SUBTYPE OF (complex_abs_attribute);

 svalue : LIST[2:2] OF T_FLOAT;

END_ENTITY;

ENTITY complex_seq_attribute

 SUBTYPE OF (complex_abs_attribute);

 values : LIST[2:?] OF T_FLOAT;

WHERE

 WR1: SIZEOF(values) MOD 2 = 0;

END_ENTITY;

ENTITY complex_inst_attribute

 SUBTYPE OF (complex_attribute);

 name : T_STRING;

END_ENTITY;

ENTITY dcomplex_abs_attribute

 ABSTRACT SUPERTYPE OF (ONEOF(

 dcomplex_seq_attribute,

 dcomplex_attribute))

 SUBTYPE OF (attribute_object);

END_ENTITY;

ENTITY dcomplex_attribute

 SUPERTYPE OF (dcomplex_inst_attribute)

 SUBTYPE OF (dcomplex_abs_attribute);

 svalue : LIST[2:2] OF T_DOUBLE;

END_ENTITY;

ENTITY dcomplex_seq_attribute

 SUBTYPE OF (dcomplex_abs_attribute);

 values : LIST[2:?] OF T_DOUBLE;

WHERE

 WR1: SIZEOF(values) MOD 2 = 0;

ISO/PAS 22720:2005(E)

218 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-70 ASAM ODS VERSION 5.0

END_ENTITY;

ENTITY dcomplex_inst_attribute

 SUBTYPE OF (dcomplex_attribute);

 name : T_STRING;

END_ENTITY;

(* THE types for most attributes: *)

TYPE byte_attr_select = SELECT

 (T_BYTE,

 byte_sequence,

 byte_attribute,

 byte_seq_attribute);

END_TYPE;

TYPE short_attr_select = SELECT

 (T_SHORT,

 short_sequence,

 short_attribute,

 short_seq_attribute);

END_TYPE;

TYPE long_attr_select = SELECT

 (T_LONG,

 long_sequence,

 long_attribute,

 long_seq_attribute);

END_TYPE;

TYPE float_attr_select = SELECT

 (T_FLOAT,

 float_sequence,

 float_attribute,

 float_seq_attribute);

END_TYPE;

TYPE double_attr_select = SELECT

 (T_DOUBLE,

 double_sequence,

 double_attribute,

 double_seq_attribute);

END_TYPE;

TYPE complex_attr_select = SELECT

 (T_COMPLEX,

 complex_sequence,

 complex_attribute,

 complex_seq_attribute);

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 219

THE BASE MODEL

ASAM ODS VERSION 5.0 4-71

END_TYPE;

TYPE dcomplex_attr_select = SELECT

 (T_DCOMPLEX,

 dcomplex_sequence,

 dcomplex_attribute,

 dcomplex_seq_attribute);

END_TYPE;

TYPE time_attr_select = SELECT

 (T_DATE,

 time_sequence,

 time_attribute,

 time_seq_attribute);

END_TYPE;

TYPE string_attr_select = SELECT

 (T_STRING,

 string_sequence,

 string_attribute,

 string_seq_attribute);

END_TYPE;

TYPE T_BOOLEAN = BOOLEAN;

 (* 1 bit *)

END_TYPE;

TYPE T_BYTE = INTEGER;

 (* 8 bit *)

END_TYPE;

TYPE T_SHORT = INTEGER;

 (* 16 bit *)

END_TYPE;

TYPE T_LONG = INTEGER;

 (* 32 bit *)

END_TYPE;

TYPE T_LONGLONG = INTEGER;

 (* 64 bit *)

END_TYPE;

(*TYPE T_ID = t_longlong;

 * 64 bit *

END_TYPE;*)

TYPE T_FLOAT = REAL;

ISO/PAS 22720:2005(E)

220 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-72 ASAM ODS VERSION 5.0

 (* 32 bit *)

END_TYPE;

TYPE T_DOUBLE = REAL;

 (* 64 bit *)

END_TYPE;

TYPE T_COMPLEX = LIST [2:2] OF REAL;

 (* 32 bit *)

END_TYPE;

TYPE T_DCOMPLEX = LIST [2:2] OF REAL;

 (* 64 bit *)

END_TYPE;

TYPE T_STRING = STRING;

 (* UTF8 string terminated by 0 *)

END_TYPE;

TYPE T_DATE = STRING;

(* meaning: YYYYMMDDhhmmsslllcccnnn....

 year month day hour minute second millisec microsec nanosec ...*)

END_TYPE;

TYPE T_BYTESTR = STRING;

 (* sequence of bytes *)

END_TYPE;

TYPE T_BLOB = STRING;

 (* 1.header, 2. sequence of bytes *)

END_TYPE;

TYPE datatype_enum = ENUMERATION OF (

 DT_UNKNOWN, (* 0 , also for "reserved" *)

 DT_STRING, (* 1 *)

 DT_SHORT, (* 2 *)

 DT_FLOAT, (* 3 *)

 DT_BOOLEAN, (* 4 *)

 DT_BYTE, (* 5 *)

 DT_LONG, (* 6 *)

 DT_DOUBLE, (* 7 *)

 DT_LONGLONG, (* 8 *)

 DT_ID, (* 9 , not used in attributes *)

 DT_DATE, (* 10 *)

 DT_BYTESTR, (* 11 *)

 DT_BLOB, (* 12 *)

 DT_COMPLEX, (* 13 *)

 DT_DCOMPLEX, (* 14 *)

 DT_EXTERNALREFERENCE, (* 28 *)

 DT_ENUM); (* 30 *)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 221

THE BASE MODEL

ASAM ODS VERSION 5.0 4-73

END_TYPE;

(* --------------------------------------- *)

(* Begin of ASAM-ODS base elements *)

(* --------------------------------------- *)

ENTITY AoEnvironment (* BID=1 *) (* previously: BID=42 *)

 SUBTYPE OF (asam_base_entity); (*relation_types: *)

 tests : SET [0:?] OF AoTest; (*CHILD*)

 uuts : SET [0:?] OF AoUnitUnderTest; (*CHILD*)

 equipments : SET [0:?] OF AoTestEquipment; (*CHILD*)

 sequences : SET [0:?] OF AoTestSequence; (*CHILD*)

 entity_mapping : SET [0:?] OF AoNameMap;(*INFO_FROM*)

 meaning_of_aliases : LIST [0:?] OF T_STRING;

 max_test_level : OPTIONAL T_LONG;

 base_model_version : OPTIONAL T_STRING;

 (* schema name, in this case 'asam27' *)

 application_model_type : OPTIONAL T_STRING;

 (* may contain many names, comma-separated *)

 application_model_version : OPTIONAL T_STRING;

 (* any operator-supplied name *)

UNIQUE

 UR1: SELF\asam_base_entity.id;

WHERE

 WR1: unique_name_and_version(tests);

 WR2: unique_name_and_version(uuts);

 WR3: unique_name_and_version(equipments);

 WR4: unique_name_and_version(sequences);

 (* There shall not be 2 members of the sets with

 identical name and version. *)

END_ENTITY;

(*

 There should be only one instance of environment.

 The server name should be stored in the attribute

 "name" which is inherited from asam_base_entity.

 Only instances of the top entities of the following 4

 hierarchical trees are collected in the sets:

 - AoTest

 - AoUnitUnderTest

 - AoTestEquipment

 - AoTestSequence

 .

 In entity_mapping all the maps are to be collected.

 The set contains one AoNameMap per entitiy.

 An alias_index in the application software allows to use the

ISO/PAS 22720:2005(E)

222 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-74 ASAM ODS VERSION 5.0

 appropriate alias_name from the given lists.

 In this way language versions can be switched easily.

 For each position in the lists of alias names a string should

 be provided in "meaning_of_aliases"; this allows for

 name mapping to different languages.

 The attribute "max_test_level" shows the number of levels in

 the test hierarchy.

*)

(*

ENTITY AoModelMapper (BID=41)

 SUBTYPE OF (asam_base_entity);

 ruletext : T_STRING;

UNIQUE

 UR1: SELF\asam_base_entity.id;

END_ENTITY;

*)

(*

 Application elements are built by deriving subtypes from the

 base entities given in this schema.

 For the management of measurements and tests the following

 rules have to be followed:

1.In the whole model only one entity of type AoTest (or

 a derived subtype) may be instantiated. This one is the main

 test (e.g. an application element called "Testseries").

2.Assuming no entities of type AoSubTest (or its subtype)

 are used, then the attribute "children" of the AoTestAbstract

 element "Testseries" is always of the type "Measurement",

 i.e. children of an instance of "Testseries" are all

 instances of "Measurement". It is not allowed to have

 children of type "Testseries".

 The Test-Measurement-Hierachy then has the form

 Testseries –o Measurement

3.Assuming there is one application element derived from

 AoSubTest (e.g. called "Maintest"),

 the attribute "children" of "Testseries" is of type "Maintest",

 and the attribute "parent_test" of "Maintest" is of type

 "Testseries".

 The attribute "children" of "Maintest" is of type "Measurement".

 The Test-Measurement-Hierarchie then has the form

 Testseries –o Maintest –o Measurement

4.Assuming more than one application element have been

 derived from AoSubTest (e.g. "Maintest", "Subtest" and

 "Subsubtest"), then they have to be build strictly as a

 chain:

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 223

THE BASE MODEL

ASAM ODS VERSION 5.0 4-75

 Testseries –o Maintest –o Subtest –o Subsubtest

 |

 o

 Measurement

 In this chain the uppermost application element of

 AoSubTest (here "Maintest") has a "parent_test" attribute

 of type "Testseries" (the AoTest element), and the

 lowermost application element of AoSubTest (here

 "Subsubtest") has a "children" attribute of type

 "Measurement".

 The other "parent_test" and "children" attributes of the

 inner AoSubTest application elements always have exactly

 the type of the corresponding application elements in the

 chain (e.g. the "parent_test" attribute of "Subtest" is of

 type "Maintest", and the "children" attribute of "Subtest"

 is of type "Subsubtest").

 So the rule says: It is not allowed to have a "parent_test"

 relation to an instance of another application element than

 the one defined in the chain as the parent test.

 An analogous rule is valid for the "children" attribute.

*)

ENTITY AoTestAbstract

 ABSTRACT SUPERTYPE OF (ONEOF(

 AoTest,

 AoSubTest))

 SUBTYPE OF (asam_base_entity);

 children: SET [0:?] OF test_measurement_select; (*CHILD*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

WHERE

 WR1: unique_name_and_version(children);

 (* There shall not be 2 members of this set with

 identical name and version. *)

END_ENTITY;

ENTITY AoTest (* BID=36 *)

 SUBTYPE OF (AoTestAbstract);

INVERSE

 environment : SET [0:1] OF AoEnvironment for tests; (*FATHER*)

UNIQUE

 UR1: SELF\asam_base_entity.name,

 SELF\asam_base_entity.version;

END_ENTITY;

ENTITY AoSubTest (* BID=2 *)

 SUBTYPE OF (AoTestAbstract);

 parent_test : AoTestAbstract; (*FATHER*)

END_ENTITY;

ISO/PAS 22720:2005(E)

224 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-76 ASAM ODS VERSION 5.0

TYPE test_measurement_select = SELECT

 (AoSubTest,

 AoMeasurement);

END_TYPE;

(*

 only the AoTestAbstract in the bottommost level shall have

 an AoMeasurement, in higher levels it shall be an

 AoSubTest.

*)

ENTITY AoMeasurement (* BID=3 *)

 SUBTYPE OF (asam_base_entity);

 test : AoTestAbstract; (*FATHER*)

 measurement_quantities: SET [0:?] OF AoMeasurementQuantity;

 (*CHILD*)

 submatrices : SET [0:?] OF AoSubmatrix; (*CHILD*)

 units_under_test : SET [0:?] OF AoUnitUnderTestAbstract;

 (*INFO_REL*)

 sequences : SET [0:?] OF AoTestSequenceAbstract;

 (*INFO_REL*)

 equipments : SET [0:?] OF AoTestEquipmentAbstract;

 (*INFO_REL*)

 measurement_begin : OPTIONAL T_DATE;

 measurement_end : OPTIONAL T_DATE;

UNIQUE

 UR1: SELF\asam_base_entity.id;

WHERE

 WR1 : unique_name_and_version(measurement_quantities);

 WR2 : unique_name_and_version(submatrices);

END_ENTITY;

ENTITY AoMeasurementQuantity (* BID=4 *)

 SUBTYPE OF (asam_base_entity);

 local_columns : SET [0:?] OF AoLocalColumn; (*INFO_FROM*)

 quantity : AoQuantity; (*INFO_TO*)

 unit : AoUnit; (*INFO_TO*)

 channel : OPTIONAL AoTestEquipmentAbstract; (*INFO_TO*)

 is_scaled_by : OPTIONAL LIST [1:?] OF AoMeasurementQuantity;

 (* used for scaling the cells !

 For multidimensional scaling (rank>1)

 the rightmost index is incremented in the

 innermost loop *) (*INFO_FROM*)

 datatype : datatype_enum;

 rank : OPTIONAL T_LONG; (*of one cell*)

 dimension : OPTIONAL LIST [0:?] OF T_LONG; (*of one cell*)

 type_size : OPTIONAL T_LONG; (*of a scalar in byte*)

 interpolation : OPTIONAL interpolation_enum;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 225

THE BASE MODEL

ASAM ODS VERSION 5.0 4-77

 minimum : OPTIONAL T_DOUBLE;

 maximum : OPTIONAL T_DOUBLE;

 average : OPTIONAL T_DOUBLE;

 standard_deviation: OPTIONAL T_DOUBLE;

INVERSE

 measurement : AoMeasurement for measurement_quantities;

 (*FATHER*)

 scales : SET [0:1] OF AoMeasurementQuantity for

 is_scaled_by; (*INFO_TO*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

WHERE

 WR1: SIZEOF(SELF.dimension) = SELF.rank;

 (* The attribute dimension contains so many integers as

 rank (the number of dimensions of a cell) specifies. *)

 WR2: (NOT EXISTS(SELF.is_scaled_by)) XOR

 (SIZEOF(SELF.is_scaled_by)=SELF.rank);

 (* If a scaling exists, then the number of scaling vectors

 is given by rank *)

(*

 WR3: unique_name_and_version(local_columns);

 This rule is commented out, because the attribute "local_columns"

 describes an INFO relation (not FATHER/CHILD).

*)

END_ENTITY;

TYPE interpolation_enum = ENUMERATION OF (

 no_interpolation,

 linear_interpolation,

 application_specific);

END_TYPE;

(*

 state is no longer used.

 It has been replaced by measurement_quantity, its name

 describes the desired state and the values in its

 local columns may be of type boolean.

 For logging events the type may also be string.

*)

ENTITY AoSubmatrix (* BID = 38 *)

 SUBTYPE OF (asam_base_entity);

 number_of_rows : T_LONG;

 local_columns : LIST [0:?] OF AoLocalColumn; (*CHILD*)

INVERSE

 measurement : AoMeasurement for submatrices; (*FATHER*)

UNIQUE

ISO/PAS 22720:2005(E)

226 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-78 ASAM ODS VERSION 5.0

 UR1: SELF\asam_base_entity.id;

WHERE

(*WR1: NOT EXISTS (SELF\asam_base_entity.version);*)

 WR2: unique_name_and_version(local_columns);

 (* Remark: The function compares also instances

 that have no version. *)

END_ENTITY;

(*

 Value representation:

 local columns and sequences, possibly including generation

*)

ENTITY AoExternalComponent (* BID=40 *)

 SUBTYPE OF (asam_base_entity);

 ordinal_number : OPTIONAL T_LONG;

 length_in_bytes : T_LONG;

 filename_url : T_STRING;

 value_type : typespec_enum;

 start_offset : T_LONG;

 block_size : T_LONG;

 valuesperblock : T_LONG;

(*value_offsets : LIST [1:?] OF T_LONG; (old) *)

 value_offset : T_LONG;

 flags_filename_url : OPTIONAL T_STRING;

 flags_start_offset : OPTIONAL T_LONG;

INVERSE

 local_column : AoLocalColumn for external_component;

 (*FATHER*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

END_ENTITY;

TYPE typespec_enum = ENUMERATION OF (

 dt_boolean,

 dt_byte,

 dt_short,

 dt_long,

 dt_longlong,

 ieeefloat4,

 ieeefloat8,

 dt_short_beo,

 dt_long_beo,

 dt_longlong_beo,

 ieeefloat4_beo,

 ieeefloat8_beo,

 dt_string,

 dt_bytestr,

 dt_blob);

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 227

THE BASE MODEL

ASAM ODS VERSION 5.0 4-79

END_TYPE;

TYPE seq_rep_enum = ENUMERATION OF (

 explicit,

 implicit_constant,

 implicit_linear,

 implicit_saw,

 raw_linear,

 raw_polynomial,

 formula,

 external_component,

 raw_linear_external,

 raw_polynomial_external,

 raw_linear_calibrated, (*extension March 2003*)

 raw_linear_calibrated_external

 (* extendible!! *));

END_TYPE;

(*

 The seq_rep_enum determines what can be expected to be in

 the attributes of AoLocalColumn. The following table gives

 an overview:

 attribute generation_ external_

seq_rep parameters values component

 _enum

explicit - - - final values - - -

implicit gener.param gener.param - - -

raw gener.param raw values - - -

ext_comp - - - values from file ext.comp.description

raw+extern gener.param raw values ext.comp.description

 The generation parameters shall contain for

 explicit ---

 implicit_constant constant value (offset)

 implicit_linear start_value+increment

 implicit_saw start_value+increment+number_of_values_per_saw

 raw_linear offset + factor

 raw_polynomial N(order) + coeff0 + coeff1 + ... + coeffN

 external_component ---

 raw_linear_external const.value+gradient (offset+factor)

 raw_polynomial_external N(order) + coeff0 + coeff1 + ... + coeffN

 formula ---

 raw_linear_calibrated offset + factor + calibration

 raw_linear_calibrated_external offset + factor + calibration

 The data shall contain for

 explicit all the data

 implicit_constant constant value (offset)

 implicit_linear start_value+increment (offset+factor)

ISO/PAS 22720:2005(E)

228 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-80 ASAM ODS VERSION 5.0

 implicit_saw start_value+increment+number_of_values_per_saw

 raw_linear raw data

 raw_polynomial raw data

 external_component all the data

 raw_linear_external raw data

 raw_polynomial_external raw data

 formula the formula string

 raw_linear_calibrated raw data

 raw_linear_calibrated_external raw data

 The external_component is given for

 external_component

 raw_linear_external

 raw_polynomial_external

 raw_linear_calibrated_external

 and empty for all other choices.

*)

ENTITY AoLocalColumn (* BID = 39 *)

 SUBTYPE OF (asam_base_entity);

 flags : OPTIONAL LIST [1:?] OF T_SHORT;

 global_flag : T_SHORT;

 independent : T_SHORT;

 minimum : OPTIONAL T_DOUBLE;

 maximum : OPTIONAL T_DOUBLE;

 sequence_representation : seq_rep_enum;

 generation_parameters : OPTIONAL LIST [1:?] OF T_DOUBLE;

 raw_datatype : OPTIONAL datatype_enum;

 values : OPTIONAL value_sequence;

 external_component : OPTIONAL LIST [1:?] OF

 AoExternalComponent;(*CHILD*)

INVERSE

 submatrix : AoSubmatrix for local_columns; (*FATHER*)

 measurement_quantity : AoMeasurementQuantity for local_columns;

 (*INFO_TO*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

WHERE

(*WR1: NOT EXISTS (SELF\asam_base_entity.version);*)

 WR2: (NOT EXISTS(SELF.flags)) XOR

 (SIZEOF(SELF.flags)=submatrix.number_of_rows);

 WR3: (SELF.sequence_representation = implicit_constant)

 XOR (*implicit sequences*)

 (SELF.sequence_representation = implicit_linear)

 XOR

 (SELF.sequence_representation = implicit_saw)

 XOR

 (SELF.sequence_representation = formula)

 XOR

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 229

THE BASE MODEL

ASAM ODS VERSION 5.0 4-81

 (sequence_length(SELF.values) = (*explicit sequences*)

 local_column_list_length((* and raw data*)

 SELF.submatrix.number_of_rows,

 SELF.measurement_quantity.rank,

 SELF.measurement_quantity.dimension));

(*

 Explanation of WR3:

 In the attribute "values" there is a value_sequence,

 which has in turn an attribute "values" which is a list.

 This where rule is to ensure the right length of that

 list. For this we need two information items:

 1. from AoSubmatrix given in the (inv) attribute

 "submatrix":

 its attribute "number_of_rows" (an integer);

 2. from AoMeasurementQuantity given in the (inv) attribute

 measurement_quantity:

 2a. its attribute "rank" (an integer)

 2b. its attribute "dimension" (a list of integer)

 Now the required list length can be calculated, the algorithm

 is contained in the function "local_column_list_length":

 list_length = number_of_rows;

 FOR i=1...rank (step 1) [nothing happens if rank=0]

 list_length = list_length * dimension[i-1];

 END_FOR;

 The required list length is then compared to the actual

 list length provided by function "sequence_length", which

 is also called here. In case of implicit/formula sequences

 the function shall not be evaluated.

*)

 WR4: (((SELF.sequence_representation = explicit)

 XOR (SELF.sequence_representation = formula))

 AND

 ((EXISTS (SELF.values)) AND

 (NOT (EXISTS (SELF.generation_parameters)))))

 XOR

 (((SELF.sequence_representation = implicit_constant)

 XOR (SELF.sequence_representation = implicit_linear)

 XOR (SELF.sequence_representation = implicit_saw))

 AND

 (EXISTS (SELF.generation_parameters)))

 XOR

 (((SELF.sequence_representation = raw_linear)

 XOR (SELF.sequence_representation = raw_polynomial)

 XOR (SELF.sequence_representation = raw_linear_calibrated))

 AND

 ((EXISTS (SELF.values)) AND

 (EXISTS (SELF.generation_parameters))))

 XOR

 (((SELF.sequence_representation = external_component)

ISO/PAS 22720:2005(E)

230 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-82 ASAM ODS VERSION 5.0

 XOR (SELF.sequence_representation = raw_linear_external)

 XOR (SELF.sequence_representation = raw_linear_calibrated_external)

 XOR (SELF.sequence_representation = raw_polynomial_external))

 AND

 (EXISTS (SELF.external_component))) ;

(*

 For explicit and raw data the attribute "values" is used;

 for implicit and raw data the attribute "generation_parameters"

 is used;

 for formula data the attribute "values" has a string_sequence

 (preferably of length 1) containing the formula.

 for data on external components the attribute "external_component"

 is used, others may be used according to the type.

*)

 WR5: (((SELF.sequence_representation = implicit_constant)

 XOR (SELF.sequence_representation = implicit_linear)

 XOR (SELF.sequence_representation = implicit_saw)

 XOR (SELF.sequence_representation = raw_linear)

 XOR (SELF.sequence_representation = raw_linear_calibrated)

 XOR (SELF.sequence_representation = raw_polynomial)

 XOR (SELF.sequence_representation = raw_linear_external)

 XOR (SELF.sequence_representation = raw_linear_calibrated_external)

 XOR (SELF.sequence_representation = raw_polynomial_external))

 AND

 ('numeric_sequence' IN TYPEOF (SELF.values)))

 XOR

 (SELF.sequence_representation = explicit)

 XOR

 ((SELF.sequence_representation = formula)

 AND

 ('string_sequence' IN TYPEOF (SELF.values)));

(*

 For explicit data the type of the sequence my be any;

 for implicit and raw data the sequence must be numeric;

 for formula the sequence must be of type string.

*)

END_ENTITY;

ENTITY value_sequence

 ABSTRACT SUPERTYPE OF (ONEOF(

 numeric_sequence,

 textual_sequence));

END_ENTITY;

ENTITY textual_sequence

 ABSTRACT SUPERTYPE OF (ONEOF(

 bytestr_sequence,

(*blob_sequence, (removed 12.12.2002)*)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 231

THE BASE MODEL

ASAM ODS VERSION 5.0 4-83

 string_sequence))

 SUBTYPE OF (value_sequence);

END_ENTITY;

ENTITY numeric_sequence

 ABSTRACT SUPERTYPE OF (ONEOF(

 boolean_sequence,

 byte_sequence,

 short_sequence,

 long_sequence,

 longlong_sequence,

 float_sequence,

 double_sequence,

 complex_sequence,

 dcomplex_sequence,

 time_sequence))

 SUBTYPE OF (value_sequence);

END_ENTITY;

ENTITY boolean_sequence

 SUBTYPE OF (numeric_sequence);

 values : LIST [1:?] OF T_BOOLEAN;

END_ENTITY;

ENTITY byte_sequence

 SUBTYPE OF (numeric_sequence);

 values : LIST [1:?] OF T_BYTE;

END_ENTITY;

ENTITY short_sequence

 SUBTYPE OF (numeric_sequence);

 values : LIST [1:?] OF T_SHORT;

END_ENTITY;

ENTITY long_sequence

 SUBTYPE OF (numeric_sequence);

 values : LIST [1:?] OF T_LONG;

END_ENTITY;

ENTITY longlong_sequence

 SUBTYPE OF (numeric_sequence);

 values : LIST [1:?] OF T_LONGLONG;

END_ENTITY;

ENTITY float_sequence

 SUBTYPE OF (numeric_sequence);

 values : LIST [1:?] OF T_FLOAT;

END_ENTITY;

ENTITY double_sequence

ISO/PAS 22720:2005(E)

232 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-84 ASAM ODS VERSION 5.0

 SUBTYPE OF (numeric_sequence);

 values : LIST [1:?] OF T_DOUBLE;

END_ENTITY;

ENTITY complex_sequence

 SUBTYPE OF (numeric_sequence);

 values : LIST [2:?] OF T_FLOAT;

(* pairs of real and imaginary part are stored consecutively *)

WHERE

 WR1: SIZEOF(values) MOD 2 = 0;

END_ENTITY;

ENTITY dcomplex_sequence

 SUBTYPE OF (numeric_sequence);

 values : LIST [2:?] OF T_DOUBLE;

(* pairs of real and imaginary part are stored consecutively *)

WHERE

 WR1: SIZEOF(values) MOD 2 = 0;

END_ENTITY;

ENTITY time_sequence

 (* Derive no further subtypes! *)

 SUBTYPE OF (numeric_sequence);

 values : LIST [1:?] OF T_DATE;

END_ENTITY;

ENTITY string_sequence

 (* Derive no further subtypes! *)

 SUBTYPE OF (textual_sequence);

 values : LIST [1:?] OF T_STRING;

END_ENTITY;

ENTITY bytestr_sequence

 (* Derive no further subtypes! *)

 SUBTYPE OF (textual_sequence);

 values : LIST [1:?] OF T_BYTESTR;

END_ENTITY;

(*

 The 3 hierarchical entities

 AoUnitUnderTestAbstract,

 AoTestSequenceAbstract,

 AoTestEquipmentAbstract

 are constructed in the same way. The top

 level is always given by a separate entitiy, an arbitrary

 number of other levels may follow. Hierarchical relation on

 instance level is ensured by references in both directions.

*)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 233

THE BASE MODEL

ASAM ODS VERSION 5.0 4-85

ENTITY AoUnitUnderTestAbstract

 ABSTRACT SUPERTYPE OF (ONEOF(

 AoUnitUnderTest,

 AoUnitUnderTestPart))

 SUBTYPE OF (asam_base_entity);

 children : SET [0:?] OF AoUnitUnderTestPart; (*CHILD*)

INVERSE

 measurement : SET[0:?] OF AoMeasurement for units_under_test;

 (*INFO_REL*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

WHERE

 WR1: unique_name_and_version(children);

 (*WR2: EXISTS(version_date);*)

END_ENTITY;

ENTITY AoUnitUnderTest (* BID=21 *)

 SUBTYPE OF (AoUnitUnderTestAbstract);

INVERSE

 environment : SET [0:1] OF AoEnvironment for uuts; (*FATHER*)

UNIQUE

 UR1: SELF\asam_base_entity.name,

 SELF\asam_base_entity.version;

END_ENTITY;

ENTITY AoUnitUnderTestPart (* BID=22 *)

 SUBTYPE OF (AoUnitUnderTestAbstract);

INVERSE

 parent_unit_under_test : AoUnitUnderTest for children;(*FATHER*)

 parent_unit_under_test_part : AoUnitUnderTestPart

 for children; (*FATHER*)

WHERE

 WR1: (NOT EXISTS (parent_unit_under_test)) XOR

 (NOT EXISTS (parent_unit_under_test_part));

END_ENTITY;

ENTITY AoTestSequenceAbstract

 ABSTRACT SUPERTYPE OF (ONEOF(

 AoTestSequence,

 AoTestSequencePart))

 SUBTYPE OF (asam_base_entity);

 children : SET [0:?] OF AoTestSequencePart; (*CHILD*)

INVERSE

 measurement : SET[0:?] OF AoMeasurement for sequences;

 (*INFO_REL*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

WHERE

 WR1: unique_name_and_version(children);

ISO/PAS 22720:2005(E)

234 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-86 ASAM ODS VERSION 5.0

 (*WR2: EXISTS(version_date);*)

END_ENTITY;

ENTITY AoTestSequence (* BID=25 *)

 SUBTYPE OF (AoTestSequenceAbstract);

INVERSE

 environment : SET [0:1] OF AoEnvironment for sequences;(*FATHER*)

UNIQUE

 UR1: SELF\asam_base_entity.name,

 SELF\asam_base_entity.version;

END_ENTITY;

ENTITY AoTestSequencePart (* BID=26 *)

 SUBTYPE OF (AoTestSequenceAbstract);

INVERSE

 parent_sequence : AoTestSequence for children; (*FATHER*)

 parent_sequence_part : AoTestSequencePart

 for children; (*FATHER*)

WHERE

 WR1: (NOT EXISTS (parent_sequence)) XOR

 (NOT EXISTS (parent_sequence_part));

END_ENTITY;

ENTITY AoTestEquipmentAbstract

 ABSTRACT SUPERTYPE OF (ONEOF(

 AoTestEquipment,

 AoTestEquipmentPart))

 SUBTYPE OF (asam_base_entity);

 children : SET [0:?] OF AoTestEquipmentPart; (*CHILD*)

INVERSE

 measurement : SET[0:?] OF AoMeasurement for equipments;

 (*INFO_REL*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

WHERE

 WR1: unique_name_and_version(children);

 (*WR2: EXISTS(version_date);*)

END_ENTITY;

ENTITY AoTestEquipment (* BID=23 *)

 SUBTYPE OF (AoTestEquipmentAbstract);

INVERSE

 environment : SET [0:1] OF AoEnvironment for equipments;

 (*FATHER*)

UNIQUE

 UR1: SELF\asam_base_entity.name,

 SELF\asam_base_entity.version;

END_ENTITY;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 235

THE BASE MODEL

ASAM ODS VERSION 5.0 4-87

ENTITY AoTestEquipmentPart (* BID=24 *)

 SUPERTYPE OF (ONEOF(

 AoTestDevice))

 SUBTYPE OF (AoTestEquipmentAbstract);

INVERSE

 parent_equipment : AoTestEquipment for children; (*FATHER*)

 parent_equipment_part : AoTestEquipmentPart

 for children; (*FATHER*)

WHERE

 WR1: (NOT EXISTS (parent_equipment)) XOR

 (NOT EXISTS (parent_equipment_part));

 (* This formulation of inverse attribute ensures that one

 parent_equipment is always required. It is either of type

 AoTestEquipment or of type AoTestEquipmentPart. The first

 of the two has a relation to AoEnvironment.*)

END_ENTITY;

(*

 The following entity AoTestDevice shall be the link for ASAM-G.

 Further subtypes (application elements) can be derived from it

 in any number of levels.

*)

ENTITY AoTestDevice (* BID=37 *)

 SUBTYPE OF (AoTestEquipmentPart);

WHERE

 WR1: SIZEOF (QUERY(child <* SELF\AoTestEquipmentPart.children |

 (NOT ('AoTestDevice' IN TYPEOF (child))))) = 0;

 (* The children of AoTestDevice must have type

 AoTestDevice (and not AoTestEquipment...) *)

END_ENTITY;

ENTITY AoQuantity (* BID=11 *)

 SUBTYPE OF (asam_base_entity);

 successors : SET [0:?] OF AoQuantity; (*CHILD*)

 quantity_classification : OPTIONAL quantity_class_enum;

 (*default value="measured"*)

 (* The following 6 attributes are MANDATORY since Version 4.0 *)

 default_unit : AoUnit; (*INFO_TO*)

 default_rank : T_LONG;

 default_dimension : LIST [0:?] OF T_LONG;

 default_datatype : datatype_enum;

 default_type_size : T_LONG; (* for strings/bytestreams: maximum length *)

 default_mq_name : T_STRING;

INVERSE

 predecessor : SET [0:1] OF AoQuantity FOR successors; (*FATHER*)

 groups : SET [0:?] OF AoQuantityGroup for quantities;

ISO/PAS 22720:2005(E)

236 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-88 ASAM ODS VERSION 5.0

 (*INFO_REL*)

 measurement_quantities: SET [0:?] OF AoMeasurementQuantity for

 quantity; (*INFO_FROM*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

 UR2: SELF\asam_base_entity.name;

WHERE

 WR1: SIZEOF(SELF.default_dimension) = SELF.default_rank;

(*

 DO WE STILL NEED THE FOLLOWING RULES ?

 WR2: unique_name_and_version(successors);

 WR3: unique_name_and_version(groups);

*)

END_ENTITY;

TYPE quantity_class_enum = ENUMERATION OF (

 measured,

 state);

END_TYPE;

ENTITY AoUnit (* BID=13 *)

 SUBTYPE OF (asam_base_entity);

 phys_dimension : AoPhysicalDimension; (*INFO_TO*)

 factor : T_DOUBLE;

 offset : T_DOUBLE;

INVERSE

 groups : SET [0:?] OF AoUnitGroup for units; (*INFO_REL*)

 quantities : SET [0:?] OF AoQuantity for default_unit;

 (*INFO_FROM*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

 UR2: SELF\asam_base_entity.name,phys_dimension;

END_ENTITY;

(*

 factor is the (value using SI unit) when

 (value using this unit) = 1

 offset is the (value using SI unit) when

 (value using this unit) = 0

 :

 (value using this unit) multiplied by

 (factor) = (value using SI unit)

 (value using this unit) plus

 (offset) = (value using SI unit)

 (value using this unit) multiplied by (factor)

 plus (offset) = (value using SI unit)

 :

 Examples:

 (4200) 1/min = (4200 * factor) 1/s [factor=0.016667]

 = (70) 1/s

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 237

THE BASE MODEL

ASAM ODS VERSION 5.0 4-89

 (20) deg.C = (20 + offset) K [offset=273.15]

 = (293.15) K

 (68) deg.F = (68 * factor + offset) K [factor=0.55555]

 = (293,15) K [offset=255.372]

 (200) mm = (200 * factor) m = 0.2 m [factor=0.001]

*)

ENTITY AoPhysicalDimension (* BID=15 *)

 SUBTYPE OF (asam_base_entity);

 length_exp : T_LONG;

 mass_exp : T_LONG;

 time_exp : T_LONG;

 current_exp : T_LONG;

 temperature_exp : T_LONG;

 molar_amount_exp : T_LONG;

 luminous_intensity_exp : T_LONG;

 length_exp_den : OPTIONAL T_LONG;

 mass_exp_den : OPTIONAL T_LONG;

 time_exp_den : OPTIONAL T_LONG;

 current_exp_den : OPTIONAL T_LONG;

 temperature_exp_den : OPTIONAL T_LONG;

 molar_amount_exp_den : OPTIONAL T_LONG;

 luminous_intensity_exp_den : OPTIONAL T_LONG;

INVERSE

 units : SET[0:?] OF AoUnit FOR phys_dimension; (*INFO_FROM*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

 UR2: SELF\asam_base_entity.name;

WHERE

 (* ensure default_value=1 *)

 WR1: EXISTS(length_exp_den) OR (length_exp_den=1);

 WR2: EXISTS(mass_exp_den) OR (mass_exp_den=1);

 WR3: EXISTS(time_exp_den) OR (time_exp_den=1);

 WR4: EXISTS(current_exp_den) OR (current_exp_den=1);

 WR5: EXISTS(temperature_exp_den) OR (temperature_exp_den=1);

 WR6: EXISTS(molar_amount_exp_den) OR (molar_amount_exp_den=1);

 WR7: EXISTS(luminous_intensity_exp_den) OR

 (luminous_intensity_exp_den=1);

 (* ensure denominators not equal zero *)

 WR8 : length_exp_den<>0;

 WR9 : mass_exp_den<>0;

 WR10: time_exp_den<>0;

 WR11: current_exp_den<>0;

 WR12: temperature_exp_den<>0;

 WR13: molar_amount_exp_den<>0;

 WR14: luminous_intensity_exp_den<>0;

END_ENTITY;

ISO/PAS 22720:2005(E)

238 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-90 ASAM ODS VERSION 5.0

ENTITY AoQuantityGroup (* BID=12 *)

 SUBTYPE OF (asam_base_entity);

 quantities : SET [0:?] OF AoQuantity; (*INFO_REL*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

 UR2: SELF\asam_base_entity.name;

END_ENTITY;

ENTITY AoUnitGroup (* BID=14 *)

 SUBTYPE OF (asam_base_entity);

 units : SET [0:?] OF AoUnit; (*INFO_REL*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

 UR2: SELF\asam_base_entity.name;

END_ENTITY;

ENTITY AoLog (* BID=43 *)

 SUBTYPE OF (asam_base_entity);

 date : T_DATE;

 children : SET [0:?] OF AoLog; (*CHILD*)

INVERSE

 parent : SET [0:1] OF AoLog for children; (*FATHER*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

 UR2: SELF\asam_base_entity.name,date;

END_ENTITY;

ENTITY AoAny (* BID=0 *)

 SUBTYPE OF (asam_base_entity);

(* Allowed to build a hierachy within the AoAny. *)

 children : OPTIONAL SET [0:?] OF AoAny; (*CHILD*)

INVERSE

 parent : SET [0:1] OF AoAny for children; (*FATHER*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

 UR2: SELF\asam_base_entity.name,

 SELF\asam_base_entity.version,

 parent;

 (* if parent does not exists then unique (name,version) *)

WHERE

 WR1: unique_name_and_version(children);

END_ENTITY;

(*

 Also AoAny should not be instantiated, instead entities should

 be derived from it.

*)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 239

THE BASE MODEL

ASAM ODS VERSION 5.0 4-91

(*

 SECURITY SECTION

*)

ENTITY AoUser (* BID=34 *)

 SUBTYPE OF (asam_base_entity);

 password : T_STRING;

INVERSE

 groups : SET [0:?] Of AoUserGroup for users; (*INFO_REL*)

UNIQUE

 UR1: SELF\asam_base_entity.id;

 UR2: SELF\asam_base_entity.name;

END_ENTITY;

ENTITY AoUserGroup (* BID=35 *)

 SUBTYPE OF (asam_base_entity);

 users : SET [0:?] Of AoUser; (*INFO_REL*)

 superuser_flag : T_SHORT;

UNIQUE

 UR1: SELF\asam_base_entity.id;

 UR2: SELF\asam_base_entity.name,

 SELF\asam_base_entity.version;

END_ENTITY;

ENTITY ACL (* not asam_base_entities !! *)

 ABSTRACT SUPERTYPE OF (ONEOF(

 ACLI,

 ACLA,

 ACLTemplate

));

 users : AoUserGroup; (*INFO_TO*)

 appl_element_name : T_STRING;

 rights : T_SHORT;

END_ENTITY;

ENTITY ACLI

 SUBTYPE OF (ACL);

 instance_id : T_LONGLONG;

END_ENTITY;

ENTITY ACLA

 SUBTYPE OF (ACL);

 attribute_name : T_STRING; (* if empty: Whole application *)

END_ENTITY; (* element with all attributes *)

ENTITY ACLTemplate

 SUBTYPE OF (ACL);

ISO/PAS 22720:2005(E)

240 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-92 ASAM ODS VERSION 5.0

 instance_id : T_LONGLONG;

 ref_appl_elem_name: T_STRING;

(* The table SVCTPLI contains:

 USERGROUPID Reference to a UserGroup instance

 AID Application element id

 RIGHTS Rights value (bitmasked)

 IID Application instance id

 REFAID Referencing application element

 *)

END_ENTITY;

ENTITY SecurityLevel;

 appl_element_name : T_STRING;

 level : T_SHORT;

 (*

 bit decimal ACL on Protection on

 0 1 appl elem all instances

 1 2 inst elem instances individually

 2 4 elem attrs attributes individually

 Combination by adding the decimal values.

 *)

END_ENTITY;

ENTITY InitialRightsAt;

(* This is to be contained in table SVCATTR, column ACLREF *)

 appl_element_name : T_STRING;

 attribute_name : T_STRING;

END_ENTITY;

(*

 ---------------------- FUNCTIONS --------------------------

*)

(*

 The following function is called from AoLocalColumn. It is

 used to determine the actual size of its value sequences.

*)

FUNCTION sequence_length(

 seq : value_sequence

): INTEGER;

 LOCAL

 list_length : INTEGER;

 END_LOCAL;

 list_length := 0;

 IF 'boolean_sequence' IN TYPEOF (seq) THEN

 list_length := SIZEOF (seq\boolean_sequence.values);

 END_IF;

 IF 'byte_sequence' IN TYPEOF (seq) THEN

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 241

THE BASE MODEL

ASAM ODS VERSION 5.0 4-93

 list_length := SIZEOF (seq\byte_sequence.values);

 END_IF;

 IF 'short_sequence' IN TYPEOF (seq) THEN

 list_length := SIZEOF (seq\short_sequence.values);

 END_IF;

 IF 'long_sequence' IN TYPEOF (seq) THEN

 list_length := SIZEOF (seq\long_sequence.values);

 END_IF;

 IF 'longlong_sequence' IN TYPEOF (seq) THEN

 list_length := SIZEOF (seq\longlong_sequence.values);

 END_IF;

 IF 'float_sequence' IN TYPEOF (seq) THEN

 list_length := SIZEOF (seq\float_sequence.values);

 END_IF;

 IF 'double_sequence' IN TYPEOF (seq) THEN

 list_length := SIZEOF (seq\double_sequence.values);

 END_IF;

 IF 'complex_sequence' IN TYPEOF (seq) THEN

 list_length := SIZEOF (seq\complex_sequence.values) / 2;

 END_IF;

 IF 'dcomplex_sequence' IN TYPEOF (seq) THEN

 list_length := SIZEOF (seq\dcomplex_sequence.values) / 2;

 END_IF;

 IF 'time_sequence' IN TYPEOF (seq) THEN

 list_length := SIZEOF (seq\time_sequence.values);

 END_IF;

 IF 'string_sequence' IN TYPEOF (seq) THEN

 list_length := SIZEOF (seq\string_sequence.values);

 END_IF;

 IF 'bytestr_sequence' IN TYPEOF (seq) THEN

 list_length := SIZEOF (seq\bytestr_sequence.values);

 END_IF;

 RETURN(list_length);

END_FUNCTION;

(*

 The following function is called from AoLocalColumn. It is

 used to determine the required size of its value sequences.

*)

FUNCTION local_column_list_length(

 number_of_rows : INTEGER;

 rank : INTEGER;

 dimension : LIST OF INTEGER

): INTEGER;

 LOCAL

 list_length : INTEGER;

 i : INTEGER;

 temp : INTEGER;

 END_LOCAL;

ISO/PAS 22720:2005(E)

242 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-94 ASAM ODS VERSION 5.0

 list_length := number_of_rows;

 REPEAT i := 1 TO rank BY 1; (*nothing happens if rank=0*)

 temp := list_length * dimension[i-1];

 list_length := temp;

 END_REPEAT;

 RETURN(list_length);

END_FUNCTION;

(*

 The following function is called if the members of a set

 should be distinct in name+version. Since "version" is

 optional, the function also works without it, then it

 checks only that "name" is different.

 The function is here given in Express. It is understood

 that an implementation in a normal programming language

 will look different. But the action of the function should

 be the same:

 - take the set passed in the argument "instances"

 - look if any two members of the set have the same name

 * if NO return TRUE

 * if yes look if those members differ at least in

 the version:

 if YES return TRUE otherwise return FALSE

 It is planned to call this function only in cases where

 the uniqueness of set members matters, i.e. when building

 hierarchical trees.

*)

FUNCTION unique_name_and_version (

 instances : AGGREGATE OF asam_base_entity

): BOOLEAN;

 LOCAL

 set_size : INTEGER;

 uniqueness : BOOLEAN;

 version1 : STRING;

 version2 : STRING;

 inst1 : asam_base_entity;

 inst2 : asam_base_entity;

 END_LOCAL;

 uniqueness := TRUE;

 set_size := SIZEOF(instances);

 REPEAT i := 1 TO set_size BY 1;

 version1 := ''; (*modified 13.12.2002*)

 inst1 := instances[i];

 IF EXISTS(inst1.version) THEN

 version1 := inst1.version;

 END_IF;

 REPEAT j := i+1 TO set_size BY 1;

 inst2 := instances[j];

 IF inst1.name = inst2.name THEN

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 243

THE BASE MODEL

ASAM ODS VERSION 5.0 4-95

 version2 := ''; (*modified 13.12.2002*)

 IF EXISTS(inst2.version) THEN

 version2 := inst2.version;

 END_IF;

 IF version1 = version2 THEN

 uniqueness := FALSE;

 RETURN(uniqueness);

 END_IF;

 END_IF;

 END_REPEAT;

 END_REPEAT;

 RETURN(uniqueness);

END_FUNCTION;

END_SCHEMA;

ISO/PAS 22720:2005(E)

244 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-96 ASAM ODS VERSION 5.0

4.9.4 BASE MODEL REPRESENTATION IN EXPRESS-G

The diagrams on the following pages show graphical representations of the Express model
given in the previous section, i.e. the graphics are derived from the master model in Express.
In case of any difference between the two representations the textual Express model shall
prevail. Please note that rules and functions cannot be included in the diagrams, even if they
are important for the usage of the model.

The following diagram (“Explanation of Express-G”) gives you a syntactical overview of
Express-G notations. The next diagrams (“Environment” to ”Parameter, Log, External
Component”) show a particular section of the ODS base model each. Partly the contents of
the diagrams overlap.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 245

THE BASE MODEL

ASAM ODS VERSION 5.0 4-97

Dr. Helmut J. Helpenstein, 3.2.1999

ASAM-ODS, Model 17
Page 0 - EXPLANATIONS

supertype

subtype1

subtype2

(abs)

supertype subtype relationship,
if marked with "(abs)" then
supertype is not to be instantiated.

entity

another_entity

attribute1 attribute2 L[1:?]

REAL

attribute relationship,
solid line = mandatory attribute
dashed line = optional attribute
lines are marked with attribute name
L[a:b] = list with at least a and at most b members
S[a:b] = set with at least a and at most b members
INV means inverse attribute (i.e. relationship in
opposite direction)

AoTest

t_date

datatype_enum

REAL

meas_test_select

an entity

a defined type

an enumeration type (with a predefined set of items)

a primitive type

a select type (e.g. an alternative)

All relationships have a direction that is
indicated with the ball at the end of the line.

Explanation of Express-G

ISO/PAS 22720:2005(E)

246 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-98 ASAM ODS VERSION 5.0

Dr. Helmut J. Helpenstein, 25 Nov 2003

ASAM-ODS, Model 27

entity_mapping S [0:?]

entity_name alias_names L[0:?]

AoAttributeMap

AoEnvironment

AoNameMap

attribute_mapping S [0:?]

attribute_name alias_names L[0:?]

Page 1 - ENVIRONMENT

max_test_level

meaning_of_aliases L[0:?]

T_LONG

T_STRING

T_STRING

T_STRING

T_STRING
base_element_name

T_STRING
attribute_type

AoUnitUnderTest

AoTestEquipment

AoTestSequence

AoTestT_STRING
tests S[0:?]
INV environment

uuts S[0:?]
INV environment

equipments S[0:?]
INV environment

sequences S[0:?]
INV environment

base_model_version

T_STRING

T_STRING

application_
model_type

application_
model_version

INV name_mapping

Environment

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 247

THE BASE MODEL

ASAM ODS VERSION 5.0 4-99

Dr. Helmut J. Helpenstein, 25 Nov 2003

ASAM-ODS, Model 27

asam_base_entity

byte_inst_attribute

short_inst_attribute

id

name

description S [0:?]

AoTestAbstract

AoMeasurement

AoLocalColumn

AoAny

.....

.....

(abs)

Page 2 - TOP ENTITY AND
ATTRIBUTES OBJECTS

T_STRING

T_DATE

version_date

T_LONGLONG

version

mime_type external_references L[0:?]

T_EXTERNALREFERENCE

L [3:3]

objecttype

instance_attribute

etc.

instance_attributes

attribute_object

time_abs_attribute

double_abs_attribute

float_abs_attribute

long_abs_attribute

short_abs_attribute

byte_abs_attribute

complex_abs_attribute

dcomplex_abs_attribute

string_abs_attribute

AoUnit

T_SHORT
flag

unit

etc.

etc.

etc.

etc.

etc.

etc.

etc.

etc.

float_seq_attribute

float_attribute

float_inst_attribute

T_STRING

T_FLOAT

T_FLOAT

name

svalue

values

LIST [1:?]

(abs)

(abs)

Top Entity and Attributes Objects

ISO/PAS 22720:2005(E)

248 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-100 ASAM ODS VERSION 5.0

Dr. Helmut J. Helpenstein, 25 Nov 2003

ASAM-ODS, Model 27

asam_base_entity

instance_attribute

id version
description

instance_attributes
S [0:?]

AoTestAbstract

AoTest

AoSubTest

AoMeasurement

AoMesurementQuantity

AoLocalColumn

AoUnitUnderTestAbstract

AoUnitUnderTest

AoUnitUnderTestPart

AoTestSequenceAbstract

AoTestSequence

AoTestSequencePart

AoTestEquipmentAbstract

AoTestEquipment

AoTestEquipmentPart

AoSubmatrix

AoQuantityGroup

AoUnitGroup

AoQuantity

AoUnit

AoPhysicalDimension

AoAny

(abs)

(abs)

(abs)

(abs)

(abs)

Page 3 - BASE ENTITIES

T_STRING

T_LONGLONG

AoTestDevice

name

AoUser

AoUserGroup

AoEnvironment

AoLog

...etc.

AoParameterSet

AoParameter

AoAttributeMap

AoNameMap

Base Entities

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 249

THE BASE MODEL

ASAM ODS VERSION 5.0 4-101

Dr. Helmut J. Helpenstein, 25 Nov 2003

ASAM-ODS, Model 27

AoTestAbstract AoTest

AoSubTest

AoMeasurement

children S[0:?]

parent_test

test

AoTestEquipmentAbstract AoTestEquipment

AoTestEquipmentPart

children S [0:?]

AoTestSequenceAbstract AoTestSequence

AoTestSequencePart

INV parent_sequence S[0:1]

children S [0:?]

AoUnitUnderTestAbstract AoUnitUnderTest

AoUnitUnderTestPart

children S [0:?]

(abs)

(abs)

(abs)

(abs)

Page 4 - HIERARCHICAL ENTITIES

meas_test_select

INV parent_unit_under_test S[0:1]

INV parent_equipment S[0:1]

AoTestDevice

Hierarchical Entities

ISO/PAS 22720:2005(E)

250 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-102 ASAM ODS VERSION 5.0

Dr. Helmut J. Helpenstein, 25 Nov 2003

ASAM-ODS, Model 27

AoMeasurement

AoMeasurementQuantity AoSubmatrix

AoLocalColumn

AoTestEquipmentAbstract

AoUnitUnderTestAbstract

AoTestSequenceAbstract

AoTestAbstract

T_DATE

test

equipments S[0:?]

sequences S[0:?]

units_under_test S[0:?]

meas.._begin

measurement_end

submatrices S [0:?]

measurement_quantities S [0:?]

INV measurement

INV measurement

number_of_rows

local_columns L[0:?] local_columns S[0:?]
INV submatrixINV measurement_quantity

flags L[1:?]

maximum

minimum

independent

global_flag

AoQuantity

AoUnit

AoTestEquipmentAbstract

.....

.....

quantity

unit

channel

is_scaled_by L[1:?]

Page 5 - MEASUREMENT AND
SUBMATRIX

T_LONG

T_DOUBLE

T_SHORT

T_SHORT

INV measurement S[0:?]

INV measurement S[0:?]

INV measurement S[0:?]

.....

Measurement and Submatrix

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 251

THE BASE MODEL

ASAM ODS VERSION 5.0 4-103

Dr. Helmut J. Helpenstein, 22 Jun 2004

ASAM-ODS, Model 28

AoMeasurementQuantity

AoLocalColumn

AoQuantity

AoUnit

AoTestEquipment

AoMeasurement
measurement

quantity

unit

channel

INV measurement_quantity

local_columns S[0:?]

is_scaled_by L[1:?] datatype

minimum

maximum

average

standard_deviation

dimension L[0:?]

rank

type_size

raw_datatype

byte_sequence

short_sequence

float_sequence

double_sequence

time_sequence

long_sequence

T_DATE

values

L[1:?]

values

L[1:?]

values

L[1:?]

values

L[1:?]
values

L[1:?]

values

L[1:?]

AoSubmatrix

submatrix

independent

flags L[1:?]

global_flag

minimum
maximum

Page 6 - MEASUREMENT QUANTITY
AND LOCAL COLUMNS

T_LONG

T_DOUBLE

T_DOUBLE

interpolation_enum

T_SHORT

datatype_enum

T_SHORT

T_LONG

T_FLOAT

T_DOUBLE

T_BYTE value_sequence

values

complex_sequence

dcomplex_sequence

values

L[2:?]
values

L[2:?]

T_FLOAT

T_DOUBLE

numeric_sequence

textual_sequence

string_sequence
values

L[1:?]
T_STRING

bytestr_sequence
values

L[1:?]
T_BYTESTR

boolean_sequence
values

L[1:?]
T_BOOLEAN

(abs)

(abs)

(abs)

T_DOUBLE

seq_rep_enum

generation_parameters
 L[1:?]

sequence_representation

AoExternalComponent

longlong_sequence
values

L[1:?]
T_LONGLONG

interpolation

datatype_enum

Measurement Quantity and Local Columns

ISO/PAS 22720:2005(E)

252 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-104 ASAM ODS VERSION 5.0

Dr. Helmut J. Helpenstein, 25 Nov 2003

ASAM-ODS, Model 27

AoQuantity AoQuantityGroup

AoUnit AoUnitGroup

AoPhysicalDimension

successors S [0:?]

INV predecessor S [0:1]

INV groups S [0:?]

quantities S [0:?]

default_unit

units S [0:?]

INV groups S [0:?]

default_type_sizedefault_datatype

default_rank

default_dimension L[0:?]
default_mq_name

quantity_classification

factor

offset

phys_dimension

length_exp

mass_exp

time_exp

current_exp

temperature_exp

molar_amount_exp

luminous_intensity_exp

INV units S [0:?]

Page 7 - QUANTITY AND UNIT

T_LONG

T_STRING

quantity_class_enum

datatype_enum

T_LONG

T_DOUBLE

length_exp_den

mass_exp_den

time_exp_den

current_exp_den

temperature_exp_den

luminous_intensity_exp_den

molar_amount_exp_den

Quantity and Unit

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 253

THE BASE MODEL

ASAM ODS VERSION 5.0 4-105

Dr. Helmut J. Helpenstein, 25 Nov 2003

ASAM-ODS, Modell 27
Page 8 - SECURITYPage 8 - SECURITY

asam_base_entity

(abs)

AoUserGroup

AoUser

T_SHORTT_STRING

INV groups S [0:?]

users S [0:?]password

superuser_flag

T_LONGACL

ACLTemplate ACLI

users

appl_element_idrights
T_SHORT

T_LONGT_STRING

instance_idref_appl_elem_name

ACLA

T_STRING

attribute_name

T_LONG

instance_id

InitialRightsAt

SecurityLevel

T_STRING T_SHORT

T_STRING T_STRING

attribute_nameappl_element_name

levelappl_element_name

Security

ISO/PAS 22720:2005(E)

254 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-106 ASAM ODS VERSION 5.0

Dr. Helmut J. Helpenstein, 25 Nov 2003

ASAM-ODS, Modell 27 Page 9 - PARAMS, LOG,
EXTERNAL COMPONENT

AoExternalComponent

T_STRING

T_LONG

T_LONG

T_LONG

T_LONG

T_LONG

T_STRING

valuesperblock

filename_url

start_offset

blocksize

value_offset

flags_start_offset

flags_filename_url

typespec_enum
value_type

T_LONG

T_LONG

length_in_bytes

ordinal_number

AoLocalColumn

external_component

AoParameterSet

AoParameter

parameters SET [0:?]
INV parameter_set

AoUnit datatype_enum T_STRING

parameter_datatype pvalueunit

AoLog AoAny

T_DATE

children SET [0:?]
INV parent

children SET [0:?]
INV parentdate

Parameter, Log, External Component

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 255

THE BASE MODEL

ASAM ODS VERSION 5.0 4-107

4.10 REVISION HISTORY

Date
Editor

Changes

2003-06
P. Voltmann

New base elements AoExternalComponent, AoNameMap, AoAttributeMap,
AoParameterSet, AoParameter and AoLog added

New enumerations added
Relations of AoNameMap, AoAttributeMap, AoParameterSet and

AoParameter extended
2003-10-11
R. Bartz

Several errors have been fixed and explanations have been added to make
things clearer

2003-10-17 The FTR meeting agreed to the current text
2003-11-25
R. Bartz

New STEP EXPRESS code and diagrams (that were created by H.
Helpenstein) have been included

2003-12-30
R. Bartz

The Release version has been created

2004-03
R. Bartz

The attribute 'raw_datatype' has been formally added to AoLocalColumn.

2004-05
R. Bartz

The detailed textual description of the Base Elements has been included
(formerly being part of Chapter 2)

The explanation of the quantity hierarchy has been improved
Some corrections have been made to the Base Element tables

2004-09
R. Bartz

The Base Elements tables have been expanded by adding complete
information on datatypes and relation types

Some minor textual changes have been introduced

ISO/PAS 22720:2005(E)

256 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

4-108 ASAM ODS VERSION 5.0

ASAM e.V.

Arnikastr. 2

D-85635 Hoehenkirchen

Germany

phone: (+49) 8102 – 895317

fax: (+49) 8102 – 895310

e-mail: info@asam.net

internet: www.asam.net

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 257

ASAM ODS
VERSION 5.0

ISO-PAS

CHAPTER 5

ASAM TRANSPORT FORMAT

CLASSIC (ATF/CLA)
Version 1.4.1

Association for Standardization of
Automation and Measuring Systems

Dated: 30.09.2004

© ASAM e.V.

ISO/PAS 22720:2005(E)

258 © ISO 2005 – All rights reserved

Status of Document

Reference: ASAM ODS Version 5.0 ASAM Transport Format Classic

Date: 30.09.2004

Author: Hans-Joachim Bothe, HighQSoft; Dr. Helmut Helpenstein,
National Instruments

Type: Specification

Doc-ID: ASAM_ODS_50_CH05_ATF_CLA.PDF

Revision
Status:

Release

Note: ASAM ODS has invoked a Formal Technical Review (FTR) process which
intends to continuously improve the quality and timeliness of its specifications.
Whenever an error is identified or a question arises from this specification, a
corresponding note should be sent to ASAM (odsftr@asam.net) to make sure
this issue will be addressed within the next review cycle.

Disclaimer of Warranty

Although this document was created with the utmost care it cannot be guaranteed that it is
completely free of errors or inconsistencies.

ASAM e.V. makes no representations or warranties with respect to the contents or use of this
documentation, and specifically disclaims any expressed or implied warranties of

merchantability or fitness for any particular purpose. Neither ASAM nor the author(s)
therefore accept any liability for damages or other consequences that arise from the use of

this document.

ASAM e.V. reserves the right to revise this publication and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 259

mailto:odsftr@asam.net

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-1

Contents

5 THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA) 5-5

5.1 INTRODUCTION... 5-5
5.2 THE ATF/CLA FILE.. 5-7

5.2.1 PURPOSE OF AN ATF/CLA FILE... 5-7
5.2.2 STRUCTURE OF AN ATF/CLA FILE ... 5-8

5.3 DESCRIPTION OF THE ATF/CLA SYNTAX .. 5-9
5.3.1 OVERVIEW ... 5-9
5.3.2 DESCRIPTION OF THE CHARACTER SETS USED IN THIS DOCUMENTATION .. 5-10

5.4 DESCRIPTION OF THE NOTATION USED IN THIS DOCUMENTATION 5-11
5.5 RESERVED ATF/CLA KEYWORDS .. 5-12
5.6 BRIEF DESCRIPTION OF THE RESERVED ATF/CLA KEYWORDS 5-13

5.6.1 STRUCTURE OF RESERVED ATF/CLA KEYWORDS................................... 5-15
5.7 ATF/CLA SYNTAX DIAGRAMS .. 5-16

5.7.1 STRUCTURE OF SPACES (WHITESPACE) .. 5-16
5.7.2 STRUCTURE OF SEPARATORS (SEPARATOR) ... 5-17
5.7.3 STRUCTURE OF COMMENTS (COMMENT).. 5-17
5.7.4 STRUCTURE OF ESCAPE SEQUENCES (ESCAPE) 5-18
5.7.5 STRUCTURE OF INTEGERS (INTEGER) .. 5-21
5.7.6 STRUCTURE OF FLOATING-POINT NUMBERS (REAL) 5-22
5.7.7 STRUCTURE OF COMPLEX NUMBERS (COMPLEX) 5-27
5.7.8 STRUCTURE OF CHARACTER CONSTANTS (CHARACTER).......................... 5-27
5.7.9 STRUCTURE OF STRINGS (STRING) .. 5-28
5.7.10 STRUCTURE OF BYTESTREAM (BYTESTREAM).. 5-29
5.7.11 STRUCTURE OF IDENTIFIERS (IDENTIFIER) ... 5-30
5.7.12 STRUCTURE OF FILENAMES (FILENAME) .. 5-31
5.7.13 PREDEFINED DATA TYPES (DATATYPE).. 5-33
5.7.14 STRUCTURE OF ENUMERATION... 5-35
5.7.15 STRUCTURE OF THE ATF/CLA VERSION IDENTIFIER (VERSION) 5-36
5.7.16 STRUCTURE OF THE FILES BLOCK (FILES) ... 5-37
5.7.17 STRUCTURE OF THE INSTRUCTION INCLUDE (INCLUDE) 5-38
5.7.18 REFERENCES TO UNITS (PHYS_UNIT) .. 5-39
5.7.19 VALUES OF DATA ATTRIBUTES (DATAVALUE)... 5-40
5.7.20 STRUCTURE OF APPLICATION ELEMENTS (APPLELEM) 5-40
5.7.21 STRUCTURE OF INSTANCE ELEMENTS (INSTELEM) 5-42
5.7.22 STRUCTURE OF COMPONENTS (COMPONENT) .. 5-46
5.7.23 THE STRUCTURE OF ENDFILE (ENDFILE) .. 5-55

5.8 OVERVIEW OVER THE STRUCTURE OF AN ATF/CLA FILE (ATF_OVERVIEW) 5-56
5.9 SECURITY INFORMATION ON ATF/CLA FILES ... 5-57

5.9.1 THE USE OF SECURITY INFORMATION ON ATF/CLA................................ 5-57

ISO/PAS 22720:2005(E)

260 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-2 ASAM ODS VERSION 5.0

5.9.2 WRITING SECURITY INFORMATION ON ATF/CLA......................................5-57
5.10 EXAMPLE FOR AN APPLICATION...5-59
5.11 BIBLIOGRAPHY ...5-86
5.12 REVISION HISTORY ...5-87

5.12.1 PREVIOUS CHANGES...5-87
5.12.2 KNOWN ISSUES...5-88

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 261

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-3

Scope

This document describes the classic version of the ASAM Transport Format (ATF/CLA) of
ASAM ODS Version 5.0.

Intended Audience

This document is intended for implementers of ASAM ODS Version 5.0. It shall be used as a
technical reference with examples how to write ATF/CLA files with the required information used
in ASAM ODS Version 5.0.

This document is part of a series of documents referring to ASAM ODS Version 5.0 and must
not be used as a stand-alone document. The documents referenced below build the technical
reference of ASAM ODS Version 5.0 as a whole. They may be requested from the ASAM e.V.
at www.asam.net.

ASAM ODS Specification

The following chapters build the technical reference for ASAM ODS Version 5.0:

 ASAM ODS Version 5.0, Chapter 1, Introduction

 ASAM ODS Version 5.0, Chapter 2, Architecture

 ASAM ODS Version 5.0, Chapter 3, Physical Storage (1.1)

 ASAM ODS Version 5.0, Chapter 4, Base Model (28)

 ASAM ODS Version 5.0, Chapter 5, ATF/CLA (1.4.1)

 ASAM ODS Version 5.0, Chapter 6, ATF/XML (1.0)

 ASAM ODS Version 5.0, Chapter 7: N/A ('Security' moved to Chapter 2)

 ASAM ODS Version 5.0, Chapter 8, MIME Types and External References (1.0)

 ASAM ODS Version 5.0, Chapter 9, RPC-API (3.2.1)

 ASAM ODS Version 5.0, Chapter 10, OO-API (5.0)

 ASAM ODS Version 5.0, Chapter 11, NVH Model (1.3)

 ASAM ODS Version 5.0, Chapter 12, Calibration Model (1.0)

Normative References

 ISO 10303-11: STEP EXPRESS

 Object Management Group (OMG): www.omg.org

 Common Object Request Broker Architecture (CORBA): www.corba.org

 IEEE 754: IEEE Standard for Binary Floating-Point Arithmetic, 1985

 ISO 8601: Date Formats

 Extensible Markup Language (XML): www.w3.org/xml

ISO/PAS 22720:2005(E)

262 © ISO 2005 – All rights reserved

www.asam.net
www.omg.org
www.corba.org
www.w3.org/xml

ASAM ODS VERSION 5.0

5-4 ASAM ODS VERSION 5.0

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 263

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-5

5 THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

5.1 INTRODUCTION

ASAM ODS offers the possibility to store measured data in a standardized format. It has a data
model with a general structure frame for the modelling of data. It also defines a set of functions
for reading and writing the parameter and resulting data, which are to be stored in the data
structure.

These functions are based on different kinds of physically storing information. One possibility is
storing the data in a commercial data base, while representing the individual application model
in data base tables. On the other hand, a specification exists for a file storing system which
makes it possible to run ASAM compatible applications without using a data base.

The third possibility to access data with ASAM functions is to represent existing data from a
data base or a file system with the help of meta information on an ASAM data structure. By the
means of this meta information an existing data storage system becomes compatible to ASAM
and works nearly identical to the possibilities mentioned before.

Referring to the information above it is not the only question how to store and backup data in a
special data structure, the so called environment, it is also important how to exchange data
between different computers, applications and environments.

With identical environments, it is theoretically possible to use functions for the import and export
of data from data bases or to exchange files within the respective file systems. As this exchange
of data is not supported by the ASAM application there is a risk of affecting the integrity and
consistency of the exchanged data.

To avoid such problems in data exchange, ASAM ODS offers a special file format, the ASAM
Transport Format (ATF). ATF makes it possible to exchange whole environments or even parts
of those between different computers and environments.

ATF is able to transport the required structure and instance information as well as the respective
data and to store all this information in a standardized format. The transport format does not
guarantee the ability of the reading application to class the information with its own data
structures. This can only be guaranteed if the data structures of the reading application are able
to pick up the ATF information. On the other hand, the data integrity and compatibility to ASAM
is always ensured.

ISO/PAS 22720:2005(E)

264 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-6 ASAM ODS VERSION 5.0

Version 5.0 of the ASAM ODS standard includes two such file formats: the classic ATF
(ATF/CLA) and the XML based ATF (ATF/XML). The Introduction (chapter 1) states background
and purpose of two such definitions. This chapter describes and explains the classic ASAM
Transport Format (ATF/CLA). Chapter 6 is dedicated to the XML based ATF.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 265

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-7

5.2 THE ATF/CLA FILE

5.2.1 PURPOSE OF AN ATF/CLA FILE

A file format for transporting or archiving of data must meet other requirements than a file format
used for access during the execution of a program (working format).

With working formats as the ASAM file format [PROT] the access performance and the ability of
editing is paramount. As it is normally not really possible to insert data in a file but to append
them, the data in the ASAM file storage are structured that way, that additional data are written
at the end of the individual file.

A data transport format does not have these requirements, because the respective file is read
and written completely in one step and there is no need for time critical access. Transport
formats must meet other requirements, for example the portability between different computer
systems.

To be accepted by the user and for effective maintenance the structure of the transport file must
be simple and easy to survey. Therefore, an easy to interpret syntax facilitates the reading and
writing of ATF/CLA files even for programs not based on ASAM.

Independent from the above mentioned facts ATF/CLA must be able to store all information
defined in the ASAM data model in an unique way. This refers not only to the structure
information but also to the data itself.

The first version of the ATF/CLA file will be a pure ASCII format to enable a data transfer on
different computer platforms. In this case the ASCII standard is to be considered which only
defines the first 127 characters. If mutated vowels (umlauts) are used, the possibility of
incompatibilities is given, because those characters are interpreted differently on different
systems.

Therefore, special characters should not be used even in plain text. In this documentation you
will find a proposal for the solution of transferring mutated vowels.

With respect to the fast growing worldwide nets it is planned for a later version of ATF/CLA to
use the „Unicode character encoding“. The Unicode character set is a worldwide agreed upon
16 bit character set, which implements a superset of the ASCII character set. For more
information refer to the bibliography under [UNICODE].

The ATF/CLA file is to be seen as a logical file. This means, that an ATF/CLA file may be
distributed physically over more than one file. This is especially interesting when storing and
transporting the structure information separately from the instance information.

Very often it is likely not to transport the measured and mass data in ASCII format, because the
amount of data may become very large. In this case it is possible to store the mass data in a
binary format, whereas the different computer architectures are to be respected (little/big
endian, float formats).

The main file keeping the references of the subfiles should get the extension „.atf“ to be
recognised as ATF/CLA file. All the other files may have individual names and extensions.

ISO/PAS 22720:2005(E)

266 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-8 ASAM ODS VERSION 5.0

5.2.2 STRUCTURE OF AN ATF/CLA FILE

The ATF/CLA file is built up in three different block types, they are described in section 5.7:

 The Files section

 The Application Elements section

 The Instance Elements section

The file starts with the keyword ATF_FILE followed by a version number which shows the actual
version of the ATF/CLA specification the file is based on. The three main building blocks are
FILES, APPLELEM and INSTELEM. The end of ATF/CLA definitions in a file is marked by the
keyword ATF_END. For error tracking purposes, the node name, username and program name
of the generating application should be added as a comment at the beginning of the ATF/CLA
file.

The intention of the ATF/CLA file is to show the data as they exist in the data source, any
interpretation shall be performed at the destination. Therefore ATF/CLA-Files should only
contain metadata and data which are available in the data source. Elements and attributes that
are not available in a data source shall not be written to the ATF/CLA file even if they belong to
the ASAM ODS base model.

Consequently all application elements that are derived from base elements and are instantiated
in the file must be described in the Application Elements section. Except for a few security
entities (see section 5.9, “Security Information on ATF/CLA files”) the instantiation of entities
from the base model is not allowed in ASAM ODS. Therefore apart from these all other entities
are application elements.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 267

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-9

5.3 DESCRIPTION OF THE ATF/CLA SYNTAX

5.3.1 OVERVIEW

This description of the syntax is intended to define the ASAM transport format in an unique way.
The object of this description is to reduce ambiguities and vaguenesses to a minimum or even
to avoid those when generating ATF/CLA files.

The syntax of an ATF/CLA file follows partly the syntax of C and C++. To enhance the
readability of the file, the use of braces was reduced to a minimum. To implement the function of
braces, every block keyword has a respective end-of-block keyword.

Like in C all „whitespaces“ (spaces, tabs and form feeds) outside of strings are ignored or
interpreted as separators. This requires all logical lines within an ATF/CLA file to be terminated
by a semicolon (;). In this way it is possible, to separate very long logical lines into different
physical lines.

The names of identifiers have to follow the ASAM standards. Uppercase and lowercase letters
are distinguished.

For the description of regular expressions and constructs used in ATF/CLA files syntax
diagrams are used. These syntax diagrams are easy to understand without the knowledge of
machine and graph theories.

A syntax diagram is always read from left to right. At branch points the leftmost path is checked
first. Paths generating loops (showing backward chainings in the syntax diagram) are marked
with an arrow at their end points. These paths must not be followed against the direction of the
arrow.

Syntax diagrams may be nested as required. Names of syntax diagrams are written in italic.
Greek letters in uppercase refer to character sets, greek letters in lowercase refer to the allowed
amount of characters of the respective character set.

Keywords are always in uppercase letters. Identifiers, strings and characters are not converted
to uppercase. Uppercase and lowercase letters may be used individually.

ISO/PAS 22720:2005(E)

268 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-10 ASAM ODS VERSION 5.0

5.3.2 DESCRIPTION OF THE CHARACTER SETS USED IN THIS DOCUMENTATION

= Complete printable character set (32 to 126and 128 to 255)

= Not-allowed characters

= Complete non-printable character set (0 to 31 and 127)

= {0-9} Numbers (48 to 57)

= {0-9, A-F, a-f} Hexadecimal numbers (48 to 57, 65 to 70, 97 to 102)

= {A-Z, a-z} Letters (65 to 90, 97 to 122)

= Non-alphanumeric characters (32 to 47, 58 to 64, 91 to 96, 123 to 126)

Non-printable characters are shown in this documentation as follows (not to be confused with
escape sequences in strings):

<NUL>, <SOH>, <STX>, <ETX>, <EOT>, <ENQ>, <ACK>, <BEL>,

<BS> , <HT> , <LF> , <VT> , <FF> , <CR> , <SO> , <SI> ,

<DLE>, <DC1>, <DC2>, <DC3>, <DC4>, <NAK>, <SYN>, <ETB>,

<CAN>, , <SUB>, <ESC>, <FS> , <GS> , <RS> , <US> ,

Due to readability, tabs and spaces are shown as follows: <HT>, <SP>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 269

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-11

5.4 DESCRIPTION OF THE NOTATION USED IN THIS DOCUMENTATION

 Complete printable character set:

= Exactly one character of the character set .
n = Exactly n characters of the character set .
+ = Arbitrary amount of characters, at least one character.
* = Arbitrary amount of characters. „No character“ is also applicable (+|).

 Complete not-allowed character set:

= Exactly one character of the character set .
n = Exactly n characters of the character set .
+ = Arbitrary amount of characters, at least one character.
* = Arbitrary amount of characters. „No character“ is also applicable (+|).

 Complete non-printable character set:

= Exactly one character of the non-printable character set .
 n = Exactly n characters of the nonprintable character set .
+ = Arbitrary amount of characters, at least one character.
* = Arbitrary amount of characters. „No character“ is also applicable (+|).

 Numbers:

= Exactly one number of the character set .
 n = Exactly n numbers of the character set .
+ = Arbitrary amount of numbers, at least one number.
* = Arbitrary amount of numbers. „No number“ is also applicable (+|).

 Hexadecimal Numbers:

= Exactly one number of the character set .
 n = Exactly n numbers of the character set .
+ = Arbitrary amount of numbers, at least one number.
* = Arbitrary amount of numbers. „No number“ is also applicable (+|).

 Letters:

= Exactly one letter of the character set .
 n = Exactly n letters of the character set .
+ = Arbitrary amount of letters, at least one letter.
* = Arbitrary amount of letters (+|).

ISO/PAS 22720:2005(E)

270 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-12 ASAM ODS VERSION 5.0

 Non-alphanumeric characters:

= Exactly one character of the character set .
n = Exactly n characters of the character set .
+ = Arbitrary amount of characters, at least one character.
* = Arbitrary amount of characters (+|).

In the above descriptions stands for the empty set.

5.5 RESERVED ATF/CLA KEYWORDS

The following keywords are reserved in ATF/CLA and must not be used as identifier for
application and instance elements.

APPLATTR DT_CFLOAT IEEEFLOAT4

APPLELEM DT_DATE IEEEFLOAT8

ATF_END DT_DOUBLE INCLUDE

ATF_FILE DT_FLOAT INFINITY

BASEATTR DT_LONG INIOFFSET

BASETYPE DT_LONGLONG INSTELEM

BLOCKSIZE DT_SHORT MANY

CARDINALITY DT_STRING NAN

COMPONENT DT_UNKNOWN REF_TO

DATATYPE DESCRIPTION REF_TYPE

DT_BLOB ENDAPPLELEM TRUE

DT_BOOLEAN ENDFILES UNDEFINED

DT_BYTE ENDINSTELEM VALOFFSETS

DT_BYTESTR FALSE VALPERBLOCK

DT_CDOUBLE FILES

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 271

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-13

5.6 BRIEF DESCRIPTION OF THE RESERVED ATF/CLA KEYWORDS

APPLATTR Definition of an application attribute.

APPLELEM Starts the definition of an application element.

ATF_END Indicates the end of an ATF/CLA file. Further information will not be
checked by the parser.

ATF_FILE Starts an ATF/CLA file and must exist at the beginning of the main
file.

BASEATTR Specifies the base type of an application attribute.

BASETYPE Specifies the base type of an application element.

BLOCKSIZE Size of a block on a binary dataset

CARDINALITY Specifies, how many values may be given for an attribute

COMPONENT Reference on an external file

DATATYPE Specifies the data type of application and instance attributes.

DT_BLOB Data type for binary large object blocks

DT_BOOLEAN Data type Boolean, allowed values are TRUE and FALSE.

DT_BYTE Data type for the representation of character constants.

DT_BYTESTR Data type for byte streams

DT_COMPLEX Data type for the representation of complex single precision floating-
point numbers (32 bit for real and imaginary part each).

DT_DATE Data type for date/time

DT_DCOMPLEX Data type for the representation of complex double precision floating-
point numbers (64 bit for real and imaginary part each).

DT_DOUBLE Data type for the representation of double precision floating-point
numbers (64 bit).

DT_LONG Data type for the representation of integers with 32 bit.

DT_LONGLONG Data type for the representation of integers with 64 bit.

DT_FLOAT Data type for the representation of single precision floating-point
numbers (32 bit).

DT_SHORT Data type for the representation of integers with 16 bit.

ISO/PAS 22720:2005(E)

272 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-14 ASAM ODS VERSION 5.0

DT_STRING Data type for the representation of strings (text constants).

ENDAPPLELEM Ends the definition of an application element.

ENDFILES Ends the list of physical files belonging to a logical ATF/CLA file.

ENDINSTELEM Ends the definition of an instance element.

FALSE Value „False“ for data type Bool.

FILES The block Files is used to list all physical files belonging to a logical
file.

IEEEFLOAT4 Binary representation of a 4 byte float number

IEEEFLOAT8 Binary representation of a 8 byte float number

INCLUDE Inserts a specified file instead an Include instruction.

INFINITY Marks the value "Infinity".

INIOFFSET Initial offset in bytes from the begin of a binary file to the first block.

INSTELEM Starts the definition of an instance element.

MANY An arbitrary number of elements.

NAN Not a Number.

REF_TO Reference definition in application element definition.

REF_TYPE Specification of an application element in an instantiated attribute.

TRUE Value „TRUE“ for the data type Boolean.

UNDEFINED Keyword for resetting of values to the status „not defined“.

VALOFFSETS Offsets in byte from the beginning of a block to the values on a binary
file.

VALPERBLOCK Number of values per block in binary file.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 273

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-15

5.6.1 STRUCTURE OF RESERVED ATF/CLA KEYWORDS

The keywords in ATF/CLA files always have to start with a letter. The letter may be followed by
an arbitrary amount of letters, numbers and underscores. All other characters not mentioned
here are not allowed in keywords.

Syntax diagram keyword:

This rule does not have to be implemented. It is just a rule for the definition of ATF/CLA
keywords, because keywords are taken literally from the list above.

_

ISO/PAS 22720:2005(E)

274 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-16 ASAM ODS VERSION 5.0

5.7 ATF/CLA SYNTAX DIAGRAMS

5.7.1 STRUCTURE OF SPACES (WHITESPACE)
A carriage return is defined as <CR><LF>, <CR> and <LF>. Please note: The (normally not
used) representation <LF><CR> is counted as two carriage returns. This effects line numbering
in error reports only.

Syntax diagram Whitespace Syntax diagram Newline

The elements in the syntax diagram whitespace will be ignored automatically at any position
except within strings ("...") or character constants (‘...’). Please find further information in chapter
5.3.1, Overview. Whitespaces are shown as follows:

A whitespace may be included.

At least one whitespace must be included.

<FF>

<HT>

<VT>

<SP>

newline

<LF>

<CR><LF>

<CR>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 275

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-17

5.7.2 STRUCTURE OF SEPARATORS (SEPARATOR)

Separators are shown as follows:

A separator may be included.

At least one separator must be included.

5.7.3 STRUCTURE OF COMMENTS (COMMENT)

Comments are enclosed in „/*“ and „*/“ or started with „//“ as comment to the end of the
(physical) line. The following rules apply:

 Comments must not be nested.

 Comment markings within strings or character constants are not interpreted respectively.

 „/*“ and „*/“ have no meaning after „//“.

 „//“ has no meaning in comments enclosed by „/*“ and „*/“.

 Comments are classified as separator meaning e.g. the sequence "text /* ... */ constant" will
be interpreted as two identifiers separated by a separator.

Syntax diagram comment:

whitespace whitespace

,

/

/

* * /

<CR/LF/FF>

<FF>

<CR>

<LF>

ISO/PAS 22720:2005(E)

276 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-18 ASAM ODS VERSION 5.0

5.7.4 STRUCTURE OF ESCAPE SEQUENCES (ESCAPE)

Escape sequences are allowed within strings, character constants and identifiers. Those
sequences will be converted to one byte during the reading process. The Escape sequences
have the following meaning:

 Insertion of non-printable characters (e.g. new line, form feed etc.) in strings and
character constants.

 Encapsulation of special characters (e.g. colon, semicolon, parenthesis etc.) in identifiers,
when these special characters could lead to ambiguities in the syntax of an ATF/CLA file.

 Unique transfer of characters outside the 7 bit ASCII character set, which would be
interpreted in a different way on different machines (e.g. German umlauts).

Because Escape sequences affect the readability of ATF/CLA files, their use should be reduced
as much as possible.

During the interpretation of Escape sequences no further substitution is done, if the Escape
sequence is already the result of an interpretation of another Escape sequence. This makes it
easier for the construction of an interpreter, because the read pointer does not have to be
positioned backwards.

Escape sequences are generally started by „\“. If this character is to be used in strings or
character constants it must be doubled: „\\“.

The following Escape sequences for printable characters are allowed in strings, character
constants and identifiers in ATF/CLA files:

\<sp> Space (needed in identifiers)

\ All non-alphanumeric characters, e.g. “ inside a string

\0xdd Hexadecimal representation of an arbitrary printable character

No longer needed, because extended character set is allowed in strings (included to understand
older documents and files):

\<ae> Umlaut ä

\<Ae> Umlaut Ä

\<oe> Umlaut ö

\<Oe> Umlaut Ö

\<ue> Umlaut ü

\<Ue> Umlaut Ü

\<sz> Special character ß

\<^0> Degree (e.g. ºCelsius)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 277

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-19

Syntax diagram escape:

Table of umlaut codings given here for information only

ISO

ä 228

Ä 196

ö 246

Ö 214

ü 252

Ü 220

ß 223

º 176

The following additional Escape sequences for non-printable characters are allowed in strings,
character constants and identifiers in ATF/CLA files:

Sequence Code Description

\b 8 Backspace <BS>

\f 12 Form feed <FF>

\n 10 New line <LF>

\r 13 Carriage return <CR>

\t 9 Tab <HT>

\u Reserved for Unicode extensions

\v 11 Vertical Tab <VT>

sp

0x

0X

2

\ < >

ISO/PAS 22720:2005(E)

278 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-20 ASAM ODS VERSION 5.0

All other substitute representations must be done by using the normal escape sequences.

For identifiers beginning with a number (0 ... 9) the substitute representation \0 to \9 must be
used. Therefore, the value <NUL> can only be shown with the hexadecimal representation
\0x00.

Syntax diagram escapenonprint:

Because future versions of ATF/CLA may work with 16 bit characters, care should be taken
during implementation. While reading an ATF/CLA file it should be checked, whether the
ATF/CLA version number is not higher than the version used during the implementation of the
reading program.

b

f

n

r

t

u

v

\

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 279

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-21

5.7.5 STRUCTURE OF INTEGERS (INTEGER)

Integers can be represented in ATF/CLA with a length of 8 (byte), 16 (int2), 32 (int4) and 64
(int8) bit (1, 2, 4 and 8 Byte). When using a length of 64 bit it has to be considered that a lot of
today’s computers only work with 32 bit. On machines of this type it is not possible without
proper emulation to process 64 bit values which would lead to an error message.

The data type byte is generally interpreted as unsigned. During the recognition of byte data the
parser should be able to accept negative numbers (-1 is equal to 255 etc.).

There will be no octal representation in ATF/CLA, because octal values are easily convertable
into hexadecimal values. Leading zeros are ignored.

Syntax diagram integer:

+

+

-

+

0X

0x

ISO/PAS 22720:2005(E)

280 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-22 ASAM ODS VERSION 5.0

5.7.6 STRUCTURE OF FLOATING-POINT NUMBERS (REAL)

Single precision floating-point numbers (real4) are represented in ATF/CLA with 32 bit, double
precision (real8) with 64 bit. The exact range of numbers depends on the architecture of the
machine and the division of the machine words into mantissa and exponent.

The preferred ATF/CLA format is the „IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Std. 754-1985 (IEEE; New York)“. This section describes how floating-point data is
stored in memory. It summarizes the precisions and ranges of the different IEEE storage
formats.

A floating-point format is a data structure specifying the fields that comprise a floating-point
numeral, the layout of those fields, and their arithmetic interpretation.

A floating-point storage format specifies how a floating-point format is stored in memory. The
IEEE standard defines the formats, but it leaves to implementors the choice of storage formats.

Assembly language software sometimes relies on using the storage formats, but higher level
languages usually deal only with the linguistic notions of floating-point data types. These types
have different names in different high-level languages, and correspond to the IEEE formats.
IEEE Standard 754 specifies exactly the single and double floating-point formats, and it defines
a class of extended formats for each of these two basic formats.

The following sections describe in detail each of the three storage formats used for the IEEE
floating-point formats.

Single Format

The IEEE single format consists of three fields: a 23-bit fraction, f; an 8-bit biased exponent, e;
and a 1-bit sign, s. These fields are stored contiguously in one 32-bit word. Bits 0:22 contain the
23-bit fraction, f, with bit 0 being the least significant bit of the fraction and bit 22 being the most
significant; bits 23:30 contain the 8-bit biased exponent, e, with bit 23 being the least significant
bit of the biased exponent and bit 30 being the most significant; and the highest-order bit 31
contains the sign bit, s.

The following table shows the correspondence between the values of the three constituent
fields s, e and f, on the one hand, and the value represented by the single- format bit pattern on
the other; u means don't care, that is, the value of the indicated field is irrelevant to the
determination of the value of the particular bit patterns in single format.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 281

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-23

Table: Values Represented by Bit Patterns in IEEE Single Format

Single-Format Bit Pattern Value

0 < e < 255 (-1)s x 2e-127 x 1.f (normal numbers)

e = 0; f != 0

(at least one bit in f is nonzero)

(-1)s x 2-126 x 0.f (subnormal numbers)

e = 0; f = 0

(all bits in f are zero)

(-1)s x 0.0 (signed zero)

s = 0; e = 255; f = 0

(all bits in f are zero)

+Infinity (positive infinity)

s = 1; e = 255; f = 0

(all bits in f are zero)

-Infinity (negative infinity)

s = u; e = 255; f != 0

(at least one bit in f is nonzero)

NaN (Not-a-Number)

Notice that when e < 255, the value assigned to the single format bit pattern is formed by
inserting the binary radix point immediately to the left of the fraction's most significant bit, and
inserting an implicit bit immediately to the left of the binary point, thus representing in binary
positional notation a mixed number (whole number plus fraction, wherein 0 <= fraction < 1).

The mixed number thus formed is called the single-format significand. The implicit bit is so
named because its value is not explicitly given in the single- format bit pattern, but is implied by
the value of the biased exponent field.

For the single format, the difference between a normal number and a subnormal number is that
the leading bit of the significand (the bit to left of the binary point) of a normal number is 1,
whereas the leading bit of the significand of a subnormal number is 0. Single-format subnormal
numbers were called single-format denormalized numbers in IEEE Standard 754.

The 23-bit fraction combined with the implicit leading significand bit provides 24 bits of precision
in single-format normal numbers.

Examples of important bit patterns in the single-storage format are shown in the next table. The
maximum positive normal number is the largest finite number representable in IEEE single
format. The minimum positive subnormal number is the smallest positive number representable
in IEEE single format. The minimum positive normal number is often referred to as the
underflow threshold. (The decimal values for the maximum and minimum normal and subnormal
numbers are approximate; they are correct to the number of digits shown.)

ISO/PAS 22720:2005(E)

282 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-24 ASAM ODS VERSION 5.0

Table: Bit Patterns in Single-Storage Format and their IEEE Values

Common Name Bit Pattern (Hex) Decimal Value

+ 0 00000000 0.0

- 0 80000000 -0.0

1 3f800000 1.0

2 40000000 2.0

Maximum normal number 7f7fffff 3.40282347e+38

Minimum positive normal number 00800000 1.17549435e-38

Maximum subnormal number 007fffff 1.17549421e-38

Minimum positive subnormal number 00000001 1.40129846e-45

+ 7f800000 Infinity

- ff800000 -Infinity

Not-a-Number 7fc00000 NaN

A NaN (Not a Number) can be represented with any of the many bit patterns that satisfy the
definition of a NaN. The hex value of the NaN shown in the above table is just one of the many
bit patterns that can be used to represent a NaN.

Double Format

The IEEE double format consists of three fields: a 52-bit fraction, f; an 11-bit biased exponent,
e; and a 1-bit sign, s. These fields are stored contiguously in two successively addressed 32-bit
words.

In the SPARC architecture, the higher address 32-bit word contains the least significant 32 bits
of the fraction, while in the Intel and PowerPC architectures the lower address 32-bit word
contains the least significant 32 bits of the fraction.

If we denote f[31:0] the least significant 32 bits of the fraction, then bit 0 is the least significant
bit of the entire fraction and bit 31 is the most significant of the 32 least significant fraction bits.

In the other 32-bit word, bits 0:19 contain the 20 most significant bits of the fraction, f[51:32],
with bit 0 being the least significant of these 20 most significant fraction bits, and bit 19 being
the most significant bit of the entire fraction; bits 20:30 contain the 11-bit biased exponent, e,
with bit 20 being the least significant bit of the biased exponent and bit 30 being the most
significant; and the highest-order bit 31 contains the sign bit, s.

The values of the bit patterns in these three fields determine the value represented by the
overall bit pattern.

The following table shows the correspondence between the values of the bits in the three
constituent fields, on the one hand, and the value represented by the double- format bit pattern

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 283

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-25

on the other; u means don't care, because the value of the indicated field is irrelevant to the
determination of value for the particular bit pattern in double format.

Table: Values Represented by Bit Patterns in IEEE Double Format

XXX Double-Format Bit Pattern Value

0 < e < 2047 (-1)s x 2e-1023 x 1.f (normal numbers)

e = 0; f != 0

(at least one bit in f is nonzero)

(-1)s x 2-1022 x 0.f (subnormal numbers)

e = 0; f = 0

(all bits in f are zero)

(-1)s x 0.0 (signed zero)

s = 0; e = 2047; f = 0

(all bits in f are zero)

+Infinity (positive infinity)

s = 1; e = 2047; f = 0

(all bits in f are zero)

-Infinity (negative infinity)

s = u; e = 2047; f != 0

(at least one bit in f is nonzero)

NaN (Not-a-Number)

Notice that when e < 2047, the value assigned to the double-format bit pattern is formed by
inserting the binary radix point immediately to the left of the fraction's most significant bit, and
inserting an implicit bit immediately to the left of the binary point. The number thus formed is
called the significand. The implicit bit is so named because its value is not explicitly given in the
double- format bit pattern, but is implied by the value of the biased exponent field.

For the double format, the difference between a normal number and a subnormal number is that
the leading bit of the significand (the bit to the left of the binary point) of a normal number is 1,
whereas the leading bit of the significand of a subnormal number is 0. Double-format subnormal
numbers were called double-format denormalized numbers in IEEE Standard 754.

The 52-bit fraction combined with the implicit leading significand bit provides 53 bits of precision
in double-format normal numbers.

Examples of important bit patterns in the double-storage format are shown in the next table. The
bit patterns in the second column appear as two 8-digit hexadecimal numbers. For the SPARC
architecture, the left one is the value of the lower addressed 32-bit word, and the right one is the
value of the higher addressed 32-bit word, while for the Intel and PowerPC architectures, the
left one is the higher addressed word, and the right one is the lower addressed word. The
maximum positive normal number is the largest finite number representable in the IEEE double
format. The minimum positive subnormal number is the smallest positive number representable
in IEEE double format. The minimum positive normal number is often referred to as the
underflow threshold. (The decimal values for the maximum and minimum normal and subnormal
numbers are approximate; they are correct to the number of digits shown.)

Table: Bit Patterns in Double-Storage Format and their IEEE Values

ISO/PAS 22720:2005(E)

284 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-26 ASAM ODS VERSION 5.0

Common Name Bit Pattern (Hex) Decimal Value

+ 0 00000000 00000000 0.0

 - 0 80000000 00000000 -0.0

 1 3ff00000 00000000 1.0

 2 40000000 00000000 2.0

Max normal number 7fefffff ffffffff 1.7976931348623157e+308

Min positive normal number 00100000 00000000 2.2250738585072014e-308

Max subnormal number 000fffff ffffffff 2.2250738585072009e-308

Min positive subnormal number 00000000 00000001 4.9406564584124654e-324

 + 7ff00000 00000000 Infinity

 - fff00000 00000000 -Infinity

Not-a-Number 7ff80000 00000000 NaN

A NaN (Not a Number) can be represented by any of the many bit patterns that satisfy the
definition of NaN. The hex values of the NaN shown in the above table is just one of the many
bit patterns that can be used to represent a NaN.

Syntax diagram real:

+ *-

Infinity

+

+

e

E

+

-

NaN

-

+ - *

+

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 285

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-27

5.7.7 STRUCTURE OF COMPLEX NUMBERS (COMPLEX)

Complex numbers are handled as pairs of real numbers for which the syntax diagrams above
apply. The number of items in a complex sequence is twice that of a real sequence. The order
within the sequence is:

1st real part
1st imaginary part
2nd real part
2nd imaginary part
3rd real part ...

Syntax diagram complex:

5.7.8 STRUCTURE OF CHARACTER CONSTANTS (CHARACTER)

Character constants are enclosed in single quotation marks and may contain only characters.
For non-printable characters the usual C alternative representations are used (see also Escape
sequences).

Syntax diagram character:

It is to be considered that character constants are only another representation of 8 bit integer
values (byte). The internal representation is identical.

‘‘

escape

escapenonprint

real real

ISO/PAS 22720:2005(E)

286 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-28 ASAM ODS VERSION 5.0

5.7.9 STRUCTURE OF STRINGS (STRING)

Strings are enclosed in double quotation marks and may contain any arbitrary number of
representable characters. An empty string is also allowed. Composed text constants "..." + "..."
are planned for future versions, but not yet implemented.

Syntax diagram string:

Momentarily some Escape sequences are already used in networks. These sequences start
with a backslash (\). In future versions new elements may be defined (e.g \a or \c). When using
the backslash in strings it should be already written as „\\“, to be compatible with future versions
(e.g. „\auto“ becomes „\\auto“).

Please note that a double quote inside a string MUST be preceded by a backslash, otherwise it
would be regarded as end-of-string.

Please note that linefeeds that belong to the string must be encoded as \n, while .CR. and .LF.
may be used to distribute a long string over several lines to enable easy editing and printing.

escape

“”

escapenonprint

newline

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 287

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-29

5.7.10 STRUCTURE OF BYTESTREAM (BYTESTREAM)

Bytestreams are represented like strings with special contents. Only the 16 Hex characters are
allowed plus linefeeds to allow editing and printing of the ATF/CLA file.

Please note, that the length of the bytestream is NOT written. This eventually requires a
recalculation of the bytestream length on reading.

Syntax diagram bytestream:

””

newline

ISO/PAS 22720:2005(E)

288 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-30 ASAM ODS VERSION 5.0

5.7.11 STRUCTURE OF IDENTIFIERS (IDENTIFIER)

For the definition of names of identifiers the rules of the ASAM standard apply. Special
characters in identifiers which could lead to ambiguities within the syntax are started with a
backslash.

Because the readability of an ATF/CLA file may be affected by identifiers with special
characters, those kind of identifiers should probably not be used.

The names of identifiers must always start with a letter, an underscore or a defined Escape
sequence. The length of names is not restricted in an ATF/CLA file.

Syntax diagram identifier:

escape

escape

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 289

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-31

5.7.12 STRUCTURE OF FILENAMES (FILENAME)

The path- and filenames used as references in an ATF/CLA file must be transportable and
interpretable on a wide range of computer architectures. Thus, a general format for the
definition of path- and filenames is paramount, which has to be easily interpreted and converted
for the target machine.

The Uniform Resource Locator (URL) used in the worldwide Internet is already working on
different platforms. Through the naming conventions of the URL it will be possible for future
ATF/CLA versions to have ATF/CLA files distributed within a network.

The URL describes a protocol for the target server, the target system the machine or server
name, the port, the directory path and the filename. The URL has the following structure:

access_method://server_name[:port]/directory_path/filename

EXAMPLE:

The following example shows an URL for a resource on a remote machine
(the master list of all World Wide Web servers).

With the protocol HTTP (Web) the server named www.w3.org is adressed.
By using the standard port you find the directory
/hypertext/DataSources/WWW, which contains the hypertext document
Geographical.html.

http://www.w3.org/hypertext/DataSources/WWW/Geographical.html

Each file in the Internet is by means of the URL uniquely adressable.

If the protocol references the contents of a directory, the URL ends with a slash „/“. When
referencing a file within the directory no slash follows.

The most used protocols in URLs are:

http: The HyperText Transfer Protocol (the protocol of the World Wide
Web (WWW))

file: The URL contains only a filename, not an address.

ftp: The File Transfer Protocol for transferring files.

gopher: The Gopher protocol for transferring files and for navigation in
Gopher systems

mailto: The Internet Mail Protocol for sending E-mails to a recipient.

news: The Internet-News protocol for polling articles or newsgroups.

rlogin: A remote login for a defined machine.

telnet: Starts a terminal session via Internet to a defined machine.

ISO/PAS 22720:2005(E)

290 © ISO 2005 – All rights reserved

method://server_name[:port]/directory_path/filename
http://www.w3.org/hypertext/DataSources/WWW/Geographical.html
mailto:The

ASAM ODS VERSION 5.0

5-32 ASAM ODS VERSION 5.0

URLs as the ones described above are called absolute URLs, because they contain the full
pathname of a file. A simplified format of URLs is called relative URL. This simplified format
references other documents on the same server as the actual document. With relative URLs, an
ATF/CLA file can reference directly the physical components without referencing the server. In
the current version of ATF/CLA only relative URLs are supported.

Absolute URLs may reference any resource within the Internet, including local resources. Due
to reasons explained later, relative URLs are better suited for local resources.

A relative URL implies the same access method, the same server name and the same directory
path as the ATF/CLA file containing the URL. It describes the relative position of the component
of the ATF/CLA file in relation to the actual ATF/CLA file.

EXAMPLE:
../../matrix_xyz.dat

Relative URLs make it possible to move the ATF/CLA directory structure to any position in the
directory tree. A relative URL does not have to reference the directory of the actual document
but may contain a reference relative to the root of the ATF/CLA file. This variant of relative URLs
starts with a slash (/). It looks similar to an absolute URL but does not contain the access
method and the server name.

The correct conversion of pathnames in both directions and the insertion of correct separators
are the responsibility of the ATF/CLA reading and writing programs on the respective target
systems.

If filenames are too long for the target system (e.g. length of DOS-filenames 8.3), the filenames
will be shortened following these rules: After the first colon within the filename a maximum of 3
more characters are allowed. None of these characters may be a colon. If there are more than 3
characters or another colon , the rest will be truncated. Unallowed characters are substituted by
a tilde (swung dash).

The number of characters in front of the colon is counted and truncated to 8 characters. If this
results in filenames which are not unique, the algorithms from Windows 95 can be used
(truncating to 6 characters and using the latter 2 characters for numbering).

In this case manual editing of the ATF/CLA file is most likely. While all the needed files are
concentrated within the FILES block the manual editing should not be too work-intensive.

To make the transfer of files to the world of UNIX easier filenames will always be written in
lowercase, even on operating systems which are not case-sensitive (VAX/VMS, MS-Windows).
Filenames in uppercase are only used on demand when path and filenames on the UNIX
machine should be in uppercase.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 291

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-33

Syntax diagram filename:

 access_method server_name directory_name filename

5.7.13 PREDEFINED DATA TYPES (DATATYPE)

The data types of application and instance attributes may be freely chose DATATYPE n within
the range of the following predefined data types:

DT_BOOLEAN Logical value (TRUE/FALSE).

DT_BYTE Single byte (8 Bit), no sign bit.

DT_SHORT Integer with 16 Bit, including one sign bit.

DT_LONG Integer with 32 Bit, including one sign bit.

DT_LONGLONG Integer with 64 Bit, including one sign bit.

DT_FLOAT Floating-point number with 32 bit.

DT_DOUBLE Floating-point number with 64 bit.

DT_COMPLEX Complex floating-point number with 32 bit parts.

DT_DCOMPLEX Complex floating-point number with 64 bit parts.

DT_STRING String enclosed in double quotation marks.

DT_ENUM Enumeration denoting a limited set of strings that follows
the keyword delimited by square brackets.

DT_BYTESTR Byte stream: Binary Data

DT_BLOB BinaryLargeObjectBlock: Named byte stream

DT_DATE ASAM date type (string representation)

DT_UNKNOWN Special type for baseattribute values from LocalColumn

DT_EXTERNALREFERENCE External reference: three strings separated by colon:
(description, mimetype, location)

The internal representation of these data types depend on the used machine type, the data
storage system and the requirements of the users. Within the ATF/CLA file the data type
DT_DATE is stored as normal string enclosed in quotation marks.

The conversion in a format applicable for databases or computations is the responsibility of the
respective application.

+

+

+

+

ISO/PAS 22720:2005(E)

292 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-34 ASAM ODS VERSION 5.0

Syntax diagram datatype:

Please Note:

DT_UNKNOWN is only allowed at the base attribute “values” of AoLocalColumn.

For structure of enumeration see following section.

DT_BOOLEAN

DT_BYTE

DT_SHORT

DT_LONG

DT_LONGLONG

DT_FLOAT

DT_DOUBLE

DT_DATE

DT_BYTESTR

DT_BLOB

DT_COMPLEX

DT_DCOMPLEX

DT_UNKNOWN

DT_EXTERNALREFERENCE

DT_STRING

enumeration

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 293

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-35

5.7.14 STRUCTURE OF ENUMERATION

The keyword DT_ENUM is used to describe an enumeration type in the application model. An
enumeration has a limited set of allowed strings. This set is written behind the keyword
DT_ENUM and is shall be enclosed in square brackets. The strings shall follow the rules for
identifiers and they shall be separated by commas.

Syntax diagram enumeration:

Within instance elements there are two possibilities to represent instantiated attributes which
contain enumerations:

 Representation as String

The string must contain one of the identifiers which were defined between the brackets of the
definition of APPLATTR.

EXAMPLE:
APPLELEM ...
APPLATTR exampleAttr, DATATYPE DT_ENUM [First, Second, Third];

...

INSTELEM ...
exampleAttr = “Third”

 Representation as Integer

The integer contains a null-based index to the list of strings which were defined between the
brackets of the definition of APPLATTR.

EXAMPLE:
APPLELEM ...
APPLATTR exampleAttr, DATATYPE DT_ENUM [First, Second, Third];

...

INSTELEM ...
exampleAttr = 2; /*meaning: “Third”*/

DT_ENUM identifier[

ISO/PAS 22720:2005(E)

294 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-36 ASAM ODS VERSION 5.0

5.7.15 STRUCTURE OF THE ATF/CLA VERSION IDENTIFIER (VERSION)

The keyword ATF_FILE starts an ATF/CLA file and must be set at the beginning of the
respective file. This keyword is followed by the version number of the ATF/CLA standard, on
which the generation of the file is based. All information before this line are ignored, the
interpretation starts after the recognition of the keyword „ATF_FILE“. Reading programs must
be able to ignore lines before the line with the keyword. Lines before this keyword are not
stored.

Important comments should be inserted after the ATF_FILE line. This is due to applications
which will not always copy lines before the ATF_FILE line.

When sending files via E-mail the routing information are inserted at the beginning of the
respective file. In this case it is inconvenient for the recipient to erase these information with an
editor.

Syntax diagram version:

EXAMPLE:
This is the beginning of an ASAM file. All information

before the keyword ATF_FILE are ignored

/* even if they are marked as comment.*/

ATF_FILE V1.4.1;

// Created Fri May 09 16:28:45 2003

// by user GUEST on host ASAM with program APPLICATION1

The information when and where the ATF/CLA file has been created is an optional comment
which has proven to be useful for tracking bugs and problems and for archive purposes.

;ATF_FILE -V + +

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 295

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-37

5.7.16 STRUCTURE OF THE FILES BLOCK (FILES)

The FILES block is used to list all the physical files belonging to an ATF/CLA file. Such files can
be either include files that are used by an INCLUDE statement (see next section) or binary
component files that are used to represent large amounts of values like in local columns (see
COMPONENT section). The ATF file (the one containing the “ATF_FILE” and “ATF_END;”
statements) plus all the files listed in the FILES block can be regarded as one logical file. The
FILES block is optional, because not every logical file is physically distributed over several files.

This block must be inserted before the first APPELEM-, INSTELEM instruction and must
reference valid ASAM files. The order of the files is arbitrary. There is only one FILES block
allowed within an ATF/CLA file. Therefore it must not be located in an included file.

A reading application must be sure that no files other than those defined in the Files block
belong to the logical ATF/CLA file. All physical files belonging to a logical ATF/CLA file must be
declared in the FILES block in COMPONENT statements. Please keep in mind that a file
declared as such a component is not necessarily a binary component.

The definition of any number of components is allowed. The order of the components within the
blocks is arbitrary. The indentations within the following example shall enhance the readability
and are not mandatory.

The names of the components may then be used in INCLUDE instructions as well as in
COMPONENTs in the data.

Syntax diagram files:

The component definitions are only allowed within the FILES block. The filenames are:
- simple filenames (for files stored in the same directory as the ATF/CLA file);
- absolute pathnames (to be handled with care);
- relative pathnames (relative to the directory in which the ATF/CLA file is stored).

EXAMPLE:
FILES

 // Reference to more physical files

 // ... with the internal name "component_1"

 COMPONENT file_1 = "../data/k1.dat";

 COMPONENT file_2 = "atf_struct.inc";
 <...>

ENDFILES;

filename“ “COMPONENT identifier ;FILES ENDFILES= ;

ISO/PAS 22720:2005(E)

296 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-38 ASAM ODS VERSION 5.0

5.7.17 STRUCTURE OF THE INSTRUCTION INCLUDE (INCLUDE)

With the instruction INCLUDE a file is being inserted in the presently processed file. This
instruction may be positioned anywhere in the file but not before the FILES section. The only
condition is that the information contained in the Include file must be inserted syntactically
correct at the respective position.

The INCLUDE instruction will be replaced immediately with the content of the referenced file. It
is allowed to insert a file more than once in different positions of the main file.

Typically inserted files contain alias definitions, structure information or instance elements that
are required in more than one ATF/CLA file and should only be defined once or data which have
to be grouped. An example for such a file is a Measurement Quantity catalog which contains all
the sizes and size groups required in a special environment.

Please note that these include files are ASCII files; their use is different from the use of binary
component files.

Syntax diagram include:

EXAMPLE:
FILES

// Reference to more physical files

// ... with the internal name "component_1"

COMPONENT file_1 = "../data/k1.dat";

COMPONENT file_2 = "atf_struct.inc";
//...

ENDFILES;

INCLUDE file_1;

INCLUDE file_2, file_1;

;INCLUDE identifier

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 297

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-39

5.7.18 REFERENCES TO UNITS (PHYS_UNIT)

The physical unit of instance attributes may be defined by the information derived from the base
element„unit“. It may also be described explicitly as explained below. In this case the name of
the unit is written without quotation marks and enclosed in brackets.

EXAMPLE:
Power = 123 [kW]

Acceleration = 4.34 [m/s^2]

Syntax diagram phys_unit:

Please note: The unit string must not contain square brackets, they must be encoded as
escapes.

In an ATF/CLA file such a definition may be set behind the attribute to assign the respective
units.

[]

escape

ISO/PAS 22720:2005(E)

298 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-40 ASAM ODS VERSION 5.0

5.7.19 VALUES OF DATA ATTRIBUTES (DATAVALUE)

The data values of attributes of the instances elements (see section „instance elements“) have
the following format. This includes also the values for instance attributes. The attribute
specification of the application elements (see section „application elements“) determine, which
of the types is to be used.

Syntax diagram datavalue:

5.7.20 STRUCTURE OF APPLICATION ELEMENTS (APPLELEM)

The APPLELEM construct allows to specify application elements that are derived from the
standardized base elements. Therefore the keyword BASETYPE followed by a valid base
element name is mandatory. The attributes may be derived from base attributes or application
specific attributes may be specified. Some of the attributes may be references to other
application elements. If the attribute is a reference, the application element which is referenced
may be specified with the keyword REF_TO. If the attribute is not derived from a baseattribute
the keyword REF_TO has to be given.

Attributes derived from base attributes inherit their data type from their base attribute - thus
specifying a data type for derived attributes is not necessary. For each attribute a cardinality
may be specified.

The keyword CARDINALITY specifies how many instances can be referenced or how many
datavalues may be given. The keyword is followed by two integers. The first integer defines the
minimum number of values and the second integer the maximum number. If the maximum
number is unknown (or infinit) the second integer is replaced by the keyword MANY. If the
CARDINALITY clause is not present a default of 0 (minimum number) and 1 (maximum number)
is assumed.

bytestream

complex

integer

TRUE

UNDEFINED

FALSE

real

string

character

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 299

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-41

The definition of any number of application attributes is allowed. The order of the definitions
within the blocks is arbitrary. The indentations within the following example shall enhance the
readability and are not mandatory.

Syntax diagram applelem:

Syntax diagram applattr:

APPLELEM BASETYPE identifieridentifier

applattr
cardinality

;; ENDAPPLELEM

APPLATTR identifier

REF_TO identifier

datatypeDATATYPEBASEATTR identifier

REF_TO identifier

datatypeDATATYPE

ISO/PAS 22720:2005(E)

300 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-42 ASAM ODS VERSION 5.0

Syntax diagram cardinality:

Within the ASAM data model application elements are related to other application elements. For
example a test may posses several measurements and a measurement can be possessed by a
test.

In an ATF/CLA file such relation attributes are declared with the keyword REF_TO. The entity
„measurement“ contains for example the attribute „BASEATTR measurement_quantities“.

EXAMPLE:
APPLELEM SpecialMeasurement, BASETYPE AoMeasurement

 APPLATTR ID, BASEATTR id;
 APPLATTR Name, BASEATTR name;

 APPLATTR myMeasurementQuantities,

 BASEATTR measurement_quantities,

 REF_TO MeasurementQuantity,

 CARDINALITY 0,MANY;
ENDAPPLELEM;

APPLELEM MeasurementQuantity, BASETYPE AoMeasurementQuantity

 APPLATTR ID, BASEATTR id;

 APPLATTR Name, BASEATTR name;
 //...

ENDAPPLELEM;

5.7.21 STRUCTURE OF INSTANCE ELEMENTS (INSTELEM)

The instruction instelem is used to define instance elements. Within the ASAM data model
instance elements relate to other instance elements. For example a test may have several
measurements, on the other hand a measurement may tell to which test it belongs.

The order of attribute assignments is arbitrary. Application attributes without assigned values
have the default value UNDEFINED. Within an instance element an arbitrary number of new
instance attributes may be defined and assigned. For these instance attributes a data type has
to be given.

CARDINALITY integer
integer

MANY

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 301

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-43

Syntax diagram instelem:

Syntax diagram data_attribute_values:

Please remember:
A circle represents a whitespace, a square represents a separator;
hollow means optional, full means mandatory.

INSTELEM identifier

identifier ;=

;ENDINSTELEM

data_attribute_values

reference_attribute_values

datavalue

phys_unitDATATYPE datatype component

ISO/PAS 22720:2005(E)

302 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-44 ASAM ODS VERSION 5.0

Special attribute „values“ of AoLocalColumn

The base element AoLocalColumn holds in its attribute „values“ a sequence of data of a certain
type. This sequence shall NOT appear as a separate object, therefore no reference to a
sequence is given in the attribute „values“. Instead in this attribute are written DIRECTLY the
values contained in the sequence. The type of the sequence must be indicated by the construct
„DATATYPE datatype“ with datatype = DT_...

Please note this handling in the example given in section 5.7.22 (example 1).

Syntax diagram reference_attribute_values:

EXAMPLE:
INSTELEM measurement
 //<...>

 ID = 47

 Name = "Example for a measurement";

 //<...>

ENDINSTELEM;

REF_TYPE identifier integer

UNDEFINED

ASAM path

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 303

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-45

For identifying an instance the attribute which is derived from the baseattribute id will be taken.
This ID is unique within the instances of an application element and can be used to reference
the respective instances. The IDs in the referencing element are separated by commas.

EXAMPLE:
INSTELEM Measurement

 ID = 121;

 Name = "Exhaust gas testing";

 //...

 Measurement_Quantitys = 200, 201, 202;
ENDINSTELEM;

INSTELEM Measurement_Quantity

 ID = 200;

 Name = "Time";
 //...

ENDINSTELEM;

Incomplete data on ATF/CLA-File:

If not all references can be satisfied in an ATF/CLA-File, then for some Ids it is not possible to
give the integer value. In this case it may be replaced by a string that describes the location of
the reference by means of the „ASAM Path“.

An ASAM Path has an optional Service-Name (if included: „Full ASAM Path“, if omitted: „Local
ASAM Path“) and then an arbitrary number of instance specifications, each of them containing
the application element name, the instance element name and optional the version. Name and
version are the content of the string values of the attributes „name“ resp. „version“.

In the following syntax diagram these 4 names are represented by identifiers.

Syntax diagram ASAM path:

In the first Identifier (service name) may be given a file name, on which the instance can be
found.

identifier identifier
identifieridentifier[]/

[]

ISO/PAS 22720:2005(E)

304 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-46 ASAM ODS VERSION 5.0

EXAMPLE: DETAILED REFERENCE SPECIFICATION:

The following example shows the use of the keyword REF_TYPE for the
case that an application element was subtyped further and instance ids are
not unique within all subtypes. In the example there are the entities Eq1 and
Eq2 which are both subtypes of the application element Equipment (which
may be a subtype of the base element AoTestEquipmentPart). If the
application model specifies a reference to „Equipment“, then the construct
shown here can distinguish the instances of Eq1 and Eq2.

INSTELEM ThisEq1

ID = 1;

Name = "Engines";

//...
Tests = REF_TYPE Eq1 200, 201,

 REF_TYPE Eq2 200;

ENDINSTELEM;

INSTELEM Eq1
ID = 200;

//...

ENDINSTELEM;

INSTELEM Eq1
ID = 201;

//...

ENDINSTELEM;

INSTELEM Eq2
ID = 200;

//...

ENDINSTELEM;

5.7.22 STRUCTURE OF COMPONENTS (COMPONENT)

In ASAM ODS the measured data is described by the base element Local Column. These
columns are referred by measurement quantities and submatrices. While other elements like
Measurement_quantity and Submatrix can be dealt with as normal base elements, the local
column often refers large external binary datasets. Mainly for this reason, the COMPONENT
construct was provided in this ATF/CLA specification. This construct allows to include binary
data in an ASCII file and therefore can save considerable time and space in transmission and
storage.

Each component must have been defined in advance within the FILES block. The specification
for the binary data must be added where the binary component has to be inserted, i.e. usually
after the equals sign of an attribute in an instance element.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 305

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-47

Syntax diagram component:

VALOFFSETS

BLOCKSIZE integerINIOFFSET integer

VALPERBLOCK integer integer

ENDCOMPONENT

COMPONENT identifier

DT_BLOB

DT_STRING

DT_BYTESTR

integer

integer

integer

DESCRIPTION string

INIOFFSET integer

ENDCOMPONENT

ENDCOMPONENT

IEEEFLOAT8(_BEO)

DT_LONG(_BEO)

IEEEFLOAT4(_BEO)

DT_SHORT(_BEO)

DT_BYTE

DT_BOOLEAN

DT_LONGLONG(_BEO)

ISO/PAS 22720:2005(E)

306 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-48 ASAM ODS VERSION 5.0

The whole component description has to be inserted in the attribute instead of the ASCII
representation of the values. The format is given in the syntax diagram in this section, any
additional information shall be given here.

Component identification:

Behind the keyword COMPONENT an identifying name must be given. This name must have
been announced in the FILES block at the beginning of the ATF/CLA file. Please note that in
case of a blob this name is not identical with the blob header (which is put after the
DESCRIPTION keyword).

Type specification:

The physical data type specifies the manner in which the data is stored on the file. In this
specification simple integer types, the IEEE-floating point formats and several byte formats are
accepted:

DT_BOOLEAN

DT_BYTE

DT_SHORT

DT_LONG

DT_LONGLONG

IEEEFLOAT4

IEEEFLOAT8

DT_SHORT_BEO

DT_LONG_BEO

DT_LONGLONG_BEO

IEEEFLOAT4_BEO

IEEEFLOAT8_BEO

DT_STRING

DT_BYTESTR

DT_BLOB

Length specification:

The integer value behind the type specifies the amount of data to be read from the component.
In case of DT_STRING, DT_BYTESTR and DT_BLOB it denotes the number of bytes to be
read; in all other cases (integers, floats, bits and bytes) it denotes the number of values to be
read. In the case of blobs this specification is equivalent with the length of the file on which the
blob is located, because in a COMPONENT only one blob can be referred. All other types may
occur in sequences on a component file.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 307

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-49

Representation of BOOLEAN:

In a binary component file each boolean shall be represented by one bit (0=false, 1=true).
These bits are filled into a sequence of bytes. If the number of bits is not sufficient to fill a byte
completely, then the rest of that byte shall remain unused. The byte is filled from left to right, i.e.
beginning with the most significant bit. In the byte sequence (by1, by2, by3,...) the
n-th boolean (n is one-based) can be located using the following integer formula. Assuming the
bit positions in a byte numbered (again from left to right) 7,6,5,4,3,2,1,0 then the n-th boolean is
in the lby-th byte at bit position lbi:

lby = (n+7) / 8

lbi = lby*8 - n

The number of used bytes (Nby) can be calculated from the number of booleans (Nbi) by
integer arithmetic

Nby = 1 + (Nbi-1) / 8

In the syntax diagram the integer after DT_BOOLEAN shall denote the number of bits (i.e. the
number of given booleans.

Representation of BYTE:

This data type is represented simply by bytes. Thus the integer behind DT_BYTE denotes the
number of byte values in the sequence, in case of a single value it is set to 1.

Representation of SHORT:

This 16-bit integer data type is represented by 2 bytes. If the keyword DT_SHORT is given, then
the least significant byte comes first (lower address), the most significant byte comes last
(higher address). If the keyword DT_SHORT_BEO is given, then the most significant byte
comes first, the least significant byte comes last; this order is also known as "Big Endian Order".
The integer behind DT_SHORT (resp. DT_SHORT_BEO) denotes the number of integer values
in the sequence, in case of a single value it is set to 1.

Representation of LONG:

This 32-bit integer data type is represented by 4 bytes. If the keyword DT_LONG is given, then
the least significant byte comes first (lower address), the most significant byte comes last
(higher address). If the keyword DT_LONG_BEO is given, then the most significant byte comes
first, the least significant byte comes last; this order is also known as "Big Endian Order". The
integer behind DT_LONG denotes the number of integer values in the sequence, in case of a
single value it is set to 1.

Representation of LONGLONG:

This 64-bit integer data type is represented by 8 bytes. If the keyword DT_LONGLONG is given,
then the least significant byte comes first (lower address), the most significant byte comes last
(higher address). If the keyword DT_LONGLONG_BEO is given, then the most significant byte
comes first, the least significant byte comes last; this order is also known as "Big Endian Order".
The integer behind DT_LONGLONG denotes the number of integer values in the sequence, in
case of a single value it is set to 1.

ISO/PAS 22720:2005(E)

308 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-50 ASAM ODS VERSION 5.0

Representation of FLOAT:

This data type is represented by 4 bytes. If the keyword IEEEFLOAT4 is given, then the least
significant byte comes first (lower address), the most significant byte comes last (higher
address). If the keyword IEEEFLOAT4_BEO is given, then the most significant byte comes first,
the least significant byte comes last; this order is also known as "Big Endian Order". The
location of sign, exponent and mantissa is described in the section “Structure of Floating Point
Numbers”. The integer behind IEEEFLOAT4 denotes the number of float values in the
sequence, in case of a single value it is set to 1.

Representation of DOUBLE:

This data type is represented by 8 bytes. If the keyword IEEEFLOAT8 is given, then the least
significant byte comes first (lower address), the most significant byte comes last (higher
address). If the keyword IEEEFLOAT8 _BEO is given, then the most significant byte comes first,
the least significant byte comes last; this order is also known as "Big Endian Order". The
location of sign, exponent and mantissa is described in the section “Structure of Floating Point
Numbers”. The integer behind IEEEFLOAT8 denotes the number of float values in the
sequence, in case of a single value it is set to 1.

Representation of COMPLEX:

Complex numbers are controlled by the keywords IEEEFLOAT4 and IEEEFLOAT8 (resp.
IEEEFLOAT4_BEO and IEEEFLOAT8_BEO). The number of values must be doubled (i.e. only
even numbers are legal). For a single complex value the integer after the data type is 2, for a
sequence of 7 complex values the integer is 14. The order in complex sequences is

- real part of first sequence member

- imaginary part of first sequence member

- real part of second sequence member

- imaginary part of second sequence member

- ...

Representation of STRING:

This data type is represented by bytes. Each string is terminated by a NULL byte which
increases the required space for that string by 1. In a sequence of strings each member of the
sequence has a terminating NULL byte, and these NULL bytes are included in the total length of
the component which is given in the integer after DT_STRING. The data type DT_STRING may
not be mixed with other data types on the same component file.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 309

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-51

Representation of BYTESTR:

This data type is represented by bytes. In a bytestream the first 4 bytes denote the number of
bytes following after these 4 bytes. In a sequence of bytestreams the next length indication
follows immediately after the last byte of the previous member of the sequence. Please note
that the 4 length indication bytes are given in “Big Endian Order”, i.e. with the most significant
byte first.

EXAMPLE:

2 bytestreams with contents "ABCDEFG" and "XYZ" shall be represented by
00 00 00 07 41 42 43 44 45 46 47 00 00 00 03 58 59 5A
The total length is 18, this 18 is written in the integer after DT_BYTESTR.

The data type DT_BYTESTR may not be mixed with other data types on the same component
file.

Representation of BLOB:

A blob is a stream of bytes with a known length and a header. While in ASCII format such a blob
is represented by two strings (the first one contains the header, the second one contains the
bytestream), this is handled different in components:

- The header of the blob shall go into the string given after the keyword DESCRIPTION;

- the length of the blob is given in the integer after DT_BLOB (this is compatible with the
other length indications since there is always only one blob at a time);

- the content of the blob is on the binary file (which contains nothing but this blob).

The data type DT_BLOB may not be mixed with other data types on the same component file.

Other parameters:

With INIOFFSET the number of bytes in the file header is specified. This file header is skipped
when accessing the file. Since a blob always covers a whole file, there is no INIOFFSET in blob
components.

The rest of the file (beginning after the header) is regarded as one ore many blocks. A block
consists of values. These values may belong to different components and (in case of numerical
data) may have different data types. Within a block also several values may belong to the same
component, see examples at the end of this section. For all numerical data types a blocksize
must be specified. The BLOCKSIZE is given in Byte.

The number of values in each block belonging to the desired component is given with
VALPERBLOCK. For each of these values the offset within a block must be specified in bytes.
All these offsets are collected behind the keyword VALOFFSETS. The procedure is shown in
the examples below.

ISO/PAS 22720:2005(E)

310 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-52 ASAM ODS VERSION 5.0

EXAMPLE 1: LOCAL COLUMN WITHOUT COMPONENT

In the following instance the data is physically given on the ATF/CLA file:

INSTELEM localcolumn
 ID = 2;

 Values = DATATYPE DT_DOUBLE

 ,260.

 ,270.

 ,280.
 ,290.

 ,300.

 ,310.

 ,320.

 ,330.
 ,340.

 ,350.

 ,360.;

ENDINSTELEM;

EXAMPLE 2: ONE LOCAL COLUMN ON ONE FILE

This file contains one measurement quantity with one measured value
channel with double precision floating-point numbers.

INSTELEM localcolumn

 ID = 3;

 Values = DATATYPE DT_DOUBLE,

 COMPONENT binary_file,IEEEREAL8 11, INIOFFSET 0,

 BLOCKSIZE 8, VALPERBLOCK 1, VALOFFSETS 0

 ENDCOMPONENT;

ENDINSTELEM;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 311

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-53

EXAMPLE 3: TWO LOCAL COLUMNS ONE AFTER ANOTHER

This file contains two measurement quantities with
 one measured value channel with 10 double precision floating-point

numbers.
 one measured value channel with 10 short integer numbers.

The second COMPONENT has an offset of 800 bytes to skip the first
COMPONENT.

INSTELEM localcolumn
 ID = 4;

 Values = DATATYPE DT_DOUBLE,

 COMPONENT binary_file,IEEEREAL8 10, INIOFFSET 0,

 BLOCKSIZE 8, VALPERBLOCK 1, VALOFFSETS 0

 ENDCOMPONENT;
ENDINSTELEM;

INSTELEM localcolumn

 ID = 3;

 Values = DATATYPE DT_SHORT,

 COMPONENT binary_file, DT_SHORT 10, INIOFFSET 800,
 BLOCKSIZE 8, VALPERBLOCK 1, VALOFFSETS 0

 ENDCOMPONENT;

ENDINSTELEM;

EXAMPLE 4: TWO LOCAL COLUMNS ALTERNATING ON ONE FILE

This file contains two measurement quantities which were measured with
the same sampling rate.

 one generated time channel with double precision floating-point numbers
 one measured value channel with short integer numbers.

These values were written alternately to the file. They are referred by two
local columns.

INSTELEM localcolumn
 ID = 6;

 Values = DATATYPE DT_DOUBLE,

 COMPONENT binary_file,IEEEREAL8 1000, INIOFFSET 0,

 BLOCKSIZE 10, VALPERBLOCK 1, VALOFFSETS 0

 ENDCOMPONENT;
ENDINSTELEM;

INSTELEM aolocalcolumn

 ID = 7;

 Values = DATATYPE DT_SHORT,
 COMPONENT binary_file, INT2 1000, INIOFFSET 0,

 BLOCKSIZE 10, VALPERBLOCK 1, VALOFFSETS 8

 ENDCOMPONENT;

ENDINSTELEM;

ISO/PAS 22720:2005(E)

312 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-54 ASAM ODS VERSION 5.0

EXAMPLE 5: THREE LOCAL COLUMNS WITH DIFFERENT SAMPLING RATES ON ONE FILE

This file contains three measurement quantities measured with different
sampling rates:

 one value channel with double precision floating-point numbers with 10
Hertz

 one value channel with short integer numbers with 20 Hertz
 one value channel with long integer numbers with 30 Hertz.

The values were written to the file as they came from the measuring
instrument. Before the first measured data the instrument sents 32 Bytes of
parameters.
Three local columns are needed.

INSTELEM localcolumn

 ID = 8;
 Values = DATATYPE DT_DOUBLE,

 COMPONENT binary_file,IEEEREAL8 10000, INIOFFSET 32,

 BLOCKSIZE 24, VALPERBLOCK 1, VALOFFSETS 0

 ENDCOMPONENT;

ENDINSTELEM;

INSTELEM localcolumn

 ID = 9;

 Values = DATATYPE DT_SHORT,

 COMPONENT binary_file,INT2 20000, INIOFFSET 32,
 BLOCKSIZE 24, VALPERBLOCK 2, VALOFFSETS 8,18

 ENDCOMPONENT;

ENDINSTELEM;

INSTELEM localcolumn
 ID = 10;

 Values = DATATYPE DT_LONG,

 COMPONENT binary_file,INT4 30000, INIOFFSET 32,

 BLOCKSIZE 24, VALPERBLOCK 3, VALOFFSETS 10,14,20

 ENDCOMPONENT;
ENDINSTELEM;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 313

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-55

5.7.23 THE STRUCTURE OF ENDFILE (ENDFILE)

The ATF/CLA-File must be ended with the Keyword ATF_END.

Syntax diagram endfile:

ATF_END ;

ISO/PAS 22720:2005(E)

314 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-56 ASAM ODS VERSION 5.0

5.8 OVERVIEW OVER THE STRUCTURE OF AN ATF/CLA FILE (ATF_OVERVIEW)

This section gives an overview over the structure of an ATF/CLA file referring to the above
mentioned elements. The syntax diagram only contains the main components. Syntax elements
like include which can be placed anywhere in the diagram are not shown to keep the diagram
readable.

It is to be considered that no one of the following elements except the ATF/CLA file identifier
has to be available. It may be possible for an ATF/CLA file to be valid without the definition of an
own environment, if the reading application integrates the information from the file in an already
existing environment.

As already mentioned before, the logically sensible assignment of information to already
existing data structures is the responsibility of the application programs. The ATF/CLA file is
only to be seen as a standardized communication platform similar to a natural language. The
understanding of complex relationships defined in this language requires the respective
knowledge from all communication partners.

Syntax diagram atf_overview:

version

files

applelem endfile

instelem

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 315

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-57

5.9 SECURITY INFORMATION ON ATF/CLA FILES

5.9.1 THE USE OF SECURITY INFORMATION ON ATF/CLA

Security information is used to accompany archive data in order to be able to restore the data
completely, i.e. together with the access rights. For exchange purposes it is necessary to write
ATF/CLA files without security information. ATF/CLA writers therefore need a switch to select
either “with” or “without” security information. If “with” is selected then several groups of security
information can be written. These may include or exclude:

- users and user groups
- ACLs
- security level
- initial rights (ACL templates).

ATF/CLA readers need at least a defined default behavior if they encounter a file with security
information; this behavior is either “use ” or “ignore” security information, possibly also “use
partly” for which the part to be used must be specified in a similar way as on writing.

 On export the writing of security information on ATF/CLA file is optional.

 On import the use of security information from the ATF/CLA file is optional.

On reading a file without security information the local security information is not influenced.

5.9.2 WRITING SECURITY INFORMATION ON ATF/CLA

Security information consists of instances of entities that are subtypes of

 AoUser (such subtypes are application elements and must be described in the metadata
section)

 AoUsergroup (such subtypes are application elements and must be described in the
metadata section)

 ACL (these are: ACLA, ACLI, ACLTemplate)

and instances of the following two entities:

 SecurityLevel

 InitialRightsAt

ISO/PAS 22720:2005(E)

316 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-58 ASAM ODS VERSION 5.0

Since the subtypes of AoUser and AoUsergroup are application elements they are mandatorily
defined in the metadata section of the ATF/CLA file. The subtypes of ACL are not derived by the
user, only the 3 predefined subtypes

 ACLA (used for an application element and -if an attribute name is specified- for the attribute
of an application element)

 ACLI (used for instance elements)

 ACLTemplate (used for initial rights)

are allowed.

SecurityLevel, InitialRightsAt and the ACLs are not application elements, instead these entities
belong only to the base model. Therefore they are not described in the metadata (applelem)
section of the ATF/CLA file.

Please note that the attribute “users” in the ACLs refers to an application element derived from
AoUserGroup. Therefore the instantiated attribute must use the REF_TYPE construct to specify
the application element to which the ID in the attribute value points.

No special syntax is applied to the security information. It is written according to the same rules
as all other data.

 The entities for users and user groups are written in the metadata section together with the
other application elements.

 The instances are written in the data section together with the other instance elements.

The example file at the end of this chapter contains security information and -in comments- an
explanation how it shall be interpreted.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 317

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-59

5.10 EXAMPLE FOR AN APPLICATION

The following example shows a short part of an ATF/CLA file. Main elements of the model are
shown in the following figure. For detailed information on the base model please refer to chapter
ASAM ODS Base Model.

Engine
(base type

AoTest)

Test
(base type

AoSubtest)

Measurement
(base type

AoMeasurement)

MeaQuantity
(base type

AoMeasurementQuantity)

Unit
(base type

AoUnit)

UnitGroup
(base type

AoUnitGroup)

Quantity
(base type

AoQuantity)

QuantityGroup
(base type

AoQuantityGroup)

PhysDim
(base type

AoPhysicalQuantity)

Submatrix

(base type
AoSubmatrix)

LocalColumn

(base type
AoLocalColumn)

ISO/PAS 22720:2005(E)

318 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-60 ASAM ODS VERSION 5.0

ATF_FILE V1.4.1;
/*

//---

// EXAMPLE 3 --- 22.9.2000

//---

//***
//

// Application Structure

//

//***

*/
/*

//---

//

// Hierarchic ordering of tests and measurements

// Application elements
// Engine, Test, Measurement, MeaQuantity

// of base type AoTest, AoSubtest, AoMeasurement, AoMeasurementQuantity

//

// Security information is included

//
//---

*/

APPLELEM Engine, BASETYPE AoTest

 APPLATTR EngineName, BASEATTR name, DATATYPE DT_STRING;
 APPLATTR EngineId, BASEATTR id, DATATYPE DT_LONGLONG;

 APPLATTR EngineVersion, BASEATTR version, DATATYPE DT_STRING;

 APPLATTR EngineDescription, BASEATTR description, DATATYPE DT_STRING;

 APPLATTR version_date, BASEATTR version_date, DATATYPE DT_DATE;

 APPLATTR CreateDate, DATATYPE DT_DATE;
 APPLATTR EngineType, DATATYPE DT_STRING;

 APPLATTR bore, DATATYPE DT_FLOAT;

 APPLATTR cylindernumber, DATATYPE DT_SHORT;

 APPLATTR stroke, DATATYPE DT_FLOAT;

 APPLATTR SubTests, BASEATTR children, REF_TO Test,

 CARDINALITY 0,MANY;

 APPLATTR EngineUser, REF_TO User;

ENDAPPLELEM;

APPLELEM Test, BASETYPE AoSubTest

 APPLATTR TestName, BASEATTR name, DATATYPE DT_STRING;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 319

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-61

 APPLATTR TestId, BASEATTR id, DATATYPE DT_LONGLONG;

 APPLATTR TestVersion, BASEATTR version, DATATYPE DT_STRING;

 APPLATTR TestDescription, BASEATTR description, DATATYPE DT_STRING;
 APPLATTR version_date, BASEATTR version_date, DATATYPE DT_DATE;

 APPLATTR CreateDate, DATATYPE DT_DATE;

 APPLATTR TestType, DATATYPE DT_STRING;

 APPLATTR TestComment, DATATYPE DT_STRING;

 APPLATTR exhaust, DATATYPE DT_STRING;
 APPLATTR air_filter, DATATYPE DT_STRING;

 APPLATTR Measurements, BASEATTR children, REF_TO Measurement,

 CARDINALITY 0,MANY;

 APPLATTR MainTest, BASEATTR parent_test, REF_TO Engine;
 APPLATTR TestUser, REF_TO User;

ENDAPPLELEM;

APPLELEM Measurement, BASETYPE AoMeasurement
 APPLATTR MeaName, BASEATTR name, DATATYPE DT_STRING;

 APPLATTR MeaId, BASEATTR id, DATATYPE DT_LONGLONG;

 APPLATTR MeaVersion, BASEATTR version, DATATYPE DT_STRING;

 APPLATTR MeaDescription, BASEATTR description, DATATYPE DT_STRING;

 APPLATTR version_date, BASEATTR version_date, DATATYPE DT_DATE;
 APPLATTR MeasurementBegin, BASEATTR measurement_begin,DATATYPE DT_DATE;

 APPLATTR MeasurementEnd, BASEATTR measurement_end, DATATYPE DT_DATE;

 APPLATTR CreateDate, DATATYPE DT_DATE;

 APPLATTR MeaType, DATATYPE DT_STRING;

 APPLATTR MeaComment, DATATYPE DT_STRING;
 APPLATTR ROZ, DATATYPE DT_FLOAT;

 APPLATTR Test, BASEATTR test, REF_TO Test;

 APPLATTR MeaQuantities, BASEATTR measurement_quantities,

 REF_TO MeaQuantity, CARDINALITY 0,MANY;
 APPLATTR Submatrices, BASEATTR submatrices,

 REF_TO Submatrix, CARDINALITY 0,MANY;

ENDAPPLELEM;

APPLELEM MeaQuantity, BASETYPE AoMeasurementQuantity

 APPLATTR MeaQName, BASEATTR name, DATATYPE DT_STRING;

 APPLATTR MeaQId, BASEATTR id, DATATYPE DT_LONGLONG;

 APPLATTR MeaQVersion, BASEATTR version, DATATYPE DT_STRING;

 APPLATTR MeaQDescription, BASEATTR description, DATATYPE DT_STRING;
 APPLATTR version_date, BASEATTR version_date, DATATYPE DT_DATE;

 APPLATTR Rank, BASEATTR rank, DATATYPE DT_LONG;

 APPLATTR Dimension, BASEATTR dimension, DATATYPE DT_LONG,

ISO/PAS 22720:2005(E)

320 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-62 ASAM ODS VERSION 5.0

 CARDINALITY 0,MANY;

 APPLATTR DataType, BASEATTR datatype, DATATYPE DT_STRING;

 APPLATTR TypeSize, BASEATTR type_size, DATATYPE DT_LONG;
 APPLATTR Interpolation, BASEATTR interpolation, DATATYPE DT_STRING;

 APPLATTR Minimum, BASEATTR minimum, DATATYPE DT_DOUBLE;

 APPLATTR Maximum, BASEATTR maximum, DATATYPE DT_DOUBLE;

 APPLATTR Average, BASEATTR average, DATATYPE DT_DOUBLE;

 APPLATTR SDeviation, BASEATTR standard_deviation, DATATYPE DT_DOUBLE;
 APPLATTR MeaQuantStat, DATATYPE DT_SHORT;

 APPLATTR TimeOffset, DATATYPE DT_DOUBLE;

 APPLATTR SamplingRate, DATATYPE DT_DOUBLE;

 APPLATTR Measurement, BASEATTR measurement, REF_TO Measurement;
 APPLATTR LocalColumns, BASEATTR local_columns, REF_TO LocalColumn,

 CARDINALITY 0,MANY;

 APPLATTR Quantity, BASEATTR quantity, REF_TO Quantity;

 APPLATTR Unit, BASEATTR unit, REF_TO Unit;

ENDAPPLELEM;

APPLELEM Submatrix,BASETYPE AoSubmatrix

 APPLATTR name, BASEATTR name, DATATYPE DT_STRING;

 APPLATTR id, BASEATTR id, DATATYPE DT_LONG;
 APPLATTR version, BASEATTR version, DATATYPE DT_STRING;

 APPLATTR description, BASEATTR description, DATATYPE DT_STRING;

 APPLATTR version_date, BASEATTR version_date, DATATYPE DT_DATE;

 APPLATTR number_of_rows, BASEATTR number_of_rows, DATATYPE DT_LONG;

 APPLATTR local_columns, BASEATTR local_columns, REF_TO LocalColumn,
 CARDINALITY 0,MANY;

 APPLATTR measurement, BASEATTR measurement, REF_TO Measurement;

ENDAPPLELEM;

APPLELEM LocalColumn,BASETYPE AoLocalColumn

 APPLATTR name, BASEATTR name, DATATYPE DT_STRING;

 APPLATTR id, BASEATTR id, DATATYPE DT_LONG;

 APPLATTR version, BASEATTR version, DATATYPE DT_STRING;

 APPLATTR description, BASEATTR description, DATATYPE DT_STRING;
 APPLATTR version_date, BASEATTR version_date, DATATYPE DT_DATE;

 APPLATTR flags, BASEATTR flags, DATATYPE DT_SHORT,

 CARDINALITY 0,MANY;

 APPLATTR global_flag, BASEATTR global_flag, DATATYPE DT_SHORT;

 APPLATTR independent, BASEATTR independent, DATATYPE DT_BOOLEAN;
 APPLATTR minimum, BASEATTR minimum, DATATYPE DT_DOUBLE;

 APPLATTR maximum, BASEATTR maximum, DATATYPE DT_DOUBLE;

 APPLATTR values, BASEATTR values, DATATYPE DT_UNKNOWN,

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 321

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-63

 CARDINALITY 0,MANY;

 APPLATTR submatrix, BASEATTR submatrix, REF_TO Submatrix;

 APPLATTR measurement_quantity, BASEATTR measurement_quantity,
 REF_TO MeaQuantity;

ENDAPPLELEM;

/*

//---
//

// Construction of a catalogue of quantities

// Application elements

// Quantity (-Group),Unit (-Group), PhysDim,

// of base type AoQuantity (-Group),AoUnit(-Group), AoPhysicalDimension
//

//---

*/

APPLELEM Quantity, BASETYPE AoQuantity
 APPLATTR QName, BASEATTR name, DATATYPE DT_STRING;

 APPLATTR QId, BASEATTR id, DATATYPE DT_LONGLONG;

 APPLATTR QVersion, BASEATTR version, DATATYPE DT_STRING;

 APPLATTR QDescription, BASEATTR description, DATATYPE DT_STRING;

 APPLATTR version_date, BASEATTR version_date, DATATYPE DT_DATE;
 APPLATTR DefaultRank, BASEATTR default_rank, DATATYPE DT_LONG;

 APPLATTR DefaultDimension, BASEATTR default_dimension, DATATYPE DT_LONG,

 CARDINALITY 0,MANY;

 APPLATTR DefaultDatatype, BASEATTR default_datatype, DATATYPE DT_STRING;

 APPLATTR DefaultType_size,BASEATTR default_type_size, DATATYPE DT_LONG;
 APPLATTR DefaultMqName, BASEATTR default_mq_name, DATATYPE DT_STRING;

 APPLATTR DefaultUnit, BASEATTR default_unit, REF_TO Unit;

 APPLATTR Successors, BASEATTR successors, REF_TO Quantity,

 CARDINALITY 0,MANY;
 APPLATTR Predecessor, BASEATTR predecessor, REF_TO Quantity;

 APPLATTR QuantityGroup, BASEATTR groups, REF_TO QuantityGroup,

 CARDINALITY 0,MANY;

ENDAPPLELEM;

APPLELEM QuantityGroup, BASETYPE AoQuantityGroup

 APPLATTR QGroupName, BASEATTR name, DATATYPE DT_STRING;

 APPLATTR QGroupId, BASEATTR id, DATATYPE DT_LONGLONG;

 APPLATTR QGroupVersion, BASEATTR version, DATATYPE DT_STRING;
 APPLATTR QGroupDescription, BASEATTR description, DATATYPE DT_STRING;

 APPLATTR version_date, BASEATTR version_date, DATATYPE DT_DATE;

 APPLATTR QantGroupState, DATATYPE DT_SHORT;

ISO/PAS 22720:2005(E)

322 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-64 ASAM ODS VERSION 5.0

 APPLATTR ListOfQuantities, BASEATTR quantities, REF_TO Quantity,

 CARDINALITY 0,MANY;
ENDAPPLELEM;

APPLELEM Unit, BASETYPE AoUnit

 APPLATTR UnitName, BASEATTR name, DATATYPE DT_STRING;
 APPLATTR UnitId, BASEATTR id, DATATYPE DT_LONGLONG;

 APPLATTR UnitVersion, BASEATTR version, DATATYPE DT_STRING;

 APPLATTR UnitDescription, BASEATTR description, DATATYPE DT_STRING;

 APPLATTR version_date, BASEATTR version_date, DATATYPE DT_DATE;

 APPLATTR UnitFactor, BASEATTR factor, DATATYPE DT_FLOAT;
 APPLATTR UnitOffset, BASEATTR offset, DATATYPE DT_FLOAT;

 APPLATTR PhysDim, BASEATTR phys_dimension,REF_TO PhysDim;

 APPLATTR UnitGroups, BASEATTR groups, REF_TO UnitGroup,

 CARDINALITY 0,MANY;
ENDAPPLELEM;

APPLELEM UnitGroup, BASETYPE AoUnitGroup

 APPLATTR UGroupName, BASEATTR name, DATATYPE DT_STRING;
 APPLATTR UGroupId, BASEATTR id, DATATYPE DT_LONGLONG;

 APPLATTR UGroupVersion, BASEATTR version, DATATYPE DT_STRING;

 APPLATTR UGroupDescription, BASEATTR description, DATATYPE DT_STRING;

 APPLATTR version_date, BASEATTR version_date, DATATYPE DT_DATE;

 APPLATTR UnitGroupstate, DATATYPE DT_SHORT;

 APPLATTR Units, BASEATTR units, REF_TO Unit,

 CARDINALITY 0,MANY;

ENDAPPLELEM;

APPLELEM PhysDim, BASETYPE AoPhysicalDimension

 APPLATTR PhysDimName, BASEATTR name, DATATYPE DT_STRING;

 APPLATTR PhysDimId, BASEATTR id, DATATYPE DT_LONGLONG;

 APPLATTR PhysDimVersion, BASEATTR version, DATATYPE DT_STRING;
 APPLATTR PhysDimDescription,BASEATTR description, DATATYPE DT_STRING;

 APPLATTR version_date, BASEATTR version_date, DATATYPE DT_DATE;

 APPLATTR length, BASEATTR length_exp, DATATYPE DT_SHORT;

 APPLATTR mass, BASEATTR mass_exp, DATATYPE DT_SHORT;
 APPLATTR time, BASEATTR time_exp, DATATYPE DT_SHORT;

 APPLATTR current, BASEATTR current_exp, DATATYPE DT_SHORT;

 APPLATTR temperature, BASEATTR temperature_exp, DATATYPE DT_SHORT;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 323

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-65

 APPLATTR molar, BASEATTR molar_amount_exp, DATATYPE DT_SHORT;

 APPLATTR luminous, BASEATTR luminous_intensity_exp,

 DATATYPE DT_SHORT;

 APPLATTR Units, BASEATTR units, REF_TO Unit,

 CARDINALITY 0,MANY;

ENDAPPLELEM;

/*

//---

//

// Application elements User, UserGroup, ACLA, ACLI used for

// security information
//

//---

*/

APPLELEM User, BASETYPE AoUser
 APPLATTR UserName, BASEATTR name, DATATYPE DT_STRING;

 APPLATTR UserId, BASEATTR id, DATATYPE DT_LONGLONG;

 APPLATTR UserVersion, BASEATTR version, DATATYPE DT_STRING;

 APPLATTR UserDescription, BASEATTR description, DATATYPE DT_STRING;

 APPLATTR version_date, BASEATTR version_date, DATATYPE DT_DATE;
 APPLATTR password, BASEATTR password, DATATYPE DT_STRING;

 APPLATTR groups, BASEATTR groups, REF_TO UserGroup,

 CARDINALITY 0,MANY;

 APPLATTR UserDepartment, DATATYPE DT_STRING;

 APPLATTR AliasName, DATATYPE DT_STRING;
ENDAPPLELEM;

APPLELEM UserGroup, BASETYPE AoUserGroup

 APPLATTR GroupName, BASEATTR name, DATATYPE DT_STRING;

 APPLATTR GroupId, BASEATTR id, DATATYPE DT_LONGLONG;
 APPLATTR GroupVersion, BASEATTR version, DATATYPE DT_STRING;

 APPLATTR GroupDescription, BASEATTR description, DATATYPE DT_STRING;

 APPLATTR version_date, BASEATTR version_date, DATATYPE DT_DATE;

 APPLATTR superuser_flag, BASEATTR superuser_flag,DATATYPE DT_BOOLEAN;

 APPLATTR users, BASEATTR users, REF_TO User,
 CARDINALITY 0,MANY;

ENDAPPLELEM;

/*

//---
//

// ACLA, ACLI, ACLTemplate are NOT application elements, instead belong

// only to the base element, therefore NOT included here.

ISO/PAS 22720:2005(E)

324 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-66 ASAM ODS VERSION 5.0

//

// SecurityLevel, InitialRightsAt are NOT application elements, instead

// belong only to the base element, therefore NOT included here.
//

//---

*/

/*
//***

//

// Instance elements section

//

//***
*/

/*

//---

// Instance elements of the application element PhysDim

// from base type AoPhysicalDimension
//---

*/

INSTELEM PhysDim

 PhysDimName = "empty ";
 PhysDimId = 1;

 PhysDimVersion = "1.0";

 PhysDimDescription = "No dimension";

 version_date = "199702010900";

 length = 0; // Meter m

 mass = 0; // Kilogramme kg

 time = 0; // Second s

 current = 0; // Ampere A

 temperature = 0; // Kelvin K
 molar = 0; // mol mol

 luminous = 0; // Candela cd

 units = 1; /* Refs to instance elements of Unit */

ENDINSTELEM;

INSTELEM PhysDim

 PhysDimName = "temperature";

 PhysDimId = 2;
 PhysDimVersion = "1.0";

 PhysDimDescription = "temperature dimension";

 version_date = "199702010900";

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 325

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-67

 length = 0; // Meter m

 mass = 0; // Kilogramme kg
 time = 0; // Second s

 current = 0; // Ampere A

 temperature = 1; // Kelvin K

 molar = 0; // mol mol

 luminous = 0; // Candela cd

 units = 2,3; /* Refs to instance elements of Unit */

ENDINSTELEM;

INSTELEM PhysDim

 PhysDimName = "frequency";

 PhysDimId = 3;

 PhysDimVersion = "1.0";

 PhysDimDescription = "frequency dimension";
 version_date = "199702010900";

 length = 0; // Meter m

 mass = 0; // Kilogramme kg

 time = -1; // Second s
 current = 0; // Ampere A

 temperature = 0; // Kelvin K

 molar = 0; // mol mol

 luminous = 0; // Candela cd

 units = 4,5; /* Refs to instance elements of Unit */

ENDINSTELEM;

INSTELEM PhysDim
 PhysDimName = "work";

 PhysDimId = 4;

 PhysDimVersion = "1.0";

 PhysDimDescription = "work dimension";

 version_date = "199702010900";

 length = 2; // Meter m

 mass = 1; // Kilogramme kg

 time = -2; // Second s

 current = 0; // Ampere A
 temperature = 0; // Kelvin K

 molar = 0; // mol mol

 luminous = 0; // Candela cd

ISO/PAS 22720:2005(E)

326 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-68 ASAM ODS VERSION 5.0

 units = 6; /* Refs to instance elements of Unit */

ENDINSTELEM;

INSTELEM PhysDim

 PhysDimName = "pressure";

 PhysDimId = 5;
 PhysDimVersion = "1.0";

 PhysDimDescription = "pressure dimension";

 version_date = "199702010900";

 length = -1; // Meter m
 mass = 1; // Kilogramme kg

 time = -2; // Second s

 current = 0; // Ampere A

 temperature = 0; // Kelvin K

 molar = 0; // mol mol
 luminous = 0; // Candela cd

 units = 7,8; /* Refs to instance elements of Unit */

ENDINSTELEM;

/*

//---

// Instance elements of the application element Unit

// from base type AoUnit

//---
*/

INSTELEM Unit

 UnitName = "-";

 UnitId = 1;
 UnitVersion = "1.0";

 UnitDescription = "Empty Unit";

 version_date = "199702010900";

 UnitFactor = 1.;

 UnitOffset = 0.;

 PhysDim = 1; /* Ref to instance element of PhysDim */

 UnitGroups = UNDEFINED; /* Refs to instance elements of UnitGroup */

ENDINSTELEM;

INSTELEM Unit

 UnitName = "Grd C";

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 327

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-69

 UnitId = 2;

 UnitVersion = "1.0";

 UnitDescription = "Grad Celcius";
 version_date = "199702010900";

 UnitFactor = 1.0;

 UnitOffset = 273.15;

 PhysDim = 2; /* Ref to instance element of PhysDim */
 UnitGroups = UNDEFINED; /* Refs to instance elements of UnitGroup */

ENDINSTELEM;

INSTELEM Unit
 UnitName = "Grd K";

 UnitId = 3;

 UnitVersion = "1.0";

 UnitDescription = "Grad Kelvin";

 version_date = "199702010900";
 UnitFactor = 1.0;

 UnitOffset = 0.;

 PhysDim = 2; /* Ref to instance element of PhysDim */

 UnitGroups = UNDEFINED; /* Refs to instance elements of UnitGroup */
ENDINSTELEM;

INSTELEM Unit

 UnitName = "1/min";
 UnitId = 4;

 UnitVersion = "1.0";

 UnitDescription = "Revolution per minunte";

 version_date = "199702010900";

 UnitFactor = 0.016667;
 UnitOffset = 0.;

 PhysDim = 3; /* Ref to instance element of PhysDim */

 UnitGroups = UNDEFINED; /* Refs to instance elements of UnitGroup */

ENDINSTELEM;

INSTELEM Unit

 UnitName = "1/sec";

 UnitId = 5;
 UnitVersion = "1.0";

 UnitDescription = "Revolution per second";

 version_date = "199702010900";

ISO/PAS 22720:2005(E)

328 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-70 ASAM ODS VERSION 5.0

 UnitFactor = 1.0;

 UnitOffset = 0.;

 PhysDim = 3; /* Ref to instance element of PhysDim */

 UnitGroups = UNDEFINED; /* Refs to instance elements of UnitGroup */

ENDINSTELEM;

INSTELEM Unit

 UnitName = "Nm";

 UnitId = 6;

 UnitVersion = "1.0";

 UnitDescription = "Torque in Nm";
 version_date = "199702010900";

 UnitFactor = 1.;

 UnitOffset = 0.;

 PhysDim = 4; /* Ref to instance element of PhysDim */
 UnitGroups = UNDEFINED; /* Refs to instance elements of UnitGroup */

ENDINSTELEM;

INSTELEM Unit
 UnitName = "mbar";

 UnitId = 7;

 UnitVersion = "1.0";

 UnitDescription = "Pressure in mbar";

 version_date = "199702010900";
 UnitFactor = 100.;

 UnitOffset = 0.;

 PhysDim = 5; /* Ref to instance element of PhysDim */

 UnitGroups = UNDEFINED; /* Refs to instance elements of UnitGroup */
ENDINSTELEM;

INSTELEM Unit

 UnitName = "bar";
 UnitId = 8;

 UnitVersion = "1.0";

 UnitDescription = "Pressure in bar";

 version_date = "199702010900";

 UnitFactor = 100000.;
 UnitOffset = 0.;

 PhysDim = 5; /* Ref to instance element of PhysDim */

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 329

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-71

 UnitGroups = UNDEFINED; /* Refs to instance elements of UnitGroup */

ENDINSTELEM;

/*

//---

// Instance elements of the application element Quantity

// from base type AoQuantity

//---
*/

INSTELEM Quantity

 QName = "TEMP";

 QId = 1;
 QVersion = "1.1";

 QDescription = "Temperature Quantity central";

 version_date = "199703100900";

 DefaultRank = 0;

 DefaultDimension = UNDEFINED;
 DefaultDatatype = "DT_FLOAT";

 DefaultType_size = UNDEFINED;

 DefaultMqName = "TEMP";

 DefaultUnit = 2; /* Ref to instance element of Unit */
 Predecessor = UNDEFINED; /* Ref to instance element of Quantity */

 Successors = 2,3; /* Refs to instance elements of Quantity */

 QuantityGroup = UNDEFINED; /* Ref to instance els.of QuantityGroup */

ENDINSTELEM;

INSTELEM Quantity

 QName = "LEFT";

 QId = 2;

 QVersion = "1.1";
 QDescription = "Temperature Quantity left";

 version_date = "199703100900";

 DefaultRank = 0;

 DefaultDimension = UNDEFINED;

 DefaultDatatype = "DT_FLOAT";
 DefaultType_size = UNDEFINED;

 DefaultMqName = "TEMP_LEFT";

 DefaultUnit = 2; /* Ref to instance element of Unit */

 Predecessor = 1; /* Ref to instance element of Quantity */
 Successors = UNDEFINED; /* Refs to instance elements of Quantity */

 QuantityGroup = UNDEFINED; /* Ref to instance els.of QuantityGroup */

ENDINSTELEM;

ISO/PAS 22720:2005(E)

330 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-72 ASAM ODS VERSION 5.0

INSTELEM Quantity
 QName = "RIGHT";

 QId = 3;

 QVersion = "1.1";

 QDescription = "Temperature Quantity right";

 version_date = "199703100900";
 DefaultRank = 0;

 DefaultDimension = UNDEFINED;

 DefaultDatatype = "DT_FLOAT";

 DefaultType_size = UNDEFINED;

 DefaultMqName = "TEMP_RIGHT";

 DefaultUnit = 2; /* Ref to instance element of Unit */

 Predecessor = 1; /* Ref to instance element of Quantity */

 Successors = UNDEFINED; /* Refs to instance elements of Quantity */

 QuantityGroup = UNDEFINED; /* Ref to instance els.of QuantityGroup */
ENDINSTELEM;

INSTELEM Quantity

 QName = "SPTNR";
 QId = 4;

 QVersion = "1.1";

 QDescription = "System point number";

 version_date = "199703100900";

 DefaultRank = 0;
 DefaultDimension = UNDEFINED;

 DefaultDatatype = "DT_LONG";

 DefaultType_size = UNDEFINED;

 DefaultMqName = "SPTNR";

 DefaultUnit = 1; /* Ref to instance element of Unit */

 Predecessor = UNDEFINED; /* Ref to instance element of Quantity */

 Successors = UNDEFINED; /* Refs to instance elements of Quantity */

 QuantityGroup = UNDEFINED; /* Ref to instance els.of QuantityGroup */

ENDINSTELEM;

INSTELEM Quantity

 QName = "N";

 QId = 5;
 QVersion = "1.1";

 QDescription = "Revolution";

 version_date = "199703100900";

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 331

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-73

 DefaultRank = 0;

 DefaultDimension = UNDEFINED;

 DefaultDatatype = "DT_FLOAT";
 DefaultType_size = UNDEFINED;

 DefaultMqName = "N";

 DefaultUnit = 4; /* Ref to instance element of Unit */

 Predecessor = UNDEFINED; /* Ref to instance element of Quantity */
 Successors = UNDEFINED; /* Refs to instance elements of Quantity */

 QuantityGroup = UNDEFINED; /* Ref to instance els.of QuantityGroup */

ENDINSTELEM;

INSTELEM Quantity

 QName = "MD";

 QId = 6;

 QVersion = "1.1";

 QDescription = "Torque";
 version_date = "199703100900";

 DefaultRank = 0;

 DefaultDimension = UNDEFINED;

 DefaultDatatype = "DT_FLOAT";

 DefaultType_size = UNDEFINED;
 DefaultMqName = "MD";

 DefaultUnit = 6; /* Ref to instance element of Unit */

 Predecessor = UNDEFINED; /* Ref to instance element of Quantity */

 Successors = UNDEFINED; /* Refs to instance elements of Quantity */
 QuantityGroup = UNDEFINED; /* Ref to instance els.of QuantityGroup */

ENDINSTELEM;

INSTELEM Quantity
 QName = "PL";

 QId = 7;

 QVersion = "1.1";

 QDescription = "Pressure left";

 version_date = "199703100900";
 DefaultRank = 0;

 DefaultDimension = UNDEFINED;

 DefaultDatatype = "DT_FLOAT";

 DefaultType_size = UNDEFINED;

 DefaultMqName = "PL";

 DefaultUnit = 7; /* Ref to instance element of Unit */

 Predecessor = UNDEFINED; /* Ref to instance element of Quantity */

ISO/PAS 22720:2005(E)

332 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-74 ASAM ODS VERSION 5.0

 Successors = UNDEFINED; /* Refs to instance elements of Quantity */

 QuantityGroup = UNDEFINED; /* Ref to instance els.of QuantityGroup */

ENDINSTELEM;

/*

//---

//

// Instance elements of the application elements Engine and Test
// from base type AoTest and AoSubTest

//

//---

*/

INSTELEM Engine

 EngineName = "TestEngine 1";

 EngineId = 1;

 EngineVersion = "A 1.0";

 EngineDescription = "The first test engine";
 CreateDate = "19971209141345";

 EngineType = "ABC4711"; /* Hel */

 bore = 92.;

 cylindernumber = 6;

 stroke = 95.3;

 SubTests = 1; // Ref to instance element of Test

 EngineUser = 21; // Ref to instance element of User

ENDINSTELEM;

INSTELEM Test

 TestName = "Test-Configuration 1";

 TestId = 1;

 TestVersion = "B20";
 TestDescription = "The first test of engine 1";

 CreateDate = "19971210101422";

 TestType = "Functionality Test";

 TestComment = "Test: torque and at special points temperature";

 exhaust = "System 4711";
 air_filter = "C 12.1";

 Measurements = 1,2; /* Refs to instance elements of Measurement */

 MainTest = 1; /* Ref to instance element of Engine */

 TestUser /* Hel */= 22; /* Ref to instance element of User */
ENDINSTELEM;

/*

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 333

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-75

//---

//

// Instance elements of the application structure part with
// Measurement, MeaQuantity, Submatrix, LocalColumn with value_sequence

// for the first measurement

//

//---

*/

INSTELEM Measurement

 MeaName = "M001A";

 MeaId = 1;

 MeaVersion = "A1";
 MeaDescription = "1. Measurement ";

 MeasurementBegin = "19971210141345";

 MeasurementEnd = "19971210162135";

 CreateDate = "19971210165331"; /* Hel */

 MeaType = "TLM";
 MeaComment = "No Problem";

 ROZ = UNDEFINED;

 Test = 1; /* Ref to instance element of Test */

 MeaQuantities = 1,2,3;/* Ref to instance element of MeaQuantity */
 Submatrices = 1; /* Ref to instance element of Submatrix */

ENDINSTELEM;

INSTELEM MeaQuantity
 MeaQName = "N";

 MeaQId = 1;

 MeaQVersion = "D1";

 MeaQDescription = "Number of revolutions";

 Rank = 0;
 Dimension = UNDEFINED;

 DataType = "DT_FLOAT";

 TypeSize = UNDEFINED;

 Minimum = 500.;

 Maximum = 3200.;
 Average = 1850.;

 Measurement = 1; /* Ref to instance element of Measurement */

 LocalColumns = 1; /* Refs to instance elements of LocalColumn */

 Quantity = 5; /* Ref to instance element of Quantity */
 Unit = 4; /* Ref to instance element of Unit */

ENDINSTELEM;

ISO/PAS 22720:2005(E)

334 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-76 ASAM ODS VERSION 5.0

INSTELEM MeaQuantity

 MeaQName = "MD";
 MeaQId = 2;

 MeaQVersion = "D";

 MeaQDescription = "Torque";

 Rank = 0;

 Dimension = UNDEFINED;
 DataType = "DT_FLOAT";

 Minimum = 150.;

 Maximum = 255.;

 Average = 190.;

 SDeviation = 22.2;

 Measurement = 1; /* Ref to instance element of Measurement */

 LocalColumns = 2; /* Refs to instance elements of LocalColumn */

 Quantity = 6; /* Ref to instance element of Quantity */

 Unit = 6; /* Ref to instance element of Unit */
ENDINSTELEM;

INSTELEM MeaQuantity

 MeaQName = "PL";
 MeaQId = 3;

 MeaQVersion = "D";

 MeaQDescription = "Pressure ";

 Rank = 0;

 Dimension = UNDEFINED;
 DataType = "DT_FLOAT";

 Minimum = 991.2;

 Maximum = 993.2;

 Average = 992.0;

 Measurement = 1; /* Ref to instance element of Measurement */

 LocalColumns = 3; /* Refs to instance elements of LocalColumn */

 Quantity = 7; /* Ref to instance element of Quantity */

 Unit = 7; /* Ref to instance element of Unit */

ENDINSTELEM;

INSTELEM Submatrix

 name = "M001A";

 id = 1;
 version = "1a";

 description = "1. Measurement for data transfer via ASAM";

 version_date = UNDEFINED;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 335

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-77

 measurement = 1;

 number_of_rows = 15;

 local_columns = 1,2,3; /* Refs to instance elements of LocalColumn */
ENDINSTELEM;

INSTELEM LocalColumn

 name = "N";
 id = 1;

 flags = 0;

 global_flag = 0;

 independent = TRUE;

 minimum = 500.;
 maximum = 3200.;

 measurement_quantity = 1; /* Ref to instance element of MeaQuantity */

 submatrix = 1; /* Ref to instance element of Submatrix */

 values = DATATYPE DT_FLOAT
 ,500.,700.,900.,1100.,1300.,1400.,1600.,1800.,2000.

 ,2200.,2400.,2600.,2800.,3000.,3200.;

ENDINSTELEM;

INSTELEM LocalColumn

 name = "MD";

 id = 2;

 flags = 0;

 global_flag = 0;
 independent = FALSE;

 minimum = 150.;

 maximum = 255.;

 measurement_quantity = 2; /* Ref to instance element of MeaQuantity */
 submatrix = 1; /* Ref to instance element of Submatrix */

 values = DATATYPE DT_FLOAT

 ,150.,160.,170.,180.,190.,200.,210.,220.

 ,230.,240.,250.,255.,250.,230.,190.;

ENDINSTELEM;

INSTELEM LocalColumn

 name = "PL";

 id = 3;
 flags = 0;

 global_flag = 0;

 independent = FALSE;

ISO/PAS 22720:2005(E)

336 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-78 ASAM ODS VERSION 5.0

 minimum = 991.2;

 maximum = 993.2;

 measurement_quantity = 3; /* Ref to instance element of MeaQuantity */

 submatrix = 1; /* Ref to instance element of AoSubmatrix */

 values = DATATYPE DT_FLOAT

 ,991.2,991.7,991.5,991.9,992.1,987.6,992.2,993.

 ,993.2,993.2,992.7,993.,993.,992.7,992.7;
ENDINSTELEM;

/*

//---

//
// Instance elements of the application structure part with

// Measurement, MeaQuantity, Submatrix, LocalColumn with value_sequence

// for the second measurement

//

//---
*/

INSTELEM Measurement

 MeaName = "M002A";

 MeaId = 2;
 MeaVersion = "A1";

 MeaDescription = "2. Measurement ";

 MeasurementBegin = "19971211090412";

 MeasurementEnd = "19971211121145";

 CreateDate = "19971211121522"; /* Hel */
 MeaType = "VLM";

 MeaComment = "No problem";

 ROZ = UNDEFINED;

 Test = 1; /* Ref to instance element of Test */
 MeaQuantities = 4,5,6,7;/* Ref to instance element of MeaQuantity */

 Submatrices = 2,3; /* Ref to instance elements of Submatrix */

ENDINSTELEM;

INSTELEM MeaQuantity

 MeaQName = "SPTNR";

 MeaQId = 4;

 MeaQVersion = "A";

 MeaQDescription = "System point number ";
 Rank = 0;

 Dimension = UNDEFINED;

 DataType = "DT_LONG";

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 337

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-79

 Minimum = 1.0;

 Maximum = 15.;

 Average = 7.5;

 Measurement = 2; /* Ref to instance element of Measurement */

 LocalColumns = 4,7; /* Ref to instance elements of LocalColumn */

 Quantity = 4; /* Ref to instance element of Quantity */

 Unit = 1; /* Ref to instance element of Unit */
ENDINSTELEM;

INSTELEM MeaQuantity

 MeaQName = "N";
 MeaQId = 5;

 MeaQVersion = "D";

 MeaQDescription = "Revolution ";

 Rank = 0;

 DataType = "DT_FLOAT";
 Minimum = 500.;

 Maximum = 3200.;

 Average = 1850.;

 Measurement = 2; /* Ref to instance element of Measurement */
 LocalColumns = 5; /* Refs to instance elements of LocalColumn */

 Quantity = 5; /* Ref to instance element of Quantity */

 Unit = 4; /* Ref to instance element of Unit */

ENDINSTELEM;

INSTELEM MeaQuantity

 MeaQName = "MD";

 MeaQId = 6;

 MeaQVersion = "D";
 MeaQDescription = "Torque ";

 Rank = 0;

 Dimension = UNDEFINED;

 DataType = "DT_FLOAT";

 Minimum = 152.;
 Maximum = 257.;

 Average = 194.;

 Measurement = 2; /* Ref to instance element of Measurement */

 LocalColumns = 6; /* Refs to instance elements of LocalColumn */
 Quantity = 6; /* Ref to instance element of Quantity */

 Unit = 6; /* Ref to instance element of Unit */

ENDINSTELEM;

ISO/PAS 22720:2005(E)

338 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-80 ASAM ODS VERSION 5.0

INSTELEM MeaQuantity
 MeaQName = "TEMP1";

 MeaQId = 7;

 MeaQVersion = "D";

 MeaQDescription = "Temperature ";

 Rank = 0;
 Dimension = UNDEFINED;

 DataType = "DT_FLOAT";

 Minimum = 150.;

 Maximum = 183.;

 Average = 169.;

 Measurement = 2; /* Ref to instance element of Measurement */

 LocalColumns = 8; /* Refs to instance elements of LocalColumn */

 Quantity = 2; /* Ref to instance element of Quantity */

 Unit = 2; /* Ref to instance element of Unit */
ENDINSTELEM;

INSTELEM Submatrix

 name = "M002A";
 id = 2;

 version = "1a";

 description = "2. Measurement for data transfer via ASAM";

 version_date = UNDEFINED;

 measurement = 2;
 number_of_rows = 15;

 local_columns = 4,5,6; /* Refs to instance elements of LocalColumn */

ENDINSTELEM;

INSTELEM LocalColumn

 name = "SPKTNR";

 id = 4;

 flags = 0;

 global_flag = 0;
 independent = TRUE;

 minimum = 1;

 maximum = 15;

 measurement_quantity = 4; /* Ref to instance element of MeaQuantity */
 submatrix = 2; /* Ref to instance element of Submatrix */

 values = DATATYPE DT_SHORT

 ,1, 2, 3, 4, 5, 6, 7, 8

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 339

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-81

 ,9,10,11,12,13,14,15;

ENDINSTELEM;

INSTELEM LocalColumn

 name = "N";

 id = 5;

 flags = 0;
 global_flag = 0;

 independent = FALSE;

 minimum = 500.;

 maximum = 3200.;

 measurement_quantity = 5; /* Ref to instance element of MeaQuantity */

 submatrix = 2; /* Ref to instance element of Submatrix */

 values = DATATYPE DT_FLOAT

 ,500.,700.,900.,1100.,1300.,1400.,1600.,1800.

 ,2000.,2200.,2400.,2600.,2800.,3000.,3200.;
ENDINSTELEM;

INSTELEM LocalColumn

 name = "MD";
 id = 6;

 flags = 0;

 global_flag = 0;

 independent = FALSE;

 minimum = 150.;
 maximum = 255.;

 measurement_quantity = 6; /* Ref to instance element of MeaQuantity */

 submatrix = 2; /* Ref to instance element of Submatrix */

 values = DATATYPE DT_FLOAT
 ,150.,160.,170.,180.,190.,200.,210.,220.

 ,230.,240.,250.,255.,250.,230.,190.;

ENDINSTELEM;

INSTELEM Submatrix

 name = "M002B";

 id = 3;

 version = "1a";

 description = "2. Measurement for data transfer via ASAM";
 version_date = UNDEFINED;

 measurement = 2;

 number_of_rows = 3;

ISO/PAS 22720:2005(E)

340 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-82 ASAM ODS VERSION 5.0

 local_columns = 7,8; /* Refs instance elements of LocalColumn */

ENDINSTELEM;

INSTELEM LocalColumn

 name = "SPKTNR";

 id = 7;

 flags = 0;
 global_flag = 0;

 independent = TRUE;

 minimum = 5;

 maximum = 15;

 measurement_quantity = 4; /* Ref to instance element of MeaQuantity */

 submatrix = 2; /* Ref to instance element of Submatrix */

 values = DATATYPE DT_SHORT

 ,5,10,15;

ENDINSTELEM;

INSTELEM LocalColumn

 name = "TEMP1";

 id = 8;
 flags = 0;

 global_flag = 0;

 independent = FALSE;

 minimum = 150.;

 maximum = 183.;

 measurement_quantity = 7; /* Ref to instance element of MeaQuantity */

 submatrix = 2; /* Ref to instance element of Submatrix */

 values = DATATYPE DT_FLOAT

 ,150.,174.,183.;
ENDINSTELEM;

/*

//---

//
// instance elements of the application elements User and UserGroup

// and ACLs for security control of application elements and instances.

//

//---

*/

INSTELEM User

 UserName = "Peter Sellers";

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 341

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-83

 UserId = 21;

 UserVersion = "1A";

 UserDescription = "Super user group 1";
 version_date = "199708101105";

 UserDepartment = "OP/EFG";

 AliasName = "PS";

 password = "^1kjws7hxoish^mjkkdjxoöe--@@@kjg798xh0880djdj90";

 groups = 30,50;
ENDINSTELEM;

INSTELEM User

 UserName = "Todd Martin";

 UserId = 22;
 UserVersion = "1B";

 UserDescription = "Sub user group 1b";

 version_date = "199708101105";

 UserDepartment = "OP/ABC";

 AliasName = "TM";
 password = "8snn236ikl=(/($mm22&/&)()NBT/(nger%/0!cv3kjkkkj";

 groups = 30,40;

ENDINSTELEM;

INSTELEM User
 UserName = "Otto Biermann";

 UserId = 23;

 UserVersion = "1A";

 UserDescription = "Super user group 1";

 version_date = "199708101105";
 UserDepartment = "OP/EFG";

 AliasName = "OB";

 password = "89xzhuon3m,ö))?imi/U(/%unpo39048ejdkßdksosüüoü3";

 groups = 40,50;

ENDINSTELEM;

INSTELEM UserGroup

 GroupName = "AQ 1";

 GroupId = 30;

 GroupVersion = "00";
 GroupDescription= "Group 1";

 version_date = "199708101105";

 superuser_flag = FALSE;

 users = 21,22;

ENDINSTELEM;

INSTELEM UserGroup

 GroupName = "AQ 2";

ISO/PAS 22720:2005(E)

342 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-84 ASAM ODS VERSION 5.0

 GroupId = 40;

 GroupVersion = "00";

 GroupDescription= "Group 2";
 version_date = "199708101105";

 superuser_flag = FALSE;

 users = 22,23;

ENDINSTELEM;

INSTELEM UserGroup

 GroupName = "TZU 23";

 GroupId = 50;

 GroupVersion = "00";

 GroupDescription= "Group 3";
 version_date = "199708101105";

 superuser_flag = TRUE;

 users = 21,23;

ENDINSTELEM;

INSTELEM ACLA

 users = REF_TYPE UserGroup 30;

 appl_element_name = "Engine";

 rights = 7;

 attribute_name = UNDEFINED; // protection of whole application element
ENDINSTELEM;

INSTELEM ACLA

 users = REF_TYPE UserGroup 30;

 appl_element_name = "Quantity";
 rights = 3;

 attribute_name = "description"; // protection of a specific attribute

ENDINSTELEM;

INSTELEM ACLA
 users = REF_TYPE UserGroup 40;

 appl_element_name = "Measurement";

 rights = 10;

 attribute_name = UNDEFINED; // protection of whole application element

ENDINSTELEM;

INSTELEM ACLI

 users = REF_TYPE UserGroup 50;

 appl_element_name = "MeaQuantity";

 rights = 1;
 instance_id = 3; // protection of an instance element

ENDINSTELEM;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 343

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-85

INSTELEM ACLI

 users = REF_TYPE UserGroup 40;

 appl_element_name = "MeaQuantity";
 rights = 3;

 instance_id = 5; // protection of an instance element

ENDINSTELEM;

/*
//---

// Initial rights (ACL templates) and their location

// and security level

//---

*/

INSTELEM ACLTemplate

 users = REF_TYPE UserGroup 30;

 appl_element_name = "Measurement";

 rights = 3;
 instance_id = 2;

 ref_appl_elem_name= "Test";

ENDINSTELEM;

INSTELEM ACLTemplate
 users = REF_TYPE UserGroup 40;

 appl_element_name = "Measurement";

 rights = 1;

 instance_id = 2;

 ref_appl_elem_name= "Test";
ENDINSTELEM;

INSTELEM InitialRightsAt

 appl_element_name = "Measurement";

 attribute_name = "Test";
ENDINSTELEM;

INSTELEM SecurityLevel

 appl_element_name = "Measurement";

 level = 7; /* all or specific instances and even attributes */
ENDINSTELEM;

INSTELEM SecurityLevel

 appl_element_name = "Engine";

 level = 1; /* only all instances */
ENDINSTELEM;

ATF_END;

ISO/PAS 22720:2005(E)

344 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-86 ASAM ODS VERSION 5.0

5.11 BIBLIOGRAPHY

[API-DEF] Manfred Keul, Stefan Sträßer
Die Applikationsschnittstelle: Definition, Rev 1.1
TecMath, 1994

[API-KON] Dr. Frank Bomarius, Manfred Keul, Stefan Sträßer
Die Applikationsschnittstelle: Bedarfsanalyse und Design, Rev 1.4
TecMath, 1994

[ASAM-AOP] Hermann Schäffler
Protokollschicht und physikalische Ablage, Rev 1.2
Digital-PCS, 1995

[ASAM ODS] Arbeitskreis zur Standardisierung von Automatisierungs- und
Meßsystemen, Offline-Daten-Schnittstelle
ASAM-AK, 1994

[ATF-GFS] Martin Winkler
Die ATF-Datei (ASAM Transport Format)
GfS, 1995

[IEEE-754] IEEE Standard for Binary Floating-Point Arithmetic
ANSI/IEEE Std. 754-1985
IEEE; New York, 1985

[ODS-FLAT] Horst Fiedler
Internals FlatFile (Server light)
AVL, 1996

[PROT] Horst Fiedler
Protocol Layer Interface and Physical Storage Definitions
ASAM ODS, 1996

 [RSA-IMPL] P. Dornhofer
Puma 4.7 Result Storage Architecture (RSA): Implementation
AVL/PECD, 1995

[UNICODE] The Unicode Standard: Worldwide Character Encoding, Version 1.0
Volume 1: ISBN 0-201-56788-1
Volume 2: ISBN 0-201-60845-6
1995

[WWW-HTML] Russ Jones, Adrian Nye, Übersetzer: Thomas Merz
HTML und das World Wide Web
ISBN3-930673-34-7 O’Reilly/International Thomson Verlag 1995

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 345

THE ASAM TRANSPORT FORMAT CLASSIC (ATF/CLA)

ASAM ODS VERSION 5.0 5-87

5.12 REVISION HISTORY

Date
Editor

Changes

2003-06
P. Voltmann

Handling of security information added

2003-10-07
R. Bartz

Some errors have been fixed
“ATF 1.4.1” has been renamed to “ATF/CLA” (classic)

2003-12
R. Bartz

List of “known issues” has been extended
Explanations of BYTESTR and BLOB have been adapted
Minor textual changes have been introduced

2003-12-30
R. Bartz

The Release version has been created

2004-05
R. Bartz

Minor textual changes have been introduced

5.12.1 PREVIOUS CHANGES

 Keywords for Infinity and NaN

 Correction of syntax diagrams for integer and real

 Enable complex values

 Allow ASAM Path instead of id

 New examples

 Renamed (D)COMPLEX, syntax diagram added

 Bytestream added, including syntax diagram

 .CR. in strings

 Value sequences in Local Columns

 Modified use of umlauts, extended class of usable characters

 More precise description of components, in particular binary components (Dec. 1999)

 Data type DT_UNKNOWN for LocalColumn added (Jan. 2000)

 Data type DT_EXTERNALREFERENCE added (Jan. 2000)

 Enumeration extended (June 2000)

 Security added (June 2000)

 Security updated (September 2000)

ISO/PAS 22720:2005(E)

346 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

5-88 ASAM ODS VERSION 5.0

5.12.2 KNOWN ISSUES

The following issues are known. As ASAM ODS decided to not further change the technical
specification of the ATF/CLA, they are not addressed in the specification. However anyone
implementing ATF/CLA should make sure that his implementation is not affected by these
issues.

 Potential rounding errors with float and double values may be eliminated by using IEEE
conform bit structures in hex representation.

 The following keywords are not contained in the list of reserved keywords in section 5.5 but
should also not be used as identifiers for application or instance elements:
DT_ENUM, DT_EXTERNALREFERENCE, DT_LONG_BEO, DT_LONGLONG_BEO,
DT_SHORT_BEO, IEEEFLOAT4_BEO, IEEEFLOAT8_BEO

 The following keywords are (erroneously) contained in the list of reserved keywords in
section 5.5; they may be used as identifiers for application or instance elements:
DT_CFLOAT, DT_CDOUBLE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 347

ASAM e.V.

Arnikastr. 2

D-85635 Hoehenkirchen

Germany

phone: (+49) 8102 – 895317

fax: (+49) 8102 – 895310

e-mail: info@asam.net

internet: www.asam.net

ISO/PAS 22720:2005(E)

348 © ISO 2005 – All rights reserved

ASAM ODS
VERSION 5.0

ISO-PAS

CHAPTER 6

ATF/XML
 Version 1.0

Association for Standardization of
Automation and Measuring Systems

Dated: 30.09.2004

© ASAM e.V.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 349

Status of Document

Reference: ASAM ODS Version 5.0 ATF/XML

Date: 30.09.2004

Author: Mark Quinsland, HighQSoft; Dr. Helmut Helpenstein, National
Instruments

Type: Specification

Doc-ID: ASAM_ODS_CH06_ATF_XML.PDF

Revision
Status:

Release

Note: ASAM ODS has invoked a Formal Technical Review (FTR) process which
intends to continuously improve the quality and timeliness of its specifications.
Whenever an error is identified or a question arises from this specification, a
corresponding note should be sent to ASAM (odsftr@asam.net) to make sure
this issue will be addressed within the next review cycle.

Disclaimer of Warranty

Although this document was created with the utmost care it cannot be guaranteed that it is
completely free of errors or inconsistencies.

ASAM e.V. makes no representations or warranties with respect to the contents or use of this
documentation, and specifically disclaims any expressed or implied warranties of

merchantability or fitness for any particular purpose. Neither ASAM nor the author(s)
therefore accept any liability for damages or other consequences that arise from the use of

this document.

ASAM e.V. reserves the right to revise this publication and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes.

ISO/PAS 22720:2005(E)

350 © ISO 2005 – All rights reserved

mailto:odsftr@asam.net

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-1

Contents

6 THE ASAM TRANSPORT FORMAT IN XML (ATF/XML) 6-3

6.1 INTRODUCTION... 6-3
6.2 ATF/XML AND ATF/CLA COMPARISON... 6-3
6.3 STRUCTURE OF AN ATF/XML FILE... 6-6
6.4 LOGICAL AND PHYSICAL ATF/XML FILES .. 6-6

6.4.1 USING XINCLUDE TO COMBINE MULTIPLE XML DOCUMENTS...................... 6-7
6.4.2 DECLARING THE ROOT ELEMENT.. 6-8
6.4.3 DECLARING THE LOCALE.. 6-9
6.4.4 DECLARING THE ODS BASE MODEL... 6-9
6.4.5 USING EXTERNAL FILES FOR MEASUREMENT DATA 6-9

6.5 VALIDATING AN ATF/XML FILE.. 6-12
6.5.2 CREATING AN APPLICATION SCHEMA.. 6-14

6.6 DEFINING AN APPLICATION MODEL... 6-16
6.7 USING SPACES IN ELEMENT & ATTRIBUTE NAMES.. 6-22
6.8 DECLARING INSTANCE DATA .. 6-24

6.8.2 DECLARING INSTANCE ATTRIBUTES.. 6-26
6.8.3 USING EXTERNAL FILE COMPONENTS FOR MEASUREMENT DATA............ 6-27

6.9 SECURITY .. 6-38
6.9.1 STORING SECURITY INFORMATION.. 6-38

6.10 DATA TYPE USAGE IN ATF/XML .. 6-41
6.11 ODS BASE SCHEMA FILE .. 6-43
6.12 EXAMPLE ATF/XML FILE... 6-66
6.13 KNOWN PROBLEMS.. 6-94
6.14 ADDITIONAL RESOURCES ... 6-94
6.15 REVISION HISTORY... 6-94

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 351

ASAM ODS VERSION 5.0

6-2 ASAM ODS VERSION 5.0

Scope

This document describes the ASAM Transport Format in XML (ATF/XML) of the ASAM ODS
Version 5.0.

Intended Audience

This document is intended for implementers of ASAM ODS Version 5.0. It shall be used as a
technical reference with examples how to write ATF files in XML with the required information
used in ASAM ODS Version 5.0.

This document is part of a series of documents referring to ASAM ODS Version 5.0 and must
not be used as a stand-alone document. The documents referenced below build the
technical reference of ASAM ODS Version 5.0 as a whole. They may be requested from the
ASAM e.V. at www.asam.net.

ASAM ODS Specification

The following chapters build the technical reference for ASAM ODS Version 5.0:

 ASAM ODS Version 5.0, Chapter 1, Introduction

 ASAM ODS Version 5.0, Chapter 2, Architecture

 ASAM ODS Version 5.0, Chapter 3, Physical Storage (1.1)

 ASAM ODS Version 5.0, Chapter 4, Base Model (28)

 ASAM ODS Version 5.0, Chapter 5, ATF/CLA (1.4.1)

 ASAM ODS Version 5.0, Chapter 6, ATF/XML (1.0)

 ASAM ODS Version 5.0, Chapter 7: N/A ('Security' moved to Chapter 2)

 ASAM ODS Version 5.0, Chapter 8, Mime Types and External References (1.0)

 ASAM ODS Version 5.0, Chapter 9, RPC-API (3.2.1)

 ASAM ODS Version 5.0, Chapter 10, OO-API (5.0)

 ASAM ODS Version 5.0, Chapter 11, NVH Model (1.3)

 ASAM ODS Version 5.0, Chapter 12, Calibration Model (1.0)

Normative References

 ISO 10303-11: STEP EXPRESS

 Object Management Group (OMG): www.omg.org

 Common Object Request Broker Architecture (CORBA): www.corba.org

 IEEE 754: IEEE Standard for Binary Floating-Point Arithmetic, 1985

 ISO 8601: Date Formats

 Extensible Markup Language (XML): www.w3.org/xml

ISO/PAS 22720:2005(E)

352 © ISO 2005 – All rights reserved

www.asam.net
www.omg.org
www.corba.org
www.w3.org/xml

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-3

6 THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

6.1 INTRODUCTION

The ASAM ODS specification calls for a file storage system that allows measurement data to
be stored independent of a database. Prior to version 5.0 of ASAM ODS, that file storage
system was the classic ASAM Transport Format (referenced as ATF/CLA and currently
published as version 1.4.1). With version 5.0 comes the introduction of ATF/XML which is an
XML-based version of the ATF file format. Like its older counterpart, ATF/XML makes it
possible to exchange whole environments or even parts of those between different
computers and environments. While there are slight differences other than the XML basis,
ATF/XML and ATF/CLA are so similar that they should be considered to be two different
“flavors” of the same standard.

ATF/XML is able to transport the required structure and instance information as well as the
respective data and to store all this information in a standardized format.

This documentation describes and explains the ASAM Transport Format in XML (ATF/XML).

6.2 ATF/XML AND ATF/CLA COMPARISON

Both the ATF/CLA and ATF/XML specifications are based upon the ODS base model. This
base model describes the base data types and more complex structures used in valid ODS
application models. All ATF/CLA files and ATF/XML files use the components in the base
model to sufficiently describe an application and measurement data such that the application
can be understood by any ODS-aware processor. There are slight differences, however, in
how the two formats define models and instance data.

The primary difference between ATF/CLA and ATF/XML is that ATF/CLA uses its own highly
detailed specification for defining the structure of the file, while ATF/XML relies upon the
W3C XML specification for defining the structure of the file. ATF/XML files must be well-
formed, valid XML files and may be checked for structural validity by any XML validating
parser. Indeed, it is this capability and the proliferation of XML processing tools that spurred
the development of the ATF/XML file format. It is also possible to construct an XML schema
file that, combined with a validating parser, can perform a more thorough validation of the
ATF/XML file.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 353

ASAM ODS VERSION 5.0

6-4 ASAM ODS VERSION 5.0

Another significant difference between the two flavors of ATF is that ATF/XML uses Unicode
character encoding. The Unicode character set is a worldwide agreed-upon 16 bit character
set, which implements a superset of the ASCII character set. ATF/CLA files can use the 256
ASCII characters, but due to different hardware/software configurations, only the first 128 are
guaranteed to be supported. As a result, characters such as German umlauts can require
escape characters for use in ATF/CLA. With Unicode, escape characters are not required.

There are minor differences between the two flavors of ATF. These differences include:

 In ATF/CLA, attributes derived from base attributes may declare a data type different
than the base element from which they derived. ATF/XML does not allow any deviation
from the base element.

 In ATF/CLA, application attributes and relations to other elements are defined in
generally the same manner. ATF/XML delineates application attributes, instance
attributes, and relational attributes.

 Both ATF/CLA and ATF/XML rely implicitly upon the base model. However, ATF/XML
provides a base schema that can be used for basic validation and to be extended for
more thorough validation.

 ATF/XML has an additional documentation section for specifying information about the
file, how it was created, and when.

 In ATF/CLA files, lists and sequences of strings are delimited by commas. ATF/XML is
hampered by a severe limitation of XML in that lists of values are delimited by spaces.
This prevents a single value block from containing a sequence of strings. A sequence of
value blocks is required.

 ATF/XML files are able to handle the latest extensions to the ODS base model – namely
string length, obligatory flag, autogenerate flag, and unique flag. The extensions have not
yet been added to the ATF/CLA specification.

 When specifying instance information in ATF/CLA files, the order of the instance
elements and the order of attributes for each element are both arbitrary. By default in
ATF/XML it is permissible to have arbitrary arrangements of elements and attributes, but
it is also possible to create an external schema which rigidly enforces the order of
elements and attributes.

 ATF/CLA allows in-line declaration of instance attributes merely by specifying the name
of the attribute, its data type and its value. ATF/XML requires an explicit declaration of an
instance attribute block containing all instance attribute elements. Each instance attribute
element is declared with its name, data type, and value. The mechanism for declaring
data type is different from ATF/CLA and allows application schemas to be written that
define which data types, if any, are allowed.

 ATF/CLA supplies its own definition of acceptable data types, ATF/XML utilizes the
underlying XML schema data types as building blocks for more complex data types.

 ATF/CLA supplies its own rules for whitespace, ATF/XML utilizes the XML specification
for whitespace.

 ATF/CLA supplies its own rules for comments, ATF/XML utilizes the XML specification for
comments.

 ATF/CLA supplies its own rules for identifiers, ATF/XML utilizes the XML specification for
element names and attribute tag names. This presents a problem because the XML
specification specifically excludes spaces from tag names. Full backward compatibility
with existing models utilizing spaces in their tag names is not possible.

 ATF/CLA supplies its own rules for defining external files for storage of measurement
data and for inclusion into the document. ATF/XML uses similar rules for defining external
files for storage of measurement data, but utilizes the XML Inclusion (XInclude)
specification for inclusion of other files into the XML document.

ISO/PAS 22720:2005(E)

354 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-5

 ATF/CLA allows in-line declaration of user-defined enumerations. This is efficient if the
enumeration is to be used only once, but inefficient if multiple elements are to re-use the
enumeration. ATF/XML allows user-defined enumerations to be defined as separate
elements that can be referred to by 1-n application elements.

 ATF/CLA allows a zero-based index integer representation of user-defined enumerations.
This allows instance elements to merely specify the index of the appropriate enumeration
item. ATF/XML does not allow such integer representation. Instance elements must
explicitly state the desired enumerated value.

 ATF/XML allows the inverse relationship name to be specified when defining relations
between element.

 ATF/XML allows the locale of the document to be specified. This provides information
relevant to a processing application for displaying numbers and dates.

 ATF/XML allows relationships between elements to be defined such that xPointer-aware
XML parsers can enforce the validity of the references to other elements. In ATF/CLA,
only ASAM ODS-aware applications can enforce the validity of the references.

It is not a coincidence that that ATF/CLA and ATF/XML have so much in common. Rather
than having two separate file transport formats, ATF/CLA and ATF/XML should be thought of
as two different “flavors” of the same format. A person familiar with ATF/CLA will instantly
recognize the similarities of ATF/XML. Consider the following example of the same instance
element defined in ATF/XML and ATF/CLA.

EXAMPLE: COMPARISON BETWEEN ATF/CLA AND ATF/XML

The same instance is represented similarly in ATF/CLA and ATF/XML.

ATF/XML ATF/CLA

<Engine>

<EngineName>Test Engine 1</EngineName>

<EngineId>1</EngineId>

<EngineVersion>A 1.0</EngineVersion>

<EngineDescription>The first test
engine</EngineDescription>

<VersionDate></VersionDate>

<CreateDate>19971209141345</CreateDate>

<EngineType>ABC47111</EngineType>

<bore>92.</bore>

<cylindernumber>6</cylindernumber>

<stroke>95.3</stroke>

<SubTests>1</SubTests>

<EngineUser>21</EngineUser>

</Engine>

INSTELEM Engine

EngineName = "TestEngine 1";

EngineId = 1;

EngineVersion = "A 1.0";

EngineDescription = "The first test
engine";

CreateDate = "19971209141345";

EngineType = "ABC4711";

bore = 92.;

cylindernumber = 6;

stroke = 95.3;

SubTests = 1;

EngineUser = 21;

ENDINSTELEM;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 355

ASAM ODS VERSION 5.0

6-6 ASAM ODS VERSION 5.0

6.3 STRUCTURE OF AN ATF/XML FILE

An ATF/XML file is a logical XML file consisting of one or more well-formed physical XML
files. ATF/XML files may contain measurement data or pointers to external files containing
the measurement data. The logical ATF/XML file is self-describing meaning that the
application model is contained in the file along with the instance data.

With respect to the many different languages commonly used for defining application models
and instance data, the encoding for the XML files shall be the Unicode format “UTF-8”.

The ATF file consists of a sequence of documentation, locale, base model info, description of
external file components, application model meta-data, and instance data. Of these, only the
base model info and the application model meta-data are required.

Figure 1 Structure of an ATF/XML File

6.4 LOGICAL AND PHYSICAL ATF/XML FILES

Logical ATF Files can be composed of multiple physical files. ATF/XML files and their classic
ATF/CLA counterparts provide the opportunity to be self contained as well as the possibility
to be split into multiple physical files that are re-assembled by the processing application into
one logical file. This capability allows ATF designers to split the files into reusable modular
libraries for consistency of commonly used components. It also allows large amounts of
measurement data to stay in native format files.

The usage of multiple physical files in ATF/XML is slightly different than that of ATF/CLA
files. There are two different mechanisms for including physical files. The method to use
depends upon the type of information contained in the physical file. If the physical file
contains snippets of valid xml, the XML XInclude is used and the XML parser automatically
imports the file at the time of processing. If the physical file contains binary or other
measurement data, the XML XInclude cannot be used and the processing application must
obtain the file itself.

ISO/PAS 22720:2005(E)

356 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-7

6.4.1 USING XINCLUDE TO COMBINE MULTIPLE XML DOCUMENTS

XInclude is a recent W3C specification for building large XML documents out of multiple well-
formed XML documents, independently of validation. Each piece can be a complete XML
document or a fragmentary XML document. This capability is ideally suited for ATF/XML
developers that wish to develop a standard library of XML fragments that are included for use
in many XML files. Typically this would be to have the application meta-data defined in one
or more XML files that are included

To enhance reuse and modularity, XInclude is a technique for constructing new XML
documents from existing ones by using a simple inclusion mechanism. Notes on using
XInclude:

 http://www.w3.org/2001/XInclude is the official XInclude namespace

 XInclude is a very recent addition to the XML standard. It has not yet been finalized by
the W3C and is not yet widely supported by XML tool suppliers.

EXAMPLE: XINCLUDE

Given an ATF/XML file named ‘xitest.xml’.
Given another ATF/XML file named ‘measurement.xml’
The result is identical to what would be taken from an ATF/XML file named

‘result.xml’ (the parser will combine those two files appropriately)

Content of ‘xitest.xml’:

<atfx_file
version="atfx_file v1.0.1"
xmlns="http://www.asam.net"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xi="http://www.w3.org/2001/XInclude"
xsi:schemaLocation="http://www.asam.net odsbase_27_0_1.xsd">
<application_model>

<application_element>
<xi:include href="library/measurement.xml" />

</application_element>
</application_model>
<instance_data>
...
</instance_data>

</atfx_file>

Content of ‘measurement.xml’:

<name>Measurement</name>
<basetype>AoMeasurement</basetype>
<application_attribute>

<name>MeaName</name>
<baseattribute>name</baseattribute>
<unique>true</unique>
<length>50</length>

</application_attribute>
<application_attribute>

<name>MeaId</name>
<baseattribute>id</baseattribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
...
<relation_attribute>

<name>MeaQuantities</name>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 357

http://www.w3.org/2001/XInclude
http://www.asam.net
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XInclude
http://www.asam.net

ASAM ODS VERSION 5.0

6-8 ASAM ODS VERSION 5.0

<ref_to>MeasurmentQuantity</ref_to>
<base_relation>measurement_quantities</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>1</max_occurs>

</relation_attribute>

Content of ‘result.xml’:

<atfx_file version="atfx_file v1.0.1"
xmlns="http://www.asam.net"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xi="http://www.w3.org/2001/XInclude"
xsi:schemaLocation="http://www.asam.net odsbase_27_0_1.xsd">
<application_model>

<application_element>
<name>Measurement</name>
<basetype>AoMeasurement</basetype>
<application_attribute>

<name>MeaName</name>
<baseattribute>name</baseattribute>
<unique>true</unique>
<length>50</length>

</application_attribute>
<application_attribute>

<name>MeaId</name>
<baseattribute>id</baseattribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
...
<relation_attribute>

<name>MeaQuantities</name>
<ref_to>MeasurmentQuantity</ref_to>
<base_relation>measurement_quantities</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>1</max_occurs>

</relation_attribute>
</application_element>

</application_model>
<instance_data>
...
</instance_data>

</atfx_file>

6.4.2 DECLARING THE ROOT ELEMENT

The root element of the XML file is the container for all other elements. The root element
describes the version of the XML schema file that it adheres to and declares the
namespaces used in the document.

As per the ASAM XML style guide, the version of the schema file is given in the version
attribute. The format of the attribute is:

Schema-name: V<Application Profile Nr>.<Version Nr>.<Revision Nr>[<Patch Level>].

 Application Profile Number (numeric: [0-9]+)
 Version Number (numeric: [0-9]+)
 Revision Number (numeric: [0-9]+)
 Patch level (literal notation: [a-z]+)

<atfx_file version="atfx_file: v1.0.1"

ISO/PAS 22720:2005(E)

358 © ISO 2005 – All rights reserved

http://www.asam.net
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XInclude
http://www.asam.net

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-9

xmlns="http://www.asam.net"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://www.asam.net odsbase_27_0_3.xsd">

6.4.3 DECLARING THE LOCALE

In order to support Internationalization, the locale of the document can be declared. This can
be utilized by client applications for the purpose of formatting messages, numbers, currency
and dates. The locale consists of international standard 2-character abbreviations for
language (ISO 639) and country (ISO 3166). Either parts of a locale may be empty and are
separated by underscore characters (`_'). Examples of locale names might include fr
(French), de_CH (Swiss German)

EXAMPLE: A LOCALE

This locale specifies English as language and the USA as country.

<!--

**

* Locale of Document
**

-->
<locale>en_us</locale>

6.4.4 DECLARING THE ODS BASE MODEL

The ATF/XML file must declare the ODS base model upon which the application model is
based.

EXAMPLE: A BASE MODEL VERSION

This code segment specifies ‘asam27’ as the version of the underlying
ASAM ODS base model.
<!--

**

* Based on ODS Base Model version 27
**

-->

<base_model_version>asam27</base_model_version>

6.4.5 USING EXTERNAL FILES FOR MEASUREMENT DATA

External files may be used to hold measurement data as long as the files are declared in the
files portion of the file and the local columns provide processing instructions for deciphering
the files. The files portion of the ATF/XML file is identified by the <files> XML tag.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 359

http://www.asam.net
http://www.w3.org/2001/XMLSchema-instance
http://www.asam.net

ASAM ODS VERSION 5.0

6-10 ASAM ODS VERSION 5.0

Figure 2: External File Component Placement

EXAMPLE: AN EXTERNAL FILE DECLARATION

This code extract from an XML file specifies a file named ‘k1.dat’ as external
file. That file is placed in subdirectory ‘data’ which is parallel to the directory
where the current XML file resides and which can be accessed from one
level above. This file may be referenced as ‘file1’ furtheron in the XML file.

<atfx_file version="atfx_file v1.0.1"
xmlns="http://www.asam.net"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.asam.net odsbase_27_0_1.xsd">

...
<!--

* Based on ODS Base Model version 27

-->
<base_model_version>asam27</base_model_version>

<!--

* declare any external files

-->
<files>

<component>
<identifier>file1</identifier>
<filename>../data/k1.dat</filename>

</component>
</files>
...

ISO/PAS 22720:2005(E)

360 © ISO 2005 – All rights reserved

http://www.asam.net
http://www.w3.org/2001/XMLSchema-instance
http://www.asam.net

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-11

The path- and filenames used as references in an ATF/XML file must be transportable and
usable on a wide range of computer architectures. Thus, a general format for the definition of
path- and filenames is paramount, which has to be easily interpreted and converted for the
target machine.

The Uniform Resource Locator (URL) used in the worldwide Internet is already working on
different platforms. Through the naming conventions of the URL it will be possible for future
ATF versions to have ATF files distributed within a network.

The URL describes a protocol for the target server, the target system the machine or server
name, the port, the directory path and the filename. The URL has the following structure:

access_method://server_name[:port]/directory_path/filename

EXAMPLE: AN URL

This example shows an URL for a resource on a remote machine (the
master list of all World Wide Web servers).
With the protocol HTTP (Web) the server named “www.w3.org” is
addressed. By using the standard port the directory
“/hypertext/DataSources/WWW” can be accessed, which contains the
hypertext document “Geographical.html”.

http://www.w3.org/hypertext/DataSources/WWW/Geographical.html

Each file in the Internet is by means of the URL uniquely addressable.

Figure 3: External File Component Structure

If the protocol references the contents of a directory, the URL ends with a slash „/“. When
referencing a file within the directory no slash follows.

URLs as the ones described above are called absolute URLs, because they contain the full
pathname of a file. A simplified format of URLs is called relative URL. This simplified format
references other documents on the same server as the actual document. With relative URLs,
an ATF file can reference directly the physical components without referencing the server.

Absolute URLs may reference any resource within the Internet, including local resources.
Due to reasons explained later, relative URLs are better suited for local resources.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 361

method://server_name[:port]/directory_path/filename
http://www.w3.org/hypertext/DataSources/WWW/Geographical.html

ASAM ODS VERSION 5.0

6-12 ASAM ODS VERSION 5.0

A relative URL implies the same access method, the same server name and the same
directory path as the ATF file containing the URL. It describes the relative position of the
component of the ATF file in relation to the actual ATF file.

Example:../../matrix_xyz.dat

Relative URLs make it possible to move the ATF directory structure to any position in the
directory tree. A relative URL does not have to reference the directory of the actual document
but may contain a reference relative to the root of the ATF file. This variant of relative URLs
starts with a slash (/). It looks similar to an absolute URL but does not contain the access
method and the server name.

The correct conversion of pathnames in both directions and the insertion of correct
separators are the responsibility of the ATF reading and writing programs on the respective
target systems.

If filenames are too long for the target system (e.g. length of DOS-filenames 8.3), the
filenames will be shortened following these rules: After the first point within the filename a
maximum of 3 more characters are allowed. None of these characters may be a point. If
there are more than 3 characters or another point, the rest will be truncated. Unallowed
characters are substituted by a tilde (swung dash).

The number of characters in front of the point is counted and truncated to 8 characters. If this
results in filenames which are not unique, the algorithms from Windows 95 can be used
(truncating to 6 characters and using the latter 2 characters for numbering).

To make the transfer of files to the world of UNIX easier, filenames will always be written in
lowercase, even on operating systems which are not case-sensitive (VAX/VMS,
MSWindows).

Filenames in uppercase are only used on demand when path and filenames on the UNIX
machine should be in uppercase.

6.5 VALIDATING AN ATF/XML FILE

One of the benefits of using ATF/XML is the built-in validation capabilities of XML and XML
Schema. However, this validation can only ensure that the file is well-formed and
syntactically correct. It cannot validate all semantics of the file.

The ASAM ODS ATF/XML specification includes the ODS base schema file that can be used
for validating the syntax of the application model portion of the file. This schema ensures that
the model defined in the application model portion is a syntactically correct model. The ODS
base schema file does not perform any validation of instance data.

ISO/PAS 22720:2005(E)

362 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-13

Because application models can and will vary from application to application, the generic
ODS base schema is insufficient for validating the syntax of the instance data portion of the
ATF/XML file. Accordingly, an application specific schema may be used to validate the entire
file. Such a schema would take into consideration the particular features of the given
application model.

Figure 4: Using Schemas to Validate Files

An application specific schema would need to define the application model using XML
Schema language (XSL).

ATF/XML File

<atfx_file >

 <application_model >
 <application_element >

 <name >Test</name >
 <basetype >AoSubTest </basetype >

 ...

 </application_element >
 </application_model >

<instance_data >
<Engine >
 <EngineName >Test Engine 1</EngineName >

 <EngineId >1</EngineId >
...

 </instance_data >
</atfx_file >

ODS Base
Schema

V
a

lid
a

te

Application
Specific
Schema

V
a

lid
a

te

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 363

ASAM ODS VERSION 5.0

6-14 ASAM ODS VERSION 5.0

EXAMPLE: AN APPLICATION ELEMENT DEFINED USING XSL

This application element is an extension of the ods:AoTest type defined in
the ODS base schema. Each of the attributes for the element is defined
along with the attributes’ base types. This amounts to a redundant definition
of the model using the XML Schema Definition language (XSD).

<xsd:complexType name="Engine">
<xsd:complexContent>
<xsd:extension base="ods:AoTest">
<xsd:sequence>
<xsd:element name="EngineName" type="ods:name"/>
<xsd:element name="EngineId" type="ods:id"/>
<xsd:element name="EngineVersion" type="ods:version" nillable="true"/>
<xsd:element name="EngineDescription" type="ods:description"

nillable="true"/>
<xsd:element name="version_date" type="ods:version_date"

nillable="true"/>
<xsd:element name="CreateDate" type="ods:DT_DATE" nillable="true"/>
<xsd:element name="EngineType" type="ods:A_ASCIISTRING"

nillable="true"/>
<xsd:element name="bore" type="ods:A_FLOAT32" nillable="true"/>
<xsd:element name="cylindernumber" type="ods:A_INT16" nillable="true"/>
<xsd:element name="stroke" type="ods:A_FLOAT32" nillable="true"/>
<xsd:element name="SubTests" type="ods:id" nillable="true" />
<xsd:element name="EngineUser" type="ods:id" nillable="true"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

This definition of the model in XSD is required if it is desired to use a validating parser for
validating the contents of the ATF/XML file.

Once the application-specific schema has been developed, it can be used separately to
validate an ATF/XML file. While this step is technically unnecessary, it can provide another
level assurance that the file meets the agreed-upon model. For example, if an OEM only
wants to ensure that suppliers are providing syntactically correct ATF/XML files, they may
require the suppliers validate the files using only the ODS base schema file. If, however, the
OEM wants to require a more thorough validation, it may require the suppliers to validate
using a more thorough, application-specific schema.

6.5.2 CREATING AN APPLICATION SCHEMA

The ODS base schema can be used only for validating the data model portion of the XML
file. As a result, it is not designed to be a stand-alone schema. It is designed to be included
as part of an application schema. Application schemas must provide validation instructions
for the instance data portion of the XML file. At a minimum, application schemas should
include the ODS base schema and provide bare-bones validation for the instance data
portion.

ISO/PAS 22720:2005(E)

364 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-15

EXAMPLE: A BARE-BONES APLICATION SCHEMA

<?xml version="1.0"?>
<xsd:schema targetNamespace="http://www.asam.net"

xmlns="http://www.asam.net"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xsd:include schemaLocation="asam_base_model.xsd"/>

<!-- *** declare Bare-Bones Instance Data section with no validation of
contents *** -->

<xsd:element name="instance_data">
<xsd:complexType>

<xsd:sequence>
<xsd:any processContents="skip" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

While this application schema is technically correct, most organizations will probably desire a
more thorough application schema.

Using the include functionality of the schema language, it is possible to build generic or
corporation specific schemas that can be reused as components of application schemas.
This allows standardization of schema definitions and promotes reuse.

EXAMPLE: A STANDARDIZED APPLICATION SCHEMA

<?xml version="1.0"?>
<xsd:schema targetNamespace="http://www.asam.net"

xmlns="http://www.asam.net"
xmlns:xsd=http://www.w3.org/2001/XMLSchema
elementFormDefault="qualified">

<xsd:include schemaLocation="asam_base_model.xsd"/>
<xsd:include schemaLocation="corporate_model.xsd"/>
<xsd:include schemaLocation="department_model.xsd"/>

</xsd:schema>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 365

http://www.asam.net
http://www.asam.net
http://www.w3.org/2001/XMLSchema
http://www.asam.net
http://www.asam.net
http://www.w3.org/2001/XMLSchema

ASAM ODS VERSION 5.0

6-16 ASAM ODS VERSION 5.0

6.6 DEFINING AN APPLICATION MODEL

The application model portion of the ATF/XML file is used to describe the application
elements and their relationships to one another. It is identified by the <application_model> XML
tag. The application model block consists of a sequence of 1-N application elements followed
by 0-N application enumeration elements.

Figure 5: Application Model Components

EXAMPLE: AN APPLICATION MODEL DECLARATION

<!--

* declare application model meta data

-->

<application_model>

<application_element>

<!-- *** declare Engine Element *** -->

<name>Engine</name>

...

</application_element>

</application_model>

Each of the application elements must be valid XML snippets that conform to the ODS base
schema definition for application elements as well as conforming to the underlying ODS base
model. This implies that the ODS base schema does not rigidly enforce all constraints in the
ODS base model.

ISO/PAS 22720:2005(E)

366 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-17

Figure 6: Application Element Structure

Application elements consist of the element name, basetype and a series of
application_attribute elements followed by a series of relation_attribute elements. At a
minimum, the application attributes specified must contain the required attributes specified in
the ODS base model. Additional attributes are also allowed. Likewise, the relation attributes
must specify any required relations for the given element type. Additional relationships may
also be defined. Base attributes and relations that are declared as optional in the base model
are optional in the ATF/XML file.

Figure 7: Application Attribute Structure

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 367

ASAM ODS VERSION 5.0

6-18 ASAM ODS VERSION 5.0

There are significant differences between ATF/CLA and ATF/XML for application attributes.
ATF/XML files are able to handle the latest extensions to the ODS base model – namely
string length, obligatory flag, autogenerate flag, and unique flag. The extensions have not yet
been added to the ATF/CLA specification. Another difference is in declaring data types. In
ATF/CLA, attributes derived from base attributes may declare a data type different than the
base attribute from which they derived. ATF/XML does not allow any deviation from the base
attribute.

Element Relationship Declaration

ATF/XML files allow explicit declaration of the relationships between elements. Relationships
between parent elements and their children are quite common.

Figure 8: Relation Attribute Structure

Unlike in ATF/CLA, ATF/XML separates relation attributes from application attributes to
provide a standard pattern for declaring relationships. Each declaration of a relationship must
include the name of the relationship and the name of the related item. Relationships need not
be based upon ODS base relations. If a relationship is needed in both directions, this can be
modeled by explicitly specifying the name of the inverse relationship using the
<inverse_name> tag.

EXAMPLE: A RELATION ATTRIBUTE DECLARATION

<relation_attribute>

<name>TestUser</name>

<ref_to>User</ref_to>

ISO/PAS 22720:2005(E)

368 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-19

<min_occurs>0</min_occurs>

<max_occurs>1</max_occurs>

<inverse_name>UserTests</inverse_name>

</relation_attribute>

Element Relationship Declaration in Application Schemas

It is possible to validate ATF/XML files using application-specific schemas. These schemas
can be designed in such a manner as to enforce the referential integrity of the ATF/XML file.
Using xPointer in the application schema allows an xPointer-aware tool to verify that the Ids
referred to by elements are valid Ids. Of course, it is not always necessary to have the XML
parser validate the file, but the option does exist.

To allow the ATF/XML file to have the links between elements validated, the links must be
designed properly. Any element that is to be the target of a link must have a unique ID
element that is declared using the xsd:Id declaration. Any element that links to the target
element must have a link element that is declared using the xsd:anyURI declaration. The
ODS base schema includes three helper types that may be used by application schemas.

<xsd:simpleType name="t_id">
<xsd:restriction base="xsd:ID"/>

</xsd:simpleType>

<xsd:simpleType name="t_ref">
<xsd:restriction base="xsd:anyURI"/>

</xsd:simpleType>

<xsd:simpleType name="t_ref_list">
<xsd:list itemType="t_ref"/>

</xsd:simpleType>

The element t_id is used for declaring that the element is a unique identifier to be used as
the target of a link.

The element t_ref is used for 1-1 relationships to declare that the element is any valid URI. In
ATF/XML, the URI may either be the actual ID of the target element or an xPointer
expression that points to the ID element of the target element.

The element t_ref_list is used for 1-N to declare that the element is a space-delimited series
of valid URIs. In ATF/XML, the URIs may either be the actual IDs of the target elements or a
series of xPointer expressions that point to the ID element of the target elements.

In the XML file, the xPointer is identified as an xPointer fragment using the #xPointer
identifier followed by the xPointer expression that identifies the target of the link.

EXAMPLE: AN XPOINTER

In the first line of this example the link is to the element whose ID is 21.
The second line shows the shortened form.

<EngineUser> #xPointer(id("21")) </EngineUser>
<EngineUser> #element(21)</EngineUser>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 369

ASAM ODS VERSION 5.0

6-20 ASAM ODS VERSION 5.0

EXAMPLE: PART OF AN APPLICATION SCHEMA USING XPOINTERS

The following snippet of an application schema is an example of using
xPointers for verifying the relational integrity of the ATF/XML file. It declares
that the <EngineId> element is a unique ID that can be the target of links
from other elements. It also declares that the <SubTests> element is a list of
xPointers to Ids of SubTest elements and that the <TestUser> element is an
xPointer to the Id of a TestUser element.

The application schema:
<xsd:complexType name="Engine">
<xsd:complexContent>
<xsd:extension base="ods:AoTest">
<xsd:sequence>
<xsd:element name="EngineName" type="ods:name"/>
<xsd:element name="EngineId" type="ods:t_id"/>
<xsd:element name="EngineVersion" type="ods:version" nillable="true"/>
<xsd:element name="EngineDescription" type="ods:description"

nillable="true"/>
<xsd:eement name="version_date" type="ods:version_date"

nillable="true"/>
<xsd:eement name="CreateDate" type="ods:DT_DATE" nillable="true"/>
<xsd:element name="EngineType" type="ods:A_ASCIISTRING"

nillable="true"/>
<xsd:element name="bore" type="ods:A_FLOAT32" nillable="true"/>
<xsd:element name="cylindernumber" type="ods:A_INT16" nillable="true"/>
<xsd:element name="stroke" type="ods:A_FLOAT32" nillable="true"/>
<xsd:element name="SubTests" type="ods:t_ref_list" nillable="true" />
<xsd:element name="EngineUser" type="ods:t_ref" nillable="true"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

A snippet from the corresponding ATF/XML file would look like this

<Engine>
<EngineName>Test Engine 1</EngineName>
<EngineId>16</EngineId>
<EngineVersion>A 1.0</EngineVersion>
<EngineDescription>The first test engine</EngineDescription>
<version_date>199702010900</version_date>
<CreateDate>199702010900</CreateDate>
<EngineType>ABC47111</EngineType>
<bore>92</bore>
<cylindernumber>6</cylindernumber>
<stroke>95.321</stroke>
<SubTests>211 437 912 </SubTests>
<EngineUser>21</EngineUser>

</Engine>

A snippet using xPointer would look like this

<SubTests>#xPointer(id("211")) #xPointer(id("437")) #xPointer(id("912"))
</SubTests>

<EngineUser> #xPointer(id("21")) </EngineUser>.

EXAMPLE: APPLICATION ELEMENT DECLARATION

<!-- *** declare Test Element *** -->
<application_element>

<name>Test</name>
<basetype>AoSubTest</basetype>
<application_attribute>

<name>TestName</name>

ISO/PAS 22720:2005(E)

370 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-21

<baseattribute>name</baseattribute>
<unique>true</unique>
<length>50</length>

</application_attribute>
<application_attribute>

<name>TestId</name>
<baseattribute>id</baseattribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>TestVersion</name>
<baseattribute>version</baseattribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>TestDescription</name>
<baseattribute>description</baseattribute>
<length>100</length>

</application_attribute>
<application_attribute>

<name>VersionDate</name>
<baseattribute>version_date</baseattribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>CreateDate</name>
<datatype>DT_DATE</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>TestType</name>
<datatype> DT_STRING</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>TestComment</name>
<datatype> DT_STRING</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>exhaust</name>
<datatype> DT_STRING</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>air_filter</name>
<datatype> DT_STRING</datatype>
<obligatory>false</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>Measurements</name>
<ref_to>Measurement</ref_to>
<base_relation>children</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

</relation_attribute>
<relation_attribute>

<name>MainTest</name>
<ref_to>Engine</ref_to>
<base_relation>parent_test</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>1</max_occurs>

</relation_attribute>
<relation_attribute>

<name>TestUser</name>
<ref_to>User</ref_to>
<min_occurs>0</min_occurs>
<max_occurs>1</max_occurs>

</relation_attribute>
</application_element>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 371

ASAM ODS VERSION 5.0

6-22 ASAM ODS VERSION 5.0

For purposes of consistency, modularity, and re-usability, it is allowed to place the definitions
of the application model into separate xml files. These files are included at run-time by any
XInclude capable processor.

Application Enumeration Declaration

User-defined enumerations define the limited set of strings that are allowed as values for
attribute values. In ATF/CLA, these values are declared in-line within the attribute’s definition.
In ATF/XML, user-defined enumerations are declared separately so that they may be reused
by multiple attributes.

Each enumeration is defined using the <application_enumeration> tag. Within the tag, the
name of the enumeration is given followed by enumeration item elements. Each item
contains the name of the item and the item’s value.

EXAMPLE: AN ENUMERATION

<application_enumeration>
<name>MyEnum</name>
<item>

<name>first</name>
<value>1</value>

</item>
<item>

<name>second</name>
<value>2</value>

</item>
</application_enumeration>

Enumerations are used by application attributes. To declare that the values of an application
attribute are limited to those of the user-defined enumeration, a link to that enumeration must
be declared.

EXAMPLE: LINK TO AN ENUMERATION

<application_attribute>
<name>air_filter</name>
<datatype>DT_ENUM</datatype>
<enumtype>MyEnum</enumtype>

</application_attribute>

6.7 USING SPACES IN ELEMENT & ATTRIBUTE NAMES

In the XML 1.0 Specification, element and attribute names may contain letters, digits, and
assorted non-blank characters. Embedded spaces are not allowed. As a result, spaces are
not allowed in ATF/XML element or attribute names. While it is possible to use escape
characters within the content, the only escape characters you are allowed to use in element
names are &, &apos, >, <, ". As a result, element names such as “measurement
description” are not allowed.

ISO/PAS 22720:2005(E)

372 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-23

Illegal syntax:

<Engine>
<Engine Name>Test Engine 1</Engine Name>
<Engine Id>1</Engine Id>

</Engine>

Full backward compatibility of existing data models utilizing spaces in the identifier names is
not possible. It is suggested in the ASAM XML Styleguide that Hyphens be used in this
instance.

Legal syntax:

<Engine>
<Engine-Name>Test Engine 1</Engine-Name>
<Engine-Id>1</Engine-Id>

</Engine>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 373

ASAM ODS VERSION 5.0

6-24 ASAM ODS VERSION 5.0

6.8 DECLARING INSTANCE DATA

The instance data portion of the ATF/XML file is used to define instance elements. This
portion of the ATF/XML file is identified by the <instance_data> XML tag. The instance data
portion follows the application model portion and it is optional.

Figure 9: Instance Data Location in ATF/XML File

Each instance element is separated from each other instance element by XML tags with the
instance element’s name. Within the opening and closing tags for the instance element, a
series of attribute value elements are given. These attribute values must match the definition
of the corresponding application element. Defined attributes without assigned values are
assumed to have the default value of UNDEFINED. When specifying instance information in
ATF/XML files, the order of the instance elements and the order of attributes for each
element are both arbitrary

Instance information is not validated by the ODS base schema because the structure of the
instance data is a combination of the specific application model and the implicit ODS base
model. It is possible, however, to create an external schema which rigidly enforces the order
and contents of elements and attributes.

Figure 10: Instance Data Structure

The instance data section of the ATF/XML file is identified by the <instance_data> XML tags.
The instance data section consists of a series of 0-N instance element declarations. Each
instance element declaration is identified as an XML tag bearing the name of the instance
element.

ISO/PAS 22720:2005(E)

374 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-25

Figure 11: Instance Element Structure

Each instance element consists of an XML tag bearing the name of the instance element.
Within the element is a series of 1-N attribute values followed by 0-N relation attributes and
0-N instance attributes. Each attribute value and relation attribute is an XML element where
the XML tag consists of the attribute name. Inside the tag is the attribute’s value(s).

EXAMPLE: INSTANCE DATA

This is a simple example of instance data

<instance_data>
<Engine>

<EngineName>Test Engine 1</EngineName>
<EngineId>1</EngineId>
<EngineVersion>A 1.0</EngineVersion>
<EngineDescription>The first test engine</EngineDescription>
<Mfg_Plant>

<s>Ypsilanti</s>
<s>Stockholm</s>
<s>Turin</s>
<s>San Francisco</s>

</Mfg_Plant>
<VersionDate>199702010900</VersionDate>
<CreateDate>199702010900</CreateDate>
<EngineType>ABC47111</EngineType>
<bore>92</bore>
<cylindernumber>6</cylindernumber>
<stroke>95.321</stroke>
<SubTests>1</SubTests>
<EngineUser>21 22 23 24 25 87 62 </EngineUser>

</Engine>
...

</instance_data>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 375

ASAM ODS VERSION 5.0

6-26 ASAM ODS VERSION 5.0

Regardless of the data type, attributes with single values shall place the value within the
attribute’s tags. For attributes with multiple values e.g. lists, the data type determines how the
values are declared. This is due to how XML handles lists and sets of data. XML 1.0 declares
that lists of values are to be delimited by spaces. As a result, string values with embedded
spaces will be treated differently than string values without embedded spaces. For the
ATF/XML designer, this means that multiple occurrences of string data types shall be
handled differently than non-string data types. Attributes with multiple values e.g. lists and
sets, shall place non-string values as a series of 1-n, space-delimited values within the
attribute’s tags. Multiple string values shall be declared using a single string-sequence
element with 1-n child elements, each containing a single string value.

EXAMPLE: ATTRIBUTE WITH MULTIPLE VALUES

This is an example of an attribute with multiple values (non-string)

<EngineUser>21 22 23 24 25 87 62 </EngineUser>

EXAMPLE: ATTRIBUTE WITH MULTIPLE VALUES

This is an example of an attribute with multiple values (string)

<Mfg_Plant>
<s>Ypsilanti</s>
<s>Stockholm</s>
<s>Turin</s>
<s>San Francisco</s>

</Mfg_Plant>

Base Schema Definition of String Sequence

<xsd:complexType name="string_sequence">
<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="s" type="A_ASCIISTRING"/>
</xsd:sequence>

</xsd:complexType>

Application Schema Using String Sequence

<xsd:element name="Mfg_Plant" type="string_sequence"/>

6.8.2 DECLARING INSTANCE ATTRIBUTES

Instance attributes are name-datatype-value triplets that are declared in-line within the
declaration of an instance element. This differs from other attribute values whose names &
data types are defined in the application model.

ISO/PAS 22720:2005(E)

376 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-27

EXAMPLE: INSTANCE ELEMENT CONTAINING INSTANCE ATTRIBUTES

<User>
<UserName>Todd Martin</UserName>
<UserId>22</UserId>
<UserVersion>1B</UserVersion>
<UserDescription>Sub user group 1b</UserDescription>
<version_date>199708101105</version_date>
<password>j</password>
<groups>30 40</groups>
<UserDepartment>OP/ABC</UserDepartment>
<AliasName>TM</AliasName>
<instance_attributes>

<inst_attr_A_INT32 name="altkey">123</inst_attr_A_INT_32>
<inst_attr_A_ASCIISTRING name="passkey">hello</inst_attr_A_ASCIISTRING>

</instance_attributes>
</User>

Instance attributes are grouped together within the <instance_attributes> tags. There should be
at least one instance attribute within the tags or the optional tags should be omitted. Each
instance attribute is declared using the appropriate instance attribute element. The instance
attribute elements are predefined in the ODS base schema. The name of the instance
attribute element describes the data type that the attribute is allowed to contain. By declaring
that instance attributes of a given type are allowed, the XML validating parser can ensure
that the values match the specified type.

The name of the instance element is declared as an attribute and the value of the attribute is
declared between the attribute’s tags. In the example above, the instance element has an
instance attribute named “altkey”, with a data type of long, and a value of 123.

By default, the ODS base schema does not perform any validation on instance data.
Instance attributes were designed to allow application schemas to be written to perform
validation on the instance data. It is possible to write a schema that limits the types of
instance data allowed. It is also possible to create application schemas that do not allow any
instance attributes to be used.

6.8.3 USING EXTERNAL FILE COMPONENTS FOR MEASUREMENT DATA

In ASAM-ODS the measured data is described by the base element Local Column. These
columns are referred by measurement quantities and submatrices. While other elements like
AoMeasurementQuantity and AoSubmatrix can be dealt with as normal base elements, the
local column often refers large external binary datasets. Mainly for this reason, the
COMPONENT construct was provided in both the ATF and ATF/XML specifications. This
construct allows large amounts of binary data to be stored outside the XML file and therefore
can save considerable time and space in transmission and storage.

Each external file component must have been defined within the <files> block. Once defined,
a reference to the file shall be inserted where the binary component is to be inserted. The
component description describes how the values are to be obtained from the external file for
usage as if they had been stored locally.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 377

ASAM ODS VERSION 5.0

6-28 ASAM ODS VERSION 5.0

EXAMPLE: EXTERNAL FILE COMPONENT DECLARATION

<files>
<component>

<identifier> binary_file_1</identifier>
<filename>../data/k1.dat</filename>

</component>
</files>

Figure 12: Structure of Component

EXAMPLE: COMPONENT DECLARATION

This is a simple example of a component declaration

<component>
<identifier>binary_file_1</identifier>
<datatype>A_FLOAT64</datatype>
<length>11</length>
<description>double precision floating-point numbers </description>
<inioffset>0</inioffset>
<blocksize>8</blocksize>
<valperblock>1</valperblock>
<valoffsets>0</valoffsets>

</component>

ISO/PAS 22720:2005(E)

378 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-29

Within the component XML tags, a series of elements describes the values contained in the
component and how they can be used.

The first element is the <identifier>. The value of the identifier must be one of the
components listed in the FILES block at the beginning of the ATF/XML file.

The <datatype> element specifies the manner in which the data is stored on the file. In
ATF/XML, the following ASAM datatypes are accepted:

 A_ASCIISTRING
 A_BYTEFIELD
 A_BITFIELD
 A_BOOLEAN
 A_FLOAT32
 A_FLOAT64
 A_FLOAT32_BEO
 A_FLOAT64_BEO
 A_INT8
 A_INT16
 A_INT32
 A_INT64
 A_INT16_BEO
 A_INT32_BEO
 A_INT64_BEO
 A_UINT8
 A_UINT16
 A_UINT32
 A_UINT64

The <length> specification element is an integer value that specifies the amount of data to be
read from the file. In case of A_ASCIISTRING, DT_BYTESTR and A_BYTEFIELD it denotes
the number of bytes to be read; in all other cases (integers, floats, bits and bytes) it denotes
the number of values to be read. In the case of blobs this specification is equivalent with the
length of the file on which the blob is located, because in a <component> only one blob can
be referred, and only one blob may reside in a component file.

All other types may occur in sequences on a component file.

The <inioffset> element specifies the number of bytes in the file header. This file header is
skipped when accessing the file. Since a blob always covers a whole file, there is no
INIOFFSET in blob components.

The <blocksize> element is an integer that contains the size of each block in bytes. After the
header, the main portion of the file should contain 1-n blocks. A block consists of values
which may belong to different components and (in case of numerical data) may have
different data types. Within a block also several values may belong to the same component,
see examples at the end of this section. For all numerical data types a blocksize must be
specified.

The <valperblock> element contains the number of values in each block belonging to the
desired component. For each of these values the offset within a block must be specified in
bytes. All these offsets are given within the valoffsets element. The <valoffsets> element
contains a list of 1-n space-delimited offsets. An example is shown in the examples below.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 379

ASAM ODS VERSION 5.0

6-30 ASAM ODS VERSION 5.0

REPRESENTATION OF A_BOOLEAN

In a binary component file each boolean shall be represented by one bit (0=false, 1=true).
These bits are filled into a sequence of bytes. If the number of bits is not sufficient to fill a
byte completely, then the rest of that byte shall remain unused. The byte is filled from left to
right, i.e. beginning with the most significant bit. In the byte sequence (by1, by2, by3,...) the nth

Boolean (n is one-based) can be located using the following integer formula. Assuming the
bit positions in a byte numbered (again from left to right) 7,6,5,4,3,2,1,0 then the nth Boolean
is in the lbyth byte at bit position lbi:

lby = (n+7) / 8

lbi = lby*8 – n

The number of used bytes (Nby) can be calculated from the number of Booleans (Nbi) by
integer arithmetic

Nby = 1 + (Nbi-1) / 8.

The value within the <length> element specifies the number of boolean values that are
coded; the number of bytes occupied in the component file may be calculated as above.

REPRESENTATION OF A_INT8

This data type is represented simply by bytes. Thus the value within the <length> element
denotes the number of byte values in the sequence, in case of a single value it is set to 1.

REPRESENTATION OF A_INT16

This 16-bit integer data type is represented by 2 bytes. If the keyword A_INT16 is given in
the <datatype> element, then the least significant byte comes first (lower address), the most
significant byte comes last (higher address). If the keyword A_INT16_BEO is given, then the
most significant byte comes first, the least significant byte comes last; this order is also
known as "Big Endian Order". The value within the <length> element denotes the number of
integer values in the sequence, in case of a single value it is set to 1.

REPRESENTATION OF A_INT32

This 32-bit integer data type is represented by 4 bytes. If the keyword A_INT32 is given in
the <datatype> element, then the least significant byte comes first (lower address), the most
significant byte comes last (higher address). If the keyword A_INT32_BEO is given, then the
most significant byte comes first, the least significant byte comes last; this order is also
known as "Big Endian Order". The value within the <length> element denotes the number of
integer values in the sequence, in case of a single value it is set to 1.

REPRESENTATION OF A_INT64

This 64-bit integer data type is represented by 8 bytes. If the keyword A_INT64 is given in
the <datatype> element, then the least significant byte comes first (lower address), the most
significant byte comes last (higher address). If the keyword A_INT64_BEO is given, then the
most significant byte comes first, the least significant byte comes last; this order is also

ISO/PAS 22720:2005(E)

380 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-31

known as "Big Endian Order". The value within the <length> element denotes the number of
integer values in the sequence, in case of a single value it is set to 1.

REPRESENTATION OF A_FLOAT32

This data type is represented by 4 bytes. If the keyword A_FLOAT32 is given in the
<datatype> element, then the least significant byte comes first (lower address), the most
significant byte comes last (higher address). If the keyword A_FLOAT32_BEO is given, then
the most significant byte comes first, the least significant byte comes last; this order is also
known as "Big Endian Order". The location of sign, exponent and mantissa is described in
IEEE 754. The value within the <length> element denotes the number of float values in the
sequence, in case of a single value it is set to 1.

REPRESENTATION OF A_FLOAT64

This data type is represented by 8 bytes. If the keyword A_FLOAT64 is given, then the least
significant byte comes first (lower address), the most significant byte comes last (higher
address). If the keyword A_FLOAT64 _BEO is given, then the most significant byte comes
first, the least significant byte comes last; this order is also known as "Big Endian Order". The
location of sign, exponent and mantissa is described in IEEE 754. The value within the
<length> element denotes the number of float values in the sequence, in case of a single
value it is set to 1.

REPRESENTATION OF A_COMPLEX32 & A_COMPLEX64

Complex numbers are controlled by the keywords A_FLOAT32 and A_FLOAT64 (resp.
A_FLOAT32_BEO and A_FLOAT64_BEO) specified in the <datatype> element. The number
of values must be doubled (i.e. only even numbers are legal). For a single complex value the
value within the <length> element is 2, for a sequence of 7 complex values the value is 14.
The order in complex sequences is

 real part of first sequence member

 imaginary part of first sequence member

 real part of second sequence member

 imaginary part of second sequence member
...

REPRESENTATION OF A_ASCIISTRING

This data type is represented by bytes. Each string is terminated by a NULL byte which
increases the required space for that string by 1. In a sequence of strings each member of
the sequence has a terminating NULL byte, and these NULL bytes are included in the total
length of the component which is given in the value within the <length> element. The data
type A_ASCIISTRING may not be mixed with other data types on the same component file.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 381

ASAM ODS VERSION 5.0

6-32 ASAM ODS VERSION 5.0

REPRESENTATION OF A_BITFIELD

An A_BITFIELD datastream is represented as multiple of bytes. In a bitfield the first 2 bytes
denote the number of bits coded in the subsequent bytes. Eventually not-used bitpositions
are set to zero.
In a sequence of bitfields the next length indication follows immediately after the last byte of
the previous member of the sequence. Please note that the 2 length indication bytes are
always given in “Big Endian Order”, i.e. with the most significant byte first.

EXAMPLE:

2 bitfields with contents "011010110" and "11001" are represented by
00 09 00 D6 00 05 19
The total length is 7, this 7 is given as value of the <length> element.

The data type A_BITFIELD must not be mixed with other data types on the same component
file.

REPRESENTATION OF A_BYTEFIELD

This data type is represented by bytes. In a bytefield the first 4 bytes denote the number of
bytes following after these 4 bytes. In a sequence of bytefields the next length indication
follows immediately after the last byte of the previous member of the sequence. Please note
that the 4 length indication bytes are always given in “Big Endian Order”, i.e. with the most
significant byte first.

EXAMPLE:

2 bytefields with contents "ABCDEFG" and "XYZ" are represented by
00 00 00 07 41 42 43 44 45 46 47 00 00 00 03 58 59 5A
The total length is 18, this 18 is given as value of the <length> element.

The data type A_BYTEFIELD must not be mixed with other data types on the same
component file.

The following examples show how measurement data may be stored using ATF/XML.

ISO/PAS 22720:2005(E)

382 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-33

EXAMPLE 1: LOCAL COLUMN WITHOUT <COMPONENT>

<LocalColumn>
<name>MD</name>
<id>2</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>150</minimum>
<maximum>255.</maximum>
<datatype>A_FLOAT32</datatype>
<values>
150. 160. 170. 180. 190. 200. 210. 220 230. 240. 250. 255. 250. 230. 190.

</values>
<submatrix>1</submatrix>
<measurement_quantity>2</measurement_quantity>

</LocalColumn>

EXAMPLE 2: ONE LOCAL COLUMN ON ONE FILE

This local column uses a file identified by binary_file_1, which must have
been previously defined in the files section. The file contains one
measurement quantity with one measured value channel with double
precision floating-point numbers.

<LocalColumn>
<name>MD</name>
<id>2</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>150</minimum>
<maximum>255.</maximum>
<datatype>A_FLOAT32</datatype>
<values>

<component>
<identifier>binary_file_1</identifier>
<length>11</length>
<description>double precision floating-point numbers </description>
<inioffset>0</inioffset>
<blocksize>8</blocksize>
<valperblock>1</valperblock>
<valoffsets>0</valoffsets>

</component>
</values>
<submatrix>1</submatrix>
<measurement_quantity>2</measurement_quantity>

</LocalColumn>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 383

ASAM ODS VERSION 5.0

6-34 ASAM ODS VERSION 5.0

EXAMPLE 3: TWO LOCAL COLUMNS ON ONE FILE – ONE AFTER THE OTHER

These local columns use a file identified by binary_file_2, which must have
been previously defined in the files section. The file contains two
measurement quantities:

 One measured channel with 10 double precision floating-point values.
 One measured channel with 10 short integer values.

<LocalColumn>
<name>MD</name>
<id>2</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>150</minimum>
<maximum>255.</maximum>
<datatype>A_FLOAT32</datatype>
<values>

<component>
<identifier>binary_file_2</identifier>
<length>10</length>
<description>double precision floating-point numbers </description>
<inioffset>0</inioffset>
<blocksize>8</blocksize>
<valperblock>1</valperblock>
<valoffsets>0</valoffsets>

</component>
</values>
<submatrix>1</submatrix>
<measurement_quantity>2</measurement_quantity>

</LocalColumn>

The second local column on the file follows the first local column. Because it
follows the first column on the same file, its inioffset value is set at 80 to
denote that the first column was 80 bytes in length. The second column is
defined as:

<LocalColumn>
<name>QS</name>
<id>3</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>125</minimum>
<maximum>2455.</maximum>
<datatype>A_INT16</datatype>
<values>

<component>
<identifier>binary_file_2</identifier>
<length>10</length>
<description>short integer numbers</description>
<inioffset>80</inioffset>
<blocksize>8</blocksize>
<valperblock>1</valperblock>
<valoffsets>0</valoffsets>

</component>
</values>
<submatrix>1</submatrix>
<measurement_quantity>2</measurement_quantity>

</LocalColumn>

ISO/PAS 22720:2005(E)

384 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-35

EXAMPLE 4: TWO LOCAL COLUMNS ON ONE FILE – ONE ALTERNATING WITH THE OTHER

These local columns use a file identified by binary_file_2, which must have
been previously defined in the files section. The file contains two
measurement quantities which were measured with the same sampling rate:

 One generated time channel (1000 double precision floating-point values)
 One measured channel (1000 short integer values)

The values were written alternately to the file. They are referred to by two
local columns.

<LocalColumn>
<name>MQ</name>
<id>6</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>150</minimum>
<maximum>255.</maximum>
<datatype>A_FLOAT32</datatype>
<values>

<component>
<identifier>binary_file_2</identifier>
<length>1000</length>
<description>double precision floating-point numbers </description>
<inioffset>0</inioffset>
<blocksize>10</blocksize>
<valperblock>1</valperblock>
<valoffsets>0</valoffsets>

</component>
</values>
<submatrix>1</submatrix>
<measurement_quantity>2</measurement_quantity>

</LocalColumn>

The second column is defined as:

<LocalColumn>
<name>QS</name>
<id>3</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>125</minimum>
<maximum>2455.</maximum>
<datatype>A_INT16</datatype>
<values>

<component>
<identifier>binary_file_2</identifier>
<length>1000</length>
<description>short integer numbers</description>
<inioffset>0</inioffset>
<blocksize>10</blocksize>
<valperblock>1</valperblock>
<valoffsets>8</valoffsets>

</component>
</values>
<submatrix>1</submatrix>
<measurement_quantity>2</measurement_quantity>

</LocalColumn>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 385

ASAM ODS VERSION 5.0

6-36 ASAM ODS VERSION 5.0

EXAMPLE 5: THREE LOCAL COLUMNS WITH DIFFERENT SAMPLING RATES ON ONE FILE

These local columns use a file identified by binary_file_4, which must have
been previously defined in the files section. The file contains three
measurement quantities which were measured with different sampling rates:

 One measured value channel with double precision floating-point
numbers @ 10 Hertz.

 One measured value channel with short integer numbers @ 20 Hertz.
 One measured value channel with long integer numbers @ 30 Hertz.

The values were written to the file as they came from the measuring
instrument. Before the first measurement point the device sends a header
with 32 Bytes of parameters.

The first local column is defined as:

<LocalColumn>
<name>MQ</name>
<id>8</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>150</minimum>
<maximum>255.</maximum>
<datatype>A_FLOAT32</datatype>
<values>

<component>
<identifier>binary_file_5</identifier>
<length>10000</length>
<description>double precision floating-point numbers </description>
<inioffset>32</inioffset>
<blocksize>24</blocksize>
<valperblock>1</valperblock>
<valoffsets>0</valoffsets>

</component>
</values>
<submatrix>1</submatrix>
<measurement_quantity>2</measurement_quantity>

</LocalColumn>

The second column is defined as:

<LocalColumn>
<name>QS</name>
<id>9</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>125</minimum>
<maximum>2455.</maximum>
<datatype>A_INT16</datatype>
<values>

<component>
<identifier>binary_file_5</identifier>
<length>20000</length>
<description>short integer numbers.</description>
<inioffset>0</inioffset>
<blocksize>10</blocksize>
<valperblock>2</valperblock>
<valoffsets>8 18</valoffsets>

</component>

ISO/PAS 22720:2005(E)

386 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-37

</values>
<submatrix>2</submatrix>
<measurement_quantity>3</measurement_quantity>

</LocalColumn>

The third column is defined as:

<LocalColumn>
<name>QM</name>
<id>10</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>125</minimum>
<maximum>2455.</maximum>
<datatype>A_INT32</datatype>
<values>

<component>
<identifier>binary_file_5</identifier>
<length>30000</length>
<description> short integer numbers.</description>
<inioffset>32</inioffset>
<blocksize>24</blocksize>
<valperblock>3</valperblock>
<valoffsets>10 14 20</valoffsets>

</component>
</values>
<submatrix>3</submatrix>
<measurement_quantity>4</measurement_quantity>

</LocalColumn>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 387

ASAM ODS VERSION 5.0

6-38 ASAM ODS VERSION 5.0

6.9 SECURITY

6.9.1 STORING SECURITY INFORMATION

Security information is used to accompany archive data in order to be able to restore the
data completely, i.e. together with the access rights. For exchange purposes it is necessary
to write both ATF/CLA and ATF/XML files without security information. ATF/CLA and
ATF/XML writers therefore need a switch to select either “with” or “without” security
information. ATF readers need at least a defined default behavior if they encounter a file with
security information; this behavior is either “use” or “ignore” security information.

 On export the writing of security information on ATF file is optional.
 On import the use of security information from the ATF file is optional.

On reading a file without security information the local security information is not
influenced.

WRITING SECURITY INFORMATION ON ATF

Security information consists of instances of entities that are subtypes of

 AoUser
 AoUsergroup
 ACL

The subtypes of AoUser and AoUsergroup are application elements while the subtypes of
ACL are not subject to any influence from the user. Only the two predefined subtypes ACLA
(used for an application element and –if an attribute name is specified- for the attribute of an
application element) and ACLI (used for instance elements) are allowed. No special syntax is
applied to the security information. It is written according to the same rules as all other data.

 The entities are written in the metadata section together with the other application
elements.

 The instances are written in the data section together with the other instance elements.

ISO/PAS 22720:2005(E)

388 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-39

EXAMPLE: USER & USERGROUP DECLARATIONS

<!--
**
* instance elements of the application elements User, User Group
**
-->
<User>

<UserName>Peter Sellers</UserName>
<UserId>21</UserId>
<UserVersion>1A</UserVersion>
<UserDescription>Super user group 1</UserDescription>
<version_date>199708101105</version_date>
<password>^1kjws7hxoish^mjkkdjxo”e--@@@kjg798xh0880djdj90</password>
<groups>30 50</groups>
<UserDepartment>OP/EFG</UserDepartment>
<AliasName>PS</AliasName>

</User>
<User>

<UserName>Todd Martin</UserName>
<UserId>22</UserId>
<UserVersion>1B</UserVersion>
<UserDescription>Sub user group 1b</UserDescription>
<version_date>199708101105</version_date>
<password>j</password>
<groups>30 40</groups>
<UserDepartment>OP/ABC</UserDepartment>
<AliasName>TM</AliasName>

</User>
<User>

<UserName>Otto Bierman</UserName>
<UserId>23</UserId>
<UserVersion>1A</UserVersion>
<UserDescription>Sub user group 1</UserDescription>
<version_date>199708101105</version_date>
<password>89xzhuon3m,”))?imi/U(/%unpo39048ejdkádksos••o•3</password>
<groups>40 50</groups>
<UserDepartment>OP/EFG</UserDepartment>
<AliasName>OB</AliasName>

</User>
<UserGroup>

<GroupName>AQ 1</GroupName>
<GroupId>30</GroupId>
<GroupVersion>00</GroupVersion>
<GroupDescription>Group1</GroupDescription>
<version_date>199708101105</version_date>
<superuser_flag>true</superuser_flag>
<users>21 22</users>

</UserGroup>
<UserGroup>

<GroupName>AQ 2</GroupName>
<GroupId>40</GroupId>
<GroupVersion>00</GroupVersion>
<GroupDescription>Group 2</GroupDescription>
<version_date>199708101105</version_date>
<superuser_flag>false</superuser_flag>
<users>22 23</users>

</UserGroup>
<UserGroup>

<GroupName>TZU 23</GroupName>
<GroupId>50</GroupId>
<GroupVersion>00</GroupVersion>
<GroupDescription>Group 3</GroupDescription>
<version_date>199708101105</version_date>
<superuser_flag>false</superuser_flag>
<users>21 23</users>

</UserGroup>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 389

ASAM ODS VERSION 5.0

6-40 ASAM ODS VERSION 5.0

EXAMPLE: ATTRIBUTE-LEVEL SECURITY

<!--

* Access Control List information for enforcing security

-->
<ACLA>

<users>30</users>
<appl_element_id>333</appl_element_id>
<rights>7</rights>
<!--- protection of whole application element -->
<attribute_name/>

</ACLA>
<ACLA>

<users>30</users>
<appl_element_id>333</appl_element_id>
<rights>3</rights>
<!--- protection of description attribute -->
<attribute_name>description</attribute_name>

</ACLA>
<ACLA>

<users>40</users>
<appl_element_id>123</appl_element_id>
<rights>10</rights>
<!--- protection of whole application element -->
<attribute_name/>

</ACLA>

EXAMPLE: INSTANCE-LEVEL SECURITY

<ACLI>
<users>50</users>
<appl_element_id>123</appl_element_id>
<rights>10</rights>
<!--- protection of instance element -->
<instance_id>23</instance_id>

</ACLI>
<ACLI>

<users>40</users>
<appl_element_id>123</appl_element_id>
<rights>10</rights>
<!--- protection of instance element -->
<instance_id>23</instance_id>

</ACLI>

ISO/PAS 22720:2005(E)

390 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-41

6.10 DATA TYPE USAGE IN ATF/XML

Some general information on data types used by ASAM ODS can be found in chapter 2.5.

As ATF/XML is a new standard, introduced with ASAM ODS version 5.0, it will use the ASAM
data types wherever an appropriate type is available. There is no compatibility issue since
new parsers for ATF/XML have to be written anyway. These may directly map the ASAM
data types to the ASAM ODS data types that are still used in e.g. the OO-API or the RPC-
API.

There are some data types used that are not available in the list of ASAM data types; in that
case the ASAM ODS data types have been used. They are

 T_DATE: an ASCII string based data type used to specify any date and time information
with unlimited time resolution.

 T_EXTERNALREFERENCE: a data type consisting of three strings (a description, a
MIME type, and a location (e.g. an URL)); it is used for referencing items that reside
outside the ODS server.

The data types used in ATF/XML files are specified in the ASAM data types specification
document (which can be requested from the ASAM e.V.) and in the ASAM ODS
specification, section 2.5..

All data types used are further mapped to XML standard data types to provide standard XML
parsers enough information for validity checking purposes. They are implemented using the
native and extended XML schema data types. For many of the data types defined in the base
model, there is a corresponding data type in the XML schema (XSD namespace). For
several others, a more complex data type can be constructed using the primitives supplied
by XSD.

Although though many of the ODS-specific data types have been replaced, they are still
referred to by the enumeration data type names.

ASAM Data Types as Defined in ODS base Schema

<!--

* Declare base ASAM simple datatypes *

-->
<xsd:simpleType name="A_ASCIISTRING">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="A_BCD">

<xsd:restriction base="A_UINT8"/>
</xsd:simpleType>
<xsd:simpleType name="A_BOOLEAN">

<xsd:restriction base="xsd:boolean"/>
</xsd:simpleType>
<xsd:simpleType name="A_COMPLEX32">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="A_COMPLEX64">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="A_COUNTRY">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="A_FLOAT32">

<xsd:restriction base="xsd:float"/>
</xsd:simpleType>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 391

ASAM ODS VERSION 5.0

6-42 ASAM ODS VERSION 5.0

<xsd:simpleType name="A_FLOAT64">
<xsd:restriction base="xsd:double"/>

</xsd:simpleType>
<xsd:simpleType name="A_INT8">

<xsd:restriction base="xsd:byte"/>
</xsd:simpleType>
<xsd:simpleType name="A_INT16">

<xsd:restriction base="xsd:int16"/>
</xsd:simpleType>
<xsd:simpleType name="A_INT32">

<xsd:restriction base="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="A_INT64">

<xsd:restriction base="xsd:long"/>
</xsd:simpleType>
<xsd:simpleType name="A_LANGUAGE">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<!—

* Note: Unsigned integer rely on base elements that are signed

-->
<xsd:simpleType name="A_UINT8">

<xsd:restriction base="A_INT8"/>
</xsd:simpleType>
<xsd:simpleType name="A_UINT16">

<xsd:restriction base="A_INT16"/>
</xsd:simpleType>
<xsd:simpleType name="A_UINT32">

<xsd:restriction base="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="A_UINT64">

<xsd:restriction base="A_INT64"/>
</xsd:simpleType>
<!--

* Declare base ASAM complex datatypes

-->
<xsd:complexType name="A_ASCIIFIELD">

<xsd:sequence>
<xsd:element name="length" type="A_INT32"/>
<xsd:element name="sequence" type="A_ASCIISTRING"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="A_BITFIELD">

<xsd:sequence>
<xsd:element name="length" type="A_INT16"/>
<xsd:element name="sequence" type="DS_INT8"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="A_BYTEFIELD">

<xsd:sequence>
<xsd:element name="length" type="A_UINT32"/>
<xsd:element name="sequence" type="DS_INT8"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="A_ENUM">

<xsd:sequence>
<xsd:element name="length" type="A_UINT32"/>

</xsd:sequence>
</xsd:complexType>

ISO/PAS 22720:2005(E)

392 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-43

6.11 ODS BASE SCHEMA FILE

The contents of the ODS base schema file follow. This file may also be downloaded from the
ASAM ODS web site.

<?xml version="1.0"?>
<xsd:schema targetNamespace="http://www.asam.net"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.asam.net"
elementFormDefault="qualified">

<xsd:annotation>
<xsd:documentation>

ASAM-ODS Base Model Architecture
W3C Schema Version 1.0
Copyright 2003 - Association For Standardization of Automation and Measuring Systems.

All rights reserved.

Revision History

20 March 2003 - Mark Quinsland mark.quinsland@highqsoft.com
Initial Version

15 April 2003 - Mark Quinsland mark.quinsland@highqsoft.com
Adapted to comply with ASAM Data Type Harmonization project.

Deprecated New
T_BYTE A_INT8
T_SHORT A_INT16
T_LONG A_INT32
T_LONGLONG A_INT64
T_FLOAT A_FLOAT32
T_DOUBLE A_FLOAT64
T_COMPLEX A_COMPLEX32
T_DCOMPLEX A_COMPLEX64
T_BOOLEAN A_BOOLEAN
T_STRING A_ASCIISTRING

 15 June 2003 - Mark Quinsland mark.quinsland@highqsoft.com
Added element definitions for instance attributes.
Added element definitions for application enumerations
Removed empty definition for instance data

8 August 2003 - Mark Quinsland mark.quinsland@highqsoft.com
Added attribute for schema version.
Added locale element.
ODS data types replaced by harmonized ASAM datatypes labeled as deprecated.
Added t_id and t_ref types to allow xPointer enforcement of relationships between elements.
Added inverse_name to the relation_attribute complex type.
t_blob deprecated – replaced by complex type ct_blob

 14 October 2003 - Mark Quinsland mark.quinsland@highqsoft.com
 Added several data types from ASAM Data Type Harmonization project.

 A_UINT8 8 bit unsigned integer
 A_UINT16 16 bit unsigned integer

 A_UINT32 32 bit unsigned integer

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 393

http://www.asam.net
http://www.w3.org/2001/XMLSchema
http://www.asam.net
mailto:mark.quinsland@highqsoft.com
mailto:mark.quinsland@highqsoft.com
mailto:mark.quinsland@highqsoft.com
mailto:mark.quinsland@highqsoft.com
mailto:mark.quinsland@highqsoft.com

ASAM ODS VERSION 5.0

6-44 ASAM ODS VERSION 5.0

 A_UINT64 64 bit unsigned integer
 A_ASCIIFIELD Sequence of up to 2048 bits
 A_BITFIELD Sequence of up to 2048 bits
 A_BCD Decimal digits represented by 4 binary digits
 A_ENUM value used for the description of enumeration values.

 Corrected definition of A_BYTEFIELD to separate length from values

 removed Deprecated ODS Data Types replaced by ASAM data types
 Deprecated Replaced By

T_BYTE A_INT8
T_SHORT A_INT16
T_LONG A_INT32
T_LONGLONG A_INT64
T_FLOAT A_FLOAT32
T_DOUBLE A_FLOAT64
T_COMPLEX A_COMPLEX32
T_DCOMPLEX A_COMPLEX64
T_BOOLEAN A_BOOLEAN
T_STRING A_ASCIISTRING

7 December 2003 - Mark Quinsland mark.quinsland@highqsoft.com
 Restored ODS Data Type Enumerations.
 Note: The datatype enumerations are not to be confused with the name
 of the datatypes. They are merely simple names for integers that indicate
 data types. For example, the datatype enumeration DT_DOUBLE is merely
 shorthand for the integer 7 which further signifies that the datatype is T_DOUBLE /

A_FLOAT64.
 While T_DOUBLE datatypes may still be used within the ODS API, they may
 not be used in ODS ATF/XML and should be replaced by A_FLOAT64.

</xsd:documentation>
</xsd:annotation>
<!--

* declare root element & type *

-->
<xsd:element name="atfx_file">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="documentation" minOccurs="0"/>
<xsd:element name="locale" type="A_ASCIISTRING"/>
<xsd:element name="base_model_version" type="A_ASCIISTRING"/>
<xsd:element ref="files" minOccurs="0"/>
<xsd:element ref="application_model"/>
<xsd:element ref="instance_data" minOccurs="0"/>
<!—
reserve area for instance elements which are not validated by this schema
-->

</xsd:sequence>
<xsd:attribute name="version" type="A_ASCIISTRING" use="required"/>

</xsd:complexType>
</xsd:element>
<!--

ISO/PAS 22720:2005(E)

394 © ISO 2005 – All rights reserved

mailto:mark.quinsland@highqsoft.com

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-45

* declare documentation components *

-->
<xsd:element name="documentation">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="exported_by" type="A_ASCIISTRING" minOccurs="0"/>
<xsd:element name="exporter" type="A_ASCIISTRING" minOccurs="0"/>
<xsd:element name="export_date_time" type="A_ASCIISTRING" minOccurs="0"/>
<xsd:element name="exporter_version" type="A_ASCIISTRING" minOccurs="0"/>
<xsd:element name="short_description" type="A_ASCIISTRING" minOccurs="0"/>
<xsd:element name="long_description" type="A_ASCIISTRING" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!--

* declare external file components *

-->
<xsd:element name="files">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="component" type="filecomponent" nillable="true"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!--

* declare model meta-data components *

-->
<xsd:element name="application_model">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="application_element" type="application_element" nillable="true"
maxOccurs="unbounded"/>

<xsd:element name="application_enumeration" type="application_enumeration"
nillable="true" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!--

* Define base structure for application element definitions *

-->
<xsd:complexType name="application_element">

<xsd:sequence>
<xsd:element name="name" type="A_ASCIISTRING"/>
<xsd:element name="basetype" type="elemtype_enum"/>
<xsd:element name="application_attribute" type="application_attribute" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element name="relation_attribute" type="relation_attribute" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 395

ASAM ODS VERSION 5.0

6-46 ASAM ODS VERSION 5.0

</xsd:complexType>
<!--

* Define base structure for application attribute definitions *

-->
<xsd:complexType name="application_attribute">

<xsd:sequence>
<xsd:element name="name" type="A_ASCIISTRING"/>
<xsd:element name="base_attribute" type="base_attributetype_enum" minOccurs="0"/>
<xsd:element name="datatype" type="datatype_enum" minOccurs="0"/>
<xsd:element name="enumeration_type" type="A_ASCIISTRING" minOccurs="0"/>
<xsd:element name="autogenerate" type="boolean_enum" minOccurs="0"/>
<xsd:element name="obligatory" type="boolean_enum" minOccurs="0"/>
<xsd:element name="unique" type="boolean_enum" minOccurs="0"/>
<xsd:element name="length" type="A_INT32" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>
<!--

* Define base structure for application relation definitions *

-->
<!-- Define base Application Relation Attributes -->
<xsd:complexType name="relation_attribute">

<xsd:sequence>
<xsd:element name="name" type="A_ASCIISTRING"/>
<xsd:element name="ref_to" type="A_ASCIISTRING"/>
<xsd:element name="base_relation" type="base_relation_enum" minOccurs="0"/>
<xsd:element name="min_occurs" type="A_INT32" minOccurs="0"/>
<xsd:element name="max_occurs" type="A_ASCIISTRING" minOccurs="0"/>
<xsd:element name="inverse_name" type="A_ASCIISTRING" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>
<!--

* User-Defined Application Enumeration Objects

-->
<xsd:complexType name="application_enumeration">

<xsd:sequence>
<xsd:element name="name" type="A_ASCIISTRING"/>
<xsd:element name="item" type="enumeration_item" nillable="true"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="enumeration_item">

<xsd:sequence>
<xsd:element name="name" type="A_ASCIISTRING"/>
<xsd:element name="value" type="A_ASCIISTRING"/>

</xsd:sequence>
</xsd:complexType>
<!--

* declare instance data components *

-->

ISO/PAS 22720:2005(E)

396 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-47

<xsd:element name="instance_data">
<xsd:complexType>

<xsd:sequence>
<xsd:any processContents="skip" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!--

* Declare base ASAM simple datatypes *

-->
<xsd:simpleType name="A_ASCIISTRING">

<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
<xsd:simpleType name="A_BCD">

<xsd:restriction base="A_UINT8"/>
</xsd:simpleType>
<xsd:simpleType name="A_BOOLEAN">

<xsd:restriction base="xsd:boolean"/>
</xsd:simpleType>
<xsd:simpleType name="A_COMPLEX32">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="A_COMPLEX64">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="A_COUNTRY">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="A_FLOAT32">

<xsd:restriction base="xsd:float"/>
</xsd:simpleType>
<xsd:simpleType name="A_FLOAT64">

<xsd:restriction base="xsd:double"/>
</xsd:simpleType>
<xsd:simpleType name="A_INT8">

<xsd:restriction base="xsd:byte"/>
</xsd:simpleType>
<xsd:simpleType name="A_INT16">

<xsd:restriction base="xsd:integer"/>
</xsd:simpleType>
<xsd:simpleType name="A_INT32">

<xsd:restriction base="xsd:integer"/>
</xsd:simpleType>
<xsd:simpleType name="A_INT64">

<xsd:restriction base="xsd:long"/>
</xsd:simpleType>
<xsd:simpleType name="A_LANGUAGE">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<!--

* Note: Unsigned integer rely on base elements that are signed *

-->
<xsd:simpleType name="A_UINT8">

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 397

ASAM ODS VERSION 5.0

6-48 ASAM ODS VERSION 5.0

<xsd:restriction base="xsd:byte"/>
</xsd:simpleType>
<xsd:simpleType name="A_UINT16">

<xsd:restriction base="xsd:short"/>
</xsd:simpleType>
<xsd:simpleType name="A_UINT32">

<xsd:restriction base="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="A_UINT64">

<xsd:restriction base="A_INT64"/>
</xsd:simpleType>
<!--

* Declare base ASAM complex datatypes *

-->
<xsd:complexType name="A_ASCIIFIELD">

<xsd:sequence>
<xsd:element name="length" type="A_INT32"/>
<xsd:element name="sequence" type="A_ASCIISTRING"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="A_BITFIELD">

<xsd:sequence>
<xsd:element name="length" type="A_INT16"/>
<xsd:element name="sequence" type="DS_INT8"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="A_BYTEFIELD">

<xsd:sequence>
<xsd:element name="length" type="A_UINT32"/>
<xsd:element name="sequence" type="DS_INT8"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="A_ENUM">

<xsd:sequence>
<xsd:element name="length" type="A_UINT32"/>

</xsd:sequence>
</xsd:complexType>
<!--

* Additional building blocks for instance element definitions *

-->
<xsd:simpleType name="t_character">

<xsd:restriction base="A_ASCIISTRING">
<xsd:length value="1"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="t_date">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="t_id">

<xsd:restriction base="xsd:ID"/>
</xsd:simpleType>
<xsd:simpleType name="t_ref">

<xsd:restriction base="xsd:anyURI"/>

ISO/PAS 22720:2005(E)

398 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-49

</xsd:simpleType>
<xsd:simpleType name="t_ref_list">

<xsd:list itemType="t_ref"/>
</xsd:simpleType>
<!--

* The next level of building block

-->
<xsd:simpleType name="DT_DATE">

<xsd:restriction base="t_date"/>
</xsd:simpleType>
<xsd:simpleType name="posLongInt">

<xsd:restriction base="xsd:unsignedLong">
<xsd:minExclusive value="0"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="values_float64">

<xsd:list itemType="A_FLOAT64"/>
</xsd:simpleType>
<xsd:simpleType name="values_float32">

<xsd:list itemType="A_FLOAT32"/>
</xsd:simpleType>
<xsd:simpleType name="values_date">

<xsd:list itemType="t_date"/>
</xsd:simpleType>
<xsd:simpleType name="values_int32">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="values_int64">

<xsd:list itemType="A_INT64"/>
</xsd:simpleType>
<xsd:simpleType name="values_int16">

<xsd:list itemType="A_INT16"/>
</xsd:simpleType>
<xsd:simpleType name="values_character">

<xsd:list itemType="t_character"/>
</xsd:simpleType>
<!--

* Subtypes of instance_attribute

-->
<xsd:simpleType name="asciistring_attribute">

<xsd:list itemType="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="float32_attribute">

<xsd:list itemType="A_FLOAT32"/>
</xsd:simpleType>
<xsd:simpleType name="float64_attribute">

<xsd:list itemType="A_FLOAT64"/>
</xsd:simpleType>
<xsd:simpleType name="int8_attribute">

<xsd:list itemType="A_INT8"/>
</xsd:simpleType>
<xsd:simpleType name="int16_attribute">

<xsd:list itemType="A_INT16"/>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 399

ASAM ODS VERSION 5.0

6-50 ASAM ODS VERSION 5.0

</xsd:simpleType>
<xsd:simpleType name="int32_attribute">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="time_attribute">

<xsd:list itemType="t_date"/>
</xsd:simpleType>
<!--

* Sequence Subtypes of instance_attribute

-->
<xsd:simpleType name="DS_ASCIISTRING">

<xsd:list itemType="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="DS_BLOB">

<xsd:list itemType="A_INT8"/>
</xsd:simpleType>
<xsd:simpleType name="DS_BOOLEAN">

<xsd:list itemType="A_BOOLEAN"/>
</xsd:simpleType>
<xsd:simpleType name="DS_BYTESTR">

<xsd:list itemType="A_INT8"/>
</xsd:simpleType>
<xsd:simpleType name="DS_COMPLEX32">

<xsd:list itemType="A_COMPLEX32"/>
</xsd:simpleType>
<xsd:simpleType name="DS_COMPLEX64">

<xsd:list itemType="A_COMPLEX64"/>
</xsd:simpleType>
<xsd:simpleType name="DS_DATE">

<xsd:list itemType="t_date"/>
</xsd:simpleType>
<xsd:simpleType name="DS_DIMENSION">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="DS_FLOAT32">

<xsd:list itemType="A_FLOAT32"/>
</xsd:simpleType>
<xsd:simpleType name="DS_FLOAT64">

<xsd:list itemType="A_FLOAT64"/>
</xsd:simpleType>
<xsd:simpleType name="DS_ID">

<xsd:list itemType="A_INT8"/>
</xsd:simpleType>
<xsd:simpleType name="DS_INT8">

<xsd:list itemType="A_INT8"/>
</xsd:simpleType>
<xsd:simpleType name="DS_INT16">

<xsd:list itemType="A_INT16"/>
</xsd:simpleType>
<xsd:simpleType name="DS_INT32">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="DS_INT64">

<xsd:list itemType="A_INT64"/>
</xsd:simpleType>

ISO/PAS 22720:2005(E)

400 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-51

<!--

* Subtypes of instance_attribute

-->
<!—Simple Base Attribute Types -->
<xsd:simpleType name="asam_path">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="attribute_name">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="attribute_type">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="base_element_name">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="entity_name">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="integerSequence">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="max_test_level">

<xsd:restriction base="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="objecttype">

<xsd:restriction base="A_INT64"/>
</xsd:simpleType>
<xsd:simpleType name="rule_text">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="time_sequence">

<xsd:list itemType="t_date"/>
</xsd:simpleType>
<!--

* Complex types for instance attributes

-->
<xsd:complexType name="instance_attributes">

<xsd:choice maxOccurs="unbounded">
<xsd:element name="inst_attr_asciistring" type="inst_attr_asciistring"/>
<xsd:element name="inst_attr_asciistring_seq" type="inst_attr_asciistring_seq"/>
<xsd:element name="inst_attr_complex32" type="inst_attr_complex32"/>
<xsd:element name="inst_attr_complex32_seq" type="inst_attr_complex32_seq"/>
<xsd:element name="inst_attr_complex64" type="inst_attr_complex64"/>
<xsd:element name="inst_attr_complex64_seq" type="inst_attr_complex64_seq"/>
<xsd:element name="inst_attr_float32" type="inst_attr_float32"/>
<xsd:element name="inst_attr_float32_seq" type="inst_attr_float32_seq"/>
<xsd:element name="inst_attr_float64" type="inst_attr_float64"/>
<xsd:element name="inst_attr_float64_seq" type="inst_attr_float64_seq"/>
<xsd:element name="inst_attr_int8" type="inst_attr_int8"/>
<xsd:element name="inst_attr_int8_seq" type="inst_attr_int8_seq"/>
<xsd:element name="inst_attr_int16" type="inst_attr_int16"/>
<xsd:element name="inst_attr_int16_seq" type="inst_attr_int16_seq"/>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 401

ASAM ODS VERSION 5.0

6-52 ASAM ODS VERSION 5.0

<xsd:element name="inst_attr_int32" type="inst_attr_int32"/>
<xsd:element name="inst_attr_int32_seq" type="inst_attr_int32_seq"/>
<xsd:element name="inst_attr_time_seq" type="inst_attr_time_seq"/>
<xsd:element name="inst_attr_time_seq" type="inst_attr_time_seq"/>

</xsd:choice>
</xsd:complexType>
<xsd:complexType name="inst_attr_asciistring">

<xsd:simpleContent>
<xsd:extension base="A_ASCIISTRING">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_asciistring_seq">

<xsd:complexContent>
<xsd:extension base="string_sequence">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_complex32">

<xsd:simpleContent>
<xsd:extension base="A_COMPLEX32">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_complex32_seq">

<xsd:simpleContent>
<xsd:extension base="A_COMPLEX32">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_complex64">

<xsd:simpleContent>
<xsd:extension base="A_COMPLEX64">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_complex64_seq">

<xsd:simpleContent>
<xsd:extension base="DS_COMPLEX64">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_float32">

<xsd:simpleContent>
<xsd:extension base="A_FLOAT32">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_float32_seq">

<xsd:simpleContent>

ISO/PAS 22720:2005(E)

402 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-53

<xsd:extension base="DS_FLOAT32">
<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
<xsd:complexType name="inst_attr_float64">

<xsd:simpleContent>
<xsd:extension base="A_FLOAT64">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_float64_seq">

<xsd:simpleContent>
<xsd:extension base="DS_FLOAT64">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_int8">

<xsd:simpleContent>
<xsd:extension base="A_INT8">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_int8_seq">

<xsd:simpleContent>
<xsd:extension base="DS_INT8">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_int16">

<xsd:simpleContent>
<xsd:extension base="A_INT16">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_int16_seq">

<xsd:simpleContent>
<xsd:extension base="DS_INT16">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_int32">

<xsd:simpleContent>
<xsd:extension base="A_INT32">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_int32_seq">

<xsd:simpleContent>
<xsd:extension base="DS_INT32">

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 403

ASAM ODS VERSION 5.0

6-54 ASAM ODS VERSION 5.0

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_int64">

<xsd:simpleContent>
<xsd:extension base="A_INT64">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_int64_seq">

<xsd:simpleContent>
<xsd:extension base="DS_INT64">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_time">

<xsd:simpleContent>
<xsd:extension base="DT_DATE">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="inst_attr_time_seq">

<xsd:simpleContent>
<xsd:extension base="DS_DATE">

<xsd:attribute name="name" type="A_ASCIISTRING" use="required"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>
<!--

* Complex types for elements

-->
<xsd:complexType name="complex32_attribute">

<xsd:sequence>
<xsd:element name="realPart" type="A_FLOAT32"/>
<xsd:element name="imaginaryPart" type="A_FLOAT32"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="component">

<xsd:sequence>
<xsd:element name="identifier" type="A_ASCIISTRING"/>
<xsd:element name="datatype" type="component_datatype"/>
<xsd:element name="length" type="A_INT32"/>
<xsd:element name="description" type="A_ASCIISTRING" minOccurs="0"/>
<xsd:element name="inioffset" type="A_INT32" minOccurs="0"/>
<xsd:element name="blocksize" type="A_INT32" minOccurs="0"/>
<xsd:element name="valperblock" type="A_INT32" minOccurs="0"/>
<xsd:element name="valoffsets" type="A_INT32" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ct_blob">

<xsd:sequence>

ISO/PAS 22720:2005(E)

404 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-55

<xsd:element name="text" type="A_ASCIISTRING"/>
<xsd:element name="bytefield" type="A_BYTEFIELD"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="complex64_attribute">

<xsd:sequence>
<xsd:element name="realPart" type="A_FLOAT64"/>
<xsd:element name="imaginaryPart" type="A_FLOAT64"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="filecomponent">

<xsd:sequence>
<xsd:element name="identifier" type="A_ASCIISTRING"/>
<xsd:element name="filename" type="A_ASCIISTRING"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="real_and_unit">

<xsd:sequence>
<xsd:element name="values" type="values"/>
<xsd:element name="unit" type="AoUnit"/>
<xsd:element name="quantity" type="AoUnit" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="string_sequence">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="s" type="A_ASCIISTRING"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="t_externalreference">

<xsd:sequence>
<xsd:element name="description" type="A_ASCIISTRING"/>
<xsd:element name="mimetype" type="A_ASCIISTRING"/>
<xsd:element name="location" type="A_ASCIISTRING"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="values">

<xsd:choice>
<xsd:element name="values" type="values_float64"/>

</xsd:choice>
</xsd:complexType>
<xsd:complexType name="value_with_unit">

<xsd:sequence>
<xsd:element name="values" type="values"/>
<xsd:element name="unit" type="AoUnit"/>
<xsd:element name="quantity" type="AoUnit" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>
<!--

* Base Attributes

-->
<xsd:simpleType name="appl_element_name">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="average">

<xsd:list itemType="A_FLOAT64"/>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 405

ASAM ODS VERSION 5.0

6-56 ASAM ODS VERSION 5.0

</xsd:simpleType>
<xsd:simpleType name="blocksize">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="component_datatype">

<xsd:list itemType="component_datatype_enum"/>
</xsd:simpleType>
<xsd:simpleType name="current_exp">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="current_exp_den">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="default_datatype">

<xsd:list itemType="datatype_enum"/>
</xsd:simpleType>
<xsd:simpleType name="default_dimension">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="default_mq_name">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="default_rank">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="default_type_size">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="description">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:complexType name="external_reference">

<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="externalreference" type="t_externalreference"/>

</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="factor">

<xsd:list itemType="A_FLOAT64"/>
</xsd:simpleType>
<xsd:simpleType name="filename_url">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="flags">

<xsd:list itemType="A_INT16"/>
</xsd:simpleType>
<xsd:simpleType name="flags_filename_url">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="flags_start_offset">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="generation_parameters">

<xsd:list itemType="A_FLOAT64"/>
</xsd:simpleType>
<xsd:simpleType name="global_flag">

<xsd:list itemType="A_INT16"/>
</xsd:simpleType>

ISO/PAS 22720:2005(E)

406 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-57

<xsd:simpleType name="id">
<xsd:list itemType="A_INT64"/>

</xsd:simpleType>
<xsd:simpleType name="independent">

<xsd:list itemType="A_BOOLEAN"/>
</xsd:simpleType>
<xsd:simpleType name="instance_id">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="interpolation">

<xsd:list itemType="interpolation_enum"/>
</xsd:simpleType>
<xsd:simpleType name="length_exp">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="length_exp_den">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="level">

<xsd:list itemType="A_INT16"/>
</xsd:simpleType>
<xsd:simpleType name="luminous_intensity_exp">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="luminous_intensity_exp_den">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="mass_exp">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="mass_exp_den">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="maximum">

<xsd:list itemType="A_FLOAT64"/>
</xsd:simpleType>
<xsd:simpleType name="measurement_begin">

<xsd:list itemType="t_date"/>
</xsd:simpleType>
<xsd:simpleType name="measurement_end">

<xsd:list itemType="t_date"/>
</xsd:simpleType>
<xsd:simpleType name="mime_type">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="minimum">

<xsd:list itemType="A_FLOAT64"/>
</xsd:simpleType>
<xsd:simpleType name="molar_amount_exp">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="molar_amount_exp_den">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="name">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 407

ASAM ODS VERSION 5.0

6-58 ASAM ODS VERSION 5.0

<xsd:simpleType name="number_of_rows">
<xsd:list itemType="A_INT32"/>

</xsd:simpleType>
<xsd:simpleType name="offset">

<xsd:list itemType="A_FLOAT64"/>
</xsd:simpleType>
<xsd:simpleType name="parameter_datatype">

<xsd:list itemType="parameter_datatype_enum"/>
</xsd:simpleType>
<xsd:simpleType name="password">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="pvalue">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="rank">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="sequence_representation">

<xsd:restriction base="seq_rep_enum"/>
</xsd:simpleType>
<xsd:simpleType name="standard_deviation">

<xsd:list itemType="A_FLOAT64"/>
</xsd:simpleType>
<xsd:simpleType name="start_offset">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="temperature_exp">

<xsd:restriction base="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="temperature_exp_den">

<xsd:restriction base="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="time_exp">

<xsd:restriction base="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="time_exp_den">

<xsd:restriction base="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="type_size">

<xsd:restriction base="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="value_offsets">

<xsd:list itemType="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="superuser_flag">

<xsd:restriction base="A_BOOLEAN"/>
</xsd:simpleType>
<xsd:simpleType name="ref_appl_elem_name">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="rights">

<xsd:restriction base="A_INT16"/>
</xsd:simpleType>
<xsd:simpleType name="version">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>

ISO/PAS 22720:2005(E)

408 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-59

<xsd:simpleType name="version_date">
<xsd:restriction base="t_date"/>

</xsd:simpleType>
<xsd:simpleType name="value">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="valuesperblock">

<xsd:restriction base="A_INT32"/>
</xsd:simpleType>
<xsd:simpleType name="quantity_class_enum">

<xsd:restriction base="A_ASCIISTRING">
<xsd:enumeration value="measured"/>
<xsd:enumeration value="state"/>

</xsd:restriction>
</xsd:simpleType>
<!--

* Enumerations

-->
<xsd:simpleType name="base_attributetype_enum">

<xsd:restriction base="A_ASCIISTRING">
<xsd:enumeration value="appl_element_id"/>
<xsd:enumeration value="attribute_name"/>
<xsd:enumeration value="average"/>
<xsd:enumeration value="block_size"/>
<xsd:enumeration value="component_datatype"/>
<xsd:enumeration value="current_exp"/>
<xsd:enumeration value="current_exp_den"/>
<xsd:enumeration value="default_datatype"/>
<xsd:enumeration value="datatype_enum"/>
<xsd:enumeration value="default_dimension"/>
<xsd:enumeration value="default_mq_name"/>
<xsd:enumeration value="default_rank"/>
<xsd:enumeration value="default_type_size"/>
<xsd:enumeration value="description"/>
<xsd:enumeration value="dimension"/>
<xsd:enumeration value="external_reference"/>
<xsd:enumeration value="factor"/>
<xsd:enumeration value="filename_url"/>
<xsd:enumeration value="flags"/>
<xsd:enumeration value="flags_filename_url"/>
<xsd:enumeration value="flags_start_offset"/>
<xsd:enumeration value="generation_parameters"/>
<xsd:enumeration value="global_flag"/>
<xsd:enumeration value="id"/>
<xsd:enumeration value="independent"/>
<xsd:enumeration value="instance_id"/>
<xsd:enumeration value="interpolation"/>
<xsd:enumeration value="length_exp"/>
<xsd:enumeration value="length_exp_den"/>
<xsd:enumeration value="length_iin_bytes"/>
<xsd:enumeration value="level"/>
<xsd:enumeration value="luminous_intensity_exp"/>
<xsd:enumeration value="luminous_intensity_exp_den"/>
<xsd:enumeration value="mass_exp"/>
<xsd:enumeration value="mass_exp_den"/>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 409

ASAM ODS VERSION 5.0

6-60 ASAM ODS VERSION 5.0

<xsd:enumeration value="maximum"/>
<xsd:enumeration value="measurement_begin"/>
<xsd:enumeration value="measurement_end"/>
<xsd:enumeration value="mime_type"/>
<xsd:enumeration value="minimum"/>
<xsd:enumeration value="molar_amount_exp"/>
<xsd:enumeration value="molar_amount_exp_den"/>
<xsd:enumeration value="name"/>
<xsd:enumeration value="number_of_rows"/>
<xsd:enumeration value="ordinal_number"/>
<xsd:enumeration value="offset"/>
<xsd:enumeration value="parameter_datatype"/>
<xsd:enumeration value="pvalue"/>
<xsd:enumeration value="password"/>
<xsd:enumeration value="rank"/>
<xsd:enumeration value="ref_appl_elem_name"/>
<xsd:enumeration value="rights"/>
<xsd:enumeration value="sequence_representation"/>
<xsd:enumeration value="standard_deviation"/>
<xsd:enumeration value="start_offset"/>
<xsd:enumeration value="superuser_flag"/>
<xsd:enumeration value="temperature_exp"/>
<xsd:enumeration value="temperature_exp_den"/>
<xsd:enumeration value="time_exp"/>
<xsd:enumeration value="time_exp_den"/>
<xsd:enumeration value="type_size"/>
<xsd:enumeration value="typespec_enum"/>
<xsd:enumeration value="value_offsets"/>
<xsd:enumeration value="version"/>
<xsd:enumeration value="version_date"/>
<xsd:enumeration value="value"/>
<xsd:enumeration value="value_offset"/>
<xsd:enumeration value="value_type"/>
<xsd:enumeration value="values_float64"/>
<xsd:enumeration value="valuesperblock"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="base_relation_enum">

<xsd:restriction base="A_ASCIISTRING">
<xsd:enumeration value="true"/>
<xsd:enumeration value="false"/>
<xsd:enumeration value="alias_names"/>
<xsd:enumeration value="attribute_mapping"/>
<xsd:enumeration value="channel"/>
<xsd:enumeration value="children"/>
<xsd:enumeration value="datatype"/>
<xsd:enumeration value="default_unit"/>
<xsd:enumeration value="entity_mapping"/>
<xsd:enumeration value="equipments"/>
<xsd:enumeration value="groups"/>
<xsd:enumeration value="is_scaled_by"/>
<xsd:enumeration value="local_columns"/>
<xsd:enumeration value="meaning_of_aliases"/>
<xsd:enumeration value="measurement"/>
<xsd:enumeration value="measurement_quantities"/>
<xsd:enumeration value="measurement_quantity"/>
<xsd:enumeration value="parent_sequence"/>

ISO/PAS 22720:2005(E)

410 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-61

<xsd:enumeration value="parent_test"/>
<xsd:enumeration value="parent_unit_under_test"/>
<xsd:enumeration value="predecessor"/>
<xsd:enumeration value="phys_dimension"/>
<xsd:enumeration value="quantity"/>
<xsd:enumeration value="quantities"/>
<xsd:enumeration value="quantity_instance"/>
<xsd:enumeration value="sequences"/>
<xsd:enumeration value="submatrices"/>
<xsd:enumeration value="submatrix"/>
<xsd:enumeration value="successors"/>
<xsd:enumeration value="test"/>
<xsd:enumeration value="tests"/>
<xsd:enumeration value="unit"/>
<xsd:enumeration value="units"/>
<xsd:enumeration value="unit_instance"/>
<xsd:enumeration value="units_under_test"/>
<xsd:enumeration value="users"/>
<xsd:enumeration value="uuts"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="elemtype_enum">

<xsd:restriction base="A_ASCIISTRING">
<xsd:enumeration value="ACL"/>
<xsd:enumeration value="ACLA"/>
<xsd:enumeration value="ACLI"/>
<xsd:enumeration value="ACLTemplate"/>
<xsd:enumeration value="AoAttributeMap"/>
<xsd:enumeration value="AoEnvironment"/>
<xsd:enumeration value="AoExternalComponent"/>
<xsd:enumeration value="AoLocalColumn"/>
<xsd:enumeration value="AoLog"/>
<xsd:enumeration value="AoMeasurement"/>
<xsd:enumeration value="AoMeasurementQuantity"/>
<xsd:enumeration value="AoNameMap"/>
<xsd:enumeration value="AoParameter"/>
<xsd:enumeration value="AoParameterSet"/>
<xsd:enumeration value="AoPhysicalDimension"/>
<xsd:enumeration value="AoQuantity"/>
<xsd:enumeration value="AoQuantityGroup"/>
<xsd:enumeration value="AoSubmatrix"/>
<xsd:enumeration value="AoSubTest"/>
<xsd:enumeration value="AoTest"/>
<xsd:enumeration value="AoTestEquipment"/>
<xsd:enumeration value="AoTestEquipmentPart"/>
<xsd:enumeration value="AoTestSequence"/>
<xsd:enumeration value="AoTestSequencePart"/>
<xsd:enumeration value="AoUnitUnderTest"/>
<xsd:enumeration value="AoUnitUnderTestPart"/>
<xsd:enumeration value="AoUnit"/>
<xsd:enumeration value="AoUnitGroup"/>
<xsd:enumeration value="AoUser"/>
<xsd:enumeration value="AoUserGroup"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="boolean_enum">

<xsd:restriction base="A_ASCIISTRING">

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 411

ASAM ODS VERSION 5.0

6-62 ASAM ODS VERSION 5.0

<xsd:enumeration value="true"/>
<xsd:enumeration value="false"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="component_datatype_enum">

<xsd:restriction base="A_ASCIISTRING">
<xsd:enumeration value="A_ASCIISTRING"/>
<xsd:enumeration value="A_BITFIELD"/>
<xsd:enumeration value="A_BOOLEAN"/>
<xsd:enumeration value="A_BYTEFIELD"/>
<xsd:enumeration value="A_FLOAT32"/>
<xsd:enumeration value="A_FLOAT32_BEO"/>
<xsd:enumeration value="A_FLOAT64"/>
<xsd:enumeration value="A_FLOAT64_BEO"/>
<xsd:enumeration value="A_INT8"/>
<xsd:enumeration value="A_INT16"/>
<xsd:enumeration value="A_INT16_BEO"/>
<xsd:enumeration value="A_INT32"/>
<xsd:enumeration value="A_INT32_BEO"/>
<xsd:enumeration value="A_INT64"/>
<xsd:enumeration value="A_INT64_BEO"/>
<xsd:enumeration value="A_UINT16"/>
<xsd:enumeration value="A_UINT32"/>
<xsd:enumeration value="A_UINT8"/>
<xsd:enumeration value="DT_ENUM"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="datatype_enum">

<xsd:restriction base="A_ASCIISTRING">
<xsd:enumeration value="DS_BOOLEAN"/>
<xsd:enumeration value="DS_BYTE"/>
<xsd:enumeration value="DS_BYTESTR"/>
<xsd:enumeration value="DS_COMPLEX"/>
<xsd:enumeration value="DS_DATE"/>
<xsd:enumeration value="DS_DCOMPLEX"/>
<xsd:enumeration value="DS_DOUBLE"/>
<xsd:enumeration value="DT_ENUM"/>
<xsd:enumeration value="DS_EXTERNALREFERENCE"/>
<xsd:enumeration value="DS_FLOAT"/>
<xsd:enumeration value="DS_ID"/>
<xsd:enumeration value="DS_LONG"/>
<xsd:enumeration value="DS_LONGLONG"/>
<xsd:enumeration value="DS_SHORT"/>
<xsd:enumeration value="DS_STRING"/>
<xsd:enumeration value="DT_BLOB"/>
<xsd:enumeration value="DT_BOOLEAN"/>
<xsd:enumeration value="DT_BYTE"/>
<xsd:enumeration value="DT_BYTESTR"/>
<xsd:enumeration value="DT_COMPLEX"/>
<xsd:enumeration value="DT_DATE"/>
<xsd:enumeration value="DT_DCOMPLEX"/>
<xsd:enumeration value="DT_DOUBLE"/>
<xsd:enumeration value="DT_ENUM"/>
<xsd:enumeration value="DT_EXTERNALREFERENCE"/>
<xsd:enumeration value="DT_FLOAT"/>
<xsd:enumeration value="DT_ID"/>
<xsd:enumeration value="DT_LONG"/>

ISO/PAS 22720:2005(E)

412 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-63

<xsd:enumeration value="DT_LONGLONG"/>
<xsd:enumeration value="DT_SHORT"/>
<xsd:enumeration value="DT_STRING"/>
<xsd:enumeration value="DT_UNKNOWN"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="interpolation_enum">

<xsd:restriction base="A_ASCIISTRING">
<xsd:enumeration value="no_interpolation"/>
<xsd:enumeration value="linear_interpolation"/>
<xsd:enumeration value="application_specific"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="parameter_datatype_enum">

<xsd:restriction base="A_ASCIISTRING"/>
</xsd:simpleType>
<xsd:simpleType name="seq_rep_enum">

<xsd:restriction base="A_ASCIISTRING">
<xsd:enumeration value="explicit"/>
<xsd:enumeration value="implicit_constant"/>
<xsd:enumeration value="implicit_linear"/>
<xsd:enumeration value="implicit_saw"/>
<xsd:enumeration value="raw_linear"/>
<xsd:enumeration value="raw_linear_external"/>
<xsd:enumeration value="raw_linear_calibrated"/>
<xsd:enumeration value="raw_linear_calibrated_external"/>
<xsd:enumeration value="raw_polynomial"/>
<xsd:enumeration value="raw_polynomial_external"/>
<xsd:enumeration value="formula"/>
<xsd:enumeration value="external_component"/>

</xsd:restriction>
</xsd:simpleType>
<!--

* Abstract declarations for ASAM Base Relations

-->
<xsd:complexType name="alias_names" abstract="true"/>
<xsd:complexType name="attribute_mapping" abstract="true"/>
<xsd:complexType name="channel" abstract="true"/>
<xsd:complexType name="children" abstract="true"/>
<xsd:complexType name="datatype" abstract="true"/>
<xsd:complexType name="default_unit" abstract="true"/>
<xsd:complexType name="entity_mapping" abstract="true"/>
<xsd:complexType name="equipments" abstract="true"/>
<xsd:complexType name="groups" abstract="true"/>
<xsd:complexType name="is_scaled_by" abstract="true"/>
<xsd:complexType name="local_columns" abstract="true"/>
<xsd:complexType name="meaning_of_aliases" abstract="true"/>
<xsd:complexType name="measurement" abstract="true"/>
<xsd:complexType name="measurement_quantities" abstract="true"/>
<xsd:complexType name="measurement_quantity" abstract="true"/>
<xsd:complexType name="parameter_set" abstract="true"/>
<xsd:complexType name="parameters" abstract="true"/>
<xsd:complexType name="parent_sequence" abstract="true"/>
<xsd:complexType name="parent_test" abstract="true"/>
<xsd:complexType name="parent_unit_under_test" abstract="true"/>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 413

ASAM ODS VERSION 5.0

6-64 ASAM ODS VERSION 5.0

<xsd:complexType name="phys_dimension" abstract="true"/>
<xsd:complexType name="predecessor" abstract="true"/>
<xsd:complexType name="quantity_instance" abstract="true"/>
<xsd:complexType name="sequences" abstract="true"/>
<xsd:complexType name="submatrices" abstract="true"/>
<xsd:complexType name="submatrx" abstract="true"/>
<xsd:complexType name="test" abstract="true"/>
<xsd:complexType name="tests" abstract="true"/>
<xsd:complexType name="unit" abstract="true"/>
<xsd:complexType name="unit_instance" abstract="true"/>
<xsd:complexType name="units_under_test" abstract="true"/>
<xsd:complexType name="users" abstract="true"/>
<xsd:complexType name="uuts" abstract="true"/>
<!--

* Abstract declarations for ASAM Base Elements

-->
<xsd:complexType name="AoAny" abstract="true"/>
<xsd:complexType name="AoAttributeMap" abstract="true"/>
<xsd:complexType name="AoEnvironment" abstract="true"/>
<xsd:complexType name="AoExternalComponent" abstract="true"/>
<xsd:complexType name="AoLocalColumn" abstract="true"/>
<xsd:complexType name="AoLog" abstract="true"/>
<xsd:complexType name="AoMeasurement" abstract="true"/>
<xsd:complexType name="AoMeasurementQuantity" abstract="true"/>
<xsd:complexType name="AoNameMap" abstract="true"/>
<xsd:complexType name="AoParameter" abstract="true"/>
<xsd:complexType name="AoParameterSet" abstract="true"/>
<xsd:complexType name="AoPhysicalDimension" abstract="true"/>
<xsd:complexType name="AoQuantity" abstract="true"/>
<xsd:complexType name="AoQuantityGroup" abstract="true"/>
<xsd:complexType name="AoSubmatrix" abstract="true"/>
<xsd:complexType name="AoSubTest" abstract="true"/>
<xsd:complexType name="AoTest" abstract="true"/>
<xsd:complexType name="AoTestEquipment" abstract="true"/>
<xsd:complexType name="AoTestEquipmentPart" abstract="true"/>
<xsd:complexType name="AoTestSequence" abstract="true"/>
<xsd:complexType name="AoTestSequencePart" abstract="true"/>
<xsd:complexType name="AoUnitUnderTest" abstract="true"/>
<xsd:complexType name="AoUnitUnderTestPart" abstract="true"/>
<xsd:complexType name="AoUnit" abstract="true"/>
<xsd:complexType name="AoUnitGroup" abstract="true"/>
<xsd:complexType name="AoUser" abstract="true"/>
<xsd:complexType name="AoUserGroup" abstract="true"/>
<!--

* Abstract declarations for Security – Not ASAM Base Elements

-->
<xsd:complexType name="ACL" abstract="true"/>
<xsd:complexType name="ACLA" abstract="true"/>
<xsd:complexType name="ACLI" abstract="true"/>
<xsd:complexType name="ACLTemplate" abstract="true"/>

</xsd:schema>

ISO/PAS 22720:2005(E)

414 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-65

6.12 EXAMPLE ATF/XML FILE

The contents of a demo XML file follow. This file is essentially an ATF/XML version of the
same demo ATF file that is included with the ATF documentation. This file may be
downloaded from the ASAM ODS web site.

<?xml version="1.0" encoding="UTF-8"?>
<!--

* Example of ODS ATF in XML for Base Model 27 *

 ASAM-ODS ATF/XML Example
Version 1.0

 Copyright 2003 - Association For Standardization of Automation and Measuring Systems.
 All rights reserved.

Revision History

20 March 2003 - Mark Quinsland mark.quinsland@highqsoft.com
Initial Version

22 June 2003 - Mark Quinsland mark.quinsland@highqsoft.com
Utilizes new style for defining String sequences. Utilizes new Instance Attributes.

22 June 2003 - Mark Quinsland mark.quinsland@highqsoft.com
Utilizes new style for defining String sequences. Utilizes new Instance Attributes.

14 October 2003 - Mark Quinsland mark.quinsland@highqsoft.com
Utilizes ASAM data types.

-->
<!--

* Root Element of file *

-->

<atfx_file version="atfx_file v1.0.1" xmlns="http://www.asam.net"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.asam.net
odsbase_schema_5.0.rc5.xsd">

<documentation>
<exported_by>Mark Quinsland</exported_by>
<exporter>Ascoba</exporter>
<export_date_time>20.03.2003.12000000</export_date_time>
<exporter_version>9.00.1234</exporter_version>

</documentation>
<!--

* Locale of Document *

-->
<locale>US-EN</locale>
<!--

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 415

http://www.asam.net
http://www.w3.org/2001/XMLSchema-instance
http://www.asam.net
mailto:mark.quinsland@highqsoft.com
mailto:mark.quinsland@highqsoft.com
mailto:mark.quinsland@highqsoft.com
mailto:mark.quinsland@highqsoft.com

ASAM ODS VERSION 5.0

6-66 ASAM ODS VERSION 5.0

* Based on ODS Base Model version 27 *

-->
<base_model_version>27</base_model_version>
<!--

* declare any external files *

-->
<files>

<component>
<identifier>file1</identifier>
<filename>../data/k1.dat</filename>

</component>
</files>
<!--

* declare application model meta data *

-->
<application_model>

<application_element>
<!-- *** declare Engine Element *** -->
<name>Engine</name>
<basetype>AoTest</basetype>
<application_attribute>

<name>EngineName</name>
<base_attribute>name</base_attribute>
<unique>true</unique>
<length>50</length>

</application_attribute>
<application_attribute>

<name>EngineId</name>
<base_attribute>id</base_attribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>EngineVersion</name>
<base_attribute>version</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>EngineDescription</name>
<base_attribute>description</base_attribute>
<length>100</length>

</application_attribute>
<application_attribute>

<name>VersionDate</name>
<base_attribute>version_date</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>CreateDate</name>
<datatype>DT_DATE</datatype>
<obligatory>false</obligatory>

ISO/PAS 22720:2005(E)

416 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-67

</application_attribute>
<application_attribute>

<name>bore</name>
<datatype>DT_FLOAT</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>cylindernumber</name>
<datatype>DT_SHORT</datatype>
<obligatory>false</obligatory>

</application_attribute>
<relation_attribute>

<name>SubTests</name>
<ref_to>Test</ref_to>
<base_relation>children</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

</relation_attribute>
<relation_attribute>

<name>EngineUser</name>
<ref_to>User</ref_to>
<min_occurs>0</min_occurs>
<max_occurs>1</max_occurs>

</relation_attribute>
</application_element>
<!-- *** declare Test Element *** -->
<application_element>

<name>Test</name>
<basetype>AoSubTest</basetype>
<application_attribute>

<name>TestName</name>
<base_attribute>name</base_attribute>
<unique>true</unique>
<length>50</length>

</application_attribute>
<application_attribute>

<name>TestId</name>
<base_attribute>id</base_attribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>TestVersion</name>
<base_attribute>version</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>TestDescription</name>
<base_attribute>description</base_attribute>
<length>100</length>

</application_attribute>
<application_attribute>

<name>VersionDate</name>
<base_attribute>version_date</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 417

ASAM ODS VERSION 5.0

6-68 ASAM ODS VERSION 5.0

<name>CreateDate</name>
<datatype>DT_DATE</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>TestType</name>
<datatype>DT_STRING</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>TestComment</name>
<datatype>DT_STRING</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>exhaust</name>
<datatype>DT_STRING</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>air_filter</name>
<datatype>DT_STRING</datatype>
<obligatory>false</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>Measurements</name>
<ref_to>Measurement</ref_to>
<base_relation>children</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

</relation_attribute>
<relation_attribute>

<name>MainTest</name>
<ref_to>Engine</ref_to>
<base_relation>parent_test</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>1</max_occurs>

</relation_attribute>
<relation_attribute>

<name>TestUser</name>
<ref_to>User</ref_to>
<min_occurs>0</min_occurs>
<max_occurs>1</max_occurs>

</relation_attribute>
</application_element>
<!-- *** declare Measurement Element *** -->
<application_element>

<name>Measurement</name>
<basetype>AoMeasurement</basetype>
<application_attribute>

<name>MeaName</name>
<base_attribute>name</base_attribute>
<unique>true</unique>
<length>50</length>

</application_attribute>
<application_attribute>

ISO/PAS 22720:2005(E)

418 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-69

<name>MeaId</name>
<base_attribute>id</base_attribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>MeaVersion</name>
<base_attribute>version</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>MeaDescription</name>
<base_attribute>description</base_attribute>
<length>100</length>

</application_attribute>
<application_attribute>

<name>VersionDate</name>
<base_attribute>version_date</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>MeasurementBegin</name>
<base_attribute>measurement_begin</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>MeasurementEnd</name>
<base_attribute>measurement_end</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>CreateDate</name>
<datatype>DT_DATE</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>MeaType</name>
<datatype>DT_STRING</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>MeaComment</name>
<datatype>DT_STRING</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>ROZ</name>
<datatype>DT_FLOAT</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>air_filter</name>
<datatype>DT_STRING</datatype>
<obligatory>false</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 419

ASAM ODS VERSION 5.0

6-70 ASAM ODS VERSION 5.0

<name>Test</name>
<ref_to>Test</ref_to>
<base_relation>test</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

</relation_attribute>
<relation_attribute>

<name>MeaQuantities</name>
<ref_to>MeasurmentQuantity</ref_to>
<base_relation>measurement_quantities</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>1</max_occurs>

</relation_attribute>
<relation_attribute>

<name>Submatrices</name>
<ref_to>Submatrix</ref_to>
<base_relation>submatrices</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>1</max_occurs>

</relation_attribute>
</application_element>
<!-- *** declare Measurement Quantity Element *** -->
<application_element>

<name>MeasurementQuantity</name>
<basetype>AoMeasurementQuantity</basetype>
<application_attribute>

<name>MeaQName</name>
<base_attribute>name</base_attribute>
<unique>true</unique>
<length>50</length>

</application_attribute>
<application_attribute>

<name>MeaQId</name>
<base_attribute>id</base_attribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>MeaQVersion</name>
<base_attribute>version</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>MeaQDescription</name>
<base_attribute>description</base_attribute>
<length>100</length>

</application_attribute>
<application_attribute>

<name>VersionDate</name>
<base_attribute>version_date</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>Rank</name>
<base_attribute>rank</base_attribute>
<obligatory>false</obligatory>

</application_attribute>

ISO/PAS 22720:2005(E)

420 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-71

<application_attribute>
<name>Dimension</name>
<base_attribute>dimension</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>DataType</name>
<base_attribute>datatype_enum</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>TypeSize</name>
<base_attribute>type_size</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>Interpolation</name>
<base_attribute>interpolation</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>Minimum</name>
<base_attribute>minimum</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>Maximum</name>
<base_attribute>maximum</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>Average</name>
<base_attribute>average</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>SDeviation</name>
<base_attribute>standard_deviation</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>MeaQuantStat</name>
<datatype>DT_SHORT</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>MeaQuantStat</name>
<datatype>DT_SHORT</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>TimeOffset</name>
<datatype>DT_DOUBLE</datatype>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>SamplingRate</name>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 421

ASAM ODS VERSION 5.0

6-72 ASAM ODS VERSION 5.0

<datatype>DT_DOUBLE</datatype>
<obligatory>false</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>Measurement</name>
<ref_to>measurement</ref_to>
<base_relation>measurement</base_relation>

</relation_attribute>
<relation_attribute>

<name>LocalColumns</name>
<ref_to>LocalColumn</ref_to>
<base_relation>local_columns</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

</relation_attribute>
<relation_attribute>

<name>Quantity</name>
<ref_to>Quantity</ref_to>
<base_relation>quantity</base_relation>

</relation_attribute>
<relation_attribute>

<name>Unit</name>
<ref_to>Unit</ref_to>
<base_relation>unit</base_relation>

</relation_attribute>
</application_element>
<!-- *** declare SubmatrixElement *** -->
<application_element>

<name>Submatrix</name>
<basetype>AoSubmatrix</basetype>
<application_attribute>

<name>name</name>
<base_attribute>name</base_attribute>
<length>50</length>

</application_attribute>
<application_attribute>

<name>id</name>
<base_attribute>id</base_attribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>version</name>
<base_attribute>version</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>description</name>
<base_attribute>description</base_attribute>
<obligatory>false</obligatory>
<length>100</length>

</application_attribute>
<application_attribute>

<name>version_date</name>
<base_attribute>version_date</base_attribute>
<obligatory>false</obligatory>

ISO/PAS 22720:2005(E)

422 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-73

</application_attribute>
<application_attribute>

<name>Rank</name>
<base_attribute>rank</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>number_of_rows</name>
<base_attribute>number_of_rows</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>Measurement</name>
<ref_to>measurement</ref_to>
<base_relation>measurement</base_relation>

</relation_attribute>
<relation_attribute>

<name>LocalColumns</name>
<ref_to>LocalColumn</ref_to>
<base_relation>local_columns</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

</relation_attribute>
</application_element>
<!-- *** declare Local Column Element *** -->
<application_element>

<name>LocalColumn</name>
<basetype>AoLocalColumn</basetype>
<application_attribute>

<name>name</name>
<base_attribute>name</base_attribute>
<length>50</length>

</application_attribute>
<application_attribute>

<name>id</name>
<base_attribute>id</base_attribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>version</name>
<base_attribute>version</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>description</name>
<base_attribute>description</base_attribute>
<obligatory>false</obligatory>
<length>100</length>

</application_attribute>
<application_attribute>

<name>version_date</name>
<base_attribute>version_date</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 423

ASAM ODS VERSION 5.0

6-74 ASAM ODS VERSION 5.0

<name>Rank</name>
<base_attribute>rank</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>flags</name>
<base_attribute>flags</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>global_flag</name>
<base_attribute>global_flag</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>independent</name>
<base_attribute>independent</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>minimum</name>
<base_attribute>minimum</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>maximum</name>
<base_attribute>maximum</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>values</name>
<base_attribute>values_float64</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>submatrix</name>
<ref_to>Submatrix</ref_to>
<base_relation>measurement</base_relation>

</relation_attribute>
<relation_attribute>

<name>measurement_quantity</name>
<ref_to>MeaQuantity</ref_to>
<base_relation>measurement_quantity</base_relation>

</relation_attribute>
</application_element>
<!-- *** declare Quantity Element *** -->
<application_element>

<name>Quantity</name>
<basetype>AoQuantity</basetype>
<application_attribute>

<name>QName</name>
<base_attribute>name</base_attribute>
<length>50</length>

</application_attribute>
<application_attribute>

<name>QId</name>

ISO/PAS 22720:2005(E)

424 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-75

<base_attribute>id</base_attribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>QVersion</name>
<base_attribute>version</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>QDescription</name>
<base_attribute>description</base_attribute>
<obligatory>false</obligatory>
<length>100</length>

</application_attribute>
<application_attribute>

<name>version_date</name>
<base_attribute>version_date</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>DefaultRank</name>
<base_attribute>default_rank</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>DefaultDimension</name>
<base_attribute>default_dimension</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>DefaultDataType</name>
<base_attribute>default_datatype</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>DefaultType_size</name>
<base_attribute>default_type_size</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>DefaultMQName</name>
<base_attribute>default_mq_name</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>DefaultUnit</name>
<ref_to>Unit</ref_to>
<base_relation>default_unit</base_relation>

</relation_attribute>
<relation_attribute>

<name>Successors</name>
<ref_to>Quantity</ref_to>
<base_relation>successors</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 425

ASAM ODS VERSION 5.0

6-76 ASAM ODS VERSION 5.0

</relation_attribute>
<relation_attribute>

<name>Predeccessors</name>
<ref_to>Quantity</ref_to>
<base_relation>predecessor</base_relation>

</relation_attribute>
<relation_attribute>

<name>QuantityGroup</name>
<ref_to>QuantityGroup</ref_to>
<base_relation>groups</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

</relation_attribute>
</application_element>
<!-- *** declare QuantityGroup Element *** -->
<application_element>

<name>QuantityGroup</name>
<basetype>AoQuantityGroup</basetype>
<application_attribute>

<name>QGroupName</name>
<base_attribute>name</base_attribute>
<length>50</length>

</application_attribute>
<application_attribute>

<name>QGroupId</name>
<base_attribute>id</base_attribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>QGroupVersion</name>
<base_attribute>version</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>QGroupDescription</name>
<base_attribute>description</base_attribute>
<obligatory>false</obligatory>
<length>100</length>

</application_attribute>
<application_attribute>

<name>version_date</name>
<base_attribute>version_date</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>QuantGroupState</name>
<datatype>DT_SHORT</datatype>
<obligatory>false</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>ListOfQuantities</name>
<ref_to>Quantity</ref_to>
<base_relation>quantities</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

ISO/PAS 22720:2005(E)

426 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-77

</relation_attribute>
</application_element>
<!-- *** declare Unit Element *** -->
<application_element>

<name>Unit</name>
<basetype>AoUnit</basetype>
<application_attribute>

<name>UnitName</name>
<base_attribute>name</base_attribute>
<length>50</length>

</application_attribute>
<application_attribute>

<name>UnitId</name>
<base_attribute>id</base_attribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>UnitVersion</name>
<base_attribute>version</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>UnitDescription</name>
<base_attribute>description</base_attribute>
<obligatory>false</obligatory>
<length>100</length>

</application_attribute>
<application_attribute>

<name>version_date</name>
<base_attribute>version_date</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>UnitFactor</name>
<base_attribute>factor</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>UnitOffset</name>
<base_attribute>offset</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>QuantGroupState</name>
<datatype>DT_SHORT</datatype>
<obligatory>false</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>PhysDim</name>
<ref_to>PhysDim</ref_to>
<base_relation>phys_dimension</base_relation>

</relation_attribute>
<relation_attribute>

<name>UnitGroups</name>
<ref_to>UnitGroup</ref_to>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 427

ASAM ODS VERSION 5.0

6-78 ASAM ODS VERSION 5.0

<base_relation>groups</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

</relation_attribute>
</application_element>
<!-- *** declare Unit Group Element *** -->
<application_element>

<name>UnitGroup</name>
<basetype>AoUnit</basetype>
<application_attribute>

<name>UnitName</name>
<base_attribute>name</base_attribute>
<length>50</length>

</application_attribute>
<application_attribute>

<name>UnitGroupId</name>
<base_attribute>id</base_attribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>UnitGroupVersion</name>
<base_attribute>version</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>UnitGroupDescription</name>
<base_attribute>description</base_attribute>
<obligatory>false</obligatory>
<length>100</length>

</application_attribute>
<application_attribute>

<name>version_date</name>
<base_attribute>version_date</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>UnitGroupState</name>
<datatype>DT_SHORT</datatype>
<obligatory>true</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>PhysDim</name>
<ref_to>PhysDim</ref_to>
<base_relation>phys_dimension</base_relation>

</relation_attribute>
<relation_attribute>

<name>Units</name>
<ref_to>Unit</ref_to>
<base_relation>units</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

</relation_attribute>
</application_element>
<!-- *** declare Physical Dimension Element *** -->
<application_element>

ISO/PAS 22720:2005(E)

428 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-79

<name>PhysDim</name>
<basetype>AoPhysicalDimension</basetype>
<application_attribute>

<name>PhysDimName</name>
<base_attribute>name</base_attribute>
<length>50</length>

</application_attribute>
<application_attribute>

<name>PhysDimId</name>
<base_attribute>id</base_attribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>PhysDimVersion</name>
<base_attribute>version</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>PhysDimDescription</name>
<base_attribute>description</base_attribute>
<obligatory>false</obligatory>
<length>100</length>

</application_attribute>
<application_attribute>

<name>version_date</name>
<base_attribute>version_date</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>length</name>
<base_attribute>length_exp</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>mass</name>
<base_attribute>mass_exp</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>time</name>
<base_attribute>time_exp</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>current</name>
<base_attribute>current_exp</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>temperature</name>
<base_attribute>temperature_exp</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>molar</name>
<base_attribute>molar_amount_exp</base_attribute>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 429

ASAM ODS VERSION 5.0

6-80 ASAM ODS VERSION 5.0

<obligatory>true</obligatory>
</application_attribute>
<application_attribute>

<name>luminous</name>
<base_attribute>luminous_intensity_exp</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>Units</name>
<ref_to>Unit</ref_to>
<base_relation>units</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

</relation_attribute>
</application_element>
<!-- *** declare User Element for Security Information *** -->
<application_element>

<name>User</name>
<basetype>AoUser</basetype>
<application_attribute>

<name>UserName</name>
<base_attribute>name</base_attribute>
<length>50</length>

</application_attribute>
<application_attribute>

<name>UserId</name>
<base_attribute>id</base_attribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>UserVersion</name>
<base_attribute>version</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>UserDescription</name>
<base_attribute>description</base_attribute>
<obligatory>false</obligatory>
<length>100</length>

</application_attribute>
<application_attribute>

<name>version_date</name>
<base_attribute>version_date</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>password</name>
<base_attribute>password</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>UserDepartment</name>
<datatype>DT_STRING</datatype>
<obligatory>false</obligatory>

</application_attribute>

ISO/PAS 22720:2005(E)

430 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-81

<application_attribute>
<name>AliasName</name>
<datatype>DT_STRING</datatype>
<obligatory>false</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>groups</name>
<ref_to>UserGroup</ref_to>
<base_relation>groups</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

</relation_attribute>
</application_element>
<!-- *** declare User Group Element for Security Information *** -->
<application_element>

<name>UserGroup</name>
<basetype>AoUserGroup</basetype>
<application_attribute>

<name>UserGroupName</name>
<base_attribute>name</base_attribute>
<length>50</length>

</application_attribute>
<application_attribute>

<name>UserGroupId</name>
<base_attribute>id</base_attribute>
<autogenerate>true</autogenerate>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>UserGroupVersion</name>
<base_attribute>version</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>UserGroupDescription</name>
<base_attribute>description</base_attribute>
<obligatory>false</obligatory>
<length>100</length>

</application_attribute>
<application_attribute>

<name>version_date</name>
<base_attribute>version_date</base_attribute>
<obligatory>false</obligatory>

</application_attribute>
<application_attribute>

<name>superuser_flag</name>
<base_attribute>superuser_flag</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>users</name>
<ref_to>User</ref_to>
<base_relation>users</base_relation>
<min_occurs>0</min_occurs>
<max_occurs>Many</max_occurs>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 431

ASAM ODS VERSION 5.0

6-82 ASAM ODS VERSION 5.0

</relation_attribute>
</application_element>
<!-- *** declare Access Control List Element for Security Information *** -->
<application_element>

<name>ACLA</name>
<basetype>ACLA</basetype>
<application_attribute>

<name>appl_element_id</name>
<base_attribute>appl_element_id</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>rights</name>
<base_attribute>rights</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>attribute_name</name>
<base_attribute>attribute_name</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>users</name>
<ref_to>User</ref_to>
<base_relation>users</base_relation>

</relation_attribute>
</application_element>
<!-- *** declare Access Control List Element for Security Information *** -->
<application_element>

<name>ACLI</name>
<basetype>ACLA</basetype>
<application_attribute>

<name>appl_element_id</name>
<base_attribute>appl_element_id</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>rights</name>
<base_attribute>rights</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<application_attribute>

<name>instance_id</name>
<base_attribute>instance_id</base_attribute>
<obligatory>true</obligatory>

</application_attribute>
<!-- *** related elements *** -->
<relation_attribute>

<name>users</name>
<ref_to>User</ref_to>
<base_relation>users</base_relation>

</relation_attribute>
</application_element>
<!-- *** Example of Application Enumeration*** -->
<application_enumeration>

<name>MyEnum</name>

ISO/PAS 22720:2005(E)

432 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-83

<item>
<name>first</name>
<value>1</value>

</item>
<item>

<name>second</name>
<value>2</value>

</item>
</application_enumeration>

</application_model>
<!--

* end application model meta data *

-->
<!--

* Instance Data is NOT validated with Base Schema *

-->
<instance_data>
<!--

* Instance elements of the application elements Engine and Test
* from base type AoTest and AoSubTest

-->

<Engine>
<EngineName>Test Engine 1</EngineName>
<EngineId>1</EngineId>
<EngineVersion>A 1.0</EngineVersion>
<EngineDescription>The first test engine</EngineDescription>
<VersionDate>199702010900</VersionDate>
<CreateDate>199702010900</CreateDate>
<EngineType>ABC47111</EngineType>
<bore>92</bore>
<cylindernumber>6</cylindernumber>
<stroke>95.321</stroke>
<SubTests>1</SubTests>
<EngineUser>21</EngineUser>

</Engine>
<Test>

<TestName>Test-Configuration 1</TestName>
<TestId>1</TestId>
<TestVersion>B20</TestVersion>
<TestDescription>The first test of engine 1</TestDescription>
<VersionDate>199702010900</VersionDate>
<CreateDate>199702010900</CreateDate>
<TestType>Functionality Test</TestType>
<TestComment>Test: torque and at special points temperature</TestComment>
<exhaust>System 4711</exhaust>
<air_filter>C 12.1</air_filter>
<!-- Ref to instance elements of Measurements -->
<Measurements>1 12</Measurements>
<!-- Ref to instance element of Engine -->
<MainTest>1 </MainTest>
<!-- Ref to instance element of User -->

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 433

ASAM ODS VERSION 5.0

6-84 ASAM ODS VERSION 5.0

<TestUser>22</TestUser>
</Test>

<!--

* Instance elements of the application model part with
* Measurement, MeaQuantity, Submatrix, LocalColumn with value_sequence
* for the first measurement

-->

<Measurement>
<MeaName>M001A</MeaName>
<MeaId>1</MeaId>
<MeaVersion>A1</MeaVersion>
<MeaDescription>1. Measurement</MeaDescription>
<VersionDate>199702010900</VersionDate>
<CreateDate>199702010900</CreateDate>
<MeasurementBegin>19971210141345</MeasurementBegin>
<MeasurementEnd>199712100162135</MeasurementEnd>
<MeaType>Functionality Test</MeaType>
<MeaComment>No Problem</MeaComment>
<ROZ/>
<!-- Ref to instance elements of Test -->
<Test>1</Test>
<!-- Ref to instance elements of MeaQuantity -->
<MeaQuantities>1 2 3</MeaQuantities>
<!-- Ref to instance element of Submatrix -->
<Submatrices>1</Submatrices>

</Measurement>
<MeaQuantity>

<MeaQName>N</MeaQName>
<MeaQId>1</MeaQId>
<MeaQVersion>D1</MeaQVersion>
<MeaQDescription>Number of revolutions</MeaQDescription>
<version_date/>
<Rank>0</Rank>
<Dimension/>
<Interpolation/>
<Minimum>500</Minimum>
<Maximum>3200</Maximum>
<Average>1850</Average>
<SDeviation/>
<TimeOffset/>
<SamplingRate/>
<Measurement>1</Measurement>
<LocalColumns>1</LocalColumns>
<Quantity>5</Quantity>
<Unit>4</Unit>

</MeaQuantity>
<MeaQuantity>

<MeaQName>MD</MeaQName>
<MeaQId>2</MeaQId>
<MeaQVersion>D</MeaQVersion>
<MeaQDescription>Torque</MeaQDescription>
<version_date/>
<Rank>0</Rank>
<Dimension/>
<DataType>DT_FLOAT</DataType>

ISO/PAS 22720:2005(E)

434 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-85

<Interpolation/>
<Minimum>150.</Minimum>
<Maximum>255.</Maximum>
<Average>190.</Average>
<SDeviation>22.2</SDeviation>
<TimeOffset/>
<SamplingRate/>
<Measurement>1</Measurement>
<LocalColumns>2</LocalColumns>
<Quantity>6</Quantity>
<Unit>6</Unit>

</MeaQuantity>
<MeaQuantity>

<MeaQName>PL</MeaQName>
<MeaQId>3</MeaQId>
<MeaQVersion>D</MeaQVersion>
<MeaQDescription>Pressure</MeaQDescription>
<version_date/>
<Rank>0</Rank>
<Dimension/>
<DataType>DT_FLOAT</DataType>
<Interpolation/>
<Minimum>991.2</Minimum>
<Maximum>993.2</Maximum>
<Average>992.0</Average>
<SDeviation/>
<TimeOffset/>
<SamplingRate/>
<Measurement>1</Measurement>
<LocalColumns>3</LocalColumns>
<Quantity>7</Quantity>
<Unit>7</Unit>

</MeaQuantity>
<Submatrix>

<name>M001A</name>
<id>1</id>
<version>1a</version>
<description>1. Measurement for data transfer via ASAM</description>
<version_date/>
<number_of_rows>15</number_of_rows>
<measurement>1</measurement>
<local_columns>1 2 3</local_columns>

</Submatrix>
<LocalColumn>

<name>N</name>
<id>1</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>true</independent>
<minimum>500</minimum>
<maximum>3200.</maximum>
<datatype>DT_FLOAT</datatype>
<values>

500. 700. 900. 1100. 1300. 1400. 1600. 1800. 2000. 2200. 2400. 2600. 2800. 3000. 3200.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 435

ASAM ODS VERSION 5.0

6-86 ASAM ODS VERSION 5.0

</values>
<submatrix>1</submatrix>
<measurement_quantity>1</measurement_quantity>

</LocalColumn>
<LocalColumn>

<name>MD</name>
<id>2</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>150</minimum>
<maximum>255.</maximum>
<DataType>DT_FLOAT</DataType>
<values>

150. 160. 170. 180. 190. 200. 210. 220 230. 240. 250. 255. 250. 230. 190
</values>

<submatrix>1</submatrix>
<measurement_quantity>2</measurement_quantity>

</LocalColumn>
<LocalColumn>

<name>PL</name>
<id>3</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>991.2</minimum>
<maximum>993.2</maximum>
<DataType>DT_FLOAT</DataType>
<values>
 991.2 991.7 991.5 991.9 992.1 987.6 992.2 993.0 993.2 993.2 992.7 993.0 993.0 992.7 992.7
</values>
<submatrix>1</submatrix>
<measurement_quantity>3</measurement_quantity>

</LocalColumn>
<!--

* Instance elements of the application model part with
* Measurement, MeaQuantity, Submatrix, LocalColumn with value_sequence
* for the second measurement

-->

<Measurement>
<MeaName>M002A</MeaName>
<MeaId>2</MeaId>
<MeaVersion>A1</MeaVersion>
<MeaDescription>2. Measurement</MeaDescription>
<version_date>199702010900</version_date>
<MeasurementBegin>19971211141345</MeasurementBegin>
<MeasurementEnd>199712110162135</MeasurementEnd>
<CreateDate>199712110162135</CreateDate>
<MeaType>VLM</MeaType>

ISO/PAS 22720:2005(E)

436 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-87

<MeaComment>No Problem</MeaComment>
<ROZ/>
<!-- Ref to instance elements of Test -->
<Test>1</Test>
<!-- Ref to instance elements of MeaQuantity -->
<MeaQuantities>4 5 6 7 </MeaQuantities>
<!-- Ref to instance element of Submatrix -->
<Submatrices>2 3</Submatrices>

</Measurement>
<MeaQuantity>

<MeaQName>SPTNR</MeaQName>
<MeaQId>4</MeaQId>
<MeaQVersion>A</MeaQVersion>
<MeaQDescription>System point number</MeaQDescription>
<version_date/>
<Rank>0</Rank>
<Dimension/>
<Interpolation/>
<Minimum>1.0</Minimum>
<Maximum>15</Maximum>
<Average>7.5</Average>
<SDeviation/>
<TimeOffset/>
<SamplingRate/>
<Measurement>2</Measurement>
<LocalColumns>4 7</LocalColumns>
<Quantity>4</Quantity>
<Unit>1</Unit>

</MeaQuantity>
<MeaQuantity>

<MeaQName>N</MeaQName>
<MeaQId>5</MeaQId>
<MeaQVersion>D</MeaQVersion>
<MeaQDescription>Revolution</MeaQDescription>
<version_date/>
<Rank>0</Rank>
<Dimension/>
<DataType>DT_FLOAT</DataType>
<Interpolation/>
<Minimum>500</Minimum>
<Maximum>3200</Maximum>
<Average>1850</Average>
<SDeviation/>
<TimeOffset/>
<SamplingRate/>
<Measurement>2</Measurement>
<LocalColumns>5</LocalColumns>
<Quantity>5</Quantity>
<Unit>4</Unit>

</MeaQuantity>
<MeaQuantity>

<MeaQName>MD</MeaQName>
<MeaQId>6</MeaQId>
<MeaQVersion>D</MeaQVersion>
<MeaQDescription>Torque</MeaQDescription>
<version_date/>
<Rank>0</Rank>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 437

ASAM ODS VERSION 5.0

6-88 ASAM ODS VERSION 5.0

<Dimension/>
<DataType>DT_FLOAT</DataType>
<Interpolation/>
<Minimum>152.</Minimum>
<Maximum>257.</Maximum>
<Average>194.</Average>
<SDeviation/>
<TimeOffset/>
<SamplingRate/>
<Measurement>2</Measurement>
<LocalColumns>6</LocalColumns>
<Quantity>6</Quantity>
<Unit>6</Unit>

</MeaQuantity>
<MeaQuantity>

<MeaQName>TEMP1</MeaQName>
<MeaQId>7</MeaQId>
<MeaQVersion>D</MeaQVersion>
<MeaQDescription>Temperature</MeaQDescription>
<version_date/>
<Rank>0</Rank>
<Dimension/>
<DataType>DT_FLOAT</DataType>
<Interpolation/>
<Minimum>150.</Minimum>
<Maximum>183.</Maximum>
<Average>169.</Average>
<SDeviation/>
<TimeOffset/>
<SamplingRate/>
<Measurement>2</Measurement>
<LocalColumns>8</LocalColumns>
<Quantity>2</Quantity>
<Unit>2</Unit>

</MeaQuantity>
<Submatrix>

<name>M002A</name>
<id>2</id>
<version>1a</version>
<description>2. Measurement for data transfer via ASAM</description>
<version_date/>
<number_of_rows>15</number_of_rows>
<measurement>2</measurement>
<local_columns>4 5 6</local_columns>

</Submatrix>
<LocalColumn>

<name>SPKTNR</name>
<id>4</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>true</independent>
<minimum>1</minimum>
<maximum>15</maximum>
<DataType>DT_SHORT</DataType>

ISO/PAS 22720:2005(E)

438 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-89

<values>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

</values>
<submatrix>2</submatrix>
<measurement_quantity>4</measurement_quantity>

</LocalColumn>
<LocalColumn>

<name>N</name>
<id>5</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>500</minimum>
<maximum>3200.</maximum>
<DataType>DT_SHORT</DataType>
<values>

500. 700. 900. 1100. 1300. 1400. 1600. 1800. 2000. 2200. 2400. 2600. 2800. 3000. 3200.
</values>

<submatrix>2</submatrix>
<measurement_quantity>5</measurement_quantity>

</LocalColumn>
<LocalColumn>

<name>MD</name>
<id>6</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>150</minimum>
<maximum>255.</maximum>
<DataType>DT_FLOAT</DataType>
<values>

150. 160. 170. 180. 190. 200. 210. 220 230. 240. 250. 255. 250. 230. 190
</values>
<submatrix>2</submatrix>
<measurement_quantity>6</measurement_quantity>

</LocalColumn>
<Submatrix>

<name>M002B</name>
<id>3</id>
<version>1a</version>
<description>2. Measurement for data transfer via ASAM</description>
<version_date/>
<number_of_rows>3</number_of_rows>
<measurement>2</measurement>
<local_columns>7 8</local_columns>

</Submatrix>
<LocalColumn>

<name>SPKTNR</name>
<id>7</id>
<version/>
<description/>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 439

ASAM ODS VERSION 5.0

6-90 ASAM ODS VERSION 5.0

<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>true</independent>
<minimum>5</minimum>
<maximum>15</maximum>
<DataType>DT_SHORT</DataType>
<values>
5 10 15

</values>
<submatrix>2</submatrix>
<measurement_quantity>4</measurement_quantity>

</LocalColumn>
<LocalColumn>

<name>TEMP1</name>
<id>8</id>
<version/>
<description/>
<version_date/>
<flags>0</flags>
<global_flag>0</global_flag>
<independent>false</independent>
<minimum>150</minimum>
<maximum>183</maximum>
<DataType>DT_FLOAT</DataType>
<values>
150. 174. 183.
</values>
<submatrix>2</submatrix>
<measurement_quantity>7</measurement_quantity>

</LocalColumn>
<!--

* instance elements of the application elements User, User Group

-->

<User>
<UserName>Peter Sellers</UserName>
<UserId>21</UserId>
<UserVersion>1A</UserVersion>
<UserDescription>Super user group 1</UserDescription>
<version_date>199708101105</version_date>
<password>^1kjws7hxoish^mjkkdjxo”e--@@@kjg798xh0880djdj90</password>
<groups>30 50</groups>
<UserDepartment>OP/EFG</UserDepartment>
<AliasName>PS</AliasName>

</User>
<User>

<UserName>Todd Martin</UserName>
<UserId>22</UserId>
<UserVersion>1B</UserVersion>
<UserDescription>Sub user group 1b</UserDescription>
<version_date>199708101105</version_date>
<password>j</password>
<groups>30 40</groups>
<UserDepartment>OP/ABC</UserDepartment>
<AliasName>TM</AliasName>

ISO/PAS 22720:2005(E)

440 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-91

</User>
<User>

<UserName>Otto Bierman</UserName>
<UserId>23</UserId>
<UserVersion>1A</UserVersion>
<UserDescription>Sub user group 1</UserDescription>
<version_date>199708101105</version_date>
<password>89xzhuon3m,”))?imi/U(/%unpo39048ejdkádksos••o•3</password>
<groups>40 50</groups>
<UserDepartment>OP/EFG</UserDepartment>
<AliasName>OB</AliasName>

</User>
<UserGroup>

<GroupName>AQ 1</GroupName>
<GroupId>30</GroupId>
<GroupVersion>00</GroupVersion>
<GroupDescription>Group1</GroupDescription>
<version_date>199708101105</version_date>
<superuser_flag>true</superuser_flag>
<users>21 22</users>

</UserGroup>
<UserGroup>

<GroupName>AQ 2</GroupName>
<GroupId>40</GroupId>
<GroupVersion>00</GroupVersion>
<GroupDescription>Group 2</GroupDescription>
<version_date>199708101105</version_date>
<superuser_flag>false</superuser_flag>
<users>22 23</users>

</UserGroup>
<UserGroup>

<GroupName>TZU 23</GroupName>
<GroupId>50</GroupId>
<GroupVersion>00</GroupVersion>
<GroupDescription>Group 3</GroupDescription>
<version_date>199708101105</version_date>
<superuser_flag>false</superuser_flag>
<users>21 23</users>

</UserGroup>
<!--

* Access Control List information for enforcing security

-->

<ACLA>
<users>30</users>
<appl_element_id>333</appl_element_id>
<rights>7</rights>
<!--- protection of whole application element -->
<attribute_name/>

</ACLA>
<ACLA>

<users>30</users>
<appl_element_id>333</appl_element_id>
<rights>3</rights>
<!--- protection of description attribute -->
<attribute_name>description</attribute_name>

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 441

ASAM ODS VERSION 5.0

6-92 ASAM ODS VERSION 5.0

</ACLA>
<ACLA>

<users>40</users>
<appl_element_id>123</appl_element_id>
<rights>10</rights>
<!--- protection of whole application element -->
<attribute_name/>

</ACLA>
<ACLI>

<users>50</users>
<appl_element_id>123</appl_element_id>
<rights>10</rights>
<!--- protection of instance element -->
<instance_id>23</instance_id>

</ACLI>
<ACLI>

<users>40</users>
<appl_element_id>123</appl_element_id>
<rights>10</rights>
<!--- protection of instance element -->
<instance_id>23</instance_id>

</ACLI>
</instance_data>

</atfx_file>

ISO/PAS 22720:2005(E)

442 © ISO 2005 – All rights reserved

THE ASAM TRANSPORT FORMAT IN XML (ATF/XML)

ASAM ODS VERSION 5.0 6-93

6.13 KNOWN PROBLEMS

At the time of this writing, the XML Include specification had not been finalized by the W3C
and support for it is not yet universal.

At the time of this writing, the ASM XML Styleguide specification is under review and this
document could be impacted by any changes to the Styleguide.

6.14 ADDITIONAL RESOURCES

For more information on XML, XML Schema, and XML Inclusions, please consult the W3C
XML Documents.

Extensible Markup Language (XML) at http://www.w3.org/XML/

XML Schema Part 1: Structures at http://www.w3.org/TR/xmlschema-1/

XML Schema Part 2: Data Types at http://www.w3.org/TR/xmlschema-2/

XML Inclusions (XInclude) Version 1.0 at http://www.w3.org/TR/xinclude/

6.15 REVISION HISTORY

Date
Editor

Changes

2003-06
M. Quinsland

Created document

2003-12-29
R. Bartz

Updated document format and references to the other parts of the ASAM
ODS documentation

Included some explanation on data type usage
2003-12-20
R. Bartz

The Release version has been created

2004-09
R. Bartz

Minor textual changes have been introduced

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 443

http://www.w3.org/XML/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xinclude/

ASAM ODS VERSION 5.0

6-94 ASAM ODS VERSION 5.0

ASAM e.V.

Arnikastr. 2

D-85635 Hoehenkirchen

Germany

phone: (+49) 8102 – 895317

fax: (+49) 8102 – 895310

e-mail: info@asam.net

internet: www.asam.net

ISO/PAS 22720:2005(E)

444 © ISO 2005 – All rights reserved

ASAM ODS
VERSION 5.0

ISO-PAS

CHAPTER 8

MIME TYPES & EXTERNAL

REFERENCES
Version 1.0

Association for Standardisation of
Automation and Measuring Systems

Dated: 30.09.2004

© ASAM e.V.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 445

Status of Document

Reference: ASAM ODS Version 5.0 MIME Types

Date: 30.09.2004

Author: Hans-Peter Daunert, BMW

Type: Specification

Doc-ID: ASAM_ODS_50_CH08_Mime_Types.PDF

Revision
Status:

Release

Note: ASAM ODS has invoked a Formal Technical Review (FTR) process which
intends to continuously improve the quality and timeliness of its specifications.
Whenever an error is identified or a question arises from this specification, a
corresponding note should be sent to ASAM (odsftr@asam.net) to make sure
this issue will be addressed within the next review cycle.

Disclaimer of Warranty

Although this document was created with the utmost care it cannot be guaranteed that it is
completely free of errors or inconsistencies.

ASAM e.V. makes no representations or warranties with respect to the contents or use of this
documentation, and specifically disclaims any expressed or implied warranties of

merchantability or fitness for any particular purpose. Neither ASAM nor the author(s)
therefore accept any liability for damages or other consequences that arise from the use of

this document.

ASAM e.V. reserves the right to revise this publication and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes.

ISO/PAS 22720:2005(E)

446 © ISO 2005 – All rights reserved

mailto:odsftr@asam.net

MIME TYPES AND EXTERNAL REFERENCES

ASAM ODS VERSION 5.0 8-1

Contents

8 MIME TYPES AND EXTERNAL REFERENCES 8-3

8.1 INTRODUCTION... 8-3
8.2 DEFINITION OF ASAM ODS MIME TYPES .. 8-4

8.2.1 MIMETYPE AS AN OPTIONAL BASE ATTRIBUTE.. 8-4
8.2.2 CONTENT OF A MIMETYPE STRING .. 8-4
8.2.3 READING MIME TYPES VIA THE ODS APIS... 8-5
8.2.4 WRITING MIME TYPES VIA THE ODS APIS ... 8-5

8.3 ASAM ODS MIME TYPES ... 8-6
8.4 HANDLING EXTERNAL REFERENCES IN ASAM ODS.. 8-7
8.5 REVISION HISTORY... 8-8

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 447

ASAM ODS VERSION 5.0

8-2 ASAM ODS VERSION 5.0

Scope

This document describes the MIME types of the ASAM ODS Version 5.0.

Intended Audience

This document is intended for implementers of ASAM ODS Version 5.0. It shall be used as a
technical reference for MIME types used in ASAM ODS Version 5.0.

This document is part of a series of documents referring to ASAM ODS Version 5.0 and must
not be used as a stand-alone document. The documents referenced below build the
technical reference of ASAM ODS Version 5.0 as a whole. They may be requested from the
ASAM e.V. at www.asam.net.

ASAM ODS Specification

The following chapters build the technical reference for ASAM ODS Version 5.0:

 ASAM ODS Version 5.0, Chapter 1, Introduction

 ASAM ODS Version 5.0, Chapter 2, Architecture

 ASAM ODS Version 5.0, Chapter 3, Physical Storage (1.1)

 ASAM ODS Version 5.0, Chapter 4, Base Model (28)

 ASAM ODS Version 5.0, Chapter 5, ATF/CLA (1.4.1)

 ASAM ODS Version 5.0, Chapter 6, ATF/XML (1.0)

 ASAM ODS Version 5.0, Chapter 7: N/A ('Security' moved to Chapter 2)

 ASAM ODS Version 5.0, Chapter 8, MIME Types and External References (1.0)

 ASAM ODS Version 5.0, Chapter 9, RPC-API (3.2.1)

 ASAM ODS Version 5.0, Chapter 10, OO-API (5.0)

 ASAM ODS Version 5.0, Chapter 11, NVH Model (1.3)

 ASAM ODS Version 5.0, Chapter 12, Calibration Model (1.0)

Normative References

 ISO 10303-11: STEP EXPRESS

 Object Management Group (OMG): www.omg.org

 Common Object Request Broker Architecture (CORBA): www.corba.org

 IEEE 754: IEEE Standard for Binary Floating-Point Arithmetic, 1985

 ISO 8601: Date Formats

 Extensible Markup Language (XML): www.w3.org/xml

ISO/PAS 22720:2005(E)

448 © ISO 2005 – All rights reserved

www.asam.net
www.omg.org
www.corba.org
www.w3.org/xml

MIME TYPES AND EXTERNAL REFERENCES

ASAM ODS VERSION 5.0 8-3

8 MIME TYPES AND EXTERNAL REFERENCES

8.1 INTRODUCTION

The standard ASAM ODS is used as data integration standard in the test environment.

Additionally to e.g. normal test results like measurements there will always be a lot of data
which doesn’t fit into the specified object types. Because of their references to application
elements of type AoTest, or AoUnitUnderTest, or others it is necessary to support an
integration of those data (e.g. a Fast Fourier Transformation analysis as type of an
AoMeasurement inside an ODS environment or a video of a crash test of an
AoUnitUnderTest outside the ODS environment).

The types of integrated data are manifold and must not be limited by ODS (video, sound,
analysis data, CAD models, ….). Thus there has to be a generic way to include information
about the data and allow to store them either within the ODS physical storage or to specify
references to existing data outside the ODS data store.

To specify the information about the type of data stored, ASAM ODS uses the MIME type
definition. This chapter defines how the concept of MIME type is applied to ASAM ODS.
Additionally it defines how ASAM ODS supports the referencing to any external objects
(outside ODS), using MIME types.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 449

ASAM ODS VERSION 5.0

8-4 ASAM ODS VERSION 5.0

8.2 DEFINITION OF ASAM ODS MIME TYPES

8.2.1 MIMETYPE AS AN OPTIONAL BASE ATTRIBUTE

“MimeType” is a base attribute like e.g. “version”. If the attribute exists, its value supports the
rules listed below. The MimeType in ODS is only an additional information (attribute) of the
application elements.

Using the defined MIME type mechanisms doesn’t include the definition of special
functionality (e.g. ODS-server can have some functionality, ATF file doesn’t).

For ODS servers no additional functionality is necessary. All necessary functionality is
needed in the applications reading and writing this attribute.

8.2.2 CONTENT OF A MIMETYPE STRING

The name of the attribute is “MimeType”

The type of the attribute is related to the data type enumeration name DT_STRING”.

Every MimeType string has to be written in LOWERCASE.

The MimeType string is built from the following parts:

<application/x-> <asam> “.” <standardtype> “.” (<subtype>)

Meaning of the different elements:

<application/x->: ASAM MIME types are in the group “application/x-”. (after registration
they will be in group “application”)

<asam>: The first part of the ASAM MimeType string. Defines that
it’s an ASAM Type

<standardtype>: E.g. “aomeasurement”. Defines what standardized
MIME type it is (all ASAM ODS base elements are standard types, e.g.
aoany, aouser).

(<subtype>): the standardized MimeType string can have additional
subtypes (e.g. “special-temperature-measurement” as subtype of
AoMeasurement). Subtypes are typically defined within specific
application models.

After the group (“application/x-” or after registration “application”) the parts have to be
separated by a Dot.

NOTE: All parts except of <subtype> are already known inside the ODS environment (e.g.
everybody knows “aomeasurement” because of the base ID of AoMeasurement). To reduce
redundancies ASAM ODS defines:

 Inside the ODS environment only the optional <subtype> has to be used as short form of
the MimeType string (e.g. “special-temperature-measurement”).

ISO/PAS 22720:2005(E)

450 © ISO 2005 – All rights reserved

MIME TYPES AND EXTERNAL REFERENCES

ASAM ODS VERSION 5.0 8-5

 Every application exporting or bridging ODS objects outside the ODS environment has to
publish the long form MimeType string including all parts (e.g. export to ATF or bridging
into ASAM-CEA bus structure publishes
“application/x-asam.aomeasurement.special-temperature-measurement”).

With these rules MimeType strings can be for example:

“application/x-asam.aomeasurement.special-temperature-measurement”,

“application/x-asam.aotest.fatiguetest”

or the short form inside ODS environments:

“specialtemperature”

Every base element of ASAM ODS is also a standardized MIME type (e.g. “AoAny”,
“AoSubmatrix”, “AoUser”, etc. For a list of all base elements see the data model of ASAM
ODS)

8.2.3 READING MIME TYPES VIA THE ODS APIS

Because the MimeType attribute is optional, at first every client has to look if the application
element has the attribute “MimeType” (case insensitive).

If there is the attribute MimeType the client has to check whether it is filled in the Instance.

If it is available and filled the client can be sure that the string is a valid MimeType string
following the rules listed below.

NOTE: Every application should be aware that there are two types of MimeType strings:

 Long MIME type: Includes the whole MimeType string. Used only outside the ASAM ODS
environment

 Short MIME type: Only the Subtype without any ODS-standardized prefix. Used only
inside the ODS environment

8.2.4 WRITING MIME TYPES VIA THE ODS APIS

Every application writing ODS data should support the MimeType attributes wherever they
are existing in the data model.

The writing application has to guarantee that the written MimeType string will support the
rules listed below.

NOTE: Every application should be aware that there are two types of MimeType strings:

 Long MIME type: Includes the whole MimeType string. Used only outside the ASAM ODS
environment.

 Short MIME type: Only the subtype without any ODS-standardized prefix. Used only
inside the ODS environment.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 451

ASAM ODS VERSION 5.0

8-6 ASAM ODS VERSION 5.0

8.3 ASAM ODS MIME TYPES

The following table shows the MIME types for ASAM ODS Version 5.0:

ASAM ODS MIME types

application/x-asam.aoany

application/x-asam.aoattributemap

application/x-asam.aoenvironment

application/x-asam.aoexternalcomponent

application/x-asam.aolocalcolumn

application/x-asam.aolog

application/x-asam.aomeasurement

application/x-asam.aomeasurementquantity

application/x-asam.aonamemap

application/x-asam.aoparameter

application/x-asam.aoparameterset

application/x-asam.aophysicaldimension

application/x-asam.aoquantity

application/x-asam.aoquantitygroup

application/x-asam.aosubmatrix

application/x-asam.aosubtest

application/x-asam.aotest

application/x-asam.aotestdevice

application/x-asam.aotestequipment

application/x-asam.aotestequipmentpart

application/x-asam.aotestsequence

application/x-asam.aoteststep

application/x-asam.aounit

application/x-asam.aounitgroup

application/x-asam.aounitundertest

application/x-asam.aounitundertestpart

application/x-asam.aouser

application/x-asam.aousergroup

ISO/PAS 22720:2005(E)

452 © ISO 2005 – All rights reserved

MIME TYPES AND EXTERNAL REFERENCES

ASAM ODS VERSION 5.0 8-7

8.4 HANDLING EXTERNAL REFERENCES IN ASAM ODS

Referencing any kind of object outside the ODS environment is done by another optional
Base Attribute, named “externalReference”. It is in the data model designer’s responsibility to
decide which application elements will have the attribute “externalReference”.

The responsibilities for reading and writing are already described in sections 8.3.3 and 8.3.4.

This attribute will be used (optionally) on every application element of ODS. It contains a list
[0..n] of 3 strings; the data type of each of them is specified by the DataType enumeration
name DT_STRING:

description:

This is a textual description that may be used for storing some small description of the
object, so that the client does not need to open the object to get first information (some
“advance information”).
An example for this description is: "This object contains results of the full load test 123".

MimeType:

Used for storing the MIME type of the external object (rules for the MimeType string see
above).

location:

Used for storing a clear locator string for accessing the object. It is based on the ideas of
the URL and the CORBA 3.0 URL definitions and is composed of the following parts:

<protocol>://[<version>@][<host address>]/<key string>

(For further information to standard “URL” definitions have a look at the published
specifications of “URL” in the internet).

ASAM ODS defines for ODS objects the following locator string:

“asamods://[<version>@]<asampath>”

The meaning of the respective elements is as follows:

<version>: Version of the ODS standard. It contains

 <major>: The released major number of the ODS standard

 “.”

 <minor>: The released minor number of the ODS standard

A valid version would be “5.0”

<asampath>: The ASAM path of the object.

ASAM ODS will support the references to any external object (files, servers, …). It is not
intended to evaluate any of these objects in ODS servers. Responsible for using the
referenced objects by reading, writing, viewing and so on are only the appropriate
applications. ASAM ODS is only responsible for holding and exporting the reference to the
objects via its API.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 453

ASAM ODS VERSION 5.0

8-8 ASAM ODS VERSION 5.0

8.5 REVISION HISTORY

Date
Editor

Changes

2003-10-13
R. Bartz

Several errors have been fixed.

2003-11
R. Bartz

Some details were removed that are not agreed upon within ASAM as a
whole

The MIME types have been limited to those describing base elements
2003-12-30
R. Bartz

The Release version has been created

ISO/PAS 22720:2005(E)

454 © ISO 2005 – All rights reserved

ASAM e.V.

Arnikastr. 2

D-85635 Hoehenkirchen

Germany

phone: (+49) 8102 – 895317

fax: (+49) 8102 – 895310

e-mail: info@asam.net

internet: www.asam.net

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 455

ASAM-ODS
VERSION 5.0

ISO-PAS

CHAPTER 9

RPC-API
VERSION 3.2.1

Association for Standardization of
Automation and Measuring Systems

Dated: 30.09.2004

© ASAM e.V.

ISO/PAS 22720:2005(E)

456 © ISO 2005 – All rights reserved

Status of Document

Reference: ASAM ODS Version 5.0 RPC-API

Date: 30.09.2004

Author: Gerald Sammer, AVL; Karst Schaap, HighQSoft

Type: Specification

Doc-ID: ASAM_ODS_50_CH09_RPC_API.PDF

Revision
Status:

Release

Note: ASAM ODS has invoked a Formal Technical Review (FTR) process which
intends to continuously improve the quality and timeliness of its specifications.
Whenever an error is identified or a question arises from this specification, a
corresponding note should be sent to ASAM (odsftr@asam.net) to make sure
this issue will be addressed within the next review cycle.

Disclaimer of Warranty

Although this document was created with the utmost care it cannot be guaranteed that it is
completely free of errors or inconsistencies.

ASAM e.V. makes no representations or warranties with respect to the contents or use of this
documentation, and specifically disclaims any expressed or implied warranties of

merchantability or fitness for any particular purpose. Neither ASAM nor the author(s)
therefore accept any liability for damages or other consequences that arise from the use of

this document.

ASAM e.V. reserves the right to revise this publication and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 457

mailto:odsftr@asam.net

RPC-API

ASAM ODS VERSION 5.0 9-1

Contents

9 THE ASAM ODS VERSION 5.0 RPC-API 9-5

9.1 PROCEDURE DECLARATIONS .. 9-5
9.2 DATA TYPES USED ... 9-5
9.3 SESSION SERVICES (OPEN, CLOSE).. 9-7

9.3.1 AOP_OPENENV .. 9-7
9.3.2 AOP_CLOSEENV... 9-9

9.4 META INFORMATION SERVICES... 9-10
9.4.1 AOP_GETAPPLINF .. 9-10
9.4.2 AOP_GETATTR... 9-11

9.5 THE APPLICATION ELEMENT VALUE SERVICES ... 9-12
9.5.1 AOP_GETINSTREF .. 9-12
9.5.2 AOP_SETINSTREF .. 9-13
9.5.3 AOP_GETVAL ... 9-14
9.5.4 AOP_GETVALE... 9-17
9.5.5 AOP_GETINSTATTR .. 9-22
9.5.6 AOP_PUTVAL ... 9-23

9.6 MEASUREMENT AND PARTIAL MATRIX SERVICES ... 9-24
9.6.1 AOP_GETVALATTR... 9-24
9.6.2 AOP_GETVALINF .. 9-26
9.6.3 AOP_GETVALVAL... 9-27
9.6.4 AOP_PUTVALVAL... 9-29

9.7 PROPERTY HANDLING... 9-31
9.7.1 AOP_SETPAR ... 9-31
9.7.2 POSSIBLE PARAMETERS: ... 9-31
9.7.3 AOP_GETPAR... 9-32

9.8 SECURITY SERVICE .. 9-33
9.8.1 AOP_SETSECURITYLEVEL .. 9-36
9.8.2 AOP_GETSECURITYLEVEL .. 9-37
9.8.3 AOP_SETRIGHTS .. 9-38
9.8.4 AOP_GETRIGHTS.. 9-38
9.8.5 AOP_SETINIRIGHTS .. 9-38
9.8.6 AOP_GETINIRIGHTS.. 9-39
9.8.7 AOP_SETINIRIGHTSREF.. 9-39
9.8.8 AOP_GETINIRIGHTSREF ... 9-40
9.8.9 AOP_SETCURRENTINIRIGHTS ... 9-40
9.8.10 AOP_SETPASSWORD.. 9-41
9.8.11 USER AUTHENTICATION .. 9-41
9.8.12 PASSWORD ENCRYPTION IN ODS VERSION 5.0 (RPC) 9-41

9.9 ERROR HANDLING .. 9-44

ISO/PAS 22720:2005(E)

458 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-2 ASAM ODS VERSION 5.0

9.9.1 AOP_GETERR ...9-45
9.10 RESTRICTIONS OF THE RPC-API...9-46
9.11 EXAMPLE CALLING SEQUENCE ...9-47
9.12 ASAM ODS VERSION 5.0 RPC-API IDL..9-48
9.13 REVISION HISTORY ...9-77

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 459

RPC-API

ASAM ODS VERSION 5.0 9-3

Scope

This document describes the ASAM ODS Version 5.0 RPC-API.

Intended Audience

This document is intended for implementers of ASAM ODS Version 5.0 (RPC-API). It shall
be used as a reference on the RPC-API for ASAM ODS Version 5.0.

This document is part of a series of documents referring to ASAM ODS Version 5.0 and must
not be used as a stand-alone document. The documents referenced below build the
technical reference of ASAM ODS Version 5.0 as a whole. They may be requested from the
ASAM e.V. at www.asam.net.

ASAM ODS Specification

The following chapters build the technical reference for ASAM ODS Version 5.0:

 ASAM ODS Version 5.0, Chapter 1, Introduction

 ASAM ODS Version 5.0, Chapter 2, Architecture

 ASAM ODS Version 5.0, Chapter 3, Physical Storage (1.1)

 ASAM ODS Version 5.0, Chapter 4, Base Model (28)

 ASAM ODS Version 5.0, Chapter 5, ATF/CLA (1.4.1)

 ASAM ODS Version 5.0, Chapter 6, ATF/XML (1.0)

 ASAM ODS Version 5.0, Chapter 7: N/A ('Security' moved to Chapter 2)

 ASAM ODS Version 5.0, Chapter 8, MIME Types and External References (1.0)

 ASAM ODS Version 5.0, Chapter 9, RPC-API (3.2.1)

 ASAM ODS Version 5.0, Chapter 10, OO-API (5.0)

 ASAM ODS Version 5.0, Chapter 11, NVH Model (1.3)

 ASAM ODS Version 5.0, Chapter 12, Calibration Model (1.0)

Normative References

 ISO 10303-11: STEP EXPRESS

 Object Management Group (OMG): www.omg.org

 Common Object Request Broker Architecture (CORBA): www.corba.org

 IEEE 754: IEEE Standard for Binary Floating-Point Arithmetic, 1985

 ISO 8601: Date Formats

 Extensible Markup Language (XML): www.w3.org/xml

ISO/PAS 22720:2005(E)

460 © ISO 2005 – All rights reserved

www.asam.net
www.omg.org
www.corba.org
www.w3.org/xml

ASAM ODS VERSION 5.0

9-4 ASAM ODS VERSION 5.0

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 461

RPC-API

ASAM ODS VERSION 5.0 9-5

9 THE ASAM ODS VERSION 5.0 RPC-API

9.1 PROCEDURE DECLARATIONS

The procedures have numeric identifiers (program number) and version numbers. The
version of the interface definition is communicated to get the proper procedure with proper
arguments called. This allows running multiple versions concurrently. The RPC-API specified
in version 5.0 of ASAM ODS is compatible with the former RPC-API version 3.2. To avoid
recompilation of clients, the version in the interface-definition (aods.x) has not been changed.

9.2 DATA TYPES USED

ASAM has specified standardized data types which have been published end of 2002. These
data types show standardized names, always beginning with A_. Those data types will be
used by ASAM ODS consistently in all new specifications in the future.

The RPC-API has been developed and specified several years ago. At that time no
standardized data types have been available ASAM-wide. Therefore ASAM ODS decided to
define data types that cover the needs of ASAM ODS. These data types always start with T_.

The RPC-API has been implemented in ODS servers and installed in a quite large number of
companies. Replacing the T_ types by the A_ types would require to modify and exchange
those installed servers and also to modify the clients accessing the servers via the RPC-API
(because the interface definition file has been changed).

Additionally, ASAM ODS does not intend to further extend or modify the RPC-API; its current
specification is considered to be frozen.

That is why ASAM ODS has decided to not introduce the standardized ASAM data types
(A_) in the RPC-API description and interface definition file.

Instead, chapter 2 of the ASAM ODS specification describes the relationship between the T_
types and the A_ types. One should note that the enumeration of the data types and their
enumeration names are identical to those specified in the ASAM data type specification, and
that the data types themselves are in most cases binary compatible. So a one-to-one
mapping is easily possible, if needed.

ISO/PAS 22720:2005(E)

462 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-6 ASAM ODS VERSION 5.0

Note: The base model requests the ID of an element to be a 64 bit integer value. Section
2.5.3 describes that a 32 bit integer may be used alternatively. This is how element IDs are
represented here.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 463

RPC-API

ASAM ODS VERSION 5.0 9-7

9.3 SESSION SERVICES (OPEN, CLOSE)

9.3.1 AOP_OPENENV

Open Environment

This has to be the first call to the server. The server will check access authorization and
creates a session. Properties may be set using AOP_SetPar (see below) and by using args
parameters on AOP_OpenEnv. The environment Id returned by this call has to be used on all
subsequent calls (the network address is saved as an additional identifier to be checked on
subsequent calls). A redundant AOP_OpenEnv returns S_OK without handling properties
again when a session is already established.

Every new session will get its new environment id, even on client connections from multi-user
systems like UNIX.

OpenEnvRet AOP_OpenEnv(OpenEnvReq) = 1;
struct OpenEnvReq { /* to open env. */
 AOP_NameV nvSeq<>; /* environment open arguments */
};

union OpenEnvRet switch (AOP_Status retState) {

 case E_BSS: void;
 case E_SSS: void;
 case E_SECURITY: void;
 case E_MISC: void;
 case E_LICENSE: void;
 default: AOP_Id envId; /* descriptor/handle/id whatever */
};

Note, that any default return state (e.g. E_SECURITY) indicates an error. E_BSS may
indicate a resource problem, e.g. maximum number of processes or file descriptors
exceeded.

EXAMPLE:

Example for nvSeq regarding security.
In this example the call to AOP_OpenEnv is missing.

/* Create rpc client. */
 cl = clnt_create (nodename, rpcNumber, AODSVERS3,"tcp");
 /* RPC Client creation failed ? */
 if (!cl) {
 /* Log connection failure. */
 sprintf (stderr, “Connect failed to %s\n”, nodename);
 /* Handle client create error gracefully. */
 clnt_pcreateerror (nodename);
 /* Return with error status. */
 return (0);
 }
 /* Set timeout parameter. */
 if (clnt_control (cl, CLSET_TIMEOUT,(char *)&timeout) != TRUE){
 sprintf (stderr, “Unable to set timeout %s\n”, nodename);

ISO/PAS 22720:2005(E)

464 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-8 ASAM ODS VERSION 5.0

 return (0);
 }
 /* Create credential.
 * Since no keyserver is available on Linux, DES isn't possible.
 */
 cl->cl_auth = authunix_create_default ();
 /* Authentication valid ? */
 if (!cl->cl_auth) {
 sprintf (stderr, “No authentication to %s\n”, nodename);
 return(0)
 }

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 465

RPC-API

ASAM ODS VERSION 5.0 9-9

9.3.2 AOP_CLOSEENV

Close Environment

Close the environment, opened with OpenEnv. If the environment is opened more then once,
the environment must be closed also more then once.

CloseEnvRet AOP_CloseEnv(CloseEnvReq) = 2;
struct CloseEnvReq { /* to close open env. */
 AOP_Id envId;
};

struct CloseEnvRet {
 AOP_Status retState;
};

ISO/PAS 22720:2005(E)

466 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-10 ASAM ODS VERSION 5.0

9.4 META INFORMATION SERVICES

Get the application structure and information how an application structure maps to the basic
structure.

9.4.1 AOP_GETAPPLINF

Get application structure information.

This function returns the whole information about the application structure. It is a list of
application elements (Identifier = AID) together with application name and type (basic
element AOP_BasElem) and a list of references between application elements.

GetApplInfRet AOP_GetApplInf(GetApplInfReq) = 14;
struct GetApplInfReq {
 AOP_Id envId; /* environ. handle */
};

struct ApplInfSeq { /* application element infos */
 AOP_Id aiAId; /* application element id */
 AOP_BasElem aiBId; /* basic element Id */
 AOP_Name aiName; /* application element name */
};

struct ApplRelSeq { /* application references infos */
 AOP_Id arAId1; /* from (0,1) resp. (n) */
 AOP_Id arAId2; /* to (n) resp. (m) */
 long arRefNr; /* attr number, 0 for n:m */
 AOP_Name arName; /* reference name */
 AOP_Flags arConstr; /* Constraint (e.g. not NULL) */
};

struct ApplInf {
 ApplInfSeq aiSeq<>; /* sequence of appelem info */
 ApplRelSeq arSeq<>; /* sequence of appref info */
};

union GetApplInfRet switch (AOP_Status retState) {
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: ApplInf applInf;
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 467

RPC-API

ASAM ODS VERSION 5.0 9-11

9.4.2 AOP_GETATTR

Get Attribute Information of an application element

The client specifies an element-Id (aid and iid) in the request. If the instance-id (part of the
element-Id) is Any (=0) only application attributes will be returned, otherwise attributes of the
addressed instance will be included.

GetAttrRet AOP_GetAttr(GetAttrReq) = 12;
struct AttrSeq { /* sequence of attributes */
 AOP_Name aBName; /* basic name */
 /* 0 if not basic */
 AOP_Name aAName; /* appl. name */
 AOP_DataType aDataType; /* attribute data type */
 AOP_Id aUnit; /* unit if global defined */
};

struct AttrInf { /* attribute info including header */
 AOP_BasElem aBId; /* basic element Id */
 AOP_Id aAId; /* application element Id */
 AttrSeq aSeq<>;
};

struct GetAttrReq { /* request for attribute list */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* application element */
};

union GetAttrRet switch (AOP_Status retState) {
 /* return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AttrInf attrInf; /* including entity */
};

There are currently no methods provided to change the metainformation through the protocol
layer, hence using the Version 5.0 published services, the meta-information is readonly.

For compatibility reasons, the structures should be left as in ODS 3.0.

This call is only used for returning the application structure, no instance-information. It
returns the names of the attributes only.

For instance attributes use AOP_GetInstAttr. This function returns the names of the
Instance-Attributes, which are attributes that are not part of the application model.

ISO/PAS 22720:2005(E)

468 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-12 ASAM ODS VERSION 5.0

9.5 THE APPLICATION ELEMENT VALUE SERVICES

Includes fetching and storing application element instances using application element
references.

9.5.1 AOP_GETINSTREF

Get Instance References

This query returns all instances from an application element referenced by the specified
instance. Which application elements are referenced will be returned by AOP_GetApplInf.
With the reference name multiple application references between 2 application elements can
be distinguished. If an empty string is provided the base reference (which is always unique
according to basic structure definition) is used. A given string is matched against the
available reference names. On n:m references the name is taken from SVCREF otherwise
from SVCATTR.

GetInstRefRet AOP_GetInstRef(GetInstRefReq) = 25;
struct GetInstRefReq {
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* instance */
 AOP_Name refName;
 AOP_Id aId; /* of type */
};

union GetInstRefRet switch (AOP_Status retState) {
 /* return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_ElemId elemList<>;
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 469

RPC-API

ASAM ODS VERSION 5.0 9-13

9.5.2 AOP_SETINSTREF

Set Instance References

This method is used to create or remove n:m references.

AOP_PutVal is used for the n:1 case.

SetInstRefRet AOP_SetInstRef(SetInstRefReq) = 28;
struct SetInstRefReq {
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId1; /* one element */
 AOP_ElemId elemId2; /* the other */
 AOP_Name refName;
 long onoff; /* insert (onoff=1) or remove(onoff=0)*/
};

struct SetInstRefRet {
 AOP_Status retState;
};

ISO/PAS 22720:2005(E)

470 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-14 ASAM ODS VERSION 5.0

9.5.3 AOP_GETVAL

Get Values of Application Elements

This is the standard method for retrieving values. Two different methods are implemented:

 By reference
Used mainly in browsing (e.g. give me all measurements belonging to test with Id 723 or
give me the testinstance belonging to (being parent from) measurement with Id 7895).
This follows the ”has a” relationship within the AODS data model in both directions as
described in API documentation as Instance references.

 By value
Used when selecting instances from an application element by specifying conditions to
be satisfied by the selection result. Since the AODS protocol doesn’t include yet a query
language only limited possibilities exist, e.g.

select * from test where date='19951201000000' and testtype='Endurance Test'.

Selection of method is done by specifying either the reference elementId or by supplying
a nonempty select list. If both are given selection by reference is done first, then the
result is checked for select list match (Using RDBMS both methods are done in one
step). elemId and refName are treated the same way as on AOP_GetInstRef (see
above).

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 471

RPC-API

ASAM ODS VERSION 5.0 9-15

GetValRet AOP_GetVal(GetValReq) = 21;
struct AOP_NameS { /* by value select */
 AOP_Name name; /* attribute name */
 AOP_ValMap valMap; /* range or pattern */
 AOP_SelOpcode selOpcode; /* type of selection */
};
typedef AOP_NameS NSSeq<>;

struct GetValReq { /* selection request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Id applId; /* application element Id (from) */
 AOP_NameU nuSeq<>; /* sequence of to be reported attr's */
 AOP_NameS nsSeq<>; /* sequence of select fields */
 AOP_ElemId elemId; /* child/parent reference (where) */
 AOP_Name refName; /* named reference identifier */
};

union GetValRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_NameV nvSeq<>; /* sequence of resulting attributes */
};

enum AOP_SelOpcode { /* Type of selection */
 SOMATCH, /* match == */
 SOUMATCH, /* unmatch != */
 SORANGE, /* range < x > */
 SOLESS, /* less < */
 SOGREATER, /* greater > */
 SOLESSEQ, /* less equal <= */
 SOGREATEREQ, /* greater equal >= */
 SOINSET, /* within set in */
 SONOTINSET, /* not within set !in */
 SOORDER, /* order by */
 SOGROUP, /* group by */
 SOINSENSITIVE, /* insensitive search */
 SOLIKE, /* like GetValE */
 SONOTLIKE, /* not like GetValE */
 SONULL, /* is NULL GetValE */
 SONOTNULL, /* is NOT NULL GetValE */
 SOOPAND, /* operator AND GetValE */
 SOOPOR, /* operator OR GetValE */
 SOOPNOT, /* operator NOT GetValE */
 SOOPBOPEN, /* operator bracket open (GetValE */
 SOOPBCLOSE /* operator bracket close)GetValE */
};

Note that the AOP_NameS.valMap structure may contain one (SOMATCH, ...) or two
(SORANGE) or 1 to n values (SOINSET, SONOTINSET). To cover the AODS requirement of

ISO/PAS 22720:2005(E)

472 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-16 ASAM ODS VERSION 5.0

making data access by explicitly specifying instance id (direct access to single element) it is
necessary to set AOP NameS to

name = <IdAttr>
valMap.AOP_ValMap_u.lval.lval[0] = <iid>
selOpcode = SOMATCH

where IdAttr is the ID - basic attribute of an application element reported using GetAttr but
with application name given. To get the ID-Application attribute name one may e.g. use
assuming alret pointing to the structure returned by aop getattr:

char* GetIdAttr(GetAttrRet *alret) {
AttrSeq *aSeq; /* attribute info */
int aNr; /* attribute number */
aSeq = alret->GetAttrRet_u.attrInf.aSeq.aSeq_val;
 for (aNr = 0; aNr < alret->GetAttrRet_u.attrInf.aSeq.aSeq_len; aNr++) {
if (!stricmp(aSeq->aBName,"ID")
return aSeq->aAName; /* pointer to application name */
aSeq++;
 }
return NULL;
}

Please note:

 In SOMATCH no wildcards are allowed for strings. Use SOLIKE or SONOTLIKE instead.

 SOINSENSITIVE is a case insensitive comparison of strings.

 SOORDER and SOGROUP do not need a valMap in the nsSeq, because these
operators only hold attributes, no values.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 473

RPC-API

ASAM ODS VERSION 5.0 9-17

9.5.4 AOP_GETVALE

Get Values of Application Elements (extended Version for ODS Version 5.0 (RPC))

This method should be used, if one needs to select data from more than one application
element or wants to use boolean operators. A segmented request is possible.

GetValERet AOP_GetValE(GetValEReq) = 26;
/*Enhanced Query structure, allows
 - joins of application elements
 - to specify ranges and patterns (Values are always arrays.
 This allows i.e. on selection to pass 2 or
 more values for e.g.: in/notin, range from - to)
 - to group selections with AND, OR and brackets (open, close)
 - to sort the result (order by)
 - to specify wildcards (including escape character)
 - partial access of the result (e.g. first 100, next 100, ..)

 To cover the AODS requirement of making data access by explicitly
 specifying instance id (direct access to single element) it is
 necessary to define the selection elements AOP_AIDNameS with
 selOpcode = SOMATCH
 AID = <application element ID>
 name = <Idattr>
 value.AOP_ValMap_u.lval.lval[0] = <iid>
 IdAttr is the first aBName reportet using GetAttr
*/
enum AOP_SelOpcode { /* Type of selection */
 SOMATCH, /* match == */
 SOUMATCH, /* unmatch != */
 SORANGE, /* range < x > */
 SOLESS, /* less < */
 SOGREATER, /* greater > */
 SOLESSEQ, /* less equal <= */
 SOGREATEREQ, /* greater equal >= */
 SOINSET, /* within set in */
 SONOTINSET, /* not within set !in */
 SOORDER, /* order by */
 SOGROUP, /* group by */
 SOINSENSITIVE, /* insensitive search */
 SOLIKE, /* like */
 SONOTLIKE, /* not like */
 SONULL, /* is NULL */
 SONOTNULL, /* is NOT NULL */
 SOOPAND, /* operator AND */
 SOOPOR, /* operator OR */
 SOOPNOT, /* operator NOT */
 SOOPBOPEN, /* operator bracket open (*/
 SOOPBCLOSE /* operator bracket close)*/
};

/* -------------------------- AID + Name + Unit */
struct AOP_AIDNameU {
 AOP_Id aid; /* application element ID */
 AOP_Name name; /* attribute name */
 AOP_Id unitId; /* requested unit */
};

ISO/PAS 22720:2005(E)

474 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-18 ASAM ODS VERSION 5.0

typedef AOP_AIDNameU ANUSeq<>;

/* -------------------------- AID + Name + Unit + Value(s) */
struct AOP_AIDNameV {
 AOP_Id aid; /* application element ID */
 AOP_Name name; /* attribute name */
 AOP_Id unitId; /* requested unit */
 AOP_ValMap valMap; /* values */
};
typedef AOP_AIDNameV ANVSeq<>;

enum AOP_ReportListType { /* type of report list */
 RLCOMPLETE, /* all attributes */
 RLSELECTIVE /* given list of attributes */
};
union AOP_ReportList switch (AOP_ReportListType rlType) {
 case RLCOMPLETE:
 AOP_Id aidSeq<>; /* list of application elements – all
 attributes will be reported */
 case RLSELECTIVE:
 AOP_AIDNameU anuSeq<>; /* list of attribute to be reported */
 default: void;
};
struct AOP_AIDNameS { /* by value select */
 AOP_SelOpcode selOpcode; /* type of selection */
 AOP_Id aid; /* application element ID */
 AOP_Name name; /* attribute name */
 AOP_ValMap valMap; /* range or pattern */
 AOP_SortDir dir; /* sort order */
};
typedef AOP_AIDNameS ANSSeq<>;
struct AOP_RefDef { /* reference definition */
 AOP_Id fromAid; /* start point (AID) of reference */
 AOP_ElemId elemId; /* child/parent reference (where) */
 AOP_Name refName; /* named reference identifier */
};

enum AOP_ReqType { /* type of request */
 RTDEFAULT, /* force query and close cursor */
 RTOPEN, /* force query and keep cursor open */
 RTCONTINUE, /* continue reading cursor */
 RTCLOSE /* close open cursor */
};

struct GetValEReq { /* enhanced query request structure */
 AOP_Id envId; /* environ. handle */
 AOP_ReqType reqType; /* request type */
 AOP_ReportList repList; /* definition of report list */
 AOP_AIDNameS nsSeq<>; /* sequence of conditions */
 AOP_RefDef refDef; /* reference definition */
 long rowCnt; /* number of requested rows
 - rowCnt<=0 report all rows */
};

union GetValERet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 475

RPC-API

ASAM ODS VERSION 5.0 9-19

 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: ANVSeq result<>; /* sequence of resulting attribute

sequences */
};

The application elements in the AOP_ReportList must have a reference from or to the
application element used by the AOP_RefDef.fromAid or the application element used in the
attribute value selection AOP_AIDNameS.aid. If there is no reference the instances of the
application element will not be reported.

EXAMPLE:

This example demonstrates the use of the aop_getvale function. A new
request is set up with the characteristics

 no segmentation
 no attributes defined - only application element will be defined
 no select criteria
 no joins explicitly defined - not necessary if not ambiguous. This

example does not use joins.
 no referenced instance given

The last line contains the method invocation.

GetValEReq vereq;
GetValERet *veret;
…
vereq.envId = sessid;
vereq.reqType = RTOPEN; /* force a new select */
vereq.rowCnt = -1; /* report the whole result */

/* request all attributes (select *) */
vereq.repList.rlType = RLCOMPLETE; /* select * */
vereq.repList.AOP_ReportList_u.aidSeq.aidSeq_len = 1;
vereq.repList.AOP_ReportList_u.aidSeq.aidSeq_val =
malloc(sizeof(AOP_Id));
vereq.repList.AOP_ReportList_u.aidSeq.aidSeq_val[0] = aid;

/* no select conditions */
vereq.nsSeq.nsSeq_len = 0;
vereq.nsSeq.nsSeq_val = NULL;

/* no explicit join definition */
vereq.jdSeq.jdSeq_len = 0;
vereq.jdSeq.jdSeq_val = NULL;

/* no reference definition used */
vereq.refDef.fromAid = 0;
vereq.refDef.refName = strdup("");
vereq.refDef.elemId.aid = 0;
vereq.refDef.elemId.iid = 0;

veret = (GetValERet *) aop_getvale_3 (&vereq, cl);

ISO/PAS 22720:2005(E)

476 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-20 ASAM ODS VERSION 5.0

EXAMPLE:

This code example relies on the following specifications:
 testseries-name is "MOTID"
 measurement-name is "Messung"
 quantity-name is "GroNameDef"
 quantity-group-name is "GroGruName"
 there is one select criteria: measurement-name = "267_FU"

/* request specific attributes */
vereq.repList.rlType = RLSELECTIVE; /* select with attribute list */
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_len = 2;
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val =

malloc(2*sizeof(AOP_AIDNameU));
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val[0].aid = 2;
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val[0].name =

strdup("MOTID");
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val[0].unitId = 0;
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val[1].aid = 4;
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val[1].name =

strdup("Messung");
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val[1].unitId = 0;

/* one select condition */
vereq.nsSeq.nsSeq_len = 1;
vereq.nsSeq.nsSeq_val = malloc(sizeof(AOP_AIDNameS));
vereq.nsSeq.nsSeq_val[0].selOpcode = SOMATCH;
vereq.nsSeq.nsSeq_val[0].aid = 4;
vereq.nsSeq.nsSeq_val[0].name = strdup("Messung");
vereq.nsSeq.nsSeq_val[0].valMap.dtyp = DT_STRING;
vereq.nsSeq.nsSeq_val[0].valMap.AOP_ValMap_u.aval.aval_len=strlen("2

67_FU")+1;
vereq.nsSeq.nsSeq_val[0].valMap.AOP_ValMap_u.aval.aval_val=strdup("2

67_FU");
vereq.nsSeq.nsSeq_val[0].dir = 0;

/* request specific attributes */
vereq.repList.rlType = RLSELECTIVE; /* select with attribute list */
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_len = 2;
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val =

malloc(2*sizeof(AOP_AIDNameU));
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val[0].aid = 7;
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val[0].name=strdup("Gro

NameDef");

vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val[0].unitId = 0;
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val[1].aid = 11;
vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val[1].name=strdup("Gro

GruName");

vereq.repList.AOP_ReportList_u.anuSeq.anuSeq_val[1].unitId = 0;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 477

RPC-API

ASAM ODS VERSION 5.0 9-21

EXAMPLE:

In this example code there is also one select criteria:
quantity-group-name = "B*"

/* one select condition */
vereq.nsSeq.nsSeq_len = 1;
vereq.nsSeq.nsSeq_val = malloc(sizeof(AOP_AIDNameS));
vereq.nsSeq.nsSeq_val[0].selOpcode = SOLIKE;
vereq.nsSeq.nsSeq_val[0].aid = 7;
vereq.nsSeq.nsSeq_val[0].name = strdup("GroNameDef");
vereq.nsSeq.nsSeq_val[0].valMap.dtyp = DT_STRING;
vereq.nsSeq.nsSeq_val[0].valMap.AOP_ValMap_u.aval.aval_len =

strlen("B*") + 1;
vereq.nsSeq.nsSeq_val[0].valMap.AOP_ValMap_u.aval.aval_val =

strdup("B*");
vereq.nsSeq.nsSeq_val[0].dir = 0;

EXAMPLE:

/* one join definition */
vereq.jdSeq.jdSeq_len = 1;
vereq.jdSeq.jdSeq_val = malloc(sizeof(AOP_JoinDef));
vereq.jdSeq.jdSeq_val[0].fromAid = 7;
vereq.jdSeq.jdSeq_val[0].toAid = 11;
vereq.jdSeq.jdSeq_val[0].refName = strdup("GROEBEZ");
vereq.jdSeq.jdSeq_val[0].joinType = JTOUTER;

ISO/PAS 22720:2005(E)

478 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-22 ASAM ODS VERSION 5.0

9.5.5 AOP_GETINSTATTR

Get instance-attributes of some element.

Instance attributes are attributes that are not modeled in the physical (meta) data model.
They can be attached to each instance of an element. Instance attributes are stored in a
separate table and the attribute-name(s) and –value(s) can be retrieved with this method.
The result depends on the values of elemId. If only elemId.aid is set, AOP_GetInstAttr will
return information (name, data type and unit but not the values) about all Instance attributes
available for the specified application element. If elemId referencing one instance (elemId.aid
and elemId.iid are valid) all Instance attributes belonging to the specified instance will be
returned. The data types DT_BLOB and DT_BYTESTR are not supported.

GetInstAttrRet AOP_GetInstAttr(GetInstAttrReq) = 22;
struct GetInstAttrReq { /* selection request structure */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* application element Id */
};

union GetInstAttrRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_NameV nvSeq<>; /* sequence of resulting attributes */
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 479

RPC-API

ASAM ODS VERSION 5.0 9-23

9.5.6 AOP_PUTVAL

Store Operation of an Application Element

This request is used by the client to perform insert, update and delete operations on an
application element. The request handles only one instance per call. Which operation the
client requests, is implicitly given by the values in the request-structure. If there is no
instance (iid == 0 in elemId) specified an insert operation is performed creating a new
application element instance. The new instance-Id is returned. If the instance-id is specified,
the operation depends on the name nvSeq argument. An empty nvSeq performs a delete
operation on the given Id otherwise an update operation will be performed.

NOTE: The behavior on reimporting an instance element deleted before is not part of ODS.
The server cannot distinguish between inserting a new instance and reimporting a deleted
instance. Therefore, a reimported instance will get a new instance-id (addressing will be
done via the ASAM path, anyway).

PutValRet AOP_PutVal(PutValReq) = 27;
struct PutValReq { /* update request structure */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* application element Id */
 AOP_NameV nvSeq<>; /* sequence of values */
};

union PutValRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Id iid; /* storage instance id */
};

ISO/PAS 22720:2005(E)

480 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-24 ASAM ODS VERSION 5.0

9.6 MEASUREMENT AND PARTIAL MATRIX SERVICES

The following functions refer to the fixed (not meta-modeled) part of the implementation. All
methods need the measurement application element instance Id as an input argument.

If no application element Id is given the server expects the application element of the type
AoMeasurement.

9.6.1 AOP_GETVALATTR

Get Attribute Information of a Partial Matrix

The server returns the list of channels of a specified partial matrix and the number of
measurementpoints in the partial matrix. The segmentation of the partial matrix is transparent
to the client. If pmatid is 0 the information is returned for all partial matrices belonging to
the given measurement.

GetValAttrRet AOP_GetValAttr(GetValAttrReq)
struct ValAttrSeq { /* linked list of attributes */
 AOP_Name name; /* appl. structure name */
 AOP_Id qtyId; /* reference to dict. (0 allowed) */
 AOP_Id unitId; /* UnitId */
 AOP_IndepFl indepFl; /* independent flag */
 AOP_ImplFl implFl; /* implicit flag */
 AOP_DataType dataType; /* attribute data type */
};

struct ValAttr { /* measurement attribute cursor list */
 AOP_Id pmatId; /* PMatId */
 long numPnt; /* number of measurement point
 in partial matrix */
 /* should be extended for min/max */
 ValAttrSeq vaSeq<>; /* attribute sequence */
};

struct GetValAttrReq { /* request for attribute list */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* measurement id */
 AOP_Id pmatId; /* partial matrix id (0 = all)*/
};

union GetValAttrRet switch (AOP_Status retState) {
 /* return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: ValAttr valAttr<>;/* column info for 1 or more PMat's */
};

QtyId refers to an instance element (iid) of the application element with the type AoQuantity.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 481

RPC-API

ASAM ODS VERSION 5.0 9-25

UnitId refers to an instance element (iid) of the application element with the base type
AoUnit.

IndepFl = 1 means that the column is an independent column.

The implicit column indicator changes the interpretation of the values them self. Usually
values are stored explicit. For some kind of data (e.g. timestamps on time driven sampling)
the value for each row may be calculated. Following variants shall be provided (n = partial
matrix row number):

value count (numPnt) value in row n meaning

1 xn = x1 constant

2 xn = x1 + (n -1) * x2 linear expression

3 xn = x1 + ((n - 1) mod (x3 - x1)/x2) * x2 saw curve

Only numerical data types are allowed for implicit storage. The calculation is done using the
data type defined for the column. The expression (x3 - x1)/x2 is truncated to integer to start
each saw curve cycle at x1.

DT_DATE is not a numerical data type.

The data type DT_BLOB is not supported in measured values.

ISO/PAS 22720:2005(E)

482 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-26 ASAM ODS VERSION 5.0

9.6.2 AOP_GETVALINF

Get Information of Partial Matrix

This function returns information about the partial matrices in a measurement.

It is similar to AOP_GetValAttr but the main purpose is to provide information on how multiple
partial matrices are related using local column information.

GetValInfRet AOP_GetValInf(GetValInfReq) = 35;
struct ValInfSeq { /* partial matrix interrelations */
 AOP_Id pmatId;
 AOP_Name pmatName; /* sprintf ofpmatId */
 AOP_Name presortNames <>; /* columns to sort in pmat */
 AOP_SortDir presortDir; /* sortdirection */
 AOP_Name joinNames <>; /* join columns */
 AOP_JoinTyp joinTyp;
 AOP_Name postsortNames <>; /* columns to sort on result */
 AOP_SortDir postsortTyp;
};

struct GetValInfReq {
 AOP_Id envId;
 AOP_ElemId elemId; /* aid has to be measurement */
};

union GetValInfRet switch (AOP_Status retState) {
 /* info fetch return value
 structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: ValInfSeq iSeq<>; /* sequence of info's */
};

The fields joinNames and joinTyp shows the relation between the different submatrices of the
measurement. For the moment only the joinTyp MERGE is used and the joinNames are the
names of the independent columns. The fields presortNames, presortDir, postsortNames and
postsortDir are not used for the moment.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 483

RPC-API

ASAM ODS VERSION 5.0 9-27

9.6.3 AOP_GETVALVAL

Get Values from a Measurement

This service returns measured data of one or more partial matrices. It is possible to address
subsets by specifying columns and local measurement point numbers.

GetValValRet AOP_GetValVal(GetValValReq) = 32;
struct ValValSeq { /* linked list of reported vectors */
 AOP_Name name; /* MQ Name */
 AOP_Id qtyId; /* dictionary Id (ref) */
 AOP_Id unitId; /* unit Id */
 AOP_IndepFl indepFl; /* independent flag */
 AOP_ImplFl implFl; /* implicit (versus explicit) */
 AOP_ValMap valMap; /* vector for values */
 AOP_ValFlags valFlags; /* vector for values flags */
};

/* the partial matrix now holds 2 numbers to be able to preserve
 * origin of data
 */
struct ValVal { /* local column values */
 AOP_Id pmatId; /* pMatId (0 .. yet undef) */
 long mPntBase; /* local point number base */
 long mPntCnt; /* # local points */
 ValValSeq vvSeq<>; /* measurement value list */
};

struct GetValValReq { /* request for measurement results */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* elementId, bid to elemId.aid has
 to be BE_MEA */
 AOP_Id pmatId; /* partial matrix number */
 long mPntBase; /* from local measurement point
 number */
 long mPntCnt; /* number of measurement points
 requested */
 AOP_NameU nuSeq<>; /* sequence of attributes to report */
};

union GetValValRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: ValVal valVal<>; /* partial matrices */
};

For better efficiency, all flags of one value are encoded in one byte, which means, for each
flag one bit will be used. For access to the single flags, constants for the bit masks are
defined. The following value flags are supported:

 AO_VF_VALID (0x01) - the value is valid

ISO/PAS 22720:2005(E)

484 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-28 ASAM ODS VERSION 5.0

 AO_VF_VISIBLE (0x02) - the value has to be visualized
 AO_VF_UNMODIFIED (0x04) - the value has not been modified
 AO_VF_DEFINED (0x08) - the value is defined (this flag is also used by the base layer to

mark gaps in the value matrix)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 485

RPC-API

ASAM ODS VERSION 5.0 9-29

9.6.4 AOP_PUTVALVAL

Put Values into a Measurement

To distinguish between update, insert, append and delete the information provided in
valVal is interpreted as follows.

pmatId mPntBase mPntCnt vvSeq len action

0 any any 0 invalid

0 0 0 >0 1.)

>0 0 0 0 2.)

>0 >0 0 0 invalid

>0 >0 >0 0 3.)

>0 0 any >0 4.)

>0 >0 0 >0 5.)

>0 >0 >0 >0 6.)

1.) Append to the first matching sub matrix or if no matching sub matrix can be found create
a new sub matrix with the specified number of local columns. The properties and values
of the local columns are given in vvSeq_val.

2.) Delete whole sub matrix identified by pmatId

3.) Delete from all local columns of the specified sub matrix the number of elements
(mPntCnt) beginning with the first specified element (mPntBase).

4.) Append to all local columns of the specified sub matrix the elements given in vvSeq_val.
The number of local columns of the specified sub matrix must be identical with the
number of local columns given in the request structure. The order of the local columns
isn't significant, the name will be taken as the key. The local column description
information such as implicit and independent flags has to be identical with the data in the
server. If the sub matrix does not exist the sub matrix will be created. If there is a new
local column, the client must not specify a pmatid (pmatid=0, see case 1.), because the
server has to choose the right one or creates a new submatrix).

5.) Insert to all local columns of the specified sub matrix the elements given in vvSeq_val.
The data will be insert after the specified first point. If the specified first point is outside
the current size of the local column the data will be appended. The number of local
columns of the specified sub matrix must be identical with the number of local columns
given in the request structure. The order of the local columns isn't significant, the name
will be taken as the key. The local column description information such as implicit and
independent flags has to be identical with the data in the server.

6.) Replace the number of elements in the specified local columns of the specified sub
matrix. The number of values of each local column
(vvSeq_val.valMap.AOP_ValMap_u.lval.lval_len) must be identical with the specified
number of elements (mPntCnt).

ISO/PAS 22720:2005(E)

486 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-30 ASAM ODS VERSION 5.0

The last element to modify must be within the existing size of the local column. When the
insert position exceeds the current size insert is automatically changed to append.
Appending and inserting into an existing partial matrix is only allowed if all columns are
supplied in one call (structure match, order of columns is not significant). Replacing is
possible on a "per column" way but the number of points to be replaced must match the
number of points provided in the call in this case. Currently there is no "by value" positioning
possible, e.g. using the implicit columns to define the local measurement point numbers.

PutValValRet PutValVal(PutValValReq)
struct PutValValReq { /* request for measurement results */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* elementId, bid to elemId.aid has
 to be BE_MEA */
 ValVal valVal<>; /* sequence of headers + columns */
 /* (only one PMat for now per call) */
};

union PutValValRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Id pmatId; /* pmatid given by server */
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 487

RPC-API

ASAM ODS VERSION 5.0 9-31

9.7 PROPERTY HANDLING

Properties are name-value pairs where the name is of type aods_Name and value is of type
aop_ValMap to take any AODS-allowed data type including arrays. Such tuples can be
passed to the server. They are not persistent. Main purpose is to parametrize the server
behavior for one client (properties belong to the session). If there are other plugins at the
server side (e.g. a formula interpreter) parameters can be used to provide additional
information (e.g. selection between different kinds of formulas or supplementary variables
used within the formulas).

9.7.1 AOP_SETPAR

Set Parameters

SetParRet AOP_SetPar(SetParReq) = 51;
struct SetParReq {
 AOP_Id envId; /* environ. handle */
 AOP_NameV nvSeq<>; /* parameters */
};

struct SetParRet {
 AOP_Status retState;
};

9.7.2 POSSIBLE PARAMETERS:

Parameter Used for Example

USER Set Username and Password nvSeq[0].name = 'USER'

nvSeq[0].valMap.aval =
<Username>\0<Password>\0

WILDCARD_ONE wildcard-character for one
character match

nvSeq[0].name = 'WILDCARD_ONE'

nvSeq[0].valMap.aval = "?"

WILDCARD_ALL wildcard-character for zero or
more characters match

nvSeq[0].name = 'WILDCARD_ALL'

nvSeq[0].valMap.aval = "*"

WILDCARD_ESC escape-character nvSeq[0].name = 'WILDCARD_ESC'

nvSeq[0].valMap.aval = "\\"

ISO/PAS 22720:2005(E)

488 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-32 ASAM ODS VERSION 5.0

9.7.3 AOP_GETPAR

Get Parameters

GetParRet AOP_GetPar(GetParReq) = 52;
struct GetParReq {
 AOP_Id envId; /* environ. handle */
 AOP_NameU nuSeq<>; /* parameter name-unit
tuples */
};

union GetParRet switch (AOP_Status retState) {
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_NameV nvSeq<>; /* parameters */
};

Parameters that can be queried:

Parameter Value

USER Username

ODSVERSION supported Interface ODS-API Version (e.g. 5.0)

WILDCARD_ONE wildcard-character for one character match

WILDCARD_ALL wildcard-character for zero or more characters match

WILDCARD_ESC escape-character

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 489

RPC-API

ASAM ODS VERSION 5.0 9-33

9.8 SECURITY SERVICE

In ODS Version 5.0 a new security handling has been introduced to support users,
usergroups and different access-rights on elements, attributes and/or instances of elements.
For a detailed description of the ODS Security see chapter 2.9.

Users and usergroups are application elements which can be accessed by standard API
methods (AOP_Getval, AOP_Putval). Each user can be assigned to one ore more
usergroups. These m:n references can be set with AOP_SetInstRef. All other services are
exposed only by the Security-API-methods described below.

One has to distinguish between access-rights and access-right-templates. Access-rights are
stored in the ACL (access control list). Access-right-templates are stored in IRL (initial rights
list). An IRL is used to store "default-rights" that will be copied to the ACL of new instances.

typedef long AOP_Rights; /* Used for Rights-Values (bitmasked) */

enum AOP_SetType { /* how to modify bitmasked values */
 SET, /* Set the value to new bits (clears all
 bits before) */
 ADD, /* Adds the new bits to the existing ones
 (OR-function) */
 REMOVE /* Removes the bits from the existing
 value (~AND function) */
};

struct AOP_Acs { /* Access control structure */
 AOP_Id groupId; /* Usergroup Id */
 AOP_ElemId elemId; /* Application element+instance Id */
 AOP_Name attrName; /* Application attribute name */
 AOP_Rights rights; /* rights-value (bitmasked) 5-bits */
};
struct AOP_Irs { /* Initial rights structure */
 AOP_Id groupId; /* Usergroup Id */
 AOP_ElemId elemId; /* Application element+instance Id */
 AOP_Rights rights; /* rights-value (bitmasked) */
 AOP_Id refAid; /* referencing application element. If
 set to 0, its been used by all
 elements that refer to it */
};

The following five basic rights are specified:

Read Update Insert Delete Grant

Read:
 R-right on application element: The client may read all instances of this application

element.
 R-right on instance: The client may read this instance.
 R-right on attribute: The client may read this attribute of all instances of the application

element.

ISO/PAS 22720:2005(E)

490 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-34 ASAM ODS VERSION 5.0

Update:
 U-right on application element: The client may modify all instances of this application

element.
 U-right on instance: The client may modify this instance.
 U-right on attribute: The client may modify this attribute of all instances of the application

element.

Insert:
 I-right on application element: The client may create new instances of this application

element.
 I-right on instance: The client may create child instances for this (parent) instance.
 I-right on attribute: This does not make sense and will be ignored by the server (should

not be supported by administration tool).

Delete:
 D-right on application element: The client may delete any instance of this application

element.
 D-right on instance: The client may delete the specific instance.
 D-right on attribute: This does not make sense and will be ignored by the server (should

not be supported by administration tool).

Grant:
 G-right on application element, instance or attribute: Access rights may be passed on.

(This right is interpreted by the server as follows: If a user group has GRANT right on a
data object, any of its members may pass the group’s rights on the data object to other
user groups).

Note (insert right on instance): Creating a child-instance means creating a new instance or
reassigning an existing child to a different parent.

Note (insert right on instance): An I-right on an instance for an application element which is
not a parent in any parent-child relationship does not make sense and will be ignored by the
server (should not be supported by administration tool)

Read Update Insert Delete Meaning:

0 0 0 0 No access

0 0 1 0 (Invalid combination)

0 0 0 1 (Invalid combination)

0 0 1 1 (Invalid combination)

0 1 0 0 (Invalid combination)

0 1 1 0 (Invalid combination)

0 1 0 1 (Invalid combination)

0 1 1 1 (Invalid combination)

1 0 0 0 Read

1 0 1 0 Read and Insert (perhaps for test bed operator)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 491

RPC-API

ASAM ODS VERSION 5.0 9-35

1 0 0 1 Read and Delete (e.g. administrator)

1 0 1 1 Read, Delete and Insert (e.g. administrator)

1 1 0 0 Read and Update (e.g. engineer)

1 1 1 0 All except Delete (e.g. engineer)

1 1 0 1 All except Insert

1 1 1 1 All access rights

To avoid “blind access”, all combinations of Update, Insert and Delete rights without granting
the Read right are considered to be invalid (Configuration tools should not accept such
combinations). In case of such combinations, the server will deny access and return an error
message.

Note: Every desired right needs to be entered separately. There is not a hierarchy of rights in
the sense of “Right A automatically implies Right B”.

Hint for implementation:

 To avoid complex and unnecessary attribute protection, access to some particular
attributes (IDs, references) should be denied by client application programs rather than
via attribute protection. Client Log-on to the Server

 When a session is opened, the client logs on by indicating the userID and password. The
server checks if the information is valid (please see section 9.8.11 “User Authentication”).
If the information is invalid, an error message will be returned.

Note: For client requests during the same open session, it is no longer necessary for the
client to provide userID and password.

ISO/PAS 22720:2005(E)

492 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-36 ASAM ODS VERSION 5.0

9.8.1 AOP_SETSECURITYLEVEL

Defines what security-level is used on some element.

These types can be used (and mixed), defined by the parameter <seclevel>:

1.) No security on element (<seclevel> = 0)

2.) Element-Security switched on (protects the whole element, bit 0 set)

3.) Instance-Security switched on (protects each instance, bit 1 set)

4.) Attribute-Security switched on (protects the attributes, bit 2 set)

Definition of setType:

SetSecurityLevelRet AOP_SetSecurityLevel(SetSecurityLevelReq) = 69;
enum AOP_SetType { /* how to modify bitmasked values */
 SET, /* Set the value to new bits (clears all
 bits before) */
 ADD, /* Adds the new bits to the existing
 ones (OR-function) */
 REMOVE /* Removes the bits from the existing
 value (~AND function) */
};

struct SetSecurityLevelReq { /* setsecuritylevel-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Id applId; /* application element id */
 AOP_Flags seclevel; /* security level (bitmasked) */
 AOP_SetType setType; /* set/add/remove security level bits */
};

union SetSecurityLevelRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Flags seclevel;/* return security-level */
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 493

RPC-API

ASAM ODS VERSION 5.0 9-37

9.8.2 AOP_GETSECURITYLEVEL

Get the current security-level of the specified element-id.

GetSecurityLevelRet AOP_GetSecurityLevel(GetSecurityLevelReq) = 70;
struct GetSecurityLevelReq { /* getsecuritylevel-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Id applId; /* application element id */
};

union GetSecurityLevelRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Flags seclevel;/* return security-level */
};

ISO/PAS 22720:2005(E)

494 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-38 ASAM ODS VERSION 5.0

9.8.3 AOP_SETRIGHTS

Set access-rights (ACL) for some data-object(s) and usergroup(s)

SetRightsRet AOP_SetRights(SetRightsReq) = 61;
struct SetRightsReq { /* setrights-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Acs acl<>; /* ACL */
 AOP_SetType setType; /* set/add/remove bits from rights in
 ACL */
};

struct SetRightsRet {
 AOP_Status retState;
};

9.8.4 AOP_GETRIGHTS

Get ACL for some data-object(s) and usergroup(s)

GetRightsRet AOP_GetRights(GetRightsReq) = 62;
struct GetRightsReq { /* getrights-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId<>; /* Application element+instance Ids */
 AOP_Name attrName<>; /* Application attribute names (list of
 elements + list of attributes at the
 same time is not allowed)*/
};

union GetRightsRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Acs acl<>; /* ACL will be returned */
};

9.8.5 AOP_SETINIRIGHTS

Define ACL-Templates (IRL) for some data-object(s) and usergroup(s).

SetIniRightsRet AOP_SetIniRights(SetIniRightsReq) = 63;
struct SetIniRightsReq { /* setinirights-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Irs irl<>; /* Initial rights list */
 AOP_SetType setType; /* set/add/remove bits from rights */
};

struct SetIniRightsRet {
 AOP_Status retState;
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 495

RPC-API

ASAM ODS VERSION 5.0 9-39

9.8.6 AOP_GETINIRIGHTS

Get ACL-Templates (IRL) for some data-object and usergroup(s)

GetIniRightsRet AOP_GetIniRights(GetIniRightsReq) = 64;
struct GetIniRightsReq { /* getinirights-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId<>; /* List of application element+instance
 Ids */
};

union GetIniRightsRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Irs irl<>; /* Initial rights list will be returned */
};

9.8.7 AOP_SETINIRIGHTSREF

With this method an attribute (which must be a reference attribute to some application
element) can be marked as a Initial-Rights-Reference-Attribute. At the time of inserting a new
instance the value of this attribute will be resolved (reference to an element) and the IRL will
be taken from the referenced instance. This is useful for storing data-depended IRLs, which
can be referenced at the time of insertion.

SetIniRightsRefRet AOP_SetIniRightsRef(SetIniRightsRefReq) = 65;
struct SetIniRightsRefReq { /* setinirightsref-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Id applId; /* application element Id */
 AOP_Name refAttr; /* Reference Attribute */
 AOP_Flags set; /* use(1) or don't use(0) the
 reference-attribute for ACL
 templates */
};

union SetIniRightsRefRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Flags set; /* set-value will be returned */
};

ISO/PAS 22720:2005(E)

496 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-40 ASAM ODS VERSION 5.0

9.8.8 AOP_GETINIRIGHTSREF

This method returns a list of attributes that are marked as IRL-Reference-Attributes.

GetIniRightsRefRet AOP_GetIniRightsRef(GetIniRightsRefReq) = 66;
struct GetIniRightsRefReq { /* getinirightsref-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Id applId; /* Application element Id */
};

union GetIniRightsRefRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Name attr<>; /* attribute-list will be returned */
};

9.8.9 AOP_SETCURRENTINIRIGHTS

A client may define the ACL-Template by itself. This call defines an ACL that will be used in
all subsequent insertions of the current session (parameter <set> must be 1). If parameter
<set> is set to 0 (false), the prior defined ACL will not be used any longer in insertion-
methods.

SetCurrentIniRightsRet
AOP_SetCurrentIniRights(SetCurrentIniRightsReq) = 67;
struct SetCurrentIniRightsReq { /* setcurrentinirights-request
 structure */
 AOP_Id envId; /* environ. handle */
 AOP_Irs irl<>; /* Initial ACL to use in subsequent
 creation of new instances */
 AOP_Flags set; /* Use(1) this ACL or don't use(0)
 this ACL for further inserts
 anymore */
};

union SetCurrentIniRightsRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Flags set; /* set-value will be returned */
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 497

RPC-API

ASAM ODS VERSION 5.0 9-41

9.8.10 AOP_SETPASSWORD

Set a new password for some user.

If the currently logged in user is member of the superuser-group, he needs not to supply the
current password in <oldpwd>. "Normal" users must supply the current password in
<oldpwd> that they can change their own password to <newpwd>. "Normal" users cannot
change passwords of other users, even if they supply the correct current password (of the
other user) in <oldpwd>.

SetPasswordRet AOP_SetPassword(SetPasswordReq) = 68;
struct SetPasswordReq { /* setpassword-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Id userid; /* user-id to set the password for */
 AOP_String oldpwd; /* current password */
 AOP_String newpwd; /* new password */
};

union SetPasswordRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Flags ok; /* ok=1 if password changed otherwise
 ok=0 */
};

9.8.11 USER AUTHENTICATION

Authentication of the username and password will be done by checking the Session-
Parameter USER. The client has to perform an AOP_SetPar with the parameter USER and
two values (list of strings, NULL-separated) <username> and <password> (see
AOP_SetPar). The password has to supplied unencrypted. Encryption of the password will
be done in the server (compatibility to ODS3.0).

9.8.12 PASSWORD ENCRYPTION IN ODS VERSION 5.0 (RPC)

GENERAL

Password encryption is a critical part of the user authentication, because passwords should
never be stored in plain (unencrypted) form or with an encryption algorithm that allows
decryption of the password. The algorithm must be standardized that means the whole
algorithm must be made public, without the impact that someone could derive passwords
from the encoded passwords.

MD5

The algorithm MD5, originally developed by the RSA Data Security, Inc. 1991, is a state of
the art algorithm that belongs to the group of hash functions or digital signatures. MD5 can
only encrypt data, but cannot decrypt it. The password can be checked by comparing the
encrypted version of the user-supplied password to the stored (also encrypted) version in the
database. If they match the passwords are identical.

ISO/PAS 22720:2005(E)

498 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-42 ASAM ODS VERSION 5.0

HISTORY

MD2, MD4 and MD5 are message-digest algorithms developed by Rivest. They are meant
for digital signature applications where a large message has to be "compressed'' in a secure
manner before being signed with the private key. All three algorithms take a message of
arbitrary length and produce a 128-bit message digest. While the structures of these
algorithms are somewhat similar, the design of MD2 is quite different from that of MD4 and
MD5. MD2 was optimized for 8-bit machines, whereas MD4 and MD5 were aimed at 32-bit
machines. Description and source code for the three algorithms can be found as
Internet RFCs 1319-1321. MD2 was developed by Rivest in 1989. The message is first
padded so its length in bytes is divisible by 16. A 16-byte checksum is then appended to the
message, and the hash value is computed on the resulting message. Rogier and Chauvaud
have found that collisions for MD2 can be constructed if the calculation of the checksum is
omitted. This is the only cryptoanalytic result known for MD2.

MD4 was developed by Rivest in 1990. The message is padded to ensure that its length in
bits plus 64 is divisible by 512. A 64-bit binary representation of the original length of the
message is then concatenated to the message. The message is processed in 512-bit blocks
in the Damgård/Merkle iterative structure, and each block is processed in three distinct
rounds. Attacks on versions of MD4 with either the first or the last rounds missing were
developed very quickly by Den Boer, Bosselaers and others. Dobbertin has shown how
collisions for the full version of MD4 can be found in under a minute on a typical PC. In
recent work, Dobbertin (Fast Software Encryption, 1998) has shown that a reduced version
of MD4 in which the third round of the compression function is not executed but everything
else remains the same, is not one-way. Clearly, MD4 should now be considered broken.

MD5 was developed by Rivest in 1991. It is basically MD4 with "safety-belts'' and while it is
slightly slower than MD4, it is more secure. The algorithm consists of four distinct rounds,
which has a slightly different design from that of MD4. Message-digest size, as well as
padding requirements, remain the same. Den Boer and Bosselaers have found pseudo-
collisions for MD5. More recent work by Dobbertin has extended the techniques used so
effectively in the analysis of MD4 to find collisions for the compression function of MD5.
While stopping short of providing collisions for the hash function in its entirety this is clearly a
significant step. Van Oorschot and Wiener have considered a brute-force search for
collisions in hash functions, and they estimate a collision search machine designed
specifically for MD5 (costing $10 million in 1994) could find a collision for MD5 in 24 days on
average. The general techniques can be applied to other hash functions.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 499

RPC-API

ASAM ODS VERSION 5.0 9-43

HASH FUNCTIONS

A hash function H is a transformation that takes an input m and returns a fixed-size string,
which is called the hash value h (that is, h = H(m)). Hash functions with just this property
have a variety of general computational uses, but when employed in cryptography, the hash
functions are usually chosen to have some additional properties.

The basic requirements for a cryptographic hash function are as follows.

The input can be of any length.

The output has a fixed length.

H(x) is relatively easy to compute for any given x.

H(x) is one-way.

H(x) is collision-free.

A hash function H is said to be one-way if it is hard to invert, where "hard to invert'' means
that given a hash value h, it is computationally infeasible to find some input x such that H(x) =
h. If, given a message x, it is computationally infeasible to find a message y not equal to x
such that H(x) = H(y), then H is said to be a weakly collision-free hash function. A strongly
collision-free hash function H is one for which it is computationally infeasible to find any two
messages x and y such that H(x) = H(y).

The hash value represents concisely the longer message or document from which it was
computed; this value is called the message digest. One can think of a message digest as a
"digital fingerprint'' of the larger document.

Perhaps the main role of a cryptographic hash function is in the provision of message
integrity checks and digital signatures. Since hash functions are generally faster than
encryption or digital signature algorithms, it is typical to compute the digital signature or
integrity check to some document by applying cryptographic processing to the document's
hash value, which is small compared to the document itself. Additionally, a digest can be
made public without revealing the contents of the document from which it is derived. This is
important in digital timestamping where, using hash functions, one can get a document
timestamped without revealing its contents to the timestamping service.

ISO/PAS 22720:2005(E)

500 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-44 ASAM ODS VERSION 5.0

9.9 ERROR HANDLING

There are two kinds of errors: Failure on RPC (e.g. connection broken, using incompatible
requests resulting in Can’t decode arguments, timeouts, ...) and application level failures
(e.g. missing mandatory attribute, application element not found, ...). Clients can detect an
error when they get a NULL pointer returned instead of data. The RPC error reason can be
determined by aop_geterr. A limited number of union discriminators are used which may be
expanded in future.

enum AOP_Status { /* error codes */
 S_OK = 0, /* OK */
 /* version 2 states */
 E_BSS = 1, /* basic system error state */
 W_BSS = 2, /* basic system warning state */
 E_SSS = 3, /* --"-- error */
 W_SSS = 4, /* subsystem (e.g. FORINT, RDBMS) warning */

 /* version 1 states and version 2 states not
 yet moved to new state interface; states
 which havn't been used are removed */

 E_NOTOPEN = 13, /* not yet open, environment */
 E_DAC = 21, /* data access error */
 /* for detail see return structure */
 /* Version 5.0 states */
 E_SECURITY= 41, /* security violation */

 E_MISC = 99 /* to be defined */

};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 501

RPC-API

ASAM ODS VERSION 5.0 9-45

9.9.1 AOP_GETERR

Get error details

GetErrRet AOP_GetErr(GetErrReq) = 59;
struct GetErrReq {
 AOP_Id envId; /* environ. handle */
};

union GetErrRet switch (AOP_Status retState) {
 case S_OK: void;
 case E_NOTOPEN: void;
 case E_SECURITY: void;
 case E_BSS: AOP_String ebsMsg;
 case W_BSS: AOP_String wbsMsg;
 case E_SSS: AOP_String essMsg;
 case W_SSS: AOP_String wssMsg;
 case E_MISC: AOP_String errMsg;
 case E_DAC: AOP_DAC_Status dacCode;
};

With a state W_xxx, details gives the warning text (see e.g. aop_getvalval), with E_xxx a
textual error message is available (e.g. the Oracle error message). E_DAC includes a
numeric subcode. See the request definitions which states may be returned.

ISO/PAS 22720:2005(E)

502 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-46 ASAM ODS VERSION 5.0

9.10 RESTRICTIONS OF THE RPC-API

The types listed in the seq_rep_enum are not fully supported by the RPC-API. Only the types

 explicit

 implicit_constant

 implicit_linear

 implicit_saw

are supported. This is due to the fact that there are only two interface parameters available to
select between implicit and explicit on one hand and between constant, linear, and saw on
the other hand.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 503

RPC-API

ASAM ODS VERSION 5.0 9-47

9.11 EXAMPLE CALLING SEQUENCE

EXAMPLE:

This is an example how a client could talk to a server. To keep it simple, the
parameters have been omitted.
// Open Session
AOP_Openenv //returns Environment-Id

// Get Metainformation (elements, attributes, references)
AOP_GetApplInf //returns MetaInformation

// Do some work with attrtibutes in elements…
AOP_GetVal //returns attribute-values (see also AOP_GetValE)
AOP_PutVal //modify, insert or delete attribute-values

// Do some work with measurement values (partial matrixes)
AOP_GetValAttr //returns partial matrix structure (attributes)
AOP_GetValVal //returns partial matrix
AOP_PutValVal //modify, insert or delete values in partial matrix

//Close Session
AOP_CloseEnv //Closes the session

ISO/PAS 22720:2005(E)

504 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-48 ASAM ODS VERSION 5.0

9.12 ASAM ODS VERSION 5.0 RPC-API IDL

/**
 *
 * ASAM - ODS 5.0 client server ONC RPC interface definition
 *
 *
 * 2003/06/02 Revision 4.2: Added AoModelMapper, AoLog Gerald Sammer
 *
 **
 */

/*
 * The interface-definition is based on ONC. The necessary tools for
 * creation of C-headerfiles, client and server stubs and conversion
 * functions (xdr) is free available (RPCGEN)
 *
 * For any method available thru the protocol level (client server)
 * the interface is defined by setting up request and return
 * structures.
 *
 * Version support
 * ---------------
 * This server supports version 3.0, 3.2 and ODS 5.0/RPC
 *
 *
 */

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 505

RPC-API

ASAM ODS VERSION 5.0 9-49

/* == platform adaptions
 * adapt aods.h for OS - dependencies to make aods.x more portable
 * Note that rpcgen uses the local cpp (preprocessor)
 */
%
%/* ------------------begin of section defined by aods.x ----------------
% */
#ifdef RPC_HDR
%#define _AODS_INTERFACE_VERSION "$Revision: 3.2 $"
%#ifndef _AODS_H
%#define _AODS_H
%#endif
%
#ifdef _WIN32
%/* remove definitions used by Visual C++ on NT
% * and add winsock.h if not using GNU on WIN32
% */
%#include <rpc/rpc.h>
#ifndef __CYGWIN32__
%#include <winsock.h>
%#undef S_OK
%#undef E_NOTIMPL
#endif
#endif

#ifdef hpux
%/* Do not edit, automatically created by rpcgen
% * the HP-UX rpcgen doesnt include rpc.h into aods.h but into
% * the .c files created -> force to put it into aods.h if not yet done
% * since VMS comes without rpcgen hpux is used for VMS too
% * but dont forget to remove the include <rpc/rpc.h> line from aods_xdr.c
% * and stubs manually (or by awk) when using those files on VMS
% */
%#ifdef vms
%#ifndef _RPCXDR_LOADED
%#include <ucx$rpcxdr.h>
%#endif
%#else
%#ifndef _STDLIB_INCLUDED
%#include <stdlib.h>
%#endif

#ifdef hpux10
%#ifndef _RPC_RPC_INCLUDED
#else
%#ifndef _RPC_TYPES_INCLUDED
#endif
%#include <rpc/rpc.h>
%#endif

%#endif
#endif
%
%extern unsigned long rpc_number; /* RPC program number settable */
#endif

#ifdef RPC_SVC
%
%/* include authentication handling on server side
%*/
%#include "aods_auth.h"
#endif

ISO/PAS 22720:2005(E)

506 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-50 ASAM ODS VERSION 5.0

#ifdef RPC_CLNT
%
%/* for some systems where rpcgen of foreign system is used struct timeval may
% * be undefined for TIMEOUT default definition
% */
%#include <time.h>
%
%/* nonstandard emulation of ListEnv
%*/
%#define AOP_ListEnv getenv ("AODSKNOWNENV")
%
#endif
%/* ---------------- end of aods.x defined section -----------------------
% */
%

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 507

RPC-API

ASAM ODS VERSION 5.0 9-51

/* === interface definition
 */

/* Some AODS data types
 * Any module may include the protocoll compiler resulting
 * header file and use those constants
 */

const MAXAOPNAMLEN = 128;
typedef string AOP_Name<MAXAOPNAMLEN>;
typedef AOP_Name AOP_NameSeq<>;

const MAXSTRINGLEN = 2000; /* maximum string length */
typedef string AOP_String<MAXSTRINGLEN>;

const MAXBSTREAMLEN = 1048576; /* maximum byte stream length */
typedef unsigned char bstream<MAXBSTREAMLEN>;

typedef long AOP_Id; /* Identifiers/Handles always int */

typedef long AOP_Flags; /* Used for Flags */

typedef short AOP_ValFlags<>; /* Used for Flags to a Value */

ISO/PAS 22720:2005(E)

508 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-52 ASAM ODS VERSION 5.0

/* == return states
 */
enum AOP_Status { /* error codes */
 S_OK = 0, /* OK */
 /* version 2 states */
 E_BSS = 1, /* basic system error state */
 W_BSS = 2, /* basic system warning state */
 E_SSS = 3, /* --"-- error */
 W_SSS = 4, /* subsystem (e.g. FORINT, RDBMS) warning */

 /* version 1 states and version 2 states
 not yet moved to new state interface
 states which havn't been used are removed */

 E_NOTOPEN = 13, /* not yet open, environment */
 E_DAC = 21, /* data access error */
 /* for detail see return structure */
 E_SECURITY= 41, /* security violation */

E_LICENSE = 42, /* license error */
 E_MISC = 99 /* to be defined */

};

enum AOP_DAC_Status { /* subcodes used in version 1, replaced by x_SSS */
 DACINVATTR, /* referenced attribute doesnt exist */
 DACNOPRIV, /* privilege violation */
 DACMANDATTR, /* mandatory attribute missing */
 DACCONSTRAINT, /* constraint conflict */
 DACOTHER
};

/* == general type definitions
*/
enum AOP_DataType { /* known data types */
 DT_RESERVED = 0, /* 0 is called DT_UNKNOWN in the other chapters of
the ASAM ODS specification */
 DT_STRING = 1, /* string */
 DT_SHORT = 2, /* short integer */
 DT_FLOAT = 3, /* float */
 DT_BYTE = 5, /* byte */
 DT_LONG = 6, /* long integer */
 DT_DOUBLE = 7, /* double */
 DT_DATE = 10, /* date format */
 DT_BYTESTR = 11, /* byte string */
 /* blob holds beside the binary data (no architecture adaption)
 * a blob type which may be used to tell the client who may
 * interpret those data
 */
 DT_BLOB = 12 /* includes blob identifier */
};

/* These types are used to allow general purpose clients to interpret the
 * data
 */
enum AOP_BasElem { /* Basic Entities */
 BE_RESERVED = 0, /* unknown base element */
 BE_ENV = 1, /* Environment */
 BE_TST = 2, /* Subtest */
 BE_MEA = 3, /* Measurement */
 BE_MEQ = 4, /* measured quantity */
 BE_DNA = 11, /* quantity name */
 BE_DNG = 12, /* quantity group */
 BE_DUN = 13, /* unit */

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 509

RPC-API

ASAM ODS VERSION 5.0 9-53

 BE_DUG = 14, /* unit group */
 BE_DIM = 15, /* physical dimension */
 BE_UUT = 21, /* UnitunderTest */
 BE_UUP = 22, /* --"-- part */
 BE_INS = 23, /* TestEquipment */
 BE_INP = 24, /* --"-- part */
 BE_SEQ = 25, /* Test sequence */
 BE_SEP = 26, /* --"-- part */
 BE_USR = 34, /* user */
 BE_UGR = 35, /* user group */
 BE_TEST = 36, /* Test */
 BE_TESTDEVICE = 37, /* Testdevice */
 BE_SUBMATRIX = 38, /* AoSubmatrix */
 BE_LOCALCOLUMN = 39, /* AoLocalColumn */
 BE_MODELMAPPER = 41, /* AoModelMapper */
 BE_LOG = 43, /* AoLog */
 BE_PARAMETER = 44, /* AoParameter */
 BE_PARAMATERSET = 45, /* AoParameterSet */
 BE_NAMEMAP = 46, /* AoNameMap */
 BE_ATTRIBUTEMAP = 47 /* AoAttributeMap */
};

enum AOP_SelOpcode { /* Type of selection */
 SOMATCH, /* match == */
 SOUMATCH, /* unmatch != */
 SORANGE, /* range < x > */
 SOLESS, /* less < */
 SOGREATER, /* greater > */
 SOLESSEQ, /* less equal <= */
 SOGREATEREQ, /* greater equal >= */
 SOINSET, /* within set in */
 SONOTINSET, /* not within set !in */
 SOORDER, /* order by */
 SOGROUP, /* group by */
 SOINSENSITIVE, /* insensitive search */
 SOLIKE, /* like */
 SONOTLIKE, /* not like */
 SONULL, /* is NULL */
 SONOTNULL, /* is NOT NULL */
 SOOPAND, /* operator AND */
 SOOPOR, /* operator OR */
 SOOPNOT, /* operator NOT */
 SOOPBOPEN, /* operator bracket open (*/
 SOOPBCLOSE /* operator bracket close)*/
};

/* see paper about multidimensional measured data arrays
 * for explanation on following flag
 */
enum AOP_IndepFl { /* Flag for independent channel */
 INDNONE, /* no information (dependend) */
 INDEPEND, /* independent */
 SCALING /* scales another column */
};

/* implicit means that the value may be calculated by a predefined
 * procedure. For implicit columns one (constant), two (start, increment) or
 * three values (start, increment, end) are stored within the column
 */
enum AOP_ImplFl { /* Flag for implicit storage */
 IMPLNONE, /* explicit */
 IMPLICIT /* implicit */
};

ISO/PAS 22720:2005(E)

510 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-54 ASAM ODS VERSION 5.0

enum AOP_SortDir { /* Sort direction */
 ASCENDING, /* lower to higher */
 DESCENDING /* higher to lower */
};

enum AOP_JoinTyp { /* way of joining partial mat. */
 JOIN, /* exact matches only */
 MERGE /* all */
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 511

RPC-API

ASAM ODS VERSION 5.0 9-55

/* ===
 * General structures
 */

/* ------------------------- ElementId
 */
struct AOP_ElemId { /* Unique identification of instance */
 AOP_Id aid; /* application element id */
 AOP_Id iid; /* instance id */
};
typedef AOP_ElemId AOP_ElemIdSeq<>;

/* -------------------------- ValMap
 This part describes the structures of an value map, this structure
 is common for all value accesses (Application Element Attribute Values
 and Local Column Values)
 Note that a string vector is a NULL separated byte array.
 The number of elements (strings) is equal to the
 number of NULL characters within the array. Therefor length is
 the number of bytes and not number of elements.
 BYTESTR is similar to STRING (each element may hold multible
 characters) except that instead of NULL-termination the count
 is included to allow binary data.
 Blop may be used only at places where no multible instanzes occur.

*/
struct Blob {
 char bhdr<>;
 unsigned char bval<>;
};

union AOP_ValMap switch (AOP_DataType dtyp) {
 case DT_STRING:
 char aval<>; /* strings */
 case DT_SHORT:
 short sval<>; /* short integers */
 case DT_FLOAT:
 float fval<>; /* floats */
 case DT_LONG:
 long lval<>; /* long integers */
 case DT_DOUBLE:
 double dval<>; /* double floats */
 case DT_BYTE:
 unsigned char bval<>; /* single bytes */
 case DT_DATE:
 char tval<>; /* date/time */
 case DT_BYTESTR:
 bstream cval<>; /* counted byte streams */
 case DT_BLOB:
 Blob blob; /* never as array !!! */
 default:
 void;
};
/* -------------------------- Name + Unit
 */
struct AOP_NameU {
 AOP_Name name;
 AOP_Id unitId;
};
typedef AOP_NameU NUSeq<>;
/* -------------------------- Name + Unit + Value(s)
 */
struct AOP_NameV {

ISO/PAS 22720:2005(E)

512 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-56 ASAM ODS VERSION 5.0

 AOP_Name name;
 AOP_Id unitId;
 AOP_ValMap valMap;
};
typedef AOP_NameV NVSeq<>;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 513

RPC-API

ASAM ODS VERSION 5.0 9-57

/* ===
 * Request and return structure definition section
 */

/* -------------------------------- list environements
To emulate Master server (or service information brooker) an environement
variable on client side should be called (see above).
*/

/* -------------------------------- open environement
 * Note that current servers are restricted to one environement a time
 * Argument usage is free for implementors-
 * RDBMS implementation uses DBLOGON to (optionally) specify the
 * database logon string to be used.
 */

struct OpenEnvReq { /* to open env. */
 AOP_NameV nvSeq<>; /* environement open arguments */
};

union OpenEnvRet switch (AOP_Status retState) {
 /* return value structure */
 case E_BSS: void;
 case E_SSS: void;
 case E_SECURITY: void;
 case E_MISC: void;
 case E_LICENSE: void;
 default: AOP_Id envId; /* descriptor/handle/id whatever */
};

/* ----------------------------------- close environement
*/

struct CloseEnvReq { /* to close open env. */
 AOP_Id envId;
};

struct CloseEnvRet {
 AOP_Status retState;
};

ISO/PAS 22720:2005(E)

514 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-58 ASAM ODS VERSION 5.0

/* --------------------------------- structure querry
 Whole basic structure has to be returned including all relations.
 This is a list of application elements (Identifier = AID) together with
 application name and type (basic element AOP_BasElem)
 In an additional list the relations (AOP_BasElem - pairs)
 will be returned
*/
struct GetApplInfReq {
 AOP_Id envId; /* environ. handle */
};

struct ApplInfSeq { /* application element infos */
 AOP_Id aiAId; /* application element id */
 AOP_BasElem aiBId; /* basic element Id */
 AOP_Name aiName; /* application element name */
};

struct ApplRelSeq { /* application relations infos */
 AOP_Id arAId1; /* from (0,1) resp. (n) */
 AOP_Id arAId2; /* to (n) resp. (m) */
 long arRefNr; /* attr number, 0 for n:m */
 AOP_Name arName; /* reference name */
 AOP_Flags arConstr; /* Constraint (e.g. not NULL) */
};

struct ApplInf {
 ApplInfSeq aiSeq<>; /* sequence of appelem info */
 ApplRelSeq arSeq<>; /* sequence of appref info */
};

union GetApplInfRet switch (AOP_Status retState) {
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: ApplInf applInf;
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 515

RPC-API

ASAM ODS VERSION 5.0 9-59

/* --------------------------------- references (instance - level)
 This querry tries to get instances related to a given one thru
 allowed (see ApplInf) relations
*/

struct GetInstRefReq {
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* instance */
 AOP_Name refName;
 AOP_Id aId; /* of type */
};

union GetInstRefRet switch (AOP_Status retState) {
 /* return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_ElemId elemList<>;
};

ISO/PAS 22720:2005(E)

516 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-60 ASAM ODS VERSION 5.0

/* ---- get attributes ---
 Structure to describe attributes of application elements.
 Applies to any entity also in many cases aBName matches aAName
 due to attrAName unchangeable on application level

 The request specifies the elementId. The prototype uses only AId part
 of elementId (no instance attributes available)

*/

struct AttrSeq { /* sequence of attributes */
 AOP_Name aBName; /* basic name */
 /* 0 if not basic */
 AOP_Name aAName; /* appl. name */
 AOP_DataType aDataType; /* attribute data type */
 AOP_Id aUnit; /* unit if global defined */
};

struct AttrInf { /* attribute info including header */
 AOP_BasElem aBId; /* basic element Id */
 AOP_Id aAId; /* application element Id */
 AttrSeq aSeq<>;
};

struct GetAttrReq { /* request for attribute list */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* application element */
};

union GetAttrRet switch (AOP_Status retState) {
 /* return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AttrInf attrInf; /* including entity */
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 517

RPC-API

ASAM ODS VERSION 5.0 9-61

/* ----------------------------- get values for application elements
 Querry structure, allows to specify ranges and patterns for querries.
 Values are always arrays. This allows i.e. on selection to pass 2 or
 more values for e.g.: range from - to

 To cover the AODS requirement of making data access by explicitly
 specifying instance id (direct access to single element) it is
 necessary to define the selection elements AOP_NameS with
 name = <Idattr>
 selOpcode = SOMATCH
 value.AOP_ValMap_u.lval.lval[0] = <iid>
 IdAttr is the first aBName reportet using GetAttr

*/

struct AOP_NameS { /* by value select */
 AOP_Name name; /* attribute name */
 AOP_ValMap valMap; /* range or pattern */
 AOP_SelOpcode selOpcode; /* type of selection */
};
typedef AOP_NameS NSSeq<>;

struct GetValReq { /* selection request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Id applId; /* application element Id (from) */
 AOP_NameU nuSeq<>; /* sequence of to be reported attr's */
 AOP_NameS nsSeq<>; /* sequence of select fields */
 AOP_ElemId elemId; /* child/parent reference (where) */
 AOP_Name refName; /* named reference identifier */
};

union GetValRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_NameV nvSeq<>; /* sequence of resulting attributes */
};

ISO/PAS 22720:2005(E)

518 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-62 ASAM ODS VERSION 5.0

/* ----------------------------- enhanced get values for application elements
 Enhanced Query structure, allows
 - joins of application elements
 - to specify ranges and patterns (Values are always arrays.
 This allows i.e. on selection to pass 2 or
 more values for e.g.: in/notin, range from -
to)
 - to group selections with AND, OR and brackets (open, close)
 - to sort the result (order by)
 - to specify wildcards (including escape character)
 - partial access of the result (e.g. first 100, next 100, ..)

 To cover the AODS requirement of making data access by explicitly
 specifying instance id (direct access to single element) it is
 necessary to define the selection elements AOP_AIDNameS with
 selOpcode = SOMATCH
 AID = <application element ID>
 name = <Idattr>
 value.AOP_ValMap_u.lval.lval[0] = <iid>
 IdAttr is the first aBName reportet using GetAttr

*/
/* -------------------------- AID + Name + Unit
 */
struct AOP_AIDNameU {
 AOP_Id aid; /* application element ID */
 AOP_Name name; /* attribute name */
 AOP_Id unitId; /* requested unit */
};
typedef AOP_AIDNameU ANUSeq<>;

/* -------------------------- AID + Name + Unit + Value(s)
 */
struct AOP_AIDNameV {
 AOP_Id aid; /* application element ID */
 AOP_Name name; /* attribute name */
 AOP_Id unitId; /* requested unit */
 AOP_ValMap valMap; /* values */
};
typedef AOP_AIDNameV ANVSeq<>;

enum AOP_ReportListType { /* type of report list */
 RLCOMPLETE, /* all attributes */
 RLSELECTIVE /* given list of attributes */
};

union AOP_ReportList switch (AOP_ReportListType rlType) {
 case RLCOMPLETE:
 AOP_Id aidSeq<>; /* list of application elements - all attributes will
be reported */
 case RLSELECTIVE:
 AOP_AIDNameU anuSeq<>; /* list of attribute to be reported */
 default: void;
};

struct AOP_AIDNameS { /* by value select */
 AOP_SelOpcode selOpcode; /* type of selection */
 AOP_Id aid; /* application element ID */
 AOP_Name name; /* attribute name */
 AOP_ValMap valMap; /* range or pattern */
 AOP_SortDir dir; /* sort order */
};
typedef AOP_AIDNameS ANSSeq<>;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 519

RPC-API

ASAM ODS VERSION 5.0 9-63

struct AOP_RefDef { /* reference definition */
 AOP_Id fromAid; /* start point (AID) of reference */
 AOP_ElemId elemId; /* child/parent reference (where) */
 AOP_Name refName; /* named reference identifier */
};

enum AOP_JoinType { /* join type */
 JTDEFAULT, /* force inner join */
 JTOUTER /* force outer join on destination AID */
};

struct AOP_JoinDef { /* join definition */
 AOP_Id fromAid; /* start point (AID) of reference */
 AOP_Id toAid; /* destination (AID) */
 AOP_Name refName; /* named reference identifier */
 AOP_JoinType joinType; /* join type */
};

enum AOP_ReqType { /* type of request */
 RTDEFAULT, /* force query and close cursor */
 RTOPEN, /* force query and keep cursor open */
 RTCONTINUE, /* continue reading cursor */
 RTCLOSE /* close open cursor */
};

struct GetValEReq { /* enhanced query request structure */
 AOP_Id envId; /* environ. handle */
 AOP_ReqType reqType; /* request type */
 AOP_ReportList repList; /* definition of report list */
 AOP_AIDNameS nsSeq<>; /* sequence of conditions */
 AOP_JoinDef jdSeq<>; /* sequence of join definitions */
 AOP_RefDef refDef; /* reference definition */
 long rowCnt; /* number of requested rows
 - rowCnt<=0 report all rows */
};

union GetValERet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: ANVSeq result<>; /* sequence of resulting attribute sequences */
};

ISO/PAS 22720:2005(E)

520 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-64 ASAM ODS VERSION 5.0

/* ----------------------------- get instance attribute information/values
 The result depends on the values of elemId. If only elemId.aid is set,
 AOP_GetInstAttr will return information (name, data type and unit but
 not the values) about all InstanceAttributes available for specified
 application element.
 If elemId referencing one instance (elemId.aid and elemId.iid are valid)
 all InstanceAttributes belonging to the specified instance will be
 returned.
*/

struct GetInstAttrReq { /* selection request structure */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* application element Id */
};

union GetInstAttrRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_NameV nvSeq<>; /* sequence of resulting attributes */
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 521

RPC-API

ASAM ODS VERSION 5.0 9-65

/* ----------------------- insert/update/delete application element
 */
struct PutValReq { /* update request structure */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* application element Id */
 AOP_NameV nvSeq<>; /* sequence of values */
};

union PutValRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Id iid; /* storage instance id */
};

ISO/PAS 22720:2005(E)

522 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-66 ASAM ODS VERSION 5.0

/* ----------------------- for getting partial matrix info
*/

struct ValInfSeq { /* partial matrix interrelations */
 AOP_Id pmatId;
 AOP_Name pmatName; /* GIDAS requirement
 (sprintf of pmatId) */
 AOP_Name presortNames <>; /* columns to sort in pmat */
 AOP_SortDir presortDir; /* sortdirection */
 AOP_Name joinNames <>; /* join columns */
 AOP_JoinTyp joinTyp;
 AOP_Name postsortNames <>; /* columns to sort on result */
 AOP_SortDir postsortTyp;
};

struct GetValInfReq {
 AOP_Id envId;
 AOP_ElemId elemId; /* aid has to be measurement */
};

union GetValInfRet switch (AOP_Status retState) {
 /* info fetch return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: ValInfSeq iSeq<>; /* sequence of info's */
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 523

RPC-API

ASAM ODS VERSION 5.0 9-67

/* ----------------------- get information on measured quantity/val
 The GetAttr/GetVal methods apply to the "general purpose" application
 elements and not to the area of measurementpointnumbers, partial
 matrix. , measured quantity, ... (see AODS-datamodel).
 For this area AODS uses methods with applicationspecific behaviour.

 This method list measured quantity names and some attributes of them for
 one partial matrix.
 A list of partial matrices available may be fetch using GetValInf.
*/

struct ValAttrSeq { /* linked list of attributes */
 AOP_Name name; /* appl. structure name */
 AOP_Id qtyId; /* reference to dict. (0 allowed) */
 AOP_Id unitId; /* UnitId */
 AOP_IndepFl indepFl; /* independent flag */
 AOP_ImplFl implFl; /* implicit flag */
 AOP_DataType dataType; /* attribute data type */
};

struct ValAttr { /* measurement attribute cursor list */
 AOP_Id pmatId; /* PMatId */
 long numPnt; /* number of measurement point
 in partial matrix */
 /* should be extended for min/max */
 ValAttrSeq vaSeq<>; /* attribute sequence */
};

struct GetValAttrReq { /* request for attribute list */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* measurement id */
 AOP_Id pmatId; /* partial matrix id (0 = all)*/
};

union GetValAttrRet switch (AOP_Status retState) {
 /* return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: ValAttr valAttr<>; /* column info for 1 or more PMat's */
};

ISO/PAS 22720:2005(E)

524 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-68 ASAM ODS VERSION 5.0

/* ------------------------- partial matrix data (values)
 The range of data is selectable by specifying the column(s) (vrName)
 and the local measurement point number(s) (mPntNum mPntCnt)
*/

struct ValValSeq { /* linked list of reported vectors */
 AOP_Name name; /* MQ Name */
 AOP_Id qtyId; /* dictionary Id (ref) */
 AOP_Id unitId; /* unit Id */
 AOP_IndepFl indepFl; /* independent flag */
 AOP_ImplFl implFl; /* implicit (versus explicit) */
 AOP_ValMap valMap; /* vector for values */
 AOP_ValFlags valFlags; /* vector for values flags */
};

/* the partial matrix now holds 2 numbers to be able to preserve
 * origin of data
 */
struct ValVal { /* local column values */
 AOP_Id pmatId; /* pMatId (0 .. yet undef) */
 long mPntBase; /* local point number base */
 long mPntCnt; /* # local points */
 ValValSeq vvSeq<>; /* measurement value list */
};

struct GetValValReq { /* request for measurement results */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* elementId, bid to elemId.aid has to
 be BE_MEA */
 AOP_Id pmatId; /* partial matrix number */
 long mPntBase; /* from local measurement point number */
 long mPntCnt; /* number of measurement points requested */
 AOP_NameU nuSeq<>; /* sequence of attributes to report */
};

union GetValValRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: ValVal valVal<>; /* partial matrices */
};

/* update/write/delete partial matrix -------------------------------------
 * usage: See programmers guide
 */

struct PutValValReq { /* request for measurement results */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId; /* elementId, bid to elemId.aid has to
 be BE_MEA */
 ValVal valVal<>; /* sequence of headers + columns */
 /* (only one PMat for now per call) */
};

union PutValValRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 525

RPC-API

ASAM ODS VERSION 5.0 9-69

 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Id pmatId; /* pmatid given by server */
};

ISO/PAS 22720:2005(E)

526 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-70 ASAM ODS VERSION 5.0

/* ==
 * Connect two instances (n:m)
 */

struct SetInstRefReq {
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId1; /* one element */
 AOP_ElemId elemId2; /* the other */
 AOP_Name refName;
 long onoff; /* insert or remove */
};

struct SetInstRefRet {
 AOP_Status retState;
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 527

RPC-API

ASAM ODS VERSION 5.0 9-71

/* ==
 * Parametrization of ASAM services
 * This method is introduced to have a general purpose method to
 * influence behaviour of server by client including integration
 * of proprietary functions
 */

struct SetParReq {
 AOP_Id envId; /* environ. handle */
 AOP_NameV nvSeq<>; /* parameters */
};

struct SetParRet {
 AOP_Status retState;
};

struct GetParReq {
 AOP_Id envId; /* environ. handle */
 AOP_NameU nuSeq<>; /* parameter name-unit tuples */
};

union GetParRet switch (AOP_Status retState) {
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_NameV nvSeq<>; /* parameters */
};

/* extended error information
 */
struct GetErrReq {
 AOP_Id envId; /* environ. handle */
};

union GetErrRet switch (AOP_Status retState) {
 case S_OK: void;
 case E_NOTOPEN: void;
 case E_SECURITY: void;
 case E_BSS: AOP_String ebsMsg;
 case W_BSS: AOP_String wbsMsg;
 case E_SSS: AOP_String essMsg;
 case W_SSS: AOP_String wssMsg;
 case E_MISC: AOP_String errMsg;
 case E_DAC: AOP_DAC_Status dacCode;
};

ISO/PAS 22720:2005(E)

528 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-72 ASAM ODS VERSION 5.0

/* ==
 * ASAM ODS Security methods
 * The following methods are used for get/set security on data
 * (Modifying ACL information).
 */

typedef long AOP_Rights; /* Used for Rights-Values (bitmasked) */

enum AOP_SetType { /* how to modify bitmasked values */
 SET, /* Set the value to new bits (clears all bits
before) */
 ADD, /* Adds the new bits to the existing ones (OR-
function) */

REMOVE /* Removes the bits from the existing value (~AND function)
*/
};

struct AOP_Acs { /* Access control structure */
 AOP_Id groupId; /* Usergroup Id */
 AOP_ElemId elemId; /* Application element+instance Id */
 AOP_Name attrName; /* Application attribute name */
 AOP_Rights rights; /* rights-value (bitmasked) 5-bits */
};
typedef AOP_Acs AOP_Acl<>;

struct AOP_Irs { /* Initial rights structure */
 AOP_Id groupId; /* Usergroup Id */
 AOP_ElemId elemId; /* Application element+instance Id */
 AOP_Rights rights; /* rights-value (bitmasked) */
 AOP_Id refAid; /* referencing application element. If set to 0,
its been used by all elements that refer to it */
};
typedef AOP_Irs AOP_IrsSeq<>;

struct GetRightsReq { /* getrights-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId<>; /* Application element+instance Ids */
 AOP_Name attrName<>; /* Application attribute names (list of elements + list
of attributes
 at the same time is not
allowed)*/
};

union GetRightsRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Acs acl<>; /* ACL will be returned */
};

struct SetRightsReq { /* setrights-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Acs acl<>; /* ACL */
 AOP_SetType setType; /* set/add/remove bits from rights in ACL */
};

struct SetRightsRet {
 AOP_Status retState;
};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 529

RPC-API

ASAM ODS VERSION 5.0 9-73

struct GetIniRightsReq { /* getinirights-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_ElemId elemId<>; /* List of application element+instance Ids */
};

union GetIniRightsRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Irs irl<>; /* Initial rights list will be returned */
};

struct SetIniRightsReq { /* setinirights-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Irs irl<>; /* Initial rights list */
 AOP_SetType setType; /* set/add/remove bits from rights */
};

struct SetIniRightsRet {
 AOP_Status retState;
};

struct GetIniRightsRefReq { /* getinirightsref-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Id applId; /* Application element Id */
};

union GetIniRightsRefRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Name attr<>; /* attribute-list will be returned */
};

struct SetIniRightsRefReq { /* setinirightsref-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Id applId; /* application element Id */
 AOP_Name refAttr; /* Reference Attribute */
 AOP_Flags set; /* use(1) or don't use(0) the reference-attribute
for ACL templates */
};

union SetIniRightsRefRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Flags set; /* set-value will be returned */
};

struct SetCurrentIniRightsReq { /* setcurrentinirights-request structure */
 AOP_Id envId; /* environ. handle */

ISO/PAS 22720:2005(E)

530 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-74 ASAM ODS VERSION 5.0

 AOP_Irs irl<>; /* Initial ACL to use in subsequent creation of
new instances */
 AOP_Flags set; /* Use(1) this ACL or don't use(0) this ACL for
further inserts anymore */
};

union SetCurrentIniRightsRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Flags set; /* set-value will be returned */
};

struct SetPasswordReq { /* setpassword-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Id userid; /* user-id to set the password for */
 AOP_String oldpwd; /* current password */
 AOP_String newpwd; /* new password */
};

union SetPasswordRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Flags ok; /* ok=1 if password changed otherwise ok=0 */
};

struct SetSecurityLevelReq { /* setsecuritylevel-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Id applId; /* application element id */
 AOP_Flags seclevel; /* security level (bitmasked) */
 AOP_SetType setType; /* set/add/remove security level bits */
};

union SetSecurityLevelRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;
 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Flags seclevel; /* return security-level */
};

struct GetSecurityLevelReq { /* getsecuritylevel-request structure */
 AOP_Id envId; /* environ. handle */
 AOP_Id applId; /* application element id */
};

union GetSecurityLevelRet switch (AOP_Status retState) {
 /* select return value structure */
 case E_NOTOPEN: void;
 case E_BSS: void;
 case E_SSS: void;
 case E_DAC: void;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 531

RPC-API

ASAM ODS VERSION 5.0 9-75

 case E_SECURITY: void;
 case E_MISC: void;
 default: AOP_Flags seclevel; /* return security-level */
};

ISO/PAS 22720:2005(E)

532 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-76 ASAM ODS VERSION 5.0

/* ==
 * procedures
 */

program AODSPROG {

 version AODSVERS3 {

/* Open Environement -- */
 OpenEnvRet AOP_OpenEnv(OpenEnvReq) = 1;

/* Close Environement -- */
 CloseEnvRet AOP_CloseEnv(CloseEnvReq) = 2;

/* Metainfo - querries -- */
 GetApplInfRet AOP_GetApplInf(GetApplInfReq) = 14;
 GetAttrRet AOP_GetAttr(GetAttrReq) = 12;

/* Metainfo - inserts --- */

/* Data querry -- */
 GetValRet AOP_GetVal(GetValReq) = 21;
 GetInstAttrRet AOP_GetInstAttr(GetInstAttrReq) = 22;
 GetInstRefRet AOP_GetInstRef(GetInstRefReq) = 25;
 GetValERet AOP_GetValE(GetValEReq) = 26;

/* Data update on application elements ------------------------------------ */
 PutValRet AOP_PutVal(PutValReq) = 27;
 SetInstRefRet AOP_SetInstRef(SetInstRefReq) = 28;

/* Operations on measured values level --------------------------------- */
 GetValAttrRet AOP_GetValAttr(GetValAttrReq) = 31; /*
 candidate for removal, use GetValVal with zero size */
 GetValValRet AOP_GetValVal(GetValValReq) = 32;
 GetValInfRet AOP_GetValInf(GetValInfReq) = 35;
 PutValValRet AOP_PutValVal(PutValValReq) = 38;

/* Utility functions -- */
 SetParRet AOP_SetPar(SetParReq) = 51;
 GetParRet AOP_GetPar(GetParReq) = 52;
 GetErrRet AOP_GetErr(GetErrReq) = 59;

/* Security functions --- */
SetRightsRet AOP_SetRights(SetRightsReq) = 61;
GetRightsRet AOP_GetRights(GetRightsReq) = 62;
SetIniRightsRet AOP_SetIniRights(SetIniRightsReq) = 63;
GetIniRightsRet AOP_GetIniRights(GetIniRightsReq) = 64;
SetIniRightsRefRet AOP_SetIniRightsRef(SetIniRightsRefReq) = 65;
GetIniRightsRefRet AOP_GetIniRightsRef(GetIniRightsRefReq) = 66;
SetCurrentIniRightsRet AOP_SetCurrentIniRights(SetCurrentIniRightsReq) = 67;
SetPasswordRet AOP_SetPassword(SetPasswordReq) = 68;
SetSecurityLevelRet AOP_SetSecurityLevel(SetSecurityLevelReq) = 69;
GetSecurityLevelRet AOP_GetSecurityLevel(GetSecurityLevelReq) = 70;
 } = 3;

/* Program number for all procedures -------------------------------------- */
} = rpc_number;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 533

RPC-API

ASAM ODS VERSION 5.0 9-77

9.13 REVISION HISTORY

Date
Editor

Changes

2003-10-06
R. Bartz

Some errors have been corrected

2003-11-21
R. Bartz

A section on data type usage has been added

2003-12-30
R. Bartz

The Release version has been created

2004-03
R. Bartz

Section 9.10 "Restrictions of the RPC-API" has been included
Minor textual changes have been introduced

ISO/PAS 22720:2005(E)

534 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

9-78 ASAM ODS VERSION 5.0

ASAM e.V.

Arnikastr. 2

D-85635 Hoehenkirchen

Germany

phone: (+49) 8102 – 895317

fax: (+49) 8102 – 895310

e-mail: info@asam.net

internet: www.asam.net

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 535

ASAM ODS
VERSION 5.0

ISO-PAS

CHAPTER 10

ASAM ODS OO-API
 Version 5.0

Association for Standardization of
Automation and Measuring Systems

Dated: 30.09.2004

© ASAM e.V.

ISO/PAS 22720:2005(E)

536 © ISO 2005 – All rights reserved

Status of Document

Reference: ASAM ODS Version 5.0 ASAM ODS OO-API

Date: 30.09.2004

Author: Hans-Joachim Bothe, HighQSoft; Dr. Helmut Helpenstein, National
Instruments; Gerald Sammer, AVL; Karst Schaap, HighQSoft; Dr. Bruno
Thelen, Schenck Pegasus

Type: Specification

Doc-ID: ASAM_ODS_50_CH10_OO_API.PDF

Revision Status: Release

Note: ASAM ODS has invoked a Formal Technical Review (FTR) process which
intends to continuously improve the quality and timeliness of its specifications.
Whenever an error is identified or a question arises from this specification, a
corresponding note should be sent to ASAM (odsftr@asam.net) to make sure
this issue will be addressed within the next review cycle.

Disclaimer of Warranty

Although this document was created with the utmost care it cannot be guaranteed that it is
completely free of errors or inconsistencies.

ASAM e.V. makes no representations or warranties with respect to the contents or use of this
documentation, and specifically disclaims any expressed or implied warranties of

merchantability or fitness for any particular purpose. Neither ASAM nor the author(s)
therefore accept any liability for damages or other consequences that arise from the use of

this document.

ASAM e.V. reserves the right to revise this publication and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 537

mailto:odsftr@asam.net

OO-API

ASAM ODS VERSION 5.0 10-1

Contents

10 ASAM ODS OO-API 10-5

10.1 INTRODUCTION... 10-5
10.2 INTERFACES OF THE OO-API ... 10-7

10.2.1 AOFACTORY .. 10-8
10.2.2 AOSESSION ... 10-13
10.2.3 APPLELEMACCESS.. 10-39
10.2.4 APPLICATIONATTRIBUTE .. 10-63
10.2.5 APPLICATIONELEMENT... 10-91
10.2.6 APPLICATIONRELATION.. 10-125
10.2.7 APPLICATIONSTRUCTURE... 10-143
10.2.8 BASEATTRIBUTE.. 10-177
10.2.9 BASEELEMENT .. 10-182
10.2.10 BASERELATION ... 10-190
10.2.11 BASESTRUCTURE .. 10-198
10.2.12 BLOB... 10-212
10.2.13 COLUMN .. 10-220
10.2.14 ELEMRESULTSETEXTSEQITERATOR... 10-232
10.2.15 ENUMERATIONDEFINITION .. 10-237
10.2.16 INSTANCEELEMENT.. 10-245
10.2.17 INSTANCEELEMENTITERATOR... 10-277
10.2.18 MEASUREMENT .. 10-282
10.2.19 NAMEITERATOR ... 10-286
10.2.20 NAMEVALUEITERATOR... 10-291
10.2.21 NAMEVALUEUNITIDITERATOR .. 10-296
10.2.22 NAMEVALUEUNITITERATOR.. 10-301
10.2.23 NAMEVALUEUNITSEQUENCEITERATOR... 10-306
10.2.24 QUERY... 10-311
10.2.25 QUERYEVALUATOR.. 10-318
10.2.26 SMATLINK ... 10-322
10.2.27 SUBMATRIX ... 10-334
10.2.28 VALUEMATRIX ... 10-337

10.3 ASAM ODS TYPE DEFINITIONS ... 10-361
10.3.1 ASAM ODS DATA TYPES.. 10-361
10.3.2 SUPPORTED DATA TYPE CONVERSIONS ... 10-362
10.3.3 ASAM ODS CONSTANTS .. 10-363
10.3.4 ASAM ODS ATTRIBUTE TYPES ... 10-364
10.3.5 ASAM ODS BUILD UP FUNCTIONS .. 10-364
10.3.6 ASAM ODS QUERY STATUS ... 10-364
10.3.7 ASAM ODS RIGHTS SET... 10-364

ISO/PAS 22720:2005(E)

538 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-2 ASAM ODS VERSION 5.0

10.3.8 ASAM ODS SELECT OPERATION CODE ...10-365
10.3.9 ASAM ODS SELECT OPERATOR..10-365
10.3.10 ASAM ODS SET TYPE...10-366
10.3.11 ASAM ODS SEVERITY FLAG..10-366
10.3.12 ASAM ODS RELATIONS ..10-366
10.3.13 ASAM ODS PATTERNS..10-369
10.3.14 ASAM ODS EXCEPTIONS ..10-369
10.3.15 ASAM ODS SPECIFIC TYPES ...10-373
10.3.16 ASAM ODS UNIONS ..10-376
10.3.17 ASAM ODS STRUCTURES ...10-379

10.4 PROGRAMMING EXAMPLES ...10-388
10.4.1 ACCESSING THE ASAM ODS FACTORY OBJECT VIA CORBA10-388

10.5 OO-API DEFINITION FILE..10-390
10.5.1 ODS.IDL..10-390

10.6 USING ASAM HARMONIZED DATATYPES ..10-602
10.6.1 MAPPING FILE A_TYPES.IDL ..10-602

10.7 QUICKREFERENCE..10-608
10.7.1 INTERFACE AOFACTORY...10-608
10.7.2 INTERFACE AOSESSION ..10-608
10.7.3 INTERFACE APPLELEMACCESS...10-609
10.7.4 INTERFACE APPLICATIONATTRIBUTE...10-609
10.7.5 INTERFACE APPLICATIONELEMENT..10-610
10.7.6 INTERFACE APPLICATIONRELATION ..10-611
10.7.7 INTERFACE APPLICATIONSTRUCTURE ...10-611
10.7.8 INTERFACE BASEATTRIBUTE...10-612
10.7.9 INTERFACE BASEELEMENT ...10-612
10.7.10 INTERFACE BASERELATION ..10-612
10.7.11 INTERFACE BASESTRUCTURE ...10-613
10.7.12 INTERFACE BLOB..10-613
10.7.13 INTERFACE COLUMN ...10-613
10.7.14 INTERFACE ELEMRESULTSETEXTSEQITERATOR10-613
10.7.15 INTERFACE ENUMERATIONDEFINITION...10-614
10.7.16 INTERFACE INSTANCEELEMENT...10-614
10.7.17 INTERFACE INSTANCEELEMENTITERATOR ...10-615
10.7.18 INTERFACE MEASUREMENT...10-615
10.7.19 INTERFACE NAMEITERATOR ..10-615
10.7.20 INTERFACE NAMEVALUEITERATOR..10-615
10.7.21 INTERFACE NAMEVALUEUNITIDITERATOR ...10-616
10.7.22 INTERFACE NAMEVALUEUNITITERATOR ..10-616
10.7.23 INTERFACE NAMEVALUEUNITSEQUENCEITERATOR10-616
10.7.24 INTERFACE QUERY ...10-616
10.7.25 INTERFACE QUERY ...10-616
10.7.26 INTERFACE SMATLINK..10-617
10.7.27 INTERFACE SUBMATRIX ..10-617
10.7.28 INTERFACE VALUEMATRIX ..10-617

10.8 REVISION HISTORY ...10-619

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 539

OO-API

ASAM ODS VERSION 5.0 10-3

Scope

This document describes the OO-API of the ASAM ODS Version 5.0 with examples,
necessary tables etc.

Intended Audience

This document is intended for implementers of ASAM ODS Version 5.0. It shall be used as a
technical reference with examples how to use the required API methods for accessing all
data stored compliant with ASAM ODS Version 5.0.

This document is part of a series of documents referring to ASAM ODS Version 5.0 and must
not be used as a stand-alone document. The documents referenced below build the
technical reference of ASAM ODS Version 5.0 as a whole. They may be requested from the
ASAM e.V. at www.asam.net.

ASAM ODS Specification

The following chapters build the technical reference for ASAM ODS Version 5.0:

 ASAM ODS Version 5.0, Chapter 1, Introduction

 ASAM ODS Version 5.0, Chapter 2, Architecture

 ASAM ODS Version 5.0, Chapter 3, Physical Storage (1.1)

 ASAM ODS Version 5.0, Chapter 4, Base Model (28)

 ASAM ODS Version 5.0, Chapter 5, ATF/CLA (1.4.1)

 ASAM ODS Version 5.0, Chapter 6, ATF/XML (1.0)

 ASAM ODS Version 5.0, Chapter 7: N/A ('Security' moved to Chapter 2)

 ASAM ODS Version 5.0, Chapter 8, MIME Types and External References (1.0)

 ASAM ODS Version 5.0, Chapter 9, RPC-API (3.2.1)

 ASAM ODS Version 5.0, Chapter 10, OO-API (5.0)

 ASAM ODS Version 5.0, Chapter 11, NVH Model (1.3)

 ASAM ODS Version 5.0, Chapter 12, Calibration Model (1.0)

Normative References

 ISO 10303-11: STEP EXPRESS

 Object Management Group (OMG): www.omg.org

 Common Object Request Broker Architecture (CORBA): www.corba.org

 IEEE 754: IEEE Standard for Binary Floating-Point Arithmetic, 1985

 ISO 8601: Date Formats

 Extensible Markup Language (XML): www.w3.org/xml

ISO/PAS 22720:2005(E)

540 © ISO 2005 – All rights reserved

www.asam.net
www.omg.org
www.corba.org
www.w3.org/xml

ASAM ODS VERSION 5.0

10-4 ASAM ODS VERSION 5.0

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 541

OO-API

ASAM ODS VERSION 5.0 10-5

10 ASAM ODS OO-API

10.1 INTRODUCTION

The ASAM ODS OO-API (Object-Oriented Application Programmers Interface) is designed to
allow easy and fine granular read/write access to any ASAM ODS data from a variety of
programming languages and interpreters. Object oriented methods are the foundation of the
ASAM ODS OO-API. Nevertheless non-object oriented programming languages can be used
for application programming.

Current implementations of the OO-API base on CORBA as transport mechanism for objects
and mediator for object access. However this is not prescribed by ASAM ODS. Any other
approach for distributed object access may be implemented. This implicitly means that
following this specification of the OO-API does not guarantee product compatibility.
Therefore each server or client implementation must state what technology it is based on
(e.g. CORBA version 2.0) and what third party software is required for a smooth operation
(as it must e.g. state on what platforms it will run etc.). In case of doubt participating at any of
the officially organized cross-tests may help to unveil possible compatibility issues. More
information on cross-tests may be received from the ASAM e.V..

In contrary to the ASAM ODS RPC-API (see chapter 9, RPC-API), the fine granularity of the
OO-API may potentially cause excessive network traffic even on small amounts of data. The
main design goal of the ASAM ODS OO-API was programming convenience and ease of
use; performance and network traffic optimizations have not been an important issue.
However, implementations of the ASAM ODS OO-API may use the ASAM ODS RPC-API
internally for better network performance.

The functionality of the ASAM ODS OO-API is precisely defined according the CORBA-IDL
(Common Object Request Broker Architecture - Interface Definition Language). The CORBA-
IDL was chosen for two reasons:

 Because it is a well-defined description language
 Because there are programs available that can generate CORBA stub- and skeleton-

code for various languages (e.g. C++ and Java). OO-API language bindings are possible
for languages like C, C++, Tcl, Perl, Python, Interactive Data Language (IDL), Visual
Basic, Java, Smalltalk, Delphi and others.

The main advantages of this approach are easy implementation and simple function calls. No
complex structures are used and only a few arguments are necessary per call. The
arguments themselves have a simple structure (strings, longs, floats, string lists, value lists,
etc.).

For details see the ASAM ODS definition file ODS.IDL (section 10.5).

ISO/PAS 22720:2005(E)

542 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-6 ASAM ODS VERSION 5.0

The entry point of the OO-API object hierarchy is always the ASAM ODS factory object
(AoFactory, see next section). As soon as an ASAM ODS factory object exists, it can be
used to create an arbitrary number of ASAM ODS sessions (AoSession). Additionally, the
factory object provides general information like the factory name and type, a description
string and the current interface version.

Both AoFactory and AoSession, together with all required data type definitions and the
definitions of the interfaces listed below are also part of the ODS.IDL:

 ApplicationStructure, ApplicationElement, ApplicationAttribute, ApplicationRelation
 ApplElemAccess
 BaseStructure, BaseElement, BaseAttribute, BaseRelation
 Blob
 Column
 ElemResultSetExtSeqIterator
 EnumerationDefinition
 InstanceElement, InstanceElementIterator
 Measurement
 NameIterator, NameValueIterator, NameValueUnitIdIterator, NameValueUnitIterator,

NameValueUnitSequenceIterator
 Query, QueryEvaluator
 SMatLink
 SubMatrix
 ValueMatrix

The “Application*” interface group is used for creating, manipulating and querying information
about the application model. Very often, it is not possible or desirable to change the
application model. The application model is normally created in the design phase of a project
and rarely modified thereafter, because modifications of the application model may result in
major mapping efforts or even restructuring of the underlying database. The application
model is a description of how the real data is organized and structured – thus the information
in the application model is often referred to as meta-data.

The “ApplElemAccess” interface is used to access large amount of data within few
client/server round-trips. By using this interface the performance can be improved for
insert/delete/update operations. The “Base*” interface group is used for getting information
about the ASAM ODS base model. The base model is read-only; there is no way for an
application program to modify the information contained in this model.

The “Instance*” group is used to create, modify and delete data objects whose structure is
defined in the application model.

Measurement, SubMatrix, SMatLink, ValueMatrix, Column and Blob objects are used for
array data manipulation.

The Query Interface defines selections based on the application model. This object is
essential for creating subsets of data structures, thus reducing the amount of required data.
The design of the query interface intentionally is a flavor of the COS (OMG's Common Object
Services) Query Service. However, the Query interface is introduced but not yet supported in
ODS 5.0 because the definition of the ASAM query language is not completed yet. Clients
cannot use the interfaces Query, QueryEvaluator, and AoSession.createQueryEvaluator. An
ASAM ODS Server Version 5.0 must throw an exception AO_NOT_IMPLEMENTED for all
methods used in these interfaces.

Clients may only modify data within an active transaction. It is not allowed to insert, delete, or
update data without transaction.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 543

OO-API

ASAM ODS VERSION 5.0 10-7

10.2 INTERFACES OF THE OO-API

On the following pages all callable objects, elements and functions of the OO-API are listed
in alphabetical order. Additionally the calling sequences, parameters (with type), arguments,
return types and returned values are listed respectively. Many examples in Java complete
this description of the OO-API.

NOTE: The argument “pattern” is always case sensitive. “pattern” may have wildcard
characters as follows: “?” for one matching character, “*” for a sequence of matching
characters.

ISO/PAS 22720:2005(E)

544 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-8 ASAM ODS VERSION 5.0

10.2.1 AOFACTORY

AOFACTORY_GETDESCRIPTION

Purpose

Get the description of the ASAM ODS factory. If the description is not available an empty
string is returned and no exception is thrown. The server loads the description from the
base attribute "description" of the instance of AoEnvironment.

Parameters

None.

Java Calling Sequence

T_STRING description = aoFactory.getDescription();

Returns:

Return-Name: description

Return-Type: T_STRING

The description of the ASAM ODS factory.

Examples:

Language: Java

String description;

description = aoFactory.getDescription();

...

Possible exceptions (for details see section 10.3.14)

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 545

OO-API

ASAM ODS VERSION 5.0 10-9

AOFACTORY_GETINTERFACEVERSION

Purpose

Get the interface version of the ASAM ODS factory. The interface version is for each
ODS version a fixed string. The string for this version is 'OO-5.0'.

Parameters

None.

Java Calling Sequence

T_STRING interfaceVersion = aoFactory.getInterfaceVersion();

Returns:

Return-Name: interfaceVersion

Return-Type: T_STRING

The interface version of the ASAM ODS factory.

Examples:

Language: Java

String interfaceVersion;
interfaceVersion = aoFactory.getInterfaceVersion();

Possible exceptions (for details see section 10.3.14)

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

ISO/PAS 22720:2005(E)

546 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-10 ASAM ODS VERSION 5.0

AOFACTORY_GETNAME

Purpose

Get the name of the ASAM ODS factory. If the name is not available an empty string is
returned and no exception is thrown.

Parameters

None.

Java Calling Sequence

T_STRING factoryName = aoFactory.getName();

Returns:

Return-Name: factoryName

Return-Type: T_STRING

The name of the ASAM ODS factory.

Examples:

Language: Java

String name;
name = aoFactory.getName();

Possible exceptions (for details see section 10.3.14)

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 547

OO-API

ASAM ODS VERSION 5.0 10-11

AOFACTORY_GETTYPE

Purpose

Get the type of the ASAM ODS factory. If the type is not available an empty string is
returned and no exception is thrown. The server loads the type from the base attribute
"Application_model_type" of the instance of AoEnvironment.

Parameters

None.

Java Calling Sequence

T_STRING factoryType = aoFactory.getType();

Returns:

Return-Name: factoryType

Return-Type: T_STRING

The type of the ASAM ODS factory.

Examples:

Language: Java

String type;

type = aoFactory.getType();

Possible exceptions (for details see section 10.3.14)

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

ISO/PAS 22720:2005(E)

548 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-12 ASAM ODS VERSION 5.0

AOFACTORY_NEWSESSION

Purpose

Establish a new session to an ASAM ODS server. The server normally checks the
activity of the session and will close the session after a time period of inactivity.

Parameters

auth (Type = T_STRING)

A string that may contain authentication information. The following values are currently
supported:

 USER

 PASSWORD

 OPENMODE

The values may be specified in any order and have to be separated by comma.

Example:

"USER=hans, PASSWORD=secret, OPENMODE=read"

Java Calling Sequence

AoSession aoSession = aoFactory.newSession(auth);

Returns:

Return-Name: aoSession

Return-Type: AoSession

The new created ASAM ODS session.

Examples:

Language: Java

import org.asam.ods.AoSession;

AoSession session;

session = aoFactory.newSession("USER=hans, PASSWORD=secret");

Possible exceptions (for details see section 10.3.14)

AO_CONNECT_FAILED

AO_CONNECT_REFUSED

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_OPEN_MODE_NOT_SUPPORTED

AO_SESSION_LIMIT_REACHED

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 549

OO-API

ASAM ODS VERSION 5.0 10-13

10.2.2 AOSESSION

AOSESSION_ABORTTRANSACTION

Purpose

Abort (rollback) a transaction. The changes made in the transaction are lost.

Parameters

None.

Java Calling Sequence

aoSession.abortTransaction();

Returns:

None.

Examples:

Language: Java

import org.asam.ods.AoSession;

// Create a new session with aoFactory.

AoSession session;
session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Start a new transaction.

 session.startTransaction();

 ...

 // Abort transaction.

 session.abortTransaction();

 // Close the session.
 session.close();

}

Possible exceptions (for details see section 10.3.14)

AO_ACCESS_DENIED

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

550 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-14 ASAM ODS VERSION 5.0

AOSESSION_CLOSE

Purpose

Close session to an ASAM ODS server. Active transactions are committed.

Parameters

None.

Java Calling Sequence

aoSession.close();

Returns:

None.

Examples:

Language: Java

import org.asam.ods.AoSession;

// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");
// Session successfully created ?

if (session != null) {

 ...

 // Close the session.

 session.close();
}

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 551

OO-API

ASAM ODS VERSION 5.0 10-15

AOSESSION_COMMITTRANSACTION

Purpose

Commit a transaction. The changes made in the transaction become permanent.

Parameters

None.

Java Calling Sequence

aoSession.commitTransaction();

Returns:

None.

Examples:

Language: Java

import org.asam.ods.AoSession;

// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");
// Session successfully created ?

if (session != null) {

 // Start a new transaction.

 session.startTransaction();

 ...

 // Commit changes.

 session.commitTransaction();

 // Close the session.
 session.close();

}

Possible exceptions (for details see section 10.3.14)

AO_ACCESS_DENIED

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

552 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-16 ASAM ODS VERSION 5.0

AOSESSION_CREATEBLOB

Purpose

Create a new object with the Interface Blob on the server. This object can be used to
create an attribute value of the datatype DT_BLOB.

Parameters

None.

Java Calling Sequence

Blob blob = aoSession.createBlob();

Returns:

Return-Name: blob

Return-Type: Blob

The reference of the blob object which is generated at the server

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 553

OO-API

ASAM ODS VERSION 5.0 10-17

AOSESSION_CREATEQUERYEVALUATOR

Purpose

Create a QueryEvaluator object.

Parameters

None.

Java Calling Sequence

QueryEvaluator queryEvaluator = aoSession.createQueryEvaluator();

Returns:

Return-Name: queryEvaluator

Return-Type: QueryEvaluator

The new created query evaluator object

Possible exceptions (for details see section 10.3.14)

AO_ACCESS_DENIED

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

554 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-18 ASAM ODS VERSION 5.0

AOSESSION_FLUSH

Purpose

Make the changes permanent.

Parameters

None.

Java Calling Sequence

aoSession.flush();

Returns:

None.

Examples:

Language: Java

import org.asam.ods.AoSession;

// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");
// Session successfully created ?

if (session != null) {

 // Start a new transaction.

 session.startTransaction();

 ...
 // Flush changes

 session.flush();

 ...

 // Commit changes.

 session.commitTransaction();
 // Close session.

 session.close();

}

Possible exceptions (for details see section 10.3.14)

AO_ACCESS_DENIED

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 555

OO-API

ASAM ODS VERSION 5.0 10-19

AOSESSION_GETAPPLELEMACCESS

Purpose

Get the application element access object from the current session.

Parameters

None.

Java Calling Sequence

ApplElemAccess applElemAccess = aoSession.getApplElemAccess();

Returns:

Return-Name: applElemAccess

Return-Type: ApplElemAccess

The application element access object.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.ApplElemAccess;
// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {
 // Get ApplElemAccess.

 ApplElemAccess aea = session.getApplElemAccess();

 ...

 // Close the session.

 session.close();

}

Possible exceptions (for details see section 10.3.14)

AO_ACCESS_DENIED

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

556 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-20 ASAM ODS VERSION 5.0

AOSESSION_GETAPPLICATIONSTRUCTURE

Purpose

Get the application model from the current session by returning an object with the
interface ApplicationStructure. The complete information on the application model is
available through that interface.

Parameters

None.

Java Calling Sequence

ApplicationStructure applicationStructure = aoSession.getApplicationStructure();

Returns:

Return-Name: applicationStructure

Return-Type: ApplicationStructure

The application model.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.ApplicationStructure;

// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");
// Session successfully created ?

if (session != null) {

 // Get Application Model.

 ApplicationStructure as =
 session.getApplicationStructure();

 ...

 // Close the session.

 session.close();
}

Possible exceptions (for details see section 10.3.14)

AO_ACCESS_DENIED

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 557

OO-API

ASAM ODS VERSION 5.0 10-21

AOSESSION_GETAPPLICATIONSTRUCTUREVALUE

Purpose

Get the application model as values from the current session.

Parameters

None.

Java Calling Sequence

ApplicationStructureValue applicationStructureValue =
aoSession.getApplicationStructureValue();

Returns:

Return-Name: applicationStructureValue

Return-Type: ApplicationStructureValue

The application model as value.

Possible exceptions (for details see section 10.3.14)

AO_ACCESS_DENIED

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

558 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-22 ASAM ODS VERSION 5.0

AOSESSION_GETBASESTRUCTURE

Purpose

Get the ASAM ODS base model from the current session by returning an object with the
interface BaseStructure. The complete information on the base model is available
through that interface; it includes all possible base elements with all possible base
attributes as specified by ASAM ODS.

Parameters

None.

Java Calling Sequence

BaseStructure baseStructure = aoSession.getBaseStructure();

Returns:

Return-Name: baseStructure

Return-Type: BaseStructure

The base model.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 559

OO-API

ASAM ODS VERSION 5.0 10-23

AOSESSION_GETCONTEXT

Purpose

Get context variables from the session. A pattern string can be specified to select groups
of variables.

Parameters

varPattern (Type = Pattern)

The name or the search pattern for the context variable(s).

Java Calling Sequence

NameValueIterator nvIterator = aoSession.getContext(varPattern);

Returns:

Return-Name: nvIterator

Return-Type: NameValueIterator

A list of context variables.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.NameValue;

import org.asam.ods.NameValueIterator;

// Create a new session with aoFactory.

AoSession session;
session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Create holder for return values.

 NameValueIterator nvIte;
 NameValue[] nvSeq;

 // Ask for all variables with any name pattern.

 nvIte = session.getContext("*");

 // Get max. 40 variables

 nvSeq = nvIte.nextN(40);
 ...

 // Print the result variable list to standard output.

 for (int i=0; i<nvSeq.length; i++) {

 System.out.println (nvSeq[i].name + " = \"" +

 nvSeq[i].value.u.stringVal() + "\"");
 }

 ...

 // Close the session.

 session.close();

}

ISO/PAS 22720:2005(E)

560 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-24 ASAM ODS VERSION 5.0

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_FOUND

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 561

OO-API

ASAM ODS VERSION 5.0 10-25

AOSESSION_GETCONTEXTBYNAME

Purpose

Get a context variable by its name from the session.

Parameters

varName (Type = Name)

The name of the requested context variable.

Java Calling Sequence

NameValue contextVariable = aoSession.getContextByName(varName);

Returns:

Return-Name: contextVariable

Return-Type: NameValue

The requested context variable.

Examples:

Language: Java

import org.asam.ods.AoSession;
// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {
 // Get a test variable named TestVar.

 NameValue nvPair = session.getContextByName("TestVar");

 ...

 // Close the session.

 session.close();
}

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_FOUND

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

562 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-26 ASAM ODS VERSION 5.0

AOSESSION_GETDESCRIPTION

Purpose

Get the description of the ASAM ODS session.The description of the session is identical
with description of the ASAM ODS factory. If the description is not available an empty
string is returned and no exception is thrown. The server loads the description from the
base attribute "description" of the instance of AoEnvironment.

Parameters

None.

Java Calling Sequence

T_STRING description = aoSession.getDescription();

Returns:

Return-Name: description

Return-Type: T_STRING

The description of the ASAM ODS session.

Examples:

Language: Java

String description;

description = aoSession.getDescription();

...

Possible exceptions (for details see section 10.3.14)

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_CONNECTION_LOST

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 563

OO-API

ASAM ODS VERSION 5.0 10-27

AOSESSION_GETLOCKMODE

Purpose

Get the current lock mode. The lock mode tells the server which objects to lock for
upcoming changes. Application elements, instance elements or children of elements can
be locked.

Parameters

None.

Java Calling Sequence

LockMode lockMode = aoSession.getLockMode();

Returns:

Return-Name: lockMode

Return-Type: T_SHORT

The current lock mode. The lock mode constants are defined in the interface LockMode.
The interface definition language IDL does not allow to set the values of enumerations
thus the constant definitions had to be done in an interface.

Possible exceptions (for details see section 10.3.14)

AO_ACCESS_DENIED

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

564 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-28 ASAM ODS VERSION 5.0

AOSESSION_GETNAME

Purpose

Get the name of the ASAM ODS session. The name of the session is identical with the
name of the ASAM ODS factory. If the name is not available an empty string is returned
and no exception is thrown. The server loads the description from the base attribute
"name" of the instance of AoEnvironment.

Parameters

None.

Java Calling Sequence

Name sessionName = aoSession.getName();

Returns:

Return-Name: sessionName

Return-Type: Name

The name of the ASAM ODS session.

Examples:

Language: Java

String name;

name = aoSession.getName();

Possible exceptions (for details see section 10.3.14)

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_CONNECTION_LOST

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 565

OO-API

ASAM ODS VERSION 5.0 10-29

AOSESSION_GETTYPE

Purpose

Get the type of the ASAM ODS session. The type of the session is identical with the type
of the ASAM ODS factory. If the type is not available an empty string is returned and no
exception is thrown. The server loads the type from the base attribute
"Application_model_type" of the instance of AoEnvironment.

Parameters

None.

Java Calling Sequence

T_STRING sessionType = aoSession.getType();

Returns:

Return-Name: sessionType

Return-Type: T_STRING

The type of the ASAM ODS session.

Examples:

Language: Java

String type;

type = aoSession.getType();

Possible exceptions (for details see section 10.3.14)

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_CONNECTION_LOST

ISO/PAS 22720:2005(E)

566 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-30 ASAM ODS VERSION 5.0

AOSESSION_LISTCONTEXT

Purpose

List the names of context variables from the session. A pattern string can be specified to
select groups of variables.

Parameters

varPattern (Type = Pattern)

The name or the search pattern for the context variable(s).

Java Calling Sequence

NameIterator nameIterator = aoSession.listContext(varPattern);

Returns:

Return-Name: nameIterator

Return-Type: NameIterator

A list of context variable names.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NOT_FOUND

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 567

OO-API

ASAM ODS VERSION 5.0 10-31

AOSESSION_REMOVECONTEXT

Purpose

Remove context variables from the session. A pattern string can be specified to remove
groups of variables.

Parameters

varPattern (Type = Pattern)

The name or the search pattern for the context variable(s) to be removed.

Java Calling Sequence

aoSession.removeContext(varPattern);

Returns:

None.

Examples:

Language: Java

import org.asam.ods.AoSession;

// Create a new session with aoFactory.
AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Create a test variable named TestVar.
 String varName = "TestVar";

 String varValue = "Value of TestVar";

 session.setContextString(varName,varValue);

 ...

 // Remove context variable TestVar.
 session.removeContext(varName);

 ...

 // Close the session.

 session.close();

}

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NOT_FOUND

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

568 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-32 ASAM ODS VERSION 5.0

AOSESSION_SETCONTEXT

Purpose

Set/modify a known context variable or add a new context variable to the session.

Parameters

contextVariable (Type = NameValue)

The context variable.

Java Calling Sequence

aoSession.setContext(contextVariable);

Returns:

None.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.types.TS_Union;

import org.asam.ods.types.TS_Value;
import org.asam.ods.types.NameValue;

// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");
// Session successfully created ?

if (session != null) {

 // Define variable name and value.

 String varName = "TestVar";
 float varValue = 4711.3;

 /* Build the name-value pair.

 short[] flag = {0};

 TS_Union union = new TS_Union();
 union.floatVal(varValue);

 TS_Value tsVal = new TS_Value(union,flag);

 NameValue nvPair = new NameValue(varName,tsVal)

 // Create a float test variable named TestVar.

 session.SetContext(nvPair);

 ...

 // Close the session.

 session.close();

}

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 569

OO-API

ASAM ODS VERSION 5.0 10-33

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

570 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-34 ASAM ODS VERSION 5.0

AOSESSION_SETCONTEXTSTRING

Purpose

Set/modify a known context variable or add a new context variable to the session. This is
a convienience method for the frequently used string variable type. It uses setContext
internally.

Parameters

varName (Type = Name)

The name of the context variable.

value (Type = T_STRING)

The value of the context variable.

Java Calling Sequence

aoSession.setContextString(varName,value);

Returns:

None.

Examples:

Language: Java

import org.asam.ods.AoSession;

// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");
// Session successfully created ?

if (session != null) {

 // Create a test variable named TestVar.

 String varName = "TestVar";

 String varValue = "Value of TestVar";
 session.setContextString(varName,varValue);

 ...

 // Close the session.

 session.close();

}

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 571

OO-API

ASAM ODS VERSION 5.0 10-35

AOSESSION_SETCURRENTINITIALRIGHTS

Purpose

Every new created instance will set its initial rights to <acl> . This method overrides the
default-methods for applying initial rights. The initial rights are only valid for the current
session.

Parameters

irlEntries (Type = InitialRightSequence)

The current initial rights.

set (Type = T_BOOLEAN)

Set (1) or remove (0) the current initial rights. The previous initial rights get lost. If the
parameter set is 0 (remove) the parameter irlEntries will be ignored.

Java Calling Sequence

aoSession.setCurrentInitialRights(irlEntries,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_ACCESS_DENIED

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

572 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-36 ASAM ODS VERSION 5.0

AOSESSION_SETLOCKMODE

Purpose

Set the new lock mode. The lock mode tells the server which objects to lock for
upcoming changes. Application elements, instance elements or children of elements can
be locked.

Parameters

lockMode (Type = T_SHORT)

The new lock mode. The lock mode constants are defined in the interface LockMode.
The interface definition language IDL does not allow to set the values of enumerations
thus the constant definitions had to be done in an interface.

Java Calling Sequence

aoSession.setLockMode(lockMode);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_ACCESS_DENIED

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 573

OO-API

ASAM ODS VERSION 5.0 10-37

AOSESSION_SETPASSWORD

Purpose

Change the password for user defined by <username> to <newPassword>. A normal
user must supply his current password <oldPassword>. The superuser can change the
password without supplying the current password <oldPassword>. If no username is
given the password of the user of te current session will be changed. The password is
normally encrypted in the attribute of the user instance element. Creating a new user can
be done by creating a new instance, afterwards the password must be set by the
superuser.

Parameters

username (Type = T_STRING)

The name of the user for which the password will be changed. If no username is given
the password of the current user will be changed. If the username differs from the
current user the current user must be a superuser.

oldPassword (Type = T_STRING)

The current password of the user. A normal user must supply his current password. The
superuser can change the password without supplying the current password.

newPassword (Type = T_STRING)

The new password of the user.

Java Calling Sequence

aoSession.setPassword(username,oldPassword,newPassword);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_ACCESS_DENIED

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

AO_WRONG_PASSWORD

ISO/PAS 22720:2005(E)

574 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-38 ASAM ODS VERSION 5.0

AOSESSION_STARTTRANSACTION

Purpose

Start a transaction on the physical storage system (e.g. database system). Only when a
transaction is started it is allowed to create or modify instances or measurement data.
The changes get permanent with a commit of the transaction or will be lost with an abort
of the transaction. If the session is closed the transaction will be committed
automatically. If a transaction is already active an exception is thrown.

Parameters

None.

Java Calling Sequence

aoSession.startTransaction();

Returns:

None.

Examples:

Language: Java

import org.asam.ods.AoSession;

// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?
if (session != null) {

 // Start a new transaction.

 session.startTransaction();

 ...

 // Commit changes.
 session.commitTransaction();

 // Close session.

 session.close();

}

Possible exceptions (for details see section 10.3.14)

AO_ACCESS_DENIED

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_ALREADY_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 575

OO-API

ASAM ODS VERSION 5.0 10-39

10.2.3 APPLELEMACCESS

APPLELEMACCESS_DELETEINSTANCES

Purpose

Delete instances from an application element. In case of inherited application elements the Id
of the supertype has to be specified. This method can be used to delete several instances of
the same application element, the method removeInstances removes one instance of an
application element with the children of the instance element.

Parameters

aid (Type = T_LONGLONG)

The application element Id.

instIds (Type = S_LONGLONG)

The sequence of instance Id's. At the RPC-API this information was stored in the fields
elemId and nvSeq of the structure PutValReq and the request AOP_PutValReq.

Java Calling Sequence

applElemAccess.deleteInstances(aid,instIds);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

576 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-40 ASAM ODS VERSION 5.0

APPLELEMACCESS_GETATTRIBUTERIGHTS

Purpose

Retrieve access control list information for the given application attribute
<aid>/<attr_name>.

Parameters

aid (Type = T_LONGLONG)

The Id of the application element.

attrName (Type = T_STRING)

The name of the attribute.

Java Calling Sequence

ACL[] aclEntries = applElemAccess.getAttributeRights(aid,attrName);

Returns:

Return-Name: aclEntries

Return-Type: ACLSequence

The access control list entries of the give application attribute.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 577

OO-API

ASAM ODS VERSION 5.0 10-41

APPLELEMACCESS_GETELEMENTINITIALRIGHTS

Purpose

Retrieve access control list information of the initial rights for the requested application
element <aid>.

Parameters

aid (Type = T_LONGLONG)

The Id of the application element.

Java Calling Sequence

InitialRight[] initialRights = applElemAccess.getElementInitialRights(aid);

Returns:

Return-Name: initialRights

Return-Type: InitialRightSequence

The access control list entries of the given application element for the initial rights.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

578 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-42 ASAM ODS VERSION 5.0

APPLELEMACCESS_GETELEMENTRIGHTS

Purpose

Retrieve access control list information for the requested application element <aid>.

Parameters

aid (Type = T_LONGLONG)

The Id of the application element.

Java Calling Sequence

ACL[] aclEntries = applElemAccess.getElementRights(aid);

Returns:

Return-Name: aclEntries

Return-Type: ACLSequence

The access control list entries of the given application element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 579

OO-API

ASAM ODS VERSION 5.0 10-43

APPLELEMACCESS_GETINITIALRIGHTREFERENCE

Purpose

Get all attribute names (references) which are used to retrieve the Initial Rights.

Parameters

aid (Type = T_LONGLONG)

The application element Id.

Java Calling Sequence

Name[] refNameList = applElemAccess.getInitialRightReference(aid);

Returns:

Return-Name: refNameList

Return-Type: NameSequence

The names of the references which will be used for the initial rights determination.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

580 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-44 ASAM ODS VERSION 5.0

APPLELEMACCESS_GETINSTANCEINITIALRIGHTS

Purpose

Retrieve access control list information of the initial rights for the requested instance
<aid>/<iid>.

Parameters

aid (Type = T_LONGLONG)

The Id of the application element.

iid (Type = T_LONGLONG)

The Id of the instance.

Java Calling Sequence

InitialRight[] initialRights = applElemAccess.getInstanceInitialRights(aid,iid);

Returns:

Return-Name: initialRights

Return-Type: InitialRightSequence

The access control list entries of the given instance for the initial rights.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 581

OO-API

ASAM ODS VERSION 5.0 10-45

APPLELEMACCESS_GETINSTANCERIGHTS

Purpose

Retrieve access control list information for the requested instance <aid>/<iid>.

Parameters

aid (Type = T_LONGLONG)

The Id of the application element.

iid (Type = T_LONGLONG)

The Id of the instance.

Java Calling Sequence

ACL[] aclEntries = applElemAccess.getInstanceRights(aid,iid);

Returns:

Return-Name: aclEntries

Return-Type: ACLSequence

The access control list entries of the given instance.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

582 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-46 ASAM ODS VERSION 5.0

APPLELEMACCESS_GETINSTANCES

Purpose

Perform the Query.

The number of different application elements which are requested are exactly defined by
the definition of the query given in the field anuSeq of the QueryStructure. The number
of attributes for each application element is also given in the definition. The number of
matching instances (their attributes) is not defined by the query and can be a large
amount. Therefore only one iterator for the attribute values is defined.

Parameters

aoq (Type = QueryStructure)

The query definition.

how_many (Type = T_LONG)

Maximum number of instances in each result set. Valid arguments are:

how_many = 0 : report all instances found

how_many > 0 : report at most the given number of instances found

Java Calling Sequence

ElemResultSet[] elemResultSet = applElemAccess.getInstances(aoq,how_many);

Returns:

Return-Name: elemResultSet

Return-Type: ElemResultSetSequence

The result set with the requested attribute values.

Examples:

Language: Java

import org.asam.ods.AoException;

import org.asam.ods.AoFactory;
import org.asam.ods.AoSession;

import org.asam.ods.ApplicationAttribute;

import org.asam.ods.ApplicationElement;

import org.asam.ods.ApplicationStructure;

import org.asam.ods.ApplElemAccess;

import org.asam.ods.QueryStructure;
import org.asam.ods.AIDName;

import org.asam.ods.AIDNameUnitId;

import org.asam.ods.AIDNameValueUnitId;

import org.asam.ods.ElemId;

import org.asam.ods.ElemResultSet;
import org.asam.ods.SelOpcode;

import org.asam.ods.SelOperator;

import org.asam.ods.SelValue;

import org.asam.ods.TS_Value;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 583

OO-API

ASAM ODS VERSION 5.0 10-47

import org.asam.ods.TS_Union;

import org.asam.ods.T_LONGLONG;

public class UsingApplElemAccess {

 public static void showElemResultSet (ElemResultSet elemRes[]) {

 for (int i = 0; i < elemRes.length; i++) {
 System.out.println("aid = " + elemRes[i].aid.low);

 for (int j = 0; j < elemRes[i].attrValues.length; j++) {

System.out.println(elemRes[i].attrValues[j].attrValues.valName);

 // Print the values.
 }

 }

 }

 // Java application entry.
 public static void main(String[] args) {

 try {

 // Establish a session to the service (without session
 options).

 AoSession aoSession = aoFactory.newSession("");

 // Get the application model.

 ApplicationStructure as =
 aoSession.getApplicationStructure();

 // Get the appl elem access object

 ApplElemAccess aea = aoSession.getApplElemAccess();

 // Create the query structure for the method getInstances

 QueryStructure aoq;

 // The application attribute.

 ApplicationAttribute aaObj;

 // Result of the request

 ElemResultSet elemRes[];

 // Selectvalue of the Id
 T_LONGLONG iid;

 // Query on the application element AoTest

ISO/PAS 22720:2005(E)

584 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-48 ASAM ODS VERSION 5.0

 ApplicationElement ae[] = as.getElementsByBaseType (
 "AoTest");

 ApplicationElement aeObj = null;

 if (ae.length > 0)

 {

 aeObj = ae[0];

 /* Report attribute Id, Name of the instances of
 AoTest with

 * id < 10 and name like "ZYK*" and reference to
 AoSubTest with Id 1"

 */
 aoq = new QueryStructure();

 aaObj = aeObj.getAttributeByBaseName("id");

 aoq.anuSeq = new AIDNameUnitId [2];

 aoq.anuSeq[0] = new AIDNameUnitId ();

 aoq.anuSeq[0].attr = new AIDName();
 // set Id of element

 aoq.anuSeq[0].attr.aid = aeObj.getId();

 // Set Name of attribute

 aoq.anuSeq[0].attr.aaName = aaObj.getName();

 // Build the query, two select values.

 aoq.condSeq = new SelValue[2];

 // First select on the Id

 aaObj = aeObj.getAttributeByBaseName("id");
 aoq.condSeq[0] = new SelValue();

 aoq.condSeq[0].attr = new AIDNameValueUnitId ();

 aoq.condSeq[0].attr.attr = new AIDName();

 aoq.condSeq[0].attr.attr.aid = aeObj.getId();

 aoq.condSeq[0].attr.attr.aaName = aaObj.getName();
 aoq.condSeq[0].value = new TS_Value();

 aoq.condSeq[0].value.u = new TS_Union();

 iid = new T_LONGLONG();

 iid.high = 0;

 iid.low = 10;
 aoq.condSeq[0].value.u.longlongVal(iid);

 aoq.condSeq[0].oper = SelOpcode.LT;

 // Second select on the Name

 aaObj = aeObj.getAttributeByBaseName("name");
 aoq.anuSeq[1] = new AIDNameUnitId ();

 aoq.anuSeq[1].attr = new AIDName();

 // set Id of element

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 585

OO-API

ASAM ODS VERSION 5.0 10-49

 aoq.anuSeq[1].attr.aid = aeObj.getId();

 // Set name of attribute

 aoq.anuSeq[1].attr.aaName = aaObj.getName();

 // Build the query.

 aoq.condSeq[1] = new SelValue();

 aoq.condSeq[1].attr = new AIDNameValueUnitId ();

 aoq.condSeq[1].attr.attr = new AIDName();
 aoq.condSeq[1].attr.attr.aid = aeObj.getId();

 aoq.condSeq[1].attr.attr.aaName = aaObj.getName();

 aoq.condSeq[1].value = new TS_Value();

 aoq.condSeq[1].value.u = new TS_Union();

 aoq.condSeq[1].value.u.stringVal("ZYK*");
 aoq.condSeq[1].oper = SelOpcode.EQ;

 // Set the operator.

 aoq.operSeq = new SelOperator[1];

 aoq.operSeq[0] = SelOperator.OR;

 // Set the reference selection

 ae = as.getElementsByBaseType ("AoSubTest");

 ApplicationElement aeSubObj = null;

 if (ae.length > 0)

 {

 aeSubObj = ae[0];

 aoq.relInst = new ElemId();
 aoq.relInst.aid = aeSubObj.getId();

 aoq.relInst.iid = new T_LONGLONG();

 aoq.relInst.iid.low = 1;

 }

 System.out.println("Start call getInstances");

 System.out.println("attribute Id of the instances of
 AoTest with id < 10 or name like \"ZYK*\" and
 reference to AoSubTest with Id 1");

 elemRes = aea.getInstances(aoq, 100);

 showElemResultSet(elemRes);

 }

 aea = null;
 as = null;

 // Close the active session.

ISO/PAS 22720:2005(E)

586 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-50 ASAM ODS VERSION 5.0

 aoSession.close();

 } catch (AoException aoException) {
 System.err.println("\nUsingApplElemAccess, " +

 aoException.toString() + ":" +

 "\n " + aoException.reason);

 }

 // Exit the application.

 System.exit(0);

 }

}

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 587

OO-API

ASAM ODS VERSION 5.0 10-51

APPLELEMACCESS_GETINSTANCESEXT

Purpose

Perform the Query. This method can be used for a more powerful query compared to the
method getInstances of this interface, with join definitions and aggregate functions.

The number of different application elements which are requested are exactly defined by
the definition of the query given in the field anuSeq of the QueryStructureExt. The
number of attributes for each application element is also given in the definition. The
number of matching instances (their attributes) is not defined by the query and can be a
large amount. Therefore only one iterator for the attribute values is defined.

Parameters

aoq (Type = QueryStructureExt)

The query definition.

how_many (Type = T_LONG)

Maximum number of instances in each result set. Valid arguments are:

how_many = 0 : report all instances found

how_many > 0 : report at most the given number of instances found

Java Calling Sequence

ResultSetExt[] resultSet = applElemAccess.getInstancesExt(aoq,how_many);

Returns:

Return-Name: resultSet

Return-Type: ResultSetExtSequence

The result set with the requested attribute values.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

588 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-52 ASAM ODS VERSION 5.0

APPLELEMACCESS_GETRELINST

Purpose

Get related instances (Id). This method returns a sequence of related instances.

The relation name specifies the relation given in the ApplStructValue. The aid of the
ElemId and the relName define the unique relation and the target application element.

Parameters

elem (Type = ElemId)

Original instance. At the RPC-API this information was stored in the field elemId of the
structure GetInstRefReq and the request AOP_GetInstRef.

relName (Type = Name)

The relation name. At the RPC-API this information was stored in the field refName of
the structure GetInstRefReq and the request AOP_GetInstRef.

Java Calling Sequence

T_LONGLONG[] instIds = applElemAccess.getRelInst(elem,relName);

Returns:

Return-Name: instIds

Return-Type: S_LONGLONG

The list of the Id of the related instances.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 589

OO-API

ASAM ODS VERSION 5.0 10-53

APPLELEMACCESS_GETVALUEMATRIX

Purpose

Get the value matrix of a measurement or a submatrix. If the value matrix will be built up
with special submatrix link, use the interface Measurement.

Parameters

elem (Type = ElemId)

The element id. The aid has to be the appliction element Id of the measurement or
submatrix.

Java Calling Sequence

ValueMatrix vm = applElemAccess.getValueMatrix(elem);

Returns:

Return-Name: vm

Return-Type: ValueMatrix

The value matrix

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_INVALID_BASETYPE

ISO/PAS 22720:2005(E)

590 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-54 ASAM ODS VERSION 5.0

APPLELEMACCESS_INSERTINSTANCES

Purpose

Create instance elements of an application element. The application element is specified
by the AID of the input structure. The attribute names are specified by the name of the
input structure.The values of one instance element are specified in the valueseq of the
input structure. You can create several instance elements in one call by filling the
valueseq of the input structure. The same index in the valueseq corresponds to the
attribute values of one instance element.This method returns a sequence of Id's, the
order is related to the order of instance specified in the input. In case of inheritance, the
method supports only instances of the same subtype per call. The returned Id's are the
Id's of the related supertype instances.

The client must supply all mandatory attributes and references within one single method
call; otherwise the object cannot be made persistent by the server in the database
without the risk of violating any database constraint.

Parameters

val (Type = AIDNameValueSeqUnitIdSequence)

The sequence of attributes and their values. At the RPC-API this information is stored in
the fields elemId and nvSeq of the structure PutValReq and the request
AOP_PutValReq.

Java Calling Sequence

ElemIdSequence elemIds = applElemAccess.insertInstances(val);

Returns:

Return-Name: elemIds

Return-Type: ElemIdSequence

List with the Ids of the newly created instances.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 591

OO-API

ASAM ODS VERSION 5.0 10-55

APPLELEMACCESS_SETATTRIBUTERIGHTS

Purpose

Set the ACL information on some application element-attribute defined by <aid> and
<attr_name>. The <usergroup_id> defines the usergroup the rights should be set for.
<rights> defines the rights to set or to clear. If the parameter <set> is set to 'set', the
rights in <rights> are set, all others are cleared. If the parameter <set> is set to 'add', the
rights in <rights> are added to the existing rights. If the parameter <set> is set to
'remove', the rights in <rights> are removed from the existing rights. Restriction for the
model: only one application element of the type AoUserGroup is allowed.

Parameters

aid (Type = T_LONGLONG)

The Id of the application element.

attrName (Type = T_STRING)

The name of the attribute.

usergroupId (Type = T_LONGLONG)

The usergroup to set the rights for.

rights (Type = T_LONG)

The new right for the usergroup.

set (Type = RightsSet)

What to do with the new right.

Java Calling Sequence

applElemAccess.setAttributeRights(aid,attrName,usergroupId,rights,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

592 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-56 ASAM ODS VERSION 5.0

APPLELEMACCESS_SETELEMENTINITIALRIGHTS

Purpose

Set the access control list information for the initial rights on some application element
defined by <aid>. The <usergroup_id> defines the usergroup the rights should be set for.
<rights> defines the rights to set or to clear. If the parameter <set> is set to 'set', the
rights in <rights> are set, all others are cleared. If the parameter <set> is set to 'add', the
rights in <rights> are added to the existing rights. If the parameter <set> is set to
'remove', the rights in <rights> are removed from the existing rights. Restriction for the
model: only one application element of the type AoUserGroup is allowed.

Parameters

aid (Type = T_LONGLONG)

The Id of the application element.

usergroupId (Type = T_LONGLONG)

The usergroup to set the initial rights for.

rights (Type = T_LONG)

The new initial rights for the usergroup. The rights constants are defined in the interface
SecurityRights. The interface definition language IDL does not allow to set the values of
enumerations thus the constant definitions had to be done in an interface.

refAid (Type = T_LONGLONG)

The Id of referencing application element for which the initial rights will be used. If no
refAid is set the initial rights will be used for each new instance element independent of
the application element.

set (Type = RightsSet)

What to do with the new initial rights.

Java Calling Sequence

applElemAccess.setElementInitialRights(aid,usergroupId,rights,refAid,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 593

OO-API

ASAM ODS VERSION 5.0 10-57

APPLELEMACCESS_SETELEMENTRIGHTS

Purpose

Set the ACL information on some application element defined by <aid>. The
<usergroup_id> defines the usergroup the rights should be set for. <rights> defines the
rights to set or to clear. If the parameter <set> is set to 'set', the rights in <rights> are set,
all others are cleared. If the parameter <set> is set to 'add', the rights in <rights> are
added to the existing rights. If the parameter <set> is set to 'remove', the rights in
<rights> are removed from the existing rights. Restriction for the model: only one
application element of the type AoUserGroup is allowed.

Parameters

aid (Type = T_LONGLONG)

The Id of the application element.

usergroupId (Type = T_LONGLONG)

The usergroup to set the rights for.

rights (Type = T_LONG)

The new rights for the usergroup. The rights constants are defined in the interface
SecurityRights. The interface definition language IDL does not allow to set the values of
enumerations thus the constant definitions had to be done in an interface.

set (Type = RightsSet)

What to do with the new right.

Java Calling Sequence

applElemAccess.setElementRights(aid,usergroupId,rights,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

594 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-58 ASAM ODS VERSION 5.0

APPLELEMACCESS_SETINITIALRIGHTREFERENCE

Purpose

Set the flag <set> in svcattr, if this reference will be used (or not) to retrieve the Initial
Rights. If more than one reference is set to true, the union (or-function) of all rights are
used.

Parameters

aid (Type = T_LONGLONG)

The application element Id.

refName (Type = T_STRING)

The name of the reference.

set (Type = RightsSet)

What to do with the given reference.

Java Calling Sequence

applElemAccess.setInitialRightReference(aid,refName,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 595

OO-API

ASAM ODS VERSION 5.0 10-59

APPLELEMACCESS_SETINSTANCEINITIALRIGHTS

Purpose

Set the access control list information for the initial rights on some instance defined by
the application element id <aid> and a sequence of instance defined by the id <iid>. The
<usergroup_id> defines the usergroup the rights should be set for. <rights> defines the
rights to set or to clear. If the parameter <set> is set to 'set', the rights in <rights> are set,
all others are cleared. If the parameter <set> is set to 'add', the rights in <rights> are
added to the existing rights. If the parameter <set> is set to 'remove', the rights in
<rights> are removed from the existing rights. Restriction for the model: only one
application element of the type AoUserGroup is allowed.

Parameters

aid (Type = T_LONGLONG)

The Id of the application element.

instIds (Type = S_LONGLONG)

The sequence of instance Id's.

usergroupId (Type = T_LONGLONG)

The usergroup to set the initial rights for.

rights (Type = T_LONG)

The new initial right for the usergroup.

refAid (Type = T_LONGLONG)

The Id of referencing application element for which the initial rights will be used. If no
refAid is set the initial rights will be used for each new instance element independent of
the application element.

set (Type = RightsSet)

Specifies what to do with the new initial rights

Java Calling Sequence

applElemAccess.setInstanceInitialRights(aid,instIds,usergroupId,rights,refAid,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

596 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-60 ASAM ODS VERSION 5.0

APPLELEMACCESS_SETINSTANCERIGHTS

Purpose

Set the ACL information on some instance defined by the application element id <aid>
and a sequence of instance defined by the id <iid>. The <usergroup_id> defines the
usergroup the rights should be set for. <rights> defines the rights to set or to clear. If the
parameter <set> is set to 'set', the rights in <rights> are set, all others are cleared. If the
parameter <set> is set to 'add', the rights in <rights> are added to the existing rights. If
the parameter <set> is set to 'remove', the rights in <rights> are removed from the
existing rights. Restriction for the model: only one application element of the type
AoUserGroup is allowed.

Parameters

aid (Type = T_LONGLONG)

The Id of the application element.

instIds (Type = S_LONGLONG)

The sequence of instance Id's.

usergroupId (Type = T_LONGLONG)

The usergroup to set the rights for.

rights (Type = T_LONG)

The new right for the usergroup.

set (Type = RightsSet)

What to do with the new right.

Java Calling Sequence

applElemAccess.setInstanceRights(aid,instIds,usergroupId,rights,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 597

OO-API

ASAM ODS VERSION 5.0 10-61

APPLELEMACCESS_SETRELINST

Purpose

Set the instance reference.

Parameters

elem (Type = ElemId)

The instance to add the related instances. At the RPC-API this information was stored in
the field elemId1 of the structure SetInstRefReq and the request AOP_SetInstRef.

relName (Type = Name)

The name of relation. At the RPC-API this information was stored in the field refName of
the structure SetInstRefReq and the request AOP_SetInstRef.

instIds (Type = S_LONGLONG)

Sequence of instance id's. At the RPC-API this information was stored in the field
elemId2 of the structure SetInstRefReq and the request AOP_SetInstRef. It was not
possiable to set more then one relation.

type (Type = SetType)

The type of the modification, insert, update or remove. At the RPC-API this information
was stored in the field onoff of the structure SetInstRefReq and the request
AOP_SetInstRef.

Java Calling Sequence

applElemAccess.setRelInst(elem,relName,instIds,type);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

598 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-62 ASAM ODS VERSION 5.0

APPLELEMACCESS_UPDATEINSTANCES

Purpose

Update the one or more attributes of one or more instance elements. It is necessary that
the input structure includes also the Id attribute; it will be used to select the instance
elements. In case of inherited application elements the supertype Id has to be included.
The values of one instance element are specified in the valueseq of the input structure.
The same index in the valueseq corresponds to the attributes values of one instance
element.

Parameters

val (Type = AIDNameValueSeqUnitIdSequence)

The sequence of attributes and their values. At least one of the attribute values
sequence must be a sequence with the Id. At the RPC-API this information was stored in
the fields elemId and nvSeq of the structure PutValReq and the request
AOP_PutValReq.

Java Calling Sequence

applElemAccess.updateInstances(val);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 599

OO-API

ASAM ODS VERSION 5.0 10-63

10.2.4 APPLICATIONATTRIBUTE

APPLICATIONATTRIBUTE_GETAPPLICATIONELEMENT

Purpose

Return the application element to which the attribute belongs.

Parameters

None.

Java Calling Sequence

ApplicationElement applElem = applAttr.getApplicationElement();

Returns:

Return-Name: applElem

Return-Type: ApplicationElement

The application element of the attribute.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

600 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-64 ASAM ODS VERSION 5.0

APPLICATIONATTRIBUTE_GETBASEATTRIBUTE

Purpose

Get the base attribute of the application attribute.

Parameters

None.

Java Calling Sequence

BaseAttribute baseAttr = applAttr.getBaseAttribute();

Returns:

Return-Name: baseAttr

Return-Type: BaseAttribute

The base attribute of the application attribute. A 'null' is returned if the application
attribute has no base attribute.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 601

OO-API

ASAM ODS VERSION 5.0 10-65

APPLICATIONATTRIBUTE_GETDATATYPE

Purpose

Get the data type of the application attribute.

Parameters

None.

Java Calling Sequence

DataType aaDataType = applAttr.getDataType();

Returns:

Return-Name: aaDataType

Return-Type: DataType

The data type of the application attribute.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

602 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-66 ASAM ODS VERSION 5.0

APPLICATIONATTRIBUTE_GETENUMERATIONDEFINITION

Purpose

Get the definition of the enumeration.

Parameters

None.

Java Calling Sequence

EnumerationDefinition enumDef;
enumDef = applAttr.getEnumerationDefinition();

Returns:

Return-Name: enumDef

Return-Type: EnumerationDefinition

The ASAM ODS enumeration.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 603

OO-API

ASAM ODS VERSION 5.0 10-67

APPLICATIONATTRIBUTE_GETLENGTH

Purpose

Get the maximum allowed length of the value of the application attribute.

Parameters

None.

Java Calling Sequence

T_LONG aaLength = applAttr.getLength();

Returns:

Return-Name: aaLength

Return-Type: T_LONG

The maximum allowed length of the application attribute.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

604 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-68 ASAM ODS VERSION 5.0

APPLICATIONATTRIBUTE_GETNAME

Purpose

Get the name of the application attribute.

Parameters

None.

Java Calling Sequence

Name aaName = applAttr.getName();

Returns:

Return-Name: aaName

Return-Type: Name

The name of the application attribute.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 605

OO-API

ASAM ODS VERSION 5.0 10-69

APPLICATIONATTRIBUTE_GETRIGHTS

Purpose

Retrieve access control list information of the given object.

Parameters

None.

Java Calling Sequence

ACL[] aclEntries = applAttr.getRights();

Returns:

Return-Name: aclEntries

Return-Type: ACLSequence

The access control list entries of the given application element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

606 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-70 ASAM ODS VERSION 5.0

APPLICATIONATTRIBUTE_GETUNIT

Purpose

Get the unit Id of the application attribute. The unit Id is only valid for the current server.

Parameters

None.

Java Calling Sequence

T_LONGLONG aaUnit = applAttr.getUnit();

Returns:

Return-Name: aaUnit

Return-Type: T_LONGLONG

The unit Id of the application attribute.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 607

OO-API

ASAM ODS VERSION 5.0 10-71

APPLICATIONATTRIBUTE_HASUNIT

Purpose

Has the attribute an unit. If this flag is set, all the attributes of the instances derived from
this attribute will have an unit.

Parameters

None.

Java Calling Sequence

T_BOOLEAN hasUnit = aaObj.hasUnit();

Returns:

Return-Name: hasUnit

Return-Type: T_BOOLEAN

The flag if the attribute has an unit.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

608 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-72 ASAM ODS VERSION 5.0

APPLICATIONATTRIBUTE_HASVALUEFLAG

Purpose

Has the attribute a value flag. If this flag is set, all the attributes of the instances derived
from this attribute will have a value flag. If this flag is not set the flag in the TS_Value
structure can be ignored.

Parameters

None.

Java Calling Sequence

T_BOOLEAN hasValueFlag = aaObj.hasValueFlag();

Returns:

Return-Name: hasValueFlag

Return-Type: T_BOOLEAN

The flag if the attribute has a value flag.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 609

OO-API

ASAM ODS VERSION 5.0 10-73

APPLICATIONATTRIBUTE_ISAUTOGENERATED

Purpose

Get the autogenerate flag of the application attribute.

Parameters

None.

Java Calling Sequence

T_BOOLEAN isAutogenerated = applAttr.IsAutogenerated();

Returns:

Return-Name: isAutogenerated

Return-Type: T_BOOLEAN

The autogenerate flag of the application attribute.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

610 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-74 ASAM ODS VERSION 5.0

APPLICATIONATTRIBUTE_ISOBLIGATORY

Purpose

Get the obligatory flag of the application attribute.

Parameters

None.

Java Calling Sequence

T_BOOLEAN aaIsObligatory = applAttr.isObligatory();

Returns:

Return-Name: aaIsObligatory

Return-Type: T_BOOLEAN

The obligatory flag of the application attribute.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 611

OO-API

ASAM ODS VERSION 5.0 10-75

APPLICATIONATTRIBUTE_ISUNIQUE

Purpose

Get the unique flag of the application attribute.

Parameters

None.

Java Calling Sequence

T_BOOLEAN aaIsUnique = applAttr.isUnique();

Returns:

Return-Name: aaIsUnique

Return-Type: T_BOOLEAN

The unique flag of the application attribute.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

612 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-76 ASAM ODS VERSION 5.0

APPLICATIONATTRIBUTE_SETBASEATTRIBUTE

Purpose

Set the base attribute of the application attribute. This allows the client to declare the
application attribute (new or existing) additional to a base attribute. The application
attribute will become the derived attribute of the given base attribute.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The base attribute must be unique within the application element otherwise the
exception AO_DUPLICATE_BASE_ATTRIBUTE is thrown.

For performance and flexibility reasons this set-method should be used before the new
application attribute is committed the first time.

If this method is called before the first commit it will not throw the following exceptions:

 AO_INVALID_DATATYPE

 AO_MISSING_VALUE

 AO_NOT_UNIQUE.

After the first commit, there may be instances of the application attribute. These
instances may cause the following problems:

AO_INVALID_DATATYPE: The datatype of the base attribute is not the same as the
datatype of the instanciated attributes.

AO_MISSING_VALUE: The obligatory flag of the base attribute is set but there are one
or more empty values in the instances.

AO_NOT_UNIQUE: The unique flag of the base attribute is set but the values of the
instances are not unique.

The length, the name and the unit of the application attribute are not affected by this call.

Parameters

baseAttr (Type = BaseAttribute)

The base attribute.

Java Calling Sequence

applAttr.setBaseAttribute(baseAttr);

Returns:

None.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 613

OO-API

ASAM ODS VERSION 5.0 10-77

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_DUPLICATE_BASE_ATTRIBUTE

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_DATATYPE

AO_MISSING_VALUE

AO_NOT_IMPLEMENTED

AO_NOT_UNIQUE

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

614 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-78 ASAM ODS VERSION 5.0

APPLICATIONATTRIBUTE_SETDATATYPE

Purpose

Set the data type of the application attribute.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

It is not allowed to set the datatype of application attributes that represent base
attributes. An attempt to set the datatype of such an application attribute will result in the
exception AO_IS_BASE_ATTRIBUTE.

For performance and flexibility reasons this set-method should be used before the new
application attribute is committed the first time.

If this method is called before the first commit it will not throw the following exception:

 AO_INVALID_DATATYPE

After the first commit, there may be instances of the application attribute. These
instances may cause the following problem:

AO_INVALID_DATATYPE: The datatype of the base attribute is not the same as the
datatype of the instanciated attributes.

Parameters

aaDataType (Type = DataType)

The data type.

Java Calling Sequence

applAttr.setDataType(aaDataType);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_HAS_BASE_ATTRIBUTE

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_DATATYPE

AO_IS_BASE_ATTRIBUTE

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 615

OO-API

ASAM ODS VERSION 5.0 10-79

APPLICATIONATTRIBUTE_SETENUMERATIONDEFINITION

Purpose

Set the definition of the enumeration. This method modifies the application model, only
the superuser can use this method.

Parameters

enumDef (Type = EnumerationDefinition)

The new enumeration definition.

Java Calling Sequence

applAttr.setEnumerationDefinition(enumDef);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

AO_ACCESS_DENIED

ISO/PAS 22720:2005(E)

616 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-80 ASAM ODS VERSION 5.0

APPLICATIONATTRIBUTE_SETISAUTOGENERATED

Purpose

Set the autogenerate flag of the application attribute.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

For performance and flexibility reasons this set-method should be used before the new
application attribute is committed the first time.

Parameters

isAutogenerated (Type = T_BOOLEAN)

The autogenerate flag.

Java Calling Sequence

applAttr.setIsAutogenerated(isAutogenerated);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_HAS_BASE_ATTRIBUTE

AO_IMPLEMENTATION_PROBLEM

AO_IS_BASE_ATTRIBUTE

AO_MISSING_VALUE

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 617

OO-API

ASAM ODS VERSION 5.0 10-81

APPLICATIONATTRIBUTE_SETISOBLIGATORY

Purpose

Set the obligatory flag of the application attribute.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

It is not allowed to set the obligatory flag of application attributes

that represent base attributes. An attempt to set the obligatory flag of such an application
attribute will result in the exception AO_IS_BASE_ATTRIBUTE.

For performance and flexibility reasons this set-method should be used before the new
application attribute is committed the first time.

If this method is called before the first commit it will not throw the following exception:

 AO_MISSING_VALUE

After the first commit, there may be instances of the application attribute. These
instances may cause the following problem:

AO_MISSING_VALUE: The obligatory flag of the base attribute is set but there are one
or more empty values in the instances.

Parameters

aaIsObligatory (Type = T_BOOLEAN)

The obligatory flag.

Java Calling Sequence

applAttr.setIsObligatory(aaIsObligatory);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_HAS_BASE_ATTRIBUTE

AO_IMPLEMENTATION_PROBLEM

AO_IS_BASE_ATTRIBUTE

AO_MISSING_VALUE

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

618 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-82 ASAM ODS VERSION 5.0

APPLICATIONATTRIBUTE_SETISUNIQUE

Purpose

Set the unique flag of the application attribute.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The server will check if the values of the instance attributes are unique. If this flag is set
and the values of an attribute are not unique when using the method setValuean
exception is thrown. If instances of the application element already exist that contain
non-unique values and the flag shall be set this method throws an exception.

It is not allowed to set the unique flag of application attributes that represent base
attributes. An attempt to set the unique flag of such an application attribute will result in
the exception AO_IS_BASE_ATTRIBUTE.

If the unique flag is set to TRUE the obligatory flag is also set to TRUE. The previous
values of both flag do not matter in this case. Setting the unique flag to FALSE does not
affect the obligatory flag.

For performance and flexibility reasons this set-method should be used before the new
application attribute is committed the first time.

If this method is called before the first commit it will not throw the following exception:

 AO_MISSING_VALUE

 AO_NOT_UNIQUE

After the first commit, there may be instances of the application attribute. These
instances may cause the following problem:

AO_MISSING_VALUE: The obligatory flag of the base attribute is set but there are one
or more empty values in the instances.

AO_NOT_UNIQUE: The unique flag of the base attribute is set but the values of the
instances are not unique.

Parameters

aaIsUnique (Type = T_BOOLEAN)

The unique flag.

Java Calling Sequence

applAttr.setIsUnique(aaIsUnique);

Returns:

None.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 619

OO-API

ASAM ODS VERSION 5.0 10-83

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_HAS_BASE_ATTRIBUTE

AO_IMPLEMENTATION_PROBLEM

AO_IS_BASE_ATTRIBUTE

AO_MISSING_VALUE

AO_NOT_IMPLEMENTED

AO_NOT_UNIQUE

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

620 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-84 ASAM ODS VERSION 5.0

APPLICATIONATTRIBUTE_SETLENGTH

Purpose

Set the maximum allowed length of the application attribute.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

This method is useful for ODS database design tools. Negative length values are not
allowed.

This method provides only a hint to a database server in the design phase which size
the data entries may have. The length is ignored for all other datatypes than
DT_STRING and DS_*.

For performance and flexibility reasons this set-method should be used before the new
application attribute is committed the first time.

If this method is called before the first commit it will not throw the following exception:

 AO_HAS_INSTANCES

After the first commit, there may be instances of the application attribute. These
instances may cause the exception AO_HAS_INSTANCES if the instances of the
application attribute are not empty.

Parameters

aaLength (Type = T_LONG)

The maximum attribute length.

Java Calling Sequence

applAttr.setLength(aaLength);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_HAS_INSTANCES

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_LENGTH

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 621

OO-API

ASAM ODS VERSION 5.0 10-85

APPLICATIONATTRIBUTE_SETNAME

Purpose

Set the name of an application attribute.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The name must be unique.

For performance and flexibility reasons this set-method should be used before the new
application attribute is committed the first time.

The name of an application attribute must not exceed the maximum name length of the
underlying physical storage. The current specification of the physical storage restricts it
to 30 characters.

Parameters

aaName (Type = Name)

The application attribute name.

Java Calling Sequence

applAttr.setName(aaName);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_DUPLICATE_NAME

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

622 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-86 ASAM ODS VERSION 5.0

APPLICATIONATTRIBUTE_SETRIGHTS

Purpose

The given usergroup the rights should be set for. <rights> defines the rights to set or to
clear. If the parameter <set> is set to 'set', the rights in <rights> are set, all others are
cleared. If the parameter <set> is set to 'add', the rights in <rights> are added to the
existing rights. If the parameter <set> is set to 'remove', the rights in <rights> are
removed from the existing rights.

Parameters

usergroup (Type = InstanceElement)

The usergroup for which the rights will be modified.

rights (Type = T_LONG)

The new right for the usergroup. The rights constants are defined in the interface
SecurityRights. The interface definition language IDL does not allow to set the values of
enumerations thus the constant definitions had to be done in an interface.

set (Type = RightsSet)

What to do with the new right.

Java Calling Sequence

applAttr.setRights(usergroup,rights,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 623

OO-API

ASAM ODS VERSION 5.0 10-87

APPLICATIONATTRIBUTE_SETUNIT

Purpose

Set the unit Id of an application attribute.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The unit Id is only valid for the current server. If instances of the application attribute
exist, the respective values are automatically converted to the new unit. If there is no
known conversion an exception is thrown.

The automatic conversion can be avoided if the unit is set to zero. After that the
transaction must be committed. In the next step the new unit may be set in another
transaction.

The automatic conversion is done only for the following datatypes:

 DT_BYTE

 DT_COMPLEX

 DT_DCOMPLEX

 DT_DOUBLE

 DT_FLOAT

 DT_LONG

 DT_LONGLONG

 DT_SHORT

as well as for the corresponding sequence datatypes. For complex datatypes the real
and imaginary part are converted separately.

If the unit of an attribute is set the unit is constant. If the value of the attribute has
another unit the value is calibrated to the unit of the application attribute. If there is no
unit at the application attribute the unit at the attribute value is stored and reported on
request at the instance.

For performance and flexibility reasons this set-method should be used before the new
application attribute is committed the first time.

If this method is called before the first commit it will not throw the following exceptions:

 AO_INCOMPATIBLE_UNITS

 AO_MATH_ERROR

After the first commit, there may be instances of the application attribute. These
instances may cause the following problems:

AO_INCOMPATIBLE_UNITS: No conversion rules is known to convert the unit.

AO_MATH_ERROR: Converting the values to the new unit results in data overflow or
underflow or a division by zero is detected.

Parameters

aaUnit (Type = T_LONGLONG)

The unit Id.

ISO/PAS 22720:2005(E)

624 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-88 ASAM ODS VERSION 5.0

Java Calling Sequence

applAttr.setUnit(aaUnit);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INCOMPATIBLE_UNITS

AO_MATH_ERROR

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_UNKNOWN_UNIT

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 625

OO-API

ASAM ODS VERSION 5.0 10-89

APPLICATIONATTRIBUTE_WITHUNIT

Purpose

Specifies whether the attribute will have a unit or not. A call to the method setUnit() will
automatically set the withUnit flag to TRUE.

Parameters

withUnit (Type = T_BOOLEAN)

The flag value: TRUE, if the attribute will have a unit, FALSE otherwise.

Java Calling Sequence

aaObj.withUnit(TRUE);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

626 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-90 ASAM ODS VERSION 5.0

APPLICATIONATTRIBUTE_WITHVALUEFLAG

Purpose

Specifies whether the attribute will have a value flag or not. If this flag is not set the flag
of the TS_Value will be ignored by the server.

Parameters

withValueFlag (Type = T_BOOLEAN)

The flag value: TRUE, if the attribute will have a value flag, FALSE otherwise.

Java Calling Sequence

aaObj.withValueFlag(TRUE);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 627

OO-API

ASAM ODS VERSION 5.0 10-91

10.2.5 APPLICATIONELEMENT

APPLICATIONELEMENT_CREATEATTRIBUTE

Purpose

Create a new application attribute on the server.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The properties of the new application attribute may be changed via the set-methods of
the ApplicationAttribute interface.

For performance reasons it is recommended to set all required properties of an
application attribute before it is committed the first time. This avoids database cross-
checks for each attribute.

The default properties of a new application attribute are:

 BaseAttribute NULL

 DataType DT_UNKNOWN

 IsObligatory 0

 IsUnique 0

 Length 0

 Name "AUTOGEN"

 Unit NULL

If there are already instances of the application element the values of the existing
instances of the new attribute are set to undefined (flag AO_VF_DEFINED is set to
zero).

The exception AO_DUPLICATE_NAME name occurs if there is already another
application attribute with the name "AUTOGEN".

Parameters

None.

Java Calling Sequence

ApplicationAttribute applAttr = applElem.createAttribute();

Returns:

Return-Name: applAttr

Return-Type: ApplicationAttribute

The new application attribute.

ISO/PAS 22720:2005(E)

628 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-92 ASAM ODS VERSION 5.0

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_DUPLICATE_NAME

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 629

OO-API

ASAM ODS VERSION 5.0 10-93

APPLICATIONELEMENT_CREATEINSTANCE

Purpose

Create an instance of the application element.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The instance gets permanent when the transaction is committed. All attributes connected
to the application element are automatically created and connected to the instance. The
values of the attributes can be set by the method setValue of the interface
InstanceElement.

Parameters

ieName (Type = Name)

The instance name.

Java Calling Sequence

InstanceElement instElem = applElem.createInstance(ieName);

Returns:

Return-Name: instElem

Return-Type: InstanceElement

The new instance.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

630 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-94 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_CREATEINSTANCES

Purpose

Create a list with instances. The attribute are given with the name of the sequence. The
values of the attributes are given in the value sequence. The index in the different value
sequences match for one instance element. The index in the instance element sequence
of the related instances match for the instance with the same index in the value
sequence.

Parameters

attributes (Type = NameValueSeqUnitSequence)

The attributes of the new created instances.

relatedInstances (Type = ApplicationRelationInstanceElementSeqSequence)

The list with related instances for different application relations.

Java Calling Sequence

InstanceElement[] instElems = applElem.createInstances(attributes, relatedInstances);

Returns:

Return-Name: instElems

Return-Type: InstanceElementSequence

The new instances.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO:TRANSACTION_NOT_ACTIVE

AO_INVALID_REQUEST

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 631

OO-API

ASAM ODS VERSION 5.0 10-95

APPLICATIONELEMENT_GETALLRELATEDELEMENTS

Purpose

Get a list of all related application elements connected to this application element.

Parameters

None.

Java Calling Sequence

ApplicationElement[] applElems = applElem.getAllRelatedElements();

Returns:

Return-Name: applElems

Return-Type: ApplicationElementSequence

The related application elements.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

632 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-96 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_GETALLRELATIONS

Purpose

Get a list of all application relations connected to this application element. The inverse
relation of relations connected to other application elements pointing to the given
application elements are not returned.

Parameters

None.

Java Calling Sequence

ApplicationRelation[] applRels = applElem.getAllRelations();

Returns:

Return-Name: applRels

Return-Type: ApplicationRelationSequence

The application relations of the application element.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 633

OO-API

ASAM ODS VERSION 5.0 10-97

APPLICATIONELEMENT_GETAPPLICATIONSTRUCTURE

Purpose

Get the application model to which the application element belongs. The application
model returned is the same as that returned from the method getApplicationStructure of
the Interface AoSession. This method guarantees that the client software is able to
return to the session in case the session object is not available.

Parameters

None.

Java Calling Sequence

ApplicationStructure applStruct = applElem.getApplicationStructure();

Returns:

Return-Name: applStruct

Return-Type: ApplicationStructure

The application model to which the application element belongs.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

634 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-98 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_GETATTRIBUTEBYBASENAME

Purpose

Get the application attribute of an application element which is inherited from the base
attribute with the given name. The base name of the attribute is case insensitive (the
base model itself is case insensitive; ID, Id, id,... are treated as the same items) and may
not contain wildcard characters.

Note: The base model is case blind, e.g. Id, ID and id is all the same base attribute.

Parameters

baName (Type = Name)

The base attribute name.

Java Calling Sequence

ApplicationAttribute applAttr = applElem.getAttributeByBaseName(baName);

Returns:

Return-Name: applAttr

Return-Type: ApplicationAttribute

The application attribute.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 635

OO-API

ASAM ODS VERSION 5.0 10-99

APPLICATIONELEMENT_GETATTRIBUTEBYNAME

Purpose

Get the application attribute of an application element which has the given name. The
name is case sensitive and may not contain wildcard characters.
Note: The application model is (in contrary to the base model) case sensitive; eg ID, Id,
and id are three different items.

Note: The application model is case sensitive, eg Id andID are different application
attributes, don't use this misleading attribute name.

Parameters

aaName (Type = Name)

The application attribute name.

Java Calling Sequence

ApplicationAttribute applAttr = applElem.getAttributeByName(aaName);

Returns:

Return-Name: applAttr

Return-Type: ApplicationAttribute

The application attribute.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

636 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-100 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_GETATTRIBUTES

Purpose

Get a list of the application attributes of an application element. The reference attributes
are not returned.

Parameters

aaPattern (Type = Pattern)

The name or the search pattern for the application attribute name.

Java Calling Sequence

ApplicationAttribute[] applAttrs = applElem.getAttributes(aaPattern);

Returns:

Return-Name: applAttrs

Return-Type: ApplicationAttributeSequence

The application attributes.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 637

OO-API

ASAM ODS VERSION 5.0 10-101

APPLICATIONELEMENT_GETBASEELEMENT

Purpose

Get the base element of an application element.

Parameters

None.

Java Calling Sequence

BaseElement baseElem = applElem.getBaseElement();

Returns:

Return-Name: baseElem

Return-Type: BaseElement

The base element.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

638 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-102 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_GETID

Purpose

Get the Id of an application element.

Parameters

None.

Java Calling Sequence

T_LONGLONG aeId = applElem.getId();

Returns:

Return-Name: aeId

Return-Type: T_LONGLONG

The Id of the application element.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 639

OO-API

ASAM ODS VERSION 5.0 10-103

APPLICATIONELEMENT_GETINITIALRIGHTRELATIONS

Purpose

Get all relations which are used to retrieve the instances to create the initial rights of the
new created instance element. If there is more than one application relation, the initial
rights of each related instance are 'ored' to the list of the initial rights.

Parameters

None.

Java Calling Sequence

ApplicationRelation[] applRels = applElem.getInitialRightRelations();

Returns:

Return-Name: applRels

Return-Type: ApplicationRelationSequence

The sequence with the application relations which will be used to create the initial rights
of the new created instance element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

640 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-104 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_GETINITIALRIGHTS

Purpose

Retrieve access control list information for the initial rights of the given object.

Parameters

None.

Java Calling Sequence

InitialRight[] initialRights = applElem.getInitialRights();

Returns:

Return-Name: initialRights

Return-Type: InitialRightSequence

The access control list entries with the initial rights of the given application element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 641

OO-API

ASAM ODS VERSION 5.0 10-105

APPLICATIONELEMENT_GETINSTANCEBYID

Purpose

Get the instance element specified by the given Id. If the Id of the instance is not unique
an exception is thrown.

Parameters

ieId (Type = T_LONGLONG)

The instance element Id.

Java Calling Sequence

InstanceElement instElem = applElem.getInstanceById(ieId);

Returns:

Return-Name: instElem

Return-Type: InstanceElement

The instance element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

642 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-106 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_GETINSTANCEBYNAME

Purpose

Get the instance element specified by the given name. If the name of the instance is not
unique an exception is thrown.

This is a convienience method for instance elements with unique names. If there are
duplicate names for instance use the method getInstances instead and specify the
requested name as pattern parameter.

Parameters

ieName (Type = Name)

The instance element name.

Java Calling Sequence

InstanceElement instElem = applElem.getInstanceByName(ieName);

Returns:

Return-Name: instElem

Return-Type: InstanceElement

The instance element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_DUPLICATE_NAME

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 643

OO-API

ASAM ODS VERSION 5.0 10-107

APPLICATIONELEMENT_GETINSTANCES

Purpose

Get the instances whose names match the pattern. The pattern is case sensitive and
may contain wildcard characters.

Parameters

iePattern (Type = Pattern)

The name or the search pattern for the instance element name.

Java Calling Sequence

InstanceElementIterator ieIterator = applElem.getInstances(iePattern);

Returns:

Return-Name: ieIterator

Return-Type: InstanceElementIterator

The instance elements.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

644 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-108 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_GETNAME

Purpose

Get the name of an application element.

Parameters

None.

Java Calling Sequence

Name aeName = applElem.getName();

Returns:

Return-Name: aeName

Return-Type: Name

The name of the application element.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 645

OO-API

ASAM ODS VERSION 5.0 10-109

APPLICATIONELEMENT_GETRELATEDELEMENTSBYRELATIONSHIP

Purpose

Get related application elements connected via the specified relationship.

Parameters

aeRelationship (Type = Relationship)

The requested relationship.

Java Calling Sequence

ApplicationElement[] applElems =
applElem.getRelatedElementsByRelationship(aeRelationship);

Returns:

Return-Name: applElems

Return-Type: ApplicationElementSequence

The related application elements.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATIONSHIP

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

646 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-110 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_GETRELATIONSBYTYPE

Purpose

Get application relations of the requested type connected from this application element.
The inverse relations are not returned.

Parameters

aeRelationType (Type = RelationType)

The requested relation type.

Java Calling Sequence

ApplicationRelation[] applRels = applElem.getRelationsByType(aeRelationType);

Returns:

Return-Name: applRels

Return-Type: ApplicationRelationSequence

The application relations.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATION_TYPE

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 647

OO-API

ASAM ODS VERSION 5.0 10-111

APPLICATIONELEMENT_GETRIGHTS

Purpose

Retrieve access control list information of the given object.

Parameters

None.

Java Calling Sequence

ACL[] aclEntries = applElem.getRights();

Returns:

Return-Name: aclEntries

Return-Type: ACLSequence

The access control list entries of the given application element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

648 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-112 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_GETSECURITYLEVEL

Purpose

Get the security level of the application element. The security level tells if there is a
security check for both application element and instance elements or only for the
application attributes, the instance elements or none at all.

Parameters

None.

Java Calling Sequence

SecurityLevel secLevel = applElem.getSecurityLevel();

Returns:

Return-Name: secLevel

Return-Type: T_LONG

The current security level. The security level constants are defined in the interface
SecurityLevel. The interface definition language IDL does not allow to set the values of
enumerations thus the constant definitions had to be done in an interface.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 649

OO-API

ASAM ODS VERSION 5.0 10-113

APPLICATIONELEMENT_LISTALLRELATEDELEMENTS

Purpose

Get the names of all related application elements.

Parameters

None.

Java Calling Sequence

Name[] applElemNames = applElem.listAllRelatedElements();

Returns:

Return-Name: applElemNames

Return-Type: NameSequence

The names of the related application elements.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

650 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-114 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_LISTATTRIBUTES

Purpose

Get the application attribute names of the application element. There are no attribute
names returned in the result list that contain a reference to another application element.

Parameters

aaPattern (Type = Pattern)

The name or the search pattern for the application attribute name.

Java Calling Sequence

Name[] applAttrNames = applElem.listAttributes(aaPattern);

Returns:

Return-Name: applAttrNames

Return-Type: NameSequence

The names of the application attributes.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 651

OO-API

ASAM ODS VERSION 5.0 10-115

APPLICATIONELEMENT_LISTINSTANCES

Purpose

Get the names of the instances whose names match the pattern. The pattern is case
sensitive and may contain wildcard characters.

Parameters

aaPattern (Type = Pattern)

The name or the search pattern for the application attribute name.

Java Calling Sequence

NameIterator ieNameIterator = applElem.listInstances(aaPattern);

Returns:

Return-Name: ieNameIterator

Return-Type: NameIterator

The names of the instances.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

652 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-116 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_LISTRELATEDELEMENTSBYRELATIONSHIP

Purpose

Get the names of related application elements connected via the specified relationship.

Parameters

aeRelationship (Type = Relationship)

The requested relationship.

Java Calling Sequence

Name[] applElemNames =
applElem.listRelatedElementsByRelationship(aeRelationship);

Returns:

Return-Name: applElemNames

Return-Type: NameSequence

The names of the related application elements.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATIONSHIP

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 653

OO-API

ASAM ODS VERSION 5.0 10-117

APPLICATIONELEMENT_REMOVEATTRIBUTE

Purpose

Remove an application attribute from an application element. If there are instances of
the application element the attribute of the existing instances change from application to
instance attributes.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

Parameters

applAttr (Type = ApplicationAttribute)

The application attribute to remove.

Java Calling Sequence

applElem.removeAttribute(applAttr);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_FOUND

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

654 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-118 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_REMOVEINSTANCE

Purpose

Remove an instance from the application element.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The instance is removed from the server when the transaction is committed. If the
recursive flag is set all children of the instance are also deleted. Removing instances is
allowed only if there are no references(relations) to this instance. If the recursive flag is
set a reference to one of the children is not allowed and will cause an exception.

Parameters

ieId (Type = T_LONGLONG)

The instance Id.

recursive (Type = T_BOOLEAN)

The recursive flag.

Java Calling Sequence

applElem.removeInstance(ieId,recursive);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_HAS_REFERENCES

AO_IMPLEMENTATION_PROBLEM

AO_NOT_FOUND

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 655

OO-API

ASAM ODS VERSION 5.0 10-119

APPLICATIONELEMENT_SETBASEELEMENT

Purpose

Set the base element of the application element.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The assignment to the current base element is overwritten. If there are instances of the
application element or references to the application element an exception is thrown.

Parameters

baseElem (Type = BaseElement)

The base element.

Java Calling Sequence

applElem.setBaseElement(baseElem);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_HAS_INSTANCES

AO_HAS_REFERENCES

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

656 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-120 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_SETINITIALRIGHTRELATION

Purpose

Set for the given application element, which relation will be used to determine the initial
rights for the new created instances.

Parameters

applRel (Type = ApplicationRelation)

The application relation which will be used to determine the initial rights. The relation
range of the application relation must be [1:1] otherwise the server cannot find a unique
instance element to retrieve the initial rights.

set (Type = T_BOOLEAN)

Set or remove the relation for the initial rights. If this parameter is true the relation will be
set otherwise removed.

Java Calling Sequence

applElem.setInitialRightRelation(applRel,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 657

OO-API

ASAM ODS VERSION 5.0 10-121

APPLICATIONELEMENT_SETINITIALRIGHTS

Purpose

The given usergroup the initial rights should be set for. <rights> defines the rights to set
or to clear. If the parameter <set> is set to 'set', the rights in <rights> are set, all others
are cleared. If the parameter <set> is set to 'add', the rights in <rights> are added to the
existing rights. If the parameter <set> is set to 'remove', the rights in <rights> are
removed from the existing rights.

Parameters

usergroup (Type = InstanceElement)

The usergroup for which the initial rights will be modified.

rights (Type = T_LONG)

The new initial rights for the usergroup.The rights constants are defined in the interface
SecurityRights. The interface definition language IDL does not allow to set the values of
enumerations thus the constant definitions had to be done in an interface.

refAid (Type = T_LONGLONG)

The Id of referencing application element for which the initial rights will be used. If no
refAid is set the initial rights will be used for each new instance element independent of
the application element.

set (Type = RightsSet)

What to do with the new initial rights.

Java Calling Sequence

applElem.setInitialRights(usergroup,rights,refAid,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

658 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-122 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_SETNAME

Purpose

Set the name of the application element.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The name of the application element must be unique.

The name of an application element must not exceed the maximum name length of the
underlying physical storage. The current specification of the physical storage restricts it
to 30 characters.

Parameters

aeName (Type = Name)

The application element name.

Java Calling Sequence

applElem.setName(aeName);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_DUPLICATE_NAME

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 659

OO-API

ASAM ODS VERSION 5.0 10-123

APPLICATIONELEMENT_SETRIGHTS

Purpose

The given usergroup the rights should be set for. <rights> defines the rights to set or to
clear. If the parameter <set> is set to 'set', the rights in <rights> are set, all others are
cleared. If the parameter <set> is set to 'add', the rights in <rights> are added to the
existing rights. If the parameter <set> is set to 'remove', the rights in <rights> are
removed from the existing rights.

Parameters

usergroup (Type = InstanceElement)

The usergroup for which the rights will be modified.

rights (Type = T_LONG)

The new right for the usergroup. The rights constants are defined in the interface
SecurityRights. The interface definition language IDL does not allow to set the values of
enumerations thus the constant definitions had to be done in an interface.

set (Type = RightsSet)

What to do with the new right.

Java Calling Sequence

applElem.setRights(usergroup,rights,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

660 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-124 ASAM ODS VERSION 5.0

APPLICATIONELEMENT_SETSECURITYLEVEL

Purpose

Set the security level for the given application element. If the security level is added the
client is responsable for the access control list entries of the existing objects.

Parameters

secLevel (Type = T_LONG)

The new security level.The security level constants are defined in the interface
SecurityLevel. The interface definition language IDL does not allow to set the values of
enumerations thus the constant definitions had to be done in an interface.

set (Type = RightsSet)

What to do with the new security level.

Java Calling Sequence

applElem.setSecurityLevel(secLevel,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 661

OO-API

ASAM ODS VERSION 5.0 10-125

10.2.6 APPLICATIONRELATION

APPLICATIONRELATION_GETBASERELATION

Purpose

Get the base relation of the application relation.

Parameters

None.

Java Calling Sequence

BaseRelation baseRel = applRel.getBaseRelation();

Returns:

Return-Name: baseRel

Return-Type: BaseRelation

The base relation of the application relation. A 'null' is returned if the application relation
has no base relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

662 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-126 ASAM ODS VERSION 5.0

APPLICATIONRELATION_GETELEM1

Purpose

Get the first application element of the application relation.

Parameters

None.

Java Calling Sequence

ApplicationElement applElem = applRel.getElem1();

Returns:

Return-Name: applElem

Return-Type: ApplicationElement

The first application element of the application relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 663

OO-API

ASAM ODS VERSION 5.0 10-127

APPLICATIONRELATION_GETELEM2

Purpose

Get the second application element of the application relation.

Parameters

None.

Java Calling Sequence

ApplicationElement applElem = applRel.getElem2();

Returns:

Return-Name: applElem

Return-Type: ApplicationElement

The second application element of the application relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

664 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-128 ASAM ODS VERSION 5.0

APPLICATIONRELATION_GETINVERSERELATIONNAME

Purpose

Get the inverse name of the application relation. The inverse name of an application
relation is the name of the relation seen from the other application element.

Parameters

None.

Java Calling Sequence

Name arInvName = applRel.getInverseRelationName();

Returns:

Return-Name: arInvName

Return-Type: Name

The inverse name of the application relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 665

OO-API

ASAM ODS VERSION 5.0 10-129

APPLICATIONRELATION_GETINVERSERELATIONRANGE

Purpose

Get the inverse relation range of the application relation.

Parameters

None.

Java Calling Sequence

RelationRange arRange = applRel.getInverseRelationRange();

Returns:

Return-Name: arRange

Return-Type: RelationRange

The inverse relation range of the application relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

666 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-130 ASAM ODS VERSION 5.0

APPLICATIONRELATION_GETINVERSERELATIONSHIP

Purpose

Get the inverse relationship of the application relation.

Parameters

None.

Java Calling Sequence

Relationship relationship = applRel.getInverseRelationship();

Returns:

Return-Name: relationship

Return-Type: Relationship

The inverse relationship of the application relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 667

OO-API

ASAM ODS VERSION 5.0 10-131

APPLICATIONRELATION_GETRELATIONNAME

Purpose

Get the name of the application relation.

Parameters

None.

Java Calling Sequence

Name arName = applRel.getRelationName();

Returns:

Return-Name: arName

Return-Type: Name

The name of the application relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

668 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-132 ASAM ODS VERSION 5.0

APPLICATIONRELATION_GETRELATIONRANGE

Purpose

Get the relation range of the application relation.

Parameters

None.

Java Calling Sequence

RelationRange arRange = applRel.getRelationRange();

Returns:

Return-Name: arRange

Return-Type: RelationRange

The relation range of the application relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 669

OO-API

ASAM ODS VERSION 5.0 10-133

APPLICATIONRELATION_GETRELATIONSHIP

Purpose

Get the relationship of the application relation.

Parameters

None.

Java Calling Sequence

Relationship relationship = applRel.getRelationship();

Returns:

Return-Name: relationship

Return-Type: Relationship

The relationship of the application relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

670 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-134 ASAM ODS VERSION 5.0

APPLICATIONRELATION_GETRELATIONTYPE

Purpose

Get the relation type of the application relation.

Parameters

None.

Java Calling Sequence

RelationType arType = applRel.getRelationType();

Returns:

Return-Name: arType

Return-Type: RelationType

The relation type of the application relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 671

OO-API

ASAM ODS VERSION 5.0 10-135

APPLICATIONRELATION_SETBASERELATION

Purpose

Set the base relation of the application relation.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The relation type and relation range is copied from the base relation. The previous
values get lost.

Parameters

baseRel (Type = BaseRelation)

The base relation.

Java Calling Sequence

applRel.setBaseRelation(baseRel);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATION

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

672 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-136 ASAM ODS VERSION 5.0

APPLICATIONRELATION_SETELEM1

Purpose

Set the first application element of the application relation.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

Parameters

applElem (Type = ApplicationElement)

The application element.

Java Calling Sequence

applRel.setElem1(applElem);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_ELEMENT

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 673

OO-API

ASAM ODS VERSION 5.0 10-137

APPLICATIONRELATION_SETELEM2

Purpose

Set the second application element of the application relation.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

Parameters

applElem (Type = ApplicationElement)

The application element.

Java Calling Sequence

applRel.setElem2(applElem);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_ELEMENT

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

674 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-138 ASAM ODS VERSION 5.0

APPLICATIONRELATION_SETINVERSERELATIONNAME

Purpose

Set the name of an application relation.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

Parameters

arInvName (Type = Name)

The inverse application relation name.

Java Calling Sequence

applRel.setInverseRelationName(arInvName);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 675

OO-API

ASAM ODS VERSION 5.0 10-139

APPLICATIONRELATION_SETINVERSERELATIONRANGE

Purpose

Set the relation range of an application relation.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

It is only allowed to set the relation type if no base relation is defined.

Parameters

arRelationRange (Type = RelationRange)

The inverse relation range.

Java Calling Sequence

applRel.setInverseRelationRange(arRelationRange);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_HAS_BASE_RELATION

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATION_RANGE

AO_IS_BASE_RELATION

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

676 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-140 ASAM ODS VERSION 5.0

APPLICATIONRELATION_SETRELATIONNAME

Purpose

Set the name of an application relation.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The name of an application relation must not exceed the maximum name length of the
underlying physical storage. The current specification of the physical storage restricts it
to 30 characters.

Parameters

arName (Type = Name)

The application relation name.

Java Calling Sequence

applRel.setRelationName(arName);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 677

OO-API

ASAM ODS VERSION 5.0 10-141

APPLICATIONRELATION_SETRELATIONRANGE

Purpose

Set the relation range of an application relation.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

It is only allowed to set the relation type if no base relation is defined.

Parameters

arRelationRange (Type = RelationRange)

The relation range.

Java Calling Sequence

applRel.setRelationRange(arRelationRange);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_HAS_BASE_RELATION

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATION_RANGE

AO_IS_BASE_RELATION

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

678 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-142 ASAM ODS VERSION 5.0

APPLICATIONRELATION_SETRELATIONTYPE

Purpose

Set the relation type of an application relation.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The relationship is automatically set when the relation type is set. It is only allowed to set
the relation type if no base relation is defined.

Parameters

arRelationType (Type = RelationType)

The relation type.

Java Calling Sequence

applRel.setRelationType(arRelationType);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_HAS_BASE_RELATION

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATION_TYPE

AO_IS_BASE_RELATION

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 679

OO-API

ASAM ODS VERSION 5.0 10-143

10.2.7 APPLICATIONSTRUCTURE

ApplicationStructure is the interface that allows to access the ASAM ODS application model
which currently is used by the server (please note the difference in the wording between
structure and model). This is similar to BaseStructure versus ASAM ODS base model.

APPLICATIONSTRUCTURE_CHECK

Purpose

Check the application model for ASAM ODS conformity. The first error found is reported
by an exception. The following checks are performed:

 Each application element must be derived from a valid base element.

 An application attribute may be derived from a base attribute. It is not allowed within
one application element to derive more than one application attribute from the same
base attribute. It is allowed that application attributes are not derived from any base
attribute.

 All application elements must have at least the mandatory attributes.

 Each application elements must be identified by a unique Asam path. No "floating"
application elements are allowed.

 All relations required by the base model must be present.

Parameters

None.

Java Calling Sequence

applStruct.check();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_DUPLICATE_BASE_ATTRIBUTE

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATION

AO_MISSING_ATTRIBUTE

AO_MISSING_RELATION

AO_MISSING_APPLICATION_ELEMENT

AO_NOT_IMPLEMENTED

AO_NO_PATH_TO_ELEMENT

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

680 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-144 ASAM ODS VERSION 5.0

APPLICATIONSTRUCTURE_CREATEELEMENT

Purpose

Create a new application element in the application model.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The information whether or not the new application element is a top level element is
taken from the specified base element. The Id of the application element is set
automatically. The mandatory base attributes are created automatically. Optional
attributes have to be created by the calling program. The application attribute interface
methods may be used to modify the attributes.

Parameters

baseElem (Type = BaseElement)

The base element from which the application element is derived.

Java Calling Sequence

ApplicationElement applElem = applStruct.createElement(baseElem);

Returns:

Return-Name: applElem

Return-Type: ApplicationElement

The new application element.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.ApplicationStructure;

import org.asam.ods.ApplicationElement;

import org.asam.ods.BaseStructure;
import org.asam.ods.BaseElement;

// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?
if (session != null) {

 // Get application model.

 ApplicationStructure as =
 session.getApplicationStructure();

 // Get base model.
 BaseStructure bs = session.getBaseStructure();

 // Get a base element by type.

 BaseElement be = bs.getElementByType("AoSubmatrix");

 // Start the transaction

 session.startTransaction();
 // Create a new application element.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 681

OO-API

ASAM ODS VERSION 5.0 10-145

 ApplicationElement ae = as.createElement(be);

 ...

 // Commit the transaction
 session.commitTransaction();

 // Close the session.

 session.close();

}

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

682 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-146 ASAM ODS VERSION 5.0

APPLICATIONSTRUCTURE_CREATEENUMERATIONDEFINITION

Purpose

Create a new enumeration definition. This method modifies the application model and is
only allowed for the superuser.

Parameters

enumName (Type = T_STRING)

Name of the enumeration

Java Calling Sequence

EnumerationDefinition newEnum;

newEnum = applStruct.createEnumerationDefinition(enumName);

Returns:

Return-Name: newEnum

Return-Type: EnumerationDefinition

The new created enumeration

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

AO_ACCESS_DENIED

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 683

OO-API

ASAM ODS VERSION 5.0 10-147

APPLICATIONSTRUCTURE_CREATEINSTANCERELATIONS

Purpose

Create the relation between a list of instances. The number of instances in both list must
be identical. The application element of the instances in each list must be identical. The
application elements must match the application elements of the application relation.
The index in the list of the instances defines related instances.

Parameters

applRel (Type = ApplicationRelation)

The application relation.

elemList1 (Type = InstanceElementSequence)

The list with the instances of one application element for which the relation will be
created.

elemList2 (Type = InstanceElementSequence)

The list with the related instances.

Java Calling Sequence

applStruct.createInstanceRelations(applRel, elemList1, elemList2);

Returns:

none

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

AO_INVALID_REQUEST

ISO/PAS 22720:2005(E)

684 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-148 ASAM ODS VERSION 5.0

APPLICATIONSTRUCTURE_CREATERELATION

Purpose

Create a new relation.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The relation is part of the application model. The application relation interface methods
may be used to modify the relation.

The default properties of a new application relation are:

 BaseRelation NULL

 Element1 NULL

 Element2 NULL

 Range -2, -2

 Name NULL

 Type INFO

When element 1 or element 2 is set before the name of the relation is specified, the
name of the application relation is set to "AUTOGEN".

Parameters

None.

Java Calling Sequence

ApplicationRelation applRel = applStruct.createRelation();

Returns:

Return-Name: applRel

Return-Type: ApplicationRelation

The new application relation.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.ApplicationStructure;

import org.asam.ods.ApplicationRelation;

// Create a new session with aoFactory.
AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {
 session.StartTransaction();

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 685

OO-API

ASAM ODS VERSION 5.0 10-149

 // Get application model.

 ApplicationStructure as =
 session.getApplicationStructure();

 // Create a new application relation.

 ApplicationRelation ar = as.createRelation();

 ...
 session.commitTransaction();

 // Close the session.

 session.close();

}

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

686 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-150 ASAM ODS VERSION 5.0

APPLICATIONSTRUCTURE_GETELEMENTBYID

Purpose

Get the application element with the requested Id.

Parameters

aeId (Type = T_LONGLONG)

The Id of the requested application element.

Java Calling Sequence

ApplicationElement applElem = applStruct.getElementById(aeId);

Returns:

Return-Name: applElem

Return-Type: ApplicationElement

The requested application element.

Examples:

Language: Java

import org.asam.ods.AoSession;
import org.asam.ods.ApplicationStructure;

import org.asam.ods.ApplicationElement;

// Create a new session with aoFactory.

AoSession session;
session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get application model.

 ApplicationStructure as =
 session.getApplicationStructure();

 // Get an application element by id.
 ApplicationElement ae = as.getElementById(69);

 ...

 // Close the session.
 session.close();

}

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 687

OO-API

ASAM ODS VERSION 5.0 10-151

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

688 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-152 ASAM ODS VERSION 5.0

APPLICATIONSTRUCTURE_GETELEMENTBYNAME

Purpose

Get the application element with the requested name.

Parameters

aeName (Type = Name)

The name of the requested application element.

Java Calling Sequence

ApplicationElement applElem = applStruct.getElementByName(aeName);

Returns:

Return-Name: applElem

Return-Type: ApplicationElement

The requested application element.

Examples:

Language: Java

import org.asam.ods.AoSession;
import org.asam.ods.ApplicationStructure;

import org.asam.ods.ApplicationElement;

// Create a new session with aoFactory.

AoSession session;
session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get application model.

 ApplicationStructure as =
 session.getApplicationStructure();

 // Get an application element by name.
 ApplicationElement ae = as.getElementByName("myEngine");

 ...

 // Close the session.
 session.close();

}

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 689

OO-API

ASAM ODS VERSION 5.0 10-153

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

690 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-154 ASAM ODS VERSION 5.0

APPLICATIONSTRUCTURE_GETELEMENTS

Purpose

Get the application elements whose names match the pattern. The pattern is case
sensitive and may contain wildcard characters.

Parameters

aePattern (Type = Pattern)

The name or the search pattern for the requested application elements.

Java Calling Sequence

ApplicationElement[] applElems = applStruct.getElements(aePattern);

Returns:

Return-Name: applElems

Return-Type: ApplicationElementSequence

The requested application elements.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.ApplicationStructure;

import org.asam.ods.ApplicationElement;

// Create a new session with aoFactory.
AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get application model.

 ApplicationStructure as =
 session.getApplicationStructure();

 // Get a list of application elements.

 ApplicationElementSeq aeSeq[] = as.getElements("*");

 ...

 // Close the session.

 session.close();

}

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 691

OO-API

ASAM ODS VERSION 5.0 10-155

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

692 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-156 ASAM ODS VERSION 5.0

APPLICATIONSTRUCTURE_GETELEMENTSBYBASETYPE

Purpose

Get the names of application elements that are derived from the specified base element.

Parameters

aeType (Type = BaseType)

The requested base element type. The base element type can be a pattern.

Java Calling Sequence

ApplicationElement[] applElems = applStruct.getElementsByBaseType(aeType);

Returns:

Return-Name: applElems

Return-Type: ApplicationElementSequence

The requested application element names.

Examples:

Language: Java

import org.asam.ods.AoSession;
import org.asam.ods.ApplicationStructure;

import org.asam.ods.ApplicationElement;

// Create a new session with aoFactory.

AoSession session;
session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get application model.

 ApplicationStructure as =
 session.getApplicationStructure();

 // Get a list of application elements by type.
 ApplicationElementSeq aeSeq[] =

 as.getElementsByBaseType("AoTest");

 ...

 // Close the session.

 session.close();

}

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 693

OO-API

ASAM ODS VERSION 5.0 10-157

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_BASETYPE

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

694 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-158 ASAM ODS VERSION 5.0

APPLICATIONSTRUCTURE_GETENUMERATIONDEFINITION

Purpose

Get the specified enumeration definition.

Parameters

enumName (Type = T_STRING)

Name of the requested enumeration.

Java Calling Sequence

EnumerationDefinition enumDef;

enumDef = applStruct.getEnumerationDefinition(enumName);

Returns:

Return-Name: enumDef

Return-Type: EnumerationDefinition

The enumeration definition.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 695

OO-API

ASAM ODS VERSION 5.0 10-159

APPLICATIONSTRUCTURE_GETINSTANCEBYASAMPATH

Purpose

Get the instance element specified by the ASAM path.

Parameters

asamPath (Type = Name)

The ASAM path of the requested instance element.

Java Calling Sequence

InstanceElement instElem = applStruct.getInstanceByAsamPath(asamPath);

Returns:

Return-Name: instElem

Return-Type: InstanceElement

The requested instance element.

Examples:

Language: Java

InstanceElement ie;
Name asamPath;

ie = as.getInstanceByAsamPath(asamPath);

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_ASAM_PATH

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

696 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-160 ASAM ODS VERSION 5.0

APPLICATIONSTRUCTURE_GETINSTANCESBYID

Purpose

Get the instance elements specified by the element id.

Parameters

ieIds (Type = ElemIdSequence)

The sequence with the element id.

Java Calling Sequence

InstanceElement[] instElems = applStruct.getInstancesById(ieIds);

Returns:

Return-Name: instElems

Return-Type: InstanceElementSequence

The requested instance element sequence.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_ASAM_PATH

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 697

OO-API

ASAM ODS VERSION 5.0 10-161

APPLICATIONSTRUCTURE_GETRELATIONS

Purpose

Returns the relations between two application elements.

Parameters

applElem1 (Type = ApplicationElement)

The first application element.

applElem2 (Type = ApplicationElement)

The second application element.

Java Calling Sequence

ApplicationRelation[] applRels = applStruct.getRelations(applElem1,applElem2);

Returns:

Return-Name: applRels

Return-Type: ApplicationRelationSequence

The relations between the specified application elements.

Examples:

Language: Java

ApplicationRelationSeq arSeq[];

 ApplicationElement ae1, ae2;

arSeq = as.getRelations(ae1,ae2);

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

698 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-162 ASAM ODS VERSION 5.0

APPLICATIONSTRUCTURE_GETSESSION

Purpose

Get the current client session in which the application model is created.

Parameters

None.

Java Calling Sequence

AoSession session = applStruct.getSession();

Returns:

Return-Name: session

Return-Type: AoSession

The current client session.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 699

OO-API

ASAM ODS VERSION 5.0 10-163

APPLICATIONSTRUCTURE_GETTOPLEVELELEMENTS

Purpose

Get the top level application elements which are inherted from the base element that
matches the base type. If the given base type is no top level base element an exception
is thrown. A top level application element is an application element without a father.

Parameters

aeType (Type = BaseType)

The requested base type. The base element type can be a pattern.

Java Calling Sequence

ApplicationElement[] applElems = applStruct.getTopLevelElements(aeType);

Returns:

Return-Name: applElems

Return-Type: ApplicationElementSequence

The top level application elements.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.ApplicationStructure;

import org.asam.ods.ApplicationElement;

// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?
if (session != null) {

 // Get application model.

 ApplicationStructure as =
 session.getApplicationStructure();

 // Get a list of top level application elements.

 ApplicationElementSeq aeSeq[] =
 as.getTopLevelElements("AoAny");

 ...

 // Close the session.

 session.close();

}

ISO/PAS 22720:2005(E)

700 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-164 ASAM ODS VERSION 5.0

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_BASETYPE

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 701

OO-API

ASAM ODS VERSION 5.0 10-165

APPLICATIONSTRUCTURE_LISTELEMENTS

Purpose

Get the names of the application elements that match the pattern. The pattern is case
sensitive and may contain wildcard characters.

Parameters

aePattern (Type = Pattern)

The name or the search pattern for the requested base elements.

Java Calling Sequence

Name[] applElemNames = applStruct.listElements(aePattern);

Returns:

Return-Name: applElemNames

Return-Type: NameSequence

The names of the application elements.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.ApplicationStructure;

// Create a new session with aoFactory.

AoSession session;
session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get application model.

 ApplicationStructure as =
 session.getApplicationStructure();

 // Get a list of application element names.
 String aeNameList[] = as.listElements("*");

 ...

 // Close the session.
 session.close();

}

ISO/PAS 22720:2005(E)

702 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-166 ASAM ODS VERSION 5.0

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 703

OO-API

ASAM ODS VERSION 5.0 10-167

APPLICATIONSTRUCTURE_LISTELEMENTSBYBASETYPE

Purpose

Get the names of application elements that are derived from the given base type.

Parameters

aeType (Type = BaseType)

The requested base type. The base element type can be a pattern.

Java Calling Sequence

Name[] applElemNames = applStruct.listElementsByBaseType(aeType);

Returns:

Return-Name: applElemNames

Return-Type: NameSequence

The names of the application elements.

Examples:

Language: Java

import org.asam.ods.AoSession;
import org.asam.ods.ApplicationStructure;

// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get application model.
 ApplicationStructure as =

 session.getApplicationStructure();

 // Get a list of application element names.

 String aeNameList[] = as.listElementsByBaseType("AoTest");

 ...

 // Close the session.

 session.close();

}

ISO/PAS 22720:2005(E)

704 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-168 ASAM ODS VERSION 5.0

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_BASETYPE

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 705

OO-API

ASAM ODS VERSION 5.0 10-169

APPLICATIONSTRUCTURE_LISTENUMERATIONS

Purpose

Get the list of all enumeration names.

Parameters

None.

Java Calling Sequence

Name[] enumNames;

enumNames = applStruct.listEnumerations();

Returns:

Return-Name: enumNames

Return-Type: NameSequence

List with all enumeration names.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

706 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-170 ASAM ODS VERSION 5.0

APPLICATIONSTRUCTURE_LISTTOPLEVELELEMENTS

Purpose

Get the names of the top level application elements that are derived from the given base
type. If the given base type is not a top level base element an exception is thrown. A top
level application element is an application element without a father.

Parameters

aeType (Type = BaseType)

The requested base type.

Java Calling Sequence

Name[] applElemNames = applStruct.listTopLevelElements(aeType);

Returns:

Return-Name: applElemNames

Return-Type: NameSequence

The names of the application elements.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.ApplicationStructure;

// Create a new session with aoFactory.
AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get application model.

 ApplicationStructure as =
 session.getApplicationStructure();

 // Get a list of top level application element names.

 String aeNameList[] = as.listTopLevelElements("*");

 ...

 // Close the session.

 session.close();

}

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 707

OO-API

ASAM ODS VERSION 5.0 10-171

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_BASETYPE

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

708 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-172 ASAM ODS VERSION 5.0

APPLICATIONSTRUCTURE_REMOVEELEMENT

Purpose

Remove an application element from the application model.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

 - Only allowed:

 - if the application element is empty (has no instances).

 - no relations with other application elements.

Parameters

applElem (Type = ApplicationElement)

The application element to be removed.

Java Calling Sequence

applStruct.removeElement(applElem);

Returns:

None.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.ApplicationStructure;

import org.asam.ods.ApplicationElement;
import org.asam.ods.BaseStructure;

import org.asam.ods.BaseElement;

// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");
// Session successfully created ?

if (session != null) {

 // Get application model.

 ApplicationStructure as =
 session.getApplicationStructure();

 // Get base model.

 BaseStructure bs = session.getBaseStructure();

 // Get a base element by type.

 BaseElement be = bs.getElementByType("AoSubmatrix");

 // Create a new application element.
 ApplicationElement ae = as.createElement(be);

 ...

 // Remove an application element from application model.

 as.removeElement(ae);

 ...
 // Close the session.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 709

OO-API

ASAM ODS VERSION 5.0 10-173

 session.close();

}

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_HAS_INSTANCES

AO_HAS_REFERENCES

AO_IMPLEMENTATION_PROBLEM

AO_NOT_FOUND

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

710 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-174 ASAM ODS VERSION 5.0

APPLICATIONSTRUCTURE_REMOVEENUMERATIONDEFINITION

Purpose

Remove the enumeration definition. The server checks if the enumeration is still in use
by one of the attributes. This method modifies the application model and is only allowed
for the superuser.

Parameters

enumName (Type = T_STRING)

Name of the enumeration to remove.

Java Calling Sequence

applStruct.removeEnumerationDefinition(enumName);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

AO_ACCESS_DENIED

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 711

OO-API

ASAM ODS VERSION 5.0 10-175

APPLICATIONSTRUCTURE_REMOVERELATION

Purpose

This method removes an application relation from the application model.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The elements of the relation are still part of the application model. If there are instances
of the relation they are also removed.

Parameters

applRel (Type = ApplicationRelation)

The application relation to be removed.

Java Calling Sequence

applStruct.removeRelation(applRel);

Returns:

None.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.ApplicationStructure;

import org.asam.ods.ApplicationRelation;

// Create a new session with aoFactory.
AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get application model.
 ApplicationStructure as =

 session.getApplicationStructure();

 // Create a new application relation.

 ApplicationRelation ar = as.createRelation();

 ...
 // Remove an application relation from an application

 model.

 as.removeRelation(ar);

 ...

 // Close the session.
 session.close();

}

ISO/PAS 22720:2005(E)

712 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-176 ASAM ODS VERSION 5.0

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_HAS_INSTANCES

AO_IMPLEMENTATION_PROBLEM

AO_NOT_FOUND

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 713

OO-API

ASAM ODS VERSION 5.0 10-177

10.2.8 BASEATTRIBUTE

BASEATTRIBUTE_GETBASEELEMENT

Purpose

Return the base element to which the attibute belongs..

Parameters

None.

Java Calling Sequence

BaseElement baseElem = baseAttr.getBaseElement();

Returns:

Return-Name: baseElem

Return-Type: BaseElement

The base element of the attribute.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

714 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-178 ASAM ODS VERSION 5.0

BASEATTRIBUTE_GETDATATYPE

Purpose

Get the data type of the base attribute.

Parameters

None.

Java Calling Sequence

DataType baDataType = baseAttr.getDataType();

Returns:

Return-Name: baDataType

Return-Type: DataType

The data type of the base attribute.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 715

OO-API

ASAM ODS VERSION 5.0 10-179

BASEATTRIBUTE_GETNAME

Purpose

Get the name of the base attribute.

Parameters

None.

Java Calling Sequence

Name baName = baseAttr.getName();

Returns:

Return-Name: baName

Return-Type: Name

The name of the base attribute.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

716 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-180 ASAM ODS VERSION 5.0

BASEATTRIBUTE_ISOBLIGATORY

Purpose

Get the obligatory flag of the base attribute.

Parameters

None.

Java Calling Sequence

T_BOOLEAN baIsObligatory = baseAttr.isObligatory();

Returns:

Return-Name: baIsObligatory

Return-Type: T_BOOLEAN

The obligatory flag of the base attribute.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 717

OO-API

ASAM ODS VERSION 5.0 10-181

BASEATTRIBUTE_ISUNIQUE

Purpose

Get the unique flag of the base attribute.

Parameters

None.

Java Calling Sequence

T_BOOLEAN baIsUnique = baseAttr.isUnique();

Returns:

Return-Name: baIsUnique

Return-Type: T_BOOLEAN

The unique flag of the base attribute.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

718 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-182 ASAM ODS VERSION 5.0

10.2.9 BASEELEMENT

BASEELEMENT_GETALLRELATIONS

Purpose

Get all known relations of the base element.

Parameters

None.

Java Calling Sequence

BaseRelation[] baseRels = baseElem.getAllRelations();

Returns:

Return-Name: baseRels

Return-Type: BaseRelationSequence

All known relations of the base element.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 719

OO-API

ASAM ODS VERSION 5.0 10-183

BASEELEMENT_GETATTRIBUTES

Purpose

Get attributes of the base element.

Parameters

baPattern (Type = Pattern)

The name or the search pattern for the requested base attributes.

Java Calling Sequence

BaseAttribute[] baseAttrs = baseElem.getAttributes(baPattern);

Returns:

Return-Name: baseAttrs

Return-Type: BaseAttributeSequence

The requested attributes of the base element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

720 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-184 ASAM ODS VERSION 5.0

BASEELEMENT_GETRELATEDELEMENTSBYRELATIONSHIP

Purpose

Get the related elements of a base element defined by the relationship.

Parameters

brRelationship (Type = Relationship)

The requested relationship.

Java Calling Sequence

BaseElement[] baseElems =
baseElem.getRelatedElementsByRelationship(brRelationship);

Returns:

Return-Name: baseElems

Return-Type: BaseElementSequence

The related elements of a base element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATIONSHIP

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 721

OO-API

ASAM ODS VERSION 5.0 10-185

BASEELEMENT_GETRELATIONSBYTYPE

Purpose

Get the base element's relations of the requested relation type.

Parameters

brRelationType (Type = RelationType)

The requested relation type.

Java Calling Sequence

BaseRelation[] baseRels = baseElem.getRelationsByType(brRelationType);

Returns:

Return-Name: baseRels

Return-Type: BaseRelationSequence

The base element's relations of the requested type.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATION_TYPE

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

722 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-186 ASAM ODS VERSION 5.0

BASEELEMENT_GETTYPE

Purpose

Get the type of the base element. The type of the base element is identical with the
name of the base element. The type of the base element is a string.

Parameters

None.

Java Calling Sequence

BaseType beType = baseElem.getType();

Returns:

Return-Name: beType

Return-Type: BaseType

The type of the base element.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 723

OO-API

ASAM ODS VERSION 5.0 10-187

BASEELEMENT_ISTOPLEVEL

Purpose

Get whether or not the base element is a top level element. Top level elements are
elements without a father.

Parameters

None.

Java Calling Sequence

T_BOOLEAN beIsTopLevel = baseElem.isTopLevel();

Returns:

Return-Name: beIsTopLevel

Return-Type: T_BOOLEAN

Boolean whether or not the base element is a top level element.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

724 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-188 ASAM ODS VERSION 5.0

BASEELEMENT_LISTATTRIBUTES

Purpose

Get attribute names of the base element.

Parameters

baPattern (Type = Pattern)

The name or the search pattern for the requested base attribute names.

Java Calling Sequence

Name[] baseElemNames = baseElem.listAttributes(baPattern);

Returns:

Return-Name: baseElemNames

Return-Type: NameSequence

The requested attribute names of the base element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 725

OO-API

ASAM ODS VERSION 5.0 10-189

BASEELEMENT_LISTRELATEDELEMENTSBYRELATIONSHIP

Purpose

Get the related element names of the base element defined by the relationship.

Parameters

brRelationship (Type = Relationship)

The requested relationship.

Java Calling Sequence

BaseType[] baseTypes = baseElem.listRelatedElementsByRelationship(brRelationship);

Returns:

Return-Name: baseTypes

Return-Type: BaseTypeSequence

The related element names of the base element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATIONSHIP

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

726 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-190 ASAM ODS VERSION 5.0

10.2.10 BASERELATION

BASERELATION_GETELEM1

Purpose

Get the first base element of the base relation.

Parameters

None.

Java Calling Sequence

BaseElement baseElem = baseRel.getElem1();

Returns:

Return-Name: baseElem

Return-Type: BaseElement

The first base element of the base relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 727

OO-API

ASAM ODS VERSION 5.0 10-191

BASERELATION_GETELEM2

Purpose

Get the second base element of the base relation.

Parameters

None.

Java Calling Sequence

BaseElement baseElem = baseRel.getElem2();

Returns:

Return-Name: baseElem

Return-Type: BaseElement

The second base element of the base relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

728 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-192 ASAM ODS VERSION 5.0

BASERELATION_GETINVERSERELATIONRANGE

Purpose

Get the inverse relation range of the base relation.

Parameters

None.

Java Calling Sequence

RelationRange brRange = baseRel.getInverseRelationRange();

Returns:

Return-Name: brRange

Return-Type: RelationRange

The inverse relation range of the base relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 729

OO-API

ASAM ODS VERSION 5.0 10-193

BASERELATION_GETINVERSERELATIONSHIP

Purpose

Get the inverse relationship of the base relation.

Parameters

None.

Java Calling Sequence

Relationship relationship = baseRel.getInverseRelationship();

Returns:

Return-Name: relationship

Return-Type: Relationship

The inverse relationship of the base relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

730 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-194 ASAM ODS VERSION 5.0

BASERELATION_GETRELATIONNAME

Purpose

Get the relation name of the base relation.

Parameters

None.

Java Calling Sequence

Name brName = baseRel.getRelationName();

Returns:

Return-Name: brName

Return-Type: Name

The relation name of the base relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 731

OO-API

ASAM ODS VERSION 5.0 10-195

BASERELATION_GETRELATIONRANGE

Purpose

Get the relation range of the base relation.

Parameters

None.

Java Calling Sequence

RelationRange brRange = baseRel.getRelationRange();

Returns:

Return-Name: brRange

Return-Type: RelationRange

The relation range of the base relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

732 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-196 ASAM ODS VERSION 5.0

BASERELATION_GETRELATIONSHIP

Purpose

Get the relationship of the base relation.

Parameters

None.

Java Calling Sequence

Relationship relationship = baseRel.getRelationship();

Returns:

Return-Name: relationship

Return-Type: Relationship

The relationhip of the base relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 733

OO-API

ASAM ODS VERSION 5.0 10-197

BASERELATION_GETRELATIONTYPE

Purpose

Get the relation type of the base relation.

Parameters

None.

Java Calling Sequence

RelationType brType = baseRel.getRelationType();

Returns:

Return-Name: brType

Return-Type: RelationType

The relation type of the base relation.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

734 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-198 ASAM ODS VERSION 5.0

10.2.11 BASESTRUCTURE

BaseStructure is the interface that allows to access the ASAM ODS base model which
currently is used by the server (please note the difference in the wording between structure
and model). This is similar to ApplicationStructure versus ASAM ODS application model.

BASESTRUCTURE_GETELEMENTBYTYPE

Purpose

Get the base element that matches the requested type. The type of a base element is
identical with the name of the base element.

Parameters

beType (Type = BaseType)

The name of the requested base element.

Java Calling Sequence

BaseElement baseElem = baseStruct.getElementByType(beType);

Returns:

Return-Name: baseElem

Return-Type: BaseElement

The requested base element.

Examples:

Language: Java

import org.asam.ods.AoSession;
import org.asam.ods.BaseStructure;

// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get base model.
 BaseStructure bs = session.getBaseStructure();

 // Get a the base element of type AoMeasurement.

 BaseElement be = bs.getElementByType("AoMeasurement");

 ...
 // Close the session.

 session.close();

}

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 735

OO-API

ASAM ODS VERSION 5.0 10-199

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_BASETYPE

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

736 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-200 ASAM ODS VERSION 5.0

BASESTRUCTURE_GETELEMENTS

Purpose

Get the base elements that match the pattern. The pattern is case sensitive and may
contain wildcard characters.

Parameters

bePattern (Type = Pattern)

The name or the search pattern for the requested base elements.

Java Calling Sequence

BaseElement[] baseElems = baseStruct.getElements(bePattern);

Returns:

Return-Name: baseElems

Return-Type: BaseElementSequence

The requested base elements.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.BaseStructure;

// Create a new session with aoFactory.

AoSession session;
session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get base model.

 BaseStructure bs = session.getBaseStructure();

 // Get a list of base elements.

 BaseElement beList[] = bs.getElements("*");

 ...

 // Close the session.

 session.close();

}

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 737

OO-API

ASAM ODS VERSION 5.0 10-201

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

738 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-202 ASAM ODS VERSION 5.0

BASESTRUCTURE_GETRELATION

Purpose

Get the base relation between two base elements.

Parameters

elem1 (Type = BaseElement)

The base element from which the relation starts.

elem2 (Type = BaseElement)

The base element to which the relation points.

Java Calling Sequence

BaseRelation baseRel = baseStruct.getRelation(elem1,elem2);

Returns:

Return-Name: baseRel

Return-Type: BaseRelation

The base relation between the two base elements.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.BaseStructure;

// Create a new session with aoFactory.
AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get base model.
 BaseStructure bs = session.getBaseStructure();

 // Get a the base elements of type AoMeasurement and
 AoQuantity.

 BaseElement be1 = bs.getElementByType("AoMeasurement");

 BaseElement be2 = bs.getElementByType("AoQuantity");
 // Get the relation between the elements.

 BaseRelation br = bs.getRelation(be1,be2);

 ...

 // Close the session.

 session.close();

}

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 739

OO-API

ASAM ODS VERSION 5.0 10-203

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

740 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-204 ASAM ODS VERSION 5.0

BASESTRUCTURE_GETTOPLEVELELEMENTS

Purpose

Get the top level base elements that match the pattern. The pattern is case sensitive and
may contain wildcard characters. A top level base element is a base element without a
father.

Parameters

bePattern (Type = Pattern)

The name or the search pattern for the requested top level base elements.

Java Calling Sequence

BaseElement[] baseElems = baseStruct.getTopLevelElements(bePattern);

Returns:

Return-Name: baseElems

Return-Type: BaseElementSequence

The requested top level base elements.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.BaseStructure;

// Create a new session with aoFactory.
AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get base model.

 BaseStructure bs = session.getBaseStructure();

 // Get a list of top level base elements.
 BaseElement beList[] = bs.getTopLevelElements("*");

 ...

 // Close the session.
 session.close();

}

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 741

OO-API

ASAM ODS VERSION 5.0 10-205

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

742 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-206 ASAM ODS VERSION 5.0

BASESTRUCTURE_GETVERSION

Purpose

Get the version of the base model.The version of the base model is the version of the
ASAM ODS base model.

Parameters

None.

Java Calling Sequence

T_STRING version = baseStruct.getVersion();

Returns:

Return-Name: version

Return-Type: T_STRING

The version of the ASAM ODS base model.

Examples:

Language: Java

import org.asam.ods.AoSession;
import org.asam.ods.BaseStructure;

// Create a new session with aoFactory.

AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get base model.
 BaseStructure bs = session.getBaseStructure();

 // Get current base model version.

 String bsVersion = bs.getVersion();

 ...

 // Close the session.

 session.close();

}

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 743

OO-API

ASAM ODS VERSION 5.0 10-207

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

744 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-208 ASAM ODS VERSION 5.0

BASESTRUCTURE_LISTELEMENTS

Purpose

Get the base element names that match the pattern. The pattern is case sensitive and
may contain wildcard characters.

Parameters

bePattern (Type = Pattern)

The name or the search pattern for the requested base element names.

Java Calling Sequence

BaseType[] baseTypes = baseStruct.listElements(bePattern);

Returns:

Return-Name: baseTypes

Return-Type: BaseTypeSequence

The requested base element names.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.BaseStructure;

// Create a new session with aoFactory.

AoSession session;
session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get base model.

 BaseStructure bs = session.getBaseStructure();

 // Get a list of base element names.

 String beNameList[] = bs.ListElements("*");

 ...

 // Close the session.

 session.close();

}

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 745

OO-API

ASAM ODS VERSION 5.0 10-209

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

746 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-210 ASAM ODS VERSION 5.0

BASESTRUCTURE_LISTTOPLEVELELEMENTS

Purpose

Get the top level base element names that match the pattern. The pattern is case
sensitive and may contain wildcard characters. A top level base element is a base
element without a father.

Parameters

bePattern (Type = Pattern)

The name or the search pattern for the requested top level base element names.

Java Calling Sequence

BaseType[] baseTypes = baseStruct.listTopLevelElements(bePattern);

Returns:

Return-Name: baseTypes

Return-Type: BaseTypeSequence

The requested top level base element names.

Examples:

Language: Java

import org.asam.ods.AoSession;

import org.asam.ods.BaseStructure;

// Create a new session with aoFactory.
AoSession session;

session = aoFactory.newSession("");

// Session successfully created ?

if (session != null) {

 // Get base model.

 BaseStructure bs = session.getBaseStructure();

 // Get a list of top level base element names.
 String beNameList[] = bs.ListTopLevelElements("*");

 ...

 // Close the session.
 session.close();

}

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 747

OO-API

ASAM ODS VERSION 5.0 10-211

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

748 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-212 ASAM ODS VERSION 5.0

10.2.12 BLOB

BLOB_APPEND

Purpose

Append a byte sequence to the binary large object.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

Parameters

value (Type = S_BYTE)

The byte sequence.

Java Calling Sequence

blob.append(value);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 749

OO-API

ASAM ODS VERSION 5.0 10-213

BLOB_COMPARE

Purpose

Compares the content of the binary large object. The headers are not compared.

Parameters

aBlob (Type = T_BLOB)

The blob to compare.

Java Calling Sequence

T_BOOLEAN contentEqual = blob.compare(aBlob);

Returns:

Return-Name: contentEqual

Return-Type: T_BOOLEAN

A flag whether or not the compared blobs are equal.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

750 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-214 ASAM ODS VERSION 5.0

BLOB_DESTROY

Purpose

Destroy the object on the server. This method is used to tell the server that the blob
object is not used anymore by the client. Access to this object after the destroy method
will lead to an exception.

Parameters

None.

Java Calling Sequence

blob.destroy()

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 751

OO-API

ASAM ODS VERSION 5.0 10-215

BLOB_GET

Purpose

Get a part of the binary large object.

Parameters

offset (Type = T_LONG)

The starting position of the data in the blob.

length (Type = T_LONG)

The number of bytes requested from the blob.

Java Calling Sequence

S_BYTE byteStream = blob.get(offset,length);

Returns:

Return-Name: byteStream

Return-Type: S_BYTE

The request part of the blob data.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

752 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-216 ASAM ODS VERSION 5.0

BLOB_GETHEADER

Purpose

Get the header of the binary large object.

Parameters

None.

Java Calling Sequence

T_STRING header = blob.getHeader();

Returns:

Return-Name: header

Return-Type: T_STRING

The blob header.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 753

OO-API

ASAM ODS VERSION 5.0 10-217

BLOB_GETLENGTH

Purpose

Get the length of the binary large object without loading it.

Parameters

None.

Java Calling Sequence

T_LONG length = blob.getLength();

Returns:

Return-Name: length

Return-Type: T_LONG

The blob length.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

754 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-218 ASAM ODS VERSION 5.0

BLOB_SET

Purpose

Clear the binary large object and set the new data.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

Parameters

value (Type = S_BYTE)

The new blob data.

Java Calling Sequence

blob.set(value);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 755

OO-API

ASAM ODS VERSION 5.0 10-219

BLOB_SETHEADER

Purpose

Set the header of a binary large object.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

Parameters

header (Type = T_STRING)

The blob header.

Java Calling Sequence

blob.setHeader(header);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

756 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-220 ASAM ODS VERSION 5.0

10.2.13 COLUMN

COLUMN_DESTROY

Purpose

Destroy the object on the server. This method is used to tell the server that this object is
not used anymore by the client. Access to this object after the destroy method will lead
to an exception.

Parameters

None.

Java Calling Sequence

column.destroy()

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 757

OO-API

ASAM ODS VERSION 5.0 10-221

COLUMN_GETDATATYPE

Purpose

Get the data type of the column.

Parameters

None.

Java Calling Sequence

DataType dataType = column.getDataType();

Returns:

Return-Name: dataType

Return-Type: DataType

The data type of the column.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

758 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-222 ASAM ODS VERSION 5.0

COLUMN_GETFORMULA

Purpose

Get the formula of the column.

Parameters

None.

Java Calling Sequence

T_STRING formula = column.getFormula();

Returns:

Return-Name: formula

Return-Type: T_STRING

The formula of the column.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 759

OO-API

ASAM ODS VERSION 5.0 10-223

COLUMN_GETNAME

Purpose

Get the name of the column.

Parameters

None.

Java Calling Sequence

Name columnName = column.getName();

Returns:

Return-Name: columnName

Return-Type: Name

The name of the column.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

760 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-224 ASAM ODS VERSION 5.0

COLUMN_GETSOURCEMQ

Purpose

Get the source measurement quantity.

Parameters

None.

Java Calling Sequence

InstanceElement instElem = column.getSourceMQ();

Returns:

Return-Name: instElem

Return-Type: InstanceElement

The source measurement quantity.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 761

OO-API

ASAM ODS VERSION 5.0 10-225

COLUMN_GETUNIT

Purpose

Get the unit of the column.

Parameters

None.

Java Calling Sequence

T_STRING unit = column.getUnit();

Returns:

Return-Name: unit

Return-Type: T_STRING

The unit of the column.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

762 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-226 ASAM ODS VERSION 5.0

COLUMN_ISINDEPENDENT

Purpose

Is the column an independent column

Parameters

None.

Java Calling Sequence

T_BOOLEAN independent = column.isIndependent();

Returns:

Return-Name: independent

Return-Type: T_BOOLEAN

The independent flag of the column.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 763

OO-API

ASAM ODS VERSION 5.0 10-227

COLUMN_ISSCALING

Purpose

Is the column an scaling column

Parameters

None.

Java Calling Sequence

T_BOOLEAN scaling = column.isScaling();

Returns:

Return-Name: scaling

Return-Type: T_BOOLEAN

Tells if the column is a scaling column.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

764 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-228 ASAM ODS VERSION 5.0

COLUMN_SETFORMULA

Purpose

Set the formula of the column.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

Parameters

formula (Type = T_STRING)

The formula.

Java Calling Sequence

column.setFormula(formula);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 765

OO-API

ASAM ODS VERSION 5.0 10-229

COLUMN_SETINDEPENDENT

Purpose

Set the column as an indepent column.

Parameters

independent (Type = T_BOOLEAN)

The new value of the independent flag.

Java Calling Sequence

column.setIndependent(independent);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

766 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-230 ASAM ODS VERSION 5.0

COLUMN_SETSCALING

Purpose

Set the column to a scaling column.

Parameters

scaling (Type = T_BOOLEAN)

The new value of the scaling flag.

Java Calling Sequence

column.setScaling(scaling);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 767

OO-API

ASAM ODS VERSION 5.0 10-231

COLUMN_SETUNIT

Purpose

Set the unit of the column. This is only a temporary conversion unit when getting the
data of a column. This unit is not stored in the database. If a permanent storage of the
conversion unit is required the corresponding measurement quantity needs to be
changed.

Parameters

unit (Type = T_STRING)

The physical unit.

Java Calling Sequence

column.setUnit(unit);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

768 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-232 ASAM ODS VERSION 5.0

10.2.14 ELEMRESULTSETEXTSEQITERATOR

ELEMRESULTSETEXTSEQITERATOR_DESTROY

Purpose

Destroy the iterator and free the associated memory.

Parameters

None.

Java Calling Sequence

ersIter.destroy();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 769

OO-API

ASAM ODS VERSION 5.0 10-233

ELEMRESULTSETEXTSEQITERATOR_GETCOUNT

Purpose

Get the total number of elements accessible by the iterator.

Parameters

None.

Java Calling Sequence

T_LONG cnt = ersIter.getCount();

Returns:

Return-Name: count

Return-Type: T_LONG

The number of elements accessible by the iterator.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

770 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-234 ASAM ODS VERSION 5.0

ELEMRESULTSETEXTSEQITERATOR_NEXTN

Purpose

Get the next n elements from the sequence.

Parameters

how_many (Type = T_LONG)

The number of requested elements.

Java Calling Sequence

T_LONG how_many = 10;

ElemResultSetExt[] elemResults = ersIter.nextN(how_many)

Returns:

Return-Name: elemResults

Return-Type: ElemResultSetExtSequence

The next n attribute values from the element result set sequence.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 771

OO-API

ASAM ODS VERSION 5.0 10-235

ELEMRESULTSETEXTSEQITERATOR_NEXTONE

Purpose

Get the next element from the sequence.

Parameters

None.

Java Calling Sequence

ElemResultSetExt elemResult = ersIter.nextOne()

Returns:

Return-Name: elemResult

Return-Type: ElemResultSetExt

The next attribute values from the element result set sequence.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

772 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-236 ASAM ODS VERSION 5.0

ELEMRESULTSETEXTSEQITERATOR_RESET

Purpose

Reset the pointer in the element sequence to the first element.

Parameters

None.

Java Calling Sequence

ersIter.reset();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 773

OO-API

ASAM ODS VERSION 5.0 10-237

10.2.15 ENUMERATIONDEFINITION

ENUMERATIONDEFINITION_ADDITEM

Purpose

Add a new item to the enumeration. This method modifies the application model and is
only allowed for the superuser.

The name of an item must not exceed the maximum name length of the underlying
physical storage. The current specification of the physical storage restricts the length of
enumeration items to a maximum of 128 characters.

Parameters

itemName (Type = T_STRING)

The name of the new item.

Java Calling Sequence

enumDef.addItem(itemName);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

AO_ACCESS_DENIED

AO_DUPLICATE_NAME

AO_DUPLICATE_VALUE

ISO/PAS 22720:2005(E)

774 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-238 ASAM ODS VERSION 5.0

ENUMERATIONDEFINITION_GETINDEX

Purpose

Get the index of the enumeration.

Parameters

None.

Java Calling Sequence

T_LONG enumIndex = enumDef.getIndex();

Returns:

Return-Name: enumIndex

Return-Type: T_LONG

The index of the enumeration.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 775

OO-API

ASAM ODS VERSION 5.0 10-239

ENUMERATIONDEFINITION_GETITEM

Purpose

Get the value of an item.

Parameters

itemName (Type = T_STRING)

The name of the item.

Java Calling Sequence

T_LONG item = enumDef.getItem(itemName);

Returns:

Return-Name: item

Return-Type: T_LONG

The number of the item.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

AO_NOT_FOUND

ISO/PAS 22720:2005(E)

776 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-240 ASAM ODS VERSION 5.0

ENUMERATIONDEFINITION_GETITEMNAME

Purpose

Get the name of an item.

Parameters

item (Type = T_LONG)

The value of the item.

Java Calling Sequence

T_STRING itemName = enumDef.getItemName(item);

Returns:

Return-Name: itemName

Return-Type: T_STRING

The name of the item.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

AO_NOT_FOUND

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 777

OO-API

ASAM ODS VERSION 5.0 10-241

ENUMERATIONDEFINITION_GETNAME

Purpose

Get the name of the enumeration.

Parameters

None.

Java Calling Sequence

T_STRING enumName = enumDef.getName();

Returns:

Return-Name: enumName

Return-Type: T_STRING

Name of the enumeration.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

778 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-242 ASAM ODS VERSION 5.0

ENUMERATIONDEFINITION_LISTITEMNAMES

Purpose

List the possible names of the enumeration. The sort order of the list is the value of the
item. The first item has a value of 0 (zero).

Parameters

None.

Java Calling Sequence

Name[] nameList = enumDef.listItemNames();

Returns:

Return-Name: nameList

Return-Type: NameSequence

List with all possiable names of the enumeration items.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 779

OO-API

ASAM ODS VERSION 5.0 10-243

ENUMERATIONDEFINITION_RENAMEITEM

Purpose

Rename the item of the enumeration. This method modifies the application model and is
only allowed for the superuser.

Parameters

oldItemName (Type = T_STRING)

The existing name of the itrem.

newItemName (Type = T_STRING)

the new name of the item.

Java Calling Sequence
enumDef.renameItem(oldItemName, newItemName);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

AO_NOT_FOUND

ISO/PAS 22720:2005(E)

780 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-244 ASAM ODS VERSION 5.0

ENUMERATIONDEFINITION_SETNAME

Purpose

Set the name of the enumeration. This method modifies the application model and is
only allowed for the superuser.

The name of an enumeration definition must not exceed the maximum name length of
the underlying physical storage.The current specification of the physical storage restricts
the length of enumeration names to a maximum of 30 characters.

Parameters

enumName (Type = T_STRING)

Name of the enumeration.

Java Calling Sequence
enumDef.setName(enumName);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

AO_ACCESS_DENIED

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 781

OO-API

ASAM ODS VERSION 5.0 10-245

10.2.16 INSTANCEELEMENT

INSTANCEELEMENT_ADDINSTANCEATTRIBUTE

Purpose

Add an instance attribute to the instance. The instance attribute is built as a
Name/Value/Unit tuple on the client. This method has to copy the data from the client to
the server. The name of the attribute must be unique.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

Parameters

instAttr (Type = NameValueUnit)

The instance attribute to be added.

Java Calling Sequence

instElem.addInstanceAttribute(instAttr);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

782 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-246 ASAM ODS VERSION 5.0

INSTANCEELEMENT_COMPARE

Purpose

Compare an instance element. The Ids of the application elements and the Ids of the
instance elements are compared. The Ids of the application elements will be compare
first.

Parameters

compIeObj (Type = InstanceElement)

The instance element to compare with.

Java Calling Sequence

T_LONGLONG diff = ieObj.compare(compIeObj);

Returns:

Return-Name: diff

Return-Type: T_LONGLONG

The difference of the Id's. Meaning:

diff < 0 ElemId of instance is smaller then instance to compare with.

diff == 0 ElemId is identical.

diff > 0 ElemId of instance is greater then instance to compare with.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 783

OO-API

ASAM ODS VERSION 5.0 10-247

INSTANCEELEMENT_CREATERELATEDINSTANCES

Purpose

Create a list with instances which are related to the actual instance element. The
attribute are given with the name of the sequence. The values of the attributes are given
in the value sequence. The index in the different value sequences match for one
instance element. The index in the instance element sequence of the related instances
match for the instance with the same index in the value sequence.

Parameters

applRel (Type = ApplicationRelation)

The application relation for wich the related instances will be created.^

attributes (Type = NameValueSeqUnitSequence)

The attributes of the new created instances.

relatedInstances (Type = ApplicationRelationInstanceElementSeqSequence)

The list with related instances for different application relations.

Java Calling Sequence

InstanceElement[] instElems = ieObj.createRelatedInstances(applRel, attributes,
relatedInstances);

Returns:

Return-Name: instElems

Return-Type: InstanceElementSequence

The list with the new created instances.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

AO_INVALID_REQUEST

ISO/PAS 22720:2005(E)

784 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-248 ASAM ODS VERSION 5.0

INSTANCEELEMENT_CREATERELATION

Purpose

Create a relation between the current and the given instance. Check if the application
elements of the relation matches the application elements of the instances.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

Parameters

relation (Type = ApplicationRelation)

The application relation.

instElem (Type = InstanceElement)

The instance element.

Java Calling Sequence

instElem.createRelation(relation,instElem);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATION

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 785

OO-API

ASAM ODS VERSION 5.0 10-249

INSTANCEELEMENT_DEEPCOPY

Purpose

Provides an easy-to-use and effective copy mechanismn for instance element
hierarchies inside the server (e.g. copy a project with all tests or copy a test with all
measurements). The deep copy follows only the child references but not the
informational references. Example: Copying elements of type AoMeasurement does not
include copying the referenced elements of type AoMeasurementQuantity. The copied
instance elements of type AoMeasurement will reference the same measurement
quantities as the original. An application that wants to copy the measurement quantity
also must do this (including setting the proper references) by itself e.g. with another call
to shallowCopy; deepCopy is not necessary in this case because
AoMeasurementQuantity has no children.

Parameters

newName (Type = T_STRING)

The name of the new instance element. If a new version shall be created this parameter
may be NULL to use the same name for the copy. In this case a new version must be
provided.

newVersion (Type = T_STRING)

The version of the new instance element. This parameter may be NULL if a new name is
provided.

Java Calling Sequence

InstanceElement newInstElem = instElem.deepCopy(newName,newVersion);

Returns:

Return-Name: newInstElem

Return-Type: InstanceElement

The reference to the copied instance element hierarchy.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

786 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-250 ASAM ODS VERSION 5.0

INSTANCEELEMENT_DESTROY

Purpose

Destroy the object on the server. This method is used to tell the server that this object is
not used anymore by the client. Access to this object after the destroy method will lead
to an exception.

Parameters

None.

Java Calling Sequence

ieObj.destroy()

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 787

OO-API

ASAM ODS VERSION 5.0 10-251

INSTANCEELEMENT_GETAPPLICATIONELEMENT

Purpose

Get the application element of the instance element.

Parameters

None.

Java Calling Sequence

ApplicationElement applElem = instElem.getApplicationElement();

Returns:

Return-Name: applElem

Return-Type: ApplicationElement

The application element from which the instance element is derived.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

788 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-252 ASAM ODS VERSION 5.0

INSTANCEELEMENT_GETASAMPATH

Purpose

Get the ASAM-Path of the instance element.

Parameters

None.

Java Calling Sequence

Name asamPath = instElem.getAsamPath();

Returns:

Return-Name: asamPath

Return-Type: Name

The ASAM path to the instance element.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 789

OO-API

ASAM ODS VERSION 5.0 10-253

INSTANCEELEMENT_GETID

Purpose

Get the Id of the instance element.

Parameters

None.

Java Calling Sequence

T_LONGLONG ieId = instElem.getId();

Returns:

Return-Name: ieId

Return-Type: T_LONGLONG

The Id of the instance element.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

790 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-254 ASAM ODS VERSION 5.0

INSTANCEELEMENT_GETINITIALRIGHTS

Purpose

Retrieve access control list information for the initial rights of the given object.

Parameters

None.

Java Calling Sequence

InitialRight[] initialRights = instElem.getInitialRights();

Returns:

Return-Name: initialRights

Return-Type: InitialRightSequence

The access control list entries with the initial rights of the given application element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 791

OO-API

ASAM ODS VERSION 5.0 10-255

INSTANCEELEMENT_GETNAME

Purpose

Get the name of the instance element.

Parameters

None.

Java Calling Sequence

Name ieName = instElem.getName();

Returns:

Return-Name: ieName

Return-Type: Name

The name of the instance element.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

792 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-256 ASAM ODS VERSION 5.0

INSTANCEELEMENT_GETRELATEDINSTANCES

Purpose

Get the related instances. The application relation and the name of the related instances
specify the listed instances. The pattern is case sensitive and may contain wildcard
characters.

Parameters

applRel (Type = ApplicationRelation)

The application relation.

iePattern (Type = Pattern)

The name or the search pattern for the related instance names.

Java Calling Sequence

InstanceElementIterator ieIterator = instElem.getRelatedInstances(applRel,iePattern);

Returns:

Return-Name: ieIterator

Return-Type: InstanceElementIterator

The related instances.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATION

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 793

OO-API

ASAM ODS VERSION 5.0 10-257

INSTANCEELEMENT_GETRELATEDINSTANCESBYRELATIONSHIP

Purpose

Get the list of related instances. The relationship and the name of the related instances
specify the listed instances. The pattern is case sensitive and may contain wildcard
characters.

Parameters

ieRelationship (Type = Relationship)

The requested relationship.

iePattern (Type = Pattern)

The name or the search pattern for the related instance names.

Java Calling Sequence

InstanceElementIterator ieIterator =
instElem.getRelatedInstancesByRelationship(ieRelationship,iePattern);

Returns:

Return-Name: ieIterator

Return-Type: InstanceElementIterator

The related instances.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATIONSHIP

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

794 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-258 ASAM ODS VERSION 5.0

INSTANCEELEMENT_GETRIGHTS

Purpose

Retrieve access control list information of the given object.

Parameters

None.

Java Calling Sequence

ACL[] aclEntries = instElem.getRights();

Returns:

Return-Name: aclEntries

Return-Type: ACLSequence

The access control list entries of the given application element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 795

OO-API

ASAM ODS VERSION 5.0 10-259

INSTANCEELEMENT_GETVALUE

Purpose

Get the attribute value (name, value and unit) of the given attribute of the instance
element. This method will not return the value of relation attributes, use the method
getRelatedInstances.

Parameters

attrName (Type = Name)

The name of the requested attribute.

Java Calling Sequence

NameValueUnit nameValueUnit = instElem.getValue(attrName);

Returns:

Return-Name: nameValueUnit

Return-Type: NameValueUnit

The attribute value.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

796 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-260 ASAM ODS VERSION 5.0

INSTANCEELEMENT_GETVALUEBYBASENAME

Purpose

Get the attribute value (value and unit) of the attribute inherited from the given base
attribute of the instance element. The base name is case insensitive and may not
contain wildcard characters.

Parameters

baseAttrName (Type = Name)

The base name of the requested attribute.

Java Calling Sequence

NameValueUnit nameValueUnit = instElem.getValueByBaseName(baseAttrName);

Returns:

Return-Name: nameValueUnit

Return-Type: NameValueUnit

The attribute value.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 797

OO-API

ASAM ODS VERSION 5.0 10-261

INSTANCEELEMENT_GETVALUEINUNIT

Purpose

Get the attribute value (name, value and unit) of the given attribute of the instance
element.

Parameters

attr (Type = NameUnit)

The name of the requested attribute and the unit of the attribute value.

Java Calling Sequence

NameValueUnit nameValueUnit = instElem.getValueInUnit(attr);

Returns:

Return-Name: nameValueUnit

Return-Type: NameValueUnit

The attribute value, value converted to the requested unit.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_INCOMPATIBLE_UNITS

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

798 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-262 ASAM ODS VERSION 5.0

INSTANCEELEMENT_GETVALUESEQ

Purpose

Get the sequence of the values of an application or instance attribute, specified by their
names. The name sequence can use a pattern (*) for all attributes of the instance
element. This means that application as well as instance attributes will be delivered.

Parameters

attrNames (Type = NameSequence)

The names of the attributes to be reported.

Java Calling Sequence

Name attrNames[];

...

NameValueUnit values[] = ieObj.getValueSeq(attrNames);

Returns:

Return-Name: values

Return-Type: NameValueUnitSequence

The sequence of the attribute values.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 799

OO-API

ASAM ODS VERSION 5.0 10-263

INSTANCEELEMENT_LISTATTRIBUTES

Purpose

Get the attribute names from the instance element. The attributes reserved for a relation
are not listed.

Parameters

iaPattern (Type = Pattern)

The name or the search pattern for the attribute names.

aType (Type = AttrType)

The requested attribute type.

Java Calling Sequence

Name[] ieNames = instElem.listAttributes(iaPattern,aType);

Returns:

Return-Name: ieNames

Return-Type: NameSequence

The names of the attributes.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_ATTRIBUTE_TYPE

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

800 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-264 ASAM ODS VERSION 5.0

INSTANCEELEMENT_LISTRELATEDINSTANCES

Purpose

Get the names of the related instances. The application relation and the name of the
related instances specifies the listed names. The pattern is case sensitive and may
contain wildcard characters.

Parameters

ieRelation (Type = ApplicationRelation)

The application relation.

iePattern (Type = Pattern)

The name or the search pattern for the related instance names.

Java Calling Sequence

NameIterator ieNameIterator = instElem.listRelatedInstances(ieRelation,iePattern);

Returns:

Return-Name: ieNameIterator

Return-Type: NameIterator

The names of the related instances.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 801

OO-API

ASAM ODS VERSION 5.0 10-265

INSTANCEELEMENT_LISTRELATEDINSTANCESBYRELATIONSHIP

Purpose

Get the names of the related instances. The relationship and the name of the related
instances specify the listed names. The pattern is case sensitive and may contain
wildcard characters.

Parameters

ieRelationship (Type = Relationship)

The requested relationship.

iePattern (Type = Pattern)

The name or the search pattern for the related instance names.

Java Calling Sequence

NameIterator ieNameIterator =
instElem.listRelatedInstancesByRelationship(ieRelationship,iePattern);

Returns:

Return-Name: ieNameIterator

Return-Type: NameIterator

The names of the related instances.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATIONSHIP

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

802 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-266 ASAM ODS VERSION 5.0

INSTANCEELEMENT_REMOVEINSTANCEATTRIBUTE

Purpose

Remove an instance attribute.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The application attributes can't be removed.

Parameters

attrName (Type = Name)

The name of the attribute to be removed.

Java Calling Sequence

instElem.removeInstanceAttribute(attrName);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_FOUND

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 803

OO-API

ASAM ODS VERSION 5.0 10-267

INSTANCEELEMENT_REMOVERELATION

Purpose

Remove the relation between the current instance and the given instance. It is
necessary to specify the instance element in case of n:m relations if not all relations shall
be deleted.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

Parameters

applRel (Type = ApplicationRelation)

The relation to be removed.

instElem_nm (Type = InstanceElement)

The instance element for specific delete from n:m relations.

Java Calling Sequence

instElem.removeRelation(applRel,instElem_nm);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_RELATION

AO_NOT_FOUND

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

804 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-268 ASAM ODS VERSION 5.0

INSTANCEELEMENT_RENAMEINSTANCEATTRIBUTE

Purpose

Rename the instance attribute. The application attributes can't be renamed.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

Parameters

oldName (Type = Name)

The old instance attribute name.

newName (Type = Name)

The new instance attribute name.

Java Calling Sequence

instElem.renameInstanceAttribute(oldName,newName);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_DUPLICATE_NAME

AO_IMPLEMENTATION_PROBLEM

AO_NOT_FOUND

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 805

OO-API

ASAM ODS VERSION 5.0 10-269

INSTANCEELEMENT_SETINITIALRIGHTS

Purpose

The given usergroup the initial rights should be set for. <rights> defines the rights to set
or to clear. If the parameter <set> is set to 'set', the rights in <rights> are set, all others
are cleared. If the parameter <set> is set to 'add', the rights in <rights> are added to the
existing rights. If the parameter <set> is set to 'remove', the rights in <rights> are
removed from the existing rights.

Parameters

usergroup (Type = InstanceElement)

The usergroup for which the initial rights will be modified.

rights (Type = T_LONG)

The new initial rights for the usergroup. The rights constants are defined in the interface
SecurityRights. The interface definition language IDL does not allow to set the values of
enumerations; thus the constant definitions have to be done in the interface.

refAid (Type = T_LONGLONG)

The Id of referencing application element for which the initial rights will be used. If no
refAid is set the initial rights will be used for each new instance element independent of
the application element.

set (Type = RightsSet)

What to do with the new initial rights.

Java Calling Sequence

instElem.setInitialRights(usergroup,rights, refAid,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

806 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-270 ASAM ODS VERSION 5.0

INSTANCEELEMENT_SETNAME

Purpose

Set the name of an instance element.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

Parameters

iaName (Type = Name)

The instance attribute name.

Java Calling Sequence

instElem.setName(iaName);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 807

OO-API

ASAM ODS VERSION 5.0 10-271

INSTANCEELEMENT_SETRIGHTS

Purpose

The given usergroup the rights should be set for. <rights> defines the rights to set or to
clear. If the parameter <set> is set to 'set', the rights in <rights> are set, all others are
cleared. If the parameter <set> is set to 'add', the rights in <rights> are added to the
existing rights. If the parameter <set> is set to 'remove', the rights in <rights> are
removed from the existing rights.

Parameters

usergroup (Type = InstanceElement)

The usergroup for which the rights will be modified.

rights (Type = T_LONG)

The new right for the usergroup. The rights constants are defined in the interface
SecurityRights. The interface definition language IDL does not allow to set the values of
enumerations thus the constant definitions had to be done in an interface.

set (Type = RightsSet)

What to do with the new right.

Java Calling Sequence

instElem.setRights(usergroup,rights,set);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

808 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-272 ASAM ODS VERSION 5.0

INSTANCEELEMENT_SETVALUE

Purpose

Set the value of an application or instance attribute.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The name of the attribute is specified by the name of the NameValueUnit tuple. If the
application attribute flag unique is set, the uniqueness of the new value is checked.

This method can not be used to set the valueof a relation attribute, use the method
createRelation.

Parameters

value (Type = NameValueUnit)

The value to be set in the instance element.

Java Calling Sequence

instElem.setValue(value);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_DUPLICATE_VALUE

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 809

OO-API

ASAM ODS VERSION 5.0 10-273

INSTANCEELEMENT_SETVALUESEQ

Purpose

Set a sequences of values of an application or instance attributes.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The name of the attribute is specified by the name of the NameValueUnit tuple. If the
application attribute flag unique is set, the uniqueness of the new value is checked.

Parameters

values (Type = NameValueUnitSequence)

The sequence of the values to be set at the instance element.

Java Calling Sequence

instElem.setValueSeq(values);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_DUPLICATE_VALUE

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

810 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-274 ASAM ODS VERSION 5.0

INSTANCEELEMENT_SHALLOWCOPY

Purpose

Provides an easy-to-use and effective copy mechanismn for instance elements inside
the server. The new instance elements gets a copy of all attribute values and
informational relations that are available in the original instance element. The new
instance element has the same parent as the original instance element but it does not
have references to any children of the original instance element.

Parameters

newName (Type = T_STRING)

The name of the new instance element. If a new version shall be created this parameter
may be NULL to use the same name for the copy. In this case a new version must be
provided.

newVersion (Type = T_STRING)

The version of the new instance element. This parameter may be NULL if a new name is
provided.

Java Calling Sequence

InstanceElement newInstElem = instElem.shallowCopy(newName,newVersion);

Returns:

Return-Name: newInstElem

Return-Type: InstanceElement

The reference to the copied instance element.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 811

OO-API

ASAM ODS VERSION 5.0 10-275

INSTANCEELEMENT_UPCASTMEASUREMENT

Purpose

Cast an instance element to a measurement. There are some object-oriented languages
which do not allow this cast.

Parameters

None.

Java Calling Sequence

Measurement measurement = instElem.upcastMeasurement();

Returns:

Return-Name: measurement

Return-Type: Measurement

The instance of type measurement.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_INVALID_BASETYPE

ISO/PAS 22720:2005(E)

812 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-276 ASAM ODS VERSION 5.0

INSTANCEELEMENT_UPCASTSUBMATRIX

Purpose

Cast an instance element to a submatrix. There are some object-oriented languages
which do not allow this cast.

Parameters

None.

Java Calling Sequence

SubMatrix subMatrix = instElem.upcastSubMatrix();

Returns:

Return-Name: subMatrix

Return-Type: SubMatrix

The instance of type submatrix.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_INVALID_BASETYPE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 813

OO-API

ASAM ODS VERSION 5.0 10-277

10.2.17 INSTANCEELEMENTITERATOR

INSTANCEELEMENTITERATOR_DESTROY

Purpose

Destroy the iterator and free the associated memory.

Parameters

None.

Java Calling Sequence

instElemIterator.destroy();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

814 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-278 ASAM ODS VERSION 5.0

INSTANCEELEMENTITERATOR_GETCOUNT

Purpose

Get the total number of elements accessible by the iterator.

Parameters

None.

Java Calling Sequence

T_LONG instanceCount = instElemIterator.getCount();

Returns:

Return-Name: instanceCount

Return-Type: T_LONG

The number of elements accessible by the iterator.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 815

OO-API

ASAM ODS VERSION 5.0 10-279

INSTANCEELEMENTITERATOR_NEXTN

Purpose

Get the next n elements from the sequence.

Parameters

how_many (Type = T_LONG)

The number of requested elements.

Java Calling Sequence

InstanceElement[] instElems = instElemIterator.nextN(how_many);

Returns:

Return-Name: instElems

Return-Type: InstanceElementSequence

The next n instance elements from the instance sequence.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

816 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-280 ASAM ODS VERSION 5.0

INSTANCEELEMENTITERATOR_NEXTONE

Purpose

Get the next element from the sequence.

Parameters

None.

Java Calling Sequence

InstanceElement instElem = instElemIterator.nextOne();

Returns:

Return-Name: instElem

Return-Type: InstanceElement

The next instance element from the instance sequence.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 817

OO-API

ASAM ODS VERSION 5.0 10-281

INSTANCEELEMENTITERATOR_RESET

Purpose

Reset the pointer in the element sequence to the first element.

Parameters

None.

Java Calling Sequence

instElemIterator.reset();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

818 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-282 ASAM ODS VERSION 5.0

10.2.18 MEASUREMENT

MEASUREMENT_CREATESMATLINK

Purpose

Create a submatrix link. The submatrix link is only valid in the current session. When the
session is closed the submatrix link will be destroyed.

Parameters

None.

Java Calling Sequence

SMatLink smLink = measurement.createSMatLink();

Returns:

Return-Name: smLink

Return-Type: SMatLink

The new submatrix link.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 819

OO-API

ASAM ODS VERSION 5.0 10-283

MEASUREMENT_GETSMATLINKS

Purpose

Get the list of the submatrix links .

Parameters

None.

Java Calling Sequence

SMatLink[] smLinks = measurement.getSMatLinks();

Returns:

Return-Name: smLinks

Return-Type: SMatLinkSequence

The available submatrix links.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

820 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-284 ASAM ODS VERSION 5.0

MEASUREMENT_GETVALUEMATRIX

Purpose

Get the value matrix of a measurement.

Parameters

None.

Java Calling Sequence

ValueMatrix vm = measurement.getValueMatrix();

Returns:

Return-Name: vm

Return-Type: ValueMatrix

The value matrix.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 821

OO-API

ASAM ODS VERSION 5.0 10-285

MEASUREMENT_REMOVESMATLINK

Purpose

Remove a submatrix link.

Parameters

smLink (Type = SMatLink)

The submatrix link to be removed.

Java Calling Sequence

measurement.removeSMatLink(smLink);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_FOUND

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

822 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-286 ASAM ODS VERSION 5.0

10.2.19 NAMEITERATOR

NAMEITERATOR_DESTROY

Purpose

Destroy the iterator and free the associated memory.

Parameters

None.

Java Calling Sequence

nameIterator.destroy();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 823

OO-API

ASAM ODS VERSION 5.0 10-287

NAMEITERATOR_GETCOUNT

Purpose

Get the total number of elements accessible by the iterator.

Parameters

None.

Java Calling Sequence

T_LONG nameCount = nameIterator.getCount();

Returns:

Return-Name: nameCount

Return-Type: T_LONG

The number of elements accessible by the iterator.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

824 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-288 ASAM ODS VERSION 5.0

NAMEITERATOR_NEXTN

Purpose

Get the next n elements from the sequence.

Parameters

how_many (Type = T_LONG)

The number of requested elements.

Java Calling Sequence

Name[] names = nameIterator.nextN(how_many);

Returns:

Return-Name: names

Return-Type: NameSequence

The next n names from the name sequence.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 825

OO-API

ASAM ODS VERSION 5.0 10-289

NAMEITERATOR_NEXTONE

Purpose

Get the next element from the sequence.

Parameters

None.

Java Calling Sequence

Name name = nameIterator.nextOne();

Returns:

Return-Name: name

Return-Type: Name

The next name from the name sequence.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

826 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-290 ASAM ODS VERSION 5.0

NAMEITERATOR_RESET

Purpose

Reset the pointer in the element sequence to the first element.

Parameters

None.

Java Calling Sequence

nameIterator.reset();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 827

OO-API

ASAM ODS VERSION 5.0 10-291

10.2.20 NAMEVALUEITERATOR

NAMEVALUEITERATOR_DESTROY

Purpose

Destroy the iterator and free the associated memory.

Parameters

None.

Java Calling Sequence

nameValueIterator.destroy();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

828 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-292 ASAM ODS VERSION 5.0

NAMEVALUEITERATOR_GETCOUNT

Purpose

Get the total number of elements accessible by the iterator.

Parameters

None.

Java Calling Sequence

T_LONG nvCount = nameValueIterator.getCount();

Returns:

Return-Name: nvCount

Return-Type: T_LONG

The number of elements accessible by the iterator.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 829

OO-API

ASAM ODS VERSION 5.0 10-293

NAMEVALUEITERATOR_NEXTN

Purpose

Get the next n elements from the sequence.

Parameters

how_many (Type = T_LONG)

The number of requested elements.

Java Calling Sequence

NameValue[] nameValues = nameValueIterator.nextN(how_many);

Returns:

Return-Name: nameValues

Return-Type: NameValueSequence

The next n name-value pairs from the name-value pair sequence.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

830 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-294 ASAM ODS VERSION 5.0

NAMEVALUEITERATOR_NEXTONE

Purpose

Get the next element from the sequence.

Parameters

None.

Java Calling Sequence

NameValue nameValue = nameValueIterator.nextOne();

Returns:

Return-Name: nameValue

Return-Type: NameValue

The next name-value pair from the name-value pair sequence.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 831

OO-API

ASAM ODS VERSION 5.0 10-295

NAMEVALUEITERATOR_RESET

Purpose

Reset the pointer in the element sequence to the first element.

Parameters

None.

Java Calling Sequence

nameValueIterator.reset();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

832 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-296 ASAM ODS VERSION 5.0

10.2.21 NAMEVALUEUNITIDITERATOR

NAMEVALUEUNITIDITERATOR_DESTROY

Purpose

Destroy the iterator and free the associated memory.

Parameters

None.

Java Calling Sequence

nameValueUnitIdIterator.destroy();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 833

OO-API

ASAM ODS VERSION 5.0 10-297

NAMEVALUEUNITIDITERATOR_GETCOUNT

Purpose

Get the total number of elements accessible by the iterator.

Parameters

None.

Java Calling Sequence

T_LONG nvuIdCount = nameValueUnitIdIterator.getCount();

Returns:

Return-Name: nameValueUnitIdCount

Return-Type: T_LONG

The number of elements accessible by the iterator.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

834 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-298 ASAM ODS VERSION 5.0

NAMEVALUEUNITIDITERATOR_NEXTN

Purpose

Get the next n elements from the sequence.

Parameters

how_many (Type = T_LONG)

The number of requested elements.

Java Calling Sequence

NameValueUnitId[] nameValueUnitIds = nameValueUnitIdIterator.nextN(how_many);

Returns:

Return-Name: nameValueUnitIdSeq

Return-Type: NameValueSeqUnitId

The next n name-value-unit tuples from the name-value-unit tuple sequence.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 835

OO-API

ASAM ODS VERSION 5.0 10-299

NAMEVALUEUNITIDITERATOR_NEXTONE

Purpose

Get the next element from the sequence.

Parameters

None.

Java Calling Sequence

NameValueUnitId nameValueUnitId = nameValueUnitIdIterator.nextOne();

Returns:

Return-Name: nameValueUnitId

Return-Type: NameValueUnitId

The next name-value-unitId tuple from the name-value-unitId tuple sequence.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

836 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-300 ASAM ODS VERSION 5.0

NAMEVALUEUNITIDITERATOR_RESET

Purpose

Reset the pointer in the element sequence to the first element.

Parameters

None.

Java Calling Sequence

nameValueUnitIdIterator.reset();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 837

OO-API

ASAM ODS VERSION 5.0 10-301

10.2.22 NAMEVALUEUNITITERATOR

NAMEVALUEUNITITERATOR_DESTROY

Purpose

Destroy the iterator and free the associated memory.

Parameters

None.

Java Calling Sequence

nameValueUnitIterator.destroy();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

838 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-302 ASAM ODS VERSION 5.0

NAMEVALUEUNITITERATOR_GETCOUNT

Purpose

Get the total number of elements accessible by the iterator.

Parameters

None.

Java Calling Sequence

T_LONG nvuCount = nameValueUnitIterator.getCount();

Returns:

Return-Name: nvuCount

Return-Type: T_LONG

The number of elements accessible by the iterator.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 839

OO-API

ASAM ODS VERSION 5.0 10-303

NAMEVALUEUNITITERATOR_NEXTN

Purpose

Get the next n elements from the sequence.

Parameters

how_many (Type = T_LONG)

The number of requested elements.

Java Calling Sequence

NameValueUnit[] nameValueUnits = nameValueUnitIterator.nextN(how_many);

Returns:

Return-Name: nameValueUnits

Return-Type: NameValueUnitSequence

The next n name-value-unit tuples from the name-value-unit tuple sequence.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

840 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-304 ASAM ODS VERSION 5.0

NAMEVALUEUNITITERATOR_NEXTONE

Purpose

Get the next element from the sequence.

Parameters

None.

Java Calling Sequence

NameValueUnit nameValueUnit = nameValueUnitIterator.nextOne();

Returns:

Return-Name: nameValueUnit

Return-Type: NameValueUnit

The next name-value-unit tuple from the name-value-unit tuple sequence.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 841

OO-API

ASAM ODS VERSION 5.0 10-305

NAMEVALUEUNITITERATOR_RESET

Purpose

Reset the pointer in the element sequence to the first element.

Parameters

None.

Java Calling Sequence

nameValueUnitIterator.reset();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

842 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-306 ASAM ODS VERSION 5.0

10.2.23 NAMEVALUEUNITSEQUENCEITERATOR

NAMEVALUEUNITSEQUENCEITERATOR_DESTROY

Purpose

Destroy the iterator and free the associated memory.

Parameters

None.

Java Calling Sequence

nameValueUnitSequenceIterator.destroy();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 843

OO-API

ASAM ODS VERSION 5.0 10-307

NAMEVALUEUNITSEQUENCEITERATOR_GETCOUNT

Purpose

Get the total number of elements accessible by the iterator.

Parameters

None.

Java Calling Sequence

T_LONG nameValueUnitCount = nameValueUnitSequenceIterator.getCount();

Returns:

Return-Name: nameValueUnitCount

Return-Type: T_LONG

The number of elements accessible by the iterator.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

844 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-308 ASAM ODS VERSION 5.0

NAMEVALUEUNITSEQUENCEITERATOR_NEXTN

Purpose

Get the next n elements from the sequence.

Parameters

how_many (Type = T_LONG)

The number of requested elements.

Java Calling Sequence

NameValueSeqUnit[] nameValueSeqUnits =
nameValueUnitSequenceIterator.nextN(how_many);

Returns:

Return-Name: nameValueSeqUnits

Return-Type: NameValueSeqUnitSequence

The next n values of the name-value-unit sequence. For each NameValuUnit the next n
values are stored in the value sequence.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 845

OO-API

ASAM ODS VERSION 5.0 10-309

NAMEVALUEUNITSEQUENCEITERATOR_NEXTONE

Purpose

Get the next element from the iterator.

Parameters

None.

Java Calling Sequence

NameValueSeqUnit nameValueSeqUnit = nameValueUnitSequenceIterator.nextOne();

Returns:

Return-Name: nameValueSeqUnit

Return-Type: NameValueSeqUnit

The next name-value-unit tuple sequence from the name-value-unit tuple.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

846 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-310 ASAM ODS VERSION 5.0

NAMEVALUEUNITSEQUENCEITERATOR_RESET

Purpose

Reset the pointer in the element iterator to the first element.

Parameters

None.

Java Calling Sequence

nameValueUnitSequenceIterator.reset();

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 847

OO-API

ASAM ODS VERSION 5.0 10-311

10.2.24 QUERY

QUERY_EXECUTEQUERY

Purpose

Execute query in asynchronous mode.

Parameters

params (Type = NameValueSequence)

Sequence of parameter names and values.The following parameter should be passed:

 Name: "QueryResultType";

Type: ResultType.

Comment: Specifies what kind of result is expected by the client, this parameter is
required if the parameters isn't given at the method prepareQuery or the method
createQuery of the interface QueryEvaluator.

Default value: INSTELEM_ITERATOR_AS_RESULT

 Name: "Synchronous";

Type: T_BOOLEAN

Comment: In case of "true" guarantees synchronous execution.

Default value: "false"

Java Calling Sequence

query.executeQuery(params);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_QUERY_PROCESSING_ERROR

AO_QUERY_INVALID_RESULTTYPE

ISO/PAS 22720:2005(E)

848 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-312 ASAM ODS VERSION 5.0

QUERY_GETINSTANCES

Purpose

Get the query result. This method should only be called after the query has been
executed. It returns an iterator on the instances that were found by the query.

Parameters

None.

Java Calling Sequence

InstanceElementIterator result = query.getInstances();

Returns:

Return-Name: result

Return-Type: InstanceElementIterator

The result of the query as an instance element iterator.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_QUERY_PROCESSING_ERROR

AO_QUERY_TIMEOUT_EXCEEDED

AO_QUERY_INCOMPLETE

AO_QUERY_INVALID_RESULTTYPE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 849

OO-API

ASAM ODS VERSION 5.0 10-313

QUERY_GETQUERYEVALUATOR

Purpose

Get the QueryEvaluator object which is responsible for this query.

Parameters

None.

Java Calling Sequence

QueryEvaluator queryEvl = query.getQueryEvaluator();

Returns:

Return-Name: queryEvl

Return-Type: QueryEvaluator

The QueryEvaluator object which is responsible for this query.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

850 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-314 ASAM ODS VERSION 5.0

QUERY_GETSTATUS

Purpose

Return query status.

Returns INCOMPLETE if the query is still executing.

Returns COMPLETE if the query finished execution or if the query execution stopped
because of an error or because the timeout was exceeded.

Parameters

None.

Java Calling Sequence

QueryStatus status = query.getStatus();

Returns:

Return-Name: status

Return-Type: QueryStatus

The status of the query.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 851

OO-API

ASAM ODS VERSION 5.0 10-315

QUERY_GETTABLE

Purpose

Get the query result. This method should only be called after the query has been
executed. It returns the result as a structure.

Parameters

None.

Java Calling Sequence

NameValueSeqUnit[] result = query.getTable();

Returns:

Return-Name: result

Return-Type: NameValueSeqUnitSequence

The result of the query as a name value sequence unit sequence. Each name value
sequence unit tuple is one column of the table. The name value sequence unit sequence
is the table. The result structure can be very huge.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_QUERY_PROCESSING_ERROR

AO_QUERY_TIMEOUT_EXCEEDED

AO_QUERY_INCOMPLETE

AO_QUERY_INVALID_RESULTTYPE

ISO/PAS 22720:2005(E)

852 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-316 ASAM ODS VERSION 5.0

QUERY_GETTABLEROWS

Purpose

Get the query result. This method should only be called after the query has been
executed. It returns an iterator on the name-value-unit sequence.

Parameters

None.

Java Calling Sequence

NameValueUnitSequenceIterator result = query.getTableRows();

Returns:

Return-Name: result

Return-Type: NameValueUnitSequenceIterator

The result of the query as a name value unit sequence iterator. Each name value unit
tuple is one cell of the table. The name value unit sequence is one row of the table.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_QUERY_PROCESSING_ERROR

AO_QUERY_TIMEOUT_EXCEEDED

AO_QUERY_INCOMPLETE

AO_QUERY_INVALID_RESULTTYPE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 853

OO-API

ASAM ODS VERSION 5.0 10-317

QUERY_PREPAREQUERY

Purpose

Do the query pre-processing (optimization, etc.) Call can be omitted by the client. In this
case the functionality is executed on the call of executeQuery.

Parameters

params (Type = NameValueSequence)

Sequence of parameter names and values. The following parameter should be passed:

 Name: "QueryResultType";

Type: ResultType.

Comment: Specifies what kind of result is expected by the client, this parameter is
required if the parameter isn't given at the method createQuery of the interface
QueryEvaluator.

Default value: INSTELEM_ITERATOR_AS_RESULT

Java Calling Sequence

query.prepareQuery(params);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_QUERY_PROCESSING_ERROR

AO_QUERY_INVALID_RESULTTYPE

ISO/PAS 22720:2005(E)

854 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-318 ASAM ODS VERSION 5.0

10.2.25 QUERYEVALUATOR

QUERYEVALUATOR_CREATEQUERY

Purpose

Create a query object to execute it in asynchronous mode.

Parameters

queryStr (Type = T_STRING)

The query string

params (Type = NameValueSequence)

Sequence of parameter names and values. The following parameters should be passed:

 Name: "QueryResultType";

Type: ResultType.

Comment: Specifies what kind of result is expected by the client.

Default value: INSTELEM_ITERATOR_AS_RESULT

 Name: "MaxDuration";

Type: T_LONG

Comment: Can be used to restrict the processing time. The time is given in
milliseconds,

Default value: 0 (no restriction)

Java Calling Sequence

Query queryObj = queryEvaluator.createQuery(queryStr,params);

Returns:

Return-Name: queryObj

Return-Type: Query

The query object.

Possible exceptions (for details see section 10.3.14)

AO_QUERY_TYPE_INVALID

AO_QUERY_INVALID

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 855

OO-API

ASAM ODS VERSION 5.0 10-319

QUERYEVALUATOR_GETINSTANCES

Purpose

Evaluate a query in synchronous mode.

Parameters

queryStr (Type = T_STRING)

The query string.

params (Type = NameValueSequence)

Sequence of parameter names and values. The following parameter should be passed:

 Name: "MaxDuration";

Type: T_LONG

Comment: Can be used to restrict the processing time. The time is given in
milliseconds,

Default value: 0 (no restriction)

Java Calling Sequence

InstanceElementIterator result = queryEvaluator.getInstances(queryStr,params);

Returns:

Return-Name: result

Return-Type: InstanceElementIterator

The result of the query as an instance element iterator.

Possible exceptions (for details see section 10.3.14)

AO_QUERY_TYPE_INVALID

AO_QUERY_INVALID

AO_QUERY_PROCESSING_ERROR

AO_QUERY_TIMEOUT_EXCEEDED

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

856 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-320 ASAM ODS VERSION 5.0

QUERYEVALUATOR_GETTABLE

Purpose

Evaluate a query in synchronous mode.

Parameters

queryStr (Type = T_STRING)

The query string.

params (Type = NameValueSequence)

Sequence of parameter names and values. The following parameters should be passed:

Name: "MaxDuration";

Type: T_LONG

Comment: Can be used to restrict the processing time. The time is given in milliseconds,

Default value: 0 (no restriction)

Java Calling Sequence

NameValueSeqUnit[] result = queryEvaluator.getTable(queryStr,params);

Returns:

Return-Name: result

Return-Type: NameValueSeqUnitSequence

The result of the query as a name value sequence unit sequence. Each name value
sequecne unit tuple is one column of the table. The name value sequence unit sequence
is the table. The result structure can be very huge.

Possible exceptions (for details see section 10.3.14)

AO_QUERY_TYPE_INVALID

AO_QUERY_INVALID

AO_QUERY_PROCESSING_ERROR

AO_QUERY_TIMEOUT_EXCEEDED

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 857

OO-API

ASAM ODS VERSION 5.0 10-321

QUERYEVALUATOR_GETTABLEROWS

Purpose

Evaluate a query in synchronous mode.

Parameters

queryStr (Type = T_STRING)

The query string.

params (Type = NameValueSequence)

Sequence of parameter names and values. The following parameter should be passed:

 Name: "MaxDuration";

Type: T_LONG

Comment: Can be used to restrict the processing time. The time is given in
milliseconds,

Default value: 0 (no restriction)

Java Calling Sequence

NameValueUnitSequenceIterator result =
queryEvaluator.getTableRows(queryStr,params);

Returns:

Return-Name: result

Return-Type: NameValueUnitSequenceIterator

The result of the query as a name value unit sequence iterator. Each name value unit
tuple is one cell of the table. The name value unit sequence is one row of the table.

Possible exceptions (for details see section 10.3.14)

AO_QUERY_TYPE_INVALID

AO_QUERY_INVALID

AO_QUERY_PROCESSING_ERROR

AO_QUERY_TIMEOUT_EXCEEDED

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

858 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-322 ASAM ODS VERSION 5.0

10.2.26 SMATLINK

SMATLINK_GETLINKTYPE

Purpose

Get the link or build type.

Parameters

None.

Java Calling Sequence

BuildUpFunction linkType = sMatLink.getLinkType();

Returns:

Return-Name: linkType

Return-Type: BuildUpFunction

The link type.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 859

OO-API

ASAM ODS VERSION 5.0 10-323

SMATLINK_GETORDINALNUMBER

Purpose

Get the ordinal or sequence number

Parameters

None.

Java Calling Sequence

T_LONG ordinalNumber = sMatLink.getOrdinalNumber();

Returns:

Return-Name: ordinalNumber

Return-Type: T_LONG

The sequence number.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

860 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-324 ASAM ODS VERSION 5.0

SMATLINK_GETSMAT1

Purpose

Get the first submatrix of the link.

Parameters

None.

Java Calling Sequence

SubMatrix subMatrix = sMatLink.getSMat1();

Returns:

Return-Name: subMatrix

Return-Type: SubMatrix

The first submatrix of the link.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 861

OO-API

ASAM ODS VERSION 5.0 10-325

SMATLINK_GETSMAT1COLUMNS

Purpose

Get the bind columns of the first submatrix used in the link (e.g. Time).

Parameters

None.

Java Calling Sequence

Column[] columns = sMatLink.getSMat1Columns();

Returns:

Return-Name: columns

Return-Type: ColumnSequence

The columns of the first submatrix.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

862 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-326 ASAM ODS VERSION 5.0

SMATLINK_GETSMAT2

Purpose

Get the second submatrix of the link.

Parameters

None.

Java Calling Sequence

SubMatrix subMatrix = sMatLink.getSMat2();

Returns:

Return-Name: subMatrix

Return-Type: SubMatrix

The second submatrix of the link.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 863

OO-API

ASAM ODS VERSION 5.0 10-327

SMATLINK_GETSMAT2COLUMNS

Purpose

Get the bind columns of the second submatrix used in the link (e.g. Time).

Parameters

None.

Java Calling Sequence

Column[] columns = sMatLink.getSMat2Columns();

Returns:

Return-Name: columns

Return-Type: ColumnSequence

The columns of the second submatrix.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

864 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-328 ASAM ODS VERSION 5.0

SMATLINK_SETLINKTYPE

Purpose

Set the build or link type.

Parameters

linkType (Type = BuildUpFunction)

The requested build-up function.

Java Calling Sequence

sMatLink.setLinkType(linkType);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_BUILDUP_FUNCTION

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 865

OO-API

ASAM ODS VERSION 5.0 10-329

SMATLINK_SETORDINALNUMBER

Purpose

Set the ordinal or sequence number.

Parameters

ordinalNumber (Type = T_LONG)

The sequence number.

Java Calling Sequence

sMatLink.setOrdinalNumber(ordinalNumber);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_ORDINALNUMBER

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

866 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-330 ASAM ODS VERSION 5.0

SMATLINK_SETSMAT1

Purpose

Set the first submatrix of the link.

Parameters

subMat1 (Type = SubMatrix)

The first submatrix of the submatrix link.

Java Calling Sequence

sMatLink.setSMat1(subMatrix);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_SUBMATRIX

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 867

OO-API

ASAM ODS VERSION 5.0 10-331

SMATLINK_SETSMAT1COLUMNS

Purpose

Set the bind columns of the first submatrix used in the link (e.g. Time).

Parameters

columns (Type = ColumnSequence)

The column sequence of the submatrix.

Java Calling Sequence

sMatLink.setSMat1Columns(columns);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_COLUMN

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

868 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-332 ASAM ODS VERSION 5.0

SMATLINK_SETSMAT2

Purpose

Set the second submatrix of the link.

Parameters

subMat2 (Type = SubMatrix)

The second submatrix of the submatrix link.

Java Calling Sequence

sMatLink.setSMat2(subMatrix);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_INVALID_SUBMATRIX

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 869

OO-API

ASAM ODS VERSION 5.0 10-333

SMATLINK_SETSMAT2COLUMNS

Purpose

Set the bind columns of the second submatrix used in the link (e.g. Time). If there is
more than one column bound the column sequence must be identical with the column
sequence of the first submatrix.

Parameters

columns (Type = ColumnSequence)

The column sequence of the submatrix.

Java Calling Sequence

sMatLink.setSMat2Columns(columns);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_INVALID_COLUMN

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

870 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-334 ASAM ODS VERSION 5.0

10.2.27 SUBMATRIX

SUBMATRIX_GETCOLUMNS

Purpose

Get the columns of the submatrix. The column is not inherited from the InstanceElement
interface. This is the only way to get a column. The columns are used in the SMatLink
interface to build the value matrix. The pattern is case sensitive and may contain
wildcard characters.

Parameters

colPattern (Type = Pattern)

The name or the search pattern for the column names.

Java Calling Sequence

Column[] columns = subMatrix.getColumns(colPattern);

Returns:

Return-Name: columns

Return-Type: ColumnSequence

The columns of the submatrix.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 871

OO-API

ASAM ODS VERSION 5.0 10-335

SUBMATRIX_GETVALUEMATRIX

Purpose

Get a value matrix of the submatrix.

Parameters

None.

Java Calling Sequence

ValueMatrix valueMatrix = subMatrix.getValueMatrix();

Returns:

Return-Name: valueMatrix

Return-Type: ValueMatrix

The value matrix.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_SMATLINK

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

872 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-336 ASAM ODS VERSION 5.0

SUBMATRIX_LISTCOLUMNS

Purpose

Get the names of the columns of the submatrix. The name sequence is identical with the
names of the related instances. The pattern is case sensitive and may contain wildcard
characters.

Parameters

colPattern (Type = Pattern)

The name or the search pattern for the column names.

Java Calling Sequence

Name[] columnNames = subMatrix.listColumns(colPattern);

Returns:

Return-Name: columnNames

Return-Type: NameSequence

The column names of the submatrix.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 873

OO-API

ASAM ODS VERSION 5.0 10-337

10.2.28 VALUEMATRIX

VALUEMATRIX_ADDCOLUMN

Purpose

Add a column to the value matrix. It is only allowed to create a value vector if the value
matrix is created from a submatrix.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The data is made permanent on transaction commit. Until the transaction is committed or
until the access to the measurement point of the value matrix it is allowed to have
different number of values in the different value vectors. After the new column is added,
it is possible to set the values of the column.

Parameters

newColumn (Type = NameUnit)

The name and unit of the column to add.

Java Calling Sequence

valueMatrix.addColumn(newColumn);

Returns:

Return-Name: column

Return-Type: Column

The new column.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_NAME

AO_INVALID_SET_TYPE

AO_IS_MEASUREMENT_MATRIX

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

874 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-338 ASAM ODS VERSION 5.0

VALUEMATRIX_ADDCOLUMNSCALEDBY

Purpose

Add a column to the value matrix. It is only allowed to create a value vector if the value
matrix is created from a submatrix. The column will be scaled by the given scaling
column.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The data is made permanent on transaction commit. Until the transaction is committed or
until the access to the measurement point of the value matrix it is allowed to have
different number of values in the different value vectors. After the new column is added,
it is possible to set the values of the column.

Parameters

newColumn (Type = NameUnit)

The name and unit of the column to add.

scalingColumn (Type = Column)

The scaling column.

Java Calling Sequence

Column column = valueMatrix.addColumnScaledBy(newColumn,scalingColumn);

Returns:

Return-Name: column

Return-Type: Column

The new column.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_NAME

AO_INVALID_SET_TYPE

AO_IS_MEASUREMENT_MATRIX

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_NO_SCALING_COLUMN

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 875

OO-API

ASAM ODS VERSION 5.0 10-339

VALUEMATRIX_DESTROY

Purpose

Destroy the object on the server. This method is used to tell the server that this object is
not used anymore by the client. Access to this object after the destroy method will lead
to an exception.

Parameters

None.

Java Calling Sequence

vmObj.destroy()

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

876 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-340 ASAM ODS VERSION 5.0

VALUEMATRIX_GETCOLUMNCOUNT

Purpose

Get the column count of the value matrix.

Parameters

None.

Java Calling Sequence

T_LONG columnCount = valueMatrix.getColumnCount();

Returns:

Return-Name: columnCount

Return-Type: T_LONG

The number of columns of the value matrix.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 877

OO-API

ASAM ODS VERSION 5.0 10-341

VALUEMATRIX_GETCOLUMNS

Purpose

Get the columns of the value matrix no matter whether the column is dependent or
independent. The pattern is case sensitive and may contain wildcard characters.

Parameters

colPattern (Type = Pattern)

The name or the search pattern for the column names.

Java Calling Sequence

Column[] columns = valueMatrix.getColumns(colPattern);

Returns:

Return-Name: columns

Return-Type: ColumnSequence

The columns of the value matrix, no matter whether the column is dependent,
independent or scaled by another one

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

878 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-342 ASAM ODS VERSION 5.0

VALUEMATRIX_GETCOLUMNSSCALEDBY

Purpose

Get the columns which are scaled by the given column.

Parameters

scalingColumn (Type = Column)

The scaling column.

Java Calling Sequence

Column[] columns = valueMatrix.getColumnsScaledBy(scalingColumn);

Returns:

Return-Name: columns

Return-Type: ColumnSequence

The columns which are scaled by the given input column.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_NO_SCALING_COLUMN

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 879

OO-API

ASAM ODS VERSION 5.0 10-343

VALUEMATRIX_GETINDEPENDENTCOLUMNS

Purpose

Get the independent columns of the value matrix. The independent columns are the
columns used to build the value matrix.

Parameters

colPattern (Type = Pattern)

The name or the search pattern for the independent column name.

Java Calling Sequence

Column[] columns = valueMatrix.getIndependentColumns(colPattern);

Returns:

Return-Name: columns

Return-Type: ColumnSequence

The independent column of the value matrix.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

880 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-344 ASAM ODS VERSION 5.0

VALUEMATRIX_GETROWCOUNT

Purpose

Get the row count of the value matrix.

Parameters

None.

Java Calling Sequence

T_LONG rowCount = valueMatrix.getRowCount();

Returns:

Return-Name: rowCount

Return-Type: T_LONG

The number of rows of the value matrix.

Possible exceptions (for details see section 10.3.14)

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 881

OO-API

ASAM ODS VERSION 5.0 10-345

VALUEMATRIX_GETSCALINGCOLUMNS

Purpose

Get the scaling column of the value matrix.

Parameters

colPattern (Type = Pattern)

The name or the search pattern for the scaling column name.

Java Calling Sequence

Column[] columns = valueMatrix.getScalingColumns(colPattern);

Returns:

Return-Name: columns

Return-Type: ColumnSequence

The scaling columns of the value matrix.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

882 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-346 ASAM ODS VERSION 5.0

VALUEMATRIX_GETVALUE

Purpose

Get the values of different columns of the value matrix.

Parameters

columns (Type = ColumnSequence)

The requested columns.

startPoint (Type = T_LONG)

The starting point in the column.

count (Type = T_LONG)

The number of points to be retrieved. 0 mean until end of column.

Java Calling Sequence

Column columns[] = vmObj.getColumns("*");

T LONG startPoint = 0;

T LONG count = 100;

NameValueSeqUnit values[] = vmObj.getValue(columns, startPoint, count);

Returns:

Return-Name: values

Return-Type: NameValueSeqUnitSequence

The values of the different columns. The name of the return structure corresponds with
the name of the column. The unit corresponds with the unit of the column. The order of
the result might not match the order in the request sequence.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 883

OO-API

ASAM ODS VERSION 5.0 10-347

VALUEMATRIX_GETVALUEMEAPOINT

Purpose

Get a measurement point of the value matrix. The parameter meaPoint specifies the row
of the matrix. The iterator allows to access all elements in the row.

Parameters

meaPoint (Type = T_LONG)

The measurement point.

Java Calling Sequence

NameValueUnitIterator valueMeaPoint = valueMatrix.getValueMeaPoint(meaPoint);

Returns:

Return-Name: valueMeaPoint

Return-Type: NameValueUnitIterator

The requested measurement point.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

884 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-348 ASAM ODS VERSION 5.0

VALUEMATRIX_GETVALUEVECTOR

Purpose

Get the values or a part of values of the column from the value matrix. The parameter
column specifies from which column the values will be returned. The startPoint and
pointCount specify the part of the vector. A startPoint = 0 and pointCount = rowCount will
return the entire vector. When startPoint >= rowCount an exception is thrown. If
startPoint + pointCount > rowCount only the remaining values of the vector are returned
and no exception is thrown. Use the getName and getUnit method of the interface
column for the name and the unit of the column. The name and the value are not stored
at each element of the vector. The return type TS_ValueSeq is not a sequence of
TS_Value but a special structure.

Parameters

col (Type = Column)

The column to retrieve the values from.

startPoint (Type = T_LONG)

The starting point in the column.

count (Type = T_LONG)

The number of points to be retrieved.

Java Calling Sequence

TS_Value[] valueVector = valueMatrix.getValueVector(col,startPoint,count);

Returns:

Return-Name: valueVector

Return-Type: TS_ValueSeq

The requested column values of the value matrix.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_COLUMN

AO_INVLAID_COUNT

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 885

OO-API

ASAM ODS VERSION 5.0 10-349

VALUEMATRIX_LISTCOLUMNS

Purpose

Get the names of the columns of the value matrix no matter whether the column is
dependent or independent. The pattern is case sensitive and may contain wildcard
characters.

Parameters

colPattern (Type = Pattern)

The name or the search pattern for the column names.

Java Calling Sequence

Name[] columnNames = valueMatrix.listColumns(colPattern);

Returns:

Return-Name: columnNames

Return-Type: NameSequence

The column names of the value matrix, no matter whether the column is dependent,
independent or scaled by another one.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

886 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-350 ASAM ODS VERSION 5.0

VALUEMATRIX_LISTCOLUMNSSCALEDBY

Purpose

List the names of the columns which are scaled by the given column.

Parameters

scalingColumn (Type = Column)

The scaling column.

Java Calling Sequence

Name[] columnNames = valueMatrix.listColumnsScaledBy(scalingColumn);

Returns:

Return-Name: columnNames

Return-Type: NameSequence

The names of the columns which are scaled by the given input column.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

AO_NO_SCALING_COLUMN

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 887

OO-API

ASAM ODS VERSION 5.0 10-351

VALUEMATRIX_LISTINDEPENDENTCOLUMNS

Purpose

Get the names of the independent columns of the value matrix. The independent
columns are the columns used to build the value matrix.

Parameters

colPattern (Type = Pattern)

The name or the search pattern for the independent column name.

Java Calling Sequence

Name[] columnNames = valueMatrix.listIndependentColumns(colPattern);

Returns:

Return-Name: columnNames

Return-Type: NameSequence

The names of the independent columns of the value matrix.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

888 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-352 ASAM ODS VERSION 5.0

VALUEMATRIX_LISTSCALINGCOLUMNS

Purpose

Get the names of the scaling columns of the value matrix.

Parameters

colPattern (Type = Pattern)

The name or the search pattern for the scaling column name.

Java Calling Sequence

Name[] columnNames = valueMatrix.listScalingColumns(colPattern);

Returns:

Return-Name: columnNames

Return-Type: NameSequence

The names of the scaling columns of the value matrix.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 889

OO-API

ASAM ODS VERSION 5.0 10-353

VALUEMATRIX_REMOVEVALUEMEAPOINT

Purpose

Remove the values of the columns at a given measurement point. Remove the number
of points of the given column. If the count is 0 all points until the end of the column are
removed.

Parameters

columnNames (Type = NameSequence)

The columns from which the measurement points are to be removed.

meaPoint (Type = T_LONG)

The measurement point to be removed.

count (Type = T_LONG)

The number of points to be removed from each column.

Java Calling Sequence

valueMatrix.removeValueMeaPoint(columnNames,meaPoint,count);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_COUNT

AO_NOT_FOUND

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

890 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-354 ASAM ODS VERSION 5.0

VALUEMATRIX_REMOVEVALUEVECTOR

Purpose

Remove the values from a value vector. Beginning at startPoint the number of values
specified in count are removed. If count is 0 all values from the startPoint until the end of
the vector are removed.

Parameters

col (Type = Column)

The column from which the values are to be removed.

startPoint (Type = T_LONG)

The starting point for the value removal.

count (Type = T_LONG)

The number of points to be removed from the column.

Java Calling Sequence

valueMatrix.removeValueVector(col,startPoint,count);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_COLUMN

AO_INVALID_COUNT

AO_NOT_FOUND

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 891

OO-API

ASAM ODS VERSION 5.0 10-355

VALUEMATRIX_SETVALUE

Purpose

Create or modify a number of value vectors in a value matrix.

It is only allowed to create a value vector if the value matrix is created from a submatrix.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The data is made permanent on transaction commit. Until the transaction is committed or
until the access to the measurement point of the value matrix it is allowed to have
different numbers of values in the different value vectors.

The names of the parameter values are the names of the columns. The values are the
new values of the column. (setValueMeaPoint allows only one point, the TS_ValueSeq
allows more then one point) There is a sequence of name value pairs (setValueVector
allows only one column), so a block of values can be modified.

The names of the columns have to exist.

When a client creates a ValueMatrix based on AoMeasurement this methods behaves
as follows:

The server checks the submatrices and creates all necessary instances of AoSubmatrix,
AoLocalColumn and AoMeasurementQuantity. The values of the name attribute of
AoSubmatrix must be generated by the server. The value will be equal to the value of
the attribute ID (converted to DT_STRING). Missing instances of
AoMeasurementQuantity will be created by the server, too.

The mandatory attributes will get the following default values:
- Name supplied by client
- Datatype copied from AoQuantity.default_datatype
- Typesize copied from AoQuantity.default_typesize
- Interpolation no interpolation
- Rank copied from AoQuantity.default_rank
- Dimension copied from AoQuantity.default_dimension

The server takes the value of the channel (supplied by client) and looks up the corresponding
instance in AoQuantity using the attribute default_meq_name.Parameters

set (Type = SetType)

The set type. It may be one of

INSERT: Insert the values from startPoint, the current available values from startPoint
are moved to the end of the new inserted values.

APPEND: The value of startPoint is ignored, the values are appended at the end of the
current values.

UPDATE: Update or modify the values from startPoint, the current values are
overwritten. If the number of values is greater than the number of values in the vector,
the measurement point is automatically appended.

REMOVE: Remove the number of values from each column, starting with startPoint. The
name of the column is given as the name of the NameValueSeqUnit, the number of
values to remove is given in the number of the values in the value.

ISO/PAS 22720:2005(E)

892 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-356 ASAM ODS VERSION 5.0

startPoint (Type = T_LONG)

The measurement point.

value (Type = NameValueSeqUnitSequence)

The values to be inserted.

Java Calling Sequence

valueMatrix.setValue(set,startPoint,value);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_COLUMN

AO_INVALID_SET_TYPE

AO_IS_MEASUREMENT_MATRIX

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 893

OO-API

ASAM ODS VERSION 5.0 10-357

VALUEMATRIX_SETVALUEMEAPOINT

Purpose

Create or modify a measurement point of a value matrix. The sequence of name values
specifies the names of the column with the new valuesThe names of the columns have
to exist.

When a client creates a ValueMatrix based on AoMeasurement this methods behaves
as follows:

The server checks the submatrices and creates all necessary instances of AoSubmatrix,
AoLocalColumn and AoMeasurementQuantity. The values of the name attribute of
AoSubmatrix must be generated by the server. The value will be equal to the value of
the attribute ID (converted to DT_STRING). Missing instances of
AoMeasurementQuantity will be created by the server, too. The mandatory attributes will
get the following default values:
- Name supplied by client
- Datatype copied from AoQuantity.default_datatype
- Typesize copied from AoQuantity.default_typesize
- Interpolation no interpolation
- Rank copied from AoQuantity.default_rank
- Dimension copied from AoQuantity.default_dimension

The server takes the value of the channel (supplied by client) and looks up the
corresponding instance in AoQuantity using the attribute default_meq_name.

Parameters

set (Type = SetType)

The set type. It may be one of

INSERT: Insert the values at meaPoint, the current values at meaPoint are moved to the
end of the new inserted values.

APPEND: The value of meaPoint is ignored, the values are appended at the end of the
current values.

UPDATE: Update or modify the values at meaPoint, the current values are overwritten. If
meaPoint is bigger than the number of values in the vector, the measurement point is
automatically appended.

meaPoint (Type = T_LONG)

The measurement point.

value (Type = NameValueSequence)

The values to be inserted.

Java Calling Sequence

valueMatrix.setValueMeaPoint(set,meaPoint,value);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

ISO/PAS 22720:2005(E)

894 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-358 ASAM ODS VERSION 5.0

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_IS_MEASUREMENT_MATRIX

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 895

OO-API

ASAM ODS VERSION 5.0 10-359

VALUEMATRIX_SETVALUEVECTOR

Purpose

Create or modify a value vector in a value matrix.

It is allowed to modify the object outside a transaction but it is recommended to activate
a transaction.

The data is made permanent on transaction commit. Until the transaction is committed or
until the access to the measurement point of the value matrix it is allowed to have
different number of values in the different value vectors.

When a client creates a ValueMatrix based on AoMeasurement this methods behaves
as follows:

The server checks the submatrices and creates all necessary instances of AoSubmatrix,
AoLocalColumn and AoMeasurementQuantity. The values of the name attribute of
AoSubmatrix must be generated by the server. The value will be equal to the value of
the attribute ID (converted to DT_STRING). Missing instances of
AoMeasurementQuantity will be created by the server, too.

The mandatory attributes will get the following default values:
- Name supplied by client
- Datatype copied from AoQuantity.default_datatype
- Typesize copied from AoQuantity.default_typesize
- Interpolation no interpolation
- Rank copied from AoQuantity.default_rank
- Dimension copied from AoQuantity.default_dimension

The server takes the value of the channel (supplied by client) and looks up the
corresponding instance in AoQuantity using the attribute default_meq_name.

Parameters

col (Type = Column)

The column whose values are to be set.

set (Type = SetType)

The set type. It may be one of

INSERT: Insert the values from startPoint, the current available values from startPoint
are moved to the end of the new inserted values.

APPEND: The value of startPoint is ignored, the values are appended at the end of the
current values.

UPDATE: Update or modify the values from startPoint, the current values are
overwritten. If the number of values in the parameter values is too big the values are
automatically appended.

startPoint (Type = T_LONG)

The starting point for the new values.

value (Type = TS_ValueSeq)

The values to be inserted.

ISO/PAS 22720:2005(E)

896 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-360 ASAM ODS VERSION 5.0

Java Calling Sequence

valueMatrix.setValueVector(col,set,startPoint,value);

Returns:

None.

Possible exceptions (for details see section 10.3.14)

AO_BAD_PARAMETER

AO_CONNECTION_LOST

AO_IMPLEMENTATION_PROBLEM

AO_INVALID_COLUMN

AO_INVALID_SET_TYPE

AO_IS_MEASUREMENT_MATRIX

AO_NOT_IMPLEMENTED

AO_NO_MEMORY

AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 897

OO-API

ASAM ODS VERSION 5.0 10-361

10.3 ASAM ODS TYPE DEFINITIONS

This section contains besides some general information on data types, the tables and
descriptions for the ASAM ODS enumerations (like data types, constants, relations,
exceptions, etc.) as well as the definitions for structures, unions etc..

10.3.1 ASAM ODS DATA TYPES

The ASAM ODS data types of the OO-API are shown in the following table. In the meantime
ASAM has harmonized the data types between all ASAM standards. Section 2.5 gives
general information on data types in ASAM and ASAM ODS and describes the relationship
between ASAM-wide harmonized data types and the legacy data types of ASAM ODS. Since
there are several implementations available basing on the ASAM ODS data types, it was
decided to keep them in the OO-API. However, anyone who intends to base on the
harmonized ASAM data types according to section 2.5 may do so. Section 10.6 will provide
an IDL-file which contains the mapping between the ASAM ODS data types and the
harmonized ASAM data types.

The following table provides information on the data types used in the OO-API. While the
names of the data types usually are mapped to primitive types in the specific context (Java,
C++, ...), the names of the enumeration items are platform- and programming language-
independent. Therefore the table lists these enumeration names together with a short
description of the underlying data type. More information can be found in section 2.5.

data type enumeration name Description

DT_UNKNOWN Unknown data type

DT_STRING String

DT_SHORT Short value (integer, 16 bit)

DT_FLOAT Float value (32 bit)

DT_BOOLEAN Boolean value

DT_BYTE Byte value (integer, 8 bit)

DT_LONG Long value (integer, 32 bit)

DT_DOUBLE Double precision float value (64 bit)

DT_LONGLONG LongLong value (integer, 64 bit)

DT_COMPLEX Complex value (32 bit each part)

DT_DCOMPLEX Complex value (64 bit each part)

DT_ID Id (64 bit); deprecated; use DT_LONGLONG

DT_DATE Date, given as a string

DT_BYTESTR Bytestream

DT_BLOB Blob (Binary large object)

DS_STRING String sequence

DS_SHORT Short sequence

DS_FLOAT Float sequence

DS_BOOLEAN Boolean sequence

DS_BYTE Byte sequence

DS_LONG Long sequence

ISO/PAS 22720:2005(E)

898 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-362 ASAM ODS VERSION 5.0

DS_DOUBLE Double sequence

DS_LONGLONG LongLong sequence

DS_COMPLEX Complex sequence

DS_DCOMPLEX Double complex sequence

DS_ID Id sequence; deprecated; see above

DS_DATE Date sequence

DS_BYTESTR Bytestream sequence

DT_EXTERNALREFERENCE External reference

DS_EXTERNALREFERENCE Sequence of external reference

DT_ENUM Enumeration

DS_ENUM Sequence of enumerations

10.3.2 SUPPORTED DATA TYPE CONVERSIONS

Both, the ASAM ODS base model and the ASAM ODS API specifications include data types
whose names may differ. Section 2.5.2 describes the relationship between the API data
types and the base model data types.

In the base model, all base attributes have strictly defined data types. Normally the
application attributes derived from the base attributes must have the same data type. There
are some data types which are compatible, so ASAM ODS will allow the designer of the
application model to overload the data type of the base attributes. The allowed alternatives to
the attribute data types given in the base model are described in section 2.5.3.All base
attributes not shown in that section are only allowed with the default data types defined in the
base model.

The ASAM ODS server and client have to take care that the attributes may have a different
data type than defined in the base model.

A similar situation exists with base relations: their relation ranges are specified in the base
model with a few allowed exceptions, further explained in section 2.5.4.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 899

OO-API

ASAM ODS VERSION 5.0 10-363

10.3.3 ASAM ODS CONSTANTS

Constant Value Name Description DataType
enum
name

0 LOCK_INSTANCEELEMENT Lock the instance element.
(Default LockMode)

DT_SHORT

1 LOCK_APPLICATIONELEMENT Lock the application element,
all instances of the
application element are
locked.

DT_SHORT

Lock Mode

2 LOCK_CHILDREN Lock the children of the
locked object. This mode can
be combined with one of the
upper two modes.

DT_SHORT

0 MaxDurationDEFAULT Default value of max
duration parameter of the
query (no limitations).

DT_LONG

"MaxDuration" MaxDuration The ASAM ODS max
duration parameter of the
query.

DT_STRING

"QueryResultType" QueryResultType The ASAM ODS query result
type parameter.

DT_STRING

QueryConstants

ResultType::INST
ELEM_ITERATOR
_AS_RESULT

QueryResultTypeDEFAULT Default value of the ASAM
ODS query result type
parameter.

DT_SHORT

0 INSTELEM_ITERATOR_AS_RESULT Iterator of instance elements
as result of the query (the
default).

DT_SHORT

1 TABLE_ITERATOR_AS_RESULT Iterator for table access as
result type of the query.

DT_SHORT

ResultType

2 TABLE_AS_RESULT Table as result type of the
query.

DT_SHORT

0 NO_SECURITY No security defined. DT_SHORT

2 INSTANCE_SECURITY Security scaled for instance
elements.

DT_SHORT

4 ATTRIBUTE_SECURITY Security scaled for
application attributes.

DT_SHORT

SecurityLevel

1 ELEMENT_SECURITY Security scaled for the
application element.

DT_SHORT

1 SEC_READ Read access is allowed. DT_SHORT

2 SEC_WRITE Write access is allowed. DT_SHORT

4 SEC_UPDATE Update access to an existing
object is allowed.

DT_SHORT

8 SEC_DELETE Delete of the object is
allowed.

DT_SHORT

SecurityRights

16 SEC_GRANT Grant right is allowed. DT_SHORT

ISO/PAS 22720:2005(E)

900 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-364 ASAM ODS VERSION 5.0

10.3.4 ASAM ODS ATTRIBUTE TYPES

Enumeration SortKey Name Description

0 APPLATTR_ONLY Report only application attributes.

1 INSTATTR_ONLY Report only instance attributes.

AttrType

2 ALL All attributes.

10.3.5 ASAM ODS BUILD UP FUNCTIONS

Enumeration SortKey Name Description

0 BUP_JOIN Join the columns

1 BUP_MERGE Merge the columns

BuildUpFunction

2 BUP_SORT Sort the columns

10.3.6 ASAM ODS QUERY STATUS

Enumeration SortKey Name Description

0 COMPLETE The execution is ready.QueryStatus

1 INCOMPLETE The execution is still running.

10.3.7 ASAM ODS RIGHTS SET

Enumeration SortKey Name Description

0 SET_RIGHT Set the given rights, overwrite the existing rights.

1 ADD_RIGHT Add the given rights to the existing rights.

RightsSet

2 REMOVE_RIGHT Remove the given rights form the existing rights.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 901

OO-API

ASAM ODS VERSION 5.0 10-365

10.3.8 ASAM ODS SELECT OPERATION CODE

SelOpCode gives query instructions like "equal", "greater" etc. So far, these arguments were
case sensitive. There was a demand to add these arguments also for case insensitive
comparison operations. Therefore, the SelOpCodes for case insensitivity were added. These
arguments have the prefix “CI_”.

Enumeration SortKey Name Description

0 EQ Equal

1 NEQ Not equal

2 LT Less then

3 GT Greater than

4 LTE Less then equal

5 GTE Greater then equal

6 INSET In set, value can be a sequence.

7 NOTINSET Not in set, value can be a sequence.

8 LIKE Like, use pattern matching, see Pattern for the wildcard definitions.

9 CI_EQ Equal (Case insensitive)

10 CI_NEQ Not equal (Case insensitive)

11 CI_LT Less then (Case insensitive)

12 CI_GT Greater than (Case insensitive)

13 CI_LTE Less then equal (Case insensitive)

14 CI_GTE Greater then equal (Case insensitive)

15 CI_INSET In set, value can be a sequence. (Case insensitive)

16 CI_NOTINSET Not in set, value can be a sequence. (Case insensitive)

SelOpcode

17 CI_LIKE Like, use pattern matching, see Pattern for the wildcard definitions.
(Case insensitive)

10.3.9 ASAM ODS SELECT OPERATOR

Enumeration SortKey Name Description

0 AND AND the two conditions.

1 OR OR the two conditions.

2 NOT Negate the next condition.

3 OPEN Open brackets.

SelOperator

4 CLOSE Close brackets

ISO/PAS 22720:2005(E)

902 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-366 ASAM ODS VERSION 5.0

10.3.10 ASAM ODS SET TYPE

Enumeration SortKey Name Description

0 APPEND Append data to the value matrix.

1 INSERT Insert data into the value matrix.

2 UPDATE Modify existing data of the value matrix.

SetType

3 REMOVE Remove the given information.

10.3.11 ASAM ODS SEVERITY FLAG

Enumeration SortKey Name Description

0 SUCCESS Ok.

1 INFORMATION Information.

2 WARNING Warning.

SeverityFlag

3 ERROR Error.

10.3.12 ASAM ODS RELATIONS

A relation is the connection between two ASAM ODS elements in both directions. There is no
inverse relation, the ASAM ODS OO-API allows asking for the inverse name of the relation
but it is only one relation. The get- and set- methods are defined from the first element, the
getInverse- and setInverse- methods work from the second element.

Example

 Children INV Parent

GetRelationName returns "Children"

GetInverseRelationName returns "Parent"

GetElem1 will return 'Element 1'

GetElem2 will return 'Element 2'

Element 1

Element 2

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 903

OO-API

ASAM ODS VERSION 5.0 10-367

When a relation is created between two elements the inverse way is also created and when
a relation is removed the inverse way is also removed. This is valid for the application model
and the instances.

When a new relation is created care must be taken that the correct 'Element 1' and 'Element
2' is given at the corresponding set function.

THE RELATION_TYPE

There are three types of the relations:

FATHER_CHILD there is a hierarchical relation between two elements. The FATHER_CHILD
relation is used for the uniqueness of the instance when accessing it
through the ASAM-PATH. (E.g. AoTest and AoSubTest)

INFO there is an informational relation between the two elements. (E.g.
AoMeasurementQuantity and AoQuantity)

INHERITANCE there is an inheritance relation between two elements, the relation is only
allowed between two elements of the same base type.

THE RELATIONSHIP

Besides the type of relation we have also the relationships. If we like to ask for the related
elements we need the relationship and not the relation type. The following relationships are
defined:

FATHER The father element is requested of the relations of the type
FATHER_CHILD. The father element is 'element 1' of the relation.

CHILD The child element is requested of the relations of the type
FATHER_CHILD. The child element is the 'element 2' of the relation.

INFO_TO The target element is requested of the relations of the type INFO, the target
element is the 'element 2' of relation.

INFO_FROM The source element is requested of the relations of the type INFO, the
target element is the 'element 1' of relation.

INFO_REL The direction of the informational relation does not matter, so all elements
connected with an informational relation are reported.

SUPER The super element of the inheritance relation is given. The super element is
the 'element 1' of the relation.

SUB The sub element of the inheritance relation is given, the sub element is the
'element 2' of the relation.

ALL_REL All related elements of all kind (types) of relation are reported.

The method CreateRelation and RemoveRelation of the interface InstanceElement is able to
recognize the order which application element of the instance elements are the 'element 1' or
'element 2' of the application relation.

ISO/PAS 22720:2005(E)

904 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-368 ASAM ODS VERSION 5.0

THE RELATION_RANGE

The relation range gives the allowed number of relations from one element to the other
element of the relation. The following relation ranges are defined:

Min is the minimum number of relations. (0 or 1)

Max is the maximum number of relations (1 or MANY).

For the relation range the methods getRelationRange, getInverseRelationRange,
setRelationRange and setInverseRelationRange were introduced.

Using this RELATION_RANGE the Obligatory flag is no longer needed at the relation, so the
corresponding methods on the interfaces BaseRelation and ApplicationRelation are also no
longer needed.

If there is a base relation, the relation type and the relation range of the base relation are
used for the application relation. If there is no base relation the default relation type will be
INFO with a relationship INFO_TO. Depending on the data type of the attribute the relation
range is set. A data type enumeration name of DT_* means a relation range of 0:1. A name
of DS_* means a relation range of 0:MANY.

The relation type is given in the following table.

Relation type Value Meaning

FATHER_CHILD 0 Father-child relation.

INFO 1 Informational relation.

INHERITANCE 2 Inheritance relation.

The relationship is given below.

Relationship Value Meaning

FATHER 0 Father

CHILD 1 Child

INFO_TO 2 Directed informational relationship.

INFO_FROM 3 Directed informational relationship.

INFO_REL 4 Informational relationship (no direction)

SUPERTYPE 5 Inheritance relationship: super type.

SUBTYPE 6 Inheritance relationship: subtype.

ALL_REL 7 Any of the relationships above.

The relation range has the following structure:

typedef struct RELATIONRANGE RelationRange;
struct RELATIONRANGE {

 Int2 min;

 Int2 max;

};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 905

OO-API

ASAM ODS VERSION 5.0 10-369

where:

min The minimum number of relations; one of {-2, 0, 1}. If the minimum value is 1
there must always a reference be set. The value -2 means not initialized.

max The maximum number of relation; one of {-2, -1, 1}. The value -1 means MANY
(that is: There is no specified maximum; any amount greater or equal to the
minimum is allowed.) The value -2 means not initialized.

10.3.13 ASAM ODS PATTERNS

A “Pattern” is always case sensitive.

A “Pattern” may have wildcard characters as follows:

 The wildcard character “?” for one (1) matching character is the question mark.

 The wildcard character “*” for a sequence of matching characters is the asterisk.

 The wildcard character ESCAPE **.

10.3.14 ASAM ODS EXCEPTIONS

The ASAM ODS OO-API methods raise exceptions (AoException) whenever a problem is
detected or an error is encountered. The reason for the exception is given as a character
string. The reason string contains one of the reasons listed below. If additional information is
provided, the reason is terminated by a colon (“:”). After the colon any implementation
specific information may follow. The reasons are listed in alphabetical order.

Example for a typical exception reason with implementation specific information:

“NetworkFailure: RPC timeout encountered, node Jupiter, port number 553654711”

Without the implementation dependent information the reason string would be:

“NetworkFailure”

The following table lists all exceptions and their respective descriptions.

Exception Description

AO_ACCESS_DENIED The remote server denied the access. If this error
occurred it was not even possible to present the
authentication information. This means the
authentication information might be correct but
the server refused the access already at a lower
level.

AO_BAD_OPERATION The BAD_OPERATION error code is used when
a method is invalid in a marshalling operation.

AO_BAD_PARAMETER A parameter of the wrong type was passed to the
method. The minorCode tells which parameter (1,

ISO/PAS 22720:2005(E)

906 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-370 ASAM ODS VERSION 5.0

Exception Description

2, 3 or 4) is bad. If more than one parameter is
bad, only the first one is reported. This error can
occur only in non-typesave language bindings.
Those language bindings also impose the
problem that not all parameter errors are
automatically detectable.

AO_CONNECTION_LOST Due to hardware or network software problem the
connection to the server was lost.

AO_CONNECT_FAILED The connect to a server failed. This error may
occur if the server is down or currently
unreachable.

AO_CONNECT_REFUSED The connection was refused by the server. This
error may occur if the presented authentication
information is either incorrect or incomplete. This
error shall not occur if the server does not accept
any more sessions due to overload problems.
See AO_SESSION_LIMIT_REACHED for this
case.

AO_DUPLICATE_BASE_ATTRIBUTE Any application element may have only one base
attribute of a certain type. This means it may
have only one attribute of base attribute type
NAME, one ID, one VERSION and so on.

AO_DUPLICATE_NAME The implicitly or explicitly specified name is
already in use but it is required to be unique.

AO_DUPLICATE_VALUE The attribute is marked unique in the application
model. Thus duplicate values are not allowed.

AO_HAS_BASE_ATTRIBUTE Base attribute found. It is not allowed to modify
the data type, the unique flag and obligatory flag.

AO_HAS_BASE_RELATION Base relation found. It is not allowed to modify the
relation type, relation range or relationship of an
application relation derived from a base relation.

AO_HAS_INSTANCES The operation is not allowed for elements that
have instances.

AO_HAS_REFERENCES The requested operation is not permitted because
the target element has references.

AO_IMPLEMENTATION_PROBLEM This error is reserved for the reporting of
implementation-specific problems that are not
properly handled by the standard error definitions.
An application should not crash if this error
occurs but there is no way to react to this error
other than reporting and ignoring it. The intention
of this error is not to leave implementation-
specific errors unreported.

AO_INCOMPATIBLE_UNITS The units are incompatible. No conversion rule is
known.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 907

OO-API

ASAM ODS VERSION 5.0 10-371

Exception Description

AO_INVALID_ASAM_PATH The specified ASAM path is invalid.

AO_INVALID_ATTRIBUTE_TYPE The requested attribute type is invalid.

AO_INVALID_BASETYPE The specified base type is invalid.

AO_INVALID_BASE_ELEMENT The base element is invalid in this context. If this
is an element of type AoMeasurement, another
element of this type may already exist.

AO_INVALID_BUILDUP_FUNCTION The specified build-up function is invalid.

AO_INVALID_COLUMN The specified column is invalid.

AO_INVALID_COUNT The specified number of points is invalid
(probably negative).

AO_INVALID_DATATYPE The data type is not allowed in the given context
or it conflicts with an existing data type definition.

This error may also occur in non-typesave
language bindings. To avoid this error in all
language bindings it is recommended to use
always the definitions of the enumeration
“DataType“.

AO_INVALID_ELEMENT The element is invalid in this context.

AO_INVALID_LENGTH The given length is invalid. Negative length
values are not allowed.

AO_INVALID_ORDINALNUMBER The ordinal number is either already used or less
than zero.

AO_INVALID_RELATION The relation is invalid. The related elements and
the base relation do not fit.

AO_INVALID_RELATIONSHIP This error may occur only in non-typesave
language bindings. To avoid this error in all
language bindings it is recommended to use
always the definitions of the enumeration
"Relationship".

AO_INVALID_RELATION_RANGE The specified relation range is invalid.

AO_INVALID_RELATION_TYPE This error may occur only in non-typesave
language bindings. To avoid this error in all
language bindings it is recommended to use
always the definitions of the enumeration
"RelationType".

AO_INVALID_SET_TYPE The specified set-type is invalid.

AO_INVALID_SMATLINK The submatrix link is invalid. Either submatrix 1 or
2 is not specified or the ordinal number is missing
when there is more than one SMatLink.

AO_INVALID_SUBMATRIX The specified submatrix is invalid.

AO_IS_BASE_ATTRIBUTE The application attribute is of a base attribute
type. It cannot be changed. If this is required, the
application attribute has to be removed from its

ISO/PAS 22720:2005(E)

908 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-372 ASAM ODS VERSION 5.0

Exception Description

application element and re-created. This error
may occur if an application attribute derived from
a base attribute

a. shall be overwritten by a different base
attribute type.

b. shall receive a different data type.

c. shall receive a different unique-flag.

d. shall receive a different obligatory-flag.

AO_IS_BASE_RELATION Properties of base relations may not be changed.

AO_IS_MEASUREMENT_MATRIX The matrix is a complex, generated matrix from a
measurement not just a simple submatrix. It is
only allowed to modify submatrices but not the
composed measurement matrices.

AO_MATH_ERROR A computation error occurred. This can be an
overflow, an underflow or a division by zero.

AO_MISSING_APPLICATION_ELEMENT A required application element is missing.

AO_MISSING_ATTRIBUTE A required (obligatory) attribute is missing.

AO_MISSING_RELATION A required relation is missing.

AO_MISSING_VALUE An obligatory value is missing (the
AO_VF_DEFINED flag is zero).

AO_NOT_FOUND The requested element was not found. This error
occurs only in remove or rename operations if the
subject of the operation is not found. All get- and
list-methods return an empty list if the requested
item is not found.

AO_NOT_IMPLEMENTED The requested method is not yet implemented.
This error is not allowed to occur in a certified
implementation (except if a client accesses the
Query interface; the Query interface is no official
functionality of ASAM ODS Version 5.0; a server
must throw this exception if that interface is
accessed by a client). It is intended to allow
partial operational tests during the development
process.

AO_NOT_UNIQUE This error occurs if the instances of a property are
required to be unique.

AO_NO_MEMORY No more volatile memory available.

AO_NO_PATH_TO_ELEMENT A free-floating element was detected. No
navigation path leads to this element.

AO_NO_SCALING_COLUMN The column is no scaling column.

AO_OPEN_MODE_NOT_SUPPORTED The requested open mode is not supported. Valid
open modes are "read" and "write". Anything else
is rejected with this error and no session is

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 909

OO-API

ASAM ODS VERSION 5.0 10-373

Exception Description

created.

AO_QUERY_INCOMPLETE The execution of the query was not yet
completed.

AO_QUERY_INVALID Some error in the query string or some
inconsistency between the return type of the
query string and the result type specified by
parameter "QueryResultType".

AO_QUERY_INVALID_RESULTTYPE The requested result type of the query does not
match with the previous definition of the result
type.

AO_QUERY_PROCESSING_ERROR Some error occurred during the execution of the
query.

AO_QUERY_TIMEOUT_EXCEEDED It was not possible to execute the query within the
time limit set by parameter "MaxDuration".

AO_QUERY_TYPE_INVALID The server does not support the specified query
language type.

AO_SESSION_LIMIT_REACHED The server does not accept any new connections.
This error may occur if the server reached the
session limit for a distinct user or the total number
of sessions allowed.

AO_SESSION_NOT_ACTIVE The session is no longer active. This error occurs
if an attempt is made to call a method of a closed
session. This error shall not be confused with the
error AO_CONNECTION_LOST.

AO_TRANSACTION_ALREADY_ACTIVE There may be only one active transaction at one
time. If this error occurs there is already an active
transaction. That transaction remains active in
case of this error.

AO_TRANSACTION_NOT_ACTIVE Write operations have to be done always in the
context of a transaction. This error occurs if no
transaction is active during a write operation.

AO_UNKNOWN_ERROR Use the zero as unknown error to avoid confusing
error messages if no error code has been set.

AO_UNKNOWN_UNIT The unit is unknown.

10.3.15 ASAM ODS SPECIFIC TYPES

Type Data Type Defined Type Description

Scalar String T_STRING

Scalar Boolean T_BOOLEAN

Scalar Short T_SHORT

ISO/PAS 22720:2005(E)

910 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-374 ASAM ODS VERSION 5.0

Type Data Type Defined Type Description

Scalar Float T_FLOAT

Scalar Octet T_BYTE

Scalar Long T_LONG

Scalar Double T_DOUBLE

Scalar T_STRING Name

Scalar T_STRING Pattern Wildcard character for
one character is '?'.
Wildcard character for
more than one
character is '*'.

Scalar T_STRING BaseType

Scalar T_STRING T_DATE

Scalar Blob T_BLOB

Sequence T_BYTE T_BYTESTR

Sequence T_BOOLEAN S_BOOLEAN

Sequence T_BYTE S_BYTE

Sequence T_DOUBLE S_DOUBLE

Sequence T_FLOAT S_FLOAT

Sequence T_LONG S_LONG

Sequence T_SHORT S_SHORT

Sequence T_STRING S_STRING

Sequence T_COMPLEX S_COMPLEX

Sequence T_DCOMPLEX S_DCOMPLEX

Sequence T_LONGLONG S_LONGLONG

Sequence BaseType BaseTypeSequence

Sequence Name NameSequence

Sequence NameValue NameValueSequence

Sequence NameValueUnit NameValueUnitSequence

Sequence Column ColumnSequence

Sequence SmatLink SMatLinkSequence

Sequence SubMatrix SubMatrixSequence

Sequence T_ID S_ID

Sequence T_DATE S_DATE

Sequence T_BYTESTR S_BYTESTR

Sequence S_STRING SS_STRING

Sequence S_SHORT SS_SHORT

Sequence S_FLOAT SS_FLOAT

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 911

OO-API

ASAM ODS VERSION 5.0 10-375

Type Data Type Defined Type Description

Sequence S_BOOLEAN SS_BOOLEAN

Sequence S_BYTE SS_BYTE

Sequence S_LONG SS_LONG

Sequence S_DOUBLE SS_DOUBLE

Sequence S_LONGLONG SS_LONGLONG

Sequence S_COMPLEX SS_COMPLEX

Sequence S_DCOMPLEX SS_DCOMPLEX

Sequence S_ID SS_ID

Sequence S_DATE SS_DATE

Sequence S_BYTESTR SS_BYTESTR

Sequence T_BLOB S_BLOB

Scalar T_LONGLONG T_ID

Sequence ApplicationElement ApplicationElementSeque
nce

Sequence ApplicationRelation ApplicationRelationSeque
nce

Sequence ApplicationAttribute ApplicationAttributeSeque
nce

Sequence BaseRelation BaseRelationSequence

Sequence BaseAttribute BaseAttributeSequence

Sequence BaseElement BaseElementSequence

Sequence InstanceElement InstanceElementSequenc
e

Sequence NameValueSeqUnit NameValueSeqUnitSeque
nce

Sequence T_ExternalReference S_ExternalReference

Sequence S_ExternalReference SS_ExternalReference

Sequence ApplAttr ApplAttrSequence

Sequence ApplElem ApplElemSequence Application element
definition sequence.
The application
elements are given
with the method
getElements() at the
interface
ApplicationStructure.

Sequence ApplRel ApplRelSequence Application relation
sequence. The
application relations
are given with the
method getRelations()

ISO/PAS 22720:2005(E)

912 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-376 ASAM ODS VERSION 5.0

Type Data Type Defined Type Description

at the interface
ApplicationStructure.

Sequence AIDName AIDNameSequence Sequence of AID -
Name pairs.

Sequence AIDNameUnitId AIDNameUnitIdSequence Sequence of AID -
Name - UnitId tuple.

Sequence AIDNameValueSeqUnitId AIDNameValueSeqUnitId
Sequence

Sequence of AID -
Name - UnitId tuple.

Sequence ElemId ElemIdSequence Sequence of element
Id's.

Sequence AttrResultSet AttrResultSetSequence Sequence of the
attribute result sets.

Sequence ElemResultSet ElemResultSetSequence Sequence of the
element result sets.

Sequence SelOrder SelOrderSequence The sequence of
order criteria. The first
criteria is the
importance criteria.

Sequence SelValue SelValueSequence Sequence of attribute
search conditions.

Sequence SelOperator SelOperatorSequence

Sequence ACL ACLSequence The sequence of
access control list
entries for a
requested object.

10.3.16 ASAM ODS UNIONS

UnionName CaseName DataType Name

Selltem SEL_OPERATOR_TYPE SelOperator operator

Selltem SEL_VALUE_TYPE SelValueExt value

TS_Union DT_STRING T_STRING stringVal

TS_Union DT_SHORT T_SHORT shortVal

TS_Union DT_FLOAT T_FLOAT floatVal

TS_Union DT_BYTE T_BYTE byteVal

TS_Union DT_BOOLEAN T_BOOLEAN booleanVal

TS_Union DT_LONG T_LONG longVal

TS_Union DT_DOUBLE T_DOUBLE doubleVal

TS_Union DT_LONGLONG T_LONGLONG longlongVal

TS_Union DT_COMPLEX T_COMPLEX complexVal

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 913

OO-API

ASAM ODS VERSION 5.0 10-377

UnionName CaseName DataType Name

TS_Union DT_DCOMPLEX T_DCOMPLEX dcomplexVal

TS_Union DT_ID T_ID idVal

TS_Union DT_DATE T_DATE dateVal

TS_Union DT_BYTESTR T_BYTESTR bytestrVal

TS_Union DT_BLOB T_BLOB blobVal

TS_Union DS_STRING S_STRING stringSeq

TS_Union DS_SHORT S_SHORT shortSeq

TS_Union DS_FLOAT S_FLOAT floatSeq

TS_Union DS_BYTE S_BYTE byteSeq

TS_Union DS_BOOLEAN S_BOOLEAN booleanSeq

TS_Union DS_LONG S_LONG longSeq

TS_Union DS_DOUBLE S_DOUBLE doubleSeq

TS_Union DS_LONGLONG S_LONGLONG longlongSeq

TS_Union DS_COMPLEX S_COMPLEX complexSeq

TS_Union DS_DCOMPLEX S_DCOMPLEX dcomplexSeq

TS_Union DS_ID S_ID idSeq

TS_Union DS_DATE S_DATE dateSeq

TS_Union DS_BYTESTR S_BYTESTR bytestrSeq

TS_Union DT_EXTERNALREFERENCE T_ExternalReference extRefVal

TS_Union DS_EXTERNALREFERENCE S_ExternalReference extRefSeq

TS_Union DT_ENUM T_LONG enumVal

TS_Union DS_ENUM S_LONG enumSeq

TS_UnionSeq DT_STRING S_STRING stringVal

TS_UnionSeq DT_SHORT S_SHORT shortVal

TS_UnionSeq DT_FLOAT S_FLOAT floatVal

TS_UnionSeq DT_BYTE S_BYTE byteVal

TS_UnionSeq DT_BOOLEAN S_BOOLEAN booleanVal

TS_UnionSeq DT_LONG S_LONG longVal

TS_UnionSeq DT_DOUBLE S_DOUBLE doubleVal

TS_UnionSeq DT_LONGLONG S_LONGLONG longlongVal

TS_UnionSeq DT_COMPLEX S_COMPLEX complexVal

TS_UnionSeq DT_DCOMPLEX S_DCOMPLEX dcomplexVal

TS_UnionSeq DT_ID S_ID idVal

TS_UnionSeq DT_DATE S_DATE dateVal

TS_UnionSeq DT_BYTESTR S_BYTESTR bytestrVal

TS_UnionSeq DT_BLOB S_BLOB blobVal

TS_UnionSeq DS_STRING SS_STRING stringSeq

TS_UnionSeq DS_SHORT SS_SHORT shortSeq

TS_UnionSeq DS_FLOAT SS_FLOAT floatSeq

ISO/PAS 22720:2005(E)

914 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-378 ASAM ODS VERSION 5.0

UnionName CaseName DataType Name

TS_UnionSeq DS_BYTE SS_BYTE byteSeq

TS_UnionSeq DS_BOOLEAN SS_BOOLEAN booleanSeq

TS_UnionSeq DS_LONG SS_LONG longSeq

TS_UnionSeq DS_DOUBLE SS_DOUBLE doubleSeq

TS_UnionSeq DS_LONGLONG SS_LONGLONG longlongSeq

TS_UnionSeq DS_COMPLEX SS_COMPLEX complexSeq

TS_UnionSeq DS_DCOMPLEX SS_DCOMPLEX dcomplexSeq

TS_UnionSeq DS_ID SS_ID idSeq

TS_UnionSeq DS_DATE SS_DATE dateSeq

TS_UnionSeq DS_BYTESTR SS_BYTESTR bytestrSeq

TS_UnionSeq DT_EXTERNALREFERENCE S_ExternalReference extRefVal

TS_UnionSeq DS_EXTERNALREFERENCE SS_ExternalReference extRefSeq

TS_UnionSeq DT_ENUM S_LONG enumVal

TS_UnionSeq DS_ENUM SS_LONG enumSeq

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 915

OO-API

ASAM ODS VERSION 5.0 10-379

10.3.17 ASAM ODS STRUCTURES

The following tables show the ASAM ODS structures. Wherever a data type is referenced
that is represented in the DataType enumeration, its enumeration name is specified.

ACCESS CONTROL LIST (ACL)

Structure DataType
(resp. enum
name)

Name Description

DT_SHORT rights The access rights of the requested
object.

ACL

DT_LONGL
ONG

usergroupId The usergroup Id.

ATTRIBUTE ID

Structure DataType (resp.
enum name)

Name Description

Name aaName The attribute, or measured quantity
name.

AIDName

DT_LONGLONG aid The Id of the application element.

DT_LONGLONG unitId The unit of the attribute of the column.
The unitId is the Id of instance element
with the basetype AoUnit.

AIDNameUnitId

AIDName attr The attribute of the application element
(aid, name).

DT_LONGLONG unitId The unit of the attribute of the column.
The unitId is the Id of instance element
with the basetype AoUnit.

AIDName attr The attribute of the application element
(aid, name).

AIDNameValue
SeqUnitId

TS_ValueSeq values The column values with value flags.

DT_LONGLONG unitId The unit of the attribute of the column.
The unitId is the Id of instance element
with the basetype AoUnit.

TS_Value values The attribute values with value flags.

AIDNameValue
UnitId

AIDName attr The attribute of the application element
(aid, name).

ISO/PAS 22720:2005(E)

916 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-380 ASAM ODS VERSION 5.0

APPLICATION ATTRIBUTE

Structure DataType (resp.
enum name)

Name Description

DT_BOOLEAN isUnique The indicator for unique attributes. The same
boolean is returned by the method isUnique() of the
interface ApplicationAttribute.

DT_BOOLEAN isObligatory The indicator for mandatory attributes, the notNull
indicator is set at the column of the table in the
physical storage. The same boolean is returned at
the method isObligatory() of the interface
ApplicationAttribute.

DT_LONG length The maximum possible length of values. The same
length is returned by the method getLength() of the
interface ApplicationAttribute.

DataType dType The attribute data type. The same data type is given
by the method getDataType of the interface
ApplicationAttribute. At the RPC-API this information
is stored in the field aDataType of the structure
AttrSeq and the request AOP_GetAttr.

Name baName The name of the base attribute, empty ("") if the
application attribute is not derived from a base
attribute. The same name is returned by the
methods getName() of the BaseAttribute interface.
The base attribute is given by the method
getBaseAttribute() of the interface
ApplicationAttribute. At the RPC-API this information
is stored in the field aBName of the structure
AttrSeq and the request AOP_GetAttr.

Name aaName The application attribute name. The same name is
returned by the method getName() of the
ApplicationAttribute interface. At the RPC-API this
information is stored in the field aAName of the
structure AttrSeq and the request AOP_GetAttr.

ApplAttr

DT_LONGLONG unitId Id of the unit if global defined. The same Id is
returned by the method getUnit() of the interface
ApplicationAttribute. At the RPC-API this information
is stored in the field aUnit of the structure AttrSeq
and the request AOP_GetAttr.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 917

OO-API

ASAM ODS VERSION 5.0 10-381

APPLICATION ELEMENT

Structure DataType
(resp. enum
name)

Name Description

Name beName The base element name. All application elements
are related to a base element. The same name is
returned by the methods getName() of the
BaseElement interface. The base element is given
with the method getBaseElement() at the interface
ApplicationElement. At the RPC-API this information
is not delivered but the corresponding Id of the
base element is stored in the field aiBId of the
structure ApplInfSeq and the request
AOP_GetApplInf.

Name aeName The application element name. The name is given
also with the method getName() at the interface
ApplicationElement. At the RPC-API this information
is stored in the field aiName of the structure
ApplInfSeq and the request AOP_GetApplInf.

DT_LONGL
ONG

aid The application element id. The id is given also with
the method getId() at the interface
ApplicationElement. At the RPC-API this information
is stored in the field aiAId of the structure
ApplInfSeq and the request AOP_GetApplInf.

ApplElem

ApplAttr
Sequence

attributes The attributes of application element. The attributes
are given with the method getAttributes() of the
interface ApplicationElement. There are no
relations given in the this sequence.

APPLICATION STRUCTURE VALUE

Structure DataType Name Description

ApplRelSequence applRels The list of relations in the
application model; the
relation and the inverse
relation are given.

ApplicationStructureValue

ApplElemSequence applElems The list of application
elements.

ISO/PAS 22720:2005(E)

918 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-382 ASAM ODS VERSION 5.0

APPLICATION RELATION

Structure DataType (resp.
enum name)

Name Description

invRelationRange The range of the inverse relation. The range of
the relation is not stored in the physical storage.
The inverse relation range is returned at the
method getInverseRelationRange() of the
interface ApplicationRelation.

RelationRange

arRelationRange The range of the relation. The range of the
relation is not stored in the physical storage.
The relation range is returned at the method
getRelationRange() of the interface
ApplicationRelation.

RelationType arRelationType The type of the relation. The type of the relation
is not stored in the physical storage. The
relation type is returned at the method
getRelationType() of the interface
ApplicationRelation.

Name invBrName Name of the inverse base relation from the
elem2 to the elem1. The base relation is not
stored in the physical storage.

DT_LONGLONG elem2 The target application element Id. The given Id
is the Id of the application element returned
from the method getElem2() of the interface
ApplicationRelation. At the RPC-API this
information is stored in the field arAid2 of the
structure ApplRelSeq and the request
AOP_GetApplInf.

Name brName Name of the base relation from the elem1 to the
elem2. The base relation is not stored in the
physical storage.

DT_LONGLONG elem1 The source application element Id. The given Id
is the Id of the application element returned
from the method getElem1() of the interface
ApplicationRelation. At the RPC-API this
information is stored in the field arAid1 of the
structure ApplRelSeq and the request
AOP_GetApplInf.

Name invName Name of the inverse relation. The name is
returned with the method getInverseName() of
the interface ApplicationRelation. The invName
is not available in the physical storage for
relational databases.

ApplRel

Name arName The relation name. The name is returned with
the method getName() of the interface
ApplicationRelation. At the RPC-API this
information is stored in the field arName of the
structure ApplRelSeq and the request
AOP_GetApplInf.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 919

OO-API

ASAM ODS VERSION 5.0 10-383

ATTRIBUTE RESULT SET

Structure DataType Name Description

NameValueSeqUnitId attrValues The first 'how_many' results. All
values has the same AIDName and
the same UnitId.

AttrResultSet

NameValueUnitIdIterator rest The rest of the results.

ELEMENT ID

Structure DataType enum
name

Name Description

iid The Id of the instance element.ElemId DT_LONGLONG

aid The Id of the application element.

ELEMENT RESULT SET

Structure DataType (resp. enum
name)

Name Description

DT_LONGLONG aid The Id of the application element.ElemResultSet

AttrResultSetSequence attrValues The selected attributes of the
element. The number of values in
each AttrResultSet are identical,
the attributes of one element has
always the position in the
AttrResultSet.

NAME UNIT

Structure DataType
(resp. enum
name)

Name Description

DT_STRING unit Column unit as string.NameUnit

Name valName Attribute name or measured quantity name.

ISO/PAS 22720:2005(E)

920 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-384 ASAM ODS VERSION 5.0

NAME VALUE

Structure DataType (resp.
enum name)

Name Description

TS_Value value Attribute value or column value
(vector).

NameValue

Name valName Attribute name or measured
quantity name.

Name valName Column name or measured
quantity name.

DT_STRING unit Column unit as string.

NameValueSeqUnit

TS_ValueSeq value Column value (vector).

DT_LONGLONG unitId Column unit as Id.

TS_ValueSeq value Column value (vector).

NameValueSeqUnitId

Name valName Column name or measured
quantity name.

TS_Value value Attribute value or column value
(vector).

DT_STRING unit Attribute or column unit as string.

NameValueUnit

Name valName Attribute name or measured
quantity name.

Name valName Attribute name or measured
quantity name.

DT_LONGLONG unitId Id of attribute or column unit.

NameValueUnitId

TS_Value value Attribute value or column value
(vector).

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 921

OO-API

ASAM ODS VERSION 5.0 10-385

QUERY STRUCTURE

Structure DataType Name Description

SelValueSequence condSeq The query condition sequence.
At the RPC-API this
information is stored in the field
nsSeq of the structure
GetValReq and the request
AOP_GetVal.

SelOrderSequence orderBy The order by sequence. The
order of the result set. At the
RPC-API it is not possiable to
set the order.

Name relName Name of the relation. At the
RPC-API this information is
stored in the field refName of
the structure GetValReq and
the request AOP_GetVal.

SelOperatorSequence operSeq The query condition operator
sequence. At the RPC-API the
operator is always ‚AND‘.

AIDNameUnitIdSequence anuSeq The sequence of attributes to
be reported. At the RPC-API
this information is stored in the
fields applId and nuSeq of the
structure GetValReq and the
request AOP_GetVal. At the
RPC-API only one application
element can be selected. A
pattern is accepted for the
attribute name.

QueryStructure

ElemId relInst The related instance. (aid == 0
&& iid == 0) means no related
instance specified. At the RPC-
API this information is stored in
the field elemId of the structure
GetValReq and the request
AOP_GetVal.

RELATION RANGE

Structure DataType
enum name

Name Description

DT_SHORT max The maximum number in the range. -1 means
MANY without a specified maximum number.

RelationRange

DT_SHORT min The minimum number in the range.

ISO/PAS 22720:2005(E)

922 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-386 ASAM ODS VERSION 5.0

SELECT ORDER

Structure DataType (resp.
enum name)

Name Description

AIDName attr Attribute specification.SelOrder

DT_BOOLEAN ascending ascending order, FALSE
means descending.

SELECT VALUE

Structure DataType Name Description

TS_Value value Value for the condition.

SelOpcode oper The compare operator between the
attribute and value.

SelValue

AIDNameValueUnitId attr The attribute specification with unit of
the value.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 923

OO-API

ASAM ODS VERSION 5.0 10-387

STRUCTURE TYPES DEFINITION

Structure DataType
(resp. enum
name)

Name Description

DT_FLOAT i The imaginary part of the complex
number.

T_COMPLEX

DT_FLOAT r The real part of the complex number.

DT_DOUBLE i The imaginary part of the double
precision complex number.

T_DCOMPLEX

DT_DOUBLE r The real part of the double precision
complex number.

DT_STRING location Location of the external reference.
(asam path or URL)

DT_STRING mimeType MIME type of the external object.

T_ExternalReference

DT_STRING description Description of the external reference.

DT_LONG low The least significant 32 bits of the 64
bit value.

T_LONGLONG

DT_LONG high The most significant 32 bits of the 64
bit value.

TS_Union u The value union for values of all
known data types.

TS_Value

DT_SHORT flag The value flags.
For better efficiency, all flags of one
value are encoded in one byte, which
means, for each flag one bit will be
used. For access to the single flags,
constants for the bit masks are
defined. The following value flags are
supported:
AO_VF_VALID (0x01) - the value is
valid
AO_VF_VISIBLE (0x02) - the value
has to be visualized
AO_VF_UNMODIFIED (0x04) - the
value has not been modified
AO_VF_DEFINED (0x08) - the value
is defined (this flag is also used by
the base layer to mark gaps in the
value matrix)

TS_UnionSeq u The value union for values of all
known data types.

TS_ValueSeq

DS_SHORT flag See TS_Value, flag.

ISO/PAS 22720:2005(E)

924 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-388 ASAM ODS VERSION 5.0

10.4 PROGRAMMING EXAMPLES

10.4.1 ACCESSING THE ASAM ODS FACTORY OBJECT VIA CORBA

The OO-API may be called by any interpreter or compiler language. The design of this
application programmers interface has been done using CORBA-IDL. Thus, using the OO-
API via CORBA is the most natural thing to do, and the following examples demonstrate the
use of the OO-API with CORBA as mediator.

The beauty of this approach is the very small programming effort required to deploy CORBA.
The only difference between using the OO-API with or without CORBA is the way to obtain
the AoFactory object. For all other methods in the OO-API interfaces there is no difference
between a call via CORBA and a local call – CORBA is transparent to the application
programmer.

The requirements for CORBA services are limited to just the CORBA Name Service. The
CORBA Name Service called “NameService” must be started. After this name service is
running, an OO-API Object Request Broker (ORB) can register itself with the name service.

After that, any client can ask the CORBA name server for the registered OO-API ORB. As
result the client receives the handle of an ASAM ODS Factory object (aoFactory) which can
be used to establish an arbitrary number of sessions with the ASAM ODS server.

The example is written in Java but it would look very similar in any other programming
language. In Java, the periods between the names are interpreted as delimiters between
directory names. The paths are interpreted relative to the Java environment variable
CLASSPATH. Another CLASSPATH means another implementation (which may be with or
without CORBA).

The example does not contain any error checking or failure prevention code. The names of
CORBA ORBs registered with CORBA name servers can be hierarchical similar to file
names in directory structures. To make this first example not unnecessarily complicated the
OO-API ORB in this example is named “serverName”. For more detailed information about
CORBA Services and hierarchical name spaces see the appropriate CORBA documentation
from the OMG (www.omg.org).
Down here is an example how to get the AoFactory using the CORBA naming service. This
example shows how to access the OO-API methods via CORBA.

// Import ASAM ODS factory classes.

import org.asam.ods.AoFactory;
import org.asam.ods.AoFactoryHelper;

// Import CORBA Name Service and ORB classes.

import org.omg.CosNaming.NameComponent;

import org.omg.CosNaming.NamingContext;
import org.omg.CosNaming.NamingContextHelper;

import org.omg.CORBA.ORB;

// Create and initialize the ORB.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 925

OO-API

ASAM ODS VERSION 5.0 10-389

ORB orb = ORB.init(args, null);

// Get the root naming context.
org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");

NamingContext ncRef = NamingContextHelper.narrow(objRef);

// Resolve the Object Reference in Naming.
NameComponent nc = new NameComponent("serverName", "serverType");

NameComponent path[] = {nc};

AoFactory aoFactory = AoFactoryHelper.narrow(ncRef.resolve(path));

ISO/PAS 22720:2005(E)

926 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-390 ASAM ODS VERSION 5.0

10.5 OO-API DEFINITION FILE

On the following pages the ASAM ODS definition file is listed. There is one definition file for
the OO-API: ODS.IDL. It describes the interfaces using CORBA IDL (interface definition
language). All modules and functions of the definition file are explained in detail (purpose,
calling sequence, returns, examples) in section 10.2.

10.5.1 ODS.IDL

// ***

// * ASAM ODS Version 5.0 OO-API Interface Definition *

// ***

//

// Generated: Fri Mar 12 12:05:19 CET 2004
// Last change: Fri Mar 12 2004

//

// A list of ASAM ODS base elements can be found

// in the description of AO_INVALID_BASE_TYPE.

//
// The error descriptions are located at the end

// of this file.

//

#ifndef ods_idl

#define ods_idl

module org {

/*

* ASAM services.
*/

module asam {

/*

* ASAM ODS service.
*/

module ods {

interface AoFactory;

interface AoSession;

interface ApplicationAttribute;
interface ApplicationElement;

interface ApplicationRelation;

interface ApplicationStructure;

interface BaseAttribute;

interface BaseElement;
interface BaseRelation;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 927

OO-API

ASAM ODS VERSION 5.0 10-391

interface BaseStructure;

interface Blob;

interface Column;
interface InstanceElement;

interface InstanceElementIterator;

interface Measurement;

interface NameIterator;

interface NameValueIterator;
interface NameValueUnitIterator;

interface SMatLink;

interface SubMatrix;

interface ValueMatrix;

interface NameValueUnitIdIterator;
interface ApplElemAccess;

interface QueryEvaluator;

interface Query;

interface NameValueUnitSequenceIterator;

interface EnumerationDefinition;
interface ElemResultSetExtSeqIterator;

/*

* The ASAM ODS error severity flags.

*/
enum SeverityFlag {

 SUCCESS, // Ok.

 INFORMATION, // Information.

 WARNING, // Warning.

 ERROR // Error.
};

/*

* The ASAM ODS relation types.

*/
enum RelationType {

 FATHER_CHILD, // Father-child realation.

 INFO, // Info relation.

 INHERITANCE // Inheritance relation.

};

/*

* The ASAM ODS relationships.

*/

enum Relationship {
 FATHER, // Father.

 CHILD, // Child.

 INFO_TO, // Directed informational relationship.

ISO/PAS 22720:2005(E)

928 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-392 ASAM ODS VERSION 5.0

 INFO_FROM, // Directed informational relationship.

 INFO_REL, // Informational relationship (no direction)

 SUPERTYPE, // Inheritance relationship: supertype.
 SUBTYPE, // Inheritance relationship: subtype.

 ALL_REL // Any of the relationships above.

};

/*
* The ASAM ODS data types.

* DT_xxx Basic data types.

* DS_xxx Sequence of basic data type.

* ||

* |+- T == Type, S == Sequences.
* +-- D == Datatype.

*/

enum DataType {

 DT_UNKNOWN, // Unknown datatype.

 DT_STRING, // String.
 DT_SHORT, // Short value (16 bit).

 DT_FLOAT, // Float value (32 bit).

 DT_BOOLEAN, // Boolean value.

 DT_BYTE, // Byte value (8 bit).

 DT_LONG, // Long value (32 bit).
 DT_DOUBLE, // Double precision float value (64 bit).

 DT_LONGLONG, // LongLong value (64 bit).

 DT_ID, // LongLong value (64 bit). Not used. DT_LONGLONG is
used instead.

 DT_DATE, // Date.
 DT_BYTESTR, // Bytestream.

 DT_BLOB, // Blob.

 DT_COMPLEX, // Complex value (32 bit each part).

 DT_DCOMPLEX, // Complex value (64 bit each part).

 DS_STRING, // String sequence.
 DS_SHORT, // Short sequence.

 DS_FLOAT, // Float sequence.

 DS_BOOLEAN, // Boolean sequene.

 DS_BYTE, // Byte sequence.

 DS_LONG, // Long sequence.
 DS_DOUBLE, // Double sequence.

 DS_LONGLONG, // Longlong sequence.

 DS_COMPLEX, // Complex sequence.

 DS_DCOMPLEX, // Double complex sequence.

 DS_ID, // LongLong sequence. Not used. DS_LONGLONG is used
instead.

 DS_DATE, // Date sequence.

 DS_BYTESTR, // Bytestream sequence.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 929

OO-API

ASAM ODS VERSION 5.0 10-393

 DT_EXTERNALREFERENCE, // External reference.

 DS_EXTERNALREFERENCE, // Sequence of external reference.

 DT_ENUM, // The enumeration datatype.
 DS_ENUM // The enumeration sequence datatype.

};

/*

* The ASAM ODS build-up function codes for measurement views.
*/

enum BuildUpFunction {

 BUP_JOIN, // Join the columns

 BUP_MERGE, // Merge the columns

 BUP_SORT // Sort the columns
};

/*

* The ASAM ODS attribute type codes.

*/
enum AttrType {

 APPLATTR_ONLY, // Report only application attributes.

 INSTATTR_ONLY, // Report only instance attributes.

 ALL // All attributes.

};

/*

* The ASAM ODS types for setting values.

*/

enum SetType {
 APPEND, // Append data to the value matrix.

 INSERT, // Insert data into the value matrix.

 UPDATE, // Modify existing data of the value matrix.

 REMOVE // Remove the given information.

};

/*

* The ASAM ODS error codes.

*/

enum ErrorCode {
 AO_UNKNOWN_ERROR,

 AO_ACCESS_DENIED,

 AO_BAD_OPERATION,

 AO_BAD_PARAMETER,

 AO_CONNECT_FAILED,
 AO_CONNECT_REFUSED,

 AO_CONNECTION_LOST,

 AO_DUPLICATE_BASE_ATTRIBUTE,

ISO/PAS 22720:2005(E)

930 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-394 ASAM ODS VERSION 5.0

 AO_DUPLICATE_NAME,

 AO_DUPLICATE_VALUE,

 AO_HAS_INSTANCES,
 AO_HAS_REFERENCES,

 AO_IMPLEMENTATION_PROBLEM,

 AO_INCOMPATIBLE_UNITS,

 AO_INVALID_ASAM_PATH,

 AO_INVALID_ATTRIBUTE_TYPE,
 AO_INVALID_BASE_ELEMENT,

 AO_INVALID_BASETYPE,

 AO_INVALID_BUILDUP_FUNCTION,

 AO_INVALID_COLUMN,

 AO_INVALID_COUNT,
 AO_INVALID_DATATYPE,

 AO_INVALID_ELEMENT,

 AO_INVALID_LENGTH,

 AO_INVALID_ORDINALNUMBER,

 AO_INVALID_RELATION,
 AO_INVALID_RELATION_RANGE,

 AO_INVALID_RELATION_TYPE,

 AO_INVALID_RELATIONSHIP,

 AO_INVALID_SET_TYPE,

 AO_INVALID_SMATLINK,
 AO_INVALID_SUBMATRIX,

 AO_IS_BASE_ATTRIBUTE,

 AO_IS_BASE_RELATION,

 AO_IS_MEASUREMENT_MATRIX,

 AO_MATH_ERROR,
 AO_MISSING_APPLICATION_ELEMENT,

 AO_MISSING_ATTRIBUTE,

 AO_MISSING_RELATION,

 AO_MISSING_VALUE,

 AO_NO_MEMORY,
 AO_NO_PATH_TO_ELEMENT,

 AO_NOT_FOUND,

 AO_NOT_IMPLEMENTED,

 AO_NOT_UNIQUE,

 AO_OPEN_MODE_NOT_SUPPORTED,
 AO_SESSION_LIMIT_REACHED,

 AO_SESSION_NOT_ACTIVE,

 AO_TRANSACTION_ALREADY_ACTIVE,

 AO_TRANSACTION_NOT_ACTIVE,

 AO_HAS_BASE_RELATION,
 AO_HAS_BASE_ATTRIBUTE,

 AO_UNKNOWN_UNIT,

 AO_NO_SCALING_COLUMN,

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 931

OO-API

ASAM ODS VERSION 5.0 10-395

 AO_QUERY_TYPE_INVALID,

 AO_QUERY_INVALID,

 AO_QUERY_PROCESSING_ERROR,
 AO_QUERY_TIMEOUT_EXCEEDED,

 AO_QUERY_INCOMPLETE,

 AO_QUERY_INVALID_RESULTTYPE

};

/*

* The selection operators. SelOpcode gives query instructions

* like "equal", "greater" etc. So far, these arguments were

* case sensitive. There was a demand to add these arguments

* also for case insensitive comparison operations. Therefore,
* the SelOpcodes for case insensitivity were added. These

* arguments have the prefix "CI_".

*/

enum SelOpcode {

 EQ, // Equal
 NEQ, // Not equal

 LT, // Less then

 GT, // Greater then

 LTE, // Less then equal

 GTE, // Greater then equal
 INSET, // In set, value can be a sequence.

 NOTINSET, // Not in set, value can be a sequence.

 LIKE, // like, use pattern matching, see Pattern for the wildcard
definitions.

 CI_EQ, // Equal. case insensitive for DT_STRING.
 CI_NEQ, // Not equal. case insensitive for DT_STRING.

 CI_LT, // Less then. case insensitive for DT_STRING.

 CI_GT, // Greater then. case insensitive for DT_STRING.

 CI_LTE, // Less then equal. case insensitive for DT_STRING.

 CI_GTE, // Greater then equal. case insensitive for DT_STRING.
 CI_INSET, // In set, value can be a sequence. case insensitive for
DT_STRING.

 CI_NOTINSET, // Not in set, value can be a sequence. case insensitive for
DT_STRING.

 CI_LIKE // like, use pattern matching, see Pattern for the wildcard
definitions. case insensitive for DT_STRING.

};

/*

* Operator, bracket open and close.
*/

enum SelOperator {

 AND, // AND the two conditions.

ISO/PAS 22720:2005(E)

932 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-396 ASAM ODS VERSION 5.0

 OR, // OR the two conditions.

 NOT, // Negate the next condition.

 OPEN, // Open brackets.
 CLOSE // Close brackets

};

/*

* The ASAM ODS types for setting access rights.
*/

enum RightsSet {

 SET_RIGHT, // Set the given rights, overwrite the existing rights.

 ADD_RIGHT, // Add the given rights to the existing rights.

 REMOVE_RIGHT // Remove the given rights form the existing rights.
};

/*

* Status of the query execution.

*/
enum QueryStatus {

 COMPLETE, // The execution is ready.

 INCOMPLETE // The execution is still running.

};

/*

* The supported aggregate functiosn of the GetInstanceExt.

*/

enum AggrFunc {

 NONE, // No aggregate function is used for attribute.
 COUNT, // Count

 DCOUNT, // Distinct count

 MIN, // Min; only for numerical values

 MAX, // Max; only for numerical values

 AVG, // Average; only for numerical values
 STDDEV // Standard deviation; only for numerical values

};

/*

* The selection type.
*/

enum SelType {

 SEL_VALUE_TYPE, // Selection value.

 SEL_OPERATOR_TYPE // Selection logical operator.

};

/*

* The type of the join.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 933

OO-API

ASAM ODS VERSION 5.0 10-397

*/

enum JoinType {

 JTDEFAULT, // Force inner join.
 JTOUTER // Force outer join on destination AID.

};

// Datatype definitions (T_xxx).

typedef string T_STRING;
typedef boolean T_BOOLEAN;

typedef short T_SHORT;

typedef float T_FLOAT;

typedef octet T_BYTE;

typedef long T_LONG;
typedef double T_DOUBLE;

typedef T_STRING Name;

typedef T_STRING Pattern;

typedef T_STRING BaseType;

typedef T_STRING T_DATE;
typedef Blob T_BLOB;

// Sequence definitions (S_xxx).

typedef sequence<T_BYTE> T_BYTESTR;

typedef sequence<T_BOOLEAN> S_BOOLEAN;
typedef sequence<T_BYTE> S_BYTE;

typedef sequence<T_DOUBLE> S_DOUBLE;

typedef sequence<T_FLOAT> S_FLOAT;

typedef sequence<T_LONG> S_LONG;

typedef sequence<T_SHORT> S_SHORT;
typedef sequence<T_STRING> S_STRING;

typedef sequence<BaseType> BaseTypeSequence;

typedef sequence<Name> NameSequence;

typedef sequence<Column> ColumnSequence;

typedef sequence<SMatLink> SMatLinkSequence;
typedef sequence<SubMatrix> SubMatrixSequence;

typedef sequence<T_DATE> S_DATE;

typedef sequence<T_BYTESTR> S_BYTESTR;

typedef sequence<S_STRING> SS_STRING;

typedef sequence<S_SHORT> SS_SHORT;
typedef sequence<S_FLOAT> SS_FLOAT;

typedef sequence<S_BOOLEAN> SS_BOOLEAN;

typedef sequence<S_BYTE> SS_BYTE;

typedef sequence<S_LONG> SS_LONG;

typedef sequence<S_DOUBLE> SS_DOUBLE;
typedef sequence<S_DATE> SS_DATE;

typedef sequence<S_BYTESTR> SS_BYTESTR;

typedef sequence<T_BLOB> S_BLOB;

ISO/PAS 22720:2005(E)

934 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-398 ASAM ODS VERSION 5.0

typedef sequence<ApplicationElement> ApplicationElementSequence;

typedef sequence<ApplicationRelation> ApplicationRelationSequence;

typedef sequence<ApplicationAttribute> ApplicationAttributeSequence;
typedef sequence<BaseRelation> BaseRelationSequence;

typedef sequence<BaseAttribute> BaseAttributeSequence;

typedef sequence<BaseElement> BaseElementSequence;

typedef sequence<InstanceElement> InstanceElementSequence;

typedef sequence<SelOperator> SelOperatorSequence;

/*

* The ASAM ODS relation range structure.

*/

struct RelationRange {
 T_SHORT min; // The minimum number in the range.

 T_SHORT max; // The maximum number in the range. -1 means

 // MANY without a specified maximum number.

};

/*

* The ASAM ODS 64 bit integer structure. This type is

* represented in the datatype enumeration by DT_LONGLONG.

*/

struct T_LONGLONG {
 T_LONG high; // The most significant 32 bits of the 64 bit value.

 T_LONG low; // The least significant 32 bits of the 64 bit value.

};

/*
* The ASAM ODS complex data structure. This type is

* represented in the datatype enumeration by DT_COMPLEX.

*/

struct T_COMPLEX {

 T_FLOAT r; // The real part of the complex number.
 T_FLOAT i; // The imaginary part of the complex number.

};

/*

* The ASAM ODS double-precision complex data structure. This
* type is represented in the datatype enumeration by DT_DCOMPLEX.

*/

struct T_DCOMPLEX {

 T_DOUBLE r; // The real part of the double precision complex number.

 T_DOUBLE i; // The imaginary part of the double precision complex
 // number.

};

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 935

OO-API

ASAM ODS VERSION 5.0 10-399

/*

* The ASAM ODS name-unit tuple structure.

*/
struct NameUnit {

 Name valName; // Attribute name or measured quantity name.

 T_STRING unit; // Column unit as string.

};

/*

* The description of a reference object, the reference object

* can be an internal ASAM ODS object or an external object.

* This type is represented in the datatype enumeration by

* DT_EXTERNALREFERENCE.
*/

struct T_ExternalReference {

 T_STRING description; // Description of the external reference.

 T_STRING mimeType; // Mime type of the external object.

 T_STRING location; // Location of the external reference.
 // (asam path or URL)

};

/*

* The application attribute information (metadata) definition.
* The same information is available at the interface

* ApplicationAttribute

*/

struct ApplAttr {

 Name aaName; // The application attribute name. The same
 // name is returned by the method getName()

 // of the ApplicationAttribute interface. At

 // the protocol level 3 this information was

 // stored in the field aAName of the

 // structure AttrSeq and the request
 // AOP_GetAttr.

 Name baName; // The name of the base attribute, empty ("")

 // if the application attribute is not

 // derived from a base attribute. The same

 // name is returned by the methods getName()
 // of the BaseAttribute interface. The base

 // attribute is given by the method

 // getBaseAttribute() of the interface

 // ApplicationAttribute. At the protocol

 // level 3 this information was stored in the
 // field aBName of the structure AttrSeq and

 // the request AOP_GetAttr.

 DataType dType; // The attribute data type. The same data

ISO/PAS 22720:2005(E)

936 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-400 ASAM ODS VERSION 5.0

 // type is given by the method getDataType of

 // the interface ApplicationAttribute. At the

 // protocol level 3 this information was
 // stored in the field aDataType of the

 // structure AttrSeq and the request

 // AOP_GetAttr.

 T_LONG length; // The maximum possible length of values. The

 // same length is returned by the method
 // getLength() of the interface

 // ApplicationAttribute.

 T_BOOLEAN isObligatory; // The indicator for mandatory attributes,

 // the notNull indicator is set at the column

 // of the table in the physical storage. The
 // same boolean is returned at the method

 // isObligatory() of the interface

 // ApplicationAttribute. I think the

 // information must be stored in the svcattr

 // table and not in the table description of
 // the database.

 T_BOOLEAN isUnique; // The indicator for unique attributes. The

 // same boolean is returned by the method

 // isUnique() of the interface

 // ApplicationAttribute. I think the
 // information must be stored in the svcattr

 // table and not in the table description of

 // the database.

 T_LONGLONG unitId; // Id of the unit if global defined. The same

 // Id is returned by the method getUnit() of
 // the interface ApplicationAttribute. At the

 // protocol level 3 this information was

 // stored in the field aUnit of the structure

 // AttrSeq and the request AOP_GetAttr.

};

/*

* The application relation info structure. The same information

* is available at the interface ApplicationRelation.

*/
struct ApplRel {

 T_LONGLONG elem1; // The source application element Id.

 // The given Id is the Id of the

 // application element returned from

 // the method getElem1() of the
 // interface ApplicationRelation. At

 // the protocol level 3 this

 // information was stored in the field

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 937

OO-API

ASAM ODS VERSION 5.0 10-401

 // arAid1 of the structure ApplRelSeq

 // and the request AOP_GetApplInf.

 T_LONGLONG elem2; // The target application element Id.
 // The given Id is the Id of the

 // application element returned from

 // the method getElem2() of the

 // interface ApplicationRelation. At

 // the protocol level 3 this
 // information was stored in the field

 // arAid2 of the structure ApplRelSeq

 // and the request AOP_GetApplInf.

 Name arName; // The relation name. The name is

 // returned with the method getName() of
 // the interface ApplicationRelation.

 // At the protocol level 3 this

 // information was stored in the field

 // arName of the structure ApplRelSeq

 // and the request AOP_GetApplInf.
 Name invName; // Name of the inverse relation. The

 // name is return with the method

 // getInverseName() of the interface

 // ApplicationRelation. The invName is

 // not available in the physical
 // storage for relation databases.

 Name brName; // Name of the base relation from the

 // elem1 to the elem2. The base

 // relation is also not stored in the

 // physical storage.
 Name invBrName; // Name of the inverse base relation

 // from the elem2 to the elem1. The

 // base relation is also not stored in

 // the physical storage.

 RelationType arRelationType; // The type of the relation. Type of
 // the relation is not stored in the

 // physical storage. The relation type

 // is returned at the method

 // getRelationType() of the interface

 // ApplicationRelation.
 RelationRange arRelationRange; // The range of the relation. Range of

 // the relation is not stored in the

 // physical storage. The relation

 // range is returned at the method

 // getRelationRange() of the interface
 // ApplicationRelation.

 RelationRange invRelationRange; // The inverse range of the relation.

 // Range of the relation is not stored

ISO/PAS 22720:2005(E)

938 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-402 ASAM ODS VERSION 5.0

 // in the physical storage. The

 // inverse relation range is returned at

 // the method
 // getInverseRelationRange() of the

 // interface ApplicationRelation.

};

/*
* AID - Name pair.

*/

struct AIDName {

 T_LONGLONG aid; // The Id of the application element.

 Name aaName; // The attribute, or measured quantity name.
};

/*

* Instance element Id. The unique description of an instance

* element.
*/

struct ElemId {

 T_LONGLONG aid; // The Id of the application element.

 T_LONGLONG iid; // The Id of the instance element.

};

/*

* AID - Name - UnitId tuple.

*/

struct AIDNameUnitId {
 AIDName attr; // The attribute of the application element (aid,

 // name).

 T_LONGLONG unitId; // The unit of the attribute ot the column. The

 // unitId is the Id of instance element with the

 // basetype AoUnit.
};

/*

* Order criteria.

*/
struct SelOrder {

 AIDName attr; // Attribute specification.

 T_BOOLEAN ascending; // ascending order, FALSE means descending.

};

/*

* The access control list entry.

*/

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 939

OO-API

ASAM ODS VERSION 5.0 10-403

struct ACL {

 T_LONGLONG usergroupId; // The usergroup Id.

 T_LONG rights; // The access rights of the requested object.
};

/*

* An initial right.

*/
struct InitialRight {

 T_LONG rights; // The initial access rights of the requested

 // object.

 T_LONGLONG usergroupId; // The usergroup Id of the Initial right list.

 T_LONGLONG refAid; // The referencing application element.
};

/*

* it’s quite the same sequence as in the QueryStructure of

* GetInstances with one exception. It has one new attribute
* called function, which is of the type AggrFunc. Thereby it

* is possible to define aggregate functions on attribute level,

* without the need to parse the attribute name for a known

* aggregate function name. The default value of that attribute

* function is NONE, it symbolizes that no aggregate function
* should be applied on that attribute.If an aggregate function

* is used, it is also required to define a GroupSequence.It is

* also defined that a ‘*’ as attribute name, delivers all

* attributes of an element.

*/
struct SelAIDNameUnitId {

 AIDName attr; // The attribute of the application element

 // (aid, name).

 T_LONGLONG unitId; // The unit of the attribute ot the column. The

 // unitId is the Id of instance element with the
 // basetype AoUnit.

 AggrFunc aggregate; // The aggregate function.

};

/*
* Basically, joins can only be realized between application

* elements that are linked via a reference defined in the

* model.From the definition of attributes or application

* elements, the references for the joins are determined. It is

* also taken into account that the application elements
* involved are not linked directly. However, there must be an

* unambiguous path between the application elements. The path

* may also include n:m relations. The unambiguousness of

ISO/PAS 22720:2005(E)

940 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-404 ASAM ODS VERSION 5.0

* relations between two application elements no longer exists

* if more than one reference has been defined between the

* application elements. In this case, these references must
* have names and must be indicated explicitly in the

* request.For this purpose, the request structure provides a

* sequence of relation definitions (JoinDefSequence). The

* sequence in which the application elements are addressed in

* the request also determines the sequence in which the
* references between application elements are searched. Thus,

* for every new application element, the server begins with the

* first application element addressed in the request and tries

* to find a relation from there. If no reference to the first

* application element can be found, the search continues with
* the application element that comes next in the request.

* Furthermore, the explicit relation definitions

* (JoinDefSequence) enable an OUTER join, i.e. the result also

* includes those records for which the join could not be

* established.
*/

struct JoinDef {

 T_LONGLONG fromAID;

 T_LONGLONG toAID;

 Name refName;
 JoinType joiningType;

};

/*

* The application relation with the instances to create the
* relation with new instances.

*/

struct ApplicationRelationInstanceElementSeq {

 ApplicationRelation applRel; // The application relation.

 InstanceElementSequence instances; // The list with instances. The
 // application element of the

 // instances in the list must match

 // one of the application elements

 // of the application relation. All

 // instances of the list must have
 // the same application element.

};

// Sequence definitions (S_xxx).

typedef sequence<T_COMPLEX> S_COMPLEX;
typedef sequence<T_DCOMPLEX> S_DCOMPLEX;

typedef sequence<T_LONGLONG> S_LONGLONG;

typedef sequence<S_LONGLONG> SS_LONGLONG;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 941

OO-API

ASAM ODS VERSION 5.0 10-405

typedef sequence<S_COMPLEX> SS_COMPLEX;

typedef sequence<S_DCOMPLEX> SS_DCOMPLEX;

typedef sequence<T_ExternalReference> S_ExternalReference;
typedef sequence<S_ExternalReference> SS_ExternalReference;

typedef sequence<ApplAttr> ApplAttrSequence;

typedef sequence<ApplRel> ApplRelSequence;

typedef sequence<AIDName> AIDNameSequence;

typedef sequence<AIDNameUnitId> AIDNameUnitIdSequence;
typedef sequence<ElemId> ElemIdSequence;

typedef sequence<SelOrder> SelOrderSequence;

typedef sequence<ACL> ACLSequence;

typedef sequence<InitialRight> InitialRightSequence;

typedef sequence<SelAIDNameUnitId> SelAIDNameUnitIdSequence;
typedef sequence<JoinDef> JoinDefSequence;

typedef sequence<ApplicationRelationInstanceElementSeq>
ApplicationRelationInstanceElementSeqSequence;

/*
* The application element definition. The same information is

* available at the interface ApplicationElement.

*/

struct ApplElem {

 T_LONGLONG aid; // The application element id. The id is
 // given also with the method getId() at

 // the interface ApplicationElement. At

 // the protocol level 3 this information

 // was stored in the field aiAId of the

 // structure ApplInfSeq and the request
 // AOP_GetApplInf.

 Name beName; // The base element name, all elements

 // have a basic element. The same name is

 // returned by the methods getType() of

 // the BaseElement interface. The base
 // element is given with the method

 // getBaseElement() at the interface

 // ApplicationElement. At the protocol

 // level 3 this information was not

 // delivered but the corresponding Id of
 // the base element was stored in the

 // field aiBId of the structure

 // ApplInfSeq and the request

 // AOP_GetApplInf.

 Name aeName; // The application element name. The name
 // is given also with the method

 // getName() at the interface

 // ApplicationElement. At the protocol

ISO/PAS 22720:2005(E)

942 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-406 ASAM ODS VERSION 5.0

 // level 3 this information was stored in

 // the field aiName of the structure

 // ApplInfSeq and the request
 // AOP_GetApplInf.

 ApplAttrSequence attributes; // The attributes of application element.

 // The atributes are given with the

 // method getAttributes() of the

 // interface ApplicationElement. There
 // are no relations given in this

 // sequence.

};

/*
* The Union definition for all datatypes.

*/

union TS_Union switch (DataType) {

 case DT_STRING: T_STRING
stringVal;
 case DT_SHORT: T_SHORT
shortVal;

 case DT_FLOAT: T_FLOAT
floatVal;

 case DT_BYTE: T_BYTE
byteVal;

 case DT_BOOLEAN: T_BOOLEAN
booleanVal;

 case DT_LONG: T_LONG
longVal;
 case DT_DOUBLE: T_DOUBLE
doubleVal;

 case DT_LONGLONG: T_LONGLONG
longlongVal;

 case DT_COMPLEX: T_COMPLEX
complexVal;

 case DT_DCOMPLEX: T_DCOMPLEX
dcomplexVal;

 case DT_DATE: T_DATE
dateVal;
 case DT_BYTESTR: T_BYTESTR
bytestrVal;

 case DT_BLOB: T_BLOB
blobVal;

 case DS_STRING: S_STRING
stringSeq;

 case DS_SHORT: S_SHORT
shortSeq;

 case DS_FLOAT: S_FLOAT
floatSeq;

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 943

OO-API

ASAM ODS VERSION 5.0 10-407

 case DS_BYTE: S_BYTE
byteSeq;

 case DS_BOOLEAN: S_BOOLEAN
booleanSeq;

 case DS_LONG: S_LONG
longSeq;

 case DS_DOUBLE: S_DOUBLE
doubleSeq;
 case DS_LONGLONG: S_LONGLONG
longlongSeq;

 case DS_COMPLEX: S_COMPLEX
complexSeq;

 case DS_DCOMPLEX: S_DCOMPLEX
dcomplexSeq;

 case DS_DATE: S_DATE
dateSeq;

 case DS_BYTESTR: S_BYTESTR
bytestrSeq;
 case DT_EXTERNALREFERENCE: T_ExternalReference
extRefVal;

 case DS_EXTERNALREFERENCE: S_ExternalReference
extRefSeq;

 case DT_ENUM: T_LONG
enumVal;

 case DS_ENUM: S_LONG
enumSeq;

};

/*

* Define a union with sequences of a certain type. Using this

* union instead of sequence <TS_Union> gives much better

* performance.

*/
union TS_UnionSeq switch (DataType) {

 case DT_STRING: S_STRING
stringVal;

 case DT_SHORT: S_SHORT
shortVal;
 case DT_FLOAT: S_FLOAT
floatVal;

 case DT_BYTE: S_BYTE
byteVal;

 case DT_BOOLEAN: S_BOOLEAN
booleanVal;

 case DT_LONG: S_LONG
longVal;

 case DT_DOUBLE: S_DOUBLE
doubleVal;
 case DT_LONGLONG: S_LONGLONG
longlongVal;

ISO/PAS 22720:2005(E)

944 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-408 ASAM ODS VERSION 5.0

 case DT_COMPLEX: S_COMPLEX
complexVal;

 case DT_DCOMPLEX: S_DCOMPLEX
dcomplexVal;

 case DT_DATE: S_DATE
dateVal;

 case DT_BYTESTR: S_BYTESTR
bytestrVal;
 case DT_BLOB: S_BLOB
blobVal;

 case DS_STRING: SS_STRING
stringSeq;

 case DS_SHORT: SS_SHORT
shortSeq;

 case DS_FLOAT: SS_FLOAT
floatSeq;

 case DS_BYTE: SS_BYTE
byteSeq;
 case DS_BOOLEAN: SS_BOOLEAN
booleanSeq;

 case DS_LONG: SS_LONG
longSeq;

 case DS_DOUBLE: SS_DOUBLE
doubleSeq;

 case DS_LONGLONG: SS_LONGLONG
longlongSeq;

 case DS_COMPLEX: SS_COMPLEX
complexSeq;
 case DS_DCOMPLEX: SS_DCOMPLEX
dcomplexSeq;

 case DS_DATE: SS_DATE
dateSeq;

 case DS_BYTESTR: SS_BYTESTR
bytestrSeq;

 case DT_EXTERNALREFERENCE: S_ExternalReference
extRefVal;

 case DS_EXTERNALREFERENCE: SS_ExternalReference
extRefSeq;
 case DT_ENUM: S_LONG
enumVal;

 case DS_ENUM: SS_LONG
enumSeq;

};

// Sequence definitions (S_xxx).

typedef sequence<ApplElem> ApplElemSequence;

/*
* The ASAM ODS value structure. There is one flag for each

* value. If the union (u) contains a sequence, the flag is

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 945

OO-API

ASAM ODS VERSION 5.0 10-409

* valid for all values in that sequence.

*

* Meaning of flags:
* AO_VF_VALID(0x01) The value is valid.

* AO_VF_VISIBLE(0x02) The value has to be

* visualized.

* AO_VF_UNMODIFIED(0x04) The value has not been

* modified.
* AO_VF_DEFINED(0x08) The value is defined. If

* the value in a value matrix

* is not available this bit

* is not set.

* The normal value of the flag is 15.
*/

struct TS_Value {

 TS_Union u; // The value union for values of all known datatypes.

 T_SHORT flag; // The value flags.

};

/*

* A structure with sequences of a certain type. Using this

* union instead of sequence <TS_Value> gives much better

* performance.
*/

struct TS_ValueSeq {

 TS_UnionSeq u; // The value union for values of all known

 // datatypes.

 S_SHORT flag; // See TS_Value flag.
};

/*

* Application model values. All values of the entire

* application model are stored in this structure and loaded
* to the Client on request. At the protocol level 3 this

* information delivered by the request AOP_GetApplInf and

* AOP_GetAttr for each application element.

*/

struct ApplicationStructureValue {
 ApplElemSequence applElems; // The list of application elements.

 ApplRelSequence applRels; // The list of relations in application

 // model, the relation and the inverse

 // relation are given.

};

/*

* The ASAM ODS name-value-unit tuple structure with a sequence

ISO/PAS 22720:2005(E)

946 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-410 ASAM ODS VERSION 5.0

* of values.

*/

struct NameValueSeqUnit {
 Name valName; // Column name or measured quantity name.

 TS_ValueSeq value; // Column value (vector).

 T_STRING unit; // Column unit as string.

};

/*

* AID - Name - Value - UnitId quartet.

*/

struct AIDNameValueUnitId {

 AIDName attr; // The attribute of the application element (aid,
 // name).

 T_LONGLONG unitId; // The unit of the attribute ot the column. The

 // unitId is the Id of instance element with the

 // basetype AoUnit.

 TS_Value values; // The attribute values with value flags.
};

/*

* AID - Name - Value - UnitId quartet. Multiple values for on

* attribute.
*/

struct AIDNameValueSeqUnitId {

 AIDName attr; // The attribute of the application element (aid,

 // name).

 T_LONGLONG unitId; // The unit of the attribute ot the column. The
 // unitId is the Id of instance element with the

 // basetype AoUnit.

 TS_ValueSeq values; // The column values with value flags.

};

/*

* The ASAM ODS name-value-unitId tuple structure with a

* sequence of values.

*/

struct NameValueSeqUnitId {
 Name valName; // Column name or measured quantity name.

 TS_ValueSeq value; // Column value (vector).

 T_LONGLONG unitId; // Column unit as Id.

};

/*

* Structure for name value query or attribute search

* conditions.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 947

OO-API

ASAM ODS VERSION 5.0 10-411

*/

struct SelValue {

 AIDNameValueUnitId attr; // The attribute specification with unit of
 // the value.

 SelOpcode oper; // The compare operator between the

 // attribute and value.

 TS_Value value; // Value for the condition.

};

/*

* The ASAM ODS name-value-unitid tuple structure. This

* structure is identical with the NameValueUnit, except the

* unit is given as an Id insead of a string.
*/

struct NameValueUnitId {

 Name valName; // Attribute name or measured quantity name.

 TS_Value value; // Attribute value or column value (vector).

 T_LONGLONG unitId; // Id of attribute or column unit.
};

/*

* The attribute selection structure.

*/
struct SelValueExt {

 AIDNameUnitId attr; // The attribute specification with unit Id.

 SelOpcode oper; // The compare operator between the attribute and

 // value.

 TS_Value value; // Value for the condition.
};

/*

* Defines the sequence of selection attributes with their

* logical operators. The Idea is to have the logical operators
* and the selection values in one sequence. Therefore no

* implicit rules are necessary how logical operators have to be

* interpreted to the corresponding selection value.

*/

union SelItem switch (SelType) {
 case SEL_VALUE_TYPE: SelValueExt value;

 case SEL_OPERATOR_TYPE: SelOperator
operator;

};

// Sequence definitions (S_xxx).

typedef sequence<NameValueSeqUnit> NameValueSeqUnitSequence;

typedef sequence<AIDNameValueSeqUnitId> AIDNameValueSeqUnitIdSequence;

ISO/PAS 22720:2005(E)

948 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-412 ASAM ODS VERSION 5.0

typedef sequence<SelValue> SelValueSequence;

typedef sequence<NameValueSeqUnitId> NameValueSeqUnitIdSequence;

typedef sequence<SelItem> SelItemSequence;

/*

* The ASAM ODS name-value pair structure.

*/

struct NameValue {
 Name valName; // Attribute name or measured quantity name.

 TS_Value value; // Attribute value or column value (vector).

};

/*
* The ASAM ODS name-value-unit tuple structure. This structure

* is identical with the NameValueUnitId, except the unit is

* given as a string insead of an Id.

*/

struct NameValueUnit {
 Name valName; // Attribute name or measured quantity name.

 TS_Value value; // Attribute value or column value (vector).

 T_STRING unit; // Attribute or column unit as string.

};

/*

* The results for one attribute. The result set for all

* attributes are given in the sequence of the result set.

*/

struct AttrResultSet {
 NameValueSeqUnitId attrValues; // The first 'how_many' results.

 // All values have the same AIDName

 // and the same UnitId.

 NameValueUnitIdIterator rest; // The rest of the results.

};

/*

* The query structure.

*

* How to build a query.
*

* A query is a search condition for instances. The instances

* are specified by the values of the attributes. The search

* condition represents an attribute value condition. This means

* the attribute value specifies the selection of the instance
* or instance attribute. An attribute is specified by the

* application element and the name of the attribute (AIDName).

* The conditions are defined in the enumeration SelOPCode. The

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 949

OO-API

ASAM ODS VERSION 5.0 10-413

* values are given in the TS_Value or TS_Union structure. If we

* like an Unit indepedent condition we needed to define the

* Unit at the attribute, use AIDNameUnitId instead of AIDName,
* the server has to convert the value to the proper attribute

* value. The attribute search condition can be combined by

* operations defined in the enumeration SelOperator. A query

* can be built with a sequence SelValue and SelOperator.

*
* How to read/write the query:

*

* e.g. SelValue1 AND SelValue2

*

* selValueSeq = SelValue1, SelValue2
* selOPeratorSeq = AND

*

* e.g. (SelValue1 AND SelValue2) OR SelValue3

*

* selValueSeq = SelValue1, SelValue2, SelValue3
* selOPeratorSeq = OPEN, AND, CLOSE, OR

*

* e.g. NOT(SelValue1 AND SelValue2) OR SelValue3

*

* selValueSeq = SelValue1, SelValue2, SelValue3
* selOPeratorSeq = NOT, OPEN, AND, CLOSE, OR

*

* e.g. NOT(SelValue1) AND SelValue2 OR SelValue3

*

* selValueSeq = SelValue1, SelValue2, SelValue3
* selOPeratorSeq = NOT, AND, OR

*

* There is no selection about the N:M relations.

*

* There are no aggregate functions (MAX, MIN, COUNT etc.)
* defined so we need no "group by" and "having" Clause. All the

* parts defined in the "having"-clause can be defined in the

* select part.

*/

struct QueryStructure {
 AIDNameUnitIdSequence anuSeq; // The sequence of attributes to be

 // reported. At the protocol level 3

 // this information was stored in the

 // fields applId and nuSeq of the

 // structure GetValReq and the request
 // AOP_GetVal. At the protocol level 3

 // interface only one application

 // element could be selected. A pattern

ISO/PAS 22720:2005(E)

950 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-414 ASAM ODS VERSION 5.0

 // is accepted for the attribute name.

 SelValueSequence condSeq; // The query condition sequence. At the

 // protocol level 3 this information
 // was stored in the field nsSeq of the

 // structure GetValReq and the request

 // AOP_GetVal.

 SelOperatorSequence operSeq; // The query condition operator

 // sequence. At the protocol level 3
 // interface only the operator was

 // always 'AND'.

 ElemId relInst; // The related instance. (aid == 0 &&

 // iid == 0) means no related instance

 // specified. At the protocol
 // level 3 this information was stored

 // in the field elemId of the structure

 // GetValReq and the request

 // AOP_GetVal.

 Name relName; // Name of the relation. At the
 // protocol level 3 this information

 // was stored in the field refName of

 // the structure GetValReq and the

 // request AOP_GetVal.

 SelOrderSequence orderBy; // The order by sequence. The order of
 // the result set. At the protocol

 // level 3 interface it was not

 // possible to set the order.

};

/*

* Result set of one application element.

*/

struct ElemResultSetExt {

 T_LONGLONG aid; // The application element Id.
 NameValueSeqUnitIdSequence values; // The attribute values of the

 // instances of the given

 // application element.

};

/*

* The extended query structure.

*/

struct QueryStructureExt {

 SelAIDNameUnitIdSequence anuSeq; // The sequence of attributes to be
 // reported. At the protocol level 3

 // this information was stored in

 // the fields applId and nuSeq of

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 951

OO-API

ASAM ODS VERSION 5.0 10-415

 // the structure GetValReq and the

 // request AOP_GetVal. At the

 // protocol level 3 interface only
 // one application element could be

 // selected. A pattern is accepted

 // for the attribute name.

 SelItemSequence condSeq; // The query condition sequence. At

 // the protocol level 3 this
 // information was stored in the

 // field nsSeq of the structure

 // GetValReq and the request

 // AOP_GetVal.

 JoinDefSequence joinSeq; // Defined the join between the
 // application elements.

 SelOrderSequence orderBy; // The order by sequence. The order

 // of the result set. At the

 // protocol level 3 interface it was

 // not possible to set the order.
 AIDNameSequence groupBy; // Defines the grouping attributes

 // for a request, necessary if

 // aggregate functions are defined

 // in the SelAIDNameUnitIdSequence.

};

// Sequence definitions (S_xxx).

typedef sequence<NameValue> NameValueSequence;

typedef sequence<NameValueUnit> NameValueUnitSequence;

typedef sequence<AttrResultSet> AttrResultSetSequence;
typedef sequence<ElemResultSetExt> ElemResultSetExtSequence;

/*

* The result set for one element. The result set for all

* elements are given in the sequence of the result set.
*/

struct ElemResultSet {

 T_LONGLONG aid; // The Id of the application

 // element.

 AttrResultSetSequence attrValues; // The selected attributes of the
 // element. The number of values in

 // each AttrResultSet are identical,

 // the attributes of one element has

 // always the position in the

 // AttrResultSet.
};

/*

ISO/PAS 22720:2005(E)

952 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-416 ASAM ODS VERSION 5.0

* The Result set of the extended query. The iterator is for

* instance oriented access.

*/
struct ResultSetExt {

 ElemResultSetExtSequence firstElems; // The sequence of the first

 // how_many result elements.

 ElemResultSetExtSeqIterator restElems; // the iterator, which allows

 // to iterate above the result
 // values, the attributes of

 // one instance each

 // iteration.

};

// Sequence definitions (S_xxx).

typedef sequence<ElemResultSet> ElemResultSetSequence;

typedef sequence<ResultSetExt> ResultSetExtSequence;

/*
* The ASAM ODS query result types.

*/

interface ResultType {

 const T_SHORT INSTELEM_ITERATOR_AS_RESULT = 0; // Iterator of instance
elements as result of the query (the default).
 const T_SHORT TABLE_ITERATOR_AS_RESULT = 1; // Iterator for table
access as result type of the query.

 const T_SHORT TABLE_AS_RESULT = 2; // Table as result type of
the query.

};

/*

* The lock mode of the server. The lock mode tells the way the

* server will lock the objects as soon a modification of the

* server will be done.
*/

interface LockMode {

 const T_SHORT LOCK_INSTANCEELEMENT = 0; // Lock the instance element.
(Default LockMode)

 const T_SHORT LOCK_APPLICATIONELEMENT = 1; // Lock the application
element, all instances of the application element are locked.

 const T_SHORT LOCK_CHILDREN = 2; // Lock the children of the
locked object. This mode can be combined with one of the upper two modi.

};

/*

* The bits of the security rights.

*/

interface SecurityRights {

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 953

OO-API

ASAM ODS VERSION 5.0 10-417

 const T_LONG SEC_READ = 1; // Read access is allowed.

 const T_LONG SEC_UPDATE = 2; // Update access to an existing object is
allowed.
 const T_LONG SEC_INSERT = 4; // Creating new instances is allowed.

 const T_LONG SEC_DELETE = 8; // Delete of the object is allowed.

 const T_LONG SEC_GRANT = 16; // Access rights may be passed on.

};

/*

* The security level of an application element.

*/

interface SecurityLevel {

 const T_LONG NO_SECURITY = 0; // No security defined.
 const T_LONG ELEMENT_SECURITY = 1; // Security scaled for the
application element.

 const T_LONG INSTANCE_SECURITY = 2; // Security scaled for instance
elements.

 const T_LONG ATTRIBUTE_SECURITY = 4; // Security scaled for appliation
attributes.

};

/*

* The ASAM ODS query constants.
*/

interface QueryConstants {

 const T_LONG MaxDurationDEFAULT = 0; // Default value of max duration
parameter of the query (no limitations).

 const T_STRING MaxDuration = "MaxDuration"; // The ASAM ODS max
duration parameter of the query.

 const T_STRING QueryResultType = "QueryResultType"; // The ASAM ODS
query result type parameter.

 const T_LONG QueryResultTypeDEFAULT =
ResultType::INSTELEM_ITERATOR_AS_RESULT; // Default value of the ASAM ODS
query result type parameter.

};

/*

* The ASAM ODS exception structure.
*/

exception AoException {

 ErrorCode errCode;

 SeverityFlag sevFlag;

 T_LONG minorCode;
 T_STRING reason;

};

/*

ISO/PAS 22720:2005(E)

954 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-418 ASAM ODS VERSION 5.0

* The ASAM factory interface.

*/

interface AoFactory {

 /* (2001)

 * Get the description of the ASAM ODS factory. If the

 * description is not available an empty string is returned

 * and no exception is thrown. The server loads the
 * description from the base attribute "description" of the

 * instance of AoEnvironment.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 *

 * @return The description of the ASAM ODS factory.
 */

 T_STRING getDescription()

 raises (AoException);

 /* (2002)
 * Get the interface version of the ASAM ODS factory. The

 * interface version is for each ODS version a fixed string.

 * The string for this version is 'OO-5.0'.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 *
 * @return The interface version of the ASAM ODS factory.

 */

 T_STRING getInterfaceVersion()

 raises (AoException);

 /* (2003)

 * Get the name of the ASAM ODS factory. If the name is not

 * available an empty string is returned and no exception is

 * thrown.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_IMPLEMENTATION_PROBLEM

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 955

OO-API

ASAM ODS VERSION 5.0 10-419

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 *
 * @return The name of the ASAM ODS factory.

 */

 T_STRING getName()

 raises (AoException);

 /* (2004)

 * Get the type of the ASAM ODS factory. If the type is not

 * available an empty string is returned and no exception is

 * thrown. The server loads the type from the base attribute

 * "Application_model_type" of the instance of AoEnvironment.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 *

 * @return The type of the ASAM ODS factory.

 */

 T_STRING getType()
 raises (AoException);

 /* (2005)

 * Establish a new session to an ASAM ODS server. The server

 * normally checks the activity of the session and will close
 * the session after a time period of inactivity.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECT_FAILED
 * AO_CONNECT_REFUSED

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_OPEN_MODE_NOT_SUPPORTED

 * AO_SESSION_LIMIT_REACHED

 *

 * @param auth A string that may contain authentication

 * information. The following values are
 * currently supported:

 * USER

 * PASSWORD

ISO/PAS 22720:2005(E)

956 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-420 ASAM ODS VERSION 5.0

 * OPENMODE

 * The values may be specified in any order and

 * have to be separated by comma.
 *

 * Example:

 * "USER=hans, PASSWORD=secret, OPENMODE=read"

 *

 * @return The new created ASAM ODS session.
 */

 AoSession newSession(

 in T_STRING auth)

 raises (AoException);

}; // Interface AoFactory.

/*

* The ASAM ODS session interface.

*/
interface AoSession {

 /* (3001)

 * Abort (rollback) a transaction. The changes made in the

 * transaction are lost.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_ACCESS_DENIED

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE
 */

 void abortTransaction()

 raises (AoException);

 /* (3002)
 * Close session to an ASAM ODS server. Active transactions

 * are committed.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 957

OO-API

ASAM ODS VERSION 5.0 10-421

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 */
 void close()

 raises (AoException);

 /* (3003)

 * Commit a transaction. The changes made in the transaction
 * become permanent.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_ACCESS_DENIED
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 */

 void commitTransaction()

 raises (AoException);

 /* (3004)

 * Get the application model from the current session.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_ACCESS_DENIED

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The application model.

 */

 ApplicationStructure getApplicationStructure()
 raises (AoException);

 /* (3005)

 * Get the application model as values from the current

 * session.
 *

 * @throws AoException

 * with the following possible error codes:

ISO/PAS 22720:2005(E)

958 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-422 ASAM ODS VERSION 5.0

 * AO_ACCESS_DENIED

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The application model as value.
 */

 ApplicationStructureValue getApplicationStructureValue()

 raises (AoException);

 /* (3006)
 * Get the ASAM ODS base model from the current session. The

 * complete base model is returned. This base model has all

 * possible base elements with all possible base attributes.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The base model.

 */

 BaseStructure getBaseStructure()
 raises (AoException);

 /* (3007)

 * Get context variables from the session. A pattern string

 * can be specified to select groups of variables.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_FOUND

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param varPattern The name or the search pattern for the

 * context variable(s).

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 959

OO-API

ASAM ODS VERSION 5.0 10-423

 *

 * @return A list of context variables.

 */
 NameValueIterator getContext(

 in Pattern varPattern)

 raises (AoException);

 /* (3008)
 * Get a context variable by its name from the session.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_FOUND

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param varName The name of the requested context

 * variable.

 *
 * @return The requested context variable.

 */

 NameValue getContextByName(

 in Name varName)

 raises (AoException);

 /* (3009)

 * List the names of context variables from the session. A

 * pattern string can be specified to select groups of

 * variables.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NOT_FOUND

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param varPattern The name or the search pattern for the

 * context variable(s).

ISO/PAS 22720:2005(E)

960 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-424 ASAM ODS VERSION 5.0

 *

 * @return A list of context variable names.

 */
 NameIterator listContext(

 in Pattern varPattern)

 raises (AoException);

 /* (3010)
 * Remove context variables from the session. A pattern

 * string can be specified to remove groups of variables.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NOT_FOUND
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param varPattern The name or the search pattern for the

 * context variable(s) to be removed.
 */

 void removeContext(

 in Pattern varPattern)

 raises (AoException);

 /* (3011)

 * Set/modify a known context variable or add a new context

 * variable to the session.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param contextVariable The context variable.

 */
 void setContext(

 in NameValue contextVariable)

 raises (AoException);

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 961

OO-API

ASAM ODS VERSION 5.0 10-425

 /* (3012)

 * Set/modify a known context variable or add a new context
 * variable to the session. This is a convienience method for

 * the frequently used string variable type. It uses

 * setContext internally.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param varName The name of the context variable.

 *
 * @param value The value of the context variable.

 */

 void setContextString(

 in Name varName,

 in T_STRING value)
 raises (AoException);

 /* (3013)

 * Start a transaction on the physical storage system (e.g.

 * database system). Only when a transaction is started it is
 * allowed to create or modify instances or measurement data.

 * The changes get permanent with a commit of the transaction

 * or will be lost with an abort of the transaction. If the

 * session is closed the transaction will be committed

 * automatically. If a transaction is already active an
 * exception is thrown.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_ACCESS_DENIED
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_ALREADY_ACTIVE

 */

 void startTransaction()

ISO/PAS 22720:2005(E)

962 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-426 ASAM ODS VERSION 5.0

 raises (AoException);

 /* (3014)
 * Make the changes permanent.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_ACCESS_DENIED
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 */

 void flush()

 raises (AoException);

 /* (3015)

 * Every new created instance will set its initial rights to

 * <acl> . This method overrides the default-methods for

 * applying initial rights. The initial rights are only valid

 * for the current session.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_ACCESS_DENIED

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param irlEntries The current initial rights.

 *

 * @param set Set (1) or remove (0) the current initial
 * rights. The previous initial rights get lost.

 * If the parameter set is 0 (remove) the

 * parameter irlEntries will be ignored.

 */

 void setCurrentInitialRights(
 in InitialRightSequence irlEntries,

 in T_BOOLEAN set)

 raises (AoException);

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 963

OO-API

ASAM ODS VERSION 5.0 10-427

 /* (3016)

 * Get the current lock mode. The lock mode tells the server
 * which objects to lock for upcoming changes. Application

 * elements, instance elements or children of elements can be

 * locked.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_ACCESS_DENIED

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *
 * @return The current lock mode. The lock mode constants

 * are defined in the interface LockMode. The

 * interface definition language IDL does not allow

 * to set the values of enumerations thus the

 * constant definitions had to be done in an
 * interface.

 */

 T_SHORT getLockMode()

 raises (AoException);

 /* (3017)

 * Set the new lock mode. The lock mode tells the server

 * which objects to lock for upcoming changes. Application

 * elements, instance elements or children of elements can be

 * locked.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_ACCESS_DENIED

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param lockMode The new lock mode. The lock mode

ISO/PAS 22720:2005(E)

964 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-428 ASAM ODS VERSION 5.0

 * constants are defined in the interface

 * LockMode. The interface definition

 * language IDL does not allow to set the
 * values of enumerations thus the constant

 * definitions had to be done in an

 * interface.

 */

 void setLockMode(
 in T_SHORT lockMode)

 raises (AoException);

 /* (3018)

 * Get the application element access object from the current
 * session.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_ACCESS_DENIED
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The application element access object.

 */

 ApplElemAccess getApplElemAccess()

 raises (AoException);

 /* (3019)

 * Change the password for user defined by <username> to

 * <newPassword>. A normal user must supply his current

 * password <oldPassword>. The superuser can change the
 * password without supplying the current password

 * <oldPassword>. If no username is given the password of the

 * user of te current session will be changed. The password

 * is normally encrypted in the attribute of the user

 * instance element. Creating a new user can be done by
 * creating a new instance, afterwards the password must be

 * set by the superuser.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_ACCESS_DENIED

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 965

OO-API

ASAM ODS VERSION 5.0 10-429

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 * AO_WRONG_PASSWORD

 *

 * @param username The name of the user for which the
 * password will be changed. If no username

 * is given the password of the current

 * user will be changed. If the username

 * differs from the current user the

 * current user must be a superuser.
 *

 * @param oldPassword The current password of the user. A

 * normal user must supply his current

 * password. The superuser can change

 * the password without supplying the
 * current password.

 *

 * @param newPassword The new password of the user.

 */

 void setPassword(
 in T_STRING username,

 in T_STRING oldPassword,

 in T_STRING newPassword)

 raises (AoException);

 /* (3020)

 * Get the description of the ASAM ODS session.The

 * description of the session is identical with description

 * of the ASAM ODS factory. If the description is not

 * available an empty string is returned and no exception is
 * thrown. The server loads the description from the base

 * attribute "description" of the instance of AoEnvironment.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_CONNECTION_LOST
 *

 * @return The description of the ASAM ODS session.

 */

ISO/PAS 22720:2005(E)

966 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-430 ASAM ODS VERSION 5.0

 T_STRING getDescription()

 raises (AoException);

 /* (3021)

 * Get the name of the ASAM ODS session. The name of the

 * session is identical with the name of the ASAM ODS

 * factory. If the name is not available an empty string is

 * returned and no exception is thrown. The server loads the
 * description from the base attribute "name" of the instance

 * of AoEnvironment.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_CONNECTION_LOST
 *

 * @return The name of the ASAM ODS session.

 */

 Name getName()

 raises (AoException);

 /* (3022)

 * Get the type of the ASAM ODS session. The type of the

 * session is identical with the type of the ASAM ODS

 * factory. If the type is not available an empty string is
 * returned and no exception is thrown. The server loads the

 * type from the base attribute "Application_model_type" of

 * the instance of AoEnvironment.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_CONNECTION_LOST

 *

 * @return The type of the ASAM ODS session.

 */

 T_STRING getType()
 raises (AoException);

 /* (3023)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 967

OO-API

ASAM ODS VERSION 5.0 10-431

 * Create a QueryEvaluator object.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_ACCESS_DENIED

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The new created query evaluator object
 */

 QueryEvaluator createQueryEvaluator()

 raises (AoException);

 /* (3024)
 * Create a new object with the Interface Blob on the server.

 * This object can be used to create an attribute value of

 * the datatype DT_BLOB.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The reference of the blob object which is

 * generated at the server.
 */

 Blob createBlob()

 raises (AoException);

}; // Interface AoSession.

/*

* The ASAM ODS application attribute interface.

*/

interface ApplicationAttribute {

 /* (4001)

 * Get the base attribute of the application attribute.

ISO/PAS 22720:2005(E)

968 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-432 ASAM ODS VERSION 5.0

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The base attribute of the application attribute.

 * A 'null' is returned if the application attribute

 * has no base attribute.

 */
 BaseAttribute getBaseAttribute()

 raises (AoException);

 /* (4002)

 * Get the data type of the application attribute.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The data type of the application attribute.
 */

 DataType getDataType()

 raises (AoException);

 /* (4003)
 * Get the maximum allowed length of the value of the

 * application attribute.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The maximum allowed length of the application

 * attribute.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 969

OO-API

ASAM ODS VERSION 5.0 10-433

 */

 T_LONG getLength()

 raises (AoException);

 /* (4004)

 * Get the name of the application attribute.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The name of the application attribute.

 */

 Name getName()
 raises (AoException);

 /* (4005)

 * Get the unit Id of the application attribute. The unit Id

 * is only valid for the current server.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The unit Id of the application attribute.
 */

 T_LONGLONG getUnit()

 raises (AoException);

 /* (4006)
 * Get the obligatory flag of the application attribute.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

ISO/PAS 22720:2005(E)

970 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-434 ASAM ODS VERSION 5.0

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The obligatory flag of the application attribute.
 */

 T_BOOLEAN isObligatory()

 raises (AoException);

 /* (4007)
 * Get the unique flag of the application attribute.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The unique flag of the application attribute.

 */

 T_BOOLEAN isUnique()

 raises (AoException);

 /* (4008)

 * Set the base attribute of the application attribute. This

 * allows the client to declare the application attribute

 * (new or existing) additional to a base attribute. The

 * application attribute will become the derived attribute of
 * the given base attribute.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *
 * The base attribute must be unique within the application

 * element otherwise the exception

 * AO_DUPLICATE_BASE_ATTRIBUTE is thrown.

 *

 * For performance and flexibility reasons this set-method
 * should be used before the new application attribute is

 * committed the first time.

 *

 * If this method is called before the first commit it will

 * not throw the following exceptions:
 * AO_INVALID_DATATYPE

 * AO_MISSING_VALUE

 * AO_NOT_UNIQUE.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 971

OO-API

ASAM ODS VERSION 5.0 10-435

 *

 * After the first commit, there may be instances of the

 * application attribute. These instances may cause the
 * following problems:

 *

 * AO_INVALID_DATATYPE: The datatype of the base attribute is

 * not the same as the datatype of the instanciated

 * attributes.
 *

 * AO_MISSING_VALUE: The obligatory flag of the base

 * attribute is set but there are one or more empty values in

 * the instances.

 *
 * AO_NOT_UNIQUE: The unique flag of the base attribute is

 * set but the values of the instances are not unique.

 *

 * The length, the name and the unit of the application

 * attribute are not affected by this call.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_DUPLICATE_BASE_ATTRIBUTE

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_DATATYPE

 * AO_MISSING_VALUE

 * AO_NOT_IMPLEMENTED
 * AO_NOT_UNIQUE

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param baseAttr The base attribute.
 */

 void setBaseAttribute(

 in BaseAttribute baseAttr)

 raises (AoException);

 /* (4009)

 * Set the data type of the application attribute.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.
 *

 * It is not allowed to set the datatype of application

 * attributes that represent base attributes. An attempt to

ISO/PAS 22720:2005(E)

972 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-436 ASAM ODS VERSION 5.0

 * set the datatype of such an application attribute will

 * result in the exception AO_IS_BASE_ATTRIBUTE.

 *
 * For performance and flexibility reasons this set-method

 * should be used before the new application attribute is

 * committed the first time.

 *

 * If this method is called before the first commit it will
 * not throw the following exception:

 * AO_INVALID_DATATYPE

 *

 * After the first commit, there may be instances of the

 * application attribute. These instances may cause the
 * following problem:

 *

 * AO_INVALID_DATATYPE: The datatype of the base attribute is

 * not the same as the datatype of the instanciated

 * attributes.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_HAS_BASE_ATTRIBUTE

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_DATATYPE

 * AO_IS_BASE_ATTRIBUTE

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param aaDataType The data type.

 */
 void setDataType(

 in DataType aaDataType)

 raises (AoException);

 /* (4010)
 * Set the obligatory flag of the application attribute.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *
 * It is not allowed to set the obligatory flag of

 * application attributes

 * that represent base attributes. An attempt to set the

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 973

OO-API

ASAM ODS VERSION 5.0 10-437

 * obligatory flag of such an application attribute will

 * result in the exception AO_IS_BASE_ATTRIBUTE.

 *
 * For performance and flexibility reasons this set-method

 * should be used before the new application attribute is

 * committed the first time.

 *

 * If this method is called before the first commit it will
 * not throw the following exception:

 * AO_MISSING_VALUE

 *

 * After the first commit, there may be instances of the

 * application attribute. These instances may cause the
 * following problem:

 *

 * AO_MISSING_VALUE: The obligatory flag of the base

 * attribute is set but there are one or more empty values in

 * the instances.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_HAS_BASE_ATTRIBUTE

 * AO_IMPLEMENTATION_PROBLEM

 * AO_IS_BASE_ATTRIBUTE

 * AO_MISSING_VALUE

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param aaIsObligatory The obligatory flag.

 */
 void setIsObligatory(

 in T_BOOLEAN aaIsObligatory)

 raises (AoException);

 /* (4011)
 * Set the unique flag of the application attribute.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *
 * The server will check if the values of the instance

 * attributes are unique. If this flag is set and the values

 * of an attribute are not unique when using the method

ISO/PAS 22720:2005(E)

974 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-438 ASAM ODS VERSION 5.0

 * setValue an exception is thrown. If instances of the

 * application element already exist that contain non-unique

 * values and the flag shall be set this method throws an
 * exception.

 *

 * It is not allowed to set the unique flag of application

 * attributes that represent base attributes. An attempt to

 * set the unique flag of such an application attribute will
 * result in the exception AO_IS_BASE_ATTRIBUTE.

 *

 * If the unique flag is set to TRUE the obligatory flag is

 * also set to TRUE. The previous values of both flag do not

 * matter in this case. Setting the unique flag to FALSE does
 * not affect the obligatory flag.

 *

 * For performance and flexibility reasons this set-method

 * should be used before the new application attribute is

 * committed the first time.
 *

 * If this method is called before the first commit it will

 * not throw the following exception:

 * AO_MISSING_VALUE

 * AO_NOT_UNIQUE
 *

 * After the first commit, there may be instances of the

 * application attribute. These instances may cause the

 * following problem:

 *
 * AO_MISSING_VALUE: The obligatory flag of the base

 * attribute is set but there are one or more empty values in

 * the instances.

 *

 * AO_NOT_UNIQUE: The unique flag of the base attribute is
 * set but the values of the instances are not unique.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_HAS_BASE_ATTRIBUTE

 * AO_IMPLEMENTATION_PROBLEM

 * AO_IS_BASE_ATTRIBUTE

 * AO_MISSING_VALUE
 * AO_NOT_IMPLEMENTED

 * AO_NOT_UNIQUE

 * AO_NO_MEMORY

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 975

OO-API

ASAM ODS VERSION 5.0 10-439

 * AO_SESSION_NOT_ACTIVE

 *

 * @param aaIsUnique The unique flag.
 */

 void setIsUnique(

 in T_BOOLEAN aaIsUnique)

 raises (AoException);

 /* (4012)

 * Set the maximum allowed length of the application

 * attribute.

 *

 * It is allowed to modify the object outside a transaction
 * but it is recommended to activate a transaction.

 *

 * This method is useful for ODS database design tools.

 * Negative length values are not allowed.

 *
 * This method provides only a hint to a database server in

 * the design phase which size the data entries may have. The

 * length is ignored for all other datatypes than DT_STRING

 * and DS_*.

 *
 * For performance and flexibility reasons this set-method

 * should be used before the new application attribute is

 * committed the first time.

 *

 * If this method is called before the first commit it will
 * not throw the following exception:

 * AO_HAS_INSTANCES

 *

 * After the first commit, there may be instances of the

 * application attribute. These instances may cause the
 * exception AO_HAS_INSTANCES if the instances of the

 * application attribute are not empty.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_HAS_INSTANCES

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_LENGTH
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

976 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-440 ASAM ODS VERSION 5.0

 *

 * @param aaLength The maximum attribute length.

 */
 void setLength(

 in T_LONG aaLength)

 raises (AoException);

 /* (4013)
 * Set the name of an application attribute.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *
 * The name must be unique.

 *

 * For performance and flexibility reasons this set-method

 * should be used before the new application attribute is

 * committed the first time.
 *

 * The name of an application attribute must not exceed the

 * maximum name length of the underlying physical storage.

 * The current specification of the physical storage restricts it to 30

 * characters.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_DUPLICATE_NAME

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param aaName The application attribute name.

 */

 void setName(

 in Name aaName)
 raises (AoException);

 /* (4014)

 * Set the unit Id of an application attribute.

 *
 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 977

OO-API

ASAM ODS VERSION 5.0 10-441

 * The unit Id is only valid for the current server. If

 * instances of the application attribute exist, the

 * respective values are automatically converted to the new
 * unit. If there is no known conversion an exception is

 * thrown.

 *

 * The automatic conversion can be avoided if the unit is set

 * to zero. After that the transaction must be committed. In
 * the next step the new unit may be set in another

 * transaction.

 *

 * The automatic conversion is done only for the following

 * datatypes:
 * DT_BYTE

 * DT_COMPLEX

 * DT_DCOMPLEX

 * DT_DOUBLE

 * DT_FLOAT
 * DT_LONG

 * DT_LONGLONG

 * DT_SHORT

 * as well as for the corresponding sequence datatypes. For

 * complex datatypes the real and imaginary part are
 * converted separately.

 *

 * If the unit of an attribute is set the unit is constant.

 * If the value of the attribute has another unit the value

 * is calibrated to the unit of the application attribute. If
 * there is no unit at the application attribute the unit at

 * the attribute value is stored and reported on request at

 * the instance.

 *

 * For performance and flexibility reasons this set-method
 * should be used before the new application attribute is

 * committed the first time.

 *

 * If this method is called before the first commit it will

 * not throw the following exceptions:
 * AO_INCOMPATIBLE_UNITS

 * AO_MATH_ERROR

 *

 * After the first commit, there may be instances of the

 * application attribute. These instances may cause the
 * following problems:

 *

 * AO_INCOMPATIBLE_UNITS: No conversion rules is known to

ISO/PAS 22720:2005(E)

978 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-442 ASAM ODS VERSION 5.0

 * convert the unit.

 *

 * AO_MATH_ERROR: Converting the values to the new unit
 * results in data overflow or underflow or a division by

 * zero is detected.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INCOMPATIBLE_UNITS

 * AO_MATH_ERROR
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_UNKNOWN_UNIT

 *
 * @param aaUnit The unit Id.

 */

 void setUnit(

 in T_LONGLONG aaUnit)

 raises (AoException);

 /* (4015)

 * The given usergroup the rights should be set for. <rights>

 * defines the rights to set or to clear. If the parameter

 * <set> is set to 'set', the rights in <rights> are set,
 * all others are cleared. If the parameter <set> is set to

 * 'add', the rights in <rights> are added to the existing

 * rights. If the parameter <set> is set to 'remove', the

 * rights in <rights> are removed from the existing rights.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *
 * @param usergroup The usergroup for which the rights will

 * be modified.

 *

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 979

OO-API

ASAM ODS VERSION 5.0 10-443

 * @param rights The new right for the usergroup. The

 * rights constants are defined in the

 * interface SecurityRights. The interface
 * definition language IDL does not allow to

 * set the values of enumerations thus the

 * constant definitions had to be done in an

 * interface.

 *
 * @param set What to do with the new right.

 */

 void setRights(

 in InstanceElement usergroup,

 in T_LONG rights,
 in RightsSet set)

 raises (AoException);

 /* (4016)

 * Retrieve access control list information of the given
 * object.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @return The access control list entries of the given

 * application element.

 */
 ACLSequence getRights()

 raises (AoException);

 /* (4017)

 * Return the application element to which the attribute
 * belongs.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

ISO/PAS 22720:2005(E)

980 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-444 ASAM ODS VERSION 5.0

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The application element of the attribute.

 */

 ApplicationElement getApplicationElement()

 raises (AoException);

 /* (4018)

 * Get the autogenerate flag of the application attribute.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The autogenerate flag of the application

 * attribute.

 */

 T_BOOLEAN isAutogenerated()
 raises (AoException);

 /* (4019)

 * Set the autogenerate flag of the application attribute.

 *
 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *

 * For performance and flexibility reasons this set-method

 * should be used before the new application attribute is
 * committed the first time.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_HAS_BASE_ATTRIBUTE

 * AO_IMPLEMENTATION_PROBLEM

 * AO_IS_BASE_ATTRIBUTE

 * AO_MISSING_VALUE
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 981

OO-API

ASAM ODS VERSION 5.0 10-445

 *

 * @param isAutogenerated The autogenerate flag.

 */
 void setIsAutogenerated(

 in T_BOOLEAN isAutogenerated)

 raises (AoException);

 /* (4020)
 * Get the definition of the enumeration.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @return The ASAM ODS enumeration.

 */

 EnumerationDefinition getEnumerationDefinition()
 raises (AoException);

 /* (4021)

 * Set the definition of the enumeration. This method

 * modifies the application model, only the superuser can use
 * this method.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 * AO_ACCESS_DENIED

 *

 * @param enumDef The new enumeration definition.

 */
 void setEnumerationDefinition(

 in EnumerationDefinition enumDef)

 raises (AoException);

ISO/PAS 22720:2005(E)

982 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-446 ASAM ODS VERSION 5.0

 /* (4022)

 * Has the attribute an unit. If this flag is set, all the
 * attributes of the instances derived from this attribute

 * will have an unit.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @return The flag if the attribute has an unit.

 */
 T_BOOLEAN hasUnit()

 raises (AoException);

 /* (4023)

 * Set whether the attribute will have a unit or not. A call to
 * the method setUnit() will automatically set the

 * withUnit(TRUE).

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param withUnit The flag; TRUE if the attribute will have a

 * unit.
 */

 void withUnit(

 in T_BOOLEAN withUnit)

 raises (AoException);

 /* (4024)

 * Has the attribute a value flag. If this flag is set, all

 * the attributes of the instances derived from this

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 983

OO-API

ASAM ODS VERSION 5.0 10-447

 * attribute will have a value flag. If this flag is not set

 * the flag in the TS_Value structure can be ignored.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *
 * @return The flag if the attribute has a value flag.

 */

 T_BOOLEAN hasValueFlag()

 raises (AoException);

 /* (4025)

 * Specifies whether the attribute will have a value flag or not. If

 * this flag isn't set the flag of the TS_Value will be

 * ignored by the server.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *
 * @param withValueFlag The flag; TRUE if the attribute will have a

 * value flag.

 */

 void withValueFlag(

 in T_BOOLEAN withValueFlag)
 raises (AoException);

}; // Interface ApplicationAttribute.

/*
* The ASAM ODS application element interface.

*/

interface ApplicationElement {

ISO/PAS 22720:2005(E)

984 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-448 ASAM ODS VERSION 5.0

 /* (5001)

 * Create a new application attribute on the server.
 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *

 * The properties of the new application attribute may be
 * changed via the set-methods of the ApplicationAttribute

 * interface.

 *

 * For performance reasons it is recommended to set all

 * required properties of an application attribute before it
 * is committed the first time. This avoids database

 * cross-checks for each attribute.

 *

 * The default properties of a new application attribute

 * are:
 * BaseAttribute NULL

 * DataType DT_UNKNOWN

 * IsObligatory 0

 * IsUnique 0

 * Length 0
 * Name "AUTOGEN"

 * Unit NULL

 *

 * If there are already instances of the application element

 * the values of the existing instances of the new attribute
 * are set to undefined (flag AO_VF_DEFINED is set to

 * zero).

 *

 * The exception AO_DUPLICATE_NAME name occurs if there is

 * already another application attribute with the name
 * "AUTOGEN".

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_DUPLICATE_NAME

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The new application attribute.

 */

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 985

OO-API

ASAM ODS VERSION 5.0 10-449

 ApplicationAttribute createAttribute()

 raises (AoException);

 /* (5002)

 * Create an instance of the application element.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.
 *

 * The instance gets permanent when the transaction is

 * committed. All attributes connected to the application

 * element are automatically created and connected to the

 * instance. The values of the attributes can be set by the
 * method setValue of the interface InstanceElement.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param ieName The instance name.

 *

 * @return The new instance.

 */
 InstanceElement createInstance(

 in Name ieName)

 raises (AoException);

 /* (5003)
 * Get a list of all related application elements connected

 * to this application element.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The related application elements.

 */

ISO/PAS 22720:2005(E)

986 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-450 ASAM ODS VERSION 5.0

 ApplicationElementSequence getAllRelatedElements()

 raises (AoException);

 /* (5004)

 * Get a list of all application relations connected to this

 * application element. The inverse relation of relations

 * connected to other application elements pointing to the

 * given application elements are not returned.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The application relations of the application
 * element.

 */

 ApplicationRelationSequence getAllRelations()

 raises (AoException);

 /* (5005)

 * Get the application attribute of an application element

 * which is inherited from the base attribute with the given

 * name. The base name is case insensitive and may not

 * contain wildcard characters.
 *

 * Note: The base model is case blind, e.g. Id, ID and id is

 * all the same base attribute.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param baName The base attribute name.

 *
 * @return The application attribute.

 */

 ApplicationAttribute getAttributeByBaseName(

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 987

OO-API

ASAM ODS VERSION 5.0 10-451

 in Name baName)

 raises (AoException);

 /* (5006)

 * Get the application attribute of an application element

 * which has the given name. The name is case sensitive and

 * may not contain wildcard characters.

 *
 * Note: The application model is case sensitive, eg Id and

 * ID are different application attributes, don't use this

 * misleading attribute name.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param aaName The application attribute name.

 *
 * @return The application attribute.

 */

 ApplicationAttribute getAttributeByName(

 in Name aaName)

 raises (AoException);

 /* (5007)

 * Get a list of the application attributes of an application

 * element. The reference attributes are not returned.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param aaPattern The name or the search pattern for the
 * application attribute name.

 *

 * @return The application attributes.

ISO/PAS 22720:2005(E)

988 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-452 ASAM ODS VERSION 5.0

 */

 ApplicationAttributeSequence getAttributes(

 in Pattern aaPattern)
 raises (AoException);

 /* (5008)

 * Get the base element of an application element.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The base element.

 */
 BaseElement getBaseElement()

 raises (AoException);

 /* (5009)

 * Get the Id of an application element.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The Id of the application element.
 */

 T_LONGLONG getId()

 raises (AoException);

 /* (5010)
 * Get the instance element specified by the given Id. If the

 * Id of the instance is not unique an exception is thrown.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 989

OO-API

ASAM ODS VERSION 5.0 10-453

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param ieId The instance element Id.

 *

 * @return The instance element.

 */
 InstanceElement getInstanceById(

 in T_LONGLONG ieId)

 raises (AoException);

 /* (5011)
 * Get the instance element specified by the given name. If

 * the name of the instance is not unique an exception is

 * thrown.

 *

 * This is a convienience method for instance elements with
 * unique names. If there are duplicate names for instance

 * use the method getInstances instead and specify the

 * requested name as pattern parameter.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_DUPLICATE_NAME

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param ieName The instance element name.
 *

 * @return The instance element.

 */

 InstanceElement getInstanceByName(

 in Name ieName)
 raises (AoException);

 /* (5012)

 * Get the instances whose names match the pattern. The

 * pattern is case sensitive and may contain wildcard
 * characters.

 *

 * @throws AoException

ISO/PAS 22720:2005(E)

990 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-454 ASAM ODS VERSION 5.0

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param iePattern The name or the search pattern for the

 * instance element name.

 *

 * @return The instance elements.

 */
 InstanceElementIterator getInstances(

 in Pattern iePattern)

 raises (AoException);

 /* (5013)
 * Get the name of an application element.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The name of the application element.

 */

 Name getName()

 raises (AoException);

 /* (5014)

 * Get related application elements connected via the

 * specified relationship.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_RELATIONSHIP
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 991

OO-API

ASAM ODS VERSION 5.0 10-455

 *

 * @param aeRelationship The requested relationship.

 *
 * @return The related application elements.

 */

 ApplicationElementSequence getRelatedElementsByRelationship(

 in Relationship aeRelationship)

 raises (AoException);

 /* (5015)

 * Get application relations of the requested type connected

 * from this application element. The inverse relations are

 * not returned.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_RELATION_TYPE

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param aeRelationType The requested relation type.

 *

 * @return The application relations.

 */
 ApplicationRelationSequence getRelationsByType(

 in RelationType aeRelationType)

 raises (AoException);

 /* (5016)
 * Get the names of all related application elements.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The names of the related application elements.

 */

 NameSequence listAllRelatedElements()

ISO/PAS 22720:2005(E)

992 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-456 ASAM ODS VERSION 5.0

 raises (AoException);

 /* (5017)
 * Get the application attribute names of the application

 * element. There are no attribute names returned in the

 * result list that contain a reference to another

 * application element.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param aaPattern The name or the search pattern for the
 * application attribute name.

 *

 * @return The names of the application attributes.

 */

 NameSequence listAttributes(
 in Pattern aaPattern)

 raises (AoException);

 /* (5018)

 * Get the names of the instances whose names match the
 * pattern. The pattern is case sensitive and may contain

 * wildcard characters.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param aaPattern The name or the search pattern for the

 * application attribute name.

 *
 * @return The names of the instances.

 */

 NameIterator listInstances(

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 993

OO-API

ASAM ODS VERSION 5.0 10-457

 in Pattern aaPattern)

 raises (AoException);

 /* (5019)

 * Get the names of related application elements connected

 * via the specified relationship.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_RELATIONSHIP
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param aeRelationship The requested relationship.
 *

 * @return The names of the related application elements.

 */

 NameSequence listRelatedElementsByRelationship(

 in Relationship aeRelationship)
 raises (AoException);

 /* (5020)

 * Remove an application attribute from an application

 * element. If there are instances of the application element
 * the attribute of the existing instances change from

 * application to instance attributes.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_FOUND

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param applAttr The application attribute to remove.

 */

ISO/PAS 22720:2005(E)

994 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-458 ASAM ODS VERSION 5.0

 void removeAttribute(

 in ApplicationAttribute applAttr)

 raises (AoException);

 /* (5021)

 * Remove an instance from the application element.

 *

 * It is allowed to modify the object outside a transaction
 * but it is recommended to activate a transaction.

 *

 * The instance is removed from the server when the

 * transaction is committed. If the recursive flag is set all

 * children of the instance are also deleted. Removing
 * instances is allowed only if there are no

 * references(relations) to this instance. If the recursive

 * flag is set a reference to one of the children is not

 * allowed and will cause an exception.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_HAS_REFERENCES
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_FOUND

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param ieId The instance Id.

 *

 * @param recursive The recursive flag.

 */
 void removeInstance(

 in T_LONGLONG ieId,

 in T_BOOLEAN recursive)

 raises (AoException);

 /* (5022)

 * Set the base element of the application element.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.
 *

 * The assignment to the current base element is overwritten.

 * If there are instances of the application element or

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 995

OO-API

ASAM ODS VERSION 5.0 10-459

 * references to the application element an exception is

 * thrown.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_HAS_INSTANCES
 * AO_HAS_REFERENCES

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param baseElem The base element.

 */

 void setBaseElement(

 in BaseElement baseElem)
 raises (AoException);

 /* (5023)

 * Set the name of the application element.

 *
 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *

 * The name of the application element must be unique.

 *
 * The name of an application element must not exceed the

 * maximum name length of the underlying physical storage.

 * The current physical storage specification restricts it to 30

 * characters.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_DUPLICATE_NAME
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param aeName The application element name.

 */

 void setName(

ISO/PAS 22720:2005(E)

996 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-460 ASAM ODS VERSION 5.0

 in Name aeName)

 raises (AoException);

 /* (5024)

 * The given usergroup the rights should be set for. <rights>

 * defines the rights to set or to clear. If the parameter

 * <set> is set to 'set', the rights in <rights> are set, all

 * others are cleared. If the parameter <set> is set to
 * 'add', the rights in <rights> are added to the existing

 * rights. If the parameter <set> is set to 'remove', the

 * rights in <rights> are removed from the existing rights.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param usergroup The usergroup for which the rights will
 * be modified.

 *

 * @param rights The new right for the usergroup. The

 * rights constants are defined in the

 * interface SecurityRights. The interface
 * definition language IDL does not allow to

 * set the values of enumerations thus the

 * constant definitions had to be done in an

 * interface.

 *
 * @param set What to do with the new right.

 */

 void setRights(

 in InstanceElement usergroup,

 in T_LONG rights,
 in RightsSet set)

 raises (AoException);

 /* (5025)

 * Retrieve access control list information of the given
 * object.

 *

 * @throws AoException

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 997

OO-API

ASAM ODS VERSION 5.0 10-461

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE
 *

 * @return The access control list entries of the given

 * application element.

 */

 ACLSequence getRights()
 raises (AoException);

 /* (5026)

 * Retrieve access control list information for the initial

 * rights of the given object.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE
 *

 * @return The access control list entries with the initial

 * rights of the given application element.

 */

 InitialRightSequence getInitialRights()
 raises (AoException);

 /* (5027)

 * The given usergroup the initial rights should be set for.

 * <rights> defines the rights to set or to clear. If the
 * parameter <set> is set to 'set', the rights in <rights>

 * are set, all others are cleared. If the parameter <set> is

 * set to 'add', the rights in <rights> are added to the

 * existing rights. If the parameter <set> is set to

 * 'remove', the rights in <rights> are removed from the
 * existing rights.

 *

 * @throws AoException

ISO/PAS 22720:2005(E)

998 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-462 ASAM ODS VERSION 5.0

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE
 *

 * @param usergroup The usergroup for which the initial

 * rights will be modified.

 *

 * @param rights The new initial rights for the
 * usergroup.The rights constants are defined

 * in the interface SecurityRights. The

 * interface definition language IDL does not

 * allow to set the values of enumerations

 * thus the constant definitions had to be
 * done in an interface.

 *

 * @param refAid The Id of referencing application element

 * for which the initial rights will be used.

 * If no refAid is set the initial rights
 * will be used for each new instance element

 * independent of the application element.

 *

 * @param set What to do with the new initial rights.

 */
 void setInitialRights(

 in InstanceElement usergroup,

 in T_LONG rights,

 in T_LONGLONG refAid,

 in RightsSet set)
 raises (AoException);

 /* (5028)

 * Set for the given application element, which relation will

 * be used to determine the initial rights for the new
 * created instances.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 999

OO-API

ASAM ODS VERSION 5.0 10-463

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE
 *

 * @param applRel The application relation which will be

 * used to determine the initial rights. The

 * relation range of the application

 * relation must be [1:1] otherwise the
 * server can not find a unique instance

 * element to retrieve the initial rights.

 *

 * @param set Set or remove the relation for the initial

 * rights. If this parameter is true the
 * relation will be set otherwise removed.

 */

 void setInitialRightRelation(

 in ApplicationRelation applRel,

 in T_BOOLEAN set)
 raises (AoException);

 /* (5029)

 * Get all relations which are used to retrieve the instances

 * to create the initial rights of the new created instance
 * element. If there are more then one application relation

 * the initial rights of each related instance are 'ored' to

 * the list of the initial rights.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @return The sequence with the application relations which
 * will be used to create the initial rights of the

 * new created instance element.

 */

 ApplicationRelationSequence getInitialRightRelations()

 raises (AoException);

 /* (5030)

 * Get the security level of the application element. The

ISO/PAS 22720:2005(E)

1000 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-464 ASAM ODS VERSION 5.0

 * security level tells if there is a security check for both

 * application element and instance elements or only for the

 * application attributes, the instance elements or none at
 * all.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @return The current security level. The security level

 * constants are defined in the interface

 * SecurityLevel. The interface definition language
 * IDL does not allow to set the values of

 * enumerations thus the constant definitions had to

 * be done in an interface.

 */

 T_LONG getSecurityLevel()
 raises (AoException);

 /* (5031)

 * Set the security level for the given application element.

 * If the security level is added the client is responsable
 * for the access control list entries of the existing

 * objects.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param secLevel The new security level.The security

 * level constants are defined in the
 * interface SecurityLevel. The interface

 * definition language IDL does not allow

 * to set the values of enumerations thus

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1001

OO-API

ASAM ODS VERSION 5.0 10-465

 * the constant definitions had to be done

 * in an interface.

 *
 * @param set What to do with the new security level.

 */

 void setSecurityLevel(

 in T_LONG secLevel,

 in RightsSet set)
 raises (AoException);

 /* (5032)

 * Get the application model to which the application

 * element belongs. The same application structure will be
 * returned as the object from the method

 * getApplicationStructure of the Interface AoSession. This

 * method guarantees that the client software is able to

 * return to the session without the session object is

 * available.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE
 *

 * @return The application model to which the

 * application element belongs.

 */

 ApplicationStructure getApplicationStructure()
 raises (AoException);

 /* (5033)

 * Create a list with instances. The attribute are given with

 * the name of the sequence. The values of the attributes are
 * given in the value sequence. The index in the different

 * value sequences match for one instance element. The index

 * in the instance element sequence of the related instances

 * match for the instance with the same index in the value

 * sequence.
 *

 * @throws AoException

 * with the following possible error codes:

ISO/PAS 22720:2005(E)

1002 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-466 ASAM ODS VERSION 5.0

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 * AO_INVALID_REQUEST
 *

 * @param attributes The attributes of the new created

 * instances.

 *

 * @param relatedInstances The list with related instances
 * for different application

 * relations.

 *

 * @return The list with the new created instances.

 */
 InstanceElementSequence createInstances(

 in NameValueSeqUnitSequence attributes,

 in ApplicationRelationInstanceElementSeqSequence relatedInstances)

 raises (AoException);

}; // Interface ApplicationElement.

/*

* The ASAM ODS application relation interface.

*/
interface ApplicationRelation {

 /* (6001)

 * Get the base relation of the application relation.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The base relation of the application relation. A

 * 'null' is returned if the application relation
 * has no base relation.

 */

 BaseRelation getBaseRelation()

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1003

OO-API

ASAM ODS VERSION 5.0 10-467

 raises (AoException);

 /* (6002)
 * Get the first application element of the application

 * relation.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The first application element of the application

 * relation.

 */

 ApplicationElement getElem1()
 raises (AoException);

 /* (6003)

 * Get the second application element of the application

 * relation.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The second application element of the application
 * relation.

 */

 ApplicationElement getElem2()

 raises (AoException);

 /* (6004)

 * Get the inverse relation range of the application

 * relation.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

ISO/PAS 22720:2005(E)

1004 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-468 ASAM ODS VERSION 5.0

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The inverse relation range of the application

 * relation.

 */

 RelationRange getInverseRelationRange()
 raises (AoException);

 /* (6005)

 * Get the inverse relationship of the application relation.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The inverse relationship of the application

 * relation.
 */

 Relationship getInverseRelationship()

 raises (AoException);

 /* (6006)
 * Get the name of the application relation.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The name of the application relation.

 */

 Name getRelationName()

 raises (AoException);

 /* (6007)

 * Get the relation range of the application relation.

 *

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1005

OO-API

ASAM ODS VERSION 5.0 10-469

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The relation range of the application relation.

 */

 RelationRange getRelationRange()

 raises (AoException);

 /* (6008)

 * Get the relationship of the application relation.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The relationship of the application relation.

 */

 Relationship getRelationship()

 raises (AoException);

 /* (6009)

 * Get the relation type of the application relation.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The relation type of the application relation.

 */

 RelationType getRelationType()
 raises (AoException);

 /* (6010)

ISO/PAS 22720:2005(E)

1006 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-470 ASAM ODS VERSION 5.0

 * Set the base relation of the application relation.

 *

 * It is allowed to modify the object outside a transaction
 * but it is recommended to activate a transaction.

 *

 * The relation type and relation range is copied from the

 * base relation. The previous values get lost.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_INVALID_RELATION

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param baseRel The base relation.

 */

 void setBaseRelation(

 in BaseRelation baseRel)

 raises (AoException);

 /* (6011)

 * Set the first application element of the application

 * relation.

 *
 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_ELEMENT

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param applElem The application element.

 */
 void setElem1(

 in ApplicationElement applElem)

 raises (AoException);

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1007

OO-API

ASAM ODS VERSION 5.0 10-471

 /* (6012)

 * Set the second application element of the application
 * relation.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_INVALID_ELEMENT

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param applElem The application element.

 */

 void setElem2(

 in ApplicationElement applElem)

 raises (AoException);

 /* (6013)

 * Set the relation range of an application relation.

 *

 * It is allowed to modify the object outside a transaction
 * but it is recommended to activate a transaction.

 *

 * It is only allowed to set the relation type if no base

 * relation is defined.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_HAS_BASE_RELATION
 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_RELATION_RANGE

 * AO_IS_BASE_RELATION

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param arRelationRange The inverse relation range.

ISO/PAS 22720:2005(E)

1008 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-472 ASAM ODS VERSION 5.0

 */

 void setInverseRelationRange(

 in RelationRange arRelationRange)
 raises (AoException);

 /* (6014)

 * Set the name of an application relation.

 *
 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *

 * The name of an application attribute must not exceed the

 * maximum name length of the underlying physical storage.
 * The current physical storage specification restricts it to 30

 * characters.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param arName The application relation name.

 */

 void setRelationName(
 in Name arName)

 raises (AoException);

 /* (6015)

 * Set the relation range of an application relation.
 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *

 * It is only allowed to set the relation type if no base
 * relation is defined.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_HAS_BASE_RELATION

 * AO_IMPLEMENTATION_PROBLEM

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1009

OO-API

ASAM ODS VERSION 5.0 10-473

 * AO_INVALID_RELATION_RANGE

 * AO_IS_BASE_RELATION

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param arRelationRange The relation range.

 */
 void setRelationRange(

 in RelationRange arRelationRange)

 raises (AoException);

 /* (6016)
 * Set the relation type of an application relation.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *
 * The relationship is automatically set when the relation

 * type is set. It is only allowed to set the relation type

 * if no base relation is defined.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_HAS_BASE_RELATION

 * AO_IMPLEMENTATION_PROBLEM
 * AO_INVALID_RELATION_TYPE

 * AO_IS_BASE_RELATION

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param arRelationType The relation type.

 */

 void setRelationType(

 in RelationType arRelationType)
 raises (AoException);

 /* (6017)

 * Get the inverse name of the application relation. The

 * inverse name of an application relation is the name of the
 * relation seen from the other application element.

 *

 * @throws AoException

ISO/PAS 22720:2005(E)

1010 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-474 ASAM ODS VERSION 5.0

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The inverse name of the application relation.
 */

 Name getInverseRelationName()

 raises (AoException);

 /* (6018)
 * Set the name of an application relation.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param arInvName The inverse application relation name.
 */

 void setInverseRelationName(

 in Name arInvName)

 raises (AoException);

}; // Interface ApplicationRelation.

/*

* The ASAM ODS application model interface.

*/
interface ApplicationStructure {

 /* (7001)

 * Check the application model for ASAM ODS conformity. The

 * first error found is reported by an exception. The
 * following checks are performed:

 *

 * - Each application element must be derived from a valid

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1011

OO-API

ASAM ODS VERSION 5.0 10-475

 * base element.

 * - An application attribute is derived from one base

 * attribute. It is not allowed to derive more than one
 * application attribute from the same base attribute. It is

 * allowed that application attributes are not derived from

 * any base attribute.

 * - All application elements must have at least the

 * mandatory attributes.
 * - Each application elements must be identified by a

 * unique Asam path. No "floating" application elements are

 * allowed.

 * - All relations required by the base model must be

 * present.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_DUPLICATE_BASE_ATTRIBUTE
 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_RELATION

 * AO_MISSING_ATTRIBUTE

 * AO_MISSING_RELATION

 * AO_MISSING_APPLICATION_ELEMENT
 * AO_NOT_IMPLEMENTED

 * AO_NO_PATH_TO_ELEMENT

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 */
 void check()

 raises (AoException);

 /* (7002)

 * Create a new application element in the application model.
 *

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *
 * The information whether or not the new application element

 * is a top level element is taken from the specified base

 * element. The Id of the application element is set

 * automatically. The mandatory base attributes are created

 * automatically. Optional attributes have to be created by
 * the calling program. The application attribute interface

 * methods may be used to modify the attributes.

 *

ISO/PAS 22720:2005(E)

1012 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-476 ASAM ODS VERSION 5.0

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param baseElem The base element from which the

 * application element is derived.

 *

 * @return The new application element.
 */

 ApplicationElement createElement(

 in BaseElement baseElem)

 raises (AoException);

 /* (7003)

 * Create a new relation.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.
 *

 * The relation is part of the application model. The

 * application relation interface methods may be used to

 * modify the relation.

 *
 * The default properties of a new application relation

 * are:

 * BaseRelation NULL

 * Element1 NULL

 * Element2 NULL
 * Range -2, -2

 * Name NULL

 * Type INFO

 * When element 1 or element 2 is set before the name of the

 * relation is specified, the name of the application
 * relation is set to "AUTOGEN".

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1013

OO-API

ASAM ODS VERSION 5.0 10-477

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The new application relation.
 */

 ApplicationRelation createRelation()

 raises (AoException);

 /* (7004)
 * Get the application element with the requested Id.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param aeId The Id of the requested application element.

 *

 * @return The requested application element.

 */
 ApplicationElement getElementById(

 in T_LONGLONG aeId)

 raises (AoException);

 /* (7005)
 * Get the application element with the requested name.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param aeName The name of the requested application

 * element.

 *

 * @return The requested application element.
 */

 ApplicationElement getElementByName(

 in Name aeName)

ISO/PAS 22720:2005(E)

1014 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-478 ASAM ODS VERSION 5.0

 raises (AoException);

 /* (7006)
 * Get the application elements whose names match the

 * pattern. The pattern is case sensitive and may contain

 * wildcard characters.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param aePattern The name or the search pattern for the

 * requested application elements.
 *

 * @return The requested application elements.

 */

 ApplicationElementSequence getElements(

 in Pattern aePattern)
 raises (AoException);

 /* (7007)

 * Get the names of application elements that are derived

 * from the specified base element.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_BASETYPE

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param aeType The requested base element type. The base

 * element type can be a pattern.

 *

 * @return The requested application element names.
 */

 ApplicationElementSequence getElementsByBaseType(

 in BaseType aeType)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1015

OO-API

ASAM ODS VERSION 5.0 10-479

 raises (AoException);

 /* (7008)
 * Get the instance element specified by the ASAM path.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_ASAM_PATH

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param asamPath The ASAM path of the requested instance

 * element.

 *
 * @return The requested instance element.

 */

 InstanceElement getInstanceByAsamPath(

 in Name asamPath)

 raises (AoException);

 /* (7009)

 * Returns the relations between two application elements.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param applElem1 The first application element.

 *
 * @param applElem2 The second application element.

 *

 * @return The relations between the specified application

 * elements.

 */
 ApplicationRelationSequence getRelations(

 in ApplicationElement applElem1,

 in ApplicationElement applElem2)

ISO/PAS 22720:2005(E)

1016 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-480 ASAM ODS VERSION 5.0

 raises (AoException);

 /* (7010)
 * Get the top level application elements which are inherted

 * from the base element that matches the base type. If the

 * given base type is no top level base element an exception

 * is thrown. A top level application element is an

 * application element without a father.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_BASETYPE

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param aeType The requested base type. The base element

 * type can be a pattern.

 *

 * @return The top level application elements.
 */

 ApplicationElementSequence getTopLevelElements(

 in BaseType aeType)

 raises (AoException);

 /* (7011)

 * Get the names of the application elements that match the

 * pattern. The pattern is case sensitive and may contain

 * wildcard characters.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param aePattern The name or the search pattern for the
 * requested base elements.

 *

 * @return The names of the application elements.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1017

OO-API

ASAM ODS VERSION 5.0 10-481

 */

 NameSequence listElements(

 in Pattern aePattern)
 raises (AoException);

 /* (7012)

 * Get the names of application elements that are derived

 * from the given base type.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_BASETYPE

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param aeType The requested base type. The base element

 * type can be a pattern.

 *

 * @return The names of the application elements.
 */

 NameSequence listElementsByBaseType(

 in BaseType aeType)

 raises (AoException);

 /* (7013)

 * Get the names of the top level application elements that

 * are derived from the given base type. If the given base

 * type is not a top level base element an exception is

 * thrown. A top level application element is an application
 * element without a father.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_BASETYPE

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param aeType The requested base type.

ISO/PAS 22720:2005(E)

1018 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-482 ASAM ODS VERSION 5.0

 *

 * @return The names of the application elements.

 */
 NameSequence listTopLevelElements(

 in BaseType aeType)

 raises (AoException);

 /* (7014)
 * Remove an application element from the application model.

 *

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.
 *

 * - Only allowed:

 * - if the application element is empty

 * (has no instances).

 * - no relations with other application elements.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_HAS_INSTANCES

 * AO_HAS_REFERENCES

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_FOUND

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param applElem The application element to be removed.

 */
 void removeElement(

 in ApplicationElement applElem)

 raises (AoException);

 /* (7015)
 * This method removes an application relation from the

 * application model.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.
 *

 * The elements of the relation are still part of the

 * application model. If there are instances of the relation

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1019

OO-API

ASAM ODS VERSION 5.0 10-483

 * they are also removed.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_HAS_INSTANCES

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_FOUND

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param applRel The application relation to be removed.

 */

 void removeRelation(

 in ApplicationRelation applRel)

 raises (AoException);

 /* (7016)

 * Get the instance elements specified by the element id.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_ASAM_PATH
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param ieIds The sequence with the element id.
 *

 * @return The requested instance element sequence.

 */

 InstanceElementSequence getInstancesById(

 in ElemIdSequence ieIds)
 raises (AoException);

 /* (7017)

 * Get the current client session in which the application

 * model is created.
 *

 * @throws AoException

 * with the following possible error codes:

ISO/PAS 22720:2005(E)

1020 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-484 ASAM ODS VERSION 5.0

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *
 * @return The current client session.

 */

 AoSession getSession()

 raises (AoException);

 /* (7018)

 * Create a new enumeration definition. This method modifies

 * the application model and is only allowed for the

 * superuser.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 * AO_ACCESS_DENIED
 *

 * @param enumName Name of the enumeration

 *

 * @return The new created enumeration

 */
 EnumerationDefinition createEnumerationDefinition(

 in T_STRING enumName)

 raises (AoException);

 /* (7019)
 * Remove the enumeration definition. The server checks if

 * the enumeration is still in use by one of the attributes.

 * This method modifies the application model and is only

 * allowed for the superuser.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1021

OO-API

ASAM ODS VERSION 5.0 10-485

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 * AO_ACCESS_DENIED

 *
 * @param enumName Name of the enumeration to remove.

 */

 void removeEnumerationDefinition(

 in T_STRING enumName)

 raises (AoException);

 /* (7020)

 * Get the list of all enumeration names.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @return List with all enumeration names.
 */

 NameSequence listEnumerations()

 raises (AoException);

 /* (7021)
 * Get the specified enumeration definition.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param enumName Name of the requested enumeration.

ISO/PAS 22720:2005(E)

1022 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-486 ASAM ODS VERSION 5.0

 *

 * @return The enumeration definition.

 */
 EnumerationDefinition getEnumerationDefinition(

 in T_STRING enumName)

 raises (AoException);

 /* (7022)
 * Create the relation between a list of instances. The

 * number of instances in both list must be identical. The

 * application element of the instances in each list must be

 * identical. The application elements must match the

 * application elements of the application relation. The
 * index in the list of the instances defines related

 * instances.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 * AO_INVALID_REQUEST

 *

 * @param applRel The application relation.
 *

 * @param elemList1 The list with the instances of one

 * application element for which the

 * relation will be created.

 *
 * @param elemList2 The list with the related instances.

 */

 void createInstanceRelations(

 in ApplicationRelation applRel,

 in InstanceElementSequence elemList1,
 in InstanceElementSequence elemList2)

 raises (AoException);

}; // Interface ApplicationStructure.

/*

* The ASAM ODS base attribute interface.

*/

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1023

OO-API

ASAM ODS VERSION 5.0 10-487

interface BaseAttribute {

 /* (8001)
 * Get the data type of the base attribute.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The data type of the base attribute.

 */

 DataType getDataType()

 raises (AoException);

 /* (8002)

 * Get the name of the base attribute.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The name of the base attribute.

 */

 Name getName()

 raises (AoException);

 /* (8003)

 * Get the obligatory flag of the base attribute.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The obligatory flag of the base attribute.

ISO/PAS 22720:2005(E)

1024 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-488 ASAM ODS VERSION 5.0

 */

 T_BOOLEAN isObligatory()

 raises (AoException);

 /* (8004)

 * Get the unique flag of the base attribute.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The unique flag of the base attribute.

 */

 T_BOOLEAN isUnique()
 raises (AoException);

 /* (8005)

 * Return the base element to which the attibute belongs..

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The base element of the attribute.
 */

 BaseElement getBaseElement()

 raises (AoException);

}; // Interface BaseAttribute.

/*

* The ASAM ODS base element interface.

*/

interface BaseElement {

 /* (9001)

 * Get all known relations of the base element.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1025

OO-API

ASAM ODS VERSION 5.0 10-489

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return All known relations of the base element.

 */

 BaseRelationSequence getAllRelations()

 raises (AoException);

 /* (9002)

 * Get attributes of the base element.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param baPattern The name or the search pattern for the

 * requested base attributes.
 *

 * @return The requested attributes of the base element.

 */

 BaseAttributeSequence getAttributes(

 in Pattern baPattern)
 raises (AoException);

 /* (9003)

 * Get the related elements of a base element defined by the

 * relationship.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_RELATIONSHIP

 * AO_NOT_IMPLEMENTED

ISO/PAS 22720:2005(E)

1026 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-490 ASAM ODS VERSION 5.0

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param brRelationship The requested relationship.

 *

 * @return The related elements of a base element.

 */

 BaseElementSequence getRelatedElementsByRelationship(
 in Relationship brRelationship)

 raises (AoException);

 /* (9004)

 * Get the base element's relations of the requested relation
 * type.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_RELATION_TYPE

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param brRelationType The requested relation type.

 *

 * @return The base element's relations of the requested
 * type.

 */

 BaseRelationSequence getRelationsByType(

 in RelationType brRelationType)

 raises (AoException);

 /* (9005)

 * Get the type of the base element. The type of the base

 * element is identical with the name of the base element.

 * The type of the base element is a string.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1027

OO-API

ASAM ODS VERSION 5.0 10-491

 *

 * @return The type of the base element.

 */
 BaseType getType()

 raises (AoException);

 /* (9006)

 * Get whether or not the base element is a top level
 * element. Top level elements are elements without a father.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return Boolean whether or not the base element is a top

 * level element.

 */

 T_BOOLEAN isTopLevel()

 raises (AoException);

 /* (9007)

 * Get attribute names of the base element.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param baPattern The name or the search pattern for the

 * requested base attribute names.
 *

 * @return The requested attribute names of the base

 * element.

 */

 NameSequence listAttributes(
 in Pattern baPattern)

 raises (AoException);

ISO/PAS 22720:2005(E)

1028 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-492 ASAM ODS VERSION 5.0

 /* (9008)

 * Get the related element names of the base element defined

 * by the relationship.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_RELATIONSHIP

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param brRelationship The requested relationship.

 *

 * @return The related element names of the base element.

 */
 BaseTypeSequence listRelatedElementsByRelationship(

 in Relationship brRelationship)

 raises (AoException);

}; // Interface BaseElement.

/*

* The ASAM ODS base relation interface.

*/

interface BaseRelation {

 /* (10001)

 * Get the first base element of the base relation.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The first base element of the base relation.

 */

 BaseElement getElem1()
 raises (AoException);

 /* (10002)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1029

OO-API

ASAM ODS VERSION 5.0 10-493

 * Get the second base element of the base relation.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The second base element of the base relation.

 */

 BaseElement getElem2()
 raises (AoException);

 /* (10003)

 * Get the inverse relation range of the base relation.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The inverse relation range of the base relation.

 */
 RelationRange getInverseRelationRange()

 raises (AoException);

 /* (10004)

 * Get the inverse relationship of the base relation.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The inverse relationship of the base relation.
 */

 Relationship getInverseRelationship()

 raises (AoException);

ISO/PAS 22720:2005(E)

1030 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-494 ASAM ODS VERSION 5.0

 /* (10005)

 * Get the relation name of the base relation.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The relation name of the base relation.
 */

 Name getRelationName()

 raises (AoException);

 /* (10006)
 * Get the relation range of the base relation.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The relation range of the base relation.

 */

 RelationRange getRelationRange()

 raises (AoException);

 /* (10007)

 * Get the relationship of the base relation.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The relationhip of the base relation.

 */

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1031

OO-API

ASAM ODS VERSION 5.0 10-495

 Relationship getRelationship()

 raises (AoException);

 /* (10008)

 * Get the relation type of the base relation.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The relation type of the base relation.

 */

 RelationType getRelationType()

 raises (AoException);

}; // Interface BaseRelation.

/*

* The ASAM ODS base model interface.
*/

interface BaseStructure {

 /* (11001)

 * Get the base element that matches the requested type. The
 * type of a base element is identical with the name of the

 * base element.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_BASETYPE

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param beType The name of the requested base element.

 *
 * @return The requested base element.

 */

 BaseElement getElementByType(

ISO/PAS 22720:2005(E)

1032 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-496 ASAM ODS VERSION 5.0

 in BaseType beType)

 raises (AoException);

 /* (11002)

 * Get the base elements that match the pattern. The pattern

 * is case sensitive and may contain wildcard characters.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param bePattern The name or the search pattern for the

 * requested base elements.
 *

 * @return The requested base elements.

 */

 BaseElementSequence getElements(

 in Pattern bePattern)
 raises (AoException);

 /* (11003)

 * Get the base relation between two base elements.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param elem1 The base element from which the relation
 * starts.

 *

 * @param elem2 The base element to which the relation

 * points.

 *
 * @return The base relation between the two base elements.

 */

 BaseRelation getRelation(

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1033

OO-API

ASAM ODS VERSION 5.0 10-497

 in BaseElement elem1,

 in BaseElement elem2)

 raises (AoException);

 /* (11004)

 * Get the top level base elements that match the pattern.

 * The pattern is case sensitive and may contain wildcard

 * characters. A top level base element is a base element
 * without a father.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param bePattern The name or the search pattern for the

 * requested top level base elements.

 *

 * @return The requested top level base elements.
 */

 BaseElementSequence getTopLevelElements(

 in Pattern bePattern)

 raises (AoException);

 /* (11005)

 * Get the version of the base model.The version of the base

 * model is the version of the ASAM ODS base model.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The version of the ASAM ODS base model.

 */

 T_STRING getVersion()
 raises (AoException);

 /* (11006)

ISO/PAS 22720:2005(E)

1034 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-498 ASAM ODS VERSION 5.0

 * Get the base element names that match the pattern. The

 * pattern is case sensitive and may contain wildcard

 * characters.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param bePattern The name or the search pattern for the

 * requested base element names.

 *

 * @return The requested base element names.

 */
 BaseTypeSequence listElements(

 in Pattern bePattern)

 raises (AoException);

 /* (11007)
 * Get the top level base element names that match the

 * pattern. The pattern is case sensitive and may contain

 * wildcard characters. A top level base element is a base

 * element without a father.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param bePattern The name or the search pattern for the
 * requested top level base element names.

 *

 * @return The requested top level base element names.

 */

 BaseTypeSequence listTopLevelElements(
 in Pattern bePattern)

 raises (AoException);

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1035

OO-API

ASAM ODS VERSION 5.0 10-499

}; // Interface BaseStructure.

/*
* The ASAM ODS blob interface.

*/

interface Blob {

 /* (12001)
 * Append a byte sequence to the binary large object.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param value The byte sequence.
 */

 void append(

 in S_BYTE value)

 raises (AoException);

 /* (12002)

 * Compares the content of the binary large object. The

 * headers are not compared.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param aBlob The blob to compare.

 *
 * @return A flag whether or not the compared blobs are

 * equal.

 */

ISO/PAS 22720:2005(E)

1036 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-500 ASAM ODS VERSION 5.0

 T_BOOLEAN compare(

 in T_BLOB aBlob)

 raises (AoException);

 /* (12003)

 * Get a part of the binary large object.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param offset The starting position of the data in the

 * blob.
 *

 * @param length The number of bytes requested from the

 * blob.

 *

 * @return The request part of the blob data.
 */

 S_BYTE get(

 in T_LONG offset,

 in T_LONG length)

 raises (AoException);

 /* (12004)

 * Get the header of the binary large object.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The blob header.

 */

 T_STRING getHeader()
 raises (AoException);

 /* (12005)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1037

OO-API

ASAM ODS VERSION 5.0 10-501

 * Get the length of the binary large object without loading

 * it.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The blob length.

 */
 T_LONG getLength()

 raises (AoException);

 /* (12006)

 * Clear the binary large object and set the new data.
 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param value The new blob data.

 */
 void set(

 in S_BYTE value)

 raises (AoException);

 /* (12007)
 * Set the header of a binary large object.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

ISO/PAS 22720:2005(E)

1038 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-502 ASAM ODS VERSION 5.0

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param header The blob header.

 */
 void setHeader(

 in T_STRING header)

 raises (AoException);

 /* (12008)
 * Destroy the object on the server. The destructor of the

 * client, so the server knows this object is not used

 * anymore by the client. Access to this object after the

 * destroy method will lead to an exception.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 */
 void destroy()

 raises (AoException);

}; // Interface Blob.

/*

* The ASAM ODS column interface. It is not inherited from

* InstanceElement. Via the method getColumn of the interface

* SubMatrix the column is accessed. The column is only used for

* read access. With the creation of instances at the
* application element of type AoLocalColumn and the relation to

* the instances of the application element of type AoSubMatrix

* a local column can be created. The column name is used for

* the SMatLink and the column is used to store a formula for

* the calculation of the values of the column. There is no
* definition of the formula language at the moment.

*/

interface Column {

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1039

OO-API

ASAM ODS VERSION 5.0 10-503

 /* (13001)

 * Get the formula of the column.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The formula of the column.
 */

 T_STRING getFormula()

 raises (AoException);

 /* (13002)
 * Get the name of the column.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The name of the column.

 */

 Name getName()

 raises (AoException);

 /* (13003)

 * Get the source measurement quantity.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The source measurement quantity.

 */

ISO/PAS 22720:2005(E)

1040 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-504 ASAM ODS VERSION 5.0

 InstanceElement getSourceMQ()

 raises (AoException);

 /* (13004)

 * Get the unit of the column.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The unit of the column.

 */

 T_STRING getUnit()

 raises (AoException);

 /* (13005)

 * Set the formula of the column.

 *

 * It is allowed to modify the object outside a transaction
 * but it is recommended to activate a transaction.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param formula The formula.

 */

 void setFormula(

 in T_STRING formula)
 raises (AoException);

 /* (13006)

 * Set the unit of the column. This is only a temporary

 * conversion unit when getting the data of a column. This
 * unit is not stored in the database. If a permanent storage

 * of the conversion unit is required the corresponding

 * measurement quantity needs to be changed.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1041

OO-API

ASAM ODS VERSION 5.0 10-505

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param unit The physical unit.

 */

 void setUnit(
 in T_STRING unit)

 raises (AoException);

 /* (13007)

 * Is the column an independent column
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The independent flag of the column.

 */

 T_BOOLEAN isIndependent()

 raises (AoException);

 /* (13008)

 * Is the column an scaling column

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return Tells if the column is a scaling column.

ISO/PAS 22720:2005(E)

1042 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-506 ASAM ODS VERSION 5.0

 */

 T_BOOLEAN isScaling()

 raises (AoException);

 /* (13009)

 * Set the column as an indepent column.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param independent The new value of the independent
 * flag.

 */

 void setIndependent(

 in T_BOOLEAN independent)

 raises (AoException);

 /* (13010)

 * Set the column to a scaling column.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param scaling The new value of the scaling flag.
 */

 void setScaling(

 in T_BOOLEAN scaling)

 raises (AoException);

 /* (13011)

 * Get the data type of the column.

 *

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1043

OO-API

ASAM ODS VERSION 5.0 10-507

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @return The data type of the column.

 */

 DataType getDataType()
 raises (AoException);

 /* (13012)

 * Destroy the object on the server. The destructor of the

 * client, so the server knows this object is not used anymore
 * by the client. Access to this object after the destroy

 * method will lead to an exception.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 */

 void destroy()

 raises (AoException);

}; // Interface Column.

/*

* The ASAM ODS instance element interface. It is allowed to
* modify the instances outside a transaction but recommended to

* activate a transaction before the instances are modified. The

* modifications to instances get permanent when the transaction

* is committed.

*/
interface InstanceElement {

 /* (14001)

ISO/PAS 22720:2005(E)

1044 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-508 ASAM ODS VERSION 5.0

 * Add an instance attribute to the instance. The instance

 * attribute is built as a Name/Value/Unit tuple on the

 * client. This method has to copy the data from the client
 * to the server. The name of the attribute must be unique.

 *

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param instAttr The instance attribute to be added.

 */

 void addInstanceAttribute(

 in NameValueUnit instAttr)

 raises (AoException);

 /* (14002)

 * Create a relation between the current and the given

 * instance. Check if the application elements of the

 * relation matches the application elements of the
 * instances.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_INVALID_RELATION

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param relation The application relation.

 *

 * @param instElem The instance element.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1045

OO-API

ASAM ODS VERSION 5.0 10-509

 */

 void createRelation(

 in ApplicationRelation relation,
 in InstanceElement instElem)

 raises (AoException);

 /* (14003)

 * Get the application element of the instance element.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The application element from which the instance
 * element is derived.

 */

 ApplicationElement getApplicationElement()

 raises (AoException);

 /* (14004)

 * Get the ASAM-Path of the instance element.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The ASAM path to the instance element.

 */

 Name getAsamPath()

 raises (AoException);

 /* (14005)

 * Get the Id of the instance element.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

ISO/PAS 22720:2005(E)

1046 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-510 ASAM ODS VERSION 5.0

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The Id of the instance element.

 */

 T_LONGLONG getId()

 raises (AoException);

 /* (14006)

 * Get the name of the instance element.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The name of the instance element.

 */

 Name getName()
 raises (AoException);

 /* (14007)

 * Get the related instances. The application relation and

 * the name of the related instances specify the listed
 * instances. The pattern is case sensitive and may contain

 * wildcard characters.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_RELATION

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param applRel The application relation.

 *
 * @param iePattern The name or the search pattern for the

 * related instance names.

 *

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1047

OO-API

ASAM ODS VERSION 5.0 10-511

 * @return The related instances.

 */

 InstanceElementIterator getRelatedInstances(
 in ApplicationRelation applRel,

 in Pattern iePattern)

 raises (AoException);

 /* (14008)
 * Get the list of related instances. The relationship and

 * the name of the related instances specify the listed

 * instances. The pattern is case sensitive and may contain

 * wildcard characters.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_INVALID_RELATIONSHIP

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param ieRelationship The requested relationship.

 *

 * @param iePattern The name or the search pattern for the

 * related instance names.

 *
 * @return The related instances.

 */

 InstanceElementIterator getRelatedInstancesByRelationship(

 in Relationship ieRelationship,

 in Pattern iePattern)
 raises (AoException);

 /* (14009)

 * Get the attribute value (name, value and unit) of the

 * given attribute of the instance element. This method will
 * not return the value of relation attributes, use the

 * method getRelatedInstances.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

ISO/PAS 22720:2005(E)

1048 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-512 ASAM ODS VERSION 5.0

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param attrName The name of the requested attribute.

 *

 * @return The attribute value.

 */
 NameValueUnit getValue(

 in Name attrName)

 raises (AoException);

 /* (14010)
 * Get the attribute value (value and unit) of the attribute

 * inherited from the given base attribute of the instance

 * element. The base name is case insensitive and may not

 * contain wildcard characters.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param baseAttrName The base name of the requested
 * attribute.

 *

 * @return The attribute value.

 */

 NameValueUnit getValueByBaseName(
 in Name baseAttrName)

 raises (AoException);

 /* (14011)

 * Get the attribute names from the instance element. The
 * attributes reserved for a relation are not listed.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_ATTRIBUTE_TYPE

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1049

OO-API

ASAM ODS VERSION 5.0 10-513

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param iaPattern The name or the search pattern for the

 * attribute names.

 *

 * @param aType The requested attribute type.
 *

 * @return The names of the attributes.

 */

 NameSequence listAttributes(

 in Pattern iaPattern,
 in AttrType aType)

 raises (AoException);

 /* (14012)

 * Get the names of the related instances. The application
 * relation and the name of the related instances specifies

 * the listed names. The pattern is case sensitive and may

 * contain wildcard characters.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param ieRelation The application relation.

 *
 * @param iePattern The name or the search pattern for the

 * related instance names.

 *

 * @return The names of the related instances.

 */
 NameIterator listRelatedInstances(

 in ApplicationRelation ieRelation,

 in Pattern iePattern)

 raises (AoException);

 /* (14013)

 * Get the names of the related instances. The relationship

 * and the name of the related instances specify the listed

ISO/PAS 22720:2005(E)

1050 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-514 ASAM ODS VERSION 5.0

 * names. The pattern is case sensitive and may contain

 * wildcard characters.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_INVALID_RELATIONSHIP

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param ieRelationship The requested relationship.

 *

 * @param iePattern The name or the search pattern for the

 * related instance names.

 *
 * @return The names of the related instances.

 */

 NameIterator listRelatedInstancesByRelationship(

 in Relationship ieRelationship,

 in Pattern iePattern)
 raises (AoException);

 /* (14014)

 * Remove an instance attribute.

 *
 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *

 * The application attributes can't be removed.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_FOUND

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param attrName The name of the attribute to be removed.

 */

 void removeInstanceAttribute(

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1051

OO-API

ASAM ODS VERSION 5.0 10-515

 in Name attrName)

 raises (AoException);

 /* (14015)

 * Remove the relation between the current instance and the

 * given instance. It is necessary to specify the instance

 * element in case of n:m relations if not all relations

 * shall be deleted.
 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_RELATION
 * AO_NOT_FOUND

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param applRel The relation to be removed.

 *

 * @param instElem_nm The instance element for specific

 * delete from n:m relations.

 */
 void removeRelation(

 in ApplicationRelation applRel,

 in InstanceElement instElem_nm)

 raises (AoException);

 /* (14016)

 * Rename the instance attribute. The application attributes

 * can't be renamed.

 *

 * It is allowed to modify the object outside a transaction
 * but it is recommended to activate a transaction.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_DUPLICATE_NAME

 * AO_IMPLEMENTATION_PROBLEM

ISO/PAS 22720:2005(E)

1052 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-516 ASAM ODS VERSION 5.0

 * AO_NOT_FOUND

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param oldName The old instance attribute name.

 *

 * @param newName The new instance attribute name.
 */

 void renameInstanceAttribute(

 in Name oldName,

 in Name newName)

 raises (AoException);

 /* (14017)

 * Set the name of an instance element.

 *

 * It is allowed to modify the object outside a transaction
 * but it is recommended to activate a transaction.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param iaName The instance attribute name.

 */

 void setName(

 in Name iaName)
 raises (AoException);

 /* (14018)

 * Set the value of an application or instance attribute.

 *
 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *

 * The name of the attribute is specified by the name of the

 * NameValueUnit tuple. If the application attribute flag
 * unique is set, the uniqueness of the new value is

 * checked.

 *

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1053

OO-API

ASAM ODS VERSION 5.0 10-517

 * This method can not be used to set the value of a relation

 * attribute, use the method createRelation.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_DUPLICATE_VALUE
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param value The value to be set in the instance

 * element.

 */

 void setValue(

 in NameValueUnit value)
 raises (AoException);

 /* (14019)

 * Cast an instance element to a measurement. There are some

 * object-oriented languages which do not allow this cast.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_INVALID_BASETYPE

 *
 * @return The instance of type measurement.

 */

 Measurement upcastMeasurement()

 raises (AoException);

 /* (14020)

 * Cast an instance element to a submatrix. There are some

 * object-oriented languages which do not allow this cast.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

ISO/PAS 22720:2005(E)

1054 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-518 ASAM ODS VERSION 5.0

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_INVALID_BASETYPE

 *

 * @return The instance of type submatrix.

 */

 SubMatrix upcastSubMatrix()
 raises (AoException);

 /* (14021)

 * Get the attribute value (name, value and unit) of the

 * given attribute of the instance element.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_INCOMPATIBLE_UNITS

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param attr The name of the requested attribute and the

 * unit of the attribute value.

 *

 * @return The attribute value, value converted to the
 * requested unit.

 */

 NameValueUnit getValueInUnit(

 in NameUnit attr)

 raises (AoException);

 /* (14022)

 * Set a sequences of values of an application or instance

 * attributes.

 *
 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *

 * The name of the attribute is specified by the name of the

 * NameValueUnit tuple. If the application attribute flag
 * unique is set, the uniqueness of the new value is checked.

 *

 * @throws AoException

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1055

OO-API

ASAM ODS VERSION 5.0 10-519

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_DUPLICATE_VALUE

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param values The sequence of the values to be set at

 * the instance element.

 */

 void setValueSeq(
 in NameValueUnitSequence values)

 raises (AoException);

 /* (14023)

 * The given usergroup the rights should be set for. <rights>
 * defines the rights to set or to clear. If the parameter

 * <set> is set to 'set', the rights in <rights> are set, all

 * others are cleared. If the parameter <set> is set to

 * 'add', the rights in <rights> are added to the existing

 * rights. If the parameter <set> is set to 'remove', the
 * rights in <rights> are removed from the existing rights.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param usergroup The usergroup for which the rights will

 * be modified.

 *
 * @param rights The new right for the usergroup. The

 * rights constants are defined in the

 * interface SecurityRights. The interface

 * definition language IDL does not allow to

 * set the values of enumerations thus the
 * constant definitions had to be done in an

 * interface.

 *

ISO/PAS 22720:2005(E)

1056 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-520 ASAM ODS VERSION 5.0

 * @param set What to do with the new right.

 */

 void setRights(
 in InstanceElement usergroup,

 in T_LONG rights,

 in RightsSet set)

 raises (AoException);

 /* (14024)

 * Retrieve access control list information of the given

 * object.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @return The access control list entries of the given
 * application element.

 */

 ACLSequence getRights()

 raises (AoException);

 /* (14025)

 * Retrieve access control list information for the initial

 * rights of the given object.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @return The access control list entries with the initial
 * rights of the given application element.

 */

 InitialRightSequence getInitialRights()

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1057

OO-API

ASAM ODS VERSION 5.0 10-521

 raises (AoException);

 /* (14026)
 * The given usergroup the initial rights should be set for.

 * <rights> defines the rights to set or to clear. If the

 * parameter <set> is set to 'set', the rights in <rights>

 * are set, all others are cleared. If the parameter <set> is

 * set to 'add', the rights in <rights> are added to the
 * existing rights. If the parameter <set> is set to

 * 'remove', the rights in <rights> are removed from the

 * existing rights.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param usergroup The usergroup for which the initial
 * rights will be modified.

 *

 * @param rights The new initial rights for the usergroup.

 * The rights constants are defined in the

 * interface SecurityRights. The interface
 * definition language IDL does not allow to

 * set the values of enumerations thus the

 * constant definitions have to be done in

 * the interface.

 *
 * @param refAid The Id of referencing application element

 * for which the initial rights will be used.

 * If no refAid is set the initial rights

 * will be used for each new instance element

 * independent of the application element.
 *

 * @param set What to do with the new initial rights.

 */

 void setInitialRights(

 in InstanceElement usergroup,
 in T_LONG rights,

 in T_LONGLONG refAid,

 in RightsSet set)

ISO/PAS 22720:2005(E)

1058 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-522 ASAM ODS VERSION 5.0

 raises (AoException);

 /* (14027)
 * Provides an easy-to-use and effective copy mechanismn for

 * instance elements inside the server. The new instance

 * elements gets a copy of all attribute values and

 * informational relations that are available in the original

 * instance element. The new instance element has the same
 * parent as the original instance element but it does not

 * have references to any children of the original instance

 * element.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param newName The name of the new instance element. If
 * a new version shall be created this

 * parameter may be NULL to use the same

 * name for the copy. In this case a new

 * version must be provided.

 *
 * @param newVersion The version of the new instance

 * element. This parameter may be NULL if

 * a new name is provided.

 *

 * @return The reference to the copied instance element.
 */

 InstanceElement shallowCopy(

 in T_STRING newName,

 in T_STRING newVersion)

 raises (AoException);

 /* (14028)

 * Provides an easy-to-use and effective copy mechanismn for

 * instance element hierarchies inside the server (e.g. copy

 * a project with all tests or copy a test with all
 * measurements). The deep copy follows only the child

 * references but not the informational references. Example:

 * Copying elements of type AoMeasurement does not include

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1059

OO-API

ASAM ODS VERSION 5.0 10-523

 * copying the referenced elements of type

 * AoMeasurementQuantity. The copied instance elements of

 * type AoMeasurement will reference the same measurement
 * quantities as the original. An application that wants to

 * copy the measurement quantity also must do this (including

 * setting the proper references) by itself e.g. with another

 * call to shallowCopy; deepCopy is not necessary in this

 * case because AoMeasurementQuantity has no children.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE
 *

 * @param newName The name of the new instance element. If

 * a new version shall be created this

 * parameter may be NULL to use the same

 * name for the copy. In this case a new
 * version must be provided.

 *

 * @param newVersion The version of the new instance

 * element. This parameter may be NULL if

 * a new name is provided.
 *

 * @return The reference to the copied instance element

 * hierarchy.

 */

 InstanceElement deepCopy(
 in T_STRING newName,

 in T_STRING newVersion)

 raises (AoException);

 /* (14029)
 * Get the sequence of the values of the application or

 * instance attributes, specified by their names. The name

 * sequence can use a pattern (*) for all attributes of the

 * instance element. This means that application as well as

 * instance attributes will be delivered.
 *

 * @throws AoException

 * with the following possible error codes:

ISO/PAS 22720:2005(E)

1060 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-524 ASAM ODS VERSION 5.0

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param attrNames The names of the attributes to be
 * reported.

 *

 * @return The sequence of the attribute values.

 */

 NameValueUnitSequence getValueSeq(
 in NameSequence attrNames)

 raises (AoException);

 /* (14030)

 * Destroy the object on the server. The destructor of the
 * client, so the server knows this object is not used anymore

 * by the client. Access to this object after the destroy

 * method will lead to an exception.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 */

 void destroy()
 raises (AoException);

 /* (14031)

 * Compare two instance elements. The Ids of the application

 * elements and the Ids of the instance elements are
 * compared. The Ids of the application element will be

 * compared first.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1061

OO-API

ASAM ODS VERSION 5.0 10-525

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param compIeObj The instance element to compare with.

 *

 * @return The difference of the Id's. Meaning:

 * diff < 0 ElemId of instance is smaller then
 * instance to compare with.

 * diff == 0 ElemId is identical.

 * diff > 0 ElemId of instance is greater then

 * instance to compare with.

 */
 T_LONGLONG compare(

 in InstanceElement compIeObj)

 raises (AoException);

 /* (14032)
 * Create a list with instances which are related to the

 * actual instance element. The attribute are given with the

 * name of the sequence. The values of the attributes are

 * given in the value sequence. The index in the different

 * value sequences match for one instance element. The index
 * in the instance element sequence of the related instances

 * match for the instance with the same index in the value

 * sequence.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 * AO_INVALID_REQUEST

 *
 * @param applRel The application relation for wich the

 * related instances will be created.

 *

 * @param attributes The attributes of the new created

 * instances.
 *

 * @param relatedInstances The list with related instances

 * for different application

ISO/PAS 22720:2005(E)

1062 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-526 ASAM ODS VERSION 5.0

 * relations.

 *

 * @return The list with the new created instances.
 */

 InstanceElementSequence createRelatedInstances(

 in ApplicationRelation applRel,

 in NameValueSeqUnitSequence attributes,

 in ApplicationRelationInstanceElementSeqSequence relatedInstances)
 raises (AoException);

}; // Interface InstanceElement.

/*
* The ASAM ODS instance element iterator interface.

*/

interface InstanceElementIterator {

 /* (15001)
 * Destroy the iterator and free the associated memory.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 */
 void destroy()

 raises (AoException);

 /* (15002)

 * Get the total number of elements accessible by the
 * iterator.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The number of elements accessible by the

 * iterator.

 */

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1063

OO-API

ASAM ODS VERSION 5.0 10-527

 T_LONG getCount()

 raises (AoException);

 /* (15003)

 * Get the next n elements from the sequence.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param how_many The number of requested elements.

 *

 * @return The next n instance elements from the instance
 * sequence.

 */

 InstanceElementSequence nextN(

 in T_LONG how_many)

 raises (AoException);

 /* (15004)

 * Get the next element from the sequence.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The next instance element from the instance

 * sequence.

 */
 InstanceElement nextOne()

 raises (AoException);

 /* (15005)

 * Reset the pointer in the element sequence to the first
 * element.

 *

 * @throws AoException

ISO/PAS 22720:2005(E)

1064 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-528 ASAM ODS VERSION 5.0

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 */

 void reset()
 raises (AoException);

}; // Interface InstanceElementIterator.

/*
* The ASAM ODS measurement interface.

*/

interface Measurement : InstanceElement {

 /* (16001)
 * Create a submatrix link. The submatrix link is only valid

 * in the current session. When the session is closed the

 * submatrix link will be destroyed.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The new submatrix link.

 */

 SMatLink createSMatLink()
 raises (AoException);

 /* (16002)

 * Get the list of the submatrix links .

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1065

OO-API

ASAM ODS VERSION 5.0 10-529

 * @return The available submatrix links.

 */

 SMatLinkSequence getSMatLinks()
 raises (AoException);

 /* (16003)

 * Get the value matrix of a measurement.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The value matrix.

 */
 ValueMatrix getValueMatrix()

 raises (AoException);

 /* (16004)

 * Remove a submatrix link.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_FOUND

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param smLink The submatrix link to be removed.

 */

 void removeSMatLink(

 in SMatLink smLink)
 raises (AoException);

}; // Interface Measurement.

/*
* The ASAM ODS name iterator interface.

*/

interface NameIterator {

ISO/PAS 22720:2005(E)

1066 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-530 ASAM ODS VERSION 5.0

 /* (17001)

 * Destroy the iterator and free the associated memory.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 */

 void destroy()
 raises (AoException);

 /* (17002)

 * Get the total number of elements accessible by the

 * iterator.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The number of elements accessible by the
 * iterator.

 */

 T_LONG getCount()

 raises (AoException);

 /* (17003)

 * Get the next n elements from the sequence.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param how_many The number of requested elements.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1067

OO-API

ASAM ODS VERSION 5.0 10-531

 *

 * @return The next n names from the name sequence.

 */
 NameSequence nextN(

 in T_LONG how_many)

 raises (AoException);

 /* (17004)
 * Get the next element from the sequence.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The next name from the name sequence.

 */

 Name nextOne()

 raises (AoException);

 /* (17005)

 * Reset the pointer in the element sequence to the first

 * element.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 */

 void reset()

 raises (AoException);

}; // Interface NameIterator.

/*

* The ASAM ODS name-value iterator interface.

*/
interface NameValueIterator {

 /* (18001)

ISO/PAS 22720:2005(E)

1068 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-532 ASAM ODS VERSION 5.0

 * Destroy the iterator and free the associated memory.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 */

 void destroy()

 raises (AoException);

 /* (18002)

 * Get the total number of elements accessible by the

 * iterator.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The number of elements accessible by the

 * iterator.

 */
 T_LONG getCount()

 raises (AoException);

 /* (18003)

 * Get the next n elements from the sequence.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param how_many The number of requested elements.

 *

 * @return The next n name-value pairs from the name-value

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1069

OO-API

ASAM ODS VERSION 5.0 10-533

 * pair sequence.

 */

 NameValueSequence nextN(
 in T_LONG how_many)

 raises (AoException);

 /* (18004)

 * Get the next element from the sequence.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The next name-value pair from the name-value pair
 * sequence.

 */

 NameValue nextOne()

 raises (AoException);

 /* (18005)

 * Reset the pointer in the element sequence to the first

 * element.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 */

 void reset()

 raises (AoException);

}; // Interface NameValueIterator.

/*

* The ASAM ODS name-value-unit iterator interface. This

* interface is identical with the NameValueUnitIdIterator,
* except the unit is given as a string insead of an Id.

*/

interface NameValueUnitIterator {

ISO/PAS 22720:2005(E)

1070 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-534 ASAM ODS VERSION 5.0

 /* (19001)

 * Destroy the iterator and free the associated memory.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 */

 void destroy()
 raises (AoException);

 /* (19002)

 * Get the total number of elements accessible by the

 * iterator.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The number of elements accessible by the
 * iterator.

 */

 T_LONG getCount()

 raises (AoException);

 /* (19003)

 * Get the next n elements from the sequence.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param how_many The number of requested elements.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1071

OO-API

ASAM ODS VERSION 5.0 10-535

 *

 * @return The next n name-value-unit tuples from the

 * name-value-unit tuple sequence.
 */

 NameValueUnitSequence nextN(

 in T_LONG how_many)

 raises (AoException);

 /* (19004)

 * Get the next element from the sequence.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The next name-value-unit tuple from the

 * name-value-unit tuple sequence.

 */

 NameValueUnit nextOne()
 raises (AoException);

 /* (19005)

 * Reset the pointer in the element sequence to the first

 * element.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 */

 void reset()
 raises (AoException);

}; // Interface NameValueUnitIterator.

/*
* The ASAM ODS submatrix link interface.

*/

interface SMatLink {

ISO/PAS 22720:2005(E)

1072 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-536 ASAM ODS VERSION 5.0

 /* (20001)

 * Get the link or build type.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The link type.
 */

 BuildUpFunction getLinkType()

 raises (AoException);

 /* (20002)
 * Get the ordinal or sequence number

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The sequence number.

 */

 T_LONG getOrdinalNumber()

 raises (AoException);

 /* (20003)

 * Get the first submatrix of the link.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The first submatrix of the link.

 */

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1073

OO-API

ASAM ODS VERSION 5.0 10-537

 SubMatrix getSMat1()

 raises (AoException);

 /* (20004)

 * Get the bind columns of the first submatrix used in the

 * link (e.g. Time).

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The columns of the first submatrix.

 */

 ColumnSequence getSMat1Columns()
 raises (AoException);

 /* (20005)

 * Get the second submatrix of the link.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The second submatrix of the link.

 */
 SubMatrix getSMat2()

 raises (AoException);

 /* (20006)

 * Get the bind columns of the second submatrix used in the
 * link (e.g. Time).

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

ISO/PAS 22720:2005(E)

1074 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-538 ASAM ODS VERSION 5.0

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The columns of the second submatrix.
 */

 ColumnSequence getSMat2Columns()

 raises (AoException);

 /* (20007)
 * Set the build or link type.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_BUILDUP_FUNCTION

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param linkType The requesed build-up function.

 */

 void setLinkType(
 in BuildUpFunction linkType)

 raises (AoException);

 /* (20008)

 * Set the ordinal or sequence number.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_ORDINALNUMBER

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param ordinalNumber The sequence number.

 */

 void setOrdinalNumber(

 in T_LONG ordinalNumber)
 raises (AoException);

 /* (20009)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1075

OO-API

ASAM ODS VERSION 5.0 10-539

 * Set the first submatrix of the link.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_SUBMATRIX
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param subMat1 The first submatrix of the submatrix
 * link.

 */

 void setSMat1(

 in SubMatrix subMat1)

 raises (AoException);

 /* (20010)

 * Set the bind columns of the first submatrix used in the

 * link (e.g. Time).

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_INVALID_COLUMN

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param columns The column sequence of the submatrix.

 */

 void setSMat1Columns(

 in ColumnSequence columns)

 raises (AoException);

 /* (20011)

 * Set the second submatrix of the link.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

ISO/PAS 22720:2005(E)

1076 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-540 ASAM ODS VERSION 5.0

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_INVALID_SUBMATRIX
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param subMat2 The second submatrix of the submatrix

 * link.
 */

 void setSMat2(

 in SubMatrix subMat2)

 raises (AoException);

 /* (20012)

 * Set the bind columns of the second submatrix used in the

 * link (e.g. Time). If there is more than one column bound

 * the column sequence must be identical with the column

 * sequence of the first submatrix.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_INVALID_COLUMN

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param columns The column sequence of the submatrix.

 */

 void setSMat2Columns(

 in ColumnSequence columns)
 raises (AoException);

}; // Interface SMatLink.

/*
* The ASAM ODS submatrix interface. The instances of the

* submatrix can be accessed via the method getRelatedInstances

* of the interface Measurement.

*/

interface SubMatrix : InstanceElement {

 /* (21001)

 * Get the columns of the submatrix. The column is not

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1077

OO-API

ASAM ODS VERSION 5.0 10-541

 * inherited from the InstanceElement interface. This is the

 * only way to get a column. The columns are used in the

 * SMatLink interface to build the value matrix. The pattern
 * is case sensitive and may contain wildcard characters.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param colPattern The name or the search pattern for the

 * column names.

 *

 * @return The columns of the submatrix.
 */

 ColumnSequence getColumns(

 in Pattern colPattern)

 raises (AoException);

 /* (21002)

 * Get a value matrix of the submatrix.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_SMATLINK

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The value matrix.

 */

 ValueMatrix getValueMatrix()
 raises (AoException);

 /* (21003)

 * Get the names of the columns of the submatrix. The name

 * sequence is identical with the names of the related
 * instances. The pattern is case sensitive and may contain

 * wildcard characters.

 *

ISO/PAS 22720:2005(E)

1078 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-542 ASAM ODS VERSION 5.0

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param colPattern The name or the search pattern for the

 * column names.

 *

 * @return The column names of the submatrix.
 */

 NameSequence listColumns(

 in Pattern colPattern)

 raises (AoException);

}; // Interface SubMatrix.

/*

* The ASAM ODS value matrix interface. Value matrix is an

* interface used by Measurement and SubMatrix to handle vectors
* of values.

*/

interface ValueMatrix {

 /* (22001)
 * Get the columns of the value matrix no matter whether the

 * column is dependent or independent. The pattern is case

 * sensitive and may contain wildcard characters.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param colPattern The name or the search pattern for the

 * column names.
 *

 * @return The columns of the value matrix, no matter

 * whether the column is dependent, independent or

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1079

OO-API

ASAM ODS VERSION 5.0 10-543

 * scaling

 */

 ColumnSequence getColumns(
 in Pattern colPattern)

 raises (AoException);

 /* (22002)

 * Get the column count of the value matrix.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The number of columns of the value matrix.
 */

 T_LONG getColumnCount()

 raises (AoException);

 /* (22003)
 * Get the independent columns of the value matrix. The

 * independent columns are the columns used to build the

 * value matrix.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param colPattern The name or the search pattern for the

 * independent column name.
 *

 * @return The independent column of the value matrix.

 */

 ColumnSequence getIndependentColumns(

 in Pattern colPattern)
 raises (AoException);

 /* (22004)

ISO/PAS 22720:2005(E)

1080 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-544 ASAM ODS VERSION 5.0

 * Get the row count of the value matrix.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The number of rows of the value matrix.

 */

 T_LONG getRowCount()
 raises (AoException);

 /* (22005)

 * Get a measurement point of the value matrix. The parameter

 * meaPoint specifies the row of the matrix. The iterator
 * allows to access all elements in the row.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param meaPoint The measurement point.

 *

 * @return The requested measurement point.

 */
 NameValueUnitIterator getValueMeaPoint(

 in T_LONG meaPoint)

 raises (AoException);

 /* (22006)
 * Get the values or a part of values of the column from the

 * value matrix. The parameter column specifies from which

 * column the values will be returned. The startPoint and

 * pointCount specify the part of the vector. A startPoint =

 * 0 and pointCount = rowCount will return the entire vector.
 * When startPoint >= rowCount an exception is thrown. If

 * startPoint + pointCount > rowCount only the remaining

 * values of the vector are returned and no exception is

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1081

OO-API

ASAM ODS VERSION 5.0 10-545

 * thrown. Use the getName and getUnit method of the

 * interface column for the name and the unit of the column.

 * The name and the value are not stored at each element of
 * the vector. The return type TS_ValueSeq is not a sequence

 * of TS_Value but a special structure.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_COLUMN

 * AO_INVLAID_COUNT
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param col The column to retrieve the values from.
 *

 * @param startPoint The starting point in the column.

 *

 * @param count The number of points to be retrieved.

 *
 * @return The requested column values of the value matrix.

 */

 TS_ValueSeq getValueVector(

 in Column col,

 in T_LONG startPoint,
 in T_LONG count)

 raises (AoException);

 /* (22007)

 * Get the names of the columns of the value matrix no matter
 * whether the column is dependent or independent. The

 * pattern is case sensitive and may contain wildcard

 * characters.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

ISO/PAS 22720:2005(E)

1082 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-546 ASAM ODS VERSION 5.0

 * @param colPattern The name or the search pattern for the

 * column names.

 *
 * @return The column names of the value matrix, no matter

 * whether the column is dependent, independent or

 * scaled by another one.

 */

 NameSequence listColumns(
 in Pattern colPattern)

 raises (AoException);

 /* (22008)

 * Get the names of the independent columns of the
 * value matrix. The independent columns are the columns used

 * to build the value matrix.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param colPattern The name or the search pattern for the

 * independent column name.

 *
 * @return The names of the independent columns of the value

 * matrix.

 */

 NameSequence listIndependentColumns(

 in Pattern colPattern)
 raises (AoException);

 /* (22009)

 * Remove the values of the columns at a given measurement

 * point. Remove the number of points of the given column. If
 * the count is 0 all points until the end of the column are

 * removed.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1083

OO-API

ASAM ODS VERSION 5.0 10-547

 * AO_INVALID_COUNT

 * AO_NOT_FOUND

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param columnNames The columns from which the

 * measurement points are to be removed.
 *

 * @param meaPoint The measurement point to be removed.

 *

 * @param count The number of points to be removed from

 * each column.
 */

 void removeValueMeaPoint(

 in NameSequence columnNames,

 in T_LONG meaPoint,

 in T_LONG count)
 raises (AoException);

 /* (22010)

 * Remove the values from a value vector. Beginning at

 * startPoint the number of values specified in count are
 * removed. If count is 0 all values from the startPoint

 * until the end of the vector are removed.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_COLUMN

 * AO_INVALID_COUNT
 * AO_NOT_FOUND

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param col The column from which the values are to be

 * removed.

 *

 * @param startPoint The starting point for the value

 * removal.
 *

 * @param count The number of points to be removed from the

 * column.

ISO/PAS 22720:2005(E)

1084 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-548 ASAM ODS VERSION 5.0

 */

 void removeValueVector(

 in Column col,
 in T_LONG startPoint,

 in T_LONG count)

 raises (AoException);

 /* (22011)
 * Create or modify a measurement point of a value matrix.

 * The sequence of name values specifies the names of the

 * column with the new values.

 * The meaning of the parameter setType is:

 *
 * INSERT Insert the values at meaPoint,

 * the current values at meaPoint

 * are moved to the end of

 * the new inserted values.

 *
 * APPEND The value of meaPoint is ignored,

 * the values are appended at the

 * end of the current values.

 *

 * UPDATE Update or modify the values at
 * meaPoint, the current values are

 * overwritten. If meaPoint is bigger

 * than the number of values in the

 * vector, the measurement point is

 * automatically appended.
 *

 * The names of the columns have to exist.

 *

 * When a client creates a ValueMatrix based on AoMeasurement

 * this methods behaves as follows:
 * The server checks the submatrices and creates all

 * necessary instances of AoSubmatrix, AoLocalColumn and

 * AoMeasurementQuantity. The values of the name attribute

 * of AoSubmatrix must be generated by the server. The value

 * will be equal to the value of the attribute ID (converted
 * to DT_STRING). Missing instances of AoMeasurementQuantity

 * will be created by the server, too.

 *

 * The mandatory attributes will get the following default

 * values:
 * Name supplied by client

 * Datatype copied from AoQuantity.default_datatype

 * Typesize copied from AoQuantity.default_typesize

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1085

OO-API

ASAM ODS VERSION 5.0 10-549

 * Interpolation no interpolation

 * Rank copied from AoQuantity.default_rank

 * Dimension copied from AoQuantity.default_dimension
 *

 * The server takes the value of the channel (supplied by

 * client) and looks up the corresponding instance in

 * AoQuantity using the attribute default_meq_name.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_IS_MEASUREMENT_MATRIX

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param set The set type.

 *

 * @param meaPoint The measurement point.

 *

 * @param value The values to be inserted.
 */

 void setValueMeaPoint(

 in SetType set,

 in T_LONG meaPoint,

 in NameValueSequence value)
 raises (AoException);

 /* (22012)

 * Create or modify a value vector in a value matrix.

 *
 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *

 * The data is made permanent on transaction commit. Until

 * the transaction is committed or until the access to the
 * measurement point of the value matrix, it is allowed to

 * have different number

 * of values in the different value vectors.

 *

 * The meaning of the parameter setType is:
 *

 * INSERT Insert the values from startPoint,

 * the current available values from

ISO/PAS 22720:2005(E)

1086 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-550 ASAM ODS VERSION 5.0

 * startPoint are moved to the end of

 * the new inserted values.

 *
 * APPEND The value of startPoint is ignored,

 * the values are appended at the end

 * of the current values.

 *

 * UPDATE Update or modify the values from
 * startPoint, the current values are

 * overwritten. If the number of values

 * in the parameter values is too big

 * the values are automatically

 * appended.
 *

 * When a client creates a ValueMatrix based on AoMeasurement

 * this methods behaves as follows:

 * The server checks the submatrices and creates all

 * necessary instances of AoSubmatrix, AoLocalColumn and
 * AoMeasurementQuantity. The values of the name attribute

 * of AoSubmatrix must be generated by the server. The value

 * will be equal to the value of the attribute ID (converted

 * to DT_STRING). Missing instances of AoMeasurementQuantity

 * will be created by the server,
 * too.

 *

 * The mandatory attributes will get the following default

 * values:

 * Name supplied by client
 * Datatype copied from AoQuantity.default_datatype

 * Typesize copied from AoQuantity.default_typesize

 * Interpolation no interpolation

 * Rank copied from AoQuantity.default_rank

 * Dimension copied from AoQuantity.default_dimension
 *

 * The server takes the value of the channel (supplied by

 * client) and looks up the corresponding instance in

 * AoQuantity using the attribute default_meq_name.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_INVALID_COLUMN

 * AO_INVALID_SET_TYPE

 * AO_IS_MEASUREMENT_MATRIX

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1087

OO-API

ASAM ODS VERSION 5.0 10-551

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param col The column whose values are to be set.

 *

 * @param set The set type.

 *
 * @param startPoint The starting point for the new values.

 *

 * @param value The values to be inserted.

 */

 void setValueVector(
 in Column col,

 in SetType set,

 in T_LONG startPoint,

 in TS_ValueSeq value)

 raises (AoException);

 /* (22013)

 * Create or modify a number of value vectors in a value

 * matrix.

 *
 * It is only allowed to create a value vector if the value

 * matrix is created from a submatrix.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.
 *

 * The data is made permanent on transaction commit. Until

 * the transaction is committed or until the access to the

 * measurement point of the value matrix it is allowed to

 * have different numbers of values in the different value
 * vectors.

 *

 * The names of the parameter values are the names of the

 * columns. The values are the new values of the column.

 * (setValueMeaPoint allows only one point, the TS_ValueSeq
 * allows more then one point) There is a sequence of name

 * value pairs (setValueVector allows only one column), so a

 * block of values can be modified.

 *

 * The meaning of the parameter setType is:
 *

 * INSERT Insert the values from startPoint,

 * the current available values from

ISO/PAS 22720:2005(E)

1088 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-552 ASAM ODS VERSION 5.0

 * startPoint are moved to the end of

 * the new inserted values.

 *
 * APPEND The value of startPoint is ignored,

 * the values are appended at the end

 * of the current values.

 *

 * UPDATE Update or modify the values from
 * startPoint, the current values are

 * overwritten. If the number of values

 * is greater than the number of values in the

 * vector, the measurement point is

 * automatically appended.
 *

 * REMOVE Remove the number of values from

 * each column, starting with startPoint.

 * The name of the column is given as the

 * name of the NameValueseqUnit, the
 * number of values to remove is given

 * in the number of the values in the

 * value.

 *

 * The names of the columns have to exist.
 *

 * When a client creates a ValueMatrix based on AoMeasurement

 * this methods behaves as follows:

 * The server checks the submatrices and creates all

 * necessary instances of AoSubmatrix, AoLocalColumn and
 * AoMeasurementQuantity. The values of the name attribute

 * of AoSubmatrix must be generated by the server. The value

 * will be equal to the value of the attribute ID (converted

 * to DT_STRING). Missing instances of AoMeasurementQuantity

 * will be created by the server, too.
 *

 * The mandatory attributes will get the following default

 * values:

 * Name supplied by client

 * Datatype copied from AoQuantity.default_datatype
 * Typesize copied from AoQuantity.default_typesize

 * Interpolation no interpolation

 * Rank copied from AoQuantity.default_rank

 * Dimension copied from AoQuantity.default_dimension

 *
 * The server takes the value of the channel (supplied by

 * client) and looks up the corresponding instance in

 * AoQuantity using the attribute default_meq_name.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1089

OO-API

ASAM ODS VERSION 5.0 10-553

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_COLUMN

 * AO_INVALID_SET_TYPE
 * AO_IS_MEASUREMENT_MATRIX

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param set The set type.

 *

 * @param startPoint The measurement point.

 *

 * @param value The values to be inserted.
 */

 void setValue(

 in SetType set,

 in T_LONG startPoint,

 in NameValueSeqUnitSequence value)
 raises (AoException);

 /* (22014)

 * Add a column to the value matrix. It is only allowed to

 * create a value vector if the value matrix is created from
 * a submatrix.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.

 *
 * The data is made permanent on transaction commit. Until

 * the transaction is committed or until the access to the

 * measurement point of the value matrix it is allowed to

 * have different number of values in the different value

 * vectors. After the new column is added, it is possible to
 * set the values of the column.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_NAME

ISO/PAS 22720:2005(E)

1090 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-554 ASAM ODS VERSION 5.0

 * AO_INVALID_SET_TYPE

 * AO_IS_MEASUREMENT_MATRIX

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param newColumn The name and unit of the column to add.

 *
 * @return The new column.

 */

 Column addColumn(

 in NameUnit newColumn)

 raises (AoException);

 /* (22015)

 * Get the names of the scaling columns of the value matrix.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param colPattern The name or the search pattern for the

 * scaling column name.
 *

 * @return The names of the scaling columns of the value

 * matrix.

 */

 NameSequence listScalingColumns(
 in Pattern colPattern)

 raises (AoException);

 /* (22016)

 * Get the scaling column of the value matrix.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1091

OO-API

ASAM ODS VERSION 5.0 10-555

 * AO_SESSION_NOT_ACTIVE

 *

 * @param colPattern The name or the search pattern for the
 * scaling column name.

 *

 * @return The scaling columns of the value matrix.

 */

 ColumnSequence getScalingColumns(
 in Pattern colPattern)

 raises (AoException);

 /* (22017)

 * List the names of the columns, which are scaled by the
 * given column.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_NO_SCALING_COLUMN

 *

 * @param scalingColumn The scaling column.

 *

 * @return The names of the columns which are scaled by the
 * given input column.

 */

 NameSequence listColumnsScaledBy(

 in Column scalingColumn)

 raises (AoException);

 /* (22018)

 * Get the columns which are scaled by the given column.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_NO_SCALING_COLUMN

ISO/PAS 22720:2005(E)

1092 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-556 ASAM ODS VERSION 5.0

 *

 * @param scalingColumn The scaling column.

 *
 * @return The columns which are scaled by the given input

 * column.

 */

 ColumnSequence getColumnsScaledBy(

 in Column scalingColumn)
 raises (AoException);

 /* (22019)

 * Add a column to the value matrix. It is only allowed to

 * create a value vector if the value matrix is created from
 * a submatrix. The column will be scaled by the given

 * scaling column.

 *

 * It is allowed to modify the object outside a transaction

 * but it is recommended to activate a transaction.
 *

 * The data is made permanent on transaction commit. Until

 * the transaction is committed or until the access to the

 * measurement point of the value matrix it is allowed to

 * have different number of values in the different value
 * vectors. After the new column is added, it is possible to

 * set the values of the column.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_INVALID_NAME

 * AO_INVALID_SET_TYPE
 * AO_IS_MEASUREMENT_MATRIX

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_NO_SCALING_COLUMN
 *

 * @param newColumn The name and unit of the column to add.

 *

 * @param scalingColumn The scaling column.

 *
 * @return The new column.

 */

 Column addColumnScaledBy(

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1093

OO-API

ASAM ODS VERSION 5.0 10-557

 in NameUnit newColumn,

 in Column scalingColumn)

 raises (AoException);

 /* (22020)

 * Destroy the object on the server. The destructor of the

 * client, so the server knows this object is not used

 * anymore by the client. Access to this object after the
 * destroy method will lead to an exception.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 */

 void destroy()

 raises (AoException);

 /* (22021)

 * Get the values of different columns of the value matrix.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param columns The requested columns.

 *

 * @param startPoint The starting point in the column.
 *

 * @param count The number of points to be retrieved. 0

 * mean until end of column.

 *

 * @return The values of the different columns. The name of
 * the return structure corresponds with the name of

 * the column. The unit corresponds with the unit of

 * the column. The order of the resulst might not

ISO/PAS 22720:2005(E)

1094 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-558 ASAM ODS VERSION 5.0

 * match the order in the requested sequence.

 */

 NameValueSeqUnitSequence getValue(
 in ColumnSequence columns,

 in T_LONG startPoint,

 in T_LONG count)

 raises (AoException);

}; // Interface ValueMatrix.

/*

* The ASAM ODS name-value-unitId iterator interface. This

* interface is identical with the NameValueUnitIterator, except
* the unit is given as an Id insead of a string.

*/

interface NameValueUnitIdIterator {

 /* (23001)
 * Destroy the iterator and free the associated memory.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 */
 void destroy()

 raises (AoException);

 /* (23002)

 * Get the total number of elements accessible by the
 * iterator.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The number of elements accessible by the

 * iterator.

 */

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1095

OO-API

ASAM ODS VERSION 5.0 10-559

 T_LONG getCount()

 raises (AoException);

 /* (23003)

 * Get the next n elements from the sequence.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param how_many The number of requested elements.

 *

 * @return The next n name-value-unit tuples from the
 * name-value-unit tuple sequence.

 */

 NameValueSeqUnitId nextN(

 in T_LONG how_many)

 raises (AoException);

 /* (23004)

 * Get the next element from the sequence.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The next name-value-unitId tuple from the

 * name-value-unitId tuple sequence.

 */
 NameValueUnitId nextOne()

 raises (AoException);

 /* (23005)

 * Reset the pointer in the element sequence to the first
 * element.

 *

 * @throws AoException

ISO/PAS 22720:2005(E)

1096 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-560 ASAM ODS VERSION 5.0

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 */

 void reset()
 raises (AoException);

}; // Interface NameValueUnitIdIterator.

/*
* The application element access. The ApplElemAccess interface

* (Protocol level 3: GetVal, PutVal, GetInstRef, ...) is

* responsible to retrieve instances of application elements.

* Currently available query methods are:

* - query with attribute and value
* - query with attribute and values (not)in set

* - sorted results

* - grouped results including having condition

*/

interface ApplElemAccess {

 /* (24001)

 * Perform the Query.

 *

 * The number of different application elements which are
 * requested are exactly defined by the definition of the

 * query given in the field anuSeq of the QueryStructure. The

 * number of attributes for each application element is also

 * given in the definition. The number of matching instances

 * (their attributes) is not defined by the query and can be
 * a large amount. Therefore only one iterator for the

 * attribute values are defined.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param aoq The query definition.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1097

OO-API

ASAM ODS VERSION 5.0 10-561

 *

 * @param how_many Maximum number of values in each result

 * set. Valid arguments are:
 * how_many = 0 : report all found values,

 * how_many > 0 : report a maximum number

 * of values.

 *

 * @return The result set with the requested attribute
 * values.

 */

 ElemResultSetSequence getInstances(

 in QueryStructure aoq,

 in T_LONG how_many)
 raises (AoException);

 /* (24002)

 * Get related instances (Id). This method returns a sequence

 * of related instances.
 *

 * The relation name specifies the relation given in the

 * ApplStructValue. The aid of the ElemId and the relName

 * defines the unique relation and the target application

 * element.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param elem Original instance. At the protocol level 3

 * this information was stored in the field

 * elemId of the structure GetInstRefReq and

 * the request AOP_GetInstRef.

 *
 * @param relName The relation name. At the protocol level

 * 3 this information was stored in the

 * field refName of the structure

 * GetInstRefReq and the request

 * AOP_GetInstRef.
 *

 * @return The list of the Id of the related instances.

 */

ISO/PAS 22720:2005(E)

1098 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-562 ASAM ODS VERSION 5.0

 S_LONGLONG getRelInst(

 in ElemId elem,

 in Name relName)
 raises (AoException);

 /* (24003)

 * Set the instance reference.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *
 * @param elem The instance to add the related instances.

 * At the protocol level 3 this information was

 * stored in the field elemId1 of the structure

 * SetInstRefReq and the request

 * AOP_SetInstRef.
 *

 * @param relName The name of relation. At the protocol

 * level 3 this information was stored in

 * the field refName of the structure

 * SetInstRefReq and the request
 * AOP_SetInstRef.

 *

 * @param instIds Sequence of instance id's. At the

 * protocol level 3 this information was

 * stored in the field elemId2 of the
 * structure SetInstRefReq and the request

 * AOP_SetInstRef. It was not possiable to

 * set more then one relation.

 *

 * @param type The type of the modification, insert, update
 * or remove. At the protocol level 3 this

 * information was stored in the field onoff of

 * the structure SetInstRefReq and the request

 * AOP_SetInstRef.

 */
 void setRelInst(

 in ElemId elem,

 in Name relName,

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1099

OO-API

ASAM ODS VERSION 5.0 10-563

 in S_LONGLONG instIds,

 in SetType type)

 raises (AoException);

 /* (24004)

 * Create instance elements of an application element.

 * The application element is specified by the AID of input

 * structure.
 * The attribute names are specified by the name of the input

 * structure.

 * The values of one instance element are specified in the

 * valueseq of the input structure.

 * You can create several instance elements in one call by
 * filling the valueseq of the input structure.

 * The same index in the valueseq corresponds to the

 * attributes values of one instance element. This method

 * returns a sequence of Id's, the order is related to the

 * order of instance element specified in the input
 * structure. In case of inheritance, the method supports

 * only instances of same subtype per call. The returned Id's

 * are the Id's of the related supertype instances.

 *

 * The client must supply all mandatory attributes and
 * references within one single method call; otherwise the

 * object cannot be made persistent by the server in the

 * database without the risk of violating any database

 * constraint.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *
 * @param val The sequence of attributes and their values.

 * At the protocol level 3 this information was

 * stored in the fields elemId and nvSeq of the

 * structure PutValReq and the request

 * AOP_PutValReq.
 *

 * @return List with the Ids of the new created instances.

 */

ISO/PAS 22720:2005(E)

1100 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-564 ASAM ODS VERSION 5.0

 ElemIdSequence insertInstances(

 in AIDNameValueSeqUnitIdSequence val)

 raises (AoException);

 /* (24005)

 * Update the one or more attributes of one or more instance

 * elements. It is necessary that the input structure includes

 * also the Id attribute, the Id attribute will be used to
 * select the instance elements. In case of inherited

 * application elements the supertype Id has to be included.

 * The values of one instance element are specified in the

 * valueseq of the input structure.

 * The same index in the valueseq corresponds to the
 * attributes values of one instance element.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param val The sequence of attributes and their values.

 * At least one of the attribute values sequence

 * must be a sequence with the Id. At the
 * protocol level 3 this information was stored

 * in the fields elemId and nvSeq of the

 * structure PutValReq and the request

 * AOP_PutValReq.

 */
 void updateInstances(

 in AIDNameValueSeqUnitIdSequence val)

 raises (AoException);

 /* (24006)
 * Delete instances from an application element. In case of

 * inherited application elements the Id of the supertype has

 * to be specified.

 *

 * This method can be used to delete several instances of the
 * same application element, the method removeInstances

 * remove one instance of an application element with the

 * children of the instance element.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1101

OO-API

ASAM ODS VERSION 5.0 10-565

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param aid The application element Id.

 *
 * @param instIds The sequence of instance Id's. At the

 * protocol level 3 this information was

 * stored in the fields elemId and nvSeq of

 * the structure PutValReq and the request

 * AOP_PutValReq.
 */

 void deleteInstances(

 in T_LONGLONG aid,

 in S_LONGLONG instIds)

 raises (AoException);

 /* (24007)

 * Get the value matrix of a measurement or a submatrix. If

 * the value matrix will be built up with special submatrix

 * link, use the interface Measument.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_INVALID_BASETYPE
 *

 * @param elem The element id. The aid has to be the

 * appliction element Id of the measurment or

 * submatrix.

 *
 * @return The value matrix

 */

 ValueMatrix getValueMatrix(

ISO/PAS 22720:2005(E)

1102 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-566 ASAM ODS VERSION 5.0

 in ElemId elem)

 raises (AoException);

 /* (24008)

 * Set the ACL information on some application

 * element-attribute defined by <aid> and <attr_name>. The

 * <usergroup_id> defines the usergroup the rights should be

 * set for. <rights> defines the rights to set or to clear.
 * If the parameter <set> is set to 'set', the rights in

 * <rights> are set, all others are cleared. If the parameter

 * <set> is set to 'add', the rights in <rights> are added to

 * the existing rights. If the parameter <set> is set to

 * 'remove', the rights in <rights> are removed from the
 * existing rights. Restriction for the model: only one

 * application element of the type AoUserGroup is allowed.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param aid The Id of the application element.

 *
 * @param attrName The name of the attribute.

 *

 * @param usergroupId The usergroup to set the rights for.

 *

 * @param rights The new right for the usergroup.
 *

 * @param set What to do with the new right.

 */

 void setAttributeRights(

 in T_LONGLONG aid,
 in T_STRING attrName,

 in T_LONGLONG usergroupId,

 in T_LONG rights,

 in RightsSet set)

 raises (AoException);

 /* (24009)

 * Set the ACL information on some application element

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1103

OO-API

ASAM ODS VERSION 5.0 10-567

 * defined by <aid>. The <usergroup_id> defines the usergroup

 * the rights should be set for. <rights> defines the rights

 * to set or to clear. If the parameter <set> is set to
 * 'set', the rights in <rights> are set, all others are

 * cleared. If the parameter <set> is set to 'add', the

 * rights in <rights> are added to the existing rights. If

 * the parameter <set> is set to 'remove', the rights in

 * <rights> are removed from the existing rights.
 * Restriction for the model: only one application element of

 * the type AoUserGroup is allowed.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param aid The Id of the application element.

 *
 * @param usergroupId The usergroup to set the rights for.

 *

 * @param rights The new rights for the usergroup. The

 * rights constants are defined in the

 * interface SecurityRights. The interface
 * definition language IDL does not allow to

 * set the values of enumerations thus the

 * constant definitions had to be done in an

 * interface.

 *
 * @param set What to do with the new right.

 */

 void setElementRights(

 in T_LONGLONG aid,

 in T_LONGLONG usergroupId,
 in T_LONG rights,

 in RightsSet set)

 raises (AoException);

 /* (24010)
 * Set the ACL information on some instance defined by the

 * application element id <aid> and a sequence of instance

 * defined by the id <iid>. The <usergroup_id> defines the

ISO/PAS 22720:2005(E)

1104 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-568 ASAM ODS VERSION 5.0

 * usergroup the rights should be set for. <rights> defines

 * the rights to set or to clear. If the parameter <set> is

 * set to 'set', the rights in <rights> are set, all others
 * are cleared. If the parameter <set> is set to 'add', the

 * rights in <rights> are added to the existing rights. If

 * the parameter <set> is set to 'remove', the rights in

 * <rights> are removed from the existing rights.

 * Restriction for the model: only one application element of
 * the type AoUserGroup is allowed.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param aid The Id of the application element.

 *

 * @param instIds The sequence of instance Id's.
 *

 * @param usergroupId The usergroup to set the rights for.

 *

 * @param rights The new right for the usergroup.

 *
 * @param set What to do with the new right.

 */

 void setInstanceRights(

 in T_LONGLONG aid,

 in S_LONGLONG instIds,
 in T_LONGLONG usergroupId,

 in T_LONG rights,

 in RightsSet set)

 raises (AoException);

 /* (24011)

 * Retrieve access control list information for the given

 * application attribute <aid>/<attr_name>.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1105

OO-API

ASAM ODS VERSION 5.0 10-569

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param aid The Id of the application element.

 *

 * @param attrName The name of the attribute.
 *

 * @return The access control list entries of the give

 * application attribute.

 */

 ACLSequence getAttributeRights(
 in T_LONGLONG aid,

 in T_STRING attrName)

 raises (AoException);

 /* (24012)
 * Retrieve access control list information for the requested

 * application element <aid>.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param aid The Id of the application element.

 *

 * @return The access control list entries of the given
 * application element.

 */

 ACLSequence getElementRights(

 in T_LONGLONG aid)

 raises (AoException);

 /* (24013)

 * Retrieve access control list information for the requested

 * instance <aid>/<iid>.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

ISO/PAS 22720:2005(E)

1106 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-570 ASAM ODS VERSION 5.0

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param aid The Id of the application element.

 *
 * @param iid The Id of the instance.

 *

 * @return The access control list entries of the given

 * instance.

 */
 ACLSequence getInstanceRights(

 in T_LONGLONG aid,

 in T_LONGLONG iid)

 raises (AoException);

 /* (24014)

 * Set the access control list information for the initial

 * rights on some application element defined by <aid>. The

 * <usergroup_id> defines the usergroup the rights should be

 * set for. <rights> defines the rights to set or to clear.
 * If the parameter <set> is set to 'set', the rights in

 * <rights> are set, all others are cleared. If the parameter

 * <set> is set to 'add', the rights in <rights> are added to

 * the existing rights. If the parameter <set> is set to

 * 'remove', the rights in <rights> are removed from the
 * existing rights. Restriction for the model: only one

 * application element of the type AoUserGroup is allowed.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param aid The Id of the application element.

 *
 * @param usergroupId The usergroup to set the initial

 * rights for.

 *

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1107

OO-API

ASAM ODS VERSION 5.0 10-571

 * @param rights The new initial rights for the usergroup.

 * The rights constants are defined in the

 * interface SecurityRights. The interface
 * definition language IDL does not allow to

 * set the values of enumerations thus the

 * constant definitions had to be done in an

 * interface.

 *
 * @param refAid The Id of referencing application element

 * for which the initial rights will be used.

 * If no refAid is set the initial rights

 * will be used for each new instance element

 * independent of the application element.
 *

 * @param set What to do with the new initial rights.

 */

 void setElementInitialRights(

 in T_LONGLONG aid,
 in T_LONGLONG usergroupId,

 in T_LONG rights,

 in T_LONGLONG refAid,

 in RightsSet set)

 raises (AoException);

 /* (24015)

 * Set the access control list information for the initial

 * rights on some instance defined by the application element

 * id <aid> and a sequence of instance defined by the id
 * <iid>. The <usergroup_id> defines the usergroup the rights

 * should be set for. <rights> defines the rights to set or

 * to clear. If the parameter <set> is set to 'set', the

 * rights in <rights> are set, all others are cleared. If the

 * parameter <set> is set to 'add', the rights in <rights>
 * are added to the existing rights. If the parameter <set>

 * is set to 'remove', the rights in <rights> are removed

 * from the existing rights. Restriction for the model: only

 * one application element of the type AoUserGroup is

 * allowed.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

ISO/PAS 22720:2005(E)

1108 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-572 ASAM ODS VERSION 5.0

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *
 * @param aid The Id of the application element.

 *

 * @param instIds The sequence of instance Id's.

 *

 * @param usergroupId The usergroup to set the initial
 * rights for.

 *

 * @param rights The new initial right for the usergroup.

 *

 * @param refAid The Id of referencing application element
 * for which the initial rights will be used.

 * If no refAid is set the initial rights

 * will be used for each new instance element

 * independent of the application element.

 *
 * @param set What to do with the new initial rights.

 */

 void setInstanceInitialRights(

 in T_LONGLONG aid,

 in S_LONGLONG instIds,
 in T_LONGLONG usergroupId,

 in T_LONG rights,

 in T_LONGLONG refAid,

 in RightsSet set)

 raises (AoException);

 /* (24016)

 * Set the flag <set> in svcattr, if this reference will be

 * used (or not) to retrieve the Initial Rights. If more than

 * one reference is set to true, the union (or-function) of
 * all rights are used.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @param aid The application element Id.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1109

OO-API

ASAM ODS VERSION 5.0 10-573

 *

 * @param refName The name of the reference.

 *
 * @param set What to do with the given reference.

 */

 void setInitialRightReference(

 in T_LONGLONG aid,

 in T_STRING refName,
 in RightsSet set)

 raises (AoException);

 /* (24017)

 * Get all attribute names (references) which are used to
 * retrieve the Initial Rights.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @param aid The application element Id.

 *

 * @return The names of the references which will be used

 * for the initial rights determination.
 */

 NameSequence getInitialRightReference(

 in T_LONGLONG aid)

 raises (AoException);

 /* (24018)

 * Retrieve access control list information of the initial

 * rights for the requested application element <aid>.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

ISO/PAS 22720:2005(E)

1110 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-574 ASAM ODS VERSION 5.0

 *

 * @param aid The Id of the application element.

 *
 * @return The access control list entries of the given

 * application element for the initial rights.

 */

 InitialRightSequence getElementInitialRights(

 in T_LONGLONG aid)
 raises (AoException);

 /* (24019)

 * Retrieve access control list information of the initial

 * rights for the requested instance <aid>/<iid>.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param aid The Id of the application element.

 *

 * @param iid The Id of the instance.

 *

 * @return The access control list entries of the given
 * instance for the initial rights.

 */

 InitialRightSequence getInstanceInitialRights(

 in T_LONGLONG aid,

 in T_LONGLONG iid)
 raises (AoException);

 /* (24020)

 * Perform the Query. This method can be used for a more

 * powerful query compared to the method getInstances of
 * this interface, with join definitions and aggregate

 * functions.

 *

 * The number of different application elements which are

 * requested are exactly defined by the definition of the
 * query given in the field anuSeq of the QueryStructureExt.

 * The number of attributes for each application element is

 * also given in the definition. The number of matching

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1111

OO-API

ASAM ODS VERSION 5.0 10-575

 * instances (their attributes) is not defined by the query

 * and can be a large amount. Therefore only one iterator for

 * the attribute values are defined.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param aoq The query definition.

 *

 * @param how_many Maximum number of values in each result

 * set. Valid arguments are:

 * how_many = 0 : report all found values,
 * how_many > 0 : report a maximum number

 * of values.

 *

 * @return The result set with the requested attribute

 * values.
 */

 ResultSetExtSequence getInstancesExt(

 in QueryStructureExt aoq,

 in T_LONG how_many)

 raises (AoException);

}; // Interface ApplElemAccess.

/*

* The ASAM ODS query evaluator interface allows to perform
* queries in synchronous mode and to create Query objects for

* asynchronous execution.

*/

interface QueryEvaluator {

 /* (25000)

 * Evaluate a query in synchronous mode.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_QUERY_TYPE_INVALID

 * AO_QUERY_INVALID

 * AO_QUERY_PROCESSING_ERROR

ISO/PAS 22720:2005(E)

1112 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-576 ASAM ODS VERSION 5.0

 * AO_QUERY_TIMEOUT_EXCEEDED

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param queryStr The query string.

 *

 * @param params Sequence of parameter names and values.

 * The following parameters should be

 * passed:
 *

 * Name: "MaxDuration";

 * Type: T_LONG

 * Comment: Can be used to restrict the

 * processing time. The time is given in
 * milliseconds,

 * Default value: 0 (no restriction)

 *

 * @return The result of the query as an instance element

 * iterator.
 */

 InstanceElementIterator getInstances(

 in T_STRING queryStr,

 in NameValueSequence params)

 raises (AoException);

 /* (25001)

 * Evaluate a query in synchronous mode.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_QUERY_TYPE_INVALID

 * AO_QUERY_INVALID

 * AO_QUERY_PROCESSING_ERROR

 * AO_QUERY_TIMEOUT_EXCEEDED
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param queryStr The query string.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1113

OO-API

ASAM ODS VERSION 5.0 10-577

 *

 * @param params Sequence of parameter names and values.

 * The following parameters should be
 * passed:

 *

 * Name: "MaxDuration";

 * Type: T_LONG

 * Comment: Can be used to restrict the
 * processing time. The time is given in

 * milliseconds,

 * Default value: 0 (no restriction)

 *

 * @return The result of the query as a name value unit
 * sequence iterator. Each name value unit tuple is

 * one cell of the table. The name value unit

 * sequence is one row of the table.

 */

 NameValueUnitSequenceIterator getTableRows(
 in T_STRING queryStr,

 in NameValueSequence params)

 raises (AoException);

 /* (25002)
 * Evaluate a query in synchronous mode.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_QUERY_TYPE_INVALID
 * AO_QUERY_INVALID

 * AO_QUERY_PROCESSING_ERROR

 * AO_QUERY_TIMEOUT_EXCEEDED

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @param queryStr The query string.

 *

 * @param params Sequence of parameter names and values.

 * The following parameters should be

 * passed:
 *

 * Name: "MaxDuration";

 * Type: T_LONG

ISO/PAS 22720:2005(E)

1114 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-578 ASAM ODS VERSION 5.0

 * Comment: Can be used to restrict the

 * processing time. The time is given in

 * milliseconds,
 * Default value: 0 (no restriction)

 *

 * @return The result of the query as a name value sequence

 * unit sequence. Each name value sequecne unit

 * tuple is one column of the table. The name value
 * sequence unit sequence is the table. The result

 * structure can be very huge.

 */

 NameValueSeqUnitSequence getTable(

 in T_STRING queryStr,
 in NameValueSequence params)

 raises (AoException);

 /* (25003)

 * Create a query object to execute it in asynchronous mode.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_QUERY_TYPE_INVALID

 * AO_QUERY_INVALID
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param queryStr The query string

 *

 * @param params Sequence of parameter names and values.
 * The following parameters should be

 * passed:

 *

 * Name: "QueryResultType";

 * Type: ResultType.
 * Comment: Specifies what kind of result is

 * expected by the client.

 * Default value:

 * INSTELEM_ITERATOR_AS_RESULT

 *
 * Name: "MaxDuration";

 * Type: T_LONG

 * Comment: Can be used to restrict the

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1115

OO-API

ASAM ODS VERSION 5.0 10-579

 * processing time. The time is given in

 * milliseconds,

 * Default value: 0 (no restriction)
 *

 * @return The query object.

 */

 Query createQuery(

 in T_STRING queryStr,
 in NameValueSequence params)

 raises (AoException);

}; // Interface QueryEvaluator.

/*

* The ASAM ODS interface Query.

*/

interface Query {

 /* (26000)

 * Get the QueryEvaluator object which is responsible for

 * this query.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @return The QueryEvaluator object which is responsible
 * for this query.

 */

 QueryEvaluator getQueryEvaluator()

 raises (AoException);

 /* (26001)

 * Do the query pre-processing (optimization, etc.) Call can

 * be omited by the client. In this case the functionality

 * is executed on the call of executeQuery.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

ISO/PAS 22720:2005(E)

1116 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-580 ASAM ODS VERSION 5.0

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_QUERY_PROCESSING_ERROR

 * AO_QUERY_INVALID_RESULTTYPE

 *
 * @param params Sequence of parameter names and values.

 * The following parameters should be

 * passed:

 *

 * Name: "QueryResultType";
 * Type: ResultType.

 * Comment: Specifies what kind of result is

 * expected by the client, this parameter is

 * required if the parameters isn't given at

 * the method createQuery of the interface
 * QueryEvaluator.

 * Default value: INSTELEM_ITERATOR_AS_RESULT

 */

 void prepareQuery(

 in NameValueSequence params)
 raises (AoException);

 /* (26002)

 * Execute query in asynchronous mode.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_QUERY_PROCESSING_ERROR

 * AO_QUERY_INVALID_RESULTTYPE
 *

 * @param params Sequence of parameter names and values.The

 * following parameter should be passed:

 *

 * Name: "QueryResultType";
 * Type: ResultType.

 * Comment: Specifies what kind of result is

 * expected by the client, this parameter is

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1117

OO-API

ASAM ODS VERSION 5.0 10-581

 * required if the parameters isn't given at

 * the method prepareQuery or the method

 * createQuery of the interface
 * QueryEvaluator.

 * Default value:

 * INSTELEM_ITERATOR_AS_RESULT

 *

 * Name: "Synchronous";
 * Type: T_BOOLEAN

 * Comment: In case of "true" guarantees

 * synchronous execution.

 * Default value: "false"

 */
 void executeQuery(

 in NameValueSequence params)

 raises (AoException);

 /* (26003)
 * Return query status.

 *

 * Returns INCOMPLETE if the query is still executing.

 *

 * Returns COMPLETE if the query finished execution or if the
 * query execution stopped because of an error or because the

 * timeout was exceeded.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @return The status of the query.

 */

 QueryStatus getStatus()
 raises (AoException);

 /* (26004)

 * Get the query result. This method should only be called

 * after the query has been executed. It returns an iterator
 * on the instances that were found by the query.

 *

 * @throws AoException

ISO/PAS 22720:2005(E)

1118 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-582 ASAM ODS VERSION 5.0

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_QUERY_PROCESSING_ERROR
 * AO_QUERY_TIMEOUT_EXCEEDED

 * AO_QUERY_INCOMPLETE

 * AO_QUERY_INVALID_RESULTTYPE

 *

 * @return The result of the query as an instance element
 * iterator.

 */

 InstanceElementIterator getInstances()

 raises (AoException);

 /* (26005)

 * Get the query result. This method should only be called

 * after the query has been executed. It returns an iterator

 * on the instances that were found by the query.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_QUERY_PROCESSING_ERROR

 * AO_QUERY_TIMEOUT_EXCEEDED
 * AO_QUERY_INCOMPLETE

 * AO_QUERY_INVALID_RESULTTYPE

 *

 * @return The result of the query as a name value unit

 * sequence iterator. Each name value unit tuple is
 * one cell of the table. The name value unit

 * sequence is one row of the table.

 */

 NameValueUnitSequenceIterator getTableRows()

 raises (AoException);

 /* (26006)

 * Get the query result. This method should only be called

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1119

OO-API

ASAM ODS VERSION 5.0 10-583

 * after the query has been executed. It returns an iterator

 * on the instances that were found by the query.

 *
 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_QUERY_PROCESSING_ERROR

 * AO_QUERY_TIMEOUT_EXCEEDED
 * AO_QUERY_INCOMPLETE

 * AO_QUERY_INVALID_RESULTTYPE

 *

 * @return The result of the query as a name value sequence

 * unit sequence. Each name value sequecne unit
 * tuple is one column of the table. The name value

 * sequence unit sequence is the table. The result

 * structure can be very huge.

 */

 NameValueSeqUnitSequence getTable()
 raises (AoException);

}; // Interface Query.

/*
* The name value unit sequence iterator. The table iterator as

* query result.

*/

interface NameValueUnitSequenceIterator {

 /* (27001)

 * Destroy the iterator and free the associated memory.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 */

 void destroy()

 raises (AoException);

ISO/PAS 22720:2005(E)

1120 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-584 ASAM ODS VERSION 5.0

 /* (27002)

 * Get the total number of elements accessible by the
 * iterator.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The number of elements accessible by the

 * iterator.

 */

 T_LONG getCount()

 raises (AoException);

 /* (27003)

 * Get the next n elements from the sequence.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @param how_many The number of requested elements.

 *
 * @return The next n values of the name-value-unit

 * sequence. For each NameValuUnit the next n values

 * are stored in the value sequence.

 */

 NameValueSeqUnitSequence nextN(
 in T_LONG how_many)

 raises (AoException);

 /* (27004)

 * Get the next element from the iterator.
 *

 * @throws AoException

 * with the following possible error codes:

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1121

OO-API

ASAM ODS VERSION 5.0 10-585

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *

 * @return The next name-value-unit tuple sequence from the

 * name-value-unit tuple.
 */

 NameValueSeqUnit nextOne()

 raises (AoException);

 /* (27005)
 * Reset the pointer in the element iterator to the first

 * element.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 */

 void reset()

 raises (AoException);

}; // Interface NameValueUnitSequenceIterator.

/*

* The ASAM ODS enumeration interface.

*/

interface EnumerationDefinition {

 /* (28000)

 * List the possible names of the enumeration. The sort order

 * of the list is the value of the item. The first item has

 * the value zero.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

ISO/PAS 22720:2005(E)

1122 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-586 ASAM ODS VERSION 5.0

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *
 * @return List with all possiable names of the enumeration

 * items.

 */

 NameSequence listItemNames()

 raises (AoException);

 /* (28001)

 * Get the value of an item.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 * AO_NOT_FOUND

 *
 * @param itemName The name of the item.

 *

 * @return The number of the item.

 */

 T_LONG getItem(
 in T_STRING itemName)

 raises (AoException);

 /* (28002)

 * Get the name of an item.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE
 * AO_NOT_FOUND

 *

 * @param item The value of the item.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1123

OO-API

ASAM ODS VERSION 5.0 10-587

 *

 * @return The name of the item.

 */
 T_STRING getItemName(

 in T_LONG item)

 raises (AoException);

 /* (28003)
 * Add a new item to the enumeration. This method modifies

 * the application model and is only allowed for the

 * superuser.

 *

 * The name of an item must not exceed the maximum name
 * length of the underlying physical storage. The current

 * physical storage specification restricts it to 128 characters.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 * AO_ACCESS_DENIED

 * AO_DUPLICATE_NAME

 * AO_DUPLICATE_VALUE
 *

 * @param itemName The name of the new item.

 */

 void addItem(

 in T_STRING itemName)
 raises (AoException);

 /* (28004)

 * Rename the item of the enumeration. This method modifies

 * the application model and is only allowed for the
 * superuser.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

ISO/PAS 22720:2005(E)

1124 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-588 ASAM ODS VERSION 5.0

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE
 * AO_NOT_FOUND

 *

 * @param oldItemName The existing name of the itrem.

 *

 * @param newItemName the new name of the item.
 */

 void renameItem(

 in T_STRING oldItemName,

 in T_STRING newItemName)

 raises (AoException);

 /* (28005)

 * Get the name of the enumeration.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED
 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @return Name of the enumeration.
 */

 T_STRING getName()

 raises (AoException);

 /* (28006)
 * Set the name of the enumeration. This method modifies the

 * application model and is only allowed for the superuser.

 *

 * The name of an enumeration definition must not exceed the

 * maximum name length of the underlying physical storage.
 * The current physical storage specification restricts it to 30

 * characters.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_BAD_PARAMETER

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1125

OO-API

ASAM ODS VERSION 5.0 10-589

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 * AO_ACCESS_DENIED

 *

 * @param enumName Name of the enumeration.

 */
 void setName(

 in T_STRING enumName)

 raises (AoException);

 /* (28007)
 * Get the index of the enumeration.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_BAD_PARAMETER
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 * AO_TRANSACTION_NOT_ACTIVE

 *

 * @return The index of the enumeration.

 */

 T_LONG getIndex()
 raises (AoException);

}; // Interface EnumerationDefinition.

/*
* For iteration through the result elements, there is also a

* new iterator necessary called ElemResultSetExtSeqIterator.

* It's functionality is still the same as all other iterators

* and needs therefore no further explanation.

* There is only one difference to the other iterations. The
* iteration is done on the lowest level in that case on the

* TS_UnionSeq.

*/

interface ElemResultSetExtSeqIterator {

 /* (29000)

 * Destroy the iterator and free the associated memory.

 *

ISO/PAS 22720:2005(E)

1126 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-590 ASAM ODS VERSION 5.0

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 */
 void destroy()

 raises (AoException);

 /* (29001)

 * Get the total number of elements accessible by the
 * iterator.

 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST
 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 *
 * @return The number of elements accessible by the

 * iterator.

 */

 T_LONG getCount()

 raises (AoException);

 /* (29002)

 * Get the next n elements from the sequence.

 *

 * @throws AoException
 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY
 * AO_SESSION_NOT_ACTIVE

 *

 * @param how_many The number of requested elements.

 *

 * @return The next n attribute values from the element
 * result set sequence.

 */

 ElemResultSetExtSequence nextN(

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1127

OO-API

ASAM ODS VERSION 5.0 10-591

 in T_LONG how_many)

 raises (AoException);

 /* (29003)

 * Get the next element from the sequence.

 *

 * @throws AoException

 * with the following possible error codes:
 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM

 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE
 *

 * @return The next attribute values from the element result

 * set sequence.

 */

 ElemResultSetExt nextOne()
 raises (AoException);

 /* (29004)

 * Reset the pointer in the element sequence to the first

 * element.
 *

 * @throws AoException

 * with the following possible error codes:

 * AO_CONNECTION_LOST

 * AO_IMPLEMENTATION_PROBLEM
 * AO_NOT_IMPLEMENTED

 * AO_NO_MEMORY

 * AO_SESSION_NOT_ACTIVE

 */

 void reset()
 raises (AoException);

}; // Interface ElemResultSetExtSeqIterator.

}; // Module ods.

}; // Module asam.

}; // Module org.

#endif

ISO/PAS 22720:2005(E)

1128 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-592 ASAM ODS VERSION 5.0

/*

* The ASAM ODS error codes.

*
* AO_ACCESS_DENIED

* The remote server denied the access. If this error occurred

* it was not even possible to present the authentication

* information. This means the authentication information might

* be correct but the server refused the access already at a
* lower level.

*

* AO_BAD_OPERATION

* The BAD_OPERATION error code is used when a method is invalid

* in a marshalling operation.
*

* AO_BAD_PARAMETER

* A parameter of the wrong type was passed to the method. The

* minorCode tells which parameter (1, 2, 3 or 4) is bad. If

* more than
* one parameter is bad, only the first one is reported. This

* error can occur only in non-typesave language bindings. Those

* language bindings also impose the problem that not all

* parameter errors are automatically detectable.

*
* AO_CONNECTION_LOST

* Due to a hardware or network software problem the connection

* to the server was lost.

*

* AO_CONNECT_FAILED
* The connect to a server failed. This error may occur if the

* server is down or currently unreachable.

*

* AO_CONNECT_REFUSED

* The connection was refused by the server. This error may
* occur if the presented authentication information is either

* incorrect or incomplete. This error shall not occur if the

* server does not accept any more sessions due to overload

* problems. See AO_SESSION_LIMIT_REACHED for this case.

*
* AO_DUPLICATE_BASE_ATTRIBUTE

* Any application element may have only one base attribute of a

* certain type. This means it may have only one attribute of

* base attribute type NAME, one ID, one VERSION and so on.

*
* AO_DUPLICATE_NAME

* The implicit or explicit specified name is already in use but

* it is required to be unique.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1129

OO-API

ASAM ODS VERSION 5.0 10-593

*

* AO_DUPLICATE_VALUE

* The attribute is marked unique in the application model. Thus
* duplicate values are not allowed.

*

* AO_HAS_BASE_ATTRIBUTE

* Base attribute found. It is not allowed to modify the

* datatype, unique- or obligatory flag .
*

* AO_HAS_BASE_RELATION

* Base relation found. It is not allowed to modify the

* relationtype, -range or -ship of an application relation

* derived from a base relation.
*

* AO_HAS_INSTANCES

* The operation is not allowed for elements that have

* instances.

*
* AO_HAS_REFERENCES

* The requested operation is not permitted because the target

* element has references.

*

* AO_IMPLEMENTATION_PROBLEM
* This error is reserved for the reporting of implementation

* specific problems that are not properly handled by the

* standard error definitions. An application should not crash

* if this error occurs but there is no way to react to this

* error other than reporting and ignoring
* it. The intend of this error is not to leave implementation

* specific errors unreported.

*

* AO_INCOMPATIBLE_UNITS

* The units are incompatible. No conversion rule is known.
*

* AO_INVALID_ASAM_PATH

* The specified Asam path is invalid.

*

* AO_INVALID_ATTRIBUTE_TYPE
* The requested attribute type is invalid.

*

* AO_INVALID_BASETYPE

* The specified base type is invalid. The following basetypes

* are allowed:
* AoAny

* AoAttributeMap

ISO/PAS 22720:2005(E)

1130 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-594 ASAM ODS VERSION 5.0

* AoEnvironment

* AoLocalColumn

* AoLog

* AoMeasurement

* AoMeasurementQuantity

* AoNameMap

* AoParameter

* AoParameterSet
* AoPhysicalDimension

* AoQuantity

* AoQuantityGroup

* AoSubmatrix

* AoSubTest
* AoTest

* AoTestDevice

* AoTestEquipment

* AoTestEquipmentPart

* AoTestSequence
* AoTestSequencePart

* AoUnit

* AoUnitGroup

* AoUnitUnderTest

* AoUnitUnderTestPart
* AoUser

* AoUserGroup

*

* AO_INVALID_BASE_ELEMENT

* The base element is invalid in this context. If this is an
* element of type measurement, another element of this type may

* already exist.

*

* AO_INVALID_BUILDUP_FUNCTION

* The specified build-up function is invalid.
*

* AO_INVALID_COLUMN

* The specified column is invalid.

*

* AO_INVALID_COUNT
* The specified number of points is invalid (probably

* negative).

*

* AO_INVALID_DATATYPE

* The datatype is not allowed in the given context or it
* conflicts with an existing datatype definition.

*

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1131

OO-API

ASAM ODS VERSION 5.0 10-595

* This error may also occur in non-typesave language bindings.

* To avoid this error in all language bindings it is

* recommended to use always the definitions of the enumeration
* "DataType".

*

* AO_INVALID_ELEMENT

* The element is invalid in this context.

*
* AO_INVALID_LENGTH

* The given length is invalid. Negative length values are not

* allowed.

*

* AO_INVALID_ORDINALNUMBER
* The ordinal number is either already used or less than zero.

*

* AO_INVALID_RELATION

* The relation is invalid. The related elements and the base

* relation do not fit.
*

* AO_INVALID_RELATIONSHIP

* This error may occur only in non-typesave language bindings.

* To avoid this error in all language bindings it is

* recommended to use always the definitions of the enumeration
* "Relationship".

*

* AO_INVALID_RELATION_RANGE

* The specified relation range is invalid.

*
* AO_INVALID_RELATION_TYPE

* This error may occur only in non-typesave language bindings.

* To avoid this error in all language bindings it is

* recommended to use always the definitions of the enumeration

* "RelationType".
*

* AO_INVALID_SET_TYPE

* The specified set-type is invalid.

*

* AO_INVALID_SMATLINK
* The submatrix link is invalid. Either submatrix 1 or 2 is not

* specified or the ordinal number is missing when there is more

* than one SMatLink.

*

* AO_INVALID_SUBMATRIX
* The specified submatrix is invalid.

*

* AO_IS_BASE_ATTRIBUTE

ISO/PAS 22720:2005(E)

1132 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-596 ASAM ODS VERSION 5.0

* The application attribute is already of a base attribute

* type. It can not be changed. If this is required, the

* application attribute has to be removed from its application
* element and re-created. This error may occur if an

* application attribute derived from a base attribute

*

* a. shall be overwritten by another base

* attribute type.
* b. shall receive another datatype.

* c. shall receive another unique-flag.

* d. shall receive another obligatory-flag.

*

* AO_IS_BASE_RELATION
* Properties of base relations may not be changed.

*

* AO_IS_MEASUREMENT_MATRIX

* The matrix is a complex, generated matrix from a measurement

* not just a simple submatrix. It is only allowed to modify
* submatrices but not the composed measurement matrices.

*

* AO_MATH_ERROR

* A computation error occurred. This can be an overflow, an

* underflow or a division by zero.
*

* AO_MISSING_APPLICATION_ELEMENT

* A required application element is missing.

*

* AO_MISSING_ATTRIBUTE
* A required (obligatory) attribute is missing.

*

* AO_MISSING_RELATION

* A required relation is missing.

*
* AO_MISSING_VALUE

* An obligatory value is missing (the AO_VF_DEFINED flag is

* zero).

*

* AO_NOT_FOUND
* The requested element was not found. This error occurs only

* in remove or rename operations if the subject of the

* operation is not found. All get- and list-methods return an

* empty list if the requested item is not found.

*
* AO_NOT_IMPLEMENTED

* The requested method is not yet implemented. This error is

* not allowed to occur in a certified implementation. It is

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1133

OO-API

ASAM ODS VERSION 5.0 10-597

* intended to allow partial operational tests. during the

* development process.

*
* AO_NOT_UNIQUE

* This error occurs if the instances of a property are required

* to be unique.

*

* AO_NO_MEMORY
* No more volatile memory available.

*

* AO_NO_PATH_TO_ELEMENT

* A free-floating element was detected. No navigation path

* leads to this element.
*

* AO_NO_SCALING_COLUMN

* The column is no scaling column.

*

* AO_OPEN_MODE_NOT_SUPPORTED
* The requested open mode is not supported. Valid open modes

* are "read" and "write". Anything else is rejected with this

* error and no session is created.

*

* AO_QUERY_INCOMPLETE
* The execution of the query was not yet completed.

*

* AO_QUERY_INVALID

* Some error in the query string or some inconsistency between

* the return type of the query string and the result type
* specified by parameter "QueryResultType".

*

* AO_QUERY_INVALID_RESULTTYPE

* The requested result type of the query do no metch with the

* previous definition of the result type.
*

* AO_QUERY_PROCESSING_ERROR

* Some error occured during the execution of the query.

*

* AO_QUERY_TIMEOUT_EXCEEDED
* It was not possible to execute the query within the time

* limit set by parameter "MaxDuration".

*

* AO_QUERY_TYPE_INVALID

* The server does not support the specified query language
* type.

*

* AO_SESSION_LIMIT_REACHED

ISO/PAS 22720:2005(E)

1134 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-598 ASAM ODS VERSION 5.0

* The server does not accept any new connections. This error

* may occur if the server reached the session limit for a

* distinct user or the total number of sessions allowed.
*

* AO_SESSION_NOT_ACTIVE

* The session is no longer active. This error occurs if an

* attempt is made to call a method of a closed session. This

* error shall not be confused with the error
* AO_CONNECTION_LOST.

*

* AO_TRANSACTION_ALREADY_ACTIVE

* There may be only one active transaction at one time. If this

* error occurs there is already an active transaction. That
* transaction remains active in case of this error.

*

* AO_TRANSACTION_NOT_ACTIVE

* Write operation have to be done always in the context of a

* transaction. This error occurs if no transaction is active
* during a write operation.

*

* AO_UNKNOWN_ERROR

* Use the zero as unknown error to avoid confusing error

* messages if no error code has been set.
*

* AO_UNKNOWN_UNIT

* The unit is unknown.

*/

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1135

OO-API

ASAM ODS VERSION 5.0 10-599

10.6 USING ASAM HARMONIZED DATATYPES

ASAM ODS has defined data types in a very early state of specification. They are preceded
by T_ resp. S_. Those data types have been used in a variety of implementations. In the
meantime ASAM has harmonized the data types between all ASAM standards. Section 2.5
describes the relationship between ASAM-wide harmonized data types and the legacy data
types of ASAM ODS. Since there are several implementations available basing on the ASAM
ODS data types, it was decided to keep them in the OO-API. However, anyone who intends
to base on the harmonized data types according to section 2.5 may do so.

This section provides an IDL-file which contains the specification of the harmonized data
types.

It should be noted that the ASAM ODS DataType enumeration is part of the standardized
ASAM data types; the enumeration item names (starting with DT_ resp. DS_) are officially
released by ASAM for all working groups and may be used without any restriction.

10.6.1 MAPPING FILE A_TYPES.IDL

For mapping the harmonized data types, the following file a_types.idl is provided. This is for
informational purposes only; the actual version is maintained independently from ASAM ODS
and may be requested from ASAM e.V..

// **
// *** ASAM Data Type Specification ***
// *** File : a_types.idl ***
// *** Version : 1.1 ***
// *** Date : January 20, 2003 ***
// **
//

//--------------- Start of the a_types.IDL file ---------------------

// base types

typedef boolean A_BOOLEAN; // boolean
typedef char A_INT8; // 8 bit integer
typedef octet A_UINT8; // 8 bit unsigned integer
typedef short A_INT16; // 16 bit integer
typedef unsigned short A_UINT16; // 16 bit unsigned integer
typedef long A_INT32; // 32 bit integer
typedef unsigned long A_UINT32; // 32 bit unsigned integer
typedef float A_FLOAT32; // 32 bit float
typedef double A_FLOAT64; // 64 bit float

typedef A_UINT8 A_BCD; // BCD number

typedef A_INT32 A_ENUM; // Enumeration

//---

// structures describing numeric values

ISO/PAS 22720:2005(E)

1136 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-600 ASAM ODS VERSION 5.0

// 64 bit integer
struct A_INT64 {
 A_INT32 n32High;
 A_UINT32 un32Low;
};

// 64 bit unsigned integer
struct A_UINT64 {
 A_UINT32 un32High;
 A_UINT32 un32Low;
};

// complex value (real and imaginary part are float values)
struct A_COMPLEX32 {
 A_FLOAT32 fReal;
 A_FLOAT32 fImaginary;
};

// complex value (real and imaginary part are double values)
struct A_COMPLEX64 {
 A_FLOAT64 dReal;
 A_FLOAT64 dImaginary;
};
//---

// character types

typedef A_UINT8 A_ASCII; // semantically, one char 1..255
 // or the termination character Hex00
typedef A_UINT16 A_UNICODE_2; // semantically: one 16 bit character
defined in
 // ISO-10646 UCS-2 0x0001 - 0xFFFF
 // or the termination character Hex0000
typedef A_INT32 A_UNICODE_4; // semantically: one 31 bit character
defined in
 // ISO-10646 UCS-4 0x00000001 - 0x7FFFFFFF
 // or the termination character Hex00000000

//---

// string types

// ASCII string

typedef sequence <A_ASCII> A_ASCIISTRING; // max restricted to
4294967295
typedef sequence <A_ASCII, 64> A_ASCIISTRING_64;
typedef sequence <A_ASCII, 128> A_ASCIISTRING_128;
typedef sequence <A_ASCII, 255> A_ASCIISTRING_255;
typedef sequence <A_ASCII, 1024> A_ASCIISTRING_1024;
typedef sequence <A_ASCII, 2048> A_ASCIISTRING_2048;
typedef sequence <A_ASCII, 5100> A_ASCIISTRING_5100;
typedef sequence <A_ASCII, 2> A_ASCIISTRING_2;

// UCS-2 string

typedef sequence <A_UNICODE_2> A_UNICODE2STRING; // max restricted to
4294967295

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1137

OO-API

ASAM ODS VERSION 5.0 10-601

 // zero terminated with
 // character Hex0000
// UCS-4 string

typedef sequence <A_UNICODE_4> A_UNICODE4STRING; // max restricted to
4294967295
 // zero terminated with
 // character Hex00000000

// character field types

// ASCII character field
struct A_ASCIIFIELD {
 A_UINT32 un32Chars; // value range un32Chars: [1, 2^32-1]
 A_ASCIISTRING szValue; // un32Chars contains the number of ASCII
 // characters in the character field
};

// UCS-2 character field
struct A_UNICODE2FIELD {
 A_UINT32 un32Chars; // value range un32Chars: [1, 2^32-1]
 A_UNICODE2STRING szValue; // un32Chars contains the number of UCS-2
 // characters in the character field
};

// UCS-4 character field
struct A_UNICODE4FIELD {
 A_UINT32 un32Chars; // value range un32Chars: [1, 2^32-1]
 A_UNICODE4STRING szValue; // un32Chars contains the number of UCS-4
 // characters in the character field
};
//---

// bit and byte fields

typedef sequence <A_UINT8, 256> BYTEARRAY_256;

struct A_BITFIELD {
 A_INT16 n16NumberOfBits; // number of valid bits in bitfield
 // [1 .. 2048]
 BYTEARRAY_256 aun8Field; // array of bytes,
 // length of un8Field is calculated as
 // (un32NumberOfBits + 7)/8
 // value range for number of bytes:
[1..256]
};

typedef sequence <A_UINT8> BYTEARRAY; // maximum restricted to 4294967295

struct ASAM_BYTEFIELD {
 A_UINT32 un32Bytes; // value range un32Bytes:[1, 2^32-1]
 BYTEARRAY aun8Field; // array of bytes
};
//---

// IP-address (IPv4)

ISO/PAS 22720:2005(E)

1138 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-602 ASAM ODS VERSION 5.0

struct A_IP4 {
 A_UINT8 un8Octet1;
 A_UINT8 un8Octet2;
 A_UINT8 un8Octet3;
 A_UINT8 un8Octet4;
};

// IP-address (IPv6)

struct A_IP6 {
 A_UINT16 un16Value1;
 A_UINT16 un16Value2;
 A_UINT16 un16Value3;
 A_UINT16 un16Value4;
 A_UINT16 un16Value5;
 A_UINT16 un16Value6;
 A_UINT16 un16Value7;
 A_UINT16 un16Value8;
};
//---

// data types for time instants

struct A_TIME_STRUCT {
 A_INT16 n16Year; // year
 A_INT8 n8Month; // month
 A_INT8 n8DayOfMonth; // day of month
 A_INT8 n8Hour; // hour
 A_INT8 n8Minute; // minute
 A_INT8 n8Second; // second
 A_INT16 n16MilliSecond; // millisecond
 A_INT16 n16MicroSecond; // microsecond
 A_INT16 n16NanoSecond; // nanosecond
 A_INT32 n32TimeZoneDiff; // difference between UTC and
 // local time in seconds
};

// description of day within a year (year, month, day of month)

struct A_Day_YMD {
 A_INT16 n16Year; // year
 A_INT8 n8Month; // month
 A_INT8 n8DayOfMonth; // day of month
};

// description of day within a year (year, week, day of week)

struct A_Day_YWD {
 A_INT16 n16Year; // year
 A_INT8 n8Week; // week
 A_INT8 n8DayOfWeek; // day of week
};

// description of day within a year (year, day of year)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1139

OO-API

ASAM ODS VERSION 5.0 10-603

struct A_Day_YD {
 A_INT16 n16Year; // year
 A_INT16 n16DayOfYear; // day of year
};

//---

// Definition of types used inside URL adress

// Host access type is switch type of union
enum HOST_ACCESS_TYPE {
 SERVER_IP4, // access via IP4 address
 SERVER_IP6, // access via IP6 address
 SERVER_DOMAIN // access via domain name
};

// structure describing host access using IPv4 address
struct HOST_IP4 {
 A_ASCIISTRING szUser; // user
 A_ASCIISTRING szPwd; // password
 A_IP4 strAddress; // IP4 address
 A_INT32 n32Port; // port number
};

// structure describing host access using IPv6 address
struct HOST_IP6 {
 A_ASCIISTRING szUser; // user
 A_ASCIISTRING szPwd; // password
 A_IP6 strAddress; // IP6 address
 A_INT32 n32Port; // port number
};

// domain name
typedef A_ASCIISTRING_5100 A_DOMAIN_NAME;

// structure describing host access using domain name
struct HOST_DOMAIN {
 A_ASCIISTRING szUser; // user
 A_ASCIISTRING szPwd; // password
 A_DOMAIN_NAME szDomain; // domain name
 A_INT32 n32Port; // port number
};

// union describing host access
union HOST_ACCESS switch (HOST_ACCESS_TYPE) {
 case SERVER_IP4 : HOST_IP4 hostIP4;
 case SERVER_IP6 : HOST_IP6 hostIP6;
 default : HOST_DOMAIN hostDomain;
};

// URL address

struct A_URL {

ISO/PAS 22720:2005(E)

1140 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-604 ASAM ODS VERSION 5.0

 A_ASCIISTRING AccessScheme; // e.g. ftp, http,..
 HOST_ACCESS_TYPE HostAccessType;
 HOST_ACCESS HostAccess;
 A_ASCIISTRING szPath; // path at the server
};
//---
// definition of country and language

typedef A_ASCIISTRING_2 A_COUNTRY;
typedef A_ASCIISTRING_2 A_LANGUAGE;

// datatype enumerations for persistent storages.
// do not insert new names - only append is allowed
// never append new types without ASAM ODS permission
// because of possible ambiguities in data archives
enum DataType {
 DT_UNKNOWN, // Unknown datatype.
 DT_STRING, // String.
 DT_SHORT, // A_INT16
 DT_FLOAT, // A_FLOAT32
 DT_BOOLEAN, // A_BOOLEAN
 DT_BYTE, // A_INT8
 DT_LONG, // A_INT32
 DT_DOUBLE, // A_FLOAT64
 DT_LONGLONG, // A_INT64
 DT_ID, // LongLong value (64 bit). Not used. DT_LONGLONG
is used instead.
 DT_DATE, // Date.
 DT_BYTESTR, // Bytestream.
 DT_BLOB, // Blob.
 DT_COMPLEX, // A_COMPLEX32
 DT_DCOMPLEX, // A_COMPLEX64
 DS_STRING, // String sequence.
 DS_SHORT, // Short sequence.
 DS_FLOAT, // Float sequence.
 DS_BOOLEAN, // Boolean sequene.
 DS_BYTE, // Byte sequence.
 DS_LONG, // Long sequence.
 DS_DOUBLE, // Double sequence.
 DS_LONGLONG, // Longlong sequence.
 DS_COMPLEX, // Complex sequence.
 DS_DCOMPLEX, // Double complex sequence.
 DS_ID, // LongLong sequence. Not used. DS_LONGLONG is
used instead.
 DS_DATE, // Date sequence.
 DS_BYTESTR, // Bytestream sequence.
 DT_EXTERNALREFERENCE, // External reference.
 DS_EXTERNALREFERENCE // Sequence of external reference.
};

//---------------- End of the a_types.IDL file ----------------------

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1141

OO-API

ASAM ODS VERSION 5.0 10-605

10.7 QUICKREFERENCE

This chapter contains a quick reference for the most important OO-API Interfaces and their
respective methods. CORBA IDL syntax is used for a language independent representation
of return values and parameters. Detailed descriptions and examples can be found in the
respective language binding of the OO-API (see section 10.2).

Note: This chapter is intended for expert users only. Novice users might find it helpful to get
a comprehensive overview (see section 10.2).

10.7.1 INTERFACE AOFACTORY

T_STRING getDescription()

T_STRING getInterfaceVersion()

T_STRING getName()

T_STRING getType()

AoSession newSession(T_STRING auth)

10.7.2 INTERFACE AOSESSION

void abortTransaction()

void close()

void commitTransaction()

Blob createBlob()

QueryEvaluator createQueryEvaluator()

void flush()

ApplElemAccess getApplElemAccess()

ApplicationStructure getApplicationStructure()

ApplicationStructureValue getApplicationStructureValue()

BaseStructure getBaseStructure()

NameValueIterator getContext(Pattern varPattern)

NameValue getContextByName(Name varName)

T_STRING getDescription()

LockMode getLockMode()

Name getName()

T_STRING getType()

NameIterator listContext(Pattern varPattern)

void removeContext(Pattern varPattern)

void setContext(NameValue contextVariable)

void setContextString(Name varName, T_STRING value)

void setCurrentInitialRights(InitialRightSequence irlEntries, T_BOOLEAN
set)

void setLockMode(LockMode lockMode)

void setPassword(T_STRING username, T_STRING oldPassword, T_STRING
newPassword)

void startTransaction()

ISO/PAS 22720:2005(E)

1142 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-606 ASAM ODS VERSION 5.0

10.7.3 INTERFACE APPLELEMACCESS

void deleteInstances(T_LONGLONG aid, S_LONGLONG instIds)

ACLSequence getAttributeRights(T_LONGLONG aid, T_STRING attrName)

InitialRightSequence getElementInitialRights(T_LONGLONG aid)

ACLSequence getElementRights(T_LONGLONG aid)

NameSequence getInitialRightReference(T_LONGLONG aid)

InitialRightSequence getInstanceInitialRights(T_LONGLONG aid, T_LONGLONG
instId)

ACLSequence getInstanceRights(T_LONGLONG aid, T_LONGLONG instId)

ElemResultSetSequence getInstances(QueryStructure aoq, T_LONG how_many)

ResultSetExtSequence getInstancesExt(QueryStructureExt aoq, T_LONG
how_many)

S_LONGLONG getRelInst(ElemId elem, Name relName)

ValueMatrix getValueMatrix(ElemId elem)

ElemIdSequence insertInstances(AIDNameValueSeqUnitIdSequence val)

void setAttributeRights(T_LONGLONG aid, T_STRING attrName, T_LONGLONG
usergroupId, T_LONG rights, RightsSet set)

void setElementInitialRights(T_LONGLONG aid, T_LONGLONG usergroupId,
T_LONG rights, T_LONGLONG refAid, RightsSet set)

void setElementRights(T_LONGLONG aid, T_LONGLONG usergroupId, T_LONG
rights, RightsSet set)

void setInitialRightReference(T_LONGLONG aid, T_STRING refName,
RightsSet set)

void setInstanceInitialRights(T_LONGLONG aid, S_LONGLONG instIds,
T_LONGLONG usergroupId, T_LONG rights, T_LONGLONG refAid, RightsSet set)

void setInstanceRights(T_LONGLONG aid, S_LONGLONG instIds, T_LONGLONG
usergroupId, T_LONG rights, RightsSet set)

void setRelInst(ElemId elem, Name relName, S_LONGLONG instIds, SetType
type)

void updateInstances(AIDNameValueSeqUnitIdSequence val)

10.7.4 INTERFACE APPLICATIONATTRIBUTE

ApplicationElement getApplicationElement()

BaseAttribute getBaseAttribute()

DataType getDataType()

EnumerationDefinition getEnumerationDefinition()

T_LONG getLength()

Name getName()

ACLSequence getRights()

T_LONGLONG getUnit()

T_BOOLEAN hasUnit()

T_BOOLEAN hasValueFlag()

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1143

OO-API

ASAM ODS VERSION 5.0 10-607

T_BOOLEAN isAutogenerated()

T_BOOLEAN isObligatory()

T_BOOLEAN isUnique()

void setBaseAttribute(BaseAttribute baseAttr)

void setDataType(DataType dataType)

void setEnumerationDefinition(EnumerationDefinition enumDef)

vois setIsAutogenerated(T_BOOLEAN isAutogenerated)

void setIsObligatory(T_BOOLEAN isObligatory)

void setIsUnique(T_BOOLEAN isUnique)

void setLength(T_LONG length)

void setName(Name name)

void setRights(InstanceElement usergroup, T_LONG rights, RightsSet set)

void setUnit(T_LONGLONG unitId)

void withUnit(T_BOOLEAN withUnit)

void withValueFlag(T_BOOLEAN withValueFlag)

10.7.5 INTERFACE APPLICATIONELEMENT

ApplicationAttribute createAttribute()

InstanceElement createInstance(Name ieName)

InstanceElementSequence createInstances(NameValueSeqUnitSequence
attributes, ApplicationRelationInstanceElementSeqSequence
relatedInstances)

ApplicationElementSequence getAllRelatedElements()

ApplicationRelationSequence getAllRelations()

ApplicationStructure getApplicationStructure()

ApplicationAttribute getAttributeByBaseName(Name baName)

ApplicationAttribute getAttributeByName(Name aaName)

ApplicationAttributeSequence getAttributes(Pattern aaPattern)

BaseElement getBaseElement()

T_LONGLONG getId()

ApplicationRelationSequence getInitialRightRelations()

InitialRightSequence getInitialRights()

InstanceElement getInstanceById(T_LONGLONG ieId)

InstanceElement getInstanceByName(Name ieName)

InstanceElementIterator getInstances(Pattern iePattern)

Name getName()

ApplicationElementSequence getRelatedElementsByRelationship(Relationship
aeRelationship)

ApplicationRelationSequence getRelationsByType(RelationType
aeRelationType)

ACLSequence getRights()

SecurityLevel getSecurityLevel()

NameSequence listAllRelatedElements()

NameSequence listAttributes(Pattern aaPattern)

ISO/PAS 22720:2005(E)

1144 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-608 ASAM ODS VERSION 5.0

NameIterator listInstances(Pattern aaPattern,

NameSequence listRelatedElementsByRelationship(Relationship
aaRelationship)

void removeAttribute(ApplicationAttribute applAttr)

void removeInstance(T_LONGLONG ieId, T_BOOLEAN recursive)

void setBaseElement(BaseElement baseElem)

void setInitialRightRelation(ApplicationRelation applRel, T_BOOLEAN set)

void setInitialRights(InstanceElement usergroup, T_LONG rights,
T_LONGLONG refAid, RightsSet set)

void setName(Name aeName)

void setRights(InstanceElement usergroup, T_LONG rights, RightsSet set)

void setSecurityLevel(T_LONG secLevel, RightsSet set)

10.7.6 INTERFACE APPLICATIONRELATION

BaseRelation getBaseRelation()

ApplicationElement getElem1()

ApplicationElement getElem2()

Name getInverseRelationName()

RelationRange getInverseRelationRange()

Relationship getInverseRelationship()

Name getRelationName()

RelationRange getRelationRange()

Relationship getRelationship()

RelationType getRelationType()

void setBaseRelation(BaseRelation baseRel)

void setElem1(ApplicationElement applElem)

void setElem2(ApplicationElement applElem)

void setInverseRelationName(Name arInvName)

void setInverseRelationRange(RelationRange arRelationRange)

void setRelationName(Name arName)

void setRelationRange(RelationRange arRelationRange)

void setRelationType(RelationType arRelationType)

10.7.7 INTERFACE APPLICATIONSTRUCTURE

void check()

ApplicationElement createElement(BaseElement baseElem)

EnumerationDefinition createEnumerationDefinition(T_STRING enumName)

void createInstanceRelations(ApplicationRelation applRel,
InstanceElementSequence elemList1, InstanceElementSequence elemList2)

ApplicationRelation createRelation()

ApplicationElement getElementById(T_LONGLONG aeId)

ApplicationElement getElementByName(Name aeName)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1145

OO-API

ASAM ODS VERSION 5.0 10-609

ApplicationElementSequence getElements(Pattern aePattern)

ApplicationElementSequence getElementsByBaseType(BaseType aeType)

EnumerationDefinition getEnumerationDefinition(T_STRING enumName)

InstanceElement getInstanceByAsamPath(Name asamPath)

InstanceElementSequence getInstancesById(ElemIdSequence ieIds)

ApplicationRelationSequence getRelations(ApplicationElement applElem1,
ApplicationElement applElem2)

AoSession getSession()

ApplicationElementSequence getTopLevelElements(BaseType aeType)

NameSequence listElements(Pattern aePattern)

NameSequence listElementsByBaseType(BaseType aeType)

NameSequence listEnumerations()

NameSequence listTopLevelElements(BaseType aeType)

void removeElement(ApplicationElement applElem)

void removeEnumerationDefinition(T_STRING enumName)

void removeRelation(ApplicationRelation applRel)

10.7.8 INTERFACE BASEATTRIBUTE

BaseElement getBaseElement()

DataType getDataType()

Name getName()

T_BOOLEAN isObligatory()

T_BOOLEAN isUnique()

10.7.9 INTERFACE BASEELEMENT

BaseRelationSequence getAllRelations()

BaseAttributeSequence getAttributes(Pattern baPattern)

BaseElementSequence getRelatedElementsByRelationship(Relationship
brRelationship)

BaseRelationSequence getRelationsByType(RelationType brRelationType)

BaseType getType()

T_BOOLEAN isTopLevel()

NameSequence listAttributes(Pattern baPattern)

BaseTypeSequence listRelatedElementsByRelationship(Relationship
brRelationship)

10.7.10 INTERFACE BASERELATION

BaseElement getElem1()

BaseElement getElem2()

RelationRange getInverseRelationRange()

Relationship getInverseRelationship()

Name getRelationName()

ISO/PAS 22720:2005(E)

1146 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-610 ASAM ODS VERSION 5.0

RelationRange getRelationRange()

Relationship getRelationship()

RelationType getRelationType()

10.7.11 INTERFACE BASESTRUCTURE

BaseElement getElementByType(BaseType beType)

BaseElementSequence getElements(Pattern bePattern)

BaseRelation getRelation(BaseElement elem1, BaseElement elem2)

BaseElementSequence getTopLevelElements(Pattern bePattern)

T_STRING getVersion()

BaseTypeSequence listElements(Pattern bePattern)

BaseTypeSequence listTopLevelElements(Pattern bePattern)

10.7.12 INTERFACE BLOB

void append(S_BYTE value)

T_BOOLEAN compare(T_BLOB aBlob)

void destroy()

S_BYTE get(T_LONG offset, T_LONG length)

T_STRING getHeader()

T_LONG getLength()

void set(S_BYTE value)

void setHeader(T_STRING header)

10.7.13 INTERFACE COLUMN

void destroy()

DataType getDataType()

T_STRING getFormula()

Name getName()

InstanceElement getSourceMQ()

T_STRING getUnit()

T_BOOLEAN isIndependent()

T_BOOLEAN isScaling()

void setFormula(T_STRING formula)

void setIndependent(T_BOOLEAN independent)

void setScaling(T_BOOLEAN scaling)

void setUnit(T_STRING unit)

10.7.14 INTERFACE ELEMRESULTSETEXTSEQITERATOR

void destroy()

T_LONG getCount();

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1147

OO-API

ASAM ODS VERSION 5.0 10-611

ElemResultSetExtSequence nextN(T_LONG how_many)

ElemResultSetExt nextOne()

void reset()

10.7.15 INTERFACE ENUMERATIONDEFINITION

void addItem(T_STRING itemName)

T_LONG getIndex()

T_LONG getItem(T_STRING itemName)

T_STRING getItemName(T_LONG item)

T_STRING getName()

NameSequence listItemNames()

void renameItem(T_STRING oldItemName, T_STRING newItemName)

void setName(T_STRING enumName)

10.7.16 INTERFACE INSTANCEELEMENT

void addInstanceAttribute(NameValueUnit instAttr)

T_LONGLONG compare(InstanceElement compIeObj)

InstanceElementSequence createRelatedInstances(ApplicationRelation
applRel, NameValueSeqUnitSequence attributes,
ApplicationRelationInstanceElementSeqSequence relatedInstances)

void createRelation(ApplicationRelation relation, InstanceElement
instElem)

InstanceElement deepCopy(T_STRING newName, T_STRING newVersion))

void destroy()

ApplicationElement getApplicationElement()

Name getAsamPath()

T_LONGLONG getId()

InitialRightSequence getInitialRights()

Name getName()

InstanceElementIterator getRelatedInstances(ApplicationRelation applRel,
Pattern iePattern)

InstanceElementIterator getRelatedInstancesByRelationship(Relationship
ieRelationship, Pattern iePattern)

ACLSequence getRights()

NameValueUnit getValue(Name attrName)

NameValueUnit getValueByBaseName(Name baseAttrName)

NameValueUnit getValueInUnit(NameUnit attr)

NameValueUnitSequence getValueSeq(NameSequence attrNames)

NameSequence listAttributes(Pattern iaPattern, AttrType aType)

NameIterator listRelatedInstances(ApplicationRelation ieRelation,
Pattern iePattern)

NameIterator listRelatedInstancesByRelationship(in Relationship
ieRelationship, Pattern, iePattern)

ISO/PAS 22720:2005(E)

1148 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-612 ASAM ODS VERSION 5.0

void removeInstanceAttribute(Name attrName)

void removeRelation(ApplicationRelation applRel, InstanceElement
instElem_nm)

void renameInstanceAttribute(Name oldName, Nme newName)

void setInitialRights(InstanceElement usergroup, T_LONG rights,
T_LONGLONG refAid, RightsSet set)

void setName(Name iaName)

void setRights(InstanceElement usergroup, T_LONG rights, RightsSet set)

void setValue(NameValueUnit value)

void setValueSeq(NameValueUnitSequence values)

InstanceElement shallowCopy(T_STRING newName, T_STRING newVersion)

Measurement upcastMeasurement()

SubMatrix upcastSubMatrix()

10.7.17 INTERFACE INSTANCEELEMENTITERATOR

void destroy()

T_LONG getCount();

InstanceElementSequence nextN(T_LONG how_many)

InstanceElement nextOne()

void reset()

10.7.18 INTERFACE MEASUREMENT

SMatLink createSMatLink()

SMatLinkSequence getSMatLinks()

ValueMatrix getValueMatrix()

void removeSMatLink(SMatLink smLink)

10.7.19 INTERFACE NAMEITERATOR

void destroy()

T_LONG getCount();

NameSequence nextN(T_LONG how_many)

Name nextOne()

void reset()

10.7.20 INTERFACE NAMEVALUEITERATOR

void destroy()

T_LONG getCount();

NameValueSequence nextN(T_LONG how_many)

NameValue nextOne()

void reset()

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1149

OO-API

ASAM ODS VERSION 5.0 10-613

10.7.21 INTERFACE NAMEVALUEUNITIDITERATOR

void destroy()

T_LONG getCount();

NameValueUnitIdSequence nextN(T_LONG how_many)

NameValueUnitId nextOne()

void reset()

10.7.22 INTERFACE NAMEVALUEUNITITERATOR

void destroy()

T_LONG getCount();

NameValueUnitSequence nextN(T_LONG how_many)

NameValueUnit nextOne()

void reset()

10.7.23 INTERFACE NAMEVALUEUNITSEQUENCEITERATOR

void destroy()

T_LONG getCount();

NameValueSeqUnitSequence nextN(T_LONG how_many)

NameValueSeqUnit nextOne()

void reset()

10.7.24 INTERFACE QUERY

void executeQuery(NameValueSequence params)

InstanceElementIterator getInstances()

QueryEvaluator getQueryEvaluator()

QueryStatus getStatus()

NameValueSeqUnitSequence getTable()

NameValueUnitSequenceIterator getTableRows()

void prepareQuery(NameValueSequence params)

10.7.25 INTERFACE QUERY

Query createQuery(T_STRING queryStr, NameValueSequence params)

InstanceElementIterator getInstances(T_STRING queryStr,
NameValueSequence params)

NameValueSeqUnitSequence getTable(T_STRING queryStr, NameValueSequence
params)

NameValueUnitSequenceIterator getTableRows(T_STRING queryStr,
NameValueSequence params)

ISO/PAS 22720:2005(E)

1150 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-614 ASAM ODS VERSION 5.0

10.7.26 INTERFACE SMATLINK

BuildUpFunction getLinkType()

T_LONG getOrdinalNumber()

SubMatrix getSMat1()

ColumnSequence getSMat1Columns()

SubMatrix getSMat2()

ColumnSequence getSMat2Columns()

void setLinkType(BuildUpFunction linkType)

void setOrdinalNumber(T_LONG ordinalNumber)

void setSMat1(SubMatrix subMat1)

void setSMat1Columns(ColumnSequence columns)

void setSMat2(SubMatrix subMat2)

void setSMat2Columns(in ColumnSequence columns)

10.7.27 INTERFACE SUBMATRIX

ColumnSequence getColumns(Pattern colPattern)

ValueMatrix getValueMatrix()

NameSequence listColumns(Pattern colPattern)

10.7.28 INTERFACE VALUEMATRIX

Column addColumn(NameUnit newColumn)

Column addColumnScaledBy(NameUnit newColumn, Column scalingColumn)

void destroy()

T_LONG getColumnCount()

ColumnSequence getColumns(Pattern colPattern)

ColumnSequence getColumnsScaledBy(Column scalingColumn)

ColumnSequence getIndependentColumns(Pattern colPattern)

T_LONG getRowCount()

ColumnSequence getScalingColumns(Pattern colPattern)

NameValueSeqUnitSequence getValue(ColumnSequence columns, T_LONG
startPoint, T_LONG count)

NameValueUnitIterator getValueMeaPoint(T_LONG meaPoint,

TS_ValueSeq getValueVector(Column col, T_LONG startPoint, T_LONG count)

NameSequence listColumns(Pattern colPattern)

NameSequence listColumnsScaledBy(Column scalingColumn)

NameSequence listIndependentColumns(Pattern colPattern)

NameSequence listScalingColumns(Pattern colPattern)

void removeValueMeaPoint(NameSequence columnNames, T_LONG meaPoint,
T_LONG count)

void removeValueVector(Column col, T_LONG startPoint, T_LONG count)

void setValue(SetType set, T_LONG startPoint, NameValueSeqUnitSequence
value)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1151

OO-API

ASAM ODS VERSION 5.0 10-615

void setValueMeaPoint(SetType set, T_LONG meaPoint, NameValueSequence
value)

void setValueVector(Column col, SetType set, T_LONG startPoint,
TS_ValueSeq value)

ISO/PAS 22720:2005(E)

1152 © ISO 2005 – All rights reserved

ASAM ODS VERSION 5.0

10-616 ASAM ODS VERSION 5.0

10.8 REVISION HISTORY

Date
Editor

Changes

2004-03-04
R. Bartz

compared content of this chapter with ODS-IDL of version rc3 (Dec. 2003);
updated 10.2, 10.5, and 10.7 accordingly

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1153

ASAM e.V.

Arnikastr. 2

D-85635 Hoehenkirchen

Germany

phone: (+49) 8102 – 895317

fax: (+49) 8102 – 895310

e-mail: info@asam.net

internet: www.asam.net

ISO/PAS 22720:2005(E)

1154 © ISO 2005 – All rights reserved

ASAM ODS
VERSION 5.0

ISO-PAS

CHAPTER 11

NVH APPLICATION MODEL

Version 1.3

Association for Standardization of
Automation and Measuring Systems

Dated: 30.09.2004

© ASAM e.V.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1155

Status of Document

Reference: ASAM ODS Version 5.0 NVH Application Model

Date: 30.09.2004

Author: Gert Sablon, LMS; Karsten Rucker, Müller-BBM; Dr. Wartini,
Müller-BBM; Elmar Klinkenberg, Head Acoustics

Type: Specification

Doc-ID: ASAM_ODS_50_CH11_NVH_Model.PDF

Revision
Status:

Release

Note: ASAM ODS has invoked a Formal Technical Review (FTR) process which
intends to continuously improve the quality and timeliness of its specifications.
Whenever an error is identified or a question arises from this specification, a
corresponding note should be sent to ASAM (odsfrt@asam.net) to make sure
this issue will be addressed within the current review cycle.

Disclaimer of Warranty

Although this document was created with the utmost care it cannot be guaranteed that it is
completely free of errors or inconsistencies.

ASAM e.V. makes no representations or warranties with respect to the contents or use of this
documentation, and specifically disclaims any expressed or implied warranties of

merchantability or fitness for any particular purpose. Neither ASAM nor the author(s)
therefore accept any liability for damages or other consequences that arise from the use of

this document.

ASAM e.V. reserves the right to revise this publication and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes.

ISO/PAS 22720:2005(E)

1156 © ISO 2005 – All rights reserved

mailto:odsfrt@asam.net

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-1

Contents

11 NVH APPLICATION MODEL 3

11.1 INTRODUCTION...3
11.2 HOW TO DESCRIBE THE NVH PARAMETERS..5
11.3 TYPES OF NVH DATA...5
11.4 1D DATA ...6
11.5 2D DATA ...7

11.5.1 GENERAL DESCRIPTION ...7
11.5.2 STREAMED...9
11.5.3 REFERENCED STREAMED ...10
11.5.4 SPECTRUM...11
11.5.5 REFERENCED SPECTRUM ...12
11.5.6 OCTAVE SPECTRUM ...13
11.5.7 CUT ...13
11.5.8 CHOICES DEFINITIONS..14
11.5.9 PHYSICAL STORAGE ..17

11.6 3D DATA ...21
11.6.1 GENERAL DESCRIPTION ...21
11.6.2 PHYSICAL STORAGE ..22

11.7 THE MTL DATA TYPE ...26
11.7.1 GENERAL DESCRIPTION ...26
11.7.2 PHYSICAL STORAGE ..28

11.8 THE RAINFLOW DATA TYPE...30
11.8.1 GENERAL DESCRIPTION ...30
11.8.2 PHYSICAL STORAGE ..32

11.9 THE TAL DATA TYPE..35
11.9.1 GENERAL DESCRIPTION ...35
11.9.2 PHYSICAL STORAGE ..37

11.10QUANTITIES AND UNITS..39
11.10.1 QUANTITIES ...39
11.10.2 UNITS ..40

11.11REVISION HISTORY...43

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1157

ASAM ODS VERSION 5.0

11-2 ASAM ODS VERSION 5.0

Scope

This document is a brief description of the application model for NVH (noise, vibration, and
harshness) data in ASAM ODS Version 5.0.

Intended Audience

This document is intended for people interested in ASAM ODS Version 5.0 and the NVH
application model. It shall be used a reference that describes this specific application model.

This document is part of a series of documents referring to ASAM ODS Version 5.0 and must
not be used as a stand-alone document. The documents referenced below build the
technical reference of ASAM ODS Version 5.0 as a whole. They may be requested from the
ASAM e.V. at www.asam.net.

ASAM ODS Specification

The following chapters build the technical reference for ASAM ODS Version 5.0:

 ASAM ODS Version 5.0, Chapter 1, Introduction

 ASAM ODS Version 5.0, Chapter 2, Architecture

 ASAM ODS Version 5.0, Chapter 3, Physical Storage (1.1)

 ASAM ODS Version 5.0, Chapter 4, Base Model (28)

 ASAM ODS Version 5.0, Chapter 5, ATF/CLA (1.4.1)

 ASAM ODS Version 5.0, Chapter 6, ATF/XML (1.0)

 ASAM ODS Version 5.0, Chapter 7: N/A ('Security' moved to Chapter 2)

 ASAM ODS Version 5.0, Chapter 8, MIME Types and External References (1.0)

 ASAM ODS Version 5.0, Chapter 9, RPC-API (3.2.1)

 ASAM ODS Version 5.0, Chapter 10, OO-API (5.0)

 ASAM ODS Version 5.0, Chapter 11, NVH Model (1.3)

 ASAM ODS Version 5.0, Chapter 12, Calibration Model (1.0)

Normative References

 ISO 10303-11: STEP EXPRESS

 Object Management Group (OMG): www.omg.org

 Common Object Request Broker Architecture (CORBA): www.corba.org

 IEEE 754: IEEE Standard for Binary Floating-Point Arithmetic, 1985

 ISO 8601: Date Formats

 Extensible Markup Language (XML): www.w3.org/xml

ISO/PAS 22720:2005(E)

1158 © ISO 2005 – All rights reserved

www.asam.net
www.omg.org
www.corba.org
www.w3.org/xml

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-3

11 NVH APPLICATION MODEL

11.1 INTRODUCTION

This chapter describes the application model for NVH Data (NVH Data Model) as proposed
by the corresponding ASAM ODS workgroup. The NVH Data Model is based on the ASAM
ODS base model, and it is intended to be a minimal application model. This means that
anyone who sets up an application model, and wants his database to include NVH data,
needs at least all application elements proposed in this document.

NVH stands for Noise, Vibration and Harshness, and it is a specific field of activity in the
industry, where a lot of simulation results and measurement data exist. Since there exist
quite a lot of software solutions for problem solving in the NVH field, being able to share data
between all these solutions is of high importance to the users of such software.

The data that are typically measured and processed in this domain are very diverse in
nature, and in order to be able to correctly interpret these data, some descriptive information
is typically added to the data in form of extra parameters.

This can best be explained by means of an example. This example starts from 2 sine waves,
both of them measured during 0,5 s. The first sine wave has a frequency of 4 Hz (red), the
second one 5 Hz (green). Both sine waves have an amplitude of 1 V.

0.00 0.50s

-1.00

1.00

R
ea

l
V

0.00

1.00

A
m

pl
itu

de

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1159

ASAM ODS VERSION 5.0

11-4 ASAM ODS VERSION 5.0

A typical operation is the Fast Fourier Transform, by means of which we can transfer both
sine waves to the frequency domain. Now, if we do this for both sine waves, we get the
following result.

0.00 15.00Hz

0.00

1.00

A
m

pl
itu

de
V

0.00

1.00

A
m

pl
itu

de

1.00

0.50

0.71
0.64

4.00 5.00

The sine wave with frequency 4 Hz nicely shows up as a peak at 4 Hz with amplitude of 1 V,
but the sine wave with frequency of 5 Hz does not look so nice. This is due to the fact that
this sine wave was not measured in the right way. The Discrete Fourier Transform will only
show the right result when the signal is measured periodically, meaning that an integer
number of periods of the sine wave must be measured to give the correct result in the
frequency domain. The 4 Hz sine wave has exactly 2 periods in the 0,5 s measurement, but
the 5 Hz sine wave has 2,5 periods, which is not an integer number. This results is what is
called leakage: the energy of the sine wave at 5 Hz leaks away to the neighboring
frequencies, resulting in a broader peak with a too low amplitude.

When measuring physical signals on cars or airplanes, it can never be guaranteed that the
measurement is nicely periodic for all information in the signal, a technique to better
condition this problem is needed, and digital signal processing provides such a technique:
windowing. By applying a window to the measured time domain signal first, the non-
periodicity of it is attenuated, but the signal itself too, so the result after windowing contains
less energy, and thus will show up with a smaller amplitude in the frequency domain.

0.00 15.00Hz

0.00

1.00

A
m

p
lit

u
de

V

0.00

1.00

A
m

p
lit

u
de

V

0.50

0.38
0.42 0.42

4.00 5.00

But knowing the window shape, this reduction in amplitude or energy can be compensated
for by multiplying the result with what is called the window correction factor.

ISO/PAS 22720:2005(E)

1160 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-5

0.00 15.00Hz

0.00

1.00

A
m

pl
itu

de
V

0.00

1.00

A
m

pl
itu

de

V

1.00

0.75

0.84 0.85

4.00 5.00

As can be seen on the last figure, after correction with the window correction factor, the sine
wave at 4 Hz again gets an amplitude of 1 V – which is correct – and the sine wave at 5 Hz
looks better now: it is easier to see that the center of the peak is at 5 Hz, and the amplitude is
0,85 V instead of the 0,64 V before windowing.

Of course, this is only possible if the window that was used and the corresponding window
correction factor is known. This information must be stored separately, but together with the
data, because further signal processing operation might require undoing the window
correction or changing it into something else. Therefore, this kind of information is typically
stored in attributes that go along with the data.

11.2 HOW TO DESCRIBE THE NVH PARAMETERS

Because it was not the intention to change existing ASAM ODS application models by adding
all the necessary application attributes to correctly describe NVH data, the workgroup
decided to make use of the AoParameterSet and AoParameter elements for storing this extra
information.

Some few applic.attributes needed to be introduced (LocalColumn)

Names of Appl.El. of AoPar...

Usage of Attributes of AoPar..

Names of instance elements are specified... ==Table header “Parameter name”

11.3 TYPES OF NVH DATA

There are a lot of different data types in NVH data. The easiest way to divide them in
categories is by using the dimensionality of the data.

Using that approach, this proposal will contain descriptions on how to store the following
types of data:

 1D (one-dimensional)

 2D (two-dimensional)

 3D (three-dimensional)

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1161

ASAM ODS VERSION 5.0

11-6 ASAM ODS VERSION 5.0

In the remainder of this document, each of these data types will be explained in more detail,
and a table will be given containing all parameters needed to describe the corresponding
data type. The column in this table, titled "Flag" denotes whether this parameter is really
necessary for correct interpretation of this data type. This means that the real minimal
application model should only include instances of type AoParameter for these parameters
where this last column contains the value "required".

All data types for the parameters are specified by means of the data type enumeration name
(see chapter 2.5 for more details on data types and their enumerations).

11.4 1D DATA

This data type is just a sequence of numbers, or a vector in other words. Therefore, it is
called 1D data. This data type is typically used to store e.g. tacho pulse information. It will be
described using the following parameters.

Parameter name DataType enum name Flag

creation time DT_DATE optional

last modification time DT_DATE optional

pulses per rev DT_FLOAT required

acquisition sample rate DT_FLOAT optional

carrier frequency DT_FLOAT required

MIME Types for 1D Data MIME Type String

1D Data …aomeasurementquantity.tachovector
…aomeasurement.tachovector

ISO/PAS 22720:2005(E)

1162 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-7

11.5 2D DATA

11.5.1 GENERAL DESCRIPTION

2D data are typically represented in a 2D array, where 1 dimension depends on the length of
the function and the other dimension is 2 or more:

 in the most simple case the dimension is 2: one vector with Y-axis values and another
one with X-axis values

 in other cases, there could be multiple X-axis (e.g. Hz and rpm)

Looking at all possible types of 2D functions that exist in the NVH Data World, and the fact
that each of these functions typically needs some other parameters to describe them, the
workgroup tried to simplify the handling of the data by categorizing all such functions in a few
groups. These groups will be defined in ASAM ODS as different MIME types.

MIME Types for 2D Data MIME Type String

Streamed …aomeasurementquantity.streamed
…aomeasurement.streamed

Referenced Streamed …aomeasurementquantity.referencedstreamed
…aomeasurement.referencedstreamed

Spectrum …aomeasurementquantity.spectrum
…aomeasurement.spectrum

Referenced Spectrum …aomeasurementquantity.referencedspectrum
…aomeasurement.referencedspectrum

Octave Spectrum …aomeasurementquantity.octavespectrum
…aomeasurement.octavespectrum

Streamed Cut …aomeasurementquantity.streamedcut
…aomeasurement.streamedcut

Referenced Streamed Cut …aomeasurementquantity.referencedstreamedcut
…aomeasurement.referencedstreamedcut

Spectrum Cut …aomeasurementquantity.spectrumcut
…aomeasurement.spectrumcut

Referenced Spectrum Cut …aomeasurementquantity.referencedspectrumcut
…aomeasurement.referencedspectrumcut

Octave Spectrum Cut …aomeasurementquantity.octavespectrumcut
…aomeasurement.octavespectrumcut

The 5 MIME types at the end of the table, with their names ending with "Cut" are necessary for
2D functions of the type "Cut". These functions are in fact the result of an operation performed
on 3D objects, typically called "Waterfalls" (see next section).

These "Cut" operations result in a 2D function that can be described by the means of the 5
basic MIME types for 2D data, and a few additional parameters.

Therefore it has been decided to represent these data by a different MIME type, and to give
those functions 2 Parameter Sets:

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1163

ASAM ODS VERSION 5.0

11-8 ASAM ODS VERSION 5.0

 the first Parameter Set is the one that corresponds to the Basic MIME type
 the second Parameter Set contains some few extra parameters that describe how the

"Cut" operation was performed

The tables at the end of this section will describe the possible values for various parameters.

The names of the AoParameterSets are the following ones:
 for the 5 basic MIME Types: "basic"
 for the Cut MIME Type: "cut"

Any party may add company dependent parameters at any time. In order to make sure this does
not lead to confusion, those parameter names must be prefixed by "_[company name]_":

e.g.:
_MBBM_SpecialWindowType
_HeadAcoustics_SpecialPsychoAcousticIndex
_LMS_SpecialModalAnalysisParameter

ISO/PAS 22720:2005(E)

1164 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-9

11.5.2 STREAMED

Parameter name DataType enum name Flag

creation time DT_DATE optional

last modification time DT_DATE optional

nvh_type DT_STRING required

acquisition/calculation method DT_STRING required

acoustical weighting DT_STRING required

amplitude scaling DT_STRING required

reference rpm DT_FLOAT optional

emphasis DT_BOOLEAN required

averaging mode DT_STRING optional

lin/exp averaging time constant DT_FLOAT optional

peak hold time constant DT_FLOAT optional

number of averages DT_LONG optional

The most typical example of streamed data is time domain data, sometimes also called
throughput data. Mostly these are very long data streams (MegaBytes to GigaBytes).

When the averaging mode is Slow, Fast or Impulse, then the ‘lin/exp averaging time
constant’ and the ‘peak hold time constant’ are to be ignored, and the values used are
standardized at:

Mode lin/exp averaging time constant peak hold time constant

Slow 1 s None

Fast 125 ms None

Impulse 35 ms 1,5 s

Note that the corresponding channel name of the function is stored as instance name of
AoMeasurementQuantity.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1165

ASAM ODS VERSION 5.0

11-10 ASAM ODS VERSION 5.0

11.5.3 REFERENCED STREAMED

Parameter name DataType enum name Flag

creation time DT_DATE optional

last modification time DT_DATE optional

reference channel name DT_STRING required

reference channel quantity reference to AoQuantity required

nvh_type DT_STRING required

acquisition/calculation method DT_STRING required

acoustical weighting DT_STRING required

amplitude scaling DT_STRING required

reference rpm DT_FLOAT optional

reference rpm channel DT_STRING (channel name) optional

emphasis DT_BOOLEAN required

averaging mode DT_STRING optional

lin/exp averaging time constant DT_FLOAT optional

peak hold time constant DT_FLOAT optional

This is a variant of the previous data type, containing only 2 extra parameters – ‘reference
channel name’ and ‘reference channel quantity’. This is needed in the case of a cross-
correlation (which is indicated through the ‘nvh_type’ parameter).

Name and quantity of the non-referenced channel are always documented via the
corresponding base attributes of the AoMeasurementQuantity instance.

ISO/PAS 22720:2005(E)

1166 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-11

11.5.4 SPECTRUM

Parameter name DataType enum name Flag

creation time DT_DATE optional

last modification time DT_DATE optional

nvh_type DT_STRING required

acquisition/calculation method DT_STRING required

user acquisition/calculation method DT_STRING optional

window type DT_STRING required

user window function reference to AoMeasurement optional

window correction mode DT_STRING required

energy correction factor DT_FLOAT required

amplitude correction factor DT_FLOAT required

acoustical weighting DT_STRING required

amplitude scaling DT_STRING required

spectrum format DT_STRING required

averaging mode DT_STRING optional

exp averaging time constant DT_FLOAT optional

number of averages DT_LONG optional

reference rpm DT_FLOAT optional

reference rpm channel DT_STRING (channel name) optional

This data type is used to represent the results of operations that generate frequency or order
type of data. Again, the ‘nvh_type’ field indicates the precise kind of function that is
represented here.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1167

ASAM ODS VERSION 5.0

11-12 ASAM ODS VERSION 5.0

11.5.5 REFERENCED SPECTRUM

Parameter name DataType enum name Flag

creation time DT_DATE optional

last modification time DT_DATE optional

reference channel name DT_STRING required

non-reference channel name DT_STRING optional

nvh_type DT_STRING required

acquisition/calculation method DT_STRING required

window type DT_STRING required

user window function Reference to AoMeasurement optional

reference window type DT_STRING required

reference user window function Reference to AoMeasurement optional

window correction mode DT_STRING required

energy correction factor DT_FLOAT required

amplitude correction factor DT_FLOAT required

acoustical weighting DT_STRING required

amplitude scaling DT_STRING required

spectrum format DT_STRING required

averaging mode DT_STRING optional

exp averaging time constant DT_FLOAT optional

number of averages DT_LONG optional

reference rpm DT_FLOAT optional

reference rpm channel DT_STRING (channel name) optional

This type is used in case of referenced spectra, crosspowers, etc.. It mostly needs the same
attributes as the non-referenced spectrum type of data, but additionally needs information
about the reference channel.

2 application relations have to be added, called "reference_channel_quantity" and
"non_reference_channel_quantity", and both are references to the corresponding
AoQuantity. These 2 references replace the formerly defined attributes in the table above.

ISO/PAS 22720:2005(E)

1168 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-13

11.5.6 OCTAVE SPECTRUM

Parameter name DataType enum name Flag

creation time DT_DATE optional

last modification time DT_DATE optional

nvh_type DT_STRING required

acquisition/calculation method DT_STRING required

acoustical weighting DT_STRING required

amplitude scaling DT_STRING required

spectrum format DT_STRING required

octave type DT_LONG required

averaging mode DT_STRING optional

lin/exp averaging time constant DT_FLOAT optional

peak hold time constant DT_FLOAT optional

The octave spectrum is a specific type of spectrum, since it is some kind of reduced frequency
spectrum. A third-octave spectrum for instance, typically only contains 24 data values (one for
each third-octave band).

11.5.7 CUT

Parameter name DataType enum name Flag

cut value DT_FLOAT required

cut width DT_FLOAT required

This ParameterSet is supplemental to the ParameterSet that corresponds to one of the 5
basic MIME types defined before.

This type contains the results of cuts, performed on 3D data objects (waterfalls).

The cut unit and cut width unit are annotated via the base attribute "unit" of the AoParameter
instance.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1169

ASAM ODS VERSION 5.0

11-14 ASAM ODS VERSION 5.0

11.5.8 CHOICES DEFINITIONS

The permitted values for various parameters are restricted to a set of predefined values,
which are defined below. The values must be written exactly as listed below.

PARAMETER NVH_TYPE

Possible values

s
tr

e
a

m
e

d

R
e

f.
 s

tr
e
a
m

e
d

s
p

e
c
tr

u
m

R
e
f.

 s
p

e
c
tr

u
m

o
c

ta
v

e

Equidistant

Non-equidistant

Complex Spectrum

Autopower Spectrum

Crosspower Spectrum

Complex Order Spectrum

Order Autopower Spectrum

Order Crosspower Spectrum

Autocorrelation

Crosscorrelation

Frequency Response Spectrum

Impulse Response

Order Response Spectrum

Order Impulse Response

Shock Response Spectrum

Coherence

Order Coherence

Cepstrum

PARAMETER ACQUISITION/CALCULATION METHOD

Possible values

Undefined

Overall Level

Variable Blocked

Kalman

Sound Intensity

ISO/PAS 22720:2005(E)

1170 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-15

Possible values

Stationary Loudness

Instationary Loudness

Roughness

Fluctuation Strength

Sharpness

Articulation Index Open

Articulation Index Closed

Speech Interference Level

Impulsiveness

Principal Components Analysis

User

PARAMETER WINDOW TYPE

Possible values

Hanning

Hamming

Flattop

Uniform

Kaiser-Bessel

Blackman

Force

Exponential

Force-Exponential

User

Undefined

PARAMETER REFERENCE WINDOW TYPE

Same choices as for ‘window type’.

PARAMETER WINDOW CORRECTION MODE

Possible values

Amplitude

Energy

None

Reflects how the data are stored physically.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1171

ASAM ODS VERSION 5.0

11-16 ASAM ODS VERSION 5.0

PARAMETER ACOUSTICAL WEIGHTING

Possible values

Linear

A

B

C

D

AB

Undefined

PARAMETER AMPLITUDE SCALING

Possible values

0-peak

Peak-peak

Magnitude

RMS

The value Magnitude is only valid for (ref) streamed data (data are rectified)

PARAMETER SPECTRUM FORMAT

Possible values

Linear

Power

PSD

ESD

These choices and the previous one (amplitude scaling) are to be interpreted in the following
sense: given a sine wave with 0-peak amplitude of A, the result of a Fourier Transform is
given in the next table for all relevant possible combinations of ‘amplitude scaling’ and
‘spectrum format’.

0-peak Peak-peak RMS

Linear A 2A

2

A

Power A2 4A2

2

2A

ISO/PAS 22720:2005(E)

1172 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-17

0-peak Peak-peak RMS

PSD

f
A2

f
A24

f
A

2

2

ESD
T
f
A2

f
A24 T

f
A2

Comment: For crosspowers, the spectrum format is expected to always be power. Although it
is theoretically possible to take the square root of the values and the unit, this makes no real
sense in terms of physics.

PARAMETER AVERAGING MODE (SPECTRUM)

Possible values

Linear

Exponential

PARAMETER AVERAGING MODE (STREAMED & OCTAVE)

Possible values

Slow

Fast

Impulse

None

Exponential

LEQ

Linear

User

The value LEQ is the abbreviation for “Equivalent Sound level”.

11.5.9 PHYSICAL STORAGE

DATA STORAGE

In principle, 3 possibilities exist to store the data:
 Data in local column(s)
 Data in external binary file – Mixed Mode
 Data in original file format external file – AoExternalReference

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1173

ASAM ODS VERSION 5.0

11-18 ASAM ODS VERSION 5.0

Especially for the first 2 cases, it is necessary to define what happens for data with multiple
X-axes, because this often happens with NVH data. Although the documentation is not
explicit about this, it seems that historically, nobody has ever created more than 1
independent column in a Submatrix.

Therefore, the following solution is proposed:
 All values for the X- and Y-axes are stored in one Submatrix
 An application attribute of type DT_ENUM, with name "axistype" and possible values

(Xaxis, Yaxis, Both) must be added to the application element derived from
AoLocalColumn.

The alternative of adding an AoParameter to the corresponding AoMeasurementQuantity has
not been chosen because of performance reasons.

X-axes of type time (exactly: which has a unit that relates to the physical dimension time) are
stored as 8 Byte floating point values according to IEEE 754. In case an absolute time is
needed (to be associated with the first measurement value), this can be found in the
"measurement_begin" base attribute of the corresponding AoMeasurement.

(REFERENCED) STREAMED DATA

Most of the time, the values are stored as floats or doubles, but sometimes, the "raw" data –
as they are produced by the Analog-to-Digital converter in the measurement equipment – are
stored. In that case, they are typically 16, 20 or 24 bit numbers, and in order to know what
the real measured value was, a conversion needs to be performed:

result = ((raw * scale) + offset) * calibration

The scale, offset and calibration values are stored as generation parameters in that case.

WINDOW CORRECTION FACTORS

The window correction factors that are indicated in the corresponding parameters are
supposed to be applied to the data, as defined by the window correction mode parameter.

This means that if data are annotated as amplitude corrected, and the client application
wants to have the data in energy correction, then the client must perform the following
operation:

New_val = (stored_val / ampl_corr) * en_corr

This equation is always applicable, independent of the spectrum format. So if data are stored
in power format, the correction factors are the square values of the corresponding correction
factors for linear format.

For referenced data, the correction factors are the multiplication/division of the
referenced/non-referenced channel factors.

AOPARAMETER REFERENCES

The main question for building the application model in the case of NVH data is the element
from which the AoParameterSet that contains all descriptive information for the functions
should be referenced. This question comes down to trading off clarity and accessibility
against redundancy.

ISO/PAS 22720:2005(E)

1174 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-19

It has been decided in the workgroup that 2 possibilities will be offered: either reference from
the instances of AoMeasurement or from the instances of AoMeasurementQuantity.

If two ParameterSets are found for a Measurement Quantity anyhow: one attached to the
AoMeasurementQuantity instances and the other attached to the AoMeasurement instances,
then the ParameterSet attached to the AoMeasurementQuantity instances has priority.

Reference from AoMeasurement instances
This is the best way in case all channels (AoMeasurementQuantity instances) contain the
same kind of information, since redundancy would be very high in that case.

Reference from AoMeasurementQuantity instances
This is the better way in case different kinds of functions have been used for different
measurement channels (AoMeasurementQuantity instances).

2D Physical Storage

iMeasurement

iMeasurementQuantity

iParameterSet

iParameter

iSubMatrix

iLocalColumn
iParameter

iLocalColumniMeasurementQuantity
X

Y

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1175

ASAM ODS VERSION 5.0

11-20 ASAM ODS VERSION 5.0

For referenced spectrum, a special case is allowed for referencing the non-reference
channel. Two optional parameters are foreseen for this (non-reference channel name and
non-reference quantity), but this means that this ParameterSet can only be referenced from
the instances of AoMeasurementQuantity, and not from those of AoMeasurement. This can
lead to quite some redundancy, and loss of performance when writing/reading the data.
Therefore, it is allowed to reference the ParameterSet for such data from the
AoMeasurement instances, and use application attributes instead of the 2 optional
AoParameters. The application attributes should be called “non_reference_channel_name"
and "non_reference_channel_quantity".

2D Physical Storage

iMeasurement

iMeasurementQuantity

iParameterSet

iParameter

iSubMatrix

iLocalColumn
iParameter

iLocalColumniMeasurementQuantity
X

Y

ISO/PAS 22720:2005(E)

1176 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-21

11.6 3D DATA

11.6.1 GENERAL DESCRIPTION

3D data are in fact sets of 2D data that are linked together in the 3rd dimension by an additional
parameter. Typically, all X-axis of the 2D functions contained in a 3D data object are the same,
but there are some cases where they are different indeed.

0.00 3187.50Hz

1200.00

3800

rpm

0.00

0.03

P
a

Since the 2D functions in such a 3D data object are all functions of the same kind that have
been described before, the MIME types that will be introduced for 3D data are derived from the
ones that were defined for 2D data.

MIME Types for 3D Data MIME Type String

Streamed …aomeasurementquantity.streamed3D
…aomeasurement.streamed3D

Referenced Streamed …aomeasurementquantity.referencedstreamed3D
…aomeasurement.referencedstreamed3D

Spectrum …aomeasurementquantity.spectrum3D
…aomeasurement.spectrum3D

Referenced Spectrum …aomeasurementquantity.referencedspectrum3D
…aomeasurement.referencedspectrum3D

Octave Spectrum …aomeasurementquantity.octavespectrum3D
…aomeasurement.octavespectrum3D

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1177

ASAM ODS VERSION 5.0

11-22 ASAM ODS VERSION 5.0

11.6.2 PHYSICAL STORAGE

The same argument as before is true here with respect to referencing the AoParameterSet
element: this can be done from the instances of AoMeasurement or from the instances of
AoMeasurementQuantity, depending on the data.

Reference from AoMeasurement

Reference from AoMeasurementQuantity

3D Physical Storage

iMeasurement

iMeasurementQuantity

iParameterSet

iParameter

iSubMatrix

iLocalColumn
iParameter

iLocalColumniMeasurementQuantity
Z[1..M]

Y[1..N]

iMeasurementQuantity iLocalColumn
X

iSubMatrix

iSubMatrix

ISO/PAS 22720:2005(E)

1178 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-23

Following characteristics of 3D data will influence the physical storage:
 It must be possible to store an arbitrary number of 2D functions as result data for one

channel.
 The 2D functions have X and Y units. These do not change with time, which means

they are identical for all 2D functions within one 3D data object.
 It must be possible to assign an arbitrary number of scan values to each 2D function,

these are stored as Z-axis information.
 The X value ranges of the 2D functions within one 3D data object, the X axis, need

not be identical. It should be possible for the client to distinguish between 3D objects
with fixed or varying X-axes.

Current ODS implementations model base elements AoSubmatrix and AoLocalColunm
explicitly. This allows definition of application references between e.g. submatrices.

 Since the NVH model makes use of these possibilities, NVH data generally cannot be
stored and 3D data also cannot be retrieved via the RPC-API. It is thus strongly
recommended to use the OO-API for NVH data.

 This allows a uniform way for storing 3D data objects with varying and fixed X axes,
which is described below.

3D Physical Storage

iMeasurement

iMeasurementQuantity

iParameterSet

iParameter

iSubMatrix

iLocalColumn
iParameter

iLocalColumniMeasurementQuantity
Z[1..M]

Y[1..N]

iMeasurementQuantity iLocalColumn
X

iSubMatrix

iSubMatrix

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1179

ASAM ODS VERSION 5.0

11-24 ASAM ODS VERSION 5.0

Three distinct submatrices are used to store data for one 3D data object. One submatrix (Sx)
holds data for the X axes. A second submatrix (Sy) holds data for the Y axes and a third
submatrix (Sz) will store the Z axes.

There could be more than one 3D data object within the context of one measurement.

Two application references between submatrix instances describe which submatrices
“belong together” resp. are constituents of one 3D data object. The first is named “x-axis-for-
y-axis” (inverse name “y-axis-for-x-axis”) between Sy and Sx. The second is named “z-axis-
for-y-axis” (inverse name “y-axes-for-z-axes”) between Sy and Sz. It is therefore possible to
navigate to the X or Z-axes, if a fast channel (Y-axes) is given.

The following two figures show how 3D data objects with fixed and varying X axes are stored
in local columns and submatrices.

Fixed X-axis:

Sx Sy
Time rpm Temp Frequency Micro1
t0 rpm0 T0 f1 y1/1
t1 rpm1 T1 f2 y1/2
… … … … …

f25 y1/25
y2/1
y2/2
…
y2/25
…

Sz

x-axis for y-axisz-axis for y-axis

Varying X-axis:

Sx Sy
Time rpm Y-index Frequency Micro1
t0 rpm0 0 f1/1 y1/1
t1 rpm1 25 f1/2 y1/2
… … … … …

f1/25 y1/25
f2/1 y2/1
f2/2 y2/2
… …
f2/23 y2/23
… …

Sz

x-axis for y-axis
z-axis for y-axis

It is possible that e.g. rpm has also been measured as independent streamed data, and thus
has an AoParameterSet connected to the AoMeasurementQuantity for the local column that
represents the Y values of the rpm signal. If, in the same measurement, 3D data objects
have been stored, with rpm as tracking value, then the Z-axis of these 3D objects is

ISO/PAS 22720:2005(E)

1180 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-25

connected to the same AoMeasurementQuantity, and as such, even the Z-axis will have an
AoParameterSet connected to it. This is however not the case in general.

It is not an obligation to have an AoParameterSet for Z-axis local columns.

It must be possible to extract the distinct 2D functions from the column, which contains data
for the fast channel.
For fixed X-axes, the number of Y values of a 2D function is given by the number of X-axes
values nx (number of rows Sx). The nth Y-axis can therefore be read by querying values

[(n – 1) * nx, n * nx – 1] from Sy

For varying X-axes, a special local column named “yindex” must be created in Sz. The client
can read the complete column in one request and find the row range depending on the Z
value of the corresponding 2D function in Sy and Sz: [yindex[n-1], yindex[n]-1]; for the last
2D function: [yindex[n-1],ny]

The following constraints must be fulfilled:

 for fixed X-axis:
ny = nz * nx

 for varying X-axis:
ny = nx
yindex[n] > yindex[m] if n > m
yindex[n] < ny for all n

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1181

ASAM ODS VERSION 5.0

11-26 ASAM ODS VERSION 5.0

11.7 THE MTL DATA TYPE

11.7.1 GENERAL DESCRIPTION

MTL stands for “Multidimensional Time at Level”, a statistical method for the time series
measurement domain. It is a kind of multi-dimensional classification, representing the total
amount of time the measured signals are on the specified levels.

An MTL calculation is performed on a group of channels of a time series measurement
(typically up to 6 channels, each up to 1 Million values) and results in one submatrix
containing the classified quantities: one independent channel for the levels and for each
quantity, there is a dependent channel containing the time information. For a full
multidimensional time at level information there are two information parts reserved. They
have to be used:

MIME Types for MTL Data MIME Type String

MTL Description …aomeasurement.mtl

MTL Result …aosubmatrix.mtl

OVERALL AOPARAMETER

Because of the product dependencies in calculation and handling the vendor and product
information should be part of the overall data information.

Parameter name DataType
enum
name

Flag Comment

Vendor DT_STRI
NG

optional Vendor of the software which created the
AoParameterSet

Product DT_STRI
NG

optional Product name which created the AoParameterSet

ProductVersion DT_STRI
NG

optional Version of the product

CreationDate DT_DATE optional Creation date of the AoParameterSet

ISO/PAS 22720:2005(E)

1182 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-27

RESULT SPECIFIC AOPARAMETER

Following attributes are required/interesting for correct interpretation of the result data.

Parameter name DataType
enum name

Flag Comment

dimension DT_LONG required Dimension of the classification
corresponding to the number of
classification channels (2..n)

ClassMinimum DT_STRING required Consists of all Classification Minimum
(bottom of classification ranges) of all
classification channels, according to ODS
definitions (CSV),
e.g. “-2.34,-3.45,4.34”

ClassMaximum DT_STRING required Consists of all Classification Maximum
(top of classification ranges) of all
classification channels, according to ODS
definitions (CSV), e.g. “2.34,3.45,14.34”

NClasses DT_STRING required Consists of all number of classes of all
classification channels, according to ODS
definitions (CSV), e.g. “10,10,64”.

BinWidth(i) = (ClassMaximum(i)-
ClassMinimum(i))/NClasses(i)

BinWidth DT_STRING optional Consists of all BinWidths of all
classification channels, according to ODS
definitions (CSV)

BinWidth(i) = (ClassMaximum(i)-
ClassMinimum(i))/NClasses(i)

SourceReference DT_STRING optional URL / ASAMPath of the source

SourceLength DT_STRING optional Length of the source as String

SourceMinimum DT_STRING optional Consists of all Minimum of all source
channels of the time series, according to
ODS definitions (CSV), e.g. “-2.34,-
3.45,4.34”. The matching AoUnit has to be
referenced by this AoParameter

SourceMaximum DT_STRING optional Consists of all Maximum of all source
channels of the time series, according to
ODS definitions (CSV), e.g. “-2.34,-
3.45,4.34”. The matching AoUnit has to be
referenced by this AoParameter

Description DT_STRING optional A short description

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1183

ASAM ODS VERSION 5.0

11-28 ASAM ODS VERSION 5.0

11.7.2 PHYSICAL STORAGE

CONTENT AND REFERENCES

The MTL Description is the container for one or more multi-dimensional time at level result
data (it depends on the writing application if there is an AoMeasurement per result or not).

It is referred by:
 one AoParameterSet with the MimeType “mtl” (where all AoParameters refer to)
 every “overall” AoParameter directly

It refers to:
 the source AoMeasurement time series if possible.

Every AoParameter of all multidimensional time at level calculations has to refer to the
corresponding AoParameterSet (1:n) and additionally / optionally to the corresponding
following ODS-entities:

 AoMeasurement (parameter for all time at level calculations inside this
AoMeasurement)

 AoSubmatrix (parameter for one time at level calculation result only)
 AoMeasurementQuantity (if it is a parameter of that type)
 AoUnit (for the corresponding unit of the parameter value)

Each MTL Result itself is handled by one AoSubmatrix.

This part contains the so called multidimensional time at level result. It includes exactly one
multidimensional time at level result of a group of time series channels (up to 6 channels)
and handles the full information necessary for a correct interpretation of the data.

It has to have references to:
 the AoMeasurement it belongs to

It is referred by
 2 AoLocalColumns per dimension (== classified channel)
 the AoLocalColumns for the summarized results (time, rotations)
 the AoParameter used for this mtl (see result specific AoParameter above)

These references have to follow some rules:
 2 AoLocalColumns per dimension (==classified channel)

There are 2 AoLocalColumn (2 AoMeasurementQuantities) for each classified
channel. They shall have the link to and the name of the source channel’s
AoMeasurementQuantity they are calculated from, extended by “.Bin” or
“.CenterValue”:

<ChannelName>.Bin: This AoLocalColumn contains the bin number of the
classified channel. It is an AoMeasurementQuantity with the AoUnit “”.
<ChannelName>.CenterValue: This AoLocalColumn contains the level
information the bin stands for. Unlike other classifications like rainflow it is the
CenterValue of the bin. It is an AoMeasurementQuantity with the source
channel’s AoUnit.

The classification attributes of these AoLocalColums like “ClassMinimum”,
“ClassMaximum” or “NClasses” will be handled by AoParameter of the AoSubmatrix
(see section "Result Specific AoParameter" above).

 the AoLocalColumns for the summarized results (time, rotations, ...)

ISO/PAS 22720:2005(E)

1184 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-29

These AoLocalColums shall have the link to the correct AoQuantity (e.g. “rotation” or
“time”) and the corresponding AoUnit (e.g. “rad” or “sec”).
Only the time channel is required, the others (like rotation) are optional.

 any AoParameter used for this mtl and its parts
The Parameters of the calculation will be handled by AoParameters and
AoParameterSets. For further information please look at section "Result Specific
AoParameter" above.

EXAMPLE: EXAMPLE FOR AN AOSUBMATRIX:

The channel SumRotation is optional.

F_x.Bin F_x.CenterValue F_y.Bin F_y.CenterValue SumTime SumRotation

1 1 1 -9 2.098 1.987

1 1 2 -7 3.98 3.87

2 3 1 -9 2.12 2.76

...

...

...

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1185

ASAM ODS VERSION 5.0

11-30 ASAM ODS VERSION 5.0

11.8 THE RAINFLOW DATA TYPE

11.8.1 GENERAL DESCRIPTION

A Rainflow classification is a statistical method to reduce a time domain signal to a minimal
size, without losing the durability information contained in the signal.

A Rainflow calculation is normally performed on one channel of a time series measurement
(one AoLocalColumn). In specialized products it is also possible to calculate new rainflow
classifications out of others. This type of calculation results in one 3D matrix (integer Z over
integer X over integer Y) and optionally 1 vector of values, called the residuum (integer X
values). The typical size of the result matrix is between 3000 and 20000 values. For a full
rainflow information there are three information parts reserved (Description and Matrix have
to be used, Residuum is optional):

MIME Types for Rainflow
Data

MIME Type String

Rainflow Description …aomeasurement.rainflow

Rainflow Result Matrix …aosubmatrix.rainflow.matrix

Rainflow Result Residuum …aosubmatrix.rainflow.residuum

OVERALL AOPARAMETER

Because of the product dependencies in calculation and handling the vendor and product
information should be part of the overall data information.

Parameter name DataType
enum
name

Flag Comment

Vendor DT_STRIN
G

optional Vendor of the software which created the
AoParameterSet

Product DT_STRIN
G

optional Product name which created the
AoParameterSet

ProductVersion DT_STRIN
G

optional Version of the product

CreationDate DT_DATE optional Creation date of the AoParameterSet

ISO/PAS 22720:2005(E)

1186 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-31

RESULT SPECIFIC AOPARAMETER FOR RAINFLOW.MATRIX

Following attributes are required/interesting for correct interpretation of the result data.

Parameter name DataType
enum name

Flag Comment

ClassMinimum DT_FLOAT required Minimum of the classification range.
The matching AoUnit has to be
referenced by this AoParameter

ClassMaximum DT_FLOAT required Maximum of the classification range.
The matching AoUnit has to be
referenced by this AoParameter

NClasses DT_SHORT required Number of classes between
ClassMinimum and ClassMaximum.
Range 1..128

AmplitudeSuppression DT_FLOAT required Range of the filter in ClassWidths
Range 1..NClasses

ResiduumSubmatrix DT_STRING required String of Name of residuum submatrix +
“;” + “Version”:
The reference to the optional residuum
submatrix.
“” if no residuum is available

Symmetric DT_BOOLEAN optional Default and therefore If not available or
not set it is TRUE

SourceReference DT_STRING optional URL / ASAMPath of the source
SourceMinimum DT_FLOAT optional Minimum of the source data of the time

series. The matching AoUnit has to be
referenced by this AoParameter

SourceMaximum DT_FLOAT optional Maximum of the source data of the time
series. The matching AoUnit has to be
referenced by this AoParameter

SourceTimeLength DT_FLOAT optional Time length of the time series. The
matching AoUnit has to be referenced
by this AoParameter

MaxClass DT_LONG optional Maximum class with counts > 0
Range 1..NClasses

MinClass DT_LONG optional Minimum class with counts > 0
Range 1..NClasses

TotalCount DT_LONG optional Sum of all Counts
Range 0..264

NormalizingFactor DT_FLOAT optional The factor for normalizing to a standard
length (not used by all products)

ReferenceLength DT_FLOAT optional The length of the classification
compared to others (not used by all
products). If used the matching AoUnit
(e.g. “km”) has to be referenced by this
AoParameter

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1187

ASAM ODS VERSION 5.0

11-32 ASAM ODS VERSION 5.0

RESULT SPECIFIC AOPARAMETER FOR RAINFLOW.RESIDUUM

Parameter name DataType
enum name

Flag Comment

rainflowsubmatrix DT_STRING required String of Name of rainflow submatrix +
“;” + “Version”: The reference to the
rainflow submatrix.

11.8.2 PHYSICAL STORAGE

CONTENT AND REFERENCES

The Rainflow Description is the container for one or more rainflow result data (it depends on
the writing application if there is an AoMeasurement per result or not).

It is referred by:
 one AoParameterSet with the MimeType “rainflow” (where all AoParameters refer to)
 every “overall” AoParameter directly

It refers to:
 the source AoMeasurement time series if possible.

Every AoParameter instance of all rainflow calculations has to refer to the corresponding
AoParameterSet instance (1:n) and additionally / optionally to instances of the corresponding
following ODS-entities:

 AoMeasurement (if it is a parameter for all rainflow-submatrices)
 AoSubmatrix (if it is a parameter for one rainflow calculation result only)
 AoMeasurementQuantity (if it is a parameter of that type)
 AoUnit (for the corresponding unit of the parameter value)

Each Rainflow Result itself is handled by one (or optionally two) instances of AoSubmatrix.

The first part contains the so called n*n (n<=128) rainflow matrix result data in an
AoSubmatrix. It includes exactly one rainflow matrix and handles the full information
necessary for a correct interpretation of the data (for the optional “residuum” see below).

It has to have references to the
 AoMeasurement it belongs to
 AoMeasurementQuantity of the source (the original AoMeasurementQuantity the

calculation is done from) if possible

It is referred by
 AoLocalColumns
 any AoParameter used for this rainflow classification matrix

Inside this AoSubmatrix of type “rainflow.matrix ”there are 3 instances of AoLocalColumn
(containing data for 3 instances of AoMeasurementQuantity):

ISO/PAS 22720:2005(E)

1188 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-33

 “From”: This AoLocalColumn contains the x-axis values of the matrix as independent
channel. It is an AoMeasurementQuantity without an AoUnit 1.

 “To”: This AoLocalColumn contains the y-axis values of the matrix as independent
channel. It is an AoMeasurementQuantity without an AoUnit 1.

 “Count”: This AoLocalColumn contains the z-axis values of the matrix. It is an
AoMeasurementQuantity without an AoUnit 1.

The values inside the matrix are not sorted in any way.

EXAMPLE:

interpretation: “In the origin time series signal there were 212 oscillations
from class 1 to class 6, 110 oscillations from class 4 to class 17 and “

FROM TO COUNT
1 6 212
4 17 110
5 34 65
..

The second part of the rainflow result is optional. Only a few products are able to handle it,
others don’t. It contains the so called rainflow residuum in an AoSubmatrix of exactly one
rainflow classification.

It has to have references to the
 AoMeasurement it belongs to
 AoMeasurementQuantity of the source (the origin AoMeasurement-Quantity the

classification is calculated from) if possible

It is referred by
 1 AoLocalColumn
 any AoParameter used for this rainflow classification residuum

Inside the AoSubmatrix of type “rainflow.residuum” there is one instance of AoLocalColumn
(containing values for 1 instance of AoMeasurementQuantity):

 “Residuum”: This AoLocalColumn contains the values of the residuum. It is an
AoMeasurementQuantity without an AoUnit 1.
The maximum length is (NClasses*2)-1.

The values inside the matrix are not sorted in any way.

1 attention with handling units:
The AoLocalColumn “From” and the “To” contain the X- and Y-coordinates of the counts inside the
rainflow matrix. The AoLocalColumn “Residuum” contains the class of the uncountable point inside the
residuum.
Because it is a widely used way to save and handle the values in a non-existing unit “classes” the real
values have to be calculated / calibrated via implicit knowledge. A generic client doesn’t know about
that and only gets the value 1...128 without any unit. A special client knowing about the rainflow
MimeType has to support the definitions given to interpret the values in the right way.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1189

ASAM ODS VERSION 5.0

11-34 ASAM ODS VERSION 5.0

EXAMPLE:

interpretation: “In the origin timeseries there were some not countable
oscillations: class 1, class 6, class 4, 17 and “

RESIDUUM
1
6
4
17

..

Finding the corresponding submatrices:

One rainflow submatrix and the corresponding residuum matrix can easily be found via the
standardized AoParameter.

Every AoSubmatrix of type “..rainflow.residuum” has to have a corresponding AoSubmatrix of
type “..rainflow.matrix”.

CALCULATION/CALIBRATION OF VALUES: FROM "CLASSES" TO UNITS

The values in the AoMeasurementQuantity “From”, “To” and “Count” are not directly useable
because of the handling in a non-existing unit “classes”.

So any generic client cannot handle the implicit knowledge of the classification data and will
only show the values 1..NClasses (of classes) without any explicit unit.

To get the correct values out of the data the calculation / calibration has to do the following
steps:

 First way: Only possible with source AoMeasurementQuantity
- get the AoSubmatrix “..rainflow.matrix” of the AoMeasurement
- get the referred AoMeasurementQuantity
- get the Unit referred by it

 Second way: Always possible
- get the AoSubmatrix “..rainflow.matrix” of the AoMeasurement
- from this AoSubmatrix get all AoParameter referencing it
- from these AoParameter get the value of the AoParameter “ClassMinimum”

or “ClassMaximum”
- from one of these AoParameter get the reference to the AoUnit
- get the AoUnit

 Calculate the ClassWidth, ClassBorders, etc. and the values in Units as needed out
of the AoParameter “ClassMinimum”, “ClassMaximum”, “NClasses”,

ISO/PAS 22720:2005(E)

1190 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-35

11.9 THE TAL DATA TYPE

11.9.1 GENERAL DESCRIPTION

TAL stands for “Time At Level”, a widely used statistical method for the time series
measurement domain. It is a kind of classification, representing the total time a signal resides
on a specific level.

A TAL calculation is typically performed on one channel of a time series measurement (one
AoLocalColumn), and results in one vector containing the classified result as floats plus an
additional independent channel for the level. (also float values) The size of the result is
typically up to 1000 values per channel. For a full time at level information there are two
information parts reserved. They have to be used:

MIME Types for MTL Data MIME Type String

TAL Description …aomeasurement.tal

TAL Result …aosubmatrix.tal

OVERALL AOPARAMETER

Because of the product dependencies in calculation and handling the vendor and product
information should be part of the overall data information.

Parameter name DataType
enum name

Flag Comment

Vendor DT_STRING optional Vendor of the software which created the
AoParameterSet

Product DT_STRING optional Product name which created the AoParameterSet

ProductVersion DT_STRING optional Version of the product

CreationDate DT_DATE optional Creation date of the AoParameterSet

RESULT SPECIFIC AOPARAMETER

Following attributes are required/interesting for correct interpretation of the result data.

Parameter name DataType
enum name

Flag Comment

ClassMinimum DT_FLOAT required Minimum of the classification range. The
matching AoUnit has to be referenced by

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1191

ASAM ODS VERSION 5.0

11-36 ASAM ODS VERSION 5.0

Parameter name DataType
enum name

Flag Comment

this AoParameter

ClassMaximum DT_FLOAT required Maximum of the classification range. The
matching AoUnit has to be referenced by
this AoParameter

NClasses DT_SHORT required Number of classes between
ClassMinimum and ClassMaximum.
Range 1..100

SourceReference DT_STRING optional URL / ASAMPath of the source

SourceMinimum DT_FLOAT optional Maximum of the source data of the time
series. The matching AoUnit has to be
referenced by this AoParameter

SourceMaximum DT_FLOAT optional Minimum of the source data of the time
series. The matching AoUnit has to be
referenced by this AoParameter

MaxClass DT_LONG optional Maximum class with counts > 0.
Range 0..NClasses

MinClass DT_LONG optional minimum class with counts > 0.
Range 0..NClasses

TotalCount DT_LONG optional Sum of all Counts

NormalizingFactor DT_FLOAT optional The factor for normalizing to a standard
length (not used by all products)

ReferenceLength DT_FLOAT optional The length of the classification compared
to others (not used by all products). If
used the matching AoUnit (e.g. “km”) has
to be referenced by this AoParameter

ISO/PAS 22720:2005(E)

1192 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-37

11.9.2 PHYSICAL STORAGE

CONTENT AND REFERENCES

The TAL Description is the container for one or more time at level result data (it depends on
the writing application if there is an AoMeasurement per result or not).

It is referred by:
 one AoParameterSet with the MimeType “tal” (where all AoParameters refer to)
 every “overall” AoParameter directly

It refers to:
 the source AoMeasurement time series if possible.

Every AoParameter of all time at level calculations has to refer to the corresponding instance
of AoParameterSet (1:n) and additionally / optionally to the corresponding instances of
following ODS-entities:

 AoMeasurement (parameter for all time at level calculations inside this
AoMeasurement)

 AoSubmatrix (parameter for one time at level calculation result only)
 AoMeasurementQuantity (if it is a parameter of that type)
 AoUnit (for the corresponding unit of the parameter value)

Each TAL Result itself is handled by one AoSubmatrix.

This part contains the so called time at level result data in an AoSubmatrix. It includes
exactly one time at level of one time series channel and handles the full information
necessary for a correct interpretation of the data.

It has to have references to the
 AoMeasurement it belongs to
 AoMeasurementQuantity of the source (the original AoMeasurementQuantity the

calculation is done from) if possible

It is referred by
 2 AoLocalColumns
 any AoParameter used for this tal

Inside this AoSubmatrix of type “.....tal” there have to be 2 instances of AoLocalColumn
(containing the values of 2 instances of AoMeasurementQuantity). One AoLocalColumn
instance is the independent channel “level” and is optionally of type explicit or of type implicit:

 “TAL”: This AoLocalColumn contains the time at level information. It is an
AoMeasurementQuantity with the AoUnit “sec”. The MimeType is
“....LocalColumn.tal”

 “level”: This AoLocalColumn contains the level information and is the independent
channel of the AoSubmatrix. It is an AoMeasurementQuantity with the same
AoUnit as the source channel the result is calculated from.
This AoLocalColumn can be either of type implicit (where the beginning and
delta is defined and the values are calculated online) or of type explicit (the
values are explicit in the submatrix). The MimeType is
“....LocalColumn.tal.level”

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1193

ASAM ODS VERSION 5.0

11-38 ASAM ODS VERSION 5.0

The channel names inside analyzing applications should be used by concatenating e.g. the
name of the submatrix +”.” + the channel name to avoid confusion when using more than one
“tal” result.

EXAMPLE: “FORCEX.TAL”

TAL level (implicit/explicit)
0.001 0.00
0.004 0.1
0.01 0.2
.. ..

ISO/PAS 22720:2005(E)

1194 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-39

11.10 QUANTITIES AND UNITS

This section specifies:

 The minimum set of MIME types for Quantities: for each of them, at least one quantity of
this MIME type should be available in every application model for NVH Data

 The minimum set of units: the default units for the quantities that are proposed in the
previous part

11.10.1 QUANTITIES

GENERAL NVH QUANTITIES

…aoquantity.rotationalspeed
…aoquantity.order
…aoquantity.vibrationacceleration
…aoquantity.vibrationvelocity
…aoquantity.vibrationdisplacement
…aoquantity.angularacceleration
…aoquantity.angularvelocity
…aoquantity.angulardisplacement
…aoquantity.angle
…aoquantity.crankangle
…aoquantity.percent
…aoquantity.phase
…aoquantity.mechanicalimpedance
…aoquantity.admittance
…aoquantity.stiffness
…aoquantity.flexibility
…aoquantity.accelerance
…aoquantity.charge
…aoquantity.octavefrequency
…aoquantity.microstrain

SOUND QUALITY QUANTITIES

…aoquantity.soundpressure
…aoquantity.soundpower
…aoquantity.soundintensity
…aoquantity.reveberationtime
…aoquantity.loudness
…aoquantity.specificloudness
…aoquantity.sharpness
…aoquantity.roughness
…aoquantity.specificroughness
…aoquantity.fluctuationstrength
…aoquantity.specificfluctuationstrength
…aoquantity.tonality
…aoquantity.annoyance
…aoquantity.pleasentness
…aoquantity.impulsiveness

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1195

ASAM ODS VERSION 5.0

11-40 ASAM ODS VERSION 5.0

…aoquantity.specificimpulsiveness
…aoquantity.articulationindex
…aoquantity.degreeofmodulation
…aoquantity.compressedpressure
…aoquantity.quefrency
…aoquantity.speechintellegibility
…aoquantity.fluctuationstrength

11.10.2 UNITS

The following table contains the minimum set of units for the NVH-related quantities.

Quantity Unit factor offset Physical
Dimension [len,
mas, tim, cur,
temp, mol, lum]

…aoquantity.rotationalspeed rpm 1/60 0 [0,0,-1,0,0,0,0]

…aoquantity.order ord 1 0 [0,0,0,0,0,0,0]

acceleration, aoquantity.vibrationacceleration m/s^2 1 0 [1,0,-2,0,0,0,0]

Velocity, aoquantity.vibrationvelocity m/s 1 0 [1,0,-1,0,0,0,0]

Length, aoquantity.vibrationdisplacement m 1 0 [1,0,0,0,0,0,0]

aoquantity.angularacceleration deg/s^2 pi/180 0 [0,0,-2,0,0,0,0]

aoquantity.angularacceleration rad/s^2 1 0 [0,0,-2,0,0,0,0]

aoquantity.angularvelocity rad/s 1 0 [0,0,-1,0,0,0,0]

aoquantity.angularvelocity deg/s pi/180 0 [0,0,-1,0,0,0,0]

Radian, aoquantity.angulardisplacement rad 1 0 [0,0,0,0,0,0,0]

Degree, aoquantity.angulardisplacement,
aoquantity.angle, aoquantity.crankangle

deg pi/180 0 [0,0,0,0,0,0,0]

Percent % 1 0 [0,0,0,0,0,0,0]

Phase deg pi/180 0 [0,0,0,0,0,0,0]

aoquantity.mechanicalimpedance N/(m/s) 1 0 [0,1,-1,0,0,0,0]

aoquantity.admittance S 1 0 [-2,-1,3,2,0,0,0]

aoquantity.stiffness N/m 1 0 [0,1,-2,0,0,0,0]

aoquantity.flexibility M/N 1 0 [0,-1,2,0,0,0,0]

aoquantity.accelerance (m/s^2)/N 1 0 [0,-1,0,0,0,0,0]

aoquantity.charge PC 1e-12 0 [0,0,1,1,0,0,0]

aoquantity.octavefrequency Hz 1 0 [0,0,-1,0,0,0,0]

Pressure, aoquantity.soundpressure Pa 1 0 [-1,1,-2,0,0,0,0]

Power, aoquantity.soundpower W 1 0 [2,1,-3,0,0,0,0]

Intensity, aoquantity.soundintensity W/m^2 1 0 [0,1,-3,0,0,0,0]

Time, aoquantity.reverberationtime S 1 0 [0,0,1,0,0,0,0]

ISO/PAS 22720:2005(E)

1196 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-41

Quantity Unit factor offset Physical
Dimension [len,
mas, tim, cur,
temp, mol, lum]

aoQuantity.loudness sone 1 0 [0,0,0,0,0,0,0]

aoquantity.specificloudness sone/bark 1 0 [0,0,1,0,0,0,0]

aoquantity.sharpness acum 1 0 [0,0,0,0,0,0,0]

aoquantity.roughness asper 1 0 [0,0,0,0,0,0,0]

aoquantity.specificroughness asper/bark 1 0 [0,0,1,0,0,0,0]

aoquantity.fluctuationstrength vacil 1 0 [0,0,0,0,0,0,0]

aoquantity.specificfluctuationstrength vacil/bark 1 0 [0,0,1,0,0,0,0]

aoquantity.tonality Tu 1 0 [0,0,0,0,0,0,0]

aoquantity.annoyance au 1 0 [0,0,0,0,0,0,0]

aoquantity.pleasentness pu 1 0 [0,0,0,0,0,0,0]

aoquantity.impulsiveness iu 1 0 [0,0,0,0,0,0,0]

aoquantity.apecificimpulsiveness iu/bark 1 0 [0,0,1,0,0,0,0]

aoquantity.articulationindex % 100 0 [0,0,0,0,0,0,0]

aoquantity.degreeofmodulation % 100 0 [0,0,0,0,0,0,0]

aoquantity.compressedpressure CPa 1 0 [0,0,0,0,0,0,0]

aoquantity.quefrency S 1 0 [0,0,1,0,0,0,0]

aoquantity.speechintellegibility % 100 0 [0,0,0,0,0,0,0]

Temperature T 1 0 [0,0,0,0,1,0,0]

Torque N*m 1 0 [2,1,-2,0,0,0,0]

Density kg/m^3 1 0 [-3,1,0,0,0,0,0]

aoquantity.frequencygroup bark 1 0 [0,0,-1,0,0,0,0]

Frequency Hz 1 0 [0,0,-1,0,0,0,0]

Force N 1 0 [1,1,-2,0,0,0,0]

The following table contains the combination of units, needed to store transfer, cps, aps data:

Quantity Unit factor offset Physical
Dimension [len,
mas, tim, cur,
temp, mol, lum]

Force N^2 1 0 [2,2,-4,0,0,0,0]

Pressure, aoquantity.soundpressure Pa^2 1 0 [-2,2,-4,0,0,0,0]

Acceleration, aoquantity.vibrationacceleration m^2/s^4 1 0 [2,0,-4,0,0,0,0]

Velocity, aoquantity.vibrationvelocity m^2/s^2 1 0 [2,0,-2,0,0,0,0]

Intensität, aoquantity.soundintensity W^2/m^4 1 0 [0,2,-6,0,0,0,0]

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1197

ASAM ODS VERSION 5.0

11-42 ASAM ODS VERSION 5.0

Quantity Unit factor offset Physical
Dimension [len,
mas, tim, cur,
temp, mol, lum]

Power, aoquantity.soundpower W^2 1 0 [4,2,-6,0,0,0,0]

Acceleration(aoquantity.vibrationacceleration) /
Pressure(aoquantity.soundpressure)

m/Pa*s^2 1 0 [2,-1,0,0,0,0,0]

Pressure(aoquantity.soundpressure) /
Acceleration(aoquantity.vibrationacceleration)

Pa*s^2/m 1 0 [-2,1,0,0,0,0,0]

Acceleration(aoquantity.vibrationacceleration) *
Velocity(aoquantity.vibrationvelocity)

m^2/s^3 1 0 [2,0,-3,0,0,0,0]

Acceleration(aoquantity.vibrationacceleration)*
Pressure(aoquantity.soundpressure)

Pa*m/s^2 1 0 [0,1,-4,0,0,0,0]

Acceleration(aoquantity.vibrationacceleration)*
Force

N*m/s^2 1 0 [2,1,-4,0,0,0,0]

Velocity(aoquantity.vibrationvelocity) *
Pressure(aoquantity.soundpressure)

Pa*m/s 1 0 [0,1,-3,0,0,0,0]

Velocity(aoquantity.vibrationvelocity) * Force N*m/s 1 0 [2,1,-3,0,0,0,0]

Pressure(aoquantity.soundpressure) * Force Pa*N 1 0 [0,2,-4,0,0,0,0]

Pressure(aoquantity.soundpressure) /
Velocity(aoquantity.vibrationvelocity)

Pa*s/m 1 0 [-2,1,-1,0,0,0,0]

Force / Velocity(aoquantity.vibrationvelocity) N*s/m 1 0 [0,1,-1,0,0,0,0]

Velocity(aoquantity.vibrationvelocity) /
Pressure(aoquantity.soundpressure)

m/Pa*s 1 0 [2,-1,1,0,0,0,0]

Velocity(aoquantity.vibrationvelocity) / Force m/N*s 1 0 [0,-1,1,0,0,0,0]

ISO/PAS 22720:2005(E)

1198 © ISO 2005 – All rights reserved

NVH APPLICATION MODEL

ASAM ODS VERSION 5.0 11-43

11.11 REVISION HISTORY

Date
Editor

Changes

2003-03-29
G. Sablon

Created.

2003-04-10
G. Sablon,
S. Wartini,
K. Rucker,
E. Klinkenberg

Modification based on workgroup meeting

2003-04-24
G. Sablon

Completion to send out for approval

2003-04-30
G. Sablon

Implement changes after proofreading by NVH workgroup

2003-05-09
G. Sablon

Implement changes after ASAM-ODS workgroup meeting

2003-10-14
R. Bartz

Some errors have been fixed
Sections on TAL, MTL, PSD have been merged into the chapter;

several errors in them have been fixed
2003-10-17 The FTR meeting agreed to the current text with two modifications

required
2003-10-02
G. Sablon

Substituted the PSD part by the Rainflow part.

2003-12-24
G. Sablon

Changed the structure of the MTL, Rainflow and TAL parts to
something more in line with the rest of this Chapter.

2003-12-24
G. Sablon

Added 2 attributes for referenced spectrum (reference to non-reference
data) and some comments on physical storage for this.

2003-12-30
R. Bartz

Some minor textual and formatting changes have been introduced
The Release version has been created

2004-02-14
R. Bartz

Included section 11.9 (List of NVH quantities and units) as specified by
the NVH workgroup and delivered by K. Rucker

2004-05-12
K.Rucker,
F. Neyrinck

Changed data type of various parameters (DT_ENUM DT_STRING)
Figures reworked

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1199

ASAM ODS VERSION 5.0

11-44 ASAM ODS VERSION 5.0

ASAM e.V.

Arnikastr. 2

D-85635 Hoehenkirchen

Germany

phone: (+49) 8102 – 895317

fax: (+49) 8102 – 895310

e-mail: info@asam.net

internet: www.asam.net

ISO/PAS 22720:2005(E)

1200 © ISO 2005 – All rights reserved

ASAM ODS
VERSION 5.0

ISO-PAS

CHAPTER 12

CALIBRATION DATA MODEL
 Version 1.0

Association for Standardization of
Automation and Measuring Systems

Dated: 30.09.2004

© ASAM e.V.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1201

Status of Document

Reference: ASAM ODS Version 5.0 Calibration Data Model

Date: 30.09.2004

Author: Dr. Bruno Thelen, Schenck Pegasus

Type: Specification

Doc-ID: ASAM_ODS_50_CH12_Calibration_Model.PDF

Revision
Status:

Release

Note: ASAM ODS has invoked a Formal Technical Review (FTR) process which
intends to continuously improve the quality and timeliness of its specifications.
Whenever an error is identified or a question arises from this specification, a
corresponding note should be sent to ASAM (odsftr@asam.net) to make sure
this issue will be addressed within the next review cycle.

Disclaimer of Warranty

Although this document was created with the utmost care it cannot be guaranteed that it is
completely free of errors or inconsistencies.

ASAM e.V. makes no representations or warranties with respect to the contents or use of this
documentation, and specifically disclaims any expressed or implied warranties of

merchantability or fitness for any particular purpose. Neither ASAM nor the author(s)
therefore accept any liability for damages or other consequences that arise from the use of

this document.

ASAM e.V. reserves the right to revise this publication and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes.

ISO/PAS 22720:2005(E)

1202 © ISO 2005 – All rights reserved

mailto:@asam.net

CALIBRATION APPLICATION MODEL

ASAM ODS VERSION 5.0 12-1

Contents

12 THE ASAM ODS CALIBRATION DATA MODEL 12-3

12.1 INTRODUCTION... 12-3
12.2 CALIBRATION DATA IN THE TEST FIELD CONTEXT ... 12-4

12.2.1 THE IMPACT OF THE MEASURING EQUIPMENT ADMINISTRATION............... 12-4
12.2.2 THE IMPACT OF THE CALIBRATION LOCATION ... 12-6
12.2.3 THE IMPACT OF THE CURRENT ODS-BASE MODEL.................................. 12-7

12.3 THE CALIBRATION PROCESS IN GENERAL... 12-8
12.4 THE CALIBRATION APPLICATION MODEL.. 12-9

12.4.1 ADMINISTRATIVE APPLICATION ELEMENTS.. 12-9
12.4.2 MEASURING DATA APPLICATION ELEMENTS ... 12-12
12.4.3 DESCRIPTIVE DATA APPLICATION ELEMENTS.. 12-14
12.4.4 THE COMPLETE CALIBRATION DATA MODEL... 12-18

12.5 REVISION HISTORY... 12-21

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1203

ASAM ODS VERSION 5.0

12-2 ASAM ODS VERSION 5.0

Scope

This document describes the application model for calibration data of ASAM ODS Version
5.0.

Intended Audience

This document is intended for implementers of ASAM ODS Version 5.0. It shall be used as a
technical reference on how to store calibration information in ASAM ODS Version 5.0.

This document is part of a series of documents referring to ASAM ODS Version 5.0 and must
not be used as a stand-alone document. The documents referenced below build the
technical reference of ASAM ODS Version 5.0 as a whole. They may be requested from the
ASAM e.V. at www.asam.net.

ASAM ODS Specification

The following chapters build the technical reference for ASAM ODS Version 5.0:

 ASAM ODS Version 5.0, Chapter 1, Introduction

 ASAM ODS Version 5.0, Chapter 2, Architecture

 ASAM ODS Version 5.0, Chapter 3, Physical Storage (1.1)

 ASAM ODS Version 5.0, Chapter 4, Base Model (28)

 ASAM ODS Version 5.0, Chapter 5, ATF/CLA (1.4.1)

 ASAM ODS Version 5.0, Chapter 6, ATF/XML (1.0)

 ASAM ODS Version 5.0, Chapter 7: N/A ('Security' moved to Chapter 2)

 ASAM ODS Version 5.0, Chapter 8, MIME Types and External References (1.0)

 ASAM ODS Version 5.0, Chapter 9, RPC-API (3.2.1)

 ASAM ODS Version 5.0, Chapter 10, OO-API (5.0)

 ASAM ODS Version 5.0, Chapter 11, NVH Model (1.3)

 ASAM ODS Version 5.0, Chapter 12, Calibration Model (1.0)

Normative References

 ISO 10303-11: STEP EXPRESS

 Object Management Group (OMG): www.omg.org

 Common Object Request Broker Architecture (CORBA): www.corba.org

 IEEE 754: IEEE Standard for Binary Floating-Point Arithmetic, 1985

 ISO 8601: Date Formats

 Extensible Markup Language (XML): www.w3.org/xml

ISO/PAS 22720:2005(E)

1204 © ISO 2005 – All rights reserved

www.asam.net
www.omg.org
www.corba.org
www.w3.org/xml

CALIBRATION APPLICATION MODEL

ASAM ODS VERSION 5.0 12-3

12 THE ASAM ODS CALIBRATION DATA MODEL

12.1 INTRODUCTION

The calibration data model is intended as a schema to structure calibration data obtained
from the calibration process of test stand components like sensors, amplifiers, … etc. . The
calibration data model is based on the ASAM ODS base model, and is intended to be a
minimal application model. This means that anyone who creates a company specific
application model can use the proposed model and add company specific items.

Until now the main usage of an ASAM ODS server is restricted to storing and retrieving
measuring data of different kind (vehicle data, engine data, NVH data, … etc.). A measuring
data analysis relies implicitly on a perfectly calibrated test bed, respectively its measuring
components operating permanently fault free in same quality over arbitrary long periods.

As the operating quality of measuring components shifts by the time (influenced by
temperature, humidity, ... etc.), the quality of the sampled measuring data is affected. A
honest interpretation of measuring data should include the introspection of the test bed
operating conditions at the time the data were collected. Generally speaking, that is a) the
testing context, b) the test bed components configuration and c) the associated calibration
status. Hence a measuring data archive is not complete before the testing context and its
status is documented.

To sum up there are two main aspects where the archived test bed configuration, its
calibration status and calibration data are of additional value:

 a data analysis is done at a time where the complete test bed arrangement has changed
due to other experiments on the same test bed.

 automated, and contiguous supervision of the test bed operating status guarantees an
equivalent lasting quality level of the complete test bed equipment.

The following picture presents the typical activity cycle for a continued quality verification and
certification process. The process cycle starts with the documentation of the test bed
equipment and its calibration status and ends with the guarantee of comprehensively
measuring results. From a client’s viewpoint it is obvious why calibration data are necessary
and how these data are to be processed.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1205

ASAM ODS VERSION 5.0

12-4 ASAM ODS VERSION 5.0

Documentation of

test bed equipment

and calibration status

1.

Validation and

calibration

of measuring signals

Archiving the

configuration and

calibration status

Analysis of

calibration data

Guaranteeing

reproducible

processes

Guaranteeing

comprehensible

test results

2.

3.

4.

5.

6.

Quality Assurance

ISO9002

Figure 1: Process Cycle for continued Quality Verification and Certification

This chapter describes how the calibration service is administratively embedded in a test
field. After that the calibration process is described in general. Section 12.4 defines in
consecutive order the application elements for the data model and explains the data model
as a whole.

12.2 CALIBRATION DATA IN THE TEST FIELD CONTEXT

This section describes a general administration process to handle test bed related calibration
data inside an ASAM ODS server from a client’s viewpoint.

12.2.1 THE IMPACT OF THE MEASURING EQUIPMENT ADMINISTRATION

A general view on the calibration process leads to the insight that a calibration process is not
a stand-alone process but is embedded in the overall measuring equipment administration
(figure 2).

ISO/PAS 22720:2005(E)

1206 © ISO 2005 – All rights reserved

CALIBRATION APPLICATION MODEL

ASAM ODS VERSION 5.0 12-5

Figure 2: The Calibration Process as an Embedded Service

The measuring equipment administration is composed of five services:

 Calibration Service (this document)

 Reservation Service

 Catalog Service

 Responsibility Service

 Mailing Service.

The services are all related with each other to gain additional values. Example: the
Calibration Service detects a measuring component that is out of order. The Calibration
Service informs all engineers who had used it. The information process relies on the

 Reservation Service to retrieve the users of the malfunctioning component,

 Mailing Service to send messages.

The purposes of the other services are:

 The Responsibility Service documents which person from the calibration staff is
responsible for the calibration of specific measuring equipment. The responsibility relation
between a measuring component and a person may change over time. Any relation
changes are documented.

 The Mailing Service is used to send messages to registered persons. The service is used
by the other Administration services.

 The Catalog Service can be compared with a dictionary summing up all available
measuring components, their capability and characteristics. The catalog service is

Calibration
Service

Reservation
Service

Measuring
Component

Catalog Service

Mailing
Service

Responsibility
Service

Measuring Equipment

Administration

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1207

ASAM ODS VERSION 5.0

12-6 ASAM ODS VERSION 5.0

typically used by the Reservation Service to retrieve and identify an appropriate
component according to a requested profile.

12.2.2 THE IMPACT OF THE CALIBRATION LOCATION

Depending on the overall pursued company strategy the calibration process is executed at
different locations:

 test stand,

 service laboratory, and

 calibration laboratory.

Depending on the required calibration quality, or other constraints (e.g. removeability of a
component from test stand), the calibration process is executed at the appropriate location.
Hence different calibration locations may be in operation in parallel at the same company.
The only requirement is, that the calibration tools operate on the same data base.

The structure of a test stand and its instrumentation with measuring components may be
fixed or is totally dynamic. The latter case is given, if the calibration process is no longer
executed at the test stand but at a service or calibration laboratory. In this situation the
laboratory provides a stock with calibrated components. When a test stand needs a set of
calibrated measuring components, the components are taken from the stock and returned
after usage (under involvement of the Reservation Service). By this the components are
rotating throughout the test field. The calibration service cares about the status of all returned
components inside the stock. In case a calibration check is necessary the components rotate
between the stock and the laboratory (figure 3).

Test Stand
Calibration
Laboratory

Measuring
Equipment

Stock

Figure 3: Measuring Components rotating between Test Stand, Stock and Laboratory

As no fixed relation exists between a test stand and the used measuring components it is not
convenient to mix the calibration data with test results from any test run on a test stand. The
calibration data server should be kept at a separate ASAM ODS Server archiving only the
calibration data of all measuring components throughout the test field (figure 4).

ISO/PAS 22720:2005(E)

1208 © ISO 2005 – All rights reserved

CALIBRATION APPLICATION MODEL

ASAM ODS VERSION 5.0 12-7

Powertrain Test Stand
ODS Server

Calibration Data
ODS Server

Engine Test Stand
ODS Server

Figure 4: Test Stand ODS Servers linked to the Calibration Data ODS Server

The separation of the calibration data from test stand measuring data on a separate ODS
server simplifies the internal application structure of the various test stand ODS Servers.
Every measuring component in a test stand’s ODS server holds an additional reference to
the actual calibration documentation inside the calibration ODS server.

12.2.3 THE IMPACT OF THE CURRENT ODS-BASE MODEL

A general view on a calibration process and its mapping to the existing ODS-Base Model
leads to the following insight:

The calibration process of measuring components is regarded as a normal test run. This
assumption supports the following mappings:

a) The ODS-section “Administrative Data” holds a calibration project(s) with the various re-
calibration tests.

b) The ODS-section “Descriptive Data” holds the set of all measuring equipment
components available in the test field. The set of test sequences are the programs
needed for the execution of the various calibration processes.

c) The ODS-section “Measuring Data” holds the measured samples collected during the
calibration process for each specific measuring component.

d) The ODS-section “Quantities and Units” holds the process quantities and the physical
dimensions that are associated with the measured samples.

e) The ODS-section “Security” controls access to the calibration data.

Organizing the calibration data as described above leads to the essential benefit:

 the current ODS-Base Model is capable to directly support the requested calibration
structure.

Furthermore a trend analysis can be done on the calibration results of each measuring
component from the various re-calibration runs.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1209

ASAM ODS VERSION 5.0

12-8 ASAM ODS VERSION 5.0

12.3 THE CALIBRATION PROCESS IN GENERAL

This section deals with the calibration process itself and the resulting concept for storing
calibration data inside an ODS-server.

The calibration service uses tools that operate independently from the execution location.
The calibration tool can be used at a laboratory as well as on a test stand and accesses the
ASAM ODS server with the calibration data. In both cases a unified calibration process is
guaranteed. Figure 5 displays the Calibration Service and its internal data flow.

Figure 5: General Data Flow of the Calibration Service

The surveyor tool examines the calibration expiry date of all components, and generates a
list of components that need a re-calibration.

 The calibration tool is responsible to carry out the calibration process itself. It triggers the
measurement component under test, and in parallel samples measuring data, that are
archived in the ODS server. The measuring data is also the input for an analysis tool to
validate whether the inspected component is compliant with the calibration specification.
In the positive case the analysis tool automatically generates the calibration certificate,
which summarizes the substantial results from the calibration process. The calibration
certificate is printed out and stored additionally in secured form (e.g. as PDF file) in a
data-base. The additional archiving of the calibration certificate in secured form is done,
because the measuring data it relies on, can theoretically be changed subsequently
manually.

Calibration
Tool

ASAM ODS
Data Server

Measuring
Data

Measuring
Data

Calibration
Certificate
Calibration
Certificate

Analysis
Tool
Analysis
Tool

Calibration ServiceSurveyor
Tool

ISO/PAS 22720:2005(E)

1210 © ISO 2005 – All rights reserved

CALIBRATION APPLICATION MODEL

ASAM ODS VERSION 5.0 12-9

12.4 THE CALIBRATION APPLICATION MODEL

Figure 6 presents the subset of the ODS Base Model that is relevant for the calibration
application model with those highlighted Base Elements from which specific application
elements are derived to build the calibration application model. The following sections
describe in detail the application elements and their attributes. Data types of the attributes
are given by the corresponding enumeration name of the DataType enumeration (see
section 2.5. for details on data types and their enumerations). Furthermore examples are
given for instance elements that are created out of the application elements.

Figure 6: The Base Model with highlighted Base Elements relevant in the Application Model

12.4.1 ADMINISTRATIVE APPLICATION ELEMENTS

All calibrations are administered in projects and subprojects. The component categories are
on the topmost project level (e.g. temperature sensors). A subproject aggregates all
components belonging to the same category, and a component itself aggregates the result
data of all re-calibrations executed so far. Figure 7a gives an example.

AoUnit AoQuantity

AoQuantity
Group

AoUnit
Group

AoPhysical

Dimension

AoMeasurement

AoMeasure
ment

Quantity

AoSub
matrix

AoLocal
Column

AoTest
Abstract

AoTest

AoSubTest

AoUnitUnderTest
Abstract

AoUnit

UnderTest

AoUnit
UnderTest

Part

AoTestSequence
Abstract

AoTest

Sequence

AoTest
Sequence

Part

AoTestEquipment
Abstract

AoTest

Equipment

AoTest
Equipment

Part

AoAny

Quantities
and Units Descriptive Data AnyAdministrative

Data

Measuring Data

AoTest
Device

AoUser
Group

AoUser

Security

AoLog

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1211

ASAM ODS VERSION 5.0

12-10 ASAM ODS VERSION 5.0

Figure 7a: Administering Calibrations into Projects and Subprojects

Figure 7b: Mapping the Calibration Administration to ASAM ODS Terminology

The elements AoTest and AoSubTest from the ASAM ODS base model, as shown in figure
7b serve the purpose to derive the calibration specific administrative elements to map the
project structure from figure 7a. An element derived from a base element is in the ASAM
ODS terminology an “application element”. In the case of AoTest the derived application
element is given the name AE_Project. The instances of AE_Project shall have names that
denote the component categories for projects like

Calibration projects for
component categories

Component category e.g.
„TemperatureSensorCalibrations“
aggregates as subprojects the individual
sensor components

A subproject aggregates the result
data of all re-calibration runs of the
same component

Contains the result data of PT100-1
recalibration from June 2003

AoTest
Abstract

AoTest

AoSubTest

Administrative
Data Project 1: Amplifier calibrations

Project 2: Boombox sensor calibrations
Project 3: Pressure sensor calibrations
Project 4: Temperature sensor calibrations

PT100-1 calibrations
PT100-2 calibrations
PT200-1 calibrations
TCJ-1 calibrations
CCK-1 calibrations

AE_Project

Examples for Instance Elements

AE_Component

Application Elements

ISO/PAS 22720:2005(E)

1212 © ISO 2005 – All rights reserved

CALIBRATION APPLICATION MODEL

ASAM ODS VERSION 5.0 12-11

 AmplifierCalibrations

 BoomboxCalibrations

 PressureSensorCalibrations

 TemperatureSensorsCalibrations

 …

From AoSubTest the application element AE_Component is derived. It serves the purpose to
structure the calibrations of a specific component in subprojects. The instances of
AE_Component shall have names that denote the individual components, e.g.

 PT100 1

 PT100 2

 TCJ 1

 CCK 1

 …

No specific attributes are defined for the application elements AE_Project and
AE_Component.

From AoLog the application element AE_CalibLogbook is derived. The instances of
AE_CalibLogbook serve the purpose to document all events around administration and
calibration of components. A logbook entry is composed of a set of mandatory attributes and
attribute values according to figure 8.

The date attribute value is according to the ASAM ODS convention.

The severity attribute value describes the importance of the logbook entry. The description
attribute value is the explanation for the entry. The source attribute value is the origin of the
event report. The param attribute value is any data; it can also be a component’s name that
was calibrated. The user attribute value is the name of the operator reporting the calibration
event.

AE_CalibLogbook DataType enum name Example, Annotation

date DT_DATE 20020401120000000

severity DT_STRING info

description DT_STRING update accuracy class

source DT_STRING calibration tool

param DT_STRING torque 650 Nm

user DT_STRING administrator

Figure 8: Additional application attributes for Application Element AE_CalibLogbook

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1213

ASAM ODS VERSION 5.0

12-12 ASAM ODS VERSION 5.0

12.4.2 MEASURING DATA APPLICATION ELEMENTS

The results of one calibration run for a specific component are organized in a calibration test.
The calibration test belongs to a subproject as defined by an instance of AE_Component
(figure 7a). Figure 9 gives an example.

Figure 9: Organization of the Results of a Calibration Run.

From AoMeasurement the application element AE_Calibration is derived. The instances of
AE_Calibration have the mandatory name attribute (inherited from the base element
AoMeasurement) whose value must be unique throughout all calibration runs. The values of
the name attribute can be defined like “Recalib_20030305”, “Recalibib_20030601”, … etc.,
denoting the consecutive re-calibrations by the date.

AE_Calibration DataType enum name Example, Annotation

name (base attribute) DT_STRING unique name for calibration run,
e.g. calib-1

component (base attribute) DT_LONGLONG reference to instance of
AE_CalibratedDevice

calibrationGroup (base attribute) DT_LONGLONG reference to instance of
AE_Component

accuracyClass DT_LONGLONG reference to instance of
AE_AccuracyClass

calibrationSpec DT_EXTERNALREFERENCE reference to applied calibration
specification

measurement_begin (base attr) DT_DATE calibration begin as utc

measurement_end (base attribute) DT_DATE calibration end as utc

operator DT_STRING operator’s name executing the
calibration

calibrationRangeLower DT_DOUBLE calibration range lower value

calibrationRangeUpper DT_DOUBLE calibration range upper value

AoMeasurement

AoMeas

urement

Quantity

AoSub

matrix

AoLocal

Column

Measuring Data

PT100-1: Recalib_20030305
PT100-1: Recalib_20030601
PT100-1: Recalib_20030903

AE_Calibration

AE_Result

Examples for Instance ElementsApplication Elements

Instance: PrescribedSetpoints
Instance: Applied Setpoints
Instance: ResultVectorBeforeCalibration
Instance: ResultVectorAfterCalibration

ISO/PAS 22720:2005(E)

1214 © ISO 2005 – All rights reserved

CALIBRATION APPLICATION MODEL

ASAM ODS VERSION 5.0 12-13

AE_Calibration DataType enum name Example, Annotation

processQuantity DT_LONGLONG reference to process quantity
(AoQuantity)

calibrationNormal DT_STRING calibration normal used

calibrationNormalManufacturer DT_STRING manufacturer’s name of
calibration normal

calibrationNormalType DT_STRING

calibrationNormalSerialNumber DT_STRING serial number calibration
normal

calibrationNormalPrecisionClass DT_STRING precision class calibration
normal

calibrationNormalExpiryDate DT_STRING expiry date calibration normal

environmentTemperature DT_DOUBLE environment temperature
during calibration process

environmentPressure DT_DOUBLE environment air pressure

relativeHumidity DT_DOUBLE environment air humidity

calibrationCertificate DT_EXTERNALREFERENCE external reference to calibration
certificate

Figure 10: Attributes of AE_Calibration

From the base element AoLocalColumn four instance elements are derived to document the
calibration run. The values for the name’s attribute of the instance elements are:

 prescribedSetpoints

 appliedSetpoints

 outputBeforeCalibration

 outputAfterCalibration

The calibration specification prescribes the setpoints and the order of the setpoints to be
applied as input to the component under calibration. The actually applied setpoints may differ
for any reason. Therefore the actually applied setpoints must be documented.

The behavior of a component under calibration is documented before and after calibration.
Therefore the AoLocalColumn instances “outputBeforeCalibration” and
“outputAfterCalibration” hold the corresponding output value for each applied input setpoint.

From AoSubmatrix the application element AE_Result is derived. An instance element of
AE_Results ties together the AoLocalColumn instances of one calibration run.

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1215

ASAM ODS VERSION 5.0

12-14 ASAM ODS VERSION 5.0

12.4.3 DESCRIPTIVE DATA APPLICATION ELEMENTS

All components to be calibrated are collected in a container. The application element
AE_DeviceCollection is derived from base element AoTestEquipment.

Figure 11: Organization of the Calibrated Components

From AoTestEquipmentPart the application element AE_CalibratedDevice is derived. The
characteristics of the instances of AE_CalibratedDevice are documented in detail in figure
12. The list begins with those attributes that identify the device and associate it with its
exclusive calibration subproject holding the results from all its re-calibrations.

Several devices may be calibrated as a group and are ordered in the group. The sibling
attributes denote previous and following device in the order. The current location and user of
the device are also documented. If a device is calibrateable at all is documented by a flag, as
is its calibration status (with “is calibrated” or “not calibrated”). This information is
accompanied with the definition of the accuracy class after which the device was calibrated.

The signal in/out values specify the operating range of the device. The range is usually
defined by the device manufacturer. The allowed environmental operating conditions for air
temperature, pressure and humidity are also documented.

AE_CalibratedDevice DataType enum
name

Example, Annotation

name (base attribute) DT_STRING

deviceType DT_STRING temperature sensor

serialNumber DT_STRING

manufacturerName DT_STRING

deviceLogbook DT_LONGLONG reference to history logbook

AoTestEquipment
Abstract

AoTest

Equipment

AoTest

Equipment

Part

Descriptive Data

AE_DeviceCollection

AE_CalibratedDevice

Examples for Instance ElementsApplication Elements

AoLog

AE_DeviceLogBook

PT100-1
PT100-2
PT100-3
LM4711-1
LM4712-1

LogBook_PT100-1
LogBook_PT100-2

AE_CalibratedGroup

AE_AccuracyClass

a specific device group

AE_Period

ISO/PAS 22720:2005(E)

1216 © ISO 2005 – All rights reserved

CALIBRATION APPLICATION MODEL

ASAM ODS VERSION 5.0 12-15

AE_CalibratedDevice DataType enum
name

Example, Annotation

calibration (base attribute) DT_LONGLONG reference to calibration run belonging
exclusively to this device

siblingLeft DT_LONGLONG only for ordered devices in groups. Reference
to previous device

siblingRight DT_LONGLONG only for ordered devices in groups. Reference
to following device

deviceLocation DT_STRING current location of device

deviceOwner current user of device

isCalibratable DT_BOOLEAN indicates if device is calibrateable

status DT_BOOLEAN calibration status

accuracyClass DT_LONGLONG reference to instance of AE_AccuracyClass
relevant for this device

signalInLower DT_DOUBLE minimum signal input level

signalInUpper DT_DOUBLE maximum signal input level

signalOutLower DT_DOUBLE minimum signal output level

signalOutUpper DT_DOUBLE maximum signal output level

temperatureLower DT_DOUBLE lower temperature range for proper device
operation

temperatureUpper DT_DOUBLE upper temperature range for proper device
operation

pressureLower DT_DOUBLE lower air pressure range for proper device
operation

pressureUpper DT_DOUBLE upper air pressure range for proper device
operation

humidityLower DT_DOUBLE lower air humidity range for proper device
operation

humidityUpper DT_DOUBLE upper air humidity range for proper device
operation

calibrationPeriodClass DT_LONGLONG reference to period class for re-calibrations

calibrationExpiryDate DT_DATE expiry date for current calibration

calibrationPeriod DT_LONG period for current valid calibration

calibrationPeriodUnit DT_STRING calibration period, can be in days or even in
usages

calibratedRangeLower DT_DOUBLE lower calibrated input range

calibratedRangeUpper DT_DOUBLE upper calibrated input range

Figure 12: Attributes for a Device under Calibration Control

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1217

ASAM ODS VERSION 5.0

12-16 ASAM ODS VERSION 5.0

The individual calibration period and calibration expiry date for a device are derived from the
calibration period class. The calibration period is always a number, only the unit defines the
semantic of the number. The period can be any duration with the unit days for example.
However the unit can also be in “usages”. This is essential with crash test, where an
acceleration sensor can only be used for a certain number of times, and after that a re-
calibration is necessary. Any time period makes no sense.

The last two attributes document the input range of the device for which it is calibrated. This
range may be different from the signal input range as specified by the manufacturer of the
device.

Another application element is derived from AoTestEquipmentPart to house a set of devices
that altogether belong to a complex device like a boombox or measuring chain. The name for
this application element is AE_CalibratedGroup. The attributes for this application element
are collected in fig. 13, and are rather similar to the attributes of AE_CalibratedDevice. The
difference is in the additional definition of two reference attributes (for the 1st and last device)
to link the devices as group.

AE_CalibratedGroup DataType enum
name

Example, Annotation

name (base attribute) DT_STRING

deviceType DT_STRING

serialNumber DT_STRING

manufacturerName DT_STRING

deviceLogbook DT_LONGLONG reference to history logbook

calibration DT_LONGLONG reference to calibration run belonging exclusively
to the group (if applicable)

device_first DT_ LONGLONG reference to 1st device in the group

device_last DT_ LONGLONG reference to last device in the group

deviceLocation DT_STRING current location of device

deviceOwner current user of device

isCalibratable DT_BOOLEAN indicates if device is calibrateable

status DT_BOOLEAN calibration status

accuracyClass DT_ LONGLONG reference to instance of AE_AccuracyClass
relevant for this group

signalInLower DT_DOUBLE minimum signal input level

signalInUpper DT_DOUBLE maximum signal input level

signalOutLower DT_DOUBLE minimum signal output level

signalOutUpper DT_DOUBLE maximum signal output level

temperatureLower DT_DOUBLE lower temperature range for proper device
operation

temperatureUpper DT_DOUBLE upper temperature range for proper device
operation

ISO/PAS 22720:2005(E)

1218 © ISO 2005 – All rights reserved

CALIBRATION APPLICATION MODEL

ASAM ODS VERSION 5.0 12-17

AE_CalibratedGroup DataType enum
name

Example, Annotation

pressureLower DT_DOUBLE lower air pressure range for proper device
operation

pressureUpper DT_DOUBLE upper air pressure range for proper device
operation

humidityLower DT_DOUBLE lower air humidity range for proper device
operation

humidityUpper DT_DOUBLE upper air humidity range for proper device
operation

calibrationPeriodClass DT_ LONGLONG reference to period class for re-calibrations

calibrationExpiryDate DT_DATE expiry date for current calibration

calibrationPeriod DT_LONG period for current valid calibration

calibrationPeriodUnit DT_STRING calibration period, can be in days or even in
usages

calibratedRangeLower DT_DOUBLE lower calibrated input range

calibratedRangeUpper DT_DOUBLE upper calibrated input range

Figure 13: Attributes for AE_CalibratedGroup

The application element AE_AccuracyClass is derived from AoTestEquipmentPart. Instances
of AE_CalibratedDevice and AE_Calibration refer to instances of AE_AccuracyClass to
document the applied accuracy during a re-calibration.

AE_AccuracyClass DataType enum name Example, Annotation

physDimension DT_LONGLONG

unit DT_ LONGLONG reference to unit

precision DT_LONG amount of fractional digits

rangeEnd DT_DOUBLE calibrated range end

absError DT_DOUBLE absolute error

relError DT_DOUBLE relative error

accuracyClassDescription DT_EXTERNALREFERENCE reference to accuracy class
description

prescribedSetpoints DS_DOUBLE prescribed set of setpoints

calibrateSetpoint DS_BOOLEAN set with flags specifying a setpoint is
to calibrate or only to check

Figure 14: Attributes for AE_AccuracyClass

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1219

ASAM ODS VERSION 5.0

12-18 ASAM ODS VERSION 5.0

The application element AE_CalibrationPeriod is derived from AoTestEquipmentPart. A
period can be a time period or the number of usages. The usual period will be a time period
e.g. in days. However in specific applications like crash tests the calibration period is defined
by usages. This means, the number of times a device is used, is essential for re-calibration.

AE_CalibrationPeriod DataType enum name Example, Annotation

calibPeriod DT_LONG time period or usages

periodUnit DT_ LONGLONG unit for period

Figure 15: Attributes of AE_CalibrationPeriod

The application element AE_DeviceLogBook is derived from AoLog. Every device under
control of the ASAM-ODS calibration server has its own logbook documenting its history.

AE_DeviceLogBook DataType enum name Example, Annotation

date DT_DATE

operator DT_STRING who created the entry

event DT_STRING event in short

status DT_STRING calibration status

messageText DT_STRING explanation

Figure 16: Attributes of AE_DeviceLogBook

12.4.4 THE COMPLETE CALIBRATION DATA MODEL

The complete calibration application model is presented in figure 17 as UML diagram. The
yellow boxes are the application elements, and the lines between the boxes are the relations
between the application elements. Furthermore besides the yellow boxes the names of the
base elements are written from which each application element is derived.

ISO/PAS 22720:2005(E)

1220 © ISO 2005 – All rights reserved

CALIBRATION APPLICATION MODEL

ASAM ODS VERSION 5.0 12-19

Figure 17: The complete Application Model for Calibration Data

The alternative entry points into the data model are the application elements AE_Project and
AE_DeviceCollection. The project entry point leads to the collection of all calibration runs
executed so far. The device collection entry point leads to the collection of all devices that
are administered by the ODS server. Each instance of a calibrated device is associated with
its accuracy class, calibration period, device logbook, and finally with the set of re-
calibrations executed so far.

The application element AE_CalibratedGroup is introduced to administer devices that belong
to an exclusive component group that must be calibrated in a group. Examples for such
groups are:

 a measuring chain that is composed of elements like sensor, amplifier, … etc. .

 a group of independent acceleration sensors that are always used as complete group in
crash tests.

 A boombox housing a set of independent measuring components

The application element AE_DeviceLogBook is associated with a calibrated device or a
calibrated group. The application element serves the purpose to document a device’s resp. a
group’s history.

The application elements AE_AccuracyClass and AE_CalibrationPeriod are associated with
calibrated devices resp. calibrated groups. The instances of these elements serve the
purpose to define data sets that are of global interest. All instances of AE_CalibratedDevice
reference their specific accuracy class instance that is relevant for calibration. This avoids
the surplus to define all details about the applied accuracy class in each calibrated device.
This also holds for the calibration period.

AoTest

AoSubTest

AoTest

Equipment

Part

AoSubMatrix

AoLog

AoLog

AoTest

Equipment

Part

AE_Project

AoLocalColumn

AE_Component

0..*0..*

AE_Result

1..*1..*

AoMeasurementQuantity

AE_Calibration

0..*0..*

AE_CalibLogbook

11 11

AE_DeviceLogbook

AE_CalibratedDevice

11

11 11

AE_DeviceCollection

0..*0..*

11 11

AE_AccuracyClass

11

1..*1..*

AE_CalibratedGroup

11

1..*1..*

0.. *0.. *

AE_CalibrationPeriod

1..*1..*

AoTest

Equipment

Part

AoTest

Equipment

AoTest

Equipment

Part

AoMeasurement

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1221

ASAM ODS VERSION 5.0

12-20 ASAM ODS VERSION 5.0

The instances of the application element AE_Component are subprojects. Each subproject
contains all calibration runs that belong to one specific component, resp. device. The results
of each calibration run are united by an instance of AE_Calibration.

A calibration has a relationship to the calibrated device. This organization enables a client
application to introspect in an easy way all re-calibrations of a specific device.

The application element AE_Result ties together the AoLocalColumns. Four instances of
AoLocalColumn exist for each calibration run:
a) the set of setpoints to apply in a calibration run according to the calibration specification,
b) the set with the really applied setpoints,
c) the behaviour of the device under calibration by the applied setpoints before calibration,
d) the behaviour of the device under calibration by the applied setpoints after calibration.

The instance of the application element AE_CalibLogbook serves as global logbook to
document all calibration activities.

ISO/PAS 22720:2005(E)

1222 © ISO 2005 – All rights reserved

CALIBRATION APPLICATION MODEL

ASAM ODS VERSION 5.0 12-21

12.5 REVISION HISTORY

Date
Editor

Changes

2003-09-29
B. Thelen

Created document

2003-10-14
B. Thelen

Updated section 4.1

2003-10-15
R. Bartz

Some errors have been fixed

2003-12
R. Bartz

Figure 17 has been exchanged by a new one
Minor textual changes have been made

2003-12-30
R. Bartz

The Release version has been created

ISO/PAS 22720:2005(E)

© ISO 2005 – All rights reserved 1223

ASAM ODS VERSION 5.0

12-22 ASAM ODS VERSION 5.0

ASAM e.V.

Arnikastr. 2

D-85635 Hoehenkirchen

Germany

phone: (+49) 8102 – 895317

fax: (+49) 8102 – 895310

e-mail: info@asam.net

internet: www.asam.net

ISO/PAS 22720:2005(E)

1224 © ISO 2005 – All rights reserved

ISO/PAS 22720:2005(E)

ICS 01.120
Price based on 537 pages

© ISO 2005 – All rights reserved

