

Reference number
ISO 19125-1:2004(E)

© ISO 2004

INTERNATIONAL
STANDARD

ISO
19125-1

First edition
2004-08-01

Corrected version
2004-11-01

Geographic information — Simple feature
access —
Part 1:
Common architecture

Information géographique — Accès aux entités simples —

Partie 1: Architecture commune

ISO 19125-1:2004(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2004
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2004 – All rights reserved

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved iii

Contents Page

Foreword.. iv
Introduction ... iv
1 Scope.. 1
2 Conformance ... 1
3 Normative references ... 1
4 Terms and definitions... 1
5 Abbreviated terms... 4
6 Architecture ... 5
6.1 Geometry object model .. 5
6.2 Well-known Text Representation for Geometry... 21
6.3 Well-known Binary Representation for Geometry... 22
6.4 Well-known Text Representation of Spatial Reference Systems... 25
Annex A (informative) The correspondence of concepts of the common architecture with

concepts of the geometry model of ISO 19107.. 28
Annex B (informative) Supported spatial reference data ... 36
Bibliography ... 42

ISO 19125-1:2004(E)

iv © ISO 2004 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 19125-1 was prepared by Technical Committee ISO/TC 211, Geographic information/Geomatics from a
base document supplied by the Open GIS Consortium, Inc.

ISO 19125 consists of the following parts, under the general title Geographic information — Simple feature
access:

— Part 1: Common architecture

— Part 2: SQL option

This corrected version of ISO 19125-1:2004 incorporates the following corrections:

— a complete version of Figure 9, which was truncated in the original;

— removal from the Foreword of the reference to ISO 19125-3, which has now been deleted.

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved v

Introduction

This part of ISO 19125 describes the common architecture for simple feature geometry. The simple feature
geometry object model is Distributed Computing Platform neutral and uses UML notation. The base Geometry
class has subclasses for Point, Curve, Surface and GeometryCollection. Each geometric object is associated
with a Spatial Reference System, which describes the coordinate space in which the geometric object is
defined.

The extended Geometry model has specialized 0, 1 and 2-dimensional collection classes named MultiPoint,
MultiLineString and MultiPolygon for modelling geometries corresponding to collections of Points, LineStrings
and Polygons, respectively. MultiCurve and MultiSurface are introduced as abstract superclasses that
generalize the collection interfaces to handle Curves and Surfaces.

The attributes, methods and assertions for each Geometry class are described in Figure 1 in 6.1.1. In
describing methods, this is used to refer to the receiver of the method (the object being messaged).

The SFA COM function “signatures” may use a different notation from SFA SQL. COM notation is more
familiar for COM programmers. However, UML notation is used throughout this part of ISO 19125. There may
also be methods used in this International Standard that differ from one part to another. Where this is the case,
the differences are shown within the part.

This part of ISO 19125 implements a profile of the spatial schema described in ISO 19107:2003, Geographic
information  Spatial schema. Annex A provides a detailed mapping of the schema in this part of ISO 19125
with the schema described in ISO 19107:2003.

INTERNATIONAL STANDARD ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 1

Geographic information — Simple feature access —

Part 1:
Common architecture

1 Scope

This part of ISO 19125 establishes a common architecture and defines terms to use within the architecture.

This part of ISO 19125 does not attempt to standardize and does not depend upon any part of the mechanism
by which Types are added and maintained, including the following:

a) syntax and functionality provided for defining types;

b) syntax and functionality provided for defining functions;

c) physical storage of type instances in the database;

d) specific terminology used to refer to User Defined Types, for example UDT.

This part of ISO 19125 does standardize names and geometric definitions for Types for Geometry.

This part of ISO 19125 does not place any requirements on how to define the Geometry Types in the internal
schema nor does it place any requirements on when or how or who defines the Geometry Types.

2 Conformance

In order to conform to this part of ISO 19125, an implementation shall satisfy the requirements of one or more
test suites specified in the other parts of ISO 19125.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 19107:2003, Geographic information  Spatial schema

ISO 19111:2003, Geographic information  Spatial referencing by coordinates

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1
boundary
set that represents the limit of an entity

ISO 19125-1:2004(E)

2 © ISO 2004 – All rights reserved

NOTE Boundary is most commonly used in the context of geometry, where the set is a collection of points or a
collection of objects that represent those points. In other arenas, the term is used metaphorically to describe the transition
between an entity and the rest of its domain of discourse.

[ISO 19107]

4.2
buffer
geometric object (4.14) that contains all direct positions (4.7) whose distance from a specified geometric
object is less than or equal to a given distance

[ISO 19107]

4.3
coordinate
one of a sequence of n-numbers designating the position of a point (4.17) in n-dimensional space

NOTE In a coordinate reference system, the numbers must be qualified by units.

[adapted from ISO 19111]

4.4
coordinate dimension
number of measurements or axes needed to describe a position in a coordinate system (4.6)

[ISO 19107]

4.5
coordinate reference system
coordinate system (4.6) that is related to the real world by a datum

[adapted from ISO 19111]

4.6
coordinate system
set of mathematical rules for specifying how coordinates (4.3) are to be assigned to point (4.17)

[ISO 19111]

4.7
curve
1-dimensional geometric primitive (4.15), representing the continuous image of a line

NOTE The boundary of a curve is the set of points at either end of the curve. If the curve is a cycle, the two ends are
identical, and the curve (if topologically closed) is considered to not have a boundary. The first point is called the start
point, and the last is the end point. Connectivity of the curve is guaranteed by the “continuous image of a line” clause.
A topological theorem states that a continuous image of a connected set is connected.

[ISO 19107]

4.7
direct position
position described by a single set of coordinates (4.3) within a coordinate reference system (4.5)

[ISO 19107]

4.9
end point
last point (4.17) of a curve (4.7)

[ISO 19107]

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 3

4.10
exterior
difference between the universe and the closure

NOTE The concept of exterior is applicable to both topological and geometric complexes.

[ISO 19107]

4.11
feature
abstraction of real world phenomena

NOTE A feature may occur as a type or an instance. Feature type or feature instance is used when only one is meant.

[adapted from ISO 19101]

4.12
feature attribute
characteristic of a feature (4.11)

NOTE A feature attribute has a name, a data type, and a value domain associated to it. A feature attribute for a
feature instance also has an attribute value taken from the value domain.

[adapted from ISO 19101]

4.13
geometric complex
set of disjoint geometric primitives (4.15) where the boundary (4.1) of each geometric primitive can be
represented as the union of other geometric primitives of smaller dimension within the same set

NOTE The geometric primitives in the set are disjoint in the sense that no direct position is interior to more than one
geometric primitive. The set is closed under boundary operations, meaning that for each element in the geometric complex,
there is a collection (also a geometric complex) of geometric primitives that represents the boundary of that element.
Recall that the boundary of a point (the only 0D primitive object type in geometry) is empty. Thus, if the largest dimension
geometric primitive is a solid (3D), the composition of the boundary operator in this definition terminates after at most
3 steps. It is also the case that the boundary of any object is a cycle.

[ISO 19107]

4.14
geometric object
spatial object representing a geometric set

NOTE A geometric object consists of a geometric primitive, a collection of geometric primitives, or a geometric
complex treated as a single entity. A geometric object may be the spatial representation of an object such as a feature or a
significant part of a feature.

[ISO 19107]

4.15
geometric primitive
geometric object (4.14) representing a single, connected, homogeneous element of space

NOTE Geometric primitives are non-decomposed objects that represent information about geometric configuration.
They include points, curves, surfaces, and solids.

[ISO 19107]

ISO 19125-1:2004(E)

4 © ISO 2004 – All rights reserved

4.16
interior
set of all direct positions (4.7) that are on a geometric object (4.14) but which are not on its boundary (4.1)

NOTE The interior of a topological object is the homomorphic image of the interior of any of its geometric realizations.
This is not included as a definition because it follows from a theorem of topology.

[ISO 19107]

4.17
point
0-dimensional geometric primitive (4.15), representing a position

NOTE The boundary of a point is the empty set.

[ISO 19107]

4.18
simple feature
feature (4.11) restricted to 2D geometry with linear interpolation between vertices, having both spatial and
non spatial attributes

4.19
start point
first point (4.17) of a curve (4.7)

[ISO 19107]

4.20
surface
2-dimensional geometric primitive (4.15), locally representing a continuous image of a region of a plane

NOTE The boundary of a surface is the set of oriented, closed curves that delineate the limits of the surface.

[adapted from ISO 19107]

5 Abbreviated terms

API Application Program Interface

COM Component Object Model

CORBA Common Object Request Broker Architecture

DCE Distributed Computing Environment

DCOM Distributed Component Objected Model

DE-9IM Dimensionally Extended Nine-Intersection Model

IEEE Institute of Electrical and Electronics Engineers, Inc.

NDR Little Endian byte order encoding

OLE Object Linking and Embedding

RPC Remote Procedure Call

SQL Structured Query Language

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 5

SRID Spatial Reference System Identifier

XDR Big Endian byte order encoding

UDT User Defined Type

UML Unified Modeling Language

WKB Well-Known Binary (representation for example, geometry)

6 Architecture

6.1 Geometry object model

6.1.1 Overview

This subclause describes the object model for simple feature geometry. The simple feature geometry object
model is Distributed Computing Platform neutral and uses UML notation. The object model for geometry
is shown in Figure 1. The base Geometry class has subclasses for Point, Curve, Surface and
GeometryCollection. Each geometric object is associated with a Spatial Reference System, which describes
the coordinate space in which the geometric object is defined.

Figure 1 — Geometry class hierarchy

Figure 1 is based on an extended Geometry model with specialized 0-, 1- and 2-dimensional collection
classes named MultiPoint, MultiLineString and MultiPolygon for modelling geometries corresponding to
collections of Points, LineStrings and Polygons, respectively. MultiCurve and MultiSurface are introduced as
abstract superclasses that generalize the collection interfaces to handle Curves and Surfaces. Figure 1 shows
aggregation lines between the leaf-collection classes and their element classes; the aggregation lines for
non-leaf-collection classes are described in the text.

ISO 19125-1:2004(E)

6 © ISO 2004 – All rights reserved

The attributes, methods and assertions for each Geometry class are described below. In describing methods,
this is used to refer to the receiver of the method (the object being messaged).

6.1.2 Geometry

6.1.2.1 Description

Geometry is the root class of the hierarchy. Geometry is an abstract (non-instantiable) class.

The instantiable subclasses of Geometry defined in this International Standard are restricted to 0, 1 and
2-dimensional geometric objects that exist in 2-dimensional coordinate space (ℜ2).

All instantiable Geometry classes described in this part of ISO 19125 are defined so that valid instances of a
Geometry class are topologically closed, i.e. all defined geometries include their boundary.

6.1.2.2 Basic methods on geometric objects

 Dimension ():Integer — The inherent dimension of this geometric object, which must be less than or
equal to the coordinate dimension. This specification is restricted to geometries in 2-dimensional
coordinate space.

 GeometryType ():String — Returns the name of the instantiable subtype of Geometry of which this
geometric object is a instantiable member. The name of the subtype of Geometry is returned as a string.

 SRID ():Integer — Returns the Spatial Reference System ID for this geometric object.

 Envelope():Geometry — The minimum bounding box for this Geometry, returned as a Geometry. The
polygon is defined by the corner points of the bounding box [(MINX, MINY), (MAXX, MINY), (MAXX,
MAXY), (MINX, MAXY), (MINX, MINY)].

 AsText():String — Exports this geometric object to a specific Well-known Text Representation of
Geometry.

 AsBinary():Binary — Exports this geometric object to a specific Well-known Binary Representation of
Geometry.

 IsEmpty():Integer — Returns 1 (TRUE) if this geometric object is the empty Geometry. If true, then this
geometric object represents the empty point set, ∅, for the coordinate space.

 IsSimple():Integer — Returns 1 (TRUE) if this geometric object has no anomalous geometric points,
such as self intersection or self tangency. The description of each instantiable geometric class will include
the specific conditions that cause an instance of that class to be classified as not simple.

 Boundary():Geometry — Returns the closure of the combinatorial boundary of this geometric object
(Reference [1], section 3.12.2). Because the result of this function is a closure, and hence topologically
closed, the resulting boundary can be represented using representational Geometry primitives
(Reference [1], section 3.12.2).

6.1.2.3 Methods for testing spatial relations between geometric objects

The methods in this subclause are defined and described in more detail following the description of the sub-
types of Geometry.

 Equals(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object is “spatially
equal” to anotherGeometry.

 Disjoint(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object is “spatially
disjoint” from anotherGeometry.

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 7

 Intersects(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object “spatially
intersects” anotherGeometry.

 Touches(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object “spatially
touches” anotherGeometry.

 Crosses(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object “spatially
crosses’ anotherGeometry.

 Within(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object is “spatially
within” anotherGeometry.

 Contains(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object “spatially
contains” anotherGeometry.

 Overlaps(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object “spatially
overlaps” anotherGeometry.

 Relate(anotherGeometry:Geometry, intersectionPatternMatrix:String):Integer — Returns 1 (TRUE) if this
geometric object is spatially related to anotherGeometry by testing for intersections between the interior,
boundary and exterior of the two geometric objects as specified by the values in the
intersectionPatternMatrix.

6.1.2.4 Methods that support spatial analysis

 Distance(anotherGeometry:Geometry):Double — Returns the shortest distance between any two Points
in the two geometric objects as calculated in the spatial reference system of this geometric object.

 Buffer(distance:Double):Geometry — Returns a geometric object that represents all Points whose
distance from this geometric object is less than or equal to distance. Calculations are in the spatial
reference system of this geometric object.

 ConvexHull():Geometry — Returns a geometric object that represents the convex hull of this geometric
object.

 Intersection(anotherGeometry:Geometry):Geometry — Returns a geometric object that represents the
Point set intersection of this geometric object with anotherGeometry.

 Union(anotherGeometry:Geometry):Geometry — Returns a geometric object that represents the Point
set union of this geometric object with anotherGeometry.

 Difference(anotherGeometry:Geometry):Geometry — Returns a geometric object that represents the
Point set difference of this geometric object with anotherGeometry.

 SymDifference(anotherGeometry:Geometry):Geometry — Returns a geometric object that represents
the Point set symmetric difference of this geometric object with anotherGeometry.

6.1.3 GeometryCollection

6.1.3.1 Description

A GeometryCollection is a geometric object that is a collection of 1 or more geometric objects.

All the elements in a GeometryCollection shall be in the same Spatial Reference. This is also the Spatial
Reference for the GeometryCollection.

ISO 19125-1:2004(E)

8 © ISO 2004 – All rights reserved

GeometryCollection places no other constraints on its elements. Subclasses of GeometryCollection may
restrict membership based on dimension and may also place other constraints on the degree of spatial
overlap between elements.

6.1.3.2 Methods

 NumGeometries():Integer — Returns the number of geometries in this GeometryCollection.

 GeometryN(N:integer):Geometry — Returns the Nth geometry in this GeometryCollection.

6.1.4 Point

6.1.4.1 Description

A Point is a 0-dimensional geometric object and represents a single location in coordinate space. A Point has
an x-coordinate value and a y-coordinate value.

The boundary of a Point is the empty set.

6.1.4.2 Methods

 X():Double — The x-coordinate value for this Point.

 Y():Double — The y-coordinate value for this Point.

6.1.5 MultiPoint

A MultiPoint is a 0-dimensional GeometryCollection. The elements of a MultiPoint are restricted to Points. The
Points are not connected or ordered.

A MultiPoint is simple if no two Points in the MultiPoint are equal (have identical coordinate values).

The boundary of a MultiPoint is the empty set.

6.1.6 Curve

6.1.6.1 Description

A Curve is a 1-dimensional geometric object usually stored as a sequence of Points, with the subtype of
Curve specifying the form of the interpolation between Points. This part of ISO 19125 defines only one
subclass of Curve, LineString, which uses linear interpolation between Points.

A Curve is a 1-dimensional geometric object that is the homeomorphic image of a real, closed, interval D = [a,
b] = {x ∈ ℜ.  a u x u b} under a mapping f:[a,b] → ℜ 2.

A Curve is simple if it does not pass through the same Point twice (Reference [1], section 3.12.7.3):

∀ c ∈ Curve, [a, b] = c.Domain,

c.IsSimple⇔ (∀ x1, x2 ∈ (a, b] x1 ≠ x2 ⇒ f(x1) ≠ f (x2)) ∧ (∀ x1, x2 ∈ [a, b) x1 ≠ x2 ⇒ f(x1) ≠ f(x2))

A Curve is closed if its start Point is equal to its end Point (Reference [1], section 3.12.7.3).

The boundary of a closed Curve is empty.

A Curve that is simple and closed is a Ring.

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 9

The boundary of a non-closed Curve consists of its two end Points (Reference [1], section 3.12.3.2).

A Curve is defined as topologically closed.

6.1.6.2 Methods

 Length():Double — The length of this Curve in its associated spatial reference.

 StartPoint():Point — The start Point of this Curve.

 EndPoint():Point — The end Point of this Curve.

 IsClosed():Integer — Returns 1 (TRUE) if this Curve is closed [StartPoint () = EndPoint ()].

 IsRing():Integer — Returns 1 (TRUE) if this Curve is closed [StartPoint () = EndPoint ()] and this Curve
is simple (does not pass through the same Point more than once).

6.1.7 LineString, Line, LinearRing

6.1.7.1 Description

A LineString is a Curve with linear interpolation between Points. Each consecutive pair of Points defines a
Line segment.

A Line is a LineString with exactly 2 Points.

A LinearRing is a LineString that is both closed and simple. The Curve in Figure 2, item (c), is a closed
LineString that is a LinearRing. The Curve in Figure 2, item (d) is a closed LineString that is not a LinearRing.

Key

s start
e end

Figure 2 — Examples of LineStrings — Simple LineString (a), Non-simple LineString (b), Simple,
closed LineString (a LinearRing) (c), Non-simple closed LineString (d)

6.1.7.2 Methods

 NumPoints():Integer — The number of Points in this LineString.

ISO 19125-1:2004(E)

10 © ISO 2004 – All rights reserved

 PointN(N:Integer):Point — Returns the specified Point N in this LineString.

6.1.8 MultiCurve

6.1.8.1 Description

A MultiCurve is a 1-dimensional GeometryCollection whose elements are Curves as in Figure 3.

MultiCurve is a non-instantiable class in this specification; it defines a set of methods for its subclasses and is
included for reasons of extensibility.

A MultiCurve is simple if and only if all of its elements are simple and the only intersections between any two
elements occur at Points that are on the boundaries of both elements.

The boundary of a MultiCurve is obtained by applying the “mod 2” union rule: A Point is in the boundary of a
MultiCurve if it is in the boundaries of an odd number of elements of the MultiCurve (Reference [1], section
3.12.3.2).

A MultiCurve is closed if all of its elements are closed. The boundary of a closed MultiCurve is always empty.

A MultiCurve is defined as topologically closed.

6.1.8.2 Methods

 IsClosed():Integer — Returns 1 (TRUE) if this MultiCurve is closed [StartPoint () = EndPoint () for each
Curve in this MultiCurve].

 Length():Double — The Length of this MultiCurve which is equal to the sum of the lengths of the element
Curves.

6.1.9 MultiLineString

A MultiLineString is a MultiCurve whose elements are LineStrings.

The boundaries for the MultiLineStrings in Figure 3 are (a){s1, e2}, (b) {s1, e1}, (c)∅.

Key

s start
e end

Figure 3 — Examples of MultiLineStrings — Simple MultiLineString (a), Non-simple MultiLineString
with 2 elements (b), Non-simple, closed MultiLineString with 2 elements (c)

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 11

6.1.10 Surface

6.1.10.1 Description

A Surface is a 2-dimensional geometric object.

A simple Surface consists of a single “patch” that is associated with one “exterior boundary” and 0 or more
“interior” boundaries. Simple Surfaces in 3-dimensional space are isomorphic to planar Surfaces. Polyhedral
Surfaces are formed by “stitching” together simple Surfaces along their boundaries, polyhedral Surfaces in
3-dimensional space may not be planar as a whole (Reference [1], sections 3.12.9.1, 3.12.9.3).

The boundary of a simple Surface is the set of closed Curves corresponding to its “exterior” and “interior”
boundaries (Reference [1], section 3.12.9.4).

The only instantiable subclass of Surface defined in this specification, Polygon, is a simple Surface that is
planar.

6.1.10.2 Methods

 Area():Double — The area of this Surface, as measured in the spatial reference system of this Surface.

 Centroid():Point — The mathematical centroid for this Surface as a Point. The result is not guaranteed
to be on this Surface.

 PointOnSurface():Point — A Point guaranteed to be on this Surface.

6.1.11 Polygon

6.1.11.1 Description

A Polygon is a planar Surface defined by 1 exterior boundary and 0 or more interior boundaries. Each interior
boundary defines a hole in the Polygon.

The assertions for Polygons (the rules that define valid Polygons) are as follows:

a) Polygons are topologically closed;

b) The boundary of a Polygon consists of a set of LinearRings that make up its exterior and interior
boundaries;

c) No two Rings in the boundary cross and the Rings in the boundary of a Polygon may intersect at a Point
but only as a tangent, e.g. ∀ P ∈ Polygon, ∀ c1, c2 ∈ P.Boundary(), c1 ≠ c2, ∀ p, q ∈ Point, p, q ∈c1,
p ≠ q , [p ∈ c2 ⇒ q ∉ c2];

d) A Polygon may not have cut lines, spikes or punctures e.g.: ∀ P ∈ Polygon, P = Closure(Interior(P);

e) The interior of every Polygon is a connected point set;

f) The exterior of a Polygon with 1 or more holes is not connected. Each hole defines a connected
component of the exterior.

In the above assertions, interior, closure and exterior have the standard topological definitions. The
combination of (a) and (c) make a Polygon a regular closed Point set.

Polygons are simple geometric objects.

ISO 19125-1:2004(E)

12 © ISO 2004 – All rights reserved

Figure 4 shows some examples of Polygons.

Figure 4 — Examples of Polygons with 1 (a), 2 (b) and 3 (c) Rings, respectively

Figure 5 shows some examples of geometric objects that violate the above assertions and are not
representable as single instances of Polygon.

Figure 5 — Examples of objects not representable as a single instance of Polygon

6.1.11.2 Methods

 ExteriorRing():LineString — Returns the exteriorRing of this Polygon.

 NumInteriorRing():Integer — Returns the number of interiorRings in this Polygon.

 InteriorRingN(N:Integer):LineString — Returns the Nth interiorRing for this Polygon as a LineString.

6.1.12 MultiSurface

6.1.12.1 Description

A MultiSurface is a 2-dimensional GeometryCollection whose elements are Surfaces. The interiors of any two
Surfaces in a MultiSurface may not intersect. The boundaries of any two elements in a MultiSurface may
intersect, at most, at a finite number of Points.

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 13

MultiSurface is a non-instantiable class in this International Standard. It defines a set of methods for its
subclasses and is included for reasons of extensibility. The instantiable subclass of MultiSurface is
MultiPolygon, corresponding to a collection of Polygons.

6.1.12.2 Methods

 Area():Double — The area of this MultiSurface, as measured in the spatial reference system of this
MultiSurface.

 Centroid():Point — The mathematical centroid for this MultiSurface. The result is not guaranteed to be
on this MultiSurface.

 PointOnSurface():Point — A Point guaranteed to be on this MultiSurface.

6.1.13 MultiPolygon

A MultiPolygon is a MultiSurface whose elements are Polygons.

The assertions for MultiPolygons are as follows.

a) The interiors of 2 Polygons that are elements of a MultiPolygon may not intersect.

∀ M ∈ MultiPolygon, ∀ Pi, Pj ∈ M.Geometries(), i≠j, Interior(Pi) ∩ Interior(Pj) = ∅;

b) The boundaries of any 2 Polygons that are elements of a MultiPolygon may not “cross” and may touch at
only a finite number of Points.

∀ M ∈ MultiPolygon, ∀ Pi, Pj ∈ M.Geometries(), ∀ ci ∈ Pi.Boundaries(), cj ∈ Pj.Boundaries()
ci ∩ cj = {p1, ….., pk | pi ∈ Point, 1 u i u k};

NOTE Crossing is prevented by assertion (a) above.

c) A MultiPolygon is defined as topologically closed.

d) A MultiPolygon may not have cut lines, spikes or punctures, a MultiPolygon is a regular closed Point set:

∀ M ∈ MultiPolygon, M = Closure(Interior(M))

e) The interior of a MultiPolygon with more than 1 Polygon is not connected, the number of connected
components of the interior of a MultiPolygon is equal to the number of Polygons in the MultiPolygon.

The boundary of a MultiPolygon is a set of closed Curves (LineStrings) corresponding to the boundaries of its
element Polygons. Each Curve in the boundary of the MultiPolygon is in the boundary of exactly 1 element
Polygon, and every Curve in the boundary of an element Polygon is in the boundary of the MultiPolygon.

The reader is referred to works by Worboys et al.[13, 14] and Clementini et al.[5, 6] for the definition and
specification of MultiPolygons.

ISO 19125-1:2004(E)

14 © ISO 2004 – All rights reserved

Figure 6 shows four examples of valid MultiPolygons with 1, 3, 2 and 2 Polygon elements, respectively.

Figure 6 — Examples of MultiPolygons with 1 (a), 3 (b) , 2 (c) and 2 (d) Polygon elements

Figure 7 shows examples of geometric objects not representable as single instances of MultiPolygons.

NOTE The subclass of Surface named Polyhedral Surface as described in Reference [1], is a faceted Surface whose
facets are Polygons. A Polyhedral Surface is not a MultiPolygon because it violates the rule for MultiPolygons that the
boundaries of the element Polygons intersect only at a finite number of Points.

Figure 7 — Geometric objects not representable as a single instance of a MultiPolygon

6.1.14 Relational operators

6.1.14.1 Background

The relational operators are Boolean methods that are used to test for the existence of a specified topological
spatial relationship between two geometric objects. Topological spatial relationships between two geometric
objects have been a topic of extensive study; see References [4, 5, 6, 7, 8, 9, 10]. The basic approach to
comparing two geometric objects is to make pair-wise tests of the intersections between the interiors,
boundaries and exteriors of the two geometric objects and to classify the relationship between the two
geometric objects based on the entries in the resulting ‘intersection’ matrix.

The concepts of interior, boundary and exterior are well defined in general topology; see Reference [4]. These
concepts can be applied in defining spatial relationships between 2-dimensional objects in 2-dimensional
space (ℜ2). In order to apply the concepts of interior, boundary and exterior to 1- and 0-dimensional objects in
ℜ2, a combinatorial topology approach shall be applied (Reference [1], section 3.12.3.2). This approach is
based on the accepted definitions of the boundaries, interiors and exteriors for simplicial complexes (see
Reference [12]) and yields the following results.

The boundary of a geometric object is a set of geometric objects of the next lower dimension. The boundary of
a Point or a MultiPoint is the empty set. The boundary of a non-closed Curve consists of its two end Points,

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 15

the boundary of a closed Curve is empty. The boundary of a MultiCurve consists of those Points that are in
the boundaries of an odd number of its element Curves. The boundary of a Polygon consists of its set of
Rings. The boundary of a MultiPolygon consists of the set of Rings of its Polygons. The boundary of an
arbitrary collection of geometric objects whose interiors are disjoint consists of geometric objects drawn from
the boundaries of the element geometric objects by application of the “mod 2” union rule (Reference [1],
section 3.12.3.2).

The domain of geometric objects considered is those that are topologically closed. The interior of a geometric
object consists of those Points that are left when the boundary Points are removed. The exterior of a
geometric object consists of Points not in the interior or boundary.

Studies on the relationships between two geometric objects both of maximal dimension in ℜ1 and ℜ2
considered pair-wise intersections between the interior and boundary sets and led to the definition of a four-
intersection model; see Reference [8]. The model was extended to consider the exterior of the input geometric
objects, resulting in a nine-intersection model (see Reference [11]) and further extended to include information
on the dimension of the results of the pair-wise intersections resulting in a dimensionally extended nine-
intersection model; see Reference [5]. These extensions allow the model to express spatial relationships
between points, lines and areas, including areas with holes and multi-component lines and areas; see
Reference [6].

6.1.14.2 The Dimensionally Extended Nine-Intersection Model (DE-9IM)

Given a geometric object a, let I(a), B(a) and E(a) represent the interior, boundary and exterior of “a”,
respectively.

Let dim(x) return the maximum dimension (-1, 0, 1, or 2) of the geometric objects in x, with a numeric value of
-1 corresponding to dim(∅).

The intersection of any two of I(a), B(a) and E(a) can result in a set of geometric objects, x, of mixed
dimension. For example, the intersection of the boundaries of two Polygons may consist of a point and a line.

Table 1 shows the general form of the dimensionally extended nine-intersection matrix (DE-9IM).

Table 1 — The DE-9IM

 Interior Boundary Exterior

Interior dim(I(a)∩I(b)) dim(I(a)∩B(b)) dim(I(a)∩E(b))

Boundary dim(B(a)∩I(b)) dim(B(a)∩B(b)) dim(B(a)∩E(b))

Exterior dim(E(a)∩I(b)) dim(E(a)∩B(b)) dim(E(a)∩E(b))

For regular, topologically closed input geometric objects, computing the dimension of the intersection of the
interior, boundary and exterior sets does not have, as a prerequisite, the explicit computation and
representation of these sets. To compute if the interiors of two regular closed Polygons intersect, and to
ascertain the dimension of this intersection, it is not necessary to explicitly represent the interior of the two
Polygons, which are topologically open sets, as separate geometric objects. In most cases, the dimension of
the intersection value at a cell is highly constrained, given the type of the two geometric objects. In the Line-
Area case, the only possible values for the interior-interior cell are drawn from {-1, 1} and in the Area-Area
case, the only possible values for the interior-interior cell are drawn from {-1, 2}. In such cases, no work
beyond detecting the intersection is required.

ISO 19125-1:2004(E)

16 © ISO 2004 – All rights reserved

Figure 8 shows an example DE-9IM for the case where a and b are two Polygons that overlap.

Figure 8 — An example instance and its DE-9IM

A spatial relationship predicate can be formulated on two geometric objects that takes as input a pattern
matrix representing the set of acceptable values for the DE-9IM for the two geometric objects. If the spatial
relationship between the two geometric objects corresponds to one of the acceptable values as represented
by the pattern matrix, then the predicate returns TRUE.

The pattern matrix consists of a set of nine pattern-values, one for each cell in the matrix. The possible
pattern-values p are {T, F, *, 0, 1, 2} and their meanings for any cell where x is the intersection set for the cell
are as follows:

p = T W dim(x) ∈ {0, 1, 2}, i.e. x ≠ ∅

p = F W dim(x) = -1, i.e. x = ∅

p = * W dim(x) ∈ {-1, 0, 1, 2}, i.e. Don’t Care

p = 0 W dim(x) = 0

p = 1 W dim(x) = 1

p = 2 W dim(x) = 2

The pattern matrix can be represented as an array or list of nine characters in row major order. As an example,
the following code fragment could be used to test for “Overlap” between two areas.

A spatial relationship predicate can be formulated on two geometric objects that takes as input a pattern
matrix representing the set of acceptable values for the DE-9IM for the two geometric objects. If the spatial
relationship between the two geometric objects corresponds to one of the acceptable values as represented
by the pattern matrix, then the predicate returns TRUE.

The pattern matrix consists of a set of nine pattern-values, one for each cell in the matrix. The possible
pattern-values p are {T, F, *, 0, 1, 2} and their meanings for any cell where x is the intersection set for the cell
are as follows:

p = T W dim(x) ∈ {0, 1, 2}, i.e. x ≠ ∅

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 17

p = F W dim(x) = -1, i.e. x = ∅

p = * W dim(x) ∈ {-1, 0, 1, 2}, i.e. Don’t Care

p = 0 W dim(x) = 0

p = 1 W dim(x) = 1

p = 2 W dim(x) = 2

The pattern matrix can be represented as an array or list of nine characters in row major order. As an example,
the following code fragment could be used to test for “Overlap” between two areas.

A spatial relationship predicate can be formulated on two geometric objects that takes as input a pattern
matrix representing the set of acceptable values for the DE-9IM for the two geometric objects. If the spatial
relationship between the two geometric objects corresponds to one of the acceptable values, as represented
by the pattern matrix, then the predicate returns TRUE.

The pattern matrix consists of a set of nine pattern-values, one for each cell in the matrix. The possible
pattern-values p are {T, F, *, 0, 1, 2} and their meanings for any cell where x is the intersection set for the cell
are as follows:

p = T W dim(x) ∈ {0, 1, 2}, i.e. x ≠ ∅

p = F W dim(x) = -1, i.e. x = ∅

p = * W dim(x) ∈ {-1, 0, 1, 2}, i.e. Don’t Care

p = 0 W dim(x) = 0

p = 1 W dim(x) = 1

p = 2 W dim(x) = 2

The pattern matrix can be represented as an array or list of nine characters in row major order. As an example,
the following code fragment could be used to test for “Overlap” between two areas:

char * overlapMatrix = “T*T***T**”;
Geometry* a, b;
Boolean b = a->Relate(b, overlapMatrix);

6.1.14.3 Named spatial relationship predicates based on the DE-9IM

The Relate predicate based on the pattern matrix has the advantage that clients can test for a large number of
spatial relationships and fine tune the particular relationship being tested. It has the disadvantage that it is a
lower-level building block and does not have a corresponding natural language equivalent. Users of the
proposed system include IT developers using the COM API from a language such as Visual Basic, and
interactive SQL users who may wish, for example, to select all features ‘spatially within’ a query Polygon, in
addition to more spatially “sophisticated” GIS developers.

To address the needs of such users, a set of named spatial relationship predicates has been defined for the
DE-9IM; see References [5, 6]. The five predicates are named Disjoint, Touches, Crosses, Within and
Overlaps. The definition of these predicates (see References [5, 6]) is given below. In these definitions, the
term P is used to refer to 0-dimensional geometries (Points and MultiPoints), L is used to refer to

ISO 19125-1:2004(E)

18 © ISO 2004 – All rights reserved

1-dimensional geometries (LineStrings and MultiLineStrings) and A is used to refer to 2-dimensional
geometries (Polygons and MultiPolygons).

Disjoint

Given two (topologically closed) geometric objects a and b:

a.Disjoint(b) ⇔ a ∩ b = ∅

Expressed in terms of the DE-9IM:

a.Disjoint(b) ⇔ (I(a) ∩ I(b) = ∅) ∧ (I(a)∩B(b) = ∅) ∧ (B(a) ∩ I(b) = ∅) ∧ (B(a)∩B(b) = ∅)
⇔ a.Relate(b, “FF*FF****”)

Touches

The Touches relationship between two geometric objects a and b applies to the A/A, L/L, L/A, P/A and P/L
groups of relationships but not to the P/P group. It is defined as

a.Touch(b) ⇔ (I(a) ∩ I(b) = ∅) ∧ (a ∩ b) ≠ ∅

Expressed in terms of the DE-9IM:

a.Touch(b) ⇔ (I(a) ∩ I(b) = ∅) ∧ ((B(a) ∩ I(b) ≠ ∅) ∨ (I(a) ∩ B(b) ≠ ∅) ∨ (B(a) ∩ B(b) ≠ ∅))
⇔ a.Relate(b, “FT*******”) ∨ a.Relate(b, “F**T*****”) ∨ a.Relate(b, “F***T****”)

Figure 9 shows some examples of the Touches relationship.

Figure 9 — Examples of the Touches relationship

Crosses

The Crosses relationship applies to P/L, P/A, L/L and L/A situations. It is defined as

a.Cross(b) ⇔ (dim(I(a) ∩ I(b) < max(dim(I(a)), dim(I(b))))) ∧ (a ∩ b ≠a) ∧ (a ∩ b ≠b)

Expressed in terms of the DE-9IM:

Case a ∈ P, b ∈ L or Case a ∈P, b ∈ A or Case a ∈ L, b ∈ A:

a.Cross(b) ⇔ (I(a) ∩ I(b) ≠ ∅) ∧ (I(a) ∩ E(b) ≠∅) ⇔ a.Relate(b, “T*T******”)

Case a ∈ L, b ∈ L:

a.Cross(b) ⇔ dim(I(a) ∩ I(b)) = 0 ⇔ a.Relate(b, “0********”);

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 19

Figure 10 shows some examples of the Crosses relationship.

Figure 10 — Examples of the Crosses relationship — Polygon/LineString (a)
and LineString/LineString (b)

Within

The Within relationship is defined as

a.Within(b) ⇔ (a ∩ b = a) ∧ (I(a) ∩ E(b) ≠ ∅)

Expressed in terms of the DE-9IM:

a.Within(b) ⇔ (I(a) ∩ I(b) ≠∅) ∧ (I(a) ∩ E(b) = ∅) ∧ (B(a) ∩ E(b) = ∅)) ⇔ a.Relate(b, “TF*F*****”)

Figure 11 shows some examples of the Within relationship.

Figure 11 — Examples of the Within relationship — Polygon/Polygon (a), Polygon/LineString (b),
LineString/LineString (c), and Polygon/Point (d)

Overlaps

The Overlaps relationship is defined for A/A, L/L and P/P situations.

It is defined as

a.Overlaps(b) ⇔ (dim(I(a)) = dim(I(b)) = dim(I(a) ∩ I(b))) ∧ (a ∩ b ≠ a) ∧ (a ∩ b ≠ b)

Expressed in terms of the DE-9IM:

Case a ∈ P, b ∈ P or Case a ∈ A, b ∈ A:

a.Overlaps(b) ⇔ (I(a) ∩ I(b) ≠ ∅) ∧ (I(a) ∩ E(b) ≠ ∅) ∧ (E(a) ∩ I(b) ≠ ∅) ⇔ a.Relate(b, “T*T***T**”)

Case a ∈ L, b ∈ L:

ISO 19125-1:2004(E)

20 © ISO 2004 – All rights reserved

a.Overlaps(b) ⇔ (dim(I(a) ∩ I(b) = 1) ∧ (I(a) ∩ E(b) ≠ ∅) ∧ (E(a) ∩ I(b) ≠ ∅) ⇔ a.Relate(b,
“1*T***T**”)

Figure 12 shows some examples of the Overlaps relationship.

Figure 12 — Examples of the Overlaps relationship — Polygon/LineString (a)
and LineString/LineString (b)

The following additional named predicates are also defined for user convenience:

Contains

a.Contains(b) ⇔ b.Within(a)

Intersects

a.Intersects(b) ⇔ ! a.Disjoint(b)

Based on the above operators the following methods are defined on Geometry:

 Equals(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object is ‘spatially
equal’ to anotherGeometry.

 Disjoint(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object is ‘spatially
disjoint’ from anotherGeometry.

 Intersects(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object ‘spatially
intersects’ anotherGeometry.

 Touches(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object ‘spatially
touches’ anotherGeometry.

 Crosses(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object ‘spatially
crosses’ anotherGeometry.

 Within(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object is ‘spatially
within’ anotherGeometry.

 Contains(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object ‘spatially
contains’ anotherGeometry.

 Overlaps(anotherGeometry:Geometry):Integer — Returns 1 (TRUE) if this geometric object ‘spatially
overlaps’ anotherGeometry.

 Relate(anotherGeometry:Geometry, intersectionPatternMatrix:String):Integer — Returns 1 (TRUE) if this
geometric object is spatially related to anotherGeometry, by testing for intersections between the interior,
boundary and exterior of the two geometric objects.

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 21

6.2 Well-known Text Representation for Geometry

6.2.1 Component overview

Each Geometry Type has a Well-known Text Representation that can be used both to construct new
instances of the type and to convert existing instances to textual form for alphanumeric display.

6.2.2 Language constructs

The Well-known Text Representation of Geometry is defined below; the notation {}* denotes 0 or more
repetitions of the tokens within the braces; the braces do not appear in the output token list. The text
representation of the instantiable Geometry Types implemented shall conform to this grammar.

<Geometry Tagged Text> :=
 <Point Tagged Text>
 | <LineString Tagged Text>
 | <Polygon Tagged Text>
 | <MultiPoint Tagged Text>
 | <MultiLineString Tagged Text>
 | <MultiPolygon Tagged Text>
 | <GeometryCollection Tagged Text>
<Point Tagged Text> :=
 POINT <Point Text>
<LineString Tagged Text> :=
 LINESTRING <LineString Text>
<Polygon Tagged Text> :=
 POLYGON <Polygon Text>
<MultiPoint Tagged Text> :=
 MULTIPOINT <Multipoint Text>
<MultiLineString Tagged Text> :=
 MULTILINESTRING <MultiLineString Text>
<MultiPolygon Tagged Text> :=
 MULTIPOLYGON <MultiPolygon Text>
<GeometryCollection Tagged Text> :=
 GEOMETRYCOLLECTION <GeometryCollection Text>
<Point Text> := EMPTY | (<Point>)
<Point> := <x> <y>
<x> := double precision literal
<y> := double precision literal
<LineString Text> := EMPTY
 | (<Point > {, <Point > }*)
<Polygon Text> := EMPTY
 | (<LineString Text > {, < LineString Text > }*)
<Multipoint Text> := EMPTY
 | (<Point Text > {, <Point Text > }*)
<MultiLineString Text> := EMPTY
 | (<LineString Text > {, < LineString Text > }*)
<MultiPolygon Text> := EMPTY
 | (< Polygon Text > {, < Polygon Text > }*)
<GeometryCollection Text> := EMPTY
 | (<Geometry Tagged Text> {, <Geometry Tagged Text> }*)

ISO 19125-1:2004(E)

22 © ISO 2004 – All rights reserved

The above grammar has been designed to support a compact and readable textual representation of
geometric objects. The representation of a geometric object that consists of a set of homogeneous
components does not include the tags for each embedded component.

6.2.3 Examples

Examples of textual representations of Geometry are shown in Table 2. The coordinates are shown as integer
values; in general they may be any double precision value.

Table 2 — Example Well-known Text Representation of Geometry

Geometry Type Text Literal Representation Comment

Point ‘POINT (10 10)’ a Point

LineString ‘LINESTRING (10 10, 20 20, 30 40)’ a LineString with 3 points

Polygon ‘POLYGON ((10 10, 10 20, 20 20,
 20 15, 10 10))’

a Polygon with 1 exteriorRing
and 0 interiorRings

Multipoint ‘MULTIPOINT (10 10, 20 20)’ a MultiPoint with 2 points

MultiLineString ‘MULTILINESTRING ((10 10, 20 20),
 (15 15, 30 15))’

a MultiLineString with
2 linestrings

MultiPolygon ‘MULTIPOLYGON (
 ((10 10, 10 20, 20 20, 20 15, 10 10)),
 ((60 60, 70 70, 80 60, 60 60)))’

a MultiPolygon with
2 polygons

GeomCollection ‘GEOMETRYCOLLECTION (POINT (10 10),
 POINT (30 30),
 LINESTRING (15 15, 20 20))’

a GeometryCollection
consisting of 2 Point values and
a LineString value

6.3 Well-known Binary Representation for Geometry

6.3.1 Component overview

The Well-known Binary Representation for Geometry (WKBGeometry) provides a portable representation of a
geometric object as a contiguous stream of bytes. It permits geometric object to be exchanged between an
SQL/CLI client and an SQL-implementation in binary form.

6.3.2 Component description

6.3.2.1 Introduction

The Well-known Binary Representation for Geometry is obtained by serializing a geometric object as a
sequence of numeric types drawn from the set {Unsigned Integer, Double} and then serializing each
numeric type as a sequence of bytes using one of two well defined, standard, binary representations for
numeric types (NDR, XDR). The specific binary encoding (NDR or XDR) used for a geometry representation is
described by a one-byte tag that precedes the serialized bytes. The only difference between the two
encodings of geometry is one of byte order, the XDR encoding is Big Endian, the NDR encoding is Little
Endian.

6.3.2.2 Numeric type definitions

An Unsigned Integer is a 32-bit (4-byte) data type that encodes a nonnegative integer in the range
[0, 4 294 967 295].

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 23

A Double is a 64-bit (8-byte) double precision data type that encodes a double precision number using the
IEEE 754[18] double precision format.

The above definitions are common to both XDR and NDR.

6.3.2.3 XDR (Big Endian) encoding of numeric types

The XDR representation of an Unsigned Integer is Big Endian (most significant byte first).

The XDR representation of a Double is Big Endian (sign bit is first byte).

6.3.2.4 NDR (Little Endian) encoding of numeric types

The NDR representation of an Unsigned Integer is Little Endian (least significant byte first).

The NDR representation of a Double is Little Endian (sign bit is last byte).

6.3.2.5 Conversions between the NDR and XDR representations of WKBGeometry

Conversion between the NDR and XDR data types for Unsigned Integer and Double numbers is a simple
operation involving reversing the order of bytes within each Unsigned Integer or Double number in the
representation.

6.3.2.6 Relationship to other COM and CORBA data transfer protocols

The XDR representation for Unsigned Integer and Double numbers described above is also the standard
representation for Unsigned Integer and for Double number in the CORBA Standard Stream Format for
Externalized Object Data that is described as part of the CORBA Externalization Service Specification[15].

The NDR representation for Unsigned Integer and Double number described above is also the standard
representation for Unsigned Integer and for Double number in the DCOM protocols that is based on DCE
RPC and NDR[16].

6.3.2.7 Description of WKBGeometry representations

The Well-known Binary Representation for Geometry is described below. The basic building block is the
representation for a Point, which consists of two Double numbers. The representations for other geometric
objects are built using the representations for geometric objects that have already been defined.

// Basic Type definitions
// byte : 1 byte
// uint32 : 32 bit unsigned integer (4 bytes)
// double : double precision number (8 bytes)

// Building Blocks : Point, LinearRing
Point {
 double x;
 double y;
};
LinearRing {
 uint32 numPoints;
 Point points[numPoints];
}

ISO 19125-1:2004(E)

24 © ISO 2004 – All rights reserved

enum wkbGeometryType {
 wkbPoint = 1,
 wkbLineString = 2,
 wkbPolygon = 3,
 wkbMultiPoint = 4,
 wkbMultiLineString = 5,
 wkbMultiPolygon = 6,
 wkbGeometryCollection = 7
};
enum wkbByteOrder {
 wkbXDR = 0, // Big Endian
 wkbNDR = 1 // Little Endian
};
WKBPoint {
 byte byteOrder;
 uint32 wkbType; // 1
 Point point;
}
WKBLineString {
 byte byteOrder;
 uint32 wkbType; // 2
 uint32 numPoints;
 Point points[numPoints];
}
WKBPolygon {
 byte byteOrder;
 uint32 wkbType; // 3
 uint32 numRings;
 LinearRing rings[numRings];
}
WKBMultiPoint {
 byte byteOrder;
 uint32 wkbType; // 4
 uint32 num_wkbPoints;
 WKBPoint WKBPoints[num_wkbPoints];
}
WKBMultiLineString {
 byte byteOrder;
 uint32 wkbType; // 5
 uint32 num_wkbLineStrings;
 WKBLineString WKBLineStrings[num_wkbLineStrings];
}
wkbMultiPolygon {
 byte byteOrder;
 uint32 wkbType; // 6
 uint32 num_wkbPolygons;
 WKBPolygon wkbPolygons[num_wkbPolygons];
}

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 25

WKBGeometry {
 union {
 WKBPoint point;
 WKBLineString linestring;
 WKBPolygon polygon;
 WKBGeometryCollection collection;
 WKBMultiPoint mpoint;
 WKBMultiLineString mlinestring;
 WKBMultiPolygon mpolygon;
 }
};
WKBGeometryCollection {
 byte byte_order;
 uint32 wkbType; // 7
 uint32 num_wkbGeometries;
 WKBGeometry wkbGeometries[num_wkbGeometries];
}

Figure 13 shows a pictorial representation of the Well-known Representation for a Polygon with one
outerRing and one innerRing.

Key

1 WKB Polygon
2 ring 1
3 ring 2

Figure 13 — Well-known Binary Representation for a geometric object in NDR format (B ==== 1) of type
Polygon (T ==== 3) with 2 LinearRings (NR ==== 2) each LinearRing having 3 points (NP ==== 3)

6.3.2.8 Assertions for Well-known Binary Representation for Geometry

The Well-known Binary Representation for Geometry is designed to represent instances of Geometry Types.
Any WKBGeometry instance shall satisfy the assertions for the type of Geometry that it describes (see 6.1).

6.4 Well-known Text Representation of Spatial Reference Systems

6.4.1 Component overview

The Well-known Text Representation of Spatial Reference Systems provides a standard textual
representation for spatial reference system information.

ISO 19125-1:2004(E)

26 © ISO 2004 – All rights reserved

6.4.2 Component description

A Spatial Reference System, also referred to as a coordinate system, is a geographic (latitude-longitude), a
projected (X,Y), or a geocentric (X,Y,Z) coordinate system.

The coordinate system is composed of several objects. Each object has a keyword in upper case (for example,
DATUM or UNIT) followed by the defining, comma-delimited, parameters of the object in brackets. Some
objects are composed of objects so the result is a nested structure. Implementations are free to substitute
standard brackets () for square brackets [] and should be prepared to read both forms of brackets.

Informative Annex B provides a non-exhaustive list of Geodetic Codes and Parameters for defining the objects
in the Well-Known Text Representation for spatial reference information.

The Extended Backus Naur Form (EBNF) definition for the string representation of a coordinate system is as
follows, using square brackets.

<coordinate system> = <projected cs> | <geographic cs> | <geocentric cs>
<projected cs> = PROJCS["<name>", <geographic cs>, <projection>, {<parameter>,}* <linear unit>]
<projection> = PROJECTION["<name>"]
<parameter> = PARAMETER["<name>", <value>]
<value> = <number>

A data set's coordinate system is identified by the PROJCS keyword if the data are in projected coordinates, by
GEOGCS if in geographic coordinates, or by GEOCCS if in geocentric coordinates.

The PROJCS keyword is followed by all of the “pieces” which define the projected coordinate system. The first
piece of any object is always the name. Several objects follow the projected coordinate system name: the
geographic coordinate system, the map projection, 0 or more parameters, and the linear unit of measure. All
projected coordinate systems are based upon a geographic coordinate system, so the pieces specific to a
projected coordinate system shall be described first.

EXAMPLE 1 UTM zone 10N on the NAD83 datum is defined as

 PROJCS["NAD_1983_UTM_Zone_10N",
 <geographic cs>,
 PROJECTION["Transverse_Mercator"],
 PARAMETER["False_Easting",500000.0],
 PARAMETER["False_Northing",0.0],
 PARAMETER["Central_Meridian",-123.0],
 PARAMETER["Scale_Factor",0.9996],
 PARAMETER["Latitude_of_Origin",0.0],
 UNIT["Meter",1.0]]

The name and several objects define the geographic coordinate system object in turn: the datum, the ellipsoid,
the prime meridian, and the angular unit of measure.

<geographic cs> = GEOGCS["<name>", <datum>, <prime meridian>, <angular unit>]
<datum> = DATUM["<name>", <ellipsoid>]
<ellipsoid> = ELLIPSOID["<name>", <semi-major axis>, <inverse flattening>]
<semi-major axis> = <number> NOTE: semi-major axis is measured in meters and must be > 0.
<inverse flattening> = <number>
<prime meridian> = PRIMEM["<name>", <longitude>]
<longitude> = <number>
<angular unit> = <unit>
<linear unit> = <unit>
<unit> = UNIT["<name>", <conversion factor>]
<conversion factor> = <number>

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 27

NOTE Conversion factor specifies number of meters (for a linear unit) or number of radians (for an angular unit) per
unit and shall be greater than zero.

EXAMPLE 2 The geographic coordinate system string for UTM zone 10 on NAD83 is

 GEOGCS["GCS_North_American_1983",
 DATUM["D_North_American_1983",
 ELLIPSOID["GRS_1980",6378137,298.257222101]],
 PRIMEM["Greenwich",0],
 UNIT["Degree",0.0174532925199433]]
EXAMPLE 3 The full string representation of UTM Zone 10N is

PROJCS["NAD_1983_UTM_Zone_10N",
 GEOGCS["GCS_North_American_1983",
 DATUM["D_North_American_1983",ELLIPSOID["GRS_1980",6378137,298.257222101]],
 PRIMEM["Greenwich",0],UNIT["Degree",0.0174532925199433]],
 PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],
 PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-123.0],
 PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_of_Origin",0.0],
 UNIT["Meter",1.0]]

A geocentric coordinate system is similar to a geographic coordinate system. It is represented by

<geocentric cs> = GEOCCS["<name>", <datum>, <prime meridian>, <linear unit>]

ISO 19125-1:2004(E)

28 © ISO 2004 – All rights reserved

Annex A
(informative)

The correspondence of concepts of the common architecture with

concepts of the geometry model of ISO 19107

A.1 Introduction

This informative annex identifies similarities and differences between the geometric concepts this International
Standard, with respect to the geometry model of the ISO 19107. These are referred to throughout this annex
as the SFA-CA and the Spatial schema, respectively.

A.2 Geometry model

A.2.1 Geometry model of SFA-CA

Figure 1 shows the geometry model and the contents of SFA-CA. For a full detailed description, the interested
reader is referred to 6.1.

A.2.2 Parts of geometry model of Spatial schema

Figure A.1 shows the root class in the geometry part of Spatial schema. Figure A.2 shows more details for the
inheritance hierarchy. For a full detailed description, the interested reader is referred to ISO 19107.

Figure A.1 — The root type and subordinates of the Spatial schema

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 29

Figure A.2 — The GM_Object hierarchy

A.3 Correspondence

A.3.1 Overview

The geometric concepts of the SFA-CA and their respective correspondences to concepts of Spatial schema
are described as follows.

 The SFA-CA deals only with at most 2-dimensional geometric objects, whereas the Spatial schema
handles up to 3-dimensional geometric objects.

 The Geometry Type of SFA-CA corresponds to the GM_Object of Spatial schema.

 Individual subtypes of the Geometry Type of SFA-CA correspond to one or more subtypes of the
geometry model of Spatial schema.

 The GeometryCollection type of SFA-CA corresponds to a more restrictive type of the GM_Aggregate of
the Spatial schema.

ISO 19125-1:2004(E)

30 © ISO 2004 – All rights reserved

 The concepts of GM_Complex and GM_Composite of the Spatial schema denote the notions of
'manifolds'. These notions are not provided by the SFA-CA.

 The SFA-CA does not support the notions of topology, which is explicitly modelled by the topology model
provided by the Spatial schema.

We are only concerned with the second, third and fourth items of the above list when describing the
correspondences. However, there are some main modelling principles which have to be mentioned. That is,
the level of abstraction between the SFA-CA and the Spatial schema is a predominant concern throughout
this correspondence description, and is summarized mainly by the following facts.

a) SFA-CA is an implementation and platform dependent specification;

b) Spatial schema is an abstract and non-platform dependent specification.

Hence, all practical correspondence, e.g., by implementing interoperability, between systems based on the
SFA-CA specification with systems based solely on the Spatial schema specification must take into account
concrete representations and concrete data types of the systems. This is especially important when an
SFA-CA database server should support multiple Spatial-schema-based applications.

EXAMPLE 1 The x- and y-coordinates in SFA-CA are explicitly defined as of the type Double. In the Spatial schema,
the corresponding coordinates are only given as of the type Number, i.e., an abstract datatype.

EXAMPLE 2 All Boolean operations in SFA-CA return “1” when true, otherwise it is interpreted as false, i.e., in either
case an integer return type. A similar operation in the Spatial schema denotes an explicit Boolean value.

Finally, attributes of the Spatial schema are abstracts in the sense that they may be given in terms of access
and mutator operators, or as concrete representational attributes, by an implementation. Details on any of
these matters are not commented further in this document.

Most of the correspondences in the following are given on a tabular form, i.e., named concepts and signature
descriptions of SFA-CA are shown in the first column, and corresponding named concepts and signature
description of the Spatial schema are given in the second column. Wherever we need to emphasize the
correspondence, we give a comment in the third column. Hence, we emphasize the correspondence from
concepts of the SFA-CA to concepts of the Spatial schema, and not the other way around. Thus, SFA-CA
needs to be contained by the Spatial schema to be regarded as part of the ISO 19100 series of standards.

A.3.2 Geometry type

A.3.2.1 Overview

In most respects the Geometry type of SFA-CA corresponds to the definition of GM_Object of the Spatial
schema. We pinpoint all the definitions of the Geometry type with the corresponding definitions of the
GM_Object type. Here we follow the structure of this International Standard, and divide the correspondence
descriptions into three subclauses, given next.

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 31

A.3.2.2 Basic methods on geometry

SFA-CA Spatial schema Comment

Geometry .Dimension ():Integer GM_Object::dimension(): Integer —

Geometry.GeometryType ():String Not defined Defined by an application schema

Geometry.SRID ():Integer GM_Object::CRS : CRS —

Geometry.Envelope():Geometry GM_Object::envelope(): GM_Envelope
GM_Object::mbRegion(): GM_Object

An application has to decide which
operator to deploy

Geometry.AsText():String Not defined Defined by an application schema

Geometry.AsBinary():Binary Not defined Defined by an application schema

Geometry.IsEmpty():Integer Not defined Defined by an application schema

Geometry.IsSimple():Integer GM_Object::isSimple(): Boolean —

Geometry.Boundary():Geometry GM_Object::boundary():
 Set<Reference<GM_Object>>

The signature changes in the subtypes
of GM_Object.

A.3.2.3 Methods for testing spatial relations between geometric objects

In SFA-CA, the set of Egenhofer and Clementini operators is defined directly on the Geometry type. However,
in the Spatial schema, the full set of these operators is not defined as explicit behavioural properties of the
GM_Object. Still, the GM_Object inherits spatial relations from the interface type TransfiniteSet.

SFA-CA Spatial schema Comment

Geometry.Equals(anotherGeometry:
 Geometry):Integer

GM_Object::equals(pointSet:
 GM_Object): Boolean

—

Geometry.Intersects(anotherGeometry:
 Geometry):Integer

GM_Object::intersects(pointSet:
 GM_Object): Boolean

Intersects is a derived operator.

Geometry.Contains(anotherGeometry:
 Geometry):Integer

GM_Object::contains(pointSet:
 GM_Object): Boolean

—

For the other operators of the Geometry type, i.e., Disjoint, Touches, Crosses, Within, Overlaps and Relate,
the Spatial schema outlines in ISO 19107:2003 (cf. Clause 8) how to define the corresponding methods in the
Spatial schema. Note that this outline refers to all three GM_Object, GM_Primitive, and GM_Composite, as
the geometric object types. The GM_Aggregate type will derive such relations from its respective
GM_Primitives type, which comprises the element type of an aggregate.

ISO 19125-1:2004(E)

32 © ISO 2004 – All rights reserved

A.3.2.4 Methods that support spatial analysis

SFA-CA Spatial schema Comment

Geometry.Distance(anotherGeometry:
 Geometry):Double

GM_Object::distance(): Distance —

Geometry.Buffer(distance:Double):
 Geometry

GM_Object::buffer(radius: Distance):
 GM_Object

Note the difference in
parameters.

Geometry.ConvexHull():Geometry GM_Object::convexHull():
 GM_Object

—

Geometry.Intersection(
 AnotherGeometry:Geometry):Geometry

GM_Object::Intersection(pointSet:
 GM_Object): GM_Object

In principle, this method is used
to define the spatial relations
above.

Geometry.Union(anotherGeometry:
 Geometry):Geometry

GM_Object::union(pointSet:
 GM_Object): GM_Object

—

Geometry.Difference(anotherGeometry:
 Geometry):Geometry

GM_Object::difference(pointSet:
 GM_Object): GM_Object

—

Geometry.SymDifference(
 AnotherGeometry:Geometry):Geometry

GM_Object::symmetricDifference(
 pointSet: GM_Object): GM_Object

—

Both the SFA-CA and the Spatial schema sets of set-theoretic (i.e., set-geometric) operations, i.e., the last
four rows above, explain the semantics in terms of some implicit point-sets. Theoretically, this is correct, but it
is not verified explicitly that these point-set assumptions are valid for the types of geometric values given by
these two geometry models.

A.3.3 “Atomic” subtypes of the Geometry type

A.3.3.1 Overview

The structure of the subtype hierarchies of SFA-CA and the Spatial schema above differ in many respects.
However, this subclause will outline the possible correspondence between the two hierarchies of “atomic”
subtypes. That is, the term 'atomic subtype' refers to a type which is not a collection, composite, complex, or
aggregate type. In the following we also include all the operators.

A.3.3.2 Point

SFA-CA Spatial schema Comment

Point GM_Point DirectPosition Both alternatives are valid. DirectPosition defines the
two ordinates, i.e., the 2D coordinate denoting a
Point.

Point.X():Double GM_Point::position.ordinate[1]
DirectPosition::ordinate[1]

Either of these two, depending on the definition of an
application schema

Point.Y():Double GM_Point::position.ordinate[2]
DirectPosition::ordinate[2]

See the previous comment.

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 33

A.3.3.3 Curve

SFA-CA Spatial schema Comment

Curve GM_Curve
GM_GenericCurve
GM_CurveSegment
GM_LineString
GM_LineSegment

The notion of a curve in SFA-SQL may correspond to
a number of definitions in Spatial schema.

Curve.Length():Double GM_GenericCurve::length():Length Operation length is defined with different parameters
depending on whether the whole or a part of the
curve length is computed.

Curve.StartPoint():Point GM_GenericCurve::startPoint() :
 DirectPosition

—

Curve.EndPoint():Point GM_GenericCurve:: endPoint() :
 DirectPosition

—

Curve.IsClosed():Integer Not defined Given by startPoint() = endPoint(); may be similar as
the GM_Object::isSimple:Boolean

Curve.IsRing():Integer Not defined Given by both closed and simple properties, but may
be similar to the GM_Object::isCycle:Boolean

A.3.3.4 LineString

SFA-CA Spatial schema Comment

LineString GM_LineString —

LinearString.NumPoints():Integer Not defined May be calculated

LinearString.PointN(N:Integer):Point Not defined May be derived

A.3.3.5 LinearRing and Line

These two types are only derived types in SFA-CA, i.e., both are of type LineString with additional constraints.
They are non-instantiable types in the SFA-CA, and correspond to GM_Ring and GM_LineSegment in the
Spatial schema, respectively. Note, however, that the SFA-CA implementation specification assumes that a
system handles these two types by means of added functionality that is not defined by the SFA-SQL.

A.3.3.6 Surface

The Surface type of the SFA-CA standard is not an instantiable type. The only surface instantiable by SFA-CA
is the planer and simple 2D surface given by the Polygon type given in the next subclause.

ISO 19125-1:2004(E)

34 © ISO 2004 – All rights reserved

A.3.3.7 Polygon

SFA_CA Spatial schema Comment

Polygon GM_GenericSurface
GM_Surface
GM_SurfacePatch
GM_Polygon

GM_Polygon and GM_SurfacePatch is not
shown in Figure A.3, and the
correspondences in this case are more
involved, cf. these matters in Reference [1].

Surface.Area():Double GM_GenericSurface::area() : Area —
Surface.Centroid():Point GM_Object::centroid : DirectPosition —

Surface.PointOnSurface():Point GM_Object:: representativePoint() :
 DirectPosition

—

Polygon.ExteriorRing(): LineString GM_Polygon::exterior :
 GM_GenericCurve

The exterior attribute is defined also as
zero or more curves in Reference [1].

Polygon.InteriorRingN (N:Integer):
LineString

Not defined May be calculated, e.g. from the interior
attribute of GM_Polygon

Polygon.NumInteriorRing():Integer Not defined May be calculated, e.g. from the interior
attribute of GM_Polygon

A.3.4 Collection subtypes of the Geometry type

A.3.4.1 Overview

This subclause describes the correspondence between the constructs of collections in SFA-CA and
aggregates in Spatial schema. The Spatial schema also provides the notions of manifolds, in terms of a
structured geometric type as a collection of geometric composites, i.e., each composite comprised by
composites on a lower level and dimension. However, these notions are not supported by SFA-CA and have
to handled by other means in an SFA-CA based database.

A.3.4.2 GeometryCollection

This is the root type of other more specialized collection types, which are collections of what we above termed
atomic geometric types.

SFA_CA Spatial schema Comment

GeometryCollection GM_Aggregate
GM_MultiPrimitive

—

GeometryCollection::
 NumGeometries():Integer

Not defined May be calculated, e.g. from the
elements attribute of GM_Aggregate

GeometryCollection::
 GeometryN(N:integer):Geometry

Not defined May be calculated, e.g. from the
elements attribute of GM_Aggregate

The subtypes of GeometryCollections, to be presented next, must ensure the following constraints, which are
not automatically ensured by aggregates of the Spatial schema. These constraints are summarized as follows.

a) For every element in a GeometryCollection, its interior must be disjoint to the interior of every other, but
distinct element of the same GeometryCollection.

b) For every boundary of an element in a GeometryCollection, it may only intersect with a boundary of
another, but distinct element at most in a finite number of points.

Moreover, the aggregates of the Spatial schema referred to below have not defined any explicit methods. It is
assumed that methods applied to aggregates as geometric objects are derived from existing methods defined
for the GM_Primitives, which comprises the aggregates.

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 35

A.3.4.3 MultiPoint

SFA-CA Spatial schema Comment

MultiPoint GM_MultiPoint —

MultiPoint in SFA-CA corresponds to GM_MultiPoint in the Spatial schema. No additional methods are defined
for MultiPoint.

A.3.4.4 MultiLineString

A MultiLineString is a subtype of the non-instantiable type MultiCurve. Note the use of MultiCurve in the
references to the methods of MultiLineString in the table below. That is, the MultiLineString geometric type
does not have any methods defined on its own.

SFA-CA Spatial schema Comment

MultiLineString GM_MultiCurve
GM_MultiLineString

—

MultiCurve.IsClosed():Integer Not defined May be derived by testing the start and
end points of every GM_Primitive in
the aggregate

MultiCurve.Length():Double GM_MultiCurve::length : Length —

A.3.4.5 MultiPolygon

A MultiPolygon is a subtype of the non-instantiable type MultiSurface. Note the use of MultiSurface in the
references to the methods of the MultiPolygon in the table below. That is, the MultiPolygon geometric type
does not have any methods defined on its own.

SFA-CA Spatial schema Comment

MultiPolygon GM_MultiSurface This correspondence is unclear and
precaution should be taken, cf. also the
correspondence for Polygon above.

MultiSurface.Area () : Double GM_MultiSurface::area : Area —

MultiSurface.PointOnSurface() :
 Point

GM_Object:: representativePoint() :
 DirectPosition

—

MultiSurface.Centroid():Point GM_Object::centroid() : DirectPosition —

ISO 19125-1:2004(E)

36 © ISO 2004 – All rights reserved

Annex B
(informative)

Supported spatial reference data

B.1 Purpose of this annex

This informative annex provides a non-exhaustive list of Geodetic Codes and Parameters for specifying
spatial references. This annex is provided for illustrative purposes when referring to 6.4. This annex may be
replaced by a formal catalogue of Geodetic Codes and Parameters as part of ISO 19127 in the future.

B.2 Linear units

Table B.1 — Linear units

Name Value
Metre 1,0
International Foot 0,304 8
U.S. Foot 12/39,37
Modified American Foot 12,000 458 4/39,37
Clarke's Foot 12/39,370 432
Indian Foot 12/39,370 141
Link 7,92/39,370 432
Link (Benoit) 7,92/39,370 113
Link (Sears) 7,92/39,370 147
Chain (Benoit) 792/39,370 113
Chain (Sears) 792/39,370 147
Yard (Indian) 36/39,370 141
Yard (Sears) 36/39,370 147
Fathom 1,828 8
Nautical Mile 1 852,0
South African Cape Foot 0,314 855 575 16
South African Geodetic Foot 0,304 797 265 4
German Legal Meter 1,000 013 596 5

B.3 Angular units

Table B.2 — Angular units

Name Value
Radian 1,0
Decimal Degree π/180
Decimal Minute (π/180)/60
Decimal Second (π/180)/3 600
Gon π/200
Grad π/200

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 37

B.4 Ellipsoids and spheres

Table B.3 — Ellipsoids and spheres

Name Semi-major axis Inverse flattening

Airy 6 377 563,396 299,324 964 6

Modified Airy 6 377 340,189 299,324 964 6

Australian 6 378 160 298,25

Bessel 6 377 397,155 299,152 812 8

Modified Bessel 6 377 492,018 299,152 812 8

Bessel (Namibia) 6 377 483,865 299,152 812 8

Clarke 1866 6 378 206,4 294,978 698 2

Clarke 1866 (Michigan) 6 378 693,704 294,978 684 677

Clarke 1880 (Arc) 6 378 249,145 293,466 307 656

Clarke 1880 (Benoit) 6 378 300,79 293,466 234 571

Clarke 1880 (IGN) 6 378 249,2 293,466 02

Clarke 1880 (Modified) 6 378 249,145 293,466 315 8

Clarke 1880 (RGS) 6 378 249,145 293,465

Clarke 1880 (SGA) 6 378 249,2 293,465 98

Everest 1830 6 377 276,345 300,801 7

Everest 1975 6 377 301,243 300,801 7

Everest (Sarawak and Sabah) 6 377 298,556 300,801 7

Modified Everest 1948 6 377 304,063 300,801 7

GEM10C 6 378 137 298,257 222 101

GRS 1980 6 378 137 298,257 222 101

Helmert 1906 6 378 200 298,3

International 1924 6 378 388 297,0

Krasovsky 6 378 245 298,3

NWL9D 6 378 145 298,25

OSU_86F 6 378 136,2 298,257 22

OSU_91A 6 378 136,3 298,257 22

Plessis 1817 6 376 523 308,64

Sphere (radius = 1.0) 1 0

Sphere (radius = 6 371 000 m) 6 371 000 0

Struve 1860 6 378 297 294,73

War Office 6 378 300,583 296

WGS 1984 6 378 137 298,257 223 563

ISO 19125-1:2004(E)

38 © ISO 2004 – All rights reserved

B.5 Geodetic datums

Table B.4 — Geodetic datums

Name Name

Adindan Liberia 1964

Afgooye Lisbon

Agadez Loma Quintana

Australian Geodetic Datum 1966 Lome

Australian Geodetic Datum 1984 Luzon 1911

Ain el Abd 1970 Mahe 1971

Amersfoort Makassar

Aratu Malongo 1987

Arc 1950 Manoca

Arc 1960 Massawa

Ancienne Triangulation Française Merchich

Barbados Militar-Geographische Institute

Batavia Mhast

Beduaram Minna

Beijing 1954 Monte Mario

Reseau National Belge 1950 M'poraloko

Reseau National Belge 1972 NAD Michigan

Bermuda 1957 North American Datum 1927

Bern 1898 North American Datum 1983

Bern 1938 Nahrwan 1967

Bogota Naparima 1972

Bukit Rimpah Nord de Guerre

Camacupa NGO 1948

Campo Inchauspe Nord Sahara 1959

Cape NSWC 9Z-2

Carthage Nouvelle Triangulation Française

Chua New Zealand Geodetic Datum 1949

Conakry 1905 OS (SN) 1980

Corrego Alegre OSGB 1936

Côte d'Ivoire OSGB 1970 (SN)

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 39

Table B.4 (continued)

Name Name

Datum 73 Padang 1884

Deir ez Zor Palestine 1923

Deutsche Hauptdreiecksnetz Pointe Noire

Douala Provisional South American Datum 1956

European Datum 1950 Pulkovo 1942

European Datum 1987 Qatar

Egypt 1907 Qatar 1948

European Reference System 1989 Qornoq

Fahud RT38

Gandajika 1970 South American Datum 1969

Garoua Sapper Hill 1943

Geocentric Datum of Australia 1994 Schwarzeck

Guyane Française Segora

Hartebeeshoek(WGS84) South African Serindung

Herat North Stockholm 1938

Hito XVIII 1963 Sudan

Hu Tzu Shan Tananarive 1925

Hungarian Datum 1972 Timbalai 1948

Indian 1954 TM65

Indian 1975 TM75

Indonesian Datum 1974 Tokyo

Jamaica 1875 Trinidad 1903

Jamaica 1969 Trucial Coast 1948

Japanese Geodetic Datum 2000 Voirol 1875

Kalianpur Voirol Unifie 1960

Kandawala WGS 1972

Kertau WGS 1972 Transit Broadcast Ephemeris

Kuwait Oil Company WGS 1984

La Canoa Yacare

Lake Yoff

Leigon Zanderij

ISO 19125-1:2004(E)

40 © ISO 2004 – All rights reserved

B.6 Prime meridians

Table B.5 — Prime meridians

Name Value

Greenwich 0° 0' 0"

Bern 7° 26' 22,5" E

Bogota 74° 4' 51,3" W

Brussels 4° 22' 4,71" E

Ferro 17° 40' 0" W

Jakarta 106° 48' 27,79" E

Lisbon 9° 7' 54,862" W

Madrid 3° 41' 16,58" W

Paris 2° 20' 14,025" E

Rome 12° 27' 8,4" E

Stockholm 18° 3' 29" E

B.7 Map projections

Table B.6 — Map projections

Cylindrical projections Conic projections

Cassini Albers conic equal-area

Gauss-Kruger Lambert conformal conic

Mercator Azimuthal or Planar Projections

Oblique Mercator (Hotine) Polar Stereographic

Transverse Mercator Stereographic

ISO 19125-1:2004(E)

© ISO 2004 – All rights reserved 41

B.8 Map projection parameters

Table B.7 — Map projection parameters

Name Description

central_meridian the line of longitude chosen as the origin of x-coordinates

scale_factor multiplier for reducing a distance obtained from a map to the actual distance on the datum of
the map

standard_parallel_1 a line of latitude along which there is no distortion of distance. Also called ‘latitude of true scale’

standard_parallel_2 a line of latitude along which there is no distortion of distance

longitude_of_center the longitude which defines the center point of the map projection

latitude_of_center the latitude which defines the center point of the map projection

latitude_of_origin the latitude chosen as the origin of y-coordinates

false_easting added to x-coordinates; used to give positive values

false_northing added to y-coordinates; used to give positive values

azimuth the angle east of north which defines the center line of an oblique projection

longitude_of_point_1 the longitude of the first point needed for a map projection

latitude_of_point_1 the latitude of the first point needed for a map projection

longitude_of_point_2 the longitude of the second point needed for a map projection

latitude_of_point_2 the latitude of the second point needed for a map projection

ISO 19125-1:2004(E)

42 © ISO 2004 – All rights reserved

Bibliography

[1] The OpenGIS Abstract Specification: An Object Model for Interoperable Geoprocessing, Revision 1,
OpenGIS Consortium, Inc, OpenGIS Project Document Number 96-015R1, 1996

[2] OpenGIS Project Document 96-025: Geodetic Reference Systems, OpenGIS Consortium, Inc.,
October 14, 1996

[3] Petrotechnical Open Software Consortium (POSC) Epicentre Model, available at:
<ftp://posc.org/Epicentre/>, July 1995

[4] CLEMENTINI, E., DI FELICE, P., VAN OOSTROM, P. A Small Set of Formal Topological Relationships
Suitable for End-User Interaction, in D. Abel and B. C. Ooi (Ed.), Advances in Spatial Databases —
Third International Symposium. SSD 1993. LNCS 692, pp. 277-295. Springer Verlag. Singapore (1993)

[5] CLEMENTINI E. AND DI FELICE P. A Comparison of Methods for Representing Topological Relationships,
Information Sciences 80 (1994), pp. 1-34

[6] CLEMENTINI, E. AND DI FELICE, P. A Model for Representing Topological Relationships Between
Complex Geometric Features in Spatial Databases, Information Sciences 90(1-4) (1996), pp. 121-136

[7] CLEMENTINI E., DI FELICE P AND CALIFANO, G. Composite Regions in Topological Queries, Information
Systems, 20(6) (1995), pp. 33-48

[8] EGENHOFER, M.J. AND FRANZOSA, R. Point Set Topological Spatial Relations, International Journal of
Geographical Information Systems, 5(2) (1991), pp. 161-174

[9] EGENHOFER, M.J., CLEMENTINI, E. AND DI FELICE, P. Topological relations between regions with holes,
International Journal of Geographical Information Systems, 8(2) (1994), pp. 129-142

[10] EGENHOFER, M.J. AND HERRING, J. A mathematical framework for the definition of topological
relationships. Proceedings of the Fourth International Symposium on Spatial Data Handling, Columbus,
OH, pp. 803-813

[11] EGENHOFER, M.J. AND HERRING, J. Categorizing binary topological relationships between regions, lines
and points in geographic databases, Tech. Report 91-7, National Center for Geographic Information
and Analysis, Santa Barbara, CA (1991)

[12] EGENHOFER, M.J. AND SHARMA, J. Topological Relations between regions in ℜ2 and Z2, Advances in
Spatial Databases — Third International Symposium, SSD 1993, 692, Lecture Notes in Computer
Science, pp. 36-52, Springer Verlag, Singapore (1993)

[13] WORBOYS, M.F. AND BOFAKOS, P. A Canonical model for a class of areal spatial objects, Advances in
Spatial Databases — Third International Symposium, SSD 1993, 692, Lecture Notes in Computer
Science, pp. 36-52, Springer Verlag, Singapore (1993).

[14] WORBOYS, M.F. A generic model for planar geographical objects, International Journal of Geographical
Information Systems (1992) 6(5), pp. 353-372

[15] CORBA services: Common Object Services Specification, Ch 8. Externalization Service Specification,
OMG. Available at <http://www.omg.org/technology/documents/corba_spec_catalog.htm>

[16] Distributed Component Object Model — DCOM 1.0, Microsoft Corporation. Available at
<http://www.microsoft.com/com/tech/DCOM.asp>

[17] ISO 19101:2002, Geographic information — Reference model

[18] IEEE 754, IEEE Standard for binary Floating-Point Arithmetic

ISO 19125-1:2004(E)

ICS 35.240.70
Price based on 42 pages

© ISO 2004 – All rights reserved

