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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO 19003 was prepared by Technical Committee ISO/TC 45, Rubber and rubber products, Subcommittee 
SC 2, Testing and analysis. 
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Introduction 

Statistical methods have an important role at all stages of the testing process, from the design of the 
experiment to the interpretation of results. Hence, those involved in testing require a basic understanding of 
statistical principles and knowledge of the statistical techniques which need to be applied. 

There are many text books and International Standards which describe statistical methods, but it is convenient 
to have a guide which is a single, easy source of reference to the most commonly used methods and formulae, 
and which also considers their particular application to the various rubber test methods. This International 
Standard is therefore complementary both to the general standards on statistics and to the standards on 
methods of test for rubber. 

The approach taken in this International Standard is that, for each subject, the text is structured into principles, 
methodology and applications to rubber testing. Under principles, the basic concepts of the subject are briefly 
outlined. Methodology considers the statistical techniques which can be applied; basic procedures and 
formulae are given but, as appropriate, more detailed matter is placed in annexes and, for less commonly 
used methods or more advanced treatment, reference is made to other publications. “Applications to rubber 
testing” indicates how and where the methods may be applied, and gives examples which are particular to 
rubber properties and tests. 
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Rubber and rubber products — Guidance on the application of 
statistics to physical testing 

1 Scope 

This International Standard provides guidance on the application of statistics to rubber testing. It is intended 
not to conflict with or replace existing International Standards covering basic statistical techniques, but rather 
to complement them and provide examples of those techniques applied to particular rubber testing situations. 

2 References 

This International Standard refers to other publications that provide information or guidance. These standards 
are listed in the Bibliography. 

3 Terms and definitions 

For the purposes of this document, the following terms and definitions apply. 

NOTE These definitions, which are expressed as far as possible in non-mathematical terms, apply to the main 
statistical terminology used. More comprehensive and rigorous lists can be found in the various parts of ISO 3534 and in 
the standards dealing with specific statistical techniques indicated in the Bibliography. 

3.1 
population 
totality of data that could (theoretically) be obtained to characterize the property of the rubber, compounding 
ingredient or process being measured 

3.2 
sample 
data actually available from the population as a result of an experimental test programme having been 
undertaken 

3.3 
variability 
tendency for tests performed on nominally identical test pieces to produce different test results 

3.4 
arithmetic mean 
sum of the (population or sample) data divided by the number of values used 

NOTE The “average” is the statistic most frequently used to describe a group of data. There are several kinds of 
average and they are often used in common parlance without specifying the type, which can be a source of confusion. 
Averages fall into two categories: computational and positional. The arithmetic mean is the most frequently used 
computational average. Others are considered in Annex B. Positional averages are the median and mode. The calculation 
of the arithmetic mean is given in Equations (1) and (2) in 6.2.2.2. 
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3.5 
median 
middle value (or average of the two middle values) when the data in a sample are arranged in numerically 
increasing value 

3.6 
mode 
value of the property being measured which occurs with the greatest frequency 

3.7 
residual 
difference (+ or −) between each value and the mean 

NOTE The sum of the residuals must be 0. 

3.8 
variance 
arithmetic mean of the squared residuals 

3.9 
standard deviation 
square root of the variance 

NOTE The calculation of standard deviation is given in Equations (5) and (6) in 6.2.3.2.1. 

3.10 
coefficient of variation 
ratio of the standard deviation to the mean, generally expressed as a percentage 

NOTE The calculation of coefficient of variation is given in Equation (8) in 6.2.3.4. 

3.11 
range 
maximum value minus the minimum value 

3.12 
standard error 
standard deviation of the estimate of the population mean 

NOTE The calculation of standard error is given in Equation (7) in 6.2.3.2.3. 

3.13 
bias 
difference between the average statistic and the true value of the parameter it is estimating, arising out of one 
or more systematic errors 

3.14 
accuracy 
closeness of agreement between a test result and the accepted reference value 

3.15 
trueness 
closeness of agreement between the average value of a large number of test results and the true or accepted 
reference value 

NOTE It is usually expressed in terms of bias. 

3.16 
precision 
closeness of agreement between test results 
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3.17 
repeatability 
precision obtained under conditions where independent test results are obtained with the same method on 
identical test material in the same laboratory by the same operator using the same equipment within a short 
interval of time 

3.18 
reproducibility 
precision obtained under conditions where independent test results are produced with the same method on 
identical test material in different laboratories with different operators using different equipment 

3.19 
level of significance 
probability of error associated with a significance test 

3.20 
distribution function 
function describing the probability that a random variable will take a value less than or equal to a number x 

3.21 
density distribution 
slope of the distribution function at every value, i.e. the first derivative of the distribution function 

3.22 
normal distribution 
symmetrical “bell-shaped” density distribution which is fully defined by its mean and standard deviation 

NOTE It is also known as the Laplace Gauss or Gaussian distribution. 

3.23 
double exponential distribution 
asymmetrical distribution, fully defined by a single “shape” parameter, which has been used to characterize 
the distribution of tensile strengths in rubber compounds 

3.24 
Weibull distribution 
symmetrical distribution fully defined by three parameters and found to be useful in characterizing lifetime 
tests such as fatigue 

3.25 
degrees of freedom 
number of independent differences between the readings available for an estimate of standard deviation 

3.26 
confidence interval 
range within which a value or parameter can be expected to lie with a given probability 

3.27 
confidence limits 
extreme values of the confidence interval 
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4 Symbols 

a,b,c… Constant coefficients in a regression line 

C The coefficient of concordance in Friedman’s test, or Cochran’s quotient when testing variances 
for the presence of outliers 

Ci The ith cusum value 

Cpq Factors used in the derivation of regression coefficients 

Cv The coefficient of variation 

f(x) A property or parameter which is a function of x or a density distribution function 

F The observed value of Snedecor’s F-ratio in a given case 

Fcr The statistically critical value for F at a given confidence level and for the given degrees of freedom 
for the lesser and greater mean squares 

Fr The F-value for a regression line 

H0/Ha The null/alternative hypothesis parameter 

K Friedman’s statistic for a rank correlation test 

Mz The mean square for factor z 

n The number of values in a series 

p(x) A probability distribution function 

Pm The plot positions for the graphical presentation of a series of values 

Q Dixon’s quotient when testing values or means for outliers 

r The repeatability of a test method for a particular test or series of tests 

(r) The repeatability expressed as a percentage of the mean from a test or series of tests 

R The reproducibility of a test method for a particular test or series of tests 

(R) The reproducibility expressed as a percentage of the mean from a test or series of tests 

s The estimate of the population standard deviation from the available sample 

s' the standard deviation of a series of numbers 

S The weighted standard error for the combination of two series of values, or the rank sum for a 
sample in Friedman’s test 

St The total sum of the squares of the differences between individual values and their mean 

Sz The sums of squares for factor z 

tα Student’s t-value for a given probability (or confidence level) α 

Ur The random uncertainty in a measurement 

Us The systematic uncertainty in a measurement 

vz The number of degrees of freedom for factor z 

x An individual numerical value, such as the tensile strength of a single test piece 

xi A single value in a series of values, such as a tensile strength in a set of five replicate values 

xij A single value in a series of values in which two factors are present, such as the tensile strength in 
sets of replicates obtained at different temperatures 
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x  The arithmetic mean of a series of numbers, xi 

Z The Z-score in hypothesis testing 

α, β The probability of an event occurring 

µ The population mean of a distribution 

µ̂  The estimate of the population mean from the available sample 

σ The population standard deviation of a distribution 

5 Limitations of test results 

5.1 Variability 

5.1.1 All measurements are subject to variability. It is necessary to know the sources of variability and make 
a reliable estimate of its magnitude. From this information, it should then be possible to judge the reliability of 
the results and hence their uncertainty and significance. 

5.1.2 The term population is, expressed simply, the total number of objects in a large group (see 3.1). In 
testing terms, a population may be, for example, the total number of possible tensile strength results which 
could be obtained on a particular rubber compound if every piece of the material made was tested. 

5.1.3 A sample is a selected number of, for example, parts or tensile results taken from the population. 

NOTE 1 To avoid confusion, sample should not be used to mean test piece. 

NOTE 2 Sample can have two meanings: 

a) in the physical sense, as in taking five parts from a boxful; 

b) in the statistical sense, as in taking five test results. 

5.1.4 If five tensile strength measurements are made from a sheet taken from a batch of rubber, an 
example of the results which might be obtained is shown in Table 1. 

Table 1 — Tensile strength measurements from one batch of rubber 

Measurement number Tensile strength 

 MPa 

1 16,8 

2 15,4 

3 16,3 

4 17,7 

5 17,6 

The sources of variability are: 

a) the intrinsic variability of the sheet rubber, arising from the fact that it is not perfectly homogeneous; 

b) the variability due to the testing procedure, including test piece preparation, machine accuracy and 
operation error. 

If several sheets are tested, there is an additional source of variability due to variations in moulding. 
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If several batches are mixed, two more sources of variation are added: 

1) that from the mixing procedure; 

2) any variation in compounding ingredients. 

If sheets which are nominally the same are given to a number of operators, there is variability due to the 
operators. 

Similarly, if a number of different test apparatuses are used, variability due to the machines is introduced. 
Taking things further, sheets may be tested in different laboratories and between-laboratory variability 
introduced. 

5.1.5 In practice, the magnitude of variability is minimized by carefully controlling the processing operations 
and the test apparatus and procedures. It is never eliminated altogether and inter-laboratory comparisons 
have demonstrated that for many rubber tests it can be far greater than was previously thought. 

Whatever test is carried out, there is genuine variation due to the material and also variation due to 
uncontrolled testing errors. It is often very difficult to separate the two. For example, testing errors can arise 
from 

a) random variations in test piece geometry due to limitations in cutting precision; 

b) variations in the response of the test apparatus; 

c) fluctuations in the operator’s performance. 

These errors may be large or small and of indeterminate direction so that eventually they tend to cancel out. 
More serious is systematic error or bias which is unidirectional, for example the error due to a machine being 
wrongly calibrated or an operator consistently misreading a scale. 

5.1.6 Testing error apart, the sample of results will not be representative of the whole population if the 
physical sample is not representative. Differences between repeat mixes and between repeat mouldings 
should be expected because of some variation in the quantities and quality of ingredients used, the efficiency 
of mixing and the time of curing, etc. If gross errors are made, some very atypical results are recorded and it is 
dangerous to rely heavily on one small sample unless certain that it is representative. 

The evaluation of an alternative ingredient by comparison with the standard formula may be considered. The 
mixes are uniform, the tester follows the procedures correctly and it is concluded, using statistical methods, 
that the new ingredient is an improvement. It is easily forgotten that this conclusion assumes that the samples 
of each compound were truly representative of the population. If the variability which would arise from repeat 
mixings is rather larger than the testing error, as is often the case, then tests on a series of repeat mixes may 
show no difference between the ingredients or even that the new ingredient was worse. 

5.2 Accuracy, trueness and precision 

Accuracy is the closeness of agreement between a test result and the accepted reference value (see 3.14), 
while trueness is the closeness of agreement between the average value of a large number of test results and 
the true or accepted reference value (see 3.15). Precision, on the other hand, is the closeness of agreement 
between the test results (see 3.16), independent of any reference value that may exist. To keep variability to a 
minimum, the test method should be as reproducible as possible, i.e. it should have good precision. However, 
having high precision may be of little value if the test has a large bias and hence poor accuracy. Both are 
required and indeed they are related in that poor precision (poor reproducibility) will contribute to lowering the 
accuracy. 

Reproducibility (see 3.18) is the term generally reserved to describe the variation found between different 
laboratories, and perhaps also at different times. Repeatability (see 3.17) is used to describe the variation 
between repeats in the same laboratory at essentially the same time. It follows that laboratories may exhibit 
very good repeatability but, because of bias, the reproducibility between the laboratories is poor. 
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5.3 Relevance and significance 

5.3.1 If accuracy or repeatability were the only interest, testing would be limited to the most accurate or 
precise methods. However, the test should be relevant in the sense that the results have a useful meaning in 
terms of material or product performance. All tests are not equal: some have more relevance than others in 
terms of product performance, material consistency or value as design data. The word significance is 
sometimes used to mean relevance and applied to the actual test or property measured, but significance is 
used in this International Standard in the statistical sense as in one material being significantly stronger, for 
example, than another. 

Significance in this sense is concerned with whether observed differences in results are likely to be real or can 
reasonably be attributed to chance alone. If the probability of obtaining the observed difference through pure 
chance is small, for example less than 1 in 20, then the difference is said to be significant. 

5.3.2 The set of tensile strength results quoted in 5.1 could be compared to other sets obtained on different 
materials on the same occasion giving, for example, three sets as in Table 2. 

Table 2 — Tensile strength measurements from three materials 

Tensile strength 

MPa 

Measurement number 

Material A Material B Material C 

1 16,8 15,6 16,4 

2 15,4 16,4 15,4 

3 16,3 14,5 14,3 

4 17,7 15,8 14,7 

5 17,6 16,0 14,4 

 

The averages of the results for materials A and B are higher than that for C but an assessment should be 
made as to whether or not they are significantly higher. Without the use of statistical tools it is rather difficult to 
make this assessment. In fact, using a test for significance as discussed in 7.2.2 it can be proved that A is 
significantly greater than C with 95 % confidence but that A is not significantly different from B, again with 
95 % confidence. This is a useful conclusion but its limitations should be appreciated. The statistical tests 
prove (with a 1 in 20 chance of being wrong) that results A are significantly greater than C. They do not prove 
that material A is stronger than material C. It is known that results from one sheet of one mix may not be 
representative of a formulation and these results from a very small test programme should be treated with 
caution. 

5.3.3 In the above example the differences between the average results were relatively small but tensile 
strength can be measured accurately with reasonably small variability so that it is not surprising that 10 % 
difference could be proved significant. For other, less reproducible tests a much greater percentage difference 
may be needed before the difference can be proved significant. For example, in an electrical resistivity test the 
mean value for one material was several times higher than that for a second material but the difference could 
not be proved significant. The deduction can be made that significance is not only dependent on the difference 
between mean values but also on the amount of variability which is inherent in the test. 

6 Distribution of results and measures of central tendency 

6.1 Principles 

A collection of values, for example individual test results relating to a specific property, are arranged about a 
mean value. Usually the distribution of results may be represented by a particular mathematical law such as 
the curve shown in Figure 1. 
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From the shape of the curve it is possible to obtain useful measures of the tendency towards a central value, 
the degree of the spread of results and the proportion of results likely to differ by more than a certain amount 
from the centre. 

6.2 Methodology 

6.2.1 Types of distribution 

6.2.1.1 The normal distribution 

The most widely used distribution function is called the normal, or Gaussian, distribution function (see 3.22) 
which can be completely characterized by two parameters, the mean µ (see 3.4), and the standard deviation σ 
(see 3.9). These parameters are considered further in 6.2.2 and 6.2.3 respectively. The density distribution is 
a symmetrical bell-shaped function, the mathematical description of which can be found in Annex A. 

Values of the ordinate, i.e. the density of the function, f(z), at given values of z have been tabulated and can be 
found in any statistics text book. In order to make the tables suitable for general application, the abscissa z, is 
presented in reduced form, such that z is the number of standard deviations x (the value measured in the 
experiment) is away from the mean. Since the curve is symmetrical it is usual to find only the positive values 
of z that are tabulated since f(z) = f(−z). 

The proportion of the whole distribution which lies between two values, x1 and x2 (i.e. the probability 
distribution function) can be determined from the integral of the density distribution (see Annex A), but since 
this integral cannot be expressed analytically, it is more convenient to use tabulated values, which again are 
available in the form of the reduced variable Z, in any standard text on statistics. 

In these tables the value of x1 is usually set to µ with only the positive reduced variable Z quoted. 

For these tables: 

when z = 0, p(Z) = 0,0; 

when z → ∞, p(Z) → 0,5. 

If z is negative, p(Z) = − p(+Z). 

To find the proportion of the curve (i.e. the probability of the observation) lying between x1 and x2, (x2 > x1) the 
procedure is as follows: 

a) Determine Z1 and Z2 where 

Z1 = (x1 − µ)/σ; 

Z2 = (x2 − µ)/σ. 

b) Find p(Z1) and p(Z2) from the tables. 

c) Determine the required probability p(Z2 − Z1) where 

p(Z2 − Z1) = p(Z2) − p(Z1). 

NOTE The signs should be taken into account. 
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6.2.1.2 The double exponential distribution 

In the case of the distribution of tensile strengths (and elongations at break) for vulcanizates, there is 
considerable evidence that the density distribution function is not symmetrical but is skewed towards lower 
strength values (see References [1] to [6]), although this has been questioned by some investigators (see 
Reference [7]). The density distribution function which has been found to give a good representation of these 
skewed data is given by the double exponential distribution (see 3.23), shown in Figure 2 and described 
mathematically in Annex A. 

Although of theoretical interest, the double exponential function has not found widespread application, both 
because of its complexity and the fact that, with the small number of test pieces normally considered in a 
tensile test, there is no significant difference in the mean and standard deviation derived from the double 
exponential function and from the normal Gaussian function. 

6.2.1.3 The Weibull distribution 

A distribution function that frequently arises out of fatigue data and similar lifetime testing is the Weibull 
distribution function (see 3.24), the form of which is illustrated in Figure 3 and described mathematically in 
Annex A. 

The distribution is characterized by the following three parameters: 

a) The parameter a represents the minimum life parameter for x at which the probability of failure just 
reaches zero (that is, giving an infinite lifetime). In most practical applications, a is taken to be zero but, 
where there is a genuine fatigue limit, a can take a finite, non-zero, value. 

b) The parameter b affects both the spread of results and the peak position of the density function. 

c) The parameter k alters the shape of the density distribution. 

When k = 1, the function is a simple exponential. 

When k > 1, the distribution increases from zero (at x = a), reaches a maximum and then decreases 
monotonically, reaching zero again at x = infinity. 

When k is approximately 3,44, the distribution is approximately Gaussian, with the mean and median 
equal to each other. 

Generally, the Weibull distribution is positively skewed (i.e. skewed towards longer lifetimes). 
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Key 

X parameter y (see Annex A) 
Y probability 

Figure 1 — Gaussian (normal) density function 
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Key 

X parameter ε (see Annex A) 
Y probability 

Figure 2 — Double exponential density function 
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Key 

X parameter (x − a)/b (see Annex A) 
Y probability 

Figure 3 — Weibull density function 

6.2.2 Measures of central tendency 

6.2.2.1 General 

Even under the most careful experimental conditions, carrying out repeat measurements on identical material 
produces a scatter of results. It is useful, therefore, to have some idea of the average or typical value that can 
be expected of those results. Since typical values tend to lie towards the middle of the data when these are 
arranged in numerical order, such numbers are also called measures of central tendency. 

The small number of experimental results obtained is a sample of the infinite number of results, i.e. the 
population, that would fully encompass the measurement being made. The more results that are available, the 
more accurately sample statistics match the population statistics. Clearly, the average of the sample can be 
determined precisely but, generally, it is the average of the population from which the sample is drawn that is 
of greater interest and this can only be estimated from the sample, or samples, available. It is appropriate to 
distinguish sample and population statistics and hence different symbols are used. 

6.2.2.2 The mean 

The mean (see 3.4) is the most commonly encountered measure of central tendency and it is often also called 
the average. The precise meaning should be clear when these words are used as there are several ways of 
averaging a set of numerical values. The arithmetic average or mean is the one that is generally meant and so 
the word arithmetic is often omitted but, where there is the possibility of confusion, it ought to be included. In 



ISO 19003:2006(E) 

© ISO 2006 – All rights reserved  13

this International Standard, where the word mean is used the arithmetic mean is intended unless otherwise 
stated. 

The mean of a sample, x , is defined as the sum of the individual numerical values in the sample divided by 
the number of values in the sample and is given mathematically by the equation 

( .... )1 2 3 nx x x xx
n

+ + + +
=  (1) 

which in the shorthand sigma notation becomes 

( ) /x x n= Σ  (2) 

As noted previously, the mean of the population from which the sample was taken is given the symbol µ. This 
value is almost never known in practice, but has to be estimated from the sample. The estimated mean of the 
population µ̂ , based on the available sample, is taken to be equal to the sample mean. In other words 

ˆ xµ =  (3) 

where µ̂  is an estimate of µ. 

Where there are a large number of results having discrete values, it may be more convenient to record the 
number of occurrences of each value. If each value x occurs f times, then 

[ ]( ) /x fx n= Σ  (4) 

NOTE In this case, n = Σf. 

The same technique can be applied where an infinite variation in value x can occur, but it is more convenient 
to group the data into bands, counting the number of results in each band. 

Other types of mean sometimes encountered are briefly described in Annex B. 

6.2.2.3 The median 

If the data in the set of results are arranged in numerical order, then the middle value (or the mean of the two 
middle values where there is an even number of values) is the median (see 3.5). 

Geometrically, the median of a density distribution function is the value of the abscissa corresponding to that 
vertical line which divides the distribution into two equal areas. 

For tensile strength or elongation at break, where the double exponential distribution function is expected to 
apply, it is strongly recommended that the median value be quoted for the measure of central tendency. The 
reason for this is three-fold: 

a) for the small number of replicate results normally involved in a tensile test (typically five or even three), 
the median is not influenced by any extreme values that may have arisen; 

b) for a small number of replicates, the median can be deduced by inspection without recourse to any 
calculation; 

c) there is an equal probability of an individual observation being greater than or being less than the median. 
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6.2.2.4 The mode 

The mode (see 3.6) of a density distribution function is the value of the abscissa at which the maximum of the 
function occurs. Although little used in practice, it is referenced here for completeness as it has been used to 
characterize the double exponential distribution enunciated by Kase from earlier work by Fisher and Tippet [1]. 

Almost all distributions encountered in the rubber industry are unimodal, i.e. having a single maximum value. 
However, bimodal (having two maxima) or multi-modal distributions can result where two, or more, different 
mechanisms are occurring simultaneously in a process. Thus, tensile testing at a temperature close to the 
glass transition of the rubber can lead to a mixture of brittle and rubbery failure. This mixed mode of failure is 
best analysed by separating the results from the two types of failure and analysing each independently. An 
example of a bimodal distribution is given in Figure 4. 

 

Key 

X parameter y (see Annex A) 
Y probability 

Figure 4 — Bimodal density function 

6.2.2.5 Inter-relationships 

It is clear from the definitions of these various measures of central tendency that for symmetrical distributions 
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Mean = Median = Mode 

The inter-relationships for non-symmetrical distributions are necessarily more complex and those for the 
double exponential and the Weibull distribution are given in Annex C. 

6.2.3 Measures of dispersion 

6.2.3.1 General 

Just as it is useful to know the average value of a set of numbers, so also is their spread or dispersion 
important. The more loosely packed the numbers are about the mean, the less discrimination there is between 
two sets of numbers or between the experimental values and, for example, the specification requirement. 

The variance and standard deviation are used with the mean, whilst the range is normally used with the 
median and mode. Also, the quartiles indicate 25 % of the data is higher or lower and the percentiles a 
specified percent is higher or lower. 

6.2.3.2 Standard deviation 

6.2.3.2.1 By definition, the standard deviation s′  of a sample of results having values of xi is given as the 
square root of the average squared deviation of each of the values from their mean ( x ). It is given by the 
equation: 

( )
1/ 22

ix x
s

n

⎡ ⎤−⎢ ⎥′ =
⎢ ⎥
⎢ ⎥⎣ ⎦

∑  (5) 

An alternative form that is sometimes more convenient to use is given in Annex D. Some of the risks 
associated with its use are also given. 

The symbol s′  is used here to represent the standard deviation of the sample of n results. If this sample is 
representative of the population from which it has been drawn, then the true standard deviation σ can be 
estimated by equating it with the statistic s defined by applying Bessel’s correction to Equation (5). s is given 
by the equation: 

( )
1/ 22

1
ix x

s
n

⎡ ⎤−⎢ ⎥=
⎢ ⎥−
⎢ ⎥⎣ ⎦

∑  (6) 

This is the form of the standard deviation that should normally be used when performing statistical tests since 
it is an estimate for the population as a whole and not simply the particular sample chosen. 

6.2.3.2.2 It can be shown that 

a) 68,26 % of values for a normal distribution lie within ± 1 standard deviation of the mean; 

b) 95,44 % lie within ± 2 standard deviations; 

c) 99,73 % lie within ± 3 standard devations. 

For all practical purposes, in a normal distribution (or the distribution of the means of sets of values), the 
whole population is covered by six standard deviations. Therefore this interval is used in the setting of control 
charts (see Clause 18). 

6.2.3.2.3 Related to the standard deviation is the standard error of the mean, which is determined from the 
standard deviation by dividing the standard deviation by the square root of the number of observations in the 
sample. It is, therefore, the standard deviation of the estimate of the population mean (see 3.12). Thus 
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S = s/√n (7) 

where S is the standard error of the mean. 

The standard error is a measure of the expected spread of a series of mean values in the same way that the 
standard deviation is a measure of the expected spread of the individual values, and it is the standard error 
which should be used when making statistical comparisons between groups of numbers which are themselves 
the means of a group of numbers (see 6.3.2.4 and 7.2.2.2). 

6.2.3.3 The range 

While the standard deviation has valuable mathematical properties, historically it was somewhat cumbersome 
to calculate without computers and on occasion this might outweigh its value. Where a less precise estimate 
will suffice, the range, i.e. the maximum value minus the minimum value in the sample, may be used. It is 
possible to estimate the standard deviation from the range by multiplying the range by a factor which depends 
on the number of results in the set. For values of n between 2 and 11, the factors An are given in Table 3. 

Table 3 — Table of factors for converting range to standard deviation 

n An 

2 0,886 

3 0,591 

4 0,486 

5 0,430 

6 0,395 

7 0,370 

8 0,351 

9 0,337 

10 0,325 

11 0,315 

Thus, s ≈ range × An. 

The range and the quartiles can also be used as measures of spread around the median in an analogous 
manner to the standard deviation around the mean. 

6.2.3.4 Coefficient of variation 

Where the relative dispersion of results about their mean is of interest as, for example, in the comparison of 
the variabilities of the volume swell test with the density test, the ratio of the standard deviation to the mean 
can be used to normalize the effects of having very different numerical values for the means. It is usual to 
express this ratio as a percentage and to call it the coefficient of variation (see 3.10). It is given by the 
equation: 

v ( / 100)C s x= ×  (8) 

where Cv is the coefficient of variation. 

6.2.4 Transformation to normal distribution 

The individual results obtained from a rubber test may not immediately conform to the normal distribution 
function. Other possible distribution functions such as the double exponential or Weibull may be theoretically 
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(or empirically) found to give a better representation of those data (see 6.2.5). Where certain statistical 
interferences need to be made concerning a set of data, for example the determination of confidence intervals 
or limits (see Clause 7), knowledge of the distribution function which describes the data is required. Because 
of the extensive range of tests and techniques that have been developed for the normal distribution, it is worth 
investigating whether a simple transformation of the data will result in a normally distributed data set to an 
accuracy sufficient for the situation being analysed. 

It is also important to bear in mind that, even where the normal distribution is not found for the individual 
readings, the distribution of the means of groups of readings (as low as three per group) such as those 
obtained in the usual tests on rubber nearly always approximate to the Gaussian form (central limit theorem). 

The transformation most commonly found to be effective in this regard is to take the logarithms of the values 
and treat these as the variable to be analysed. The use of log-probability graph paper or computer 
transformation makes this a very quick and simple test. 

Other transformations that have been found to work on occasion include 

a) taking the square root; 

b) taking the reciprocal of the value. 

Sometimes the addition of a constant to (or subtraction of a constant from) the value prior to taking logarithms, 
roots or reciprocals is required. It may be possible to deduce a suitable value for this constant from knowledge 
of the process being examined, but often it should be established empirically. 

6.2.5 Test of departure from normality 

6.2.5.1 Normal distribution function 

6.2.5.1.1 The simplest way of testing a series of observations for the normality of its distribution is by 
plotting the results on probability paper. A normally distributed set of observations results in a straight line 
from which the mean and standard deviation can be derived. 

6.2.5.1.2 The procedure is as follows: 

a) Sort the data into ascending numerical order. 

b) As probability paper is printed in the form of a percentage function, calculate the plotting position Pm for 
point m out of a total of n results using the equation: 

Pm = 100m/(n + 1) (9) 

c) Plot the value of the mth point as ordinate against Pm as abscissa. 

6.2.5.1.3 A more or less straight line indicates that the distribution is normal, but a marked deviation from 
linearity indicates that the distribution is non-Gaussian. Under these circumstances, the nature of the deviation 
may indicate the kind of distribution function that is more appropriate. In particular, if the larger values are 
systematically higher than the straight line defined by the lower values, the use of a logarithm or root 
transformation (see 6.2.4) will often result in a linear plot. 

6.2.5.1.4 The above check does not provide a true test for normality in the statistical sense, but does give a 
rapid indication of the suitability, or not, of the normal distribution function as the model for the data observed. 
If the plot is not reasonably linear even after transformations have been applied, then more detailed symmetry 
and kurtosis tests may be required (taking into account the purpose for which the data are being used). These 
are outside the scope of this International Standard and the interested user is referred to ISO 5479. 

Log-normal and Weibull graph papers are also available. 



ISO 19003:2006(E) 

18  © ISO 2006 – All rights reserved
 

6.2.5.2 Double exponential distribution function 

6.2.5.2.1 Where the distribution is expected to follow the double exponential function 

a) order the data into descending numerical value; 

b) plot the value as ordinates against an abscissa of plot positions which are given by Table 4. 

6.2.5.2.2 If the double exponential function is valid, then a straight line will result and the following values 
may be obtained as described: 

a) the mode, which corresponds to the ordinate at which the abscissa is zero; 

b) the standard deviation, which is the difference in ordinates corresponding to a unit difference in the 
abscissa (i.e. it is the slope of the line); 

c) the median strength, which is the value corresponding to an abscissa of − 0,366 5; 

d) the mean, which is the value corresponding to an abscissa of − 0,577 2. 
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6.2.5.3 Weibull distribution function 

If the Weibull distribution function is assumed to be valid, the procedure is as follows: 

a) sort the data into ascending order; 

b) calculate the plotting positions Pm as for the normal distribution above; 

c) plot the values for Pm against the observed lifetime on special Weibull probability paper. 

NOTE Although this can be purchased directly, it is readily constructed from normal log-log graph paper and Annex E 
shows how this can be done. 

6.3 Applications to rubber testing 

6.3.1 General  

For many tests, results will approximate to a normal distribution and it is appropriate to express results as the 
arithmetic mean and the standard deviation as routine practice. Typical examples are given in 6.3.2 to 6.3.5. 

6.3.2 Tensile testing 

6.3.2.1 The following three sets of 12 replicate tensile strengths shown in Table 5 were observed after 
testing in accordance with ISO 37 and arranging the results in descending order. 

As there are 12 results, the median in each case is the average of the middle two values. 

Table 5 — Tensile strength measurements 

Measurements in MPa

Compound A Compound B Compound C 

Tensile strength Median Tensile strength Median Tensile strength Median 

26,7  28,4  19,7  

26,2  27,9  19,6  

26,1  27,4  19,2  

26,1  27,1  19,0  

25,9  26,8  18,7  

25,8  26,5  18,4  

 25,8  26,4  18,3 

25,8  26,3  18,1  

25,8  26,2  17,3  

25,7  26,0  16,4  

25,6  25,9  15,6  

25,1  24,6  15,1  

25,0  24,1  13,5  
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6.3.2.2 The information contained in Table 6 has been calculated by the following methods: 

a) the mean has been calculated as defined in 6.2.2.2; 

b) the standard deviation and the standard error of the mean have been calculated as defined in 6.2.3; 

c) the calculated median has been calculated as defined in C.1 (i.e. for a double exponential distribution) 
using the values obtained in a) and b). 

Table 6 — Calculated values for tensile strength measurements 

Compound Mean Standard 
deviation 

Standard error of 
the mean 

Observed 
median 

Calculated 
median 

A 25,8 0,46 0,13 25,8 26,6 

B 26,4 1,24 0,36 26,4 26,6 

C 17,6 1,99 0,57 18,3 17,9 

 

6.3.2.3 On comparing the two sets of median values, it is clear that the median obtained from inspection 
of the data is essentially the same as that calculated from the mean, the standard deviation and Annex C. 

6.3.2.4 Examining the mean values of the three compounds (in relation to their standard errors) shows A 
and B to be within experimental error of each other, but compound C to be significantly different. 

6.3.2.5 All the results have been summarized graphically in Figure 5. 

    

Key 

1 median 1 (observed value) 
2 median 2 (calculated value) 

Figure 5 — Graphical representation of mean and median data for three compounds 
(using the tensile strength data of Table 6) 

6.3.3 Fatigue 

6.3.3.1 A tension fatigue test carried out in accordance with ISO 6943 on 10 replicate test pieces gave 
the observations listed in Table 7. 
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Table 7 — Tension fatigue test measurements 

Test piece Cycles to failure 

1 219 

2 347 

3 494 

4 593 

5 700 

6 858 

7 1 037 

8 1 146 

9 1 461 

10 1 795 

 

6.3.3.2 When the data in Table 7 are plotted as a normal distribution function, a systematic departure 
from the expected curve is observed, as shown in Figure 6 where a log-log scale has been used for 
convenience. The expected normal distribution of lifetimes is shown as the full curve. 

6.3.3.3 From the type of test being performed, it would be expected that a Weibull distribution would give 
a good representation of the data. Hence a Weibull plot, constructed in accordance with Annex E, results in 
the plot shown in Figure 7. A linear regression analysis (see Clause 11) using the Weibull ordinate for the 
y-values and the logarithm of the fatigue life as the x-values produces the following values: 

k = 1,53; 

b = 1 006. 

The strong linearity of the plot (the value of the variance ratio is over 5 000 and so the regression is highly 
significant) indicates that the coefficient a in the Weibull equation is zero. 
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Key 

X fatigue life 
Y normal ordinate 

Figure 6 — Fatigue data: normal plot (using the data of Table 7) 
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Key 

X fatigue life 
Y Weibull ordinate 

Figure 7 — Fatigue data: Weibull plot (using the data of Table 7) 

6.3.4 Conversion to normal distribution 

6.3.4.1 Data for electrical resistivity testing gave the results shown in Table 8. 

Table 8 — Electrical resistivity measurements 

Test piece Resistivity 

 Ω⋅cm 

1 2,81 × 1011 

2 3,54 × 108 

3 2,68 × 1010 

4 2,75 × 109 

5 1,20 × 1010 

 

If the assumption were made that the data are normally distributed, the analysis would give the values: 

a) mean = 6,46 × 1010; 

b) standard deviation, s = 1,21 × 1011. 
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6.3.4.2 Clearly, from the observed mean and standard deviation the data are not normally distributed, a 
fact which is readily confirmed by plotting the resistivities sorted into ascending value against the plot positions 
17, 33, 50, 67, 83 on standard probability paper. A rapidly increasing slope with increasing probability value is 
observed instead of a straight line. 

6.3.4.3 When the same data are plotted as the logarithm of resistivity (on log-probability paper for 
convenience) a very good straight line is achieved having a mean at approximately 1010 Ω·cm. This is very 
close to the value of the geometric mean, 9,75 × 109, as would be expected from Annex B. 

6.3.5 Other uses of the median 

6.3.5.1 Measurements of the hardness of rubber compounds are probably the most frequently made of 
all the tests. The technique is not a highly precise one and results are usually quoted in whole numbers. 
Specifications of hardness are almost always given as the required nominal value ± 5 hardness degrees. 

6.3.5.2 In this context, there is no mathematical advantage in calculating the mean from the set of five 
results (almost invariably) taken on a single test piece. Instead, the median, which can be deduced in a few 
seconds without a calculator, is the preferred measure of central tendency to use. For example, the results in 
Table 9 were derived on three compounds of nominal hardness 50 IRHD when tested in accordance with 
ISO 48. 

Table 9 — Hardness measurements 

Measurements in IRHD 

Result Compound 1 Compound 2 Compound 3 

1 50 52 49 

2 51 53 48 

3 49 51 47 

4 51 50 47 

5 50 55 46 

 

6.3.5.3 The values given in Table 10 were calculated from those in Table 9. 

Table 10 — Values calculated from hardness measurements 

Measurements in IRHD 

Compound Mean Standard deviation, s Median 

1 50 1 50 

2 52 2 52 

3 47 1 47 

 

In all cases, the median is within the 95 % confidence interval (see 7.2.1) of the mean and gives, for all 
practical purposes, the same result. In some instances, it may be necessary to carry out formal statistical 
testing in which case the standard deviation as well as the mean are required and there is no advantage in 
abstracting the median from the list. Also, if large numbers of replicate hardness values are to be processed, 
the median can become more tedious to determine than the mean. 

NOTE The use of the median is purely pragmatic. There is no suggestion that the hardness is anything other than 
normally distributed about its mean. 
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7 Confidence limits and significant difference 

7.1 Principles 

As was stated in Clause 6, the mean and standard deviation derived for a given set of observations can only 
be estimates of the true mean and standard deviation of the whole population from which these observations 
are a random selection. To the extent that there is no systematic bias in the observations, the greater the 
number of results available, the less uncertainty there is over the accuracy of these estimates. 

Unless the true mean (or standard deviation) can be deduced via some a priori reasoning, it is impossible to 
state how close a given calculated mean (or standard deviation) is to the true value. But it is possible to 
indicate with a known degree of uncertainty (the confidence level) that the true value will lie within a particular 
interval about that calculated value. The greater the degree of certainty required, the larger does this 
confidence interval become and the further apart are the limits (the confidence limits) of this interval. 

Since any calculated measures of central tendency or dispersion are subject to uncertainty, when two such 
measures are compared, they cannot be expected to agree precisely. The difference between them becomes 
significant in the statistical sense only when it exceeds a limiting value which could have occurred, with a 
given probability, purely by chance. 

It should be noted that a statistically significant difference between two measures of a property does not imply 
that the difference has any practical significance. The latter can only be judged in the context of the 
application being studied and the sensitivity of the application to the measured property. Thus, two 
compounds having tear strengths of 10 N/mm and 15 N/mm with standard deviations of 1 N/mm based on five 
results are significantly different at the 99 % level of confidence but, if the specification calls for a minimum 
tear strength of 25 N/mm, neither of them meets the specification and hence the difference between them is 
insignificant (and irrelevant) in practical terms. 

Significance tests such as Student’s t-test make several assumptions about the data being analysed, and an 
awareness of these assumptions is important in order to use the technique successfully. Firstly, the data must 
represent actual values, such as tensile strength or length; subjective values and grades cannot be treated in 
this way. Secondly, they must be normally distributed. Finally, they must be independent so that an error in 
one observation does not influence the error in another observation. If the data are not normally distributed, 
they can often be made to approximate to normality by a transformation (for example taking logarithms). The 
tests also assume that the two means being compared come from similar populations, i.e. their variances are 
not significantly different (see 7.2.2.2 for more information). 

7.2 Methodology 

7.2.1 Confidence limits and confidence intervals 

7.2.1.1 For the mean 

7.2.1.1.1 If the population mean, µ, and standard deviation, σ, are known, then it is a simple matter (see 
6.2.1.1) to work out what the probability is that the mean of n results lies within, for example, three standard 
deviations of µ. Using the normal notation of x  to represent the mean of the n results, then on 99,7 % of 
occasions 

/ /3 3n x nµ σ µ σ− < < +  (10) 

By similar reasoning, if µ is unknown and σ is known, it is logical to assert that 

ˆ/ /3 3x n x nσ µ σ− < < +  (11) 
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Thus, at a confidence level of 99,7 %, it is expected that the population mean would lie within the confidence 
interval of ± 3σ/√n about the sample mean. If a smaller confidence level, say 95 %, were chosen, the 
confidence interval would be ± 1,96σ/√n. 

7.2.1.1.2 It is unfortunate that the exact values of µ and of σ are unknown. Only the estimate s is known 
from the sample tested. For the same confidence level 99,7 %, the value 3σ/√n has to be increased to take 
account of this uncertainty in σ, the amount of the increase being dependent on the value of n. The factors 
used are given by the Student’s t-distribution rather than the normal distribution (which is the limiting value of 
the t-distribution when n reaches infinity). Further consideration of the t-distribution is outside the scope of this 
International Standard and reference should be made to one of the many textbooks on statistics that are 
available. A selection of useful reference works is included in the Bibliography. 

7.2.1.1.3 It is, therefore, assumed in the following clauses that the true mean and standard deviation are 
unknown and that only the estimates of the mean x  and of the standard deviation s are known. For an 
exposition of situations in which one or other of the true parameters is known, reference should be made to 
ISO 2602 and ISO 2854. 

The confidence limits for the mean are normally required for the 95 % and the 99 % confidence levels. In 
either case, the limits are given by the equations: 

cL = x  − (tαs)/√n (12) 

cU = x  + (tαs)/√n (13) 

cI = 2(tαs)/√n (14) 

where 

cL = lower confidence limit; 

cU = upper confidence limit; 

cI = confidence level. 

It is therefore possible to be 95 % (or 99 %, etc.) confident that the true mean µ of the population does lie 
within this interval about the calculated mean (i.e. the estimated population mean). 

In these equations, n is the number of observations and t is the appropriate Student’s t-value, obtained from 
Table 11. 
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Table 11 — A selected table of Student’s t-values 

Confidence level Confidence level 

Two-sided case One-sided level 

95 % 99 % 95 % 99 % 

n 

t0,975 t0,995 t0,95 t0,99 

2 12,71 63,66 6,314 31,82 

3 4,303 9,925 2,920 6,965 

4 3,182 5,841 2,353 4,541 

5 2,776 4,604 2,132 3,747 

6 2,571 4,032 2,015 3,365 

7 2,447 3,707 1,943 3,143 

8 2,365 3,499 1,895 2,998 

9 2,306 3,355 1,860 2,896 

10 2,262 3,250 1,833 2,821 

11 2,228 3,169 1,812 2,764 

12 2,201 3,106 1,796 2,718 

13 2,179 3,055 1,782 2,681 

14 2,160 3,012 1,771 2,650 

15 2,145 2,977 1,761 2,624 

16 2,131 2,947 1,753 2,602 

17 2,120 2,921 1,746 2,583 

18 2,110 2,898 1,740 2,567 

19 2,101 2,878 1,734 2,552 

20 2,093 2,861 1,729 2,539 

21 2,086 2,845 1,725 2,528 

22 2,080 2,831 1,721 2,518 

23 2,074 2,819 1,717 2,508 

24 2,069 2,807 1,714 2,500 

25 2,064 2,797 1,711 2,492 

26 2,060 2,787 1,708 2,485 

27 2,056 2,779 1,706 2,479 

28 2,052 2,771 1,703 2,473 

29 2,048 2,763 1,701 2,467 

30 2,045 2,756 1,699 2,462 

40 2,024 2,707 1,682 2,430 

50 2,008 2,680 1,676 2,404 

60 2,000 2,664 1,673 2,393 

120 1,980 2,617 1,658 2,358 

inf. 1,960 2,576 1,645 2,326 
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7.2.1.1.4 As noted in 6.2.3.2.3, the quantity s/√n is called the standard error of the estimate (of the mean). It 
can thus be seen that to halve the confidence interval approximately four times as many observations have to 
be taken. 

NOTE t is approximately constant except at very small values of n. 

7.2.1.1.5 The value of tα depends on the confidence level required, the number of observations (or, more 
precisely, the number of degrees of freedom) and whether a single-sided or a two-sided confidence interval is 
being sought. 

In the simple cases being considered here, the number of degrees of freedom is (n − 1). 

7.2.1.1.6 A single-sided confidence interval is used when, for example, a comparison is being made 
between an observed mean value for a test, such as compression set, and the specification maximum (or 
minimum) to which it is being tested. This is because the only concern is with those values that might exceed 
(or not reach) the requirement and there is no interest in the values at the other side of the distribution 
function, these being those that conform to the specification limit. In this case, tα is given in the tables under 
the columns for t0,95 for the 95 % and t0,99 for the 99 % confidence limits. 

7.2.1.1.7 A two-sided confidence interval is used when, for example, it is necessary to know the interval 
within which the true mean could be expected to lie with the given degree of confidence. In this case, both 
sides of the distribution function are equally important and will contribute equally to the probability. Thus, for 
95 % confidence the t0,975 column is required and for 99 % confidence the t0,995 column is required. 

7.2.1.1.8 There are situations where it might be more convenient to calculate the value of Student’s 
t-factor, for a given probability and number of degrees of freedom, rather than using reference tables. 
Provided that an error not exceeding 0,5 % of the true t-value is acceptable, then the following equation may 
be used: 

tα = A + BC[1/(n – 1)] (15) 

where the constants A, B and C are as given in Table 12. 

Table 12 — t-value constants 

t A B C 

t0,95 0,875 7 0,770 03 7,062 3 

t0,975 1,053 1 0,909 30 12,819 2 

t0,99 1,264 0 1,069 9 28,559 0 

t0,995 1,418 7 1,171 7 53,120 9 

 

7.2.1.2 For the standard deviation 

7.2.1.2.1 As in the case of the mean, the standard deviation calculated from a set of data can only be an 
estimate of the true standard deviation for the population as a whole and as such will have a measure of 
uncertainty associated with it. Confidence limits can therefore be set which, to a stated degree of confidence, 
contain the population standard deviation. 

7.2.1.2.2 Unlike the confidence limits for the mean, the limits for the standard deviation are not symmetrical 
about the estimate s. This arises out of the fact that the standard deviation, unlike the mean, cannot be 
negative. 

7.2.1.2.3 As discussed in 7.2.1.1.6 and 7.2.1.1.7 when considering the confidence limits for the mean, 
there are two cases to be considered. These are the single-sided case and the two-sided case depending on 
whether just an upper (or lower) limit, or both, is being considered. 
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1/ 22
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 (16) 

where cUs is the upper confidence level for s. 

1/ 22

L 2
1

s
nsc
αχ −

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (17) 

where cLs is the lower confidence level for s. 

The denominator in these equations comes from the chi-squared distribution function which is defined as the 
distribution of the sums of the squares of independent standardized normal variants. Some values are given in 
Table 13 and more comprehensive tables are available in the list of references. 

For the single-sided case, α = 0,95 or 0,99 for the 95 % or 99 % confidence limits, respectively. 

For the two-sided case, α = 0,975 or 0,995 for the 95 % or 99 % confidence limits, respectively. 

As stated in 7.2.1.1.5, the number of degrees of freedom to be entered to find the chi-squared factor is (n − 1). 
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Table 13 — A selected table of chi-squared values 

Chi-squared for two-sided case Chi-squared for one-sided case 

95 % 95 % 99 % 99 % 95 % 95 % 99 % 99 % 

n 

χ0,025
2 χ0,975

2 χ0,005
2 χ0,995

2 χ0,05
2 χ0,95

2 χ0,01
2 χ0,99

2 

1 0,001 5,023 0,000 039 7,879 0,004 3,841 0,000 2 6,635 

2 0,051 7,378 0,010 10,597 0,103 5,991 0,020 9,210 

3 0,216 9,348 0,072 12,838 0,352 7,815 0,115 11,345 

4 0,484 11,143 0,207 14,860 0,711 9,488 0,297 13,277 

5 0,831 12,833 0,412 16,750 1,145 11,071 0,554 15,086 

6 1,237 14,449 0,676 18,548 1,635 12,592 0,872 16,812 

7 1,690 16,013 0,989 20,278 2,167 14,067 1,239 18,475 

8 2,180 17,535 1,344 21,955 2,733 15,507 1,646 20,090 

9 2,700 19,023 1,735 23,589 3,325 16,919 2,088 21,666 

10 3,247 20,483 2,156 25,188 3,940 18,307 2,558 23,209 

11 3,816 21,920 2,603 26,757 4,575 19,675 3,053 24,725 

12 4,404 23,337 3,074 28,300 5,226 21,026 3,571 26,217 

13 5,009 24,736 3,565 29,819 5,892 22,362 4,107 27,688 

14 5,629 26,119 4,075 31,319 6,571 23,685 4,660 29,141 

15 6,262 27,488 4,601 32,801 7,261 24,996 5,229 30,578 

16 6,908 28,845 5,142 34,267 7,962 26,296 5,812 32,000 

17 7,564 30,191 5,697 35,719 8,672 27,587 6,408 33,409 

18 8,231 31,526 6,265 37,156 9,390 28,869 7,015 34,805 

19 8,907 32,852 6,844 38,582 10,117 30,144 7,633 36,191 

20 9,591 34,170 7,434 39,997 10,851 31,410 8,260 37,566 

21 10,283 35,479 8,034 41,401 11,591 32,671 8,897 38,932 

22 10,982 36,781 8,643 42,796 12,338 33,924 9,542 40,289 

23 11,689 38,076 9,260 44,181 13,091 35,173 10,196 41,638 

24 12,401 39,364 9,886 45,559 13,848 36,415 10,856 42,980 

25 13,120 40,647 10,520 46,928 14,611 37,653 11,524 44,314 

26 13,844 41,923 11,160 48,290 15,379 38,885 12,198 45,642 

27 14,573 43,194 11,808 49,645 16,151 40,113 12,879 46,963 

28 15,308 44,461 12,461 50,993 16,928 41,337 13,565 48,278 

29 16,047 45,722 13,121 52,336 17,708 42,557 14,257 49,588 

30 16,791 46,979 13,787 53,672 18,493 43,773 14,954 50,892 

 

7.2.2 Significant difference 

7.2.2.1 General 

Closely related to the concept of confidence limits is that of significant difference, where a comparison needs 
to be made either between two means or two standard deviations. In the following subclauses, it is assumed 
that there are two sets of observations with the statistics shown in Table 14. 



ISO 19003:2006(E) 

32  © ISO 2006 – All rights reserved
 

Table 14 — Statistics for observation sets 

Observation set Mean value Estimated standard 
deviation 

Number of 
observations 

1 1x  s1 n1 

2 2x  s2 n2 

 

7.2.2.2 For the mean 

The means cannot be regarded as likely to be different at the given confidence level α if 

1 2x x t Sα− >  (18) 

where 

1 2x x−  signifies the absolute value of the difference; 

tα is the value of Student’s t (Table 11) for the two-sided case, entered for (n1 + n2 − 2) degrees of 
freedom, being 97,5 for the 95 % confidence level or 99,5 for the 99 % confidence level; 

S is the weighted standard error for the combined sets of observations, which is calculated by the 
equation: 

1/ 22 2
1 2 1 1 2 2

1 2 1 2

( 1) ( 1)
2

n n n s n s
S

n n n n

⎡ ⎤+ − + −
= ×⎢ ⎥

+ −⎢ ⎥⎣ ⎦
 (19) 

In most cases, n1 = n2 and the equation can be considerably simplified to the form: 

2 2
1 2( )s s

S
n

+
=  (20) 

It is assumed in this analysis that there is no significant difference (at a stated level) in the standard deviations 
s1 and s2. If such a difference is significant, then the two sets of observations cannot be considered to have 
come from the same population and hence their means would not usually be compared. The test for the 
significance of the difference between two standard deviations is given in 7.2.2.3. 

7.2.2.3 For the standard deviation 

7.2.2.3.1 The procedure is as follows: 

a) Determine the ratio of the variances using the equation: 

F = (s1/s2)2 (21) 

it being taken that s1 > s2. 

b) Consult Table 15 where the critical values for Snedecor’s F-quotient at the 95 % and the 99 % confidence 
levels are given. 

c) Use one of the following: 

1) α = 0,05 for a single-sided 95 % confidence level; 
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2) α = 0,025 for a two-sided 95 % confidence level; 

3) α = 0,01 for a single-sided 99 % confidence level; 

4) α = 0,005 for a two-sided 99 % confidence level. 

d) Establish the critical F-value for the (n1 − 1) degrees of freedom for s1 and the (n2 − 1) degrees of freedom 
for s2 by finding the intersection of the column with (n1 − 1) degrees of freedom and the row with (n2 − 1) 
degrees of freedom. If the calculated F-value is greater than this tabulated critical F-value, then the two 
standard deviations are different at the chosen confidence level. 

Table 15 — Snedecor’s F-values for selected degrees of freedom 
(DFl = lesser degrees of freedom, DFg = greater degrees of freedom) 

a) F95 for one-sided test 

DFg DFl 

3 4 5 6 7 8 10 12 15 20 24 30 40 60 120 

3 9,28 9,12 9,01 8,94 8,89 8,85 8,79 8,74 8,80 8,66 8,64 8,62 8,59 8,57 8,55 

4 6,59 6,39 6,26 6,16 6,09 6,04 5,96 5,91 5,86 5,80 5,77 5,75 5,72 5,69 5,66 

5 5,41 5,19 5,05 4,95 4,88 4,82 4,74 4,68 4,62 4,56 4,53 4,50 4,46 4,43 4,40 

6 4,76 4,53 4,39 4,28 4,21 4,15 4,06 4,00 3,94 3,87 3,84 3,81 3,77 3,74 3,70 

7 4,35 4,12 3,97 3,87 3,79 3,73 3,64 3,57 3,51 3,44 3,41 3,38 3,34 3,30 3,27 

8 4,07 3,84 3,69 3,58 3,50 3,44 3,35 3,28 3,22 3,15 3,12 3,08 3,04 3,01 2,97 

10 3,71 3,48 3,33 3,22 3,14 3,07 2,98 2,91 2,85 2,77 2,74 2,70 2,66 2,62 2,58 

12 3,49 3,26 3,11 3,00 2,91 2,85 2,75 2,69 2,62 2,54 2,51 2,47 2,43 2,38 2,34 

15 3,29 3,06 2,90 2,79 2,71 2,64 2,54 2,48 2,40 2,33 2,29 2,25 2,20 2,46 2,11 

20 3,10 2,87 2,71 2,60 2,51 2,45 2,35 2,28 2,20 2,12 2,08 2,04 1,99 1,95 1,90 

24 3,01 2,78 2,62 2,51 2,42 2,36 2,25 2,18 2,11 2,03 1,98 1,94 1,89 1,84 1,79 

30 2,92 2,69 2,53 2,42 2,33 2,27 2,16 2,09 2,01 1,93 1,89 1,84 1,79 1,74 1,68 

40 2,84 2,61 2,45 2,34 2,25 2,18 2,08 2,00 1,92 1,84 1,79 1,74 1,69 1,64 1,58 

60 2,76 2,53 2,37 2,25 2,17 2,10 1,99 1,92 1,84 1,75 1,70 1,65 1,59 1,53 1,47 

120 2,68 2,45 2,29 2,17 2,09 2,02 1,91 1,83 1,75 1,66 1,61 1,55 1,50 1,43 1,35 
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Table 15 (continued) 

b) F95 for two-sided test 

DFg DFl 

3 4 5 6 7 8 10 12 15 20 24 30 40 60 120 

3 15,44 15,10 14,88 14,43 14,62 14,54 14,42 14,34 14,25 14,17 14,12 14,08 14,04 13,99 13,95

4 9,98 9,60 9,36 9,20 9,07 8,98 8,84 8,75 8,66 8,56 8,51 8,46 8,41 8,36 8,31 

5 7,76 7,39 7,15 6,98 6,85 6,76 6,62 6,52 6,43 6,33 6,28 6,23 6,18 6,12 6,07 

6 6,60 6,23 5,99 5,82 5,70 5,60 5,46 5,37 5,27 5,17 5,12 5,07 5,01 4,96 4,90 

7 5,89 5,52 5,29 5,12 4,99 4,90 4,76 4,67 4,57 4,47 4,42 4,36 4,31 4,25 4,20 

8 5,42 5,05 4,82 4,65 4,53 4,43 4,30 4,20 4,10 4,00 3,95 3,89 3,84 3,78 3,73 

10 4,83 4,47 4,24 4,07 3,95 3,85 3,72 3,62 3,52 3,42 3,37 3,31 3,26 3,20 3,14 

12 4,47 4,12 3,89 3,73 3,61 3,51 3,37 3,28 3,18 3,07 3,02 2,96 2,91 2,85 2,79 

15 4,15 3,80 3,58 3,41 3,29 3,20 3,06 2,96 2,86 2,76 2,70 2,64 2,59 2,52 2,46 

20 3,86 3,51 3,29 3,13 3,01 2,91 2,77 2,68 2,57 2,46 2,41 2,35 2,29 2,22 2,16 

24 3,72 3,38 3,15 2,99 2,87 2,78 2,64 2,54 2,44 2,33 2,27 2,21 2,15 2,08 2,01 

30 3,59 3,25 3,03 2,87 2,75 2,65 2,51 2,41 2,31 2,20 2,14 2,07 2,01 1,94 1,87 

40 3,46 3,13 2,90 2,74 2,62 2,53 2,39 2,29 2,18 2,07 2,01 1,94 1,88 1,80 1,72 

60 3,34 3,01 2,79 2,63 2,51 2,41 2,27 2,17 2,06 1,94 1,88 1,82 1,74 1,67 1,58 

120 3,23 2,89 2,67 2,52 2,39 2,30 2,16 2,05 1,94 1,82 1,75 1,69 1,61 1,53 1,43 

c) F99 for one-sided test 

DFl DFg 

 3 4 5 6 7 8 10 12 15 20 24 30 40 60 120 

3 29,46 28,7 28,24 27,91 27,67 27,49 27,23 27,05 26,87 26,69 26,60 26,50 26,41 26,32 26,22

4 16,69 15,98 15,52 15,21 14,98 15,80 14,55 14,37 14,20 14,02 13,93 13,84 13,75 13,65 13,56

5 12,06 11,39 10,97 10,67 10,46 10,29 10,05 9,89 9,72 9,55 9,47 9,38 9,29 9,20 9,11 

6 9,78 9,15 8,75 8,47 8,26 8,10 7,87 7,72 7,56 7,40 7,31 7,23 7,14 7,06 6,97 

7 8,45 7,85 7,46 7,19 6,99 6,84 6,62 6,47 6,31 6,16 6,07 5,99 5,91 5,82 5,74 

8 7,59 7,01 6,63 6,37 6,18 6,03 5,81 5,67 5,52 5,36 5,28 5,20 5,12 5,03 4,95 

10 6,55 5,99 5,64 5,39 5,20 5,06 4,85 4,71 4,56 4,41 4,33 4,25 4,17 4,08 4,00 

12 5,95 5,41 5,06 4,82 4,64 4,50 4,30 4,16 4,01 3,86 3,78 3,70 3,62 3,54 3,45 

15 5,42 4,89 4,56 4,32 4,14 4,00 3,80 3,67 3,52 3,37 3,29 3,21 3,13 3,05 2,96 

20 4,94 4,43 4,10 3,87 3,70 3,56 3,37 3,23 3,09 2,94 2,86 2,78 2,69 2,61 2,52 

24 4,72 4,22 3,90 3,67 3,50 3,36 3,17 3,03 2,89 2,74 2,66 2,58 2,49 2,40 2,31 

30 4,51 4,02 3,70 3,47 3,30 3,17 2,98 2,84 2,70 2,55 2,47 2,39 2,30 2,21 2,11 

40 4,31 3,83 3,51 3,29 3,12 2,99 2,80 2,66 2,52 2,37 2,29 2,20 2,11 2,02 1,92 

60 4,13 3,65 3,34 3,12 2,95 2,82 2,63 2,50 2,35 2,20 2,12 2,03 1,94 1,84 1,73 

120 3,95 3,48 3,17 2,96 2,79 2,66 2,47 2,34 2,19 2,03 1,95 1,86 1,76 1,66 1,53 
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Table 15 (continued) 

d) F99 for two-sided test 

DFg DFl 

3 4 5 6 7 8 10 12 15 20 24 30 40 60 120 

3 47,47 46,19 45,39 44,84 44,43 44,13 43,69 43,39 43,08 42,78 42,62 42,47 42,31 42,15 41,99

4 24,26 23,15 22,46 21,97 21,62 21,35 20,97 20,70 20,44 20,17 20,03 19,89 19,75 19,61 19,47

5 16,53 15,56 14,94 14,51 14,20 13,96 13,62 13,38 13,15 12,90 12,78 12,66 12,53 12,40 12,27

6 12,92 12,03 11,46 11,07 10,76 10,57 10,25 10,03 9,81 9,59 9,47 9,36 9,24 9,12 9,00 

7 10,88 10,05 9,52 9,16 8,89 8,68 8,38 8,18 7,97 7,75 7,65 7,53 7,42 7,31 7,19 

8 9,60 8,81 8,30 7,95 7,69 7,50 7,21 7,01 6,81 6,61 6,50 6,40 6,29 6,18 6,06 

10 8,08 7,34 6,87 6,54 6,30 6,12 5,85 5,66 5,47 5,27 5,17 5,07 4,97 4,86 4,75 

12 7,23 6,52 6,07 5,76 5,52 5,35 5,09 4,91 4,72 4,53 4,43 4,33 4,23 4,12 4,01 

15 6,48 5,80 5,37 5,07 4,85 4,67 4,42 4,25 4,07 3,88 3,79 3,69 3,58 3,48 3,37 

20 5,82 5,17 4,76 4,47 4,26 4,09 3,85 3,68 3,50 3,32 3,22 3,12 3,02 2,92 2,81 

24 5,52 4,89 4,49 4,20 3,99 3,83 3,59 3,42 3,25 3,06 2,97 2,87 2,77 2,66 2,55 

30 5,24 4,62 4,23 3,95 3,74 3,58 3,34 3,18 3,01 2,82 2,73 2,63 2,52 2,42 2,30 

40 4,98 4,37 3,99 3,71 3,51 3,35 3,12 2,95 2,78 2,60 2,50 2,40 2,30 2,18 2,06 

60 4,73 4,14 3,76 3,49 3,29 3,13 2,90 2,74 2,57 2,39 2,29 2,19 2,08 1,96 1,83 

120 4,50 3,92 3,55 3,28 3,09 2,93 2,71 2,54 2,37 2,19 2,09 1,98 1,87 1,75 1,61 

 

7.3 Applications to rubber testing 

7.3.1 General 

Knowledge of the confidence limits for data enables objective assessments to be made of differences in that 
data. Examples of this are given in 7.3.2 and 7.3.3. 

7.3.2 Confidence limits and specification limits 

In a stress relaxation test carried out in accordance with ISO 3384, three compounds were tested against a 
specification requiring a maximum stress relaxation of 20 % over the 7 day test duration. The results obtained 
were as shown in Table 16. 

Table 16 — Percentage stress relaxation measurements 

Test piece Compound 

1 2 3 

Mean Standard deviation, s 

1 22,1 22,6 22,8 22,5 0,36 

2 17,5 19,7 18,5 18,6 1,10 

3 13,7 14,3 15,9 14,6 1,14 

 

Visual inspection of the results suggests that compound 1 fails, and compounds 2 and 3 pass. For 
compound 2, however, the mean is close to the limit (i.e. one standard deviation) which makes its true status 
less clear. 
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The lower confidence limit of each compound at the 95 % significance level is obtained from the equation: 

cL = x  − (t0,95s)/√n (22) 

Therefore, for compound 1 with a value for s of 0,36, 

cL = 22,5 − (2,92 × 0,36/√3) 

cL = 21,9 

In a similar way, Table 17 can be derived for all the compounds. 

Table 17 — Lower confidence limits for percentage stress relaxation 

Compound Limit 

% 1 2 3 

90 22,1 19,8 15,8 

95 21,9 20,5 16,5 

99 21,1 23,0 19,2 

 

From these limits, it is over 99 % certain that compound 1 fails and compound 3 conforms to the specification. 
However, compound 2 conforms to the specification with only a 90 % certainty. 

If a further three test pieces of compound 2 were tested, a more definite conclusion could probably be 
reached. (For example, if the same mean and standard deviation were obtained on the additional tests, the 
corresponding confidence limits would be 19,3, 19,5 and 20,1. This gives between 95 % and 99 % confidence 
that compound 2 does pass.) 

7.3.3 Comparison of results 

The supplier and purchaser of a grade of rubber compound (compound 1) each carry out tear tests in 
accordance with ISO 34-1:2004, method B, on the same batches to assess their degree of agreement. The 
results obtained by the two laboratories are presented in Table 18. In considering the results for compound 1, 
it can be seen that the difference in the means exceeds the t0,95S product so it is more than 95 % certain that 
the two laboratories are not producing statistically equivalent data. 

The same tests were also carried out on a different compound (compound 2). These results are also 
presented in Table 18. 

In the case of compound 2, the difference in the means is bordering on the 99 % significance level. Since 
laboratory 1 on both occasions has produced the lower strengths, it is probable, though by no means certain 
on the basis of only two sets of results, that there is a systematic difference between the laboratories. This 
may be as a result of a different depth of the nick or errors in the force transducer. In such a case, an effort 
should be made to trace and rectify any deficiency. 
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Table 18 — Tear tests 
Tear measurements in N/mm 

Mean Standard 
deviation 

Difference 
between means
(absolute value)

Standard 
error 

t0,95 t0,95SCompound Test 
piece 

Tear 
measurement 

x  s 1 2x x−  S 

Degrees 
of 

freedom

  

  Lab.1 Lab.2 Lab.1 Lab.2 Lab.1 Lab.2      

1 1 19,0 21,0          

 2 20,6 19,9          

 3 20,2 21,4 19,8 20,9 0,63 0,64 1,1 0,40 8 2,31 0,92

 4 19,4 21,5          

 5 19,9 20,8          

2 1 22,1 25,3          

 2 18,4 23,3          

 3 22,3 24,0 21,4 24,7 1,69 1,64 3,3 1,05 8 2,31 2,43

 4 22,1 27,3          

 5 22,2 23,6          

8 Ranking methods 

8.1 Principles 

Sometimes, observations cannot be quantified precisely and subjective judgements of merit have to be made. 
In these cases, the usual quantitative techniques cannot be applied and it is necessary to resort to ranking 
methods. 

8.2 Methodology 

8.2.1 Friedman’s test 

8.2.1.1 The following steps should be taken in this test: 

The members of a group of observers independently rank the same samples into order of increasing merit 
according to previously defined criteria. 

The sum of the squares of the differences between each rank sum and the mean rank sum is determined and 
compared with the critical value corresponding to a given level of significance. 

If the observed factor is greater than the critical factor, then there is a significant difference (at the given 
confidence level). 

8.2.1.2 Thus, if there are m observers and n samples, each observer independently assigns the number 1 
to the best sample, 2 to the next best and so on down to n to the poorest. If two or more samples are judged 
to be equally good, then they are assigned the same rank number, this being simply the average rank of the 
group. For each sample, the rank sum SR is determined from the individual rank values R by the equation: 

m

i ij
j i

S R
=

= ∑  (23) 
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The mean rank sum, RS , is the average of the n rank sums as given by the equation: 

1

n

i
i

S

S
n

==
∑

 (24) 

Friedman’s statistic, K, is then given by the equation: 

2

1
( )

n

i
i

K S S
−

= −∑  (25) 

If K > Kcr, the samples are significantly different. Values of Kcr for the 95 % confidence level are tabulated in 
Table 19. 

Table 19 — Friedman’s test: critical values K for a level of significance of 0,05 

Number of observations in the sample 

N 

ma 

3 4 5 6 7 8 9 10 11 12 13 14 15 

2 — 20 38 64 96 138 192 258 336 429 538 664 808 

3 18 37 64 104 158 225 311 416 542 691 865 1 063 1 292 

4 26 52 89 144 217 311 429 574 747 950 1 189 1 460 1 770 

5 32 65 113 183 277 396 547 731 950 1 210 1 512 1 859 2 254 

6 42 76 137 222 336 482 664 887 1 155 1 469 1 831 2 253 2 738 

7 50 92 167 272 412 591 815 1 086 1 410 1 791 2 233 2 740 3 316 

8 50 105 190 310 471 676 931 1 241 1 612 2 047 2 552 3 131 3 790 

9 56 118 214 349 529 760 1 047 1 396 1 813 2 302 2 871 3 523 4 264 

10 62 131 238 388 588 845 1 164 1 551 2 014 2 558 3 189 3 914 4 737 

11 66 144 261 427 647 929 1 280 1 706 2 216 2 814 3 508 4 305 5 211 

12 72 157 285 465 706 1 013 1 396 1 862 2 417 3 070 3 827 4 697 5 685 

13 78 170 309 504 764 1 098 1 512 2 017 2 618 3 326 4 146 5 088 6 159 

14 84 183 333 543 823 1 182 1 629 2 172 2 820 3 581 4 465 5 479 6 632 

15 90 196 356 582 882 1 267 1 745 2 327 3 021 3 837 4 784 5 871 7 106 

a m = number of observers ranking the observations in the sample. 

 

8.2.1.3 Where a significant difference is shown, the mean rank for each sample can be determined from 
the equation: 

/i iR S m=  (26) 

although it should not be assumed that there is necessarily a significant difference between any pair of mean 
rank values even though there is a significant difference taken across the n samples as a whole. 
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8.2.1.4 Whether or not significance is obtained depends on the differences between the samples as well 
as on the degree of agreement between the observers. The coefficient of concordance between the observers 
is given by the equation: 

2 2
12
( 1)

KC
nm n

=
−

 (27) 

8.2.1.5 This parameter may take any value between 0 (no agreement) and 1 (complete agreement). In 
order for high degrees of concordance to be achieved, the rankings should be based on a single criterion 
which has been clearly described. 

8.2.2 The outside count test 

8.2.2.1 This is a rough and ready method for the comparison of two specific samples out of a total of n. It 
can be particularly useful where one of the two samples is a reference material being used for comparison 
purposes. 

8.2.2.2 The procedure is as follows: 

a) in the sample containing the highest value, count the number of values which are higher than the highest 
value in the other sample; 

b) count the number of values in the other sample which are lower than the lowest value in the first sample. 

If the sum of these two counts is greater than six, it can be concluded that the two samples are different at the 
95 % confidence level. 

8.3 Applications to rubber testing 

Ten vulcanizates containing different antiozonants were simultaneously tested for ozone resistance in 
accordance with ISO 1431-1, after which five observers independently ranked the 10 compounds for degree 
of cracking using crack length as the criterion. Table 20 and Table 21, respectively, give the results and 
statistical calculations from this test. 

Table 20 — Ozone resistance test results 

Observer Vulcanizate 

A B C D E 

1 4 31/2 3 3 4 

2 1 2 2 3 2 

3 51/2 5 4 6 4 

4 51/2 6 6 5 6 

5 2 1 1 1 1 

6 3 31/2 5 3 4 

7 8 7 71/2 9 10 

8 10 9 9 8 8 

9 7 8 71/2 7 7 

10 9 10 10 10 9 
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Table 21 — Statistical calculations for ozone resistance tests 

Vulcanizate Sum Mean sum Difference Mean rank 

1 171/2 271/2 − 10 3,5 

2 10 271/2 − 171/2 2,0 

3 241/2 271/2 − 3 4,9 

4 281/2 271/2 + 1 5,7 

5 6 271/2 − 211/2 1,2 

6 181/2 271/2 − 9 3,7 

7 411/2 271/2 + 14 8,3 

8 44 271/2 + 161/2 8,8 

9 361/2 271/2 + 9 7,3 

10 48 271/2 + 201/2 9,6 

 

From these data 

K = (− 10)2 + (− 171/2)2 + (− 3)2 + ... + (201/2)2 = 1 929 

where K = Friedman’s K-value 

For n = 10 and m = 5, Kcr = 731, hence the different antiozonants are producing statistically significant 
differences in ozone resistance between the compounds. 

The coefficient of concordance C can be calculated as 

C = 12 × 192 9 / [52 × (103 − 10)] 

= 0,94 

This indicates that there is a high degree of agreement in the judgements of the five observers. 

9 Criteria for rejecting outliers 

9.1 Principles 

9.1.1 There are occasions when a single result in a test sequence can appear to be out of line with the rest 
of the data. The rejection of such a result as an outlier, which would otherwise distort what is considered to be 
the true data represented by the other results, is sometimes considered. This is a course of action which 
should be avoided. Rejection of results without good cause can lead to serious distortion of the true 
distribution and will lead particularly to a significant under-estimate of the standard deviation. 

9.1.2 A result should not be rejected unless one of the following cases applies: 

a) There is clear physical evidence that the result has been caused by some recognizable fault in the 
sample. 

b) An objective statistical test gives a strong indication that the result is unlikely to have arisen purely by 
chance. As with any statistical test, a given confidence level should be arbitrarily assigned as the criterion 
for rejection. 

9.1.3 A result that is shown to be unusual at between the 95 % to 99 % confidence level should be marked 
as a straggler (see the ISO 5725 series). 
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A result that exceeds the 99 % confidence level should be marked as an outlier and should then be eliminated 
from the analysis (some workers use four standard deviations as the level). 

In both cases, the test piece which gave rise to the suspect result should be examined for evidence of its 
abnormality. In the case of a straggler, lack of any such evidence should cause the data to be retained in the 
analysis but, if there is clear physical evidence of abnormality, then its result can be discarded. 

9.1.4 In addition to the testing of individual observations in a set, it is possibly appropriate, as for example in 
inter-laboratory trials, to test for outliers in terms of the means of the series of tests performed. However, prior 
to this a test for standard deviation should be made. If, for example, one laboratory’s standard deviation is 
significantly different to that which could be expected on the basis of the other laboratories’ standard 
deviations, this laboratory’s results cannot be taken as coming from the same population as the other 
laboratories and should, therefore, be discarded. As before, rejected or straggling data should be critically 
examined to try to ascertain the cause with the view to correcting any faults. 

9.1.5 Examination of the outlying data can show that a simple calculation error or similar quantifiable fault 
had occurred before the results were reported and that this can be corrected at source. The corrected data 
can then be entered in place of the originals and the statistical tests re-applied. 

9.2 Methodology 

9.2.1 General 

The assumption is made in the following tests that the data being examined are normally distributed (see 
6.2.5) or have been transformed into a form that is normally distributed (see 6.2.4). 

9.2.2 Dixon’s test 

9.2.2.1 Dixon’s test is applied to individual observations or to the means of sets of observations and it is 
assumed that both abnormally large or small observations are to be equally tested for rejection against 
Dixon’s criterion. 

9.2.2.2 The procedure is as follows: 

a) Arrange the n observations in ascending numerical order; i.e. x1 the smallest through to xn the largest. 

b) Derive Dixon’s quotient, Q, from step c), d) or e) as appropriate. 

c) If 3 u n u 7, then record the larger of 

2 1

1n

x x
x x

−
−

 and 1

1

n n

n

x x
x x

−−
−

 (28) 

d) If 8 u n u 12, then record the larger of 

2 1

1 1n

x x
x x−

−
−

 and 1

2

n n

n

x x
x x

−−
−

 (29) 

e) If n > 12, then record the larger of 

3 1
2 1n

x x
x x−

−
−

 and 2

3

n n

n

x x
x x

−−
−

 (30) 
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f) Compare Dixon’s quotient, Q, so derived, to the data given in Table 22. The following conclusions can be 
made: 

1) if Q exceeds the 5 % value but is less than the 1 % value, the first or last (according to which of the 
two ratio calculations gave the higher Q) is marked as a straggler; 

2) if Q exceeds the 1 % value, the result is marked as an outlier and rejected. In this case, the test can 
be repeated with the (n − 1) remaining results. 

NOTE In Table 22, n equals the number of observations. This version of Dixon’s test is as published in Statistical 
Manual, Edited by E.L. Crow, F.A. Davis and M.W. Maxfield, Dover Publications, 1960. 

Table 22 — Critical values for Dixon’s test 

Criterion n Critical values 
  5 % 1 % 

Q10 3 0,970 0,994 
 4 0,829 0,926 
 5 0,710 0,821 
 6 0,628 0,740 
 7 0,569 0,680 

Q11 8 0,608 0,717 
 9 0,564 0,672 
 10 0,530 0,635 
 11 0,502 0,605 
 12 0,479 0,579 

Q22 13 0,611 0,697 
 14 0,586 0,670 
 15 0,565 0,647 
 16 0,546 0,627 
 17 0,529 0,610 
 18 0,514 0,594 
 19 0,501 0,580 
 20 0,489 0,567 
 21 0,478 0,555 
 22 0,468 0,544 
 23 0,459 0,535 
 24 0,451 0,526 
 25 0,443 0,517 
 26 0,436 0,510 
 27 0,429 0,502 
 28 0,423 0,495 
 29 0,417 0,489 
 30 0,412 0,483 
 31 0,407 0,477 
 32 0,402 0,472 
 33 0,397 0,467 
 34 0,393 0,462 
 35 0,388 0,458 
 36 0,384 0,454 
 37 0,381 0,450 
 38 0,377 0,446 
 39 0,374 0,442 
 40 0,371 0,438 
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9.2.3 Cochran’s test for variance 

9.2.3.1 Cochran’s test is applied to the variances of sets of observations and should be applied before 
Dixon’s test for means. The following assumptions are made: 

a) It is assumed that there are the same number of observations (replicates) in each set. Some relaxation of 
this condition is possible without seriously compromising the test, but every effort should be made to 
satisfy it and the number of exceptions should be kept small. 

b) It is assumed that only abnormally large variances are to be examined for rejection (i.e. it is a one-sided 
test, unlike Dixon’s test). 

9.2.3.2 The procedure is as follows. 

a) Given a set of n standard deviations, si, calculate Cochran’s quotient, C, as follows: 

2 2
max

1
/

n

i
i

C s s
=

= ∑  (31) 

where smax is the largest standard deviation in the group of n. 

NOTE An exception is in the case where the number of replicates is 2 when the range, w, is substituted for the 
standard deviation, s. 

b) Compare C with the critical values given in Table 23, which can be used for replicates between 2 and 6 
inclusive and for up to 40 sets of results. The following deductions can be made: 

1) if the observed C-value is greater than the 5 % critical value and less than the 1 % critical value, the 
standard deviation is marked as a straggler; 

2) if the observed C-value exceeds the 1 % value the set of data producing that standard deviation is 
rejected as an outlier. 

NOTE For results outside the scope of Table 23, reference should be made to more extensive statistical tables. 
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Table 23 — Critical values for Cochran’s test 

p n = 2 n = 3 n = 4 n = 5 n = 6 

 1 % 5 % 1 % 5 % 1 % 5 % 1 % 5 % 1 % 5 % 

2 — — 0,995 0,975 0,797 0,939 0,959 0,906 0,937 0,877 
3 0,993 0,967 0,942 0,871 0,883 0,798 0,834 0,746 0,793 0,707 
4 0,968 0,906 0,864 0,768 0,781 0,684 0,721 0,629 0,676 0,590 
5 0,928 0,841 0,788 0,684 0,696 0,598 0,633 0,544 0,588 0,506 
6 0,883 0,781 0,722 0,616 0,626 0,532 0,564 0,480 0,520 0,445 
7 0,838 0,727 0,664 0,561 0,568 0,480 0,508 0,431 0,466 0,397 
8 0,794 0,680 0,615 0,516 0,521 0,438 0,463 0,391 0,423 0,360 
9 0,754 0,638 0,573 0,478 0,481 0,403 0,425 0,358 0,387 0,329 

10 0,718 0,602 0,536 0,445 0,447 0,373 0,393 0,331 0,357 0,303 
11 0,684 0,570 0,504 0,417 0,418 0,348 0,366 0,308 0,332 0,281 
12 0,653 0,541 0,475 0,392 0,392 0,326 0,343 0,288 0,310 0,262 
13 0,624 0,515 0,450 0,371 0,369 0,307 0,322 0,271 0,291 0,246 
14 0,599 0,492 0,427 0,352 0,349 0,291 0,304 0,255 0,274 0,232 
15 0,574 0,471 0,407 0,335 0,332 0,276 0,288 0,242 0,259 0,220 
16 0,553 0,452 0,388 0,319 0,316 0,262 0,274 0,230 0,246 0,208 
17 0,532 0,434 0,372 0,305 0,301 0,250 0,261 0,219 0,234 0,198 
18 0,514 0,418 0,356 0,293 0,288 0,240 0,249 0,209 0,223 0,189 
19 0,496 0,403 0,343 0,281 0,276 0,230 0,238 0,200 0,214 0,181 
20 0,480 0,389 0,330 0,270 0,265 0,220 0,229 0,192 0,205 0,174 
21 0,465 0,377 0,318 0,261 0,255 0,212 0,220 0,185 0,197 0,167 
22 0,450 0,365 0,307 0,252 0,246 0,204 0,212 0,178 0,189 0,160 
23 0,437 0,354 0,297 0,243 0,238 0,197 0,204 0,172 0,182 0,155 
24 0,425 0,343 0,287 0,235 0,230 0,191 0,197 0,166 0,176 0,149 
25 0,413 0,334 0,278 0,228 0,222 0,185 0,190 0,160 0,170 0,144 
26 0,402 0,325 0,270 0,221 0,215 0,179 0,184 0,155 0,164 0,140 
27 0,391 0,316 0,262 0,215 0,209 0,173 0,179 0,150 0,159 0,135 
28 0,382 0,308 0,255 0,209 0,202 0,168 0,173 0,146 0,154 0,131 
29 0,372 0,300 0,248 0,203 0,196 0,164 0,168 0,142 0,150 0,127 
30 0,363 0,293 0,241 0,198 0,191 0,159 0,164 0,138 0,145 0,124 
31 0,355 0,286 0,235 0,193 0,186 0,155 0,159 0,134 0,141 0,120 
32 0,347 0,280 0,229 0,188 0,181 0,151 0,155 0,131 0,138 0,117 
33 0,339 0,273 0,224 0,184 0,177 0,147 0,151 0,127 0,134 0,114 
34 0,332 0,267 0,218 0,179 0,172 0,144 0,147 0,124 0,131 0,111 
35 0,325 0,262 0,213 0,175 0,168 0,140 0,144 0,121 0,127 0,108 
36 0,318 0,256 0,208 0,172 0,165 0,137 0,140 0,119 0,124 0,106 
37 0,312 0,251 0,204 0,168 0,161 0,134 0,137 0,116 0,121 0,103 
38 0,306 0,246 0,200 0,164 0,157 0,131 0,134 0,113 0,119 0,101 
39 0,300 0,242 0,196 0,161 0,154 0,129 0,131 0,111 0,116 0,099 
40 0,294 0,237 0,192 0,158 0,151 0,126 0,128 0,108 0,114 0,097 

NOTE n is the number of results per cell; 

 p is the number of laboratories at the given level. 
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9.3 Applications to rubber testing 

9.3.1 General 

The application of tests for outliers can, in principle, be applied to any set of data, but it is most often applied 
in the case of inter-laboratory testing trials. 

9.3.2 Dixon’s test applied to individual results 

A series of eight replicate compression set results were obtained on type 1 test pieces in accordance with 
ISO 815 as shown in Table 24. 

Table 24 — Compression set results 

Result number Result 

 % 

1 24,1 

2 25,9 

3 24,2 

4 25,1 

5 10,1 

6 28,1 

7 18,3 

8 26,9 

 

An initial brief examination of these data suggests that the 10,1 result is so far out of line that it ought to be 
ignored in calculating the mean and standard deviation. However, results such as these should be checked 
against Dixon’s criterion. In this case, the following conclusion is reached. 

Table 25 shows the results sorted into ascending order. 

Table 25 — Sorted compression set results 

Ascending order Result 

 % 

1 10,1 

2 18,3 

3 24,1 

4 24,2 

5 25,1 

6 25,9 

7 26,9 

8 28,1 
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From Table 25 it is seen that: 

x1 = 10,1; 

x2 = 18,3; 

x7 = 26,9; 

x8 = 28,1. 

Dixon’s quotients for eight replicates are 

18,3 10,1
26,9 10,1

−
−

 and 28,1 26,9
28,1 18,3

−
−

     (= 0,488 and 0,122) 

The larger of these is taken and compared to the critical value for the 95 % confidence level, which is 0,608 
according to Table 22. Since the calculated statistic is less than the critical value, there is no justification for 
rejecting the low result. 

9.3.3 Cochran’s variance test 

An inter-laboratory trial involving seven laboratories produced the results shown in Table 26 for a volume swell 
test carried out in accordance with ISO 1817. 

Table 26 — Volume swell test 1 

Result 

1 2 3 

Laboratory 

% % % 

Mean Standard 
deviation 

1 17,8 18,1 18,1 18,0 0,173 

2 19,6 19,5 19,6 19,6 0,058 

3 22,9 22,9 22,4 22,7 0,289 

4 19,9 19,7 19,7 19,8 0,115 

5 13,4 14,2 15,1 14,2 0,850 

6 22,5 22,1 22,0 22,2 0,265 

7 20,8 20,5 20,7 20,7 0,153 

 

The result for laboratory 5 appears to have a suspiciously low mean and a high standard deviation. Therefore 
when Cochran’s test is applied first of all to the standard deviations the following results are obtained: 

smax
2 = 0,8522 

 = 0,722 5 

Σs2 = 0,1732 + 0,0582 + ... + 0,1532 

 = 0,946 2 

Cochran’s ratio = 0,722 5/0,946 2 

 = 0,764 
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For three replicates and seven laboratories, Cochran’s critical value for the 99 % confidence level is 0,664 and 
so, as the test statistic is greater than this, the rejection of the data from laboratory 5 on statistical grounds is 
justified and it is not necessary to test the low mean value. The results should then be checked back to their 
source to see if an explanation can be found and possible corrective action taken. 

9.3.4 Dixon’s test applied to a group of mean values 

In an inter-laboratory trial involving six laboratories, the results for a volume swell test were as shown in 
Table 27. 

Table 27 — Volume swell test 2 

Result 

1 2 3 

Laboratory 

% % % 

Mean Standard  
deviation 

1 13,5 13,8 13,8 13,7 0,173 

2 10,8 13,0 12,6 12,1 1,173 

3 12,9 13,0 12,7 12,9 0,153 

4 10,9 11,2 14,2 12,1 1,825 

5 14,2 14,2 14,4 14,3 0,115 

6 19,7 20,8 18,9 19,8 0,954 

 

The result for laboratory 6 appears to have a high mean value and the standard deviations appear to be quite 
variable, but no one result stands out as being abnormally large. 

Testing by Cochran’s test, first of all, confirms that no standard deviation is so large as to justify rejection of 
the data. Therefore Dixon’s test is applied and the following is calculated: 

2 1

6 1
0

x x
x x

−
=

−
  and  6 5

6 1
0,714

x x
x x =
−
−

 (32) 

The critical value for 

⎯ the 95 % confidence level is 0,628; 

⎯ the 99 % confidence level is 0,740. 

Hence laboratory 6 is seen to be a straggler, but its data should not be rejected unless an investigation shows 
some fault in the procedure or equipment used. 

10 Analysis of variance (ANOVA) 

10.1 Principles 

The variability in the results observed from a test arises from a number of sources (in practice, a very large 
number of sources), ranging from variations in the quality of the raw materials from which the sample was 
made, through the compounding and moulding processes, into the sampling and testing procedure itself. 
Analysis of variance is a technique which can be used to isolate and estimate the effect of those sources of 
variation which are having a significant effect on the measurements. 

In practice, it is neither possible, nor necessary, to quantify the effect of every conceivable source of variation. 
Instead, it is sufficient, for any particular case, to examine the effect of the variables that are regarded as 
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being the most likely to have an influence or which it is desired to test for their influence (for example, the 
effect of different sources of carbon black, mixing time and moulding temperature on the abrasion resistance 
of the compound). All other factors are kept as constant as possible and the factors of interest are varied in 
some known way. Replicate tests carried out at each level of each factor then determine the within-sample 
variation, often referred to as the experimental error, against which the effects due to the factors of interest 
taken individually and in combination can be assessed. 

10.2 Methodology 

10.2.1 General 

A full development of the methodology is outside the scope of this International Standard, and reference 
should be made to any of the excellent texts on the subject for details. The Bibliography at the end of this 
International Standard lists a selection of useful reference works. Many statistical software packages exist, 
and many spreadsheet packages have built-in statistical functions which enable the mathematics to be 
evaluated quickly without the need for detailed understanding of the underlying equations. It is recommended 
that appropriate computer programmes be used wherever possible. However, some specific examples are 
enumerated for the benefit of users without access to such software. 

10.2.2 One factor with an equal number of replicates 

10.2.2.1 The simplest case to consider is that of one factor (e.g. carbon black) at n levels (parts per 
hundred of rubber) each replicated r times, giving a total number of observations N. The total number of 
observations is calculated from the equation: 

N = r × n (33) 

The following sequence of calculations should be followed. 

NOTE See the comments in Annex D on truncation errors. 

a) Calculate the total sums of squares, St, given by the equation: 

2
t ( )ijS x xΣ= −  (34) 

where xij is the value of the jth replicate (1 u j u r) of the ith factor (1 u i u n). 

b) Calculate the total degrees of freedom, vt, given by the equation: 

vt = N − 1 (35) 

c) Calculate the total mean square, Mt, from a) and b) using the equation: 

Mt = St/vt (36) 

d) Calculate the between-factor sums of squares, Sb, given by the equation: 

2 2
b

1 1 ( )i ijS t x
r N

= Σ − Σ  (37) 

where ti is the sum of the r replicates of the ith level of the factor calculated from the equation: 

1

r

i ij
j

t x
=

= ∑  (38) 
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e) Calculate the degrees of freedom, vb, associated with the between-factor sums of squares given by the 
equation: 

vb = n − 1 (39) 

f) Calculate the between-factor mean square, Mb, from d) and e) using the equation: 

Mb = Sb/vb (40) 

g) Calculate the within-factor sums of squares, Sw, given by the equation: 

Sw = St − Sb (41) 

h) Calculate the within-factor degrees of freedom, vw, given by the equation: 

vw = vt − vb (42) 

i) Calculate the within-factor mean square, Mw, given by the equation: 

Mw = Sw/vw (43) 

10.2.2.2 These statistics can be usefully summarized in Table 28. 

Table 28 — One-factor statistics summary 

Source of variation Between-factor Within-factor Total 

Sum of squares Sb Sw St 

Degrees of freedom vb vw vt 

Mean square Mb Mw Mt 

 

10.2.2.3 Snedecor’s F-test is then applied to the ratio of Mb to Mw, with vb as the degrees of freedom for 
the greater mean square and vw as the degrees of freedom for the lesser mean square. (Clearly, if Mb < Mw, 
the between-factor variation is insignificant compared to the experimental error and the effect of the factor is to 
have no measurable influence on the property being determined.) 

If Mb/Mw > F(5, vb, vw), then there is a greater than 95 % probability that the different levels of the factor are 
having a significant effect on the property. 

10.2.3 One factor with a variable number of replicates 

Where the number of replicates, r, is not a constant for each level of the factor, as it is in 10.2.2, the analysis 
proceeds as in 10.2.2, but with the following modifications. 

The total number of observations, N, is given by the equation: 

1

n

i
i

N r
=

= ∑  (44) 

The between-factor sum of squares, Sb, is given by the equation: 

2
2

b
1i

ij
i

t
S x

r N
−∑ ∑  (45) 

All the other factors and the F-test are as before. 
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10.2.4 Two (and over) factor analysis of variance 

With the addition of extra factors in the analysis, not only is there the potential for each factor to influence the 
measured property, but also the factors can be influenced by each other, giving an interaction (synergistic) 
effect. 

An everyday example which illustrates this is the sweetness of a cup of tea. This depends on 

a) how much sugar is added to the tea; and 

b) how much the tea is stirred. 

Although the analysis proceeds in a similar way to that described in 10.2.2 or 10.2.3, the detailed process is 
more complex and the method for two factors is given in Annex G. The same process can be extended to 
three and more factors, and Annex G also illustrates how the sums of squares for a three-factor analysis can 
be processed for possible interaction effects. 

10.3 Applications to rubber testing 

10.3.1 Analysis of variance is a powerful tool in assessing the separate importance particular components of 
a rubber compound, its processing, etc., have on the resulting properties. 

10.3.2 A series of compounds having differing levels of carbon black and processing oil were tested for 
abrasion resistance in accordance with ISO 4649. It was expected that increasing the black level would 
improve the abrasion resistance but increasing the oil level would make for better processing. The results 
obtained are shown in Table 29. It was necessary to determine how significant the two factors were from 
these results. 
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Table 29 — Abrasion volume loss results 
All results in mm3 

a) Original results 

Result Oil level Black level 

  60 80 100 120 

1 0 273 256 202 188 

2  233 262 215 195 

3  273 242 261 177 

1 5 288 257 244 242 

2  260 271 229 203 

3  313 311 245 201 

1 10 269 247 249 217 

2  317 253 220 215 

3  245 262 232 203 

1 20 231 270 222 230 

2  298 307 227 214 

3  287 278 203 242 

b) Modified results 

Result Oil level Black level 

  60 80 100 120 

1 0 2,73 2,56 2,02 1,88 

2  2,33 2,62 2,15 1,95 

3  2,73 2,42 2,61 1,77 

1 5 2,88 2,57 2,44 2,42 

2  2,60 2,71 2,29 2,03 

3  3,13 3,11 2,45 2,01 

1 10 2,69 2,47 2,49 2,17 

2  3,17 2,53 2,20 2,15 

3  2,45 2,62 2,32 2,03 

1 20 2,31 2,70 2,22 2,30 

2  2,98 3,07 2,27 2,14 

3  2,87 2,78 2,03 2,42 

NOTE The modified results in b) are the original results divided by 100. This is for the 
convenience of tabulating small numbers. 
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10.3.3 The calculation procedure described in G.1 was applied to the modified results and Table 30 
constructed. 

Table 30 — Table of sums 

Oil level Black level (factor A) Sums of A 

(factor B) 60 80 100 120 (BXj) 

0 7,79 7,60 6,78 5,60 27,77 

5 8,61 8,39 7,18 6,46 30,64 

10 8,31 7,62 7,01 6,35 29,29 

20 8,16 8,55 6,52 6,86 30,09 

Sums of B (AXi) 32,87 32,16 27,49 25,27  

 

The following factors are derived from Table 29 and Table 30: 

⎯ factor T = 17,79; 

⎯ number of values of A = 4; 

⎯ number of values of B = 4; 

⎯ number of replicates = 3; 

⎯ correction factor CF = 289,07; 

⎯ ABX2 = 879,43. 

Therefore the following values are calculated: 

⎯ Sa = 3,352; 

⎯ Sb = 0,388; 

⎯ Sab = 0,337; 

⎯ Sr = 1,483; 

⎯ St = 5,559; 

⎯ DFa = 3; 

⎯ DFb = 3; 

⎯ DFab = 9; 

⎯ DFr = 33; 

⎯ DFt = 48; 

⎯ Ma = 1,117; 

⎯ Mb = 0,129; 

⎯ Mab = 0,037; 

⎯ Mr = 0,045; 

⎯ Mt = 0,116. 
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10.3.4 It is conventional to summarize the data in the form of an analysis of variance table, as shown in 
Table 31. 

Table 31 — Analysis of variance 

Source Sums of squares Degrees of freedom Variance estimate 

Factor A 3,352 3 1,117 

Factor B 0,388 3 0,129 

Interaction 0,337 9 0,037 

Residual 1,483 32 0,045 

Total 5,560 47 0,116 

 

10.3.5 When the interaction term is considered first and the ratio of Mab to Mr taken: 

Mab/Mr = 0,83 

As this is less than 1, it is not significant and Sab can be pooled with Sr to give: 

rS ′  = 1,820; 

r′DF  = 42; 

rM ′  = 0,043. 

where 

rS ′  is the new value of Sr; 

r′DF  is the new value of DFr; 

rM ′  is the new value of Mr. 

10.3.6 When the two main factors, A and B, are considered: 

Ma/ rM ′  = 25,98; 

Mb/ rM ′  = 3,00. 

The critical F-values for 3 by 41 degrees of freedom are: 

Fcr = 2,84 for a 95 % confidence level; 

Fcr = 4,31 for a 99 % confidence level. 

10.3.7 The conclusion is that both factors are significant, although the oil factor is only just significant at the 
95 % level while the carbon black factor is significant at well over the 99 % level. There is no significant 
interaction between the factors. Thus, the oil level may be increased in order to improve the processability of 
the compound without having too damaging an effect on the abrasion resistance of that compound. 

NOTE The above example could also be analysed using the least-squares regression method which would enable a 
quantitative estimate of the relationship between the variables and their interaction to be determined. 
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11 Regression analysis 

11.1 Principles 

11.1.1 When a series of tests is undertaken in which a test parameter, for example compression set, is 
measured at different values of an independent variable such as time or temperature, it is to be expected that 
some form of functional relationship will exist between them. However, as shown in Clause 10, there are many 
sources of variation in the process, with the net result that the observed data do not fit perfectly to a single 
curvilinear function but are scattered more or less around the function of choice. The functional relationship 
between the dependent (measured) and the independent (controlled) variables is known as the regression 
line. 

11.1.2 The model equation to be chosen can be deduced from scientific laws, but generally this is not the 
case and an empirical relationship should be resorted to. Under these circumstances, the simplest functional 
relationship which adequately describes the observations should be used. Thus, for compression set as a 
function of compression time (temperature being kept constant) a linear relationship between set and the 
logarithm of time can be expected to give an excellent representation of the data within the experimental error 
observed. Clearly, however, the true functional relationship cannot be linear as compression sets below 0 % 
or above 100 % are not possible. Thus, a transition function would be better able to describe the relationship 
over a wider time span than has been encountered in the experiments. A simple alternative is to replace the 
compression set (cs) value as the ordinate by the function: 

log[cs/(100 − cs)] 

11.1.3 In considering the form of function to use, account should be taken of three points: 

a) The coefficients of the function can possibly be derived analytically (e.g. by the method of least squares) 
or, if not, an iterative method used as an alternative. 

b) The benefit to be gained from the more complicated function should be sufficient to justify the extra effort 
in deriving its coefficients. 

c) An assessment should be made as to whether or not the observed data will have to be extrapolated to 
reach the conditions of particular interest. 

Examples of tests where this applies are: 

1) ageing for short periods at high temperature to predict behaviour over long periods at lower 
temperatures; 

2) estimating the stress relaxation at long times from short time tests. 

If interpolation or very short extrapolations are required, as for example in the estimation of the temperature at 
which 70 % retraction occurs in a temperature of retraction test, then the smallest-order polynomial that gives 
the correct trends in the data should be chosen. 

For extrapolation, however, polynomials are notoriously dangerous and the higher the order of the polynomial, 
the worse this tendency becomes. In these circumstances, it may be necessary to resort to the use of more 
complex functions in order to avoid predictions which would be wildly inaccurate. Another reason for not using 
a more complex function, however, apart from the difficulty of deriving its coefficients, is that it does not 
necessarily represent the observed data quite as well as the simpler function does, even though it is safer to 
use it for extrapolation. 

11.1.4 There are now available several powerful computer programmes for personal computers which can 
make curve fitting little more cumbersome than entering the data and selecting a function or functions from the 
library of built-in functions. It is recommended that such programmes be used wherever possible to reduce the 
time and effort required in performing the analysis. 
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It is also worth noting that many relationships can be reduced to linear form, which is especially easy to solve, 
by means of transformations such as logarithm, reciprocal or roots. 

11.2 Methodology 

11.2.1 General 

The method of least squares is presented here for polynomials (or any functions that can be reduced to 
polynomials) up to the third order as an illustration of the technique. These will cover most applications in the 
rubber industry. For the derivation of the equations and also for the development of higher-order polynomials, 
reference should be made to standard mathematical textbooks. (See the Bibliography at the end of this 
International Standard which lists a selection of useful reference works.) 

There are many iterative techniques available for fitting curves to functions that cannot be processed by the 
least-squares method, but again these are outside the scope of this International Standard and reference 
should be made to mathematical textbooks. 

11.2.2 Linear least squares 

11.2.2.1 Consider a set of results, y, obtained at a set of conditions, x, there being a total of n data pairs. 
The summation of terms is carried out over all n data pairs. 

The simplest, linear, form of regression line can be written as: 

y = a + bx (46) 

where 

a is the intercept on the y-axis when x = 0; 

b is the slope of the regression. 

11.2.2.2 To calculate the best estimates for a and b, first calculate the following factors: 

C11 as given by the equation: 

2
2

11
( )( ) xC x

n
Σ

= Σ −  (47) 

Cyy as given by the equation: 

2
2 ( )( )yy

yC y
n

Σ
= Σ −  (48) 

Cy1 as given by the equation: 

1
( )( )y

x yC xy
n

Σ Σ
= Σ −  (49) 

11.2.2.3 The coefficients are then calculated using the equations: 

( )y b xa
n

Σ − Σ
=  (50) 

1

11

yC
b

C
=  (51) 
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Whether this regression is statistically significant can be tested by calculating a further factor, D, which is 
given by the equation: 

D = bΣx (52) 

The variance ratio for the regression is then given by the equation: 

r
2

yy

nF D
C D

−
=

−
 (53) 

This Fr value should then be compared with tables of Snedecor’s F-values with 1 degree of freedom for the 
greater mean square and (n − 2) degrees of freedom for the lesser mean square. The regression is significant 
at the given confidence level if Fr is greater than the tabulated value of F. 

11.2.3 Quadratic least squares 

The regression line is here assumed to be of the form: 

y = a + bx + cx2 (54) 

Calculation of the factors required for this analysis are given in Annex H. The value of Fr in this case is 
compared to the tabulated F-values for 2 degrees of freedom for the greater mean square and (n − 3) degrees 
of freedom for the lesser mean square. 

11.2.4 Cubic least squares 

The regression line is here assumed to be of the form: 

y = a + bx + cx2 + dx3 (55) 

Calculation of the factors required for this analysis are given in Annex H and the value of Fr is compared with 
the tabulated F-values for 3 degrees of freedom for the greater mean square and (n − 4) degrees of freedom 
for the lesser mean square. 

11.3 Applications to rubber testing 

11.3.1 General 

Regression analysis allows the quantitative relationships derived between compounding or experimental 
features and the physical properties to be derived. 

11.3.2 The effect of temperature on compression set 

11.3.2.1 In a series of tests in accordance with ISO 815 examining the value of compression set after 
7 days ageing at various temperatures, the data given in Table 32 were recorded. 

Table 32 — Compression set measurements after 7 days' ageing 

Temperature Result Mean 
 1 2 3  

°C % % %  

70 21,3 27,4 25,5 24,7 
85 29,6 29,2 33,3 30,7 

100 36,8 34,7 38,5 36,7 
125 47,2 44,8 48,0 46,6 
150 57,7 58,5 56,7 57,6 
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11.3.2.2 From the laws of chemical kinetics, it is reasonable to postulate that a functional relationship of 
the Arrhenius kind can be applicable to the data. Thus the compression set, cs, can take the form shown in 
the equation: 

cs = αexp(β/T) (56) 

where 

α and β are constants; 

T is the temperature, in degrees Kelvin (absolute temperature). 

This function is not directly accessible to a least-squares method of determining α and β, but it is readily 
transformed into one by taking natural logarithms as shown in the equation: 

ln(cs) = ln(α) + 
273
β

θ +
 (57) 

where θ is the temperature, in degrees Celsius. 

This function has the same form as the equation: 

y = a + bx (58) 

where 

y = ln(cs); 

x = 1/(θ + 273). 

Thus, using the mean values for compression set as the source of the dependent variable, y, the transformed 
table is as shown in Table 33. 

Table 33 — Transformed compression set variables 

x y 

10–3  

2,92 3,21 

2,79 3,42 

2,68 3,60 

2,51 3,84 

2,36 4,05 

 

11.3.2.3 From the various summation terms given in 11.2.2, the following factors are derived: 

C11 = 1,93 × 10–7; 

Cyy = 0,446; 

Cy1 = − 2,93 × 10–4; 

D = 0,445; 

Fr = 1 265. 
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The regression coefficients are: 

a = 7,66; 

b = −1 520. 

11.3.2.4 From the transformation applied to linearize the function as shown in 11.3.2.2: 

a = ln(α); 

b = β. 

Hence 

α = 2 120; 

β = −1 520. 

The regression equation is: 

cs = 2 120 exp 1 520
273θ

−⎛ ⎞
⎜ ⎟+⎝ ⎠

 (59) 

11.3.2.5 The variance ratio is significant at well over the 95 % confidence level and, to illustrate the 
goodness of fit, the regression value of the compression set can be calculated and compared to the 
experimental value as shown in Table 34. 

Table 34 — Comparison of compression set values 

Temperature Observed set Calculated set 

°C % % 

70 24,7 25,2 

85 30,7 30,4 

100 36,7 36,0 

125 46,6 46,5 

150 57,6 58,3 

 
11.3.3 Effect of ageing on tensile strength 

11.3.3.1 A rubber compound was heat-aged at 70 °C for a period of 1 month. At weekly intervals, a 
sample of five dumb-bells was removed from the oven, cooled overnight and tested at 23 °C with the results 
shown in Table 35. 

Table 35 — Tensile strengths after ageing 
Tensile strengths in MPa 

Ageing time Tensile strength for test piece No. 

days 1 2 3 4 5 Median 

0 13,0 11,1 11,0 11,6 13,4 11,6 
7 18,1 17,3 16,6 16,8 18,7 17,3 

14 17,3 17,6 17,5 18,9 16,7 17,5 
21 13,3 13,7 12,3 14,3 13,7 13,7 
28 4,24 4,09 3,83 3,87 3,86 3,87 
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11.3.3.2 There is clearly an initial increase in strength, probably as a result of increasing cross-link density. 
This is followed by a rapid decrease in strength as degradation takes hold. 

The simplest function to fit such data is the quadratic. Proceeding to calculate the various factors given in 
Annex H results in a regression line of the form defined by the equation: 

TS = 11,6 + 1,16t − 0,0511t2 (60) 

where 

TS is the tensile strength, in megapascals; 

t is the time, in days. 

11.3.3.3 The variance ratio is found to be 602 which is above the 95 % confidence level for 2 by 2 degrees 
of freedom. Note that this regression should not be used to extrapolate to longer ageing times. For instance, in 
this case the regression predicts a tensile strength of − 10 MPa at the next weekly interval of 35 days. 

It can, however, be used to estimate the time it takes for the tensile strength to fall to 50 % of its original value. 
Thus, for a tensile strength of 5,8 MPa, the quadratic equation can be solved to give a value of t of 

21,16 1,16 4 0,051 1 (11,6 5,8)

2 0,051 1
t

− − − − × −⎡ ⎤⎣ ⎦=
× −

 

The impossibility of negative time makes the other root inadmissible, which gives 

t = 26,9 days 

11.3.4 Temperature of retraction test 

11.3.4.1 In a temperature of retraction test carried out in accordance with ISO 2921, the percentage 
retraction of three test pieces was measured every 2 min as the temperature in the heat exchange bath rose 
from −70 °C to ambient. An aim of the test was to estimate the temperature at which 10 % (TR10), 50 % 
(TR50) and 70 % (TR70) recovery had occurred. A total of 44 data pairs for each of the three test pieces was 
produced and an abbreviated table for the mean value only is given in Table 36. 

Table 36 — Measurements of temperature of retraction 

Temperature Retraction  Temperature Retraction  Temperature Retraction 

°C %  °C %  °C % 

− 68,3 0,0  − 32,9 17,0  3,8 66,0 

− 62,2 0,0  − 26,7 23,3  9,2 75,7 

− 56,6 0,7  − 20,6 29,0  15,3 85,3 

− 50,6 2,7  − 14,9 36,0  22,2 90,7 

− 44,8 7,0  − 8,4 41,3    

− 38,7 11,0  − 0,8 55,7    

 

11.3.4.2 Consideration of the mathematics of this test show that the retraction should be contained within 
the boundaries of 0 % and 100 % as the temperature varies from low to high values and hence a sigmoidal-
shaped function would be expected to produce an accurate regression line. However, as only interpolation of 
the data needs to be made, it is safe to use the much simpler cubic regression given in 11.2.4. 
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Determination of the factors given in Annex H therefore produces a regression of 

R = 57,8 + 1,57θ + 0,007 177θ2 − 0,000 051 3θ3 (61) 

where 

the retraction value, R, is expressed as a percentage; 

the temperature, θ, is in degrees Celsius. 

11.3.4.3 The value Fr was found to be 16,24 which is well in excess of the 95 % confidence level for 3 by 
43 degrees of freedom. 

11.3.4.4 For the given values of the retraction value (10 %, 50 % and 70 %), it is a relatively easy trial and 
error calculation to find the corresponding temperature since this is not required to be known to a high 
precision (the nearest degree being quite adequate). The outcome of the test, along with the TR-values 
estimated using a sigmoidal function (cumulative normal distribution function), is as given in Table 37. 

Table 37 — Retraction value results 

Retraction value Temperature 
 °C 
 Cubic Sigmoidal 

10 − 39 − 37 

50 − 5 − 6 

70 + 8 + 7 

 

Thus the very much simpler cubic regression gives results for the test which, when compared with those 
obtained using the more complex sigmoidal function, are within the accuracy that can be expected from this 
particular test. 

12 Uncertainty of measurement 

12.1 Principles 

12.1.1 It is recognized that any statement of the result of a measurement is incomplete without the inclusion 
of a statement of the uncertainty associated with that measurement. This uncertainty is a statement giving the 
limits within which the true value of the measurement is considered to lie. To be complete, there should also 
be a confidence level concerning the probability of the true value being inside the limits of the stated 
uncertainty. 

12.1.2 In practice, it is neither necessary nor practical to consider confidence levels of 100 %, although at 
first sight this might be considered desirable, as this would result in infinitely large uncertainty. The usually 
accepted confidence level is 95 %, and this should be adopted whenever possible. For example, calibration 
results are now quoted to 95 % confidence level when associated with accredited calibrations and a clause 
stating this is included in their accompanying certificates. 

12.1.3 A distinction should be made between uncertainty and error, the latter being the difference between 
the indicated value or result and the true value. A systematic error can be corrected if additional information 
concerning its magnitude and direction is available via sources external to the experiment. 

12.1.4 A variety of factors can influence the uncertainty of the stated results, and these should all be taken 
into account to produce a single value of uncertainty. The factors range from the fact that a single 
measurement can have any value in the observed measurement distribution, to the uncertainties associated 
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with the measurement of the temperature at which the measurement result was made, and the uncertainty of 
the calibration of the measuring equipment used in achieving the result. 

12.2 Methodology 

12.2.1 Compilation of a single value for uncertainty 

In order to calculate the single value of uncertainty for a measurement, it should be appreciated that there are 
two important contributors to this uncertainty referred to as random uncertainty and systematic uncertainty. 

12.2.2 Random uncertainty (Ur) 

12.2.2.1 If a number of measurements is made under the same conditions, a range of actual values is 
obtained in practice. 

The variations are the result of independent random influences ranging from electrical noise producing 
variations in meter readings to operator reading errors due to difficulties in reading the printed or engraved 
scales frequently associated with rubber and plastics testing equipment. 

12.2.2.2 An analysis of a sample of experimental measurements will usually be found to produce a 
Gaussian or normal distribution curve. Examination of such a curve would show that 68,3 % of all possible 
measured values in the population for this distribution would fall between limits ± σ, where σ is defined as the 
standard deviation. Further, it can be shown that 95 % lie between ± 1,96σ, and that ± 3σ value would include 
99,7 % of all measured values. 

Thus the uncertainty, ±U, can be referred to as equal to ±1,96σ  for a confidence level of 95 % when a normal 
distribution for the whole population is being considered. In practice, this can be treated as ± 2σ. 

12.2.2.3 When experimental measurements are made, only a limited number of results is actually taken, 
and it can be shown that an estimated standard deviation can be calculated as shown in 6.2.3.2. 

It is then possible to calculate a random uncertainty for such a finite measurement sample to any given 
confidence level by using the Student’s t distribution method. 

Table 11 gives a t-value for any number of measurements, n, at the selected confidence level (95 % in most 
practical cases). The t-value is that value by which the standard deviation of a finite set of values, n, should be 
multiplied when producing an uncertainty at the selected confidence level. 

The values found at n = ∞ are referred to as k-values; these values differ with the probability, P, but show 
clearly that the selection of ±2,00σ is quite justifiable in practice as this would only change the confidence 
level from 0,950 to 0,955. 

12.2.2.4 The random uncertainty, Ur, of the mean value is then obtained using the equation: 

r
tU
n

σ
=  (62) 

The above formula is used when n is small, e.g. four. 

If a large number of results is available, e.g. 10 or more, it is possible to regard t as equivalent to 1,96 for most 
purposes at 95 % confidence level, thus 

r
kU

n
σ

=   (63) 
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12.2.3 Systematic uncertainty (Us) 

12.2.3.1 After the calculation of random uncertainty of the measurement and the application of any known 
corrections, consideration should be given to other uncertainties that can influence the results. 

12.2.3.2 Systematic uncertainty can result from factors as different as the use of the wrong corrections, 
temperature effects, and calibration uncertainties. 

Calibration uncertainties are readily recognized and can be obtained quantitatively from the calibration 
certificates accompanying the test or measuring apparatus. 

Careful examination of all sources of systematic error can sometimes lead to the elimination of problems such 
as the use of incorrect corrections, the possibility of transcription errors and sometimes software errors. 

12.2.3.3 Individual systematic uncertainties can often only be assessed by knowledge of the realistic limits, 
in other words the uncertainty is presumed to have a rectangular distribution (as opposed to the Gaussian or 
normal distribution considered earlier), or the measurement value has an equal chance of occurring anywhere 
between the limits. 

In a single rectangular distribution, the standard deviation can be shown to be: 

3
aσ =  (64) 

where a is equal to half the maximum range (i.e. a is the semi-range) of the observed values. 

If there are a number of independent contributions, all having rectangular distributions, with semi-ranges a1, a2 
to am, the resultant standard deviation is given by the equation: 

1/ 22 2 2
1 2

s
.....

3
ma a a

σ
⎛ ⎞+ +
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (65) 

If the concept of confidence levels is now introduced, a systematic uncertainty, Us, can be obtained from the 
equation: 

Us = kσs (66) 

Where more information on the distribution of results is available, the semi-range a can be replaced by the 
standard deviation σ and therefore, more generally, if a number of uncorrelated contributions to the systematic 
uncertainty, with standard deviations σs1, σs2, etc. are present, the resulting systematic uncertainty is given by 
the equation: 

Us = k(σs1
2 + σs2

2 + ... + σsm
2)1/2 (67) 

In some cases, it is found that individual uncertainties are already available hence the above can be replaced 
by the equation: 

Us = (Us1
2 + Us2

2 + ... + Usm
2)1/2 (68) 

12.2.3.4 In practice, the calibration uncertainty can be the only one available in the form of an actual 
uncertainty (e.g. from the calibration certificates) and the following version of the equation applies: 

Us = [U2
calibration + k2(σs1

2 + σs2
2 + ... + σsm

2)]1/2 (69) 

where Ucalibration is equivalent to kσcalibration, but the standard deviation σcalibration associated with the 
calibration does not need to be calculated. 
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12.2.3.5 In some cases when realistic limits of uncertainty are estimated, a dominant contribution to the 
systematic uncertainty can be present such that the uncertainty, as calculated from Equation (67), gives a 
value that is greater than the arithmetic sum of the semi-ranges of the contribution. 

If this is the case, then the dominant contribution should be separated from the calculation and the total 
systematic uncertainty given as: 

Us = ad + Us' (70) 

where Us' is calculated from the remaining terms after exclusion of ad. 

Reference should be made to UKAS document NIS 3003 [9] for a more detailed description of this effect. 

12.2.4 Deviation of a single value of total uncertainty 

Once the overall random and systematic uncertainties have been obtained and all contributions to total 
uncertainty U have been accounted for it is possible to calculate the total uncertainty by: 

U = Ur
2 + (Us

2)1/2 (71) 

This should be modified if a dominant contribution to systematic uncertainty is present that meets the criterion 
mentioned at the end of 12.2.3. In this case 

U = ad + [Ur
2 + (Us')2]1/2 (72) 

where Us' is obtained from: 

s sU kσ′ ′=  (73) 

with σs' being the standard deviation after omitting ad. 

It is of course imperative that all contributions have been calculated to the same confidence level, which in 
most cases will be 95 %. 

12.2.5 Reporting of results 

12.2.5.1 Once the overall uncertainty has been calculated, the final corrected value for the measurement 
result under consideration (expressed as the mean value x ) can be reported along with the overall 
uncertainty in the form: 

x  ± U (74) 

Such a statement is of limited value unless the confidence level is stated in an accompanying clause, e.g. 
“This uncertainty is for an estimated confidence probability of not less than 95 %”. 

12.2.5.2 In practice, the uncertainty should have a resolution that is meaningful in the context of the test 
being carried out. It is normally justifiable to quote an uncertainty to more than two significant figures. 

The number of significant figures in the stated value of the uncertainty should reflect the smallest resolution 
that can be observed for the particular test measurement. 

12.3 Applications to rubber testing 

The following step-by-step procedure for obtaining measurement uncertainty should prove helpful in practice: 

a) Prior to any statement of the result, all corrections to the result should be applied. 
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b) Random uncertainties Ur should be obtained through the use of the standard deviation of the results. This 
can be available from previous work, but it is better to make at least four measurements and then use 
Equation (62). 

NOTE If 10 measurement results are available, it is more appropriate to calculate Ur from Equation (63). 

c) All systematic uncertainties should be obtained and considered. 

NOTE Some, such as calibration uncertainty, are available from certificates accompanying the test apparatus. 

d) Investigate whether previous experimental work can provide the information, for example standard 
deviations, associated with certain of the systematic contributions. 

e) If only realistic limits are available for certain systematic uncertainties (i.e. a rectangular distribution in 
contrast to a Gaussian or normal distribution as for random uncertainty), the standard deviation is 
calculated by using Equation (65). 

f) The overall systematic uncertainty Us is then calculated from Equation (68) or (69). 

NOTE If a dominant contribution is present when realistic limits are estimated, Us is obtained from Equation (70) (this 
is when the requirements at the end of 12.2.3 are taken into account). 

g) The total uncertainty is then calculated from Equation (71) or (72) and the results reported in the form 
given in Expression (74). 

13 Sampling 

13.1 Principles 

13.1.1 When quantities of a product are transferred from a producer to a customer, it is unrealistic to expect 
every component of every item to be 100 % error-free every time. Hence some form of inspection of out-going 
(or in-coming) quality is needed. However, it is rarely possible, or even desirable, for every item to be fully 
inspected for conformity to the specification against which the product has been made. In many cases, 
inspection would result in the destruction of the product and, even where this were not so, the cost of 
inspection has to be carried by someone. Ultimately, this would be the customer. 

13.1.2 It is therefore necessary to take a representative sample of a consignment (a lot) of the product being 
supplied and to test this sample. The lot would be accepted if the sample conforms to the inspection 
programme or rejected if the sample does not conform. 

Even if the sample is truly representative of the lot from which it was taken, its properties will still only be an 
estimate of those of the lot and very rarely identical. Therefore, there will inevitably be a risk that many might 
be accepted which ought to have been rejected and vice versa. The number of nonconforming items that can 
be tolerated by the customer and the degree of risk associated with a wrong outcome of the sampling test 
should be agreed between producer and customer. Such factors cannot be objectively determined by the 
application of statistical tests. 

13.1.3 However, given the criteria described in 13.1.2, the size of sample to take in relation to the lot size 
and the number of nonconforming items found in the sample that will cause the lot to be accepted or rejected 
can be objectively determined and is the subject of sampling theory. 
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13.2 Methodology 

13.2.1 General 

13.2.1.1 The subject of sampling is a large one and is well covered in other International Standards. No 
more than an outline is given here, and for details the interested user should refer to the various parts of 
ISO 2859 for sampling by attributes and to ISO 3951 for sampling by variables. 

13.2.1.2 In sampling by attributes, it is the number of nonconformities (defined in a test or series of tests) 
that determines the acceptability or otherwise of the lot. 

13.2.1.3 In sampling by variables, it is the estimates of the location and variability of the distributed 
measurements of a lot in relation to the specification limits that determine the lot’s acceptability. 

13.2.2 Acceptable quality level and limiting quality 

13.2.2.1 The most significant statistic for the producer and customer to agree is the acceptable quality 
level, or AQL (see ISO 2859-1). This is an indexing device to set the limits of nonconforming items in the 
sample at which the lot is either accepted or rejected. It should not be inferred from this that any percentage of 
nonconforming items is wanted. Clearly, it is always desired that the number of nonconforming items in a lot is 
zero, while in practice a certain percentage of defective items can be tolerated. The AQL should be set 
realistically to reflect both the requirements of the customer’s process needs and the quality that the 
producer’s process is capable of achieving. (Guidance on setting an AQL can be found in ISO/TR 8550.) 

13.2.2.2 The AQL is appropriate for use where a sequence of lots is being supplied. When a lot is to be 
considered in isolation, then the limiting quality, or LQ, is the statistic to be agreed upon (see ISO 2859-2). LQ 
is a quality level in either per cent nonconforming or nonconformities per 100 items. The value of LQ is really 
the limiting value of what is unacceptable, and in practice the actual number of nonconformities in a sample 
should be much less than LQ (generally less than a quarter) if the lot is not to be regularly rejected. 

13.2.3 Assessment of nonconformity 

13.2.3.1 The percent nonconforming and the number of nonconformities per 100 items are only 
numerically the same when a single test is applied in the inspection process. Where multiple tests are 
involved, a decision has to be made which of the two criteria is applied. 

13.2.3.2 For example, consider a sample of 50 pipe sealing rings manufactured in accordance with 
ISO 4633 which are to be inspected for 

a) outside diameter (do); 

b) cord diameter (dc); 

c) hardness (H); 

d) tensile strength (TS); 

e) elongation at break (Eb). 

13.2.3.3 The inspection shows that 

a) 45 pipe sealing rings conform in all these respects; 

b) three fail on do; 

c) one fails on do and H; 
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d) one fails on do, H, TS and Eb. 

Therefore the number of nonconforming rings is five out of 50, giving 10 % nonconforming. 

13.2.3.4 From the results given in 13.2.3.3 

Nc = (3 × 1) + (1 × 2) + (1 × 4) = 9 

where Nc = the total number of nonconformities in a sample of 50 items. 

Therefore there are 18 nonconformities per 100 items. 

13.2.3.5 In some processes, any single nonconformity can render the item unsuitable. Other 
nonconformities in the same item then become irrelevant. In other cases, it can be more appropriate to count 
the total number of times a failure to meet the specification is encountered irrespective of the item in which the 
failure is found. 

13.2.3.6 It is implicit in the discussion of sampling so far that each nonconformity is equally important 
whereas in practice some can have more serious consequences than others. A discussion of this case is 
outside the scope of this International Standard and reference should be made to ISO 2859. Again, therefore, 
it is essential for the producer and customer to agree their criteria before the inspection takes place. 

13.2.4 Inspection levels 

Ideally, once an AQL has been agreed, it could be guaranteed that a lot with a quality greater than this would 
always be accepted and one with a quality less than this would always be rejected. However, this ideal is not 
attainable and a compromise should be set by means of the level of inspection to be applied. Three such 
levels are standardized: 

a) Normal inspection is designed to give the producer a high degree of protection from having his lots 
rejected when in fact they have a quality better than the AQL. 

b) Tightened inspection is designed to give the customer a high degree of protection from having lots 
accepted which in fact have a quality lower than the AQL. 

c) Reduced inspection is designed to enable cost savings to be made in the inspection process, to the 
benefit of both producer and customer, where the product quality is consistently shown to be better than 
the required AQL. 

Rules for switching from one level of inspection to another are to be found in the standards dealing with 
specific sampling procedures (see ISO 2859 and ISO 3951). 

13.2.5 Plans for sampling by attributes 

13.2.5.1 In this International Standard, only sampling by attributes is considered as this is generally the 
one most often employed within the rubber industry. Inspection may also be carried out by means of variables, 
but this technique is often more expensive and elaborate, and can lead to the rejection of a lot which, itself, 
contains no defective items. Such rejection can be difficult to explain to other employees, customers, 
suppliers, etc., who are not statistically literate. For further details on this technique, refer to ISO 3951. 

13.2.5.2 Within a particular level of inspection at a given AQL, there are several methods by which the 
sample can be chosen from the lot. 

a) The single sampling plan, in which the appropriate number of items is chosen at random from the lot and 
inspected, is the simplest. On the basis of the number of nonconformities recorded, the lot will either be 
rejected or accepted because the rejection number is always one greater than the acceptance number. 

NOTE 1 The acceptance number is the maximum number of nonconformities allowed in a sample which results in a 
lot being accepted. 
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NOTE 2 The rejection number is the minimum number of nonconformities present in a sample which results in a lot 
being rejected. 

b) The double sampling plan, in which a smaller number of items (for the same lot size) is chosen as the 
sample and inspected, is the next simplest. 

1) If the number of nonconformities is less than or equal to the acceptance number, then the lot is 
accepted. 

2) If it is greater than or equal to the rejection number (which is more than one greater than the 
acceptance number) the lot is rejected. 

3) If the number is intermediate between the acceptance and rejection numbers, a second sample (of 
the same size as the first) is chosen at random and similarly inspected. Then the total number of 
nonconformities from both samples is compared with the acceptance and rejection numbers for the 
total sample to assess the status of the lot. 

NOTE 3 This process can be extended to multiple sampling plans with up to seven sets of samples taken from a 
single lot. 

13.2.5.3 The purpose of these more administratively involved sampling plans is to reduce the total amount 
of inspection that will ultimately be needed. It can, however, lead to increased inspection in addition to the 
extra administrative complexity, and so such plans should be used only when there is a high probability of 
savings being made, i.e. when there is evidence to suggest that either the lot is particularly good or 
particularly bad in relation to the AQL chosen. Some factors, amongst others, which will influence the choice 
of sampling plan are: 

a) the ease with which items can be selected from the lot; 

b) the resources available for undertaking the inspections; 

c) the time it takes to complete the testing of a sample; 

d) the number of potential nonconformities being monitored. 

13.2.5.4 In addition to sampling by means of a pre-selected number of items, it is also possible to choose 
a sequential sampling plan in which items are chosen and inspected one at a time. A cumulative count is kept 
of the number of items inspected and the number of nonconformities recorded. 

Decision rules are provided for establishing the status of the lot as the evidence accumulates. In principle, a 
lot with a quality similar to the chosen AQL could have to continue being tested until the whole lot had been 
tested. In practice, therefore, an upper limit is provided at which point the rejection number is set to one more 
than the acceptance number so that an unambiguous outcome is assured. 

13.2.5.5 Where a continuing series of lots is being received and the quality of previous lots has been of a 
consistently high standard relative to the AQL, then skip-lot sampling may be introduced if the appropriate 
criteria are met. For details of this, reference should be made to ISO 2859-3. 

13.2.6 Random sampling 

13.2.6.1 It has been implicit in the previous sub-clauses that the sample drawn from the lot is fully 
representative of that lot. This can only be achieved if the items making up the sample are drawn at random. 
Unfortunately, the ability of people to choose randomly is very poor. There is a strong bias at the 
subconscious level to look for and use patterns. For this reason, it is strongly recommended that tables of 
random numbers be used when selecting random items. A table of random numbers can be found in 
ISO 2859-10, in numerous statistical text books and often as functions in computer programmes such as 
spreadsheets and programming languages. 



ISO 19003:2006(E) 

68  © ISO 2006 – All rights reserved
 

13.2.6.2 Where possible, the items in a lot should be ordered or numbered and then individual items 
chosen according to a table of random numbers covering the range of interest (any numbers in the table 
which are outside this range are simply ignored). 

If a published table is used, the starting point and direction within the table should also be chosen at random 
so that the same sequence of numbers is not used for each successive lot inspected. 

In the case of small items, it can be impossible to number each one, and it is then necessary to resort to 
intuitive methods of selection or bulk sampling techniques. 

13.2.6.3 If a given lot can be logically divided into sub-lots, then it is desirable to select items at random 
from the sub-lots in proportion to the size of the sub-lot relative to the lot. 

For example, if a lot of 4 500 O-rings has been received in four packages of 1 000 and one package of 500 
and a sample of 200 rings is to be taken for inspection, the most appropriate action would be to select 

a) 44 rings at random from each of two of the four larger packages containing 1 000 rings; 

b) 45 rings from each of the other two larger packages; 

c) 22 from the smaller package of 500 rings. 

13.3 Applications to rubber testing 

Sampling plans allow a small number of representative items to indicate the level of quality in the whole 
consignment. 

For example, a consignment of 5 000 babies’ soothers is to be supplied to a customer on a regular basis, the 
soothers having successfully completed full type testing to the appropriate specification. It has been agreed 
with the customer that each lot will be tested for hydrochloric acid extractables and bite-through resistance. 
Since a failure in either of these would be unacceptable, the percent nonconforming criterion is to be applied. 
An AQL of 0,10 at normal inspection level is to be used. 

From Table 1 of ISO 2859-1:1999, a lot size of 5 000 at a normal inspection level (level II) gives a code-
letter L. Table 2-A for a single sampling plan at normal inspection level shows the sample size to be 200. At 
the intersection of the sample code-letter = L line and the AQL = 0,10 column, an upward pointing arrow is 
found. This means that, to achieve the level of risks inherent in the given AQL and inspection level, it is only 
necessary to test 125 (code K) items. However, the lot will be rejected if a single nonconformity is observed. 

Tables 3 and 4 of ISO 2859-1:1999 show that, for this lot size and AQL value, there are no double or multiple 
sampling plans available which have characteristics equivalent to those of the single sampling plan. 

14 Number of test pieces 

14.1 Principles 

The number of test pieces normally to be used in a test method is defined in the relevant standard, and 
generally these are three or five, but this number should always be regarded as the minimum that ought to be 
taken in the context of a routine quality control environment. At times, there will be a need to improve the 
statistical precision by conducting the test on a larger number of test pieces. Improving the precision of the 
estimates of the mean (or median) and the standard deviation should always be balanced against the extra 
effort and cost of achieving that precision. The number of test pieces should never be more than is sufficient 
for the purpose being investigated. The following simple procedures may be adopted as a guide, but more 
exact procedures are described in Clause 17. 
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14.2 Methodology 

14.2.1 The confidence limits about the mean were shown in 7.2.1 to be 

L = ± ts/√n (75) 

Hence, if the confidence limits are to be no more than a certain percentage, c, away from the mean, the 
number of test pieces required to achieve this can be estimated by noting that 

2
v2C

n
c

⎛ ⎞
≈ ⎜ ⎟
⎝ ⎠

 (76) 

where Cv is the coefficient of variation [see Equation (8)] for the observations obtained (probably from the 
standard number of test pieces) so far. 

The factor 2 is the approximate value of t for the 95 % confidence limits. Unfortunately, t is a function of n and 
so the expression cannot be solved except by iteration. However, since t varies only slowly with n once this is 
greater than about 10, it is usually good enough to make t constant. For instance, the factor of 2 is accurate to 
better than 10 % if the value of n is greater than 10 and is usually sufficiently accurate to indicate the 
approximate size of n when it is considered that Cv itself is only an estimate which has been based on a 
smaller sample. Carrying out extra tests on the extra number of test pieces required to bring the total number 
tested up to this value of n should then give confidence limits very close to those needed. For 99 % 
confidence limits, the factor to use is 3. A step-by-step procedure is given in 17.2.2. 

14.2.2 Where a standard test has been performed and there is some doubt over the pass/fail status of the 
material because the result is close to the specification limit, then carrying out further tests can help to resolve 
the uncertainty. If the mean is x  and the limit is M, then 

21,75sn
M x

⎛ ⎞≈ ⎜ ⎟−⎝ ⎠
 (77) 

where 1,75 is the factor for the 95 % confidence level, and 2,5 for the 99 % confidence level. 

The reason that the factors are different in this case is that it is the one-sided distribution which should be 
considered. 

14.3 Applications to rubber testing 

14.3.1 General 

From the statistical point of view, the greater the number of test pieces the better. Time and cost 
considerations, however, indicate that generally three to five test pieces are sufficient for most situations. 

14.3.2 Refinement of confidence limits 

A 99 % certainty is required so that the true mean stress relaxation for a compound lies within 5 % of the 
observed mean for a set of results. If the observed mean, based on the normal triplicate test, is 6,8 % (in units 
of percentage per decade) with a standard deviation of 0,31 % (in the same units), the approximate number of 
extra replicate tests which would have to be performed can be calculated. 

According to the equation given in 14.2, this is given by 

23(100 0,31/ 6,8) 7
5

n ×⎡ ⎤≈ ≈⎢ ⎥⎣ ⎦
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Thus about four more replicates are needed to achieve the desired confidence in the mean. (The more 
precise iterative procedure described in 17.2.2 indicates the need for 10 test pieces.) 

NOTE Taking into account the variation of Student’s t-value with n leads to n ≈ 9, but in practice the precise number 
required depends on the actual results obtained. Hence if the 99 % confidence level could be relaxed, probably only a 
further three replicates would be tested and the results would be considered satisfactory. If the greater degree of 
confidence were felt to justify the extra cost, then an additional six would probably be tested. 

14.3.3 Refinement of a pass/fail status 

The permeability of a rubber membrane is required to be not less than 5 × 10–15 m2⋅s–1⋅Pa–1 to a particular 
gas. A triplicate determination of the permeability under the given conditions gave: 

a) a mean value of 6,1 × 10–15 m2⋅s–1⋅Pa–1; 

b) a standard deviation of 1,45 × 10–15 m2⋅s–1⋅Pa–1. 

The number of test pieces which is likely to be needed in order to be 95 % certain that the membrane does 
meet this requirement can be calculated. 

From 14.2 

21,75 1,45 5
5 6,1

n ×⎛ ⎞
≈ ≈⎜ ⎟−⎝ ⎠

 

As tests are normally carried out in triplicate, a further three test pieces would probably be tested. 

15 Expression of results 

15.1 Principles 

The results obtained from the application of a statistical technique need to be presented in a meaningful form 
and at a level of precision appropriate to the precision of the data from which they are derived. 

15.2 Methodology 

15.2.1 The test report 

15.2.1.1 Any report presenting the results of a processing of numbers should give sufficient reference to 
the method of processing, the assumptions made, etc., to enable an independent check on the outcome to be 
made. Often it is sufficient to make reference to the standard that has been used. This standard can be the 
test method itself when it lays down how the data is to be handled or it can be a statistical standard written for 
general application. (Examples would be ISO 36 for peel adhesion and ISO 6133 for the analysis of multi-peak 
traces.) However, where options are included in the standard, it is essential that the options chosen are 
reported with the resulting data in the same way as physical parameters such as speed of testing and test 
piece type. 

15.2.1.2 The test method used will generally indicate the statistics to be quoted in any report, and these 
should always be adhered to so that compliance with the standard is maintained. Where the test method is not 
specific, the following are recommended for inclusion in the report: 

a) the mean value, x  (see 6.2.2.2); 

b) the estimated standard deviation of the population, s (see 6.2.3.2); 

c) the coefficient of variation, Cv (see 6.2.3.4); 
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d) the individual test results; 

e) the estimate of uncertainty, where available. 

15.2.1.3 Where there is good reason to expect a non-Gaussian distribution of individual test results and 
where further statistical testing is not required, the median alone should be quoted in place of the mean, 
standard deviation, etc. If further statistical testing using individual results is required, then transformation 
techniques should be considered. 

NOTE The central limit theorem should also be considered (see 6.2.4). 

15.2.1.4 In many instances, the number of items of data in a set is small (less than a dozen) and indicating 
the individual values in a report is not cumbersome. It is also good practice as it easily allows further analysis 
to be made. 

15.2.1.5 Where large data sets are encountered, some form of chart can be usefully substituted. This is 
especially the case where quality control is being considered (see Clause 18) and there is an on-going time 
element implicit in the process. If a large data set refers to a single group of results, then producing a 
histogram rather then quoting individual values can be more helpful. 

15.2.1.6 To produce a histogram from a set of data, the procedure is as follows: 

a) divide the set into an appropriate number of intervals (approximately 10 is generally convenient) covering 
the range observed); 

b) determine the number of results lying within each interval and plot this number for each interval band. 

Up to approximately 5 % of results can lie outside the chosen interval range if stragglers produce end groups 
with very few and irregular numbers of entries. In such cases, the end intervals are left open on one side. 

For example, the intervals for elongation at break might be set every 20 %, starting at 200 % and ending at 
400 %. The first interval would then be defined as being for all those values having an elongation at break less 
than 200 % and the last interval for the values having an elongation at break greater than or equal to 400 %. 
Intermediate intervals would be 200 % to < 220 %, 220 % to < 240 %, etc. (see Figure 8). 
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Key 

X elongation at break (%) 
Y number of observations 

Figure 8 — Histogram of elongation at break data (see Table 38) 

15.2.2 Rounding 

15.2.2.1 The measurement of any parameter, for example length, mass, force, concentration, can only be 
made to a given precision that is governed by the characteristics of the equipment being used to make that 
measurement. Thus, mass can generally be measured very precisely using an ordinary laboratory balance. 

For example, a 100 g sample can, typically, be measured to a precision better than 1 mg. Assuming that the 
mass is measured to a precision of 1 mg, then it is known to 0,001 % of its value. Again, a dial gauge 
comparator might measure to 0,01 mm hence a thickness measurement of 2 mm cannot be known to a 
precision better than 0,5 %. (See Clause 12 for details of uncertainty of measurements.) 

15.2.2.2 When calculations are performed on the parameters that have been directly measured, the 
potential for a false sense of precision almost invariably arises. It is implicit in a mathematical process that the 
numbers being handled are exact, when in fact they are not. Consider the thickness measurement above. 
Three readings are taken, giving results 2,01 mm, 2,03 mm, 2,03 mm. The calculation of the mean produces 
the result 2,023 333 333... mm. If the original values had been absolutely correct, then this mean would also 
be absolutely correct. However, re-measurement with a more precise instrument yielded thickness values of 
2,013 mm, 2,025 mm, 2,027 mm. Now the mean appears to be 2,021 666 66... mm. The difference in the two 
means is due entirely to differences in the precision of the data being used in their derivation. Similar 
considerations apply to non-statistical derived functions such as stress, set and relaxation. 

15.2.2.3 It follows from 15.2.2.2 that, when reporting the results of calculations, there should be no more 
significant figure in the derived statistic than the number of significant figures in the least precise 
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measurement used in its derivation. In the above example, the first mean should be reported as 2,02 and the 
second as 2,022. 

15.2.2.4 When, however, a derived statistic is itself going to be used in further calculations, then at least 
one more significant figure should be retained, purely for calculation purposes, to avoid the accumulation of 
errors that can arise from the rounding process. In the example in 15.2.2.2, if the thickness is to be used in the 
calculation of stress, then for the first mean 2,023 should be used and for the second 2,0217. 

15.2.2.5 The rules given in the previous sub-clauses are useful generalizations, but common-sense 
considerations should also be taken into account. Thus, where measured parameters with different intrinsic 
precisions are to be combined, there is little value in retaining the highest level of precision in the parameter 
which has the greatest inherent precision already. Using the previous example again, the force parameter is 
unlikely to be measurable to greater than three significant figures, hence using the mean thickness quoted to 
five significant figures will not improve the precision of the calculated stress. In this case, the mean of 2,022 
could be retained without loss of accuracy. 

15.3 Applications to rubber testing 

15.3.1 General 

As a general rule when reporting the values of parameters: 

a) linear dimensions, volumes, forces and stresses should not be reported to more than three significant 
figures; 

b) strain and energy should not be reported to more than two significant figures; 

c) mass may be reported to four significant figures although three is often sufficient. 

15.3.2 Construction of a histogram 

The tensile testing of a large number (150) of dumb-bells in a single batch of compound resulted in a spread 
between 200 % and 400 % in elongation at break values. This interval was divided into 10 bands at 20 % 
intervals and Table 38 obtained. 

Table 38 — Table of elongation at break values 

Elongation range Number of observations 

%  

< 200 0 
W 200 but < 220 4 
W 220 but < 240 8 
W 240 but < 260 12 
W 260 but < 280 18 
W 280 but < 300 25 
W 300 but < 320 37 
W 320 but < 340 22 
W 340 but < 360 13 
W 360 but < 380 9 
W 380 but < 400 2 

W 400 0 

A histogram of the data is given in Figure 8, and the graphical representation of the data conveys clearly and 
simply the breadth and centre of the observed distribution. 



ISO 19003:2006(E) 

74  © ISO 2006 – All rights reserved
 

15.3.3 Examples of rounding 

Consider an intermittent stress relaxation test in which a test piece 10,02 mm wide by 1,03 mm thick had an 
initial force of 150 N applied to it when extended by 50 %. Both dimensions were measured to the nearest 
0,01 mm, and the force was measured to the nearest 1 N. Thus the initial stress is calculated as 

, ...
, ,

150Stress 14 534 038
10 02 1 03

= =
×

 

The width was measured to four significant figures, while the thickness and force only to three, hence the final 
stress should be reported to three figures also, giving 14,5 MPa. 

After some time, the force had decreased to 67 N, so the stress had now become 

67Stress 6,491 871...
10,02 1,03

= =
×

 

The precision of the width and thickness is unchanged, but now the force had only been measured to two 
significant figures and so the resulting stress should only be reported to two figures, giving 6,5 MPa. 

If the percentage decrease in stress with time is to be plotted, then the stress values should be further 
processed to obtain this percentage. Using the rounded figures as reported above results in 

s
14,5 6,5 100 55,172 4

14,5
L −

= × =  

where Ls is the decrease in stress, expressed as a percentage. 

Using the extra significant figure (the more correct procedure) results in 

s
14,53 6,49 100 55,333 8

14,53
L −

= × =  

It would be reasonable to quote the percentage loss to the first place of decimals but no more. Under these 
circumstances, the difference in the two results is small and of no practical significance. This is not always so, 
and in all cases repeated rounding followed by further calculations builds up the errors arising from the earlier 
rounding processes. 

16 Precision statements 

16.1 General 

Increasingly, test methods are including a statement of the precision which can be expected of them when 
they are carried out in accordance with their requirements. Test methods for rubber are included in this 
movement. 

16.2 Principles 

16.2.1 It is well known that tests performed on nominally identical material under nominally identical 
conditions do not, in general, produce the same result. This variability between repeated tests is given the 
general name precision, and the sources of variation can be attributed to many factors such as the time 
between measurements, the environment, the operator, the equipment used and its state of calibration. 
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It is observed that the variability between different operators and/or different equipment is generally greater 
than that for a given operator using given equipment within a short time scale. Thus, it is useful to distinguish 
two measures of precision, repeatability and reproducibility. 

As with all statistical factors, the repeatability and reproducibility are estimates based on an accepted level of 
confidence. The 95 % confidence level is almost always applied and may be assumed if there is no indication 
to the contrary. Since there is a measure of uncertainty in the estimates of repeatability and reproducibility, it 
is possible to assign a confidence interval to the estimates obtained from a given experimental programme. 
Such an analysis is outside the scope of this International Standard. 

These two, then, represent the probable extremes of precision that might be expected under practical 
circumstances, although other, intermediate, forms could be envisaged. 

16.2.2 The term accuracy is also encountered and at one time was taken to be simply the bias (i.e. the 
systematic rather than the random errors) of a particular measurement (refer, for example, to ISO/TR 9272). 
However, current practice is to use the term accuracy to mean the combined systematic and random errors in 
a set of observations. 

More detailed information on these and other terms relating to precision statements can be found in 
ISO 5725-1. 

16.2.3 In the rubber industry, the term trueness is seldom appropriate, but the effect of systematic 
discrepancies between laboratories is nonetheless real and has been addressed by a technique called the 
intercal method developed in the United States. A brief description of this is provided in Annex I. 

16.3 Methodology 

16.3.1 In order to generate repeatability and reproducibility (often abbreviated to r and R, respectively) data, 
an inter-laboratory test programme should be organized. It is essential that the material being used in the test 
is consistent when it is despatched to the participating laboratories and that it remains consistent during the 
transportation and storage phases prior to it being tested in the laboratory. 

16.3.2 The laboratories chosen should be selected at random, but in practice there may overriding 
considerations, such as the need to cover a wide range of environmental conditions or the small number of 
laboratories willing to be participants. Where a small number of laboratories are involved, particular care 
should be exercised in not having a preponderance of specially skilled laboratories or ones recognized as 
being reference laboratories, as the inclusion of such laboratories will tend to yield underestimates for the r 
and R data. In either event, the r and R values derived are specific to the group of participants at the time of 
the trial and do not necessarily accurately reflect the true r and R of the total population of laboratories over 
extended time scales. 

16.3.3 In designing the test programme, it should be agreed and understood by the participants as to what 
will constitute a test result. This might be, for example, a single tensile-strength value or the median of a set of 
three or five individual values. In the former case, the replicate level will ordinarily be that which is normal for 
the test method being evaluated. In the latter case, it is most commonly two with, for example, one set of 
dumb-bells being tested one day and the next either later that same day or possibly within the next day or two. 

16.3.4 In order to establish the repeatability data, tests should be made under constant conditions and, to 
minimize the danger of environmental or equipment drift from influencing the outcome, the time interval 
between repeat tests should be as small as practicable. 

Since the time interval should be small (as in the example given in 16.3.3) and the same equipment should be 
used by the same operator, there can be the risk of unintentional bias. This might arise from the operator 
anticipating the result in the performance of some tests. The following precautions should be taken: 

a) the test programme should be randomized to break up any patterns in the test sequence; 

b) the date and possibly time of the various tests should be recorded as part of the information supplied to 
the coordinator of the trial; 
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c) equipment should not be re-calibrated during a test sequence. 

16.3.5 The resulting data are arranged in tabular form similar to that for the analysis of variance (Clause 10) 
and the following statistics derived: 

a) the estimate of the between-laboratory variance, sL
2; 

b) the estimate of the within-laboratory variance, sw
2; 

c) the average of the between-laboratory variances for all the laboratories in the test programme, sm
2; 

d) the estimate of the repeatability variance, sr
2; 

e) the estimate of the reproducibility variance, sR
2, which is given by the equation: 

sR
2 = sL

2 + sr
2 (78) 

f) the repeatability, r, which is given by the equation: 

r = 2√2sr (79) 

g) the reproducibility, R, which is given by: 

R = 2√2sR (80) 

16.3.6 It is frequently convenient to refer to the r and R values in relative terms since they often vary with the 
mean value of the property being measured. The percentage value of r (or R) with respect to the mean is used 
which is analogous to the coefficient of variation (see 6.2.3.4). However, as certain properties are measured in 
percentage units, this percentage value of r or R is written in parentheses, i.e. (r) or (R), to avoid ambiguity 
over the units. Thus, for a test such as compression set, the mean might be 35 % and the r-value 5,2 %, 
making the (r)-value 14,9 %. 

16.3.7 Before the test data are processed to find the within- and between-laboratory variances, they should 
first be examined for outliers using, for example, the Dixon and Cochran tests (see Clause 9). 

16.3.8 The detailed calculations for r and R via the variances indicated above can be referred to in, for 
example, ISO 5725-2 and ISO/TR 9272. 

16.3.9 One possible problem with the normal inter-laboratory test programme, as described in the references 
cited, occurs when the operator can be influenced, whether consciously or not, between the first observation 
and subsequent ones. In these circumstances, the replicates are not independent of each other and bias is 
introduced into the data. A solution to this difficulty is presented by means of the paired-sample (or split-level) 
method developed by W.J. Youden (see ISO 5725-5). 

In essence, the method measures a single replicate result of a property for each of two materials of similar, 
but different, values of that property for each level of the experiment being conducted. At each level, the pair 
of materials should be selected carefully or the analysis produces repeatability values significantly greater 
than the true repeatability values for the test method. Such a pair of materials is known as a Youden pair. 
Obtaining suitable Youden pairs for a particular test can be difficult, and the technique is not, therefore, 
recommended for general use. 

16.3.10 Once the values of r and R are obtained for the various levels of the property being measured, they 
should be examined to see if there is a correlation between them and the mean value. This can be carried out 
using the regression analysis techniques indicated in Clause 11. Abnormalities to the general trend of r or R 
with mean level should be examined to try to ascertain the cause, as this can give important information on 
weaknesses in the test method to particular conditions which can then be addressed. 
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16.4 Applications to rubber testing 

16.4.1 Precision statements are becoming the norm for inclusion in standards for rubber test methods. 

16.4.2 An investigation of the measurement of volume swell was undertaken by eight laboratories. Several 
different types of rubber and fluid were used to give a range of swelling characteristics. A summary of the r 
and R values associated with each mean level is given in Table 39. 

Table 39 — Volume swell measurements 

Level number Mean swell r (r) R (R) 

 %  %  % 

1 3,66 0,76 20,8 1,86 50,8 

2 10,1 0,64 6,3 2,27 22,5 

3 14,0 2,65 18,9 6,96 49,7 

4 20,6 0,57 2,8 4,67 22,7 

5 21,5 0,44 2,0 0,80 3,7 

6 42,8 0,89 2,1 4,46 10,4 

7 55,3 2,36 4,3 7,34 13,3 

8 96,9 5,84 6,0 12,13 12,5 

9 115 8,85 7,7 26,20 22,8 

 

16.4.3 An examination of the r and R results shows that there is a general trend towards an increasing r or R 
with increasing mean level, but several anomalies in the trend do occur. This effect is even more pronounced 
when the (r) and (R) values are compared with the mean level. 

There is an indication that the (r) and (R) values go through a minimum, which suggests a quadratic 
relationship and, while the correlation coefficient can be shown to be statistically significant at the 95 % level 
or greater, the accuracy in predicting the (r) or (R) value for a given volume swell does not justify the extra 
calculation effort that would have to be made. 

A simple average (r) and (R) for the test method is sufficiently accurate for the purpose to which the 
information would be put. Thus the data provides an estimate of percentage repeatability of 8 % and of 
percentage reproducibility of 23 % for the volume swell test. 
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17 Design of experiments 

17.1 General information and principles 

17.1.1 General information 

17.1.1.1 Introduction 

Every clause so far has been about the analysis of experimental data, i.e. the estimation and testing of 
statistics representing the system that is being measured. These are essential parts of the scientific method. 
No less a part of the scientific method is experimental design, i.e. the specification of the conditions under 
which the experimental data are observed. 

Experimental design is a major part of applied statistics, about which there is an immense literature. In this 
chapter, only those aspects of experimental design are presented which have most to contribute to the 
physical sciences, specifically to the testing of rubber and rubber products. 

Descriptions are necessarily brief and selective. They may be prescriptive rather than pedagogical. Readers 
are advised to consult the literature to reach a better understanding. Some references are given in the 
Bibliography. 

There are many text books on the subject and there are many types of experimental design. In this subclause, 
a range of designs are described, selected for their usefulness to rubber technology, and leading from the 
simplest to the more complex. 

17.1.1.2 Descriptive designs 

A statistical sample of several test pieces, all randomly selected from a standard material, is tested to 
determine the elementary statistics of a characteristic of that material. For example, the mean and the 
standard deviation of the tensile strength of that standard material could be reported. 

17.1.1.3 Comparative designs 

17.1.1.3.1 Comparison against a standard 

The characteristic of a new material can be compared against a specified industry standard. A sample of 
several pieces would be tested and an assessment made as to whether or not there was sufficient evidence to 
conclude that the measured characteristic of this material was different from the standard specification. 

17.1.1.3.2 Comparison of two materials with independent samples 

Two materials can be 

a) of different compositions; 

b) made by slightly different processes; 

c) made at different places, even if they are claimed to be of the same composition and made by exactly the 
same process. 

In order to determine if they have the same or different properties, a sample of several pieces from each 
material should be tested. These samples should be selected independently of each other. 

17.1.1.3.3 Comparison of two materials by paired samples 

As in 17.1.1.3.2, it could be necessary to determine if two materials have the same or different properties. 
However, in the presence of uncontrollable outside influences, a fair comparison should be ensured. 
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For example, samples of rubber could be exposed to the weather and their deterioration measured. One 
approach would be to expose test pieces in pairs, each pair comprising one item or piece of each material, 
thus ensuring that both members of the pair experience the same weather conditions. The data to be 
analysed would be the difference in deterioration measured between each pair. 

17.1.1.4 Response designs 

17.1.1.4.1 Factorial experiments 

When new materials or manufacturing processes are being developed, there are usually several variables, or 
factors, that can influence a material property. Experiments to investigate the effects of several variables 
should be designed to allow all of those variables to be set at several levels. There is a widespread belief that 
the best approach is to experiment with one variable at a time and to fix all the others. That approach is 
inefficient, uneconomic and will not provide information about interactions between variables. Two-level 
factorial experiments are widely used during development studies. Since the final stage of development study 
requires multilevel experiments (three or more levels), if the number of controlled variables is small it may be 
useful to consider using three-level experimental designs in the development stage. 

17.1.1.4.2 Response surface exploration with composite designs 

In the final stage of a development study, when the conditions (such as the values of composition and process 
variables) that will yield the best value of a material property (such as the highest value of tensile strength) are 
being sought, additional points should be added to factorial experiments so that curvature of the response can 
be estimated. These designs are known as augmented or composite designs. 

17.1.1.4.3 Inter-laboratory trials 

Another class of experiment used in industry is the inter-laboratory trial. This has the purpose of estimating the 
repeatability of test results within each of a set of laboratories and the reproducibility of test results between 
laboratories. These are not described fully in this International Standard as they are described in ISO 5725 
and ISO/TR 9272, but Clause 16 outlines some of the principles involved in making precision statements. 

17.1.2 Principles 

17.1.2.1 General 

Statistical analysis of experimental results is necessary because of variation. All test results vary. The reasons 
for this variation include the following: 

a) there is inherent variability of material; 

b) there are imperfections in the measuring instruments and their calibrations; 

c) there is sampling variation. 

This variation should therefore be considered when experiments are designed. 

17.1.2.2 Descriptive experiments 

17.1.2.2.1 In a descriptive experiment, a characteristic of a standard material is reported from the analysis of 
measurements on several test results. For example, the mean tensile strength of a sample of several test 
pieces is calculated. This is unlikely to be the true mean value of all possible test pieces from the standard 
material. If the mean tensile strength of another sample of several test pieces were calculated, it would be 
different. The calculated sample mean is therefore only an estimate, a point estimate, of the underlying 
population mean. In reporting it, an interval should be reported within which the population mean can 
confidently be expected to lie. This interval is the confidence interval for the population mean. Clause 7 gives 
further details. 
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17.1.2.2.2 This confidence interval depends on three things: 

a) the variation between measurements of the test pieces within the sample, expressed as the variance or 
standard deviation of the measured material property; 

b) the number of test pieces tested in the sample; 

c) the degree of confidence of the interval, expressed as the probability that the population mean is truly in 
that interval, usually as a percentage (for example, a 95 % confidence interval). 

NOTE 1 The variation will usually be determined from the experiment. 

NOTE 2 The number of test pieces should be specified before the experiment is carried out. 

NOTE 3 The degree of confidence is the choice of the experimenter and again should be specified before the 
experiment is carried out. 

17.1.2.2.3 Ideally, the experimenter should specify the size of the confidence interval and the confidence. 
For example, in the case of tensile strength, the experimenter can specify the following: 

a) the size of the confidence interval is (sample mean value ± 1,0) MPa. 

b) the confidence is 95 %. 

The experiment would then proceed in the following four stages: 

1) a preliminary experiment is carried out to enable the unknown variance of all possible test pieces for 
the whole of the standard material to be estimated; 

2) the sample size N is calculated and this is used to estimate the specified confidence interval, using 
the variance estimated from the results of the preliminary experiment; 

3) test measurements are made on a sample of N test pieces. 

The sample mean, standard deviation and confidence interval are calculated. 

These four stages are described in 17.2. 

17.1.2.3 Comparative experiments 

17.1.2.3.1 Statistical analysis of test results should never be regarded simply as a set of calculations leading 
to clear-cut statements that the effect is, or is not, significant. Such statements have no meaning without an 
explanation in terms of the purpose of the experiment. The conclusion depends on the circumstances of the 
experiment and on the intentions of the experimenter which should be declared before the tests are done. For 
example, the circumstances of an experiment can ordain whether or not a statistically significant effect can be 
detected if it exists. The intentions of the experimenter will include a statement of what he or she considers to 
be a technically significant effect. 

17.1.2.3.2 Four major steps should be taken before starting an experiment to compare the underlying values 
of a characteristic for two materials: 

a) Step one, in which the alternative inferences that can be made from the experiment are stated. 

b) Step two, in which the acceptable risks for making the wrong inference are specified. 

c) Step three, in which the difference between the two values of the characteristic is specified. This should 
be demonstrated statistically so as to be of technical significance. 

d) Step four, in which the necessary sample size is computed. 
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These four steps are described more fully in 17.1.2.3.3 to 17.1.2.3.6 and then presented in greater detail in 
17.2. 

17.1.2.3.3 In step one, the alternative inferences that can be made from the experiment are stated. These 
should be stated as alternative prior hypotheses. 

When two materials are to be compared according to some property, the most usual comparison is between 
the mean values of that property. An assessment should be made as to whether there is sufficient evidence to 
infer that the underlying mean values for the whole of each standard material of the underlying populations (µ1 
and µ2) differ, even though the sample mean values, 1x  and 2x , differ (see 6.2.2). If there is not sufficient 
evidence, it should be assumed that the means of the underlying populations are the same. The assumption 
that they are the same is known as the null hypothesis (H0). The assumption that they are different is known 
as the alternative hypothesis (Ha). 

These can be stated symbolically as: 

H0 for which µ1 = µ2 

Ha for which µ1 ≠ µ2 

In this case, the experimenter is not concerned about which of the two populations has the greater mean, only 
that they could be different. This will lead to a two-sided test. 

If the experimenter is interested in showing that a new material has a greater mean strength than the standard 
material, a one-sided test can be used and the alternative hypotheses will have the form: 

H0 for which µ1 = µ2 

Ha for which µ1 > µ2 

The distinction should be made before the experiment is commenced. The calculation of the sample size 
depends on the distinction. 

17.1.2.3.4 In step two, the acceptable risks for making the wrong inference are specified. The wrong 
inferences are called the type 1 error and the type 2 error, with probabilities α and β, respectively. 

The possible inferences from a two-sided test can be understood from Table 40. 

Table 40 — Inferences from a two-sided test 

Truth Inference Correct Error Probability 

µ1 = µ2 µ1 = µ2 Yes — < (1 − α) 

 µ1 ≠ µ2 No Type 1 u α 

µ1 ≠ µ2 µ1 = µ2 No Type 2 u β 

 µ1 ≠ µ2 Yes — u (1 − β) 

 

A type 1 error occurs when the experimenter accepts the alternative hypothesis (Ha) although the null 
hypothesis (H0) is true. The probability of this occurring is α. This is known as the size of the test. 

Usually, α is specified as 0,05 (a 5 % chance) (see Clause 7). 

A type 2 error occurs when the experimenter accepts the null hypothesis (H0) although the alternative 
hypothesis is true. The probability of this occurring is β. Usually β is specified as 0,05 or 0,10. The probability 
of detecting a true difference is (1 − β). Thus if β is specified as 0,05 and the experiment is designed 
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accordingly, there is a strong chance (a probability of 0,95) that a difference will be detected if a difference 
truly exists. This is known as the power of the test. 

Unfortunately, it is common for experiments to be done without consideration of β or the power, and 
consequently true effects can remain undetected. For example, consider the tensile strengths of compounds A 
and B in 6.3.2. Suppose that a purpose of the experiment was to show a statistically significant difference 
(α = 0,05) of 1 MPa. A power calculation shows that with only 12 sample measurements for each compound 
there is a probability of 0,75 of detecting that difference if it exists. Sample sizes of 23 would be needed to 
give a probability of 0,95 of detecting that difference. 

17.1.2.3.5 In step three, the difference, which should be demonstrated statistically so as to be of technical 
significance, is specified. 

The purpose of many experiments is to discover an improvement in the material property which is being 
tested. In other experiments, the purpose can be to show that, under different circumstances, there is no 
difference in the material property. 

In either case, the experimenter should be able to state the smallest difference which should be regarded as 
likely to have a practical or technical significance. For example, a determination can be made of how much 
stronger, in terms of tensile strength, one material should be over another to make its selection preferable for 
a particular application. Whether this should be 1 MPa or 2 MPa or 0,5 MPa can depend on the application. 

The specification of this smallest difference, δ, is essential to the design of a comparative experiment. 

17.1.2.3.6 In step four, the necessary sample size is computed. 

There are several formulae for calculating sample size. The correct choice of formula depends on the type of 
comparative experiment. These can be: 

a) comparison against a standard; 

b) comparison of two materials with independent samples; 

c) comparison of two materials by paired samples; 

It will also depend on whether the proposed test of comparison is one-tailed or two-tailed (see 17.2, 17.3 and 
Table 42). 

The information needed in any of the calculations is the choice of α, β, δ and an estimate of the variance, σ2, 
of all possible test pieces for the whole of the standard material. 

The choices of α, β, δ depend entirely on the opinions and purposes of the experimenter, as already 
explained. 

An estimate of the population variance, σ2, can be obtained: 

1) from earlier experiments; 

2) from literature; 

3) from a preliminary experiment with at least five test pieces. 
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17.1.2.4 Response experiments 

17.1.2.4.1 Properties and factors 

Much research and development in the materials sciences is intended to establish relationships between the 
properties of materials and suspected influencing factors which the technologist can control in the production 
of those materials. 

The properties are called response variables (they are also called dependent variables because they are 
thought to depend on the factors). 

Influencing factors are called control variables (they are also called independent variables). The control 
variables are usually composition variables and process variables. All of these variables should be 
measurable. 

Sometimes there are other variables which can influence the response variables but cannot be controlled 
although they can be identified and measured. Common examples are the temperature and humidity of a 
factory workshop atmosphere. These variables are called concomitant variables (they are also called 
covariates). 

17.1.2.4.2 Experimental design 

The experimental design is the specification, before the experiment is commenced, of the values of the control 
variables at which the response variables are measured. The experiment should be designed according to the 
expected relationship between the response variable and the control variables. The expected relationship is a 
hypothesis. The hypothesis should be formulated as an algebraic model that can be represented in terms of 
the measurable variables. 

If the model were simple and exact, then the experimental design would be simple. Few test pieces would be 
needed to provide exact values of the model coefficients. The fitted model could then be used to predict 
response values exactly for any choice of settings of the influencing factors. However, there are several 
reasons why this cannot be achieved and these include the following: 

a) The exact relationship can never be known because the model can be only an approximation to reality. 

b) All measurements are subject to time-dependent deviations which cannot be identified but which show 
their presence by trends in the observed values of response variables. 

c) All measurements are subject to random deviations. These represent other unidentified variables which, 
taken together, show no pattern or trend. 

d) The effects of concomitant variables, which are those variables which are identified as possible 
influencing factors but can be measured only during or after an experiment. 

The experiment should therefore be designed so as to reduce the influence of these unknowns. 

17.1.2.4.3 Statistical objectives 

The statistical objectives of designed response experiments are to specify: 

a) an algebraic model representing the expected relationship between the response variables and the 
influencing factors; 

b) the number of observations; 

c) the values of the control variables at every observation; 

d) the order of the observations. 
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The intention is to: 

1) ensure that all effects in the model can be estimated from the observed data; 

2) test the reality of those effects by comparison with random variation; 

3) ensure that all effects can be estimated with the greatest possible precision, thereby reducing the 
influence of random variation; 

4) ensure that all effects can be estimated with the least possible bias, or greatest accuracy, thereby 
reducing the effects of time-dependent errors; 

5) suggest improvements to the model; 

6) keep within a budget of effort and cost. 

17.1.2.4.4 Experimental designs 

The following experimental designs are discussed in 17.1.2.4.5 to 17.1.2.4.7: 

a) two-level factorial experiments; 

b) two-level fractional factorial experiments; 

c) composite designs. 

17.1.2.4.5 Two-level factorial experiments 

The two-level factorial design is fundamental to experimental design for the physical sciences. This design is 
based on the assumption that a linear model will approximate to the true relationship fairly well in some 
restricted range of those factors. The basic idea can be illustrated with a linear model based on a single 
influencing factor (Figure 9): 

y = a + bx (81) 

where 

y is the response variable; 

x is the control variable; 

a and b are the coefficients to be estimated. 
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Key 

X control variable, x 
Y response variable, y 

Figure 9 — Linear relationship between the dependent variable and a control variable 

This model is deemed to be roughly adequate to approximate the true relationship for x in the range xL to xU. 
Deviations between expected values and the observed values can be described by adding a term e to the 
right-hand side of Equation (81). 

The object is to estimate a and b with the greatest precision if all observations are divided equally between the 
two ends of the range of x. A common fault among experimenters is to divide the range into (N − 1) equal parts 
(where N is the number of planned observations) and to make one observation at each end and at each of the 
division points. This choice of factor values is a design which would not give the most precise estimates of a 
and b in the presence of e. It would be preferable to do half the trials at xL and half at xU. This gives rise to the 
expression “a two-level experiment”. 

In Equation (81), the effect on y of a change in x of one unit is represented by the coefficient b which is the 
slope of the line. 

The relationship between x and y may also be represented using a different notation. In this notation, the 
independent variables (the x’s) are called factors A, B, C, ..., the effects of which are represented by the 
symbols A, B, C, ... . 
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The range of a factor is specified by the two ends of the range, i.e. the high and the low values of the factor. 
These are represented by lower-case letters with suffixes. For example, in the single-factor experiment, the 
high and low values of factor A would be a1 and a0 respectively. This lower case notation is also used to 
represent the observed values of the dependent variable at the corresponding observation points [see 
Figure 10 a)]. 

Thus the effect of factor A on the dependent variable y over the complete range of factor A is equal to: 

(Value of y at point a1) − (Value of y at point a0) 

as shown in Figure 10 b), or, more briefly, 

A = a1 − a0 (82) 

where the symbol A is used to denote the effect of factor A. 

Similarly, the mean value of y [see Figure 10 c)] is simply 

M = (a1 + a0)/2 (83) 

  
  

Key 

X control variable, x (factor A) 
Y response variable, y 
a0 low value of factor A 
a1 high value of factor A 

1 y at a0 
2 y at a1 
3 effect of factor A 
4 mean of values at a0 and a1  

Figure 10 — A two-level single-factor experimental design 
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Now consider two factors, A and B, which can be represented as two variables in a plane with the dependent 
variable y along a third dimension perpendicular to the plane [see Figure 11 a)]. The high and low values of B 
are b1 and b0. If observations of y are made only at points defined by the extreme ranges of the two factors, 
there are four points which can be denoted by the combinations of letters a0b0, a1b0, a0b1 and a1b1. The 
notation can be abbreviated further to represent these four points as: 

(1), a, b, ab 

where 

the symbol (1) denotes the observation point at which all the factors are at their low levels (see 
Figure 11 b); 

the point a is where factor A is at its high level but factor B is at its low level; 

the point ab is where both factors are at their high levels. 

 

 
 

Key 

X factor A 
Y factor B 

a0 low value of factor A 
a1 high value of factor A 
b0 low value of factor B 
b1 high value of factor B  

NOTE The lower drawing uses the simplified (abbreviated) notation. 

Figure 11 — A two-level two-factor experimental design 



ISO 19003:2006(E) 

88  © ISO 2006 – All rights reserved
 

The rule is that the high and low levels of factors are represented by the presence or absence, respectively, of 
lower-case letters. 

Analysis is almost as easy as in the single-factor case and the following conclusions can be reached: 

a) Using the combinations of lower-case letters to represent the values of y observed at the corresponding 
points, the average effect of factor A is: 

(1)
2 2

a ab bA + +
= −  (84) 

That is, the effect of A is the difference between the mean value of y observed at all the points where A 
was at its high level and the mean value of y observed at all the points where A was at its low level. 

b) The effect of B is calculated in a similar manner to that of A and is given by: 

(1)
2 2

b ab aB + +
= −  (85) 

c) The interaction of factors A and B can be defined as the difference between the effect of A at the high 
level of B and the effect of A at the low level of B. It is denoted by AB. Thus: 

AB = (ab − b) − [a − (1)] (86) 

This is exactly the same as: the difference between the effect of B at the high level of A and the effect of 
B at the low level of A. 

The estimation of these effects is equivalent to fitting the algebraic model: 

y = a0 + a1x1 + a2x2 + a12x1x2 (87) 

where y is the response variable, x1 and x2 are two control variables and a0, a1, a2 and a12 are algebraic 
coefficients. (These should not be confused with the a used in Equations (82) to (86) to denote variables.) 

Least-squares regression analysis (Clause 11) is widely used for analysis of these and other experiments to 
be described. Computer software is available for this analysis which includes the estimation and testing of 
coefficients in equations such as (87). 

17.1.2.4.6 Two-level fractional factorial experiments 

These principles of design and analysis of two-level factorial experiments can be extended to experiments 
involving any number of factors. 

See Figure 12 for an illustration of a three-factor situation. However, the number of observations in such an 
experiment increases exponentially with the number of factors. If there are n factors, the number of test pieces 
required in an experiment is proportional to 2n. Table 41 illustrates the exponential increase. 
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Table 41 — Observation points 

Number of factors Number of points at which 
observations are made 

1 2 

2 4 

3 8 

4 16 

5 32 

6 64 

7 128 

8 256 

9 512 

10 1 024 

 

It is not unusual to have experiments with seven or more factors (control variables). Thrift demands an 
experiment with only a fraction of the experiments in a full design but which can still supply information on 
important features of the model. If a suitable fraction can be found, the resulting experiment is called a two-
level fractional factorial. 

The theory and method of constructing these fractional experiments is described in textbooks. Also software is 
available for the automatic design and analysis of these experiments (see Bibliography). 

Key 

X factor A 
Y factor B 
Z factor C 

Figure 12 — A two-level three-factor experimental design 
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17.1.2.4.7 Composite designs 

Whereas two-level factorial experiments, and their fractions, are suitable for fitting models that are linear in the 
main effects and including interactions, they are not suitable for estimating curvature of response if it exists. 
For example, if there is a single control variable, Equation (81) can be suitable either if the relationship is 
genuinely linear for all values of x [see Figure 13 a)] or on the rising or decreasing slope of a quadratic 
response [see Figure 13 b)]. 

However, if the experiment is to be done for a range of x which is close to the peak (or trough) of the quadratic 
response, as in Figure 13 c), curvature will have a major effect and should be estimated. This is particularly 
important if a purpose of the experiment is to estimate the value of x for which y is a maximum (or minimum). 

Equation (81) should then be augmented as follows: 

y = a + bx + cx2 (88) 

Similarly, Equation (87) should be augmented as follows: 

y = a0 + a1x1 + a2x2 + a12x1x2 + a11x1
2 + a22x2

2 (89) 

Designs for these augmented relationships are called augmented or composite designs. The theory and 
methodology of constructing them is described in several textbooks. Software is available for constructing and 
analysing them. Analysis is usually by least-squares regression. 

NOTE Since most relationships are not linear, two-level experiments are best used only if 

a) the range between the low and the high levels is so small that the curvature of the response can be neglected [see 
Figure 13 b)]; 

b) the number of controlled variables is large and a screening test is required to identify the important ones; 

c) qualitative variables are involved (e.g. N550 vs N330 carbon black, or straining/not straining the stock). 

 

 

Figure 13 — Quadratic relationship between the dependent variable and a control variable 
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Key 
X control variable, x 
Y response variable, y 
1 linear response 
2 approximately linear response over the experimental range 
3 quadratic response over the experimental range 

a Experimental range. 

Figure 13 (continued) 
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17.2 Methodology 

17.2.1 General 

17.2.1.1 Procedures are presented here for designing and analysing descriptive and comparative 
experiments, the principles of which have been explained in 17.1. Examples are shown in boxes. 

17.2.1.2 Procedures for the design and analysis of two-level (fractional) factorial experiments, or for 
composite experiments, are not included. The necessary theory and methodology are beyond the scope of 
this International Standard. Software exists for these procedures to be handled automatically. 

17.2.1.3 Z-scores are used in all of the following procedures (see 6.2.1.1). These are standardized normal 
variates and are available from published statistical tables. However, for convenience in using this 
International Standard, the extract given in Table 42 should be sufficient. 

Table 42 — Z-scores 

α (or β) Zα Zα 

 (one-tail) (two-tail) 

0,01 2,326 2,576 

0,05 1,645 1,960 

0,10 1,282 1,645 

0,15 1,036 1,440 

0,20 0,842 1,282 

0,25 0,675 1,150 

0,30 0,524 1,036 

0,35 0,385 0,935 

0,40 0,253 0,842 

 

17.2.2 Descriptive experiments 

The mean of a standard material should be reported with a specified confidence interval, 2cI. The confidence 
interval should be stated as a percentage confidence as given by the equation: 

2cI = 100(1 − α) (90) 

The procedure is as follows: 

a) Obtain an estimate of the underlying population variance, σ2, by a preliminary experiment in which at 
least five randomly selected pieces are tested. 

σ2 = 2 

b) State the desired half width of the confidence interval, cI. 

cI = 1 

c) State α as representative of the required confidence interval. 

For a 95 % confidence interval: 

α = 0,05 
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d) Look up the corresponding two-tail value of Zα. 

Zα = 1,96 

e) Calculate N as the integer nearest to the value of 0,5 + (Zα σ/cI)2. 

N = 8 

f) Obtain a more conservative value of N by repeating the calculation using the corresponding tα value with 
the first estimate of N as the entry point in the table of t-values (see Table 11). This is achieved in two 
steps as follows: 

1) Look up the corresponding two-tail value of tα for N degrees of freedom. 

tα = 2,12 

2) Calculate N as the integer nearest to the value of 0,5 + (tα σ/cI)2. 

N = 9 

g) Repeat steps 1) and 2) in f) until a stable value of N is achieved. 

17.2.3 Comparative experiments 

17.2.3.1 Comparison against a standard 

The underlying population of a property measure of the standard material has a known mean µ0 and known 
variance σ2. Assuming that the property of the new material has the same variance (which can be checked 
later), the size of the sample needed to detect an improvement of at least δ can be calculated. 

The procedure is as follows: 

a) State the object of the trial. 

H0: µ1 = µ0 

Ha: µ1 > µ0 

(single-sided) 

b) Choose α, β, δ. 

α = 0,05 

β = 0,01 

δ = 1 
c) Look up the value of Zα (single-sided normal). 

Zα = 1,645 
d) Look up the value of Zβ. 

Zβ = 2,326 
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e) Compute N, where N is the integer nearest to the value of the expression: 

0,5 + (Zα + Zβ)2 σ2/δ2 

if σ2 = 2, 

then N = 32 

17.2.3.2 Comparison of two materials with independent samples 

Two samples are drawn from different populations. The variances, σ2, are equal and known. The comparison 
will indicate if the two populations are the same. The procedure is as follows. 

a) State the object of the trial. 

H0: µ1 = µ2 

Ha: µ1 ≠ µ2 

(double-sided) 

Equivalently: Ha1: µ2 < µ1 with α/2 risk 

 Ha2: µ2 > µ1 with α/2 risk 

b) Choose α, β, δ2, σ2. 

α = 0,01 

β = 0,02 

δ2 = 1 

σ2 = 2 

c) Look up the value of Zα (double-sided normal). 

Zα = 2,576 

d) Look up the value of Zβ (single-sided normal). 

Zβ = 2,054 
e) Compute N1, where 

N1 = N2 = N 

and is the integer nearest to the value of the expression: 

0,5 + 2(Zα + Zβ)2 σ2/δ2 

N = 86 
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17.2.3.3 Comparison of two materials with paired samples 

The procedure is as follows: 

a) State the object of the trial. 

H0: µdiff = 0 

Ha: µdiff > 0 

b) Choose α, β, δ and estimate (σdiff)2. 

NOTE If the variance of the underlying population is σ2 and the variances of both populations are assumed to be 
the same, then the variance of the difference between two values, one from each population, is 2σ2. 

α = 0,10 

β = 0,05 

δ = 1 

σdiff
2 = 2σ2 

= 2 

c) Look up the value of Zα (single-sided normal). 

Zα = 1,282 

d) Look up the value of Zβ (double-sided normal). 

Zβ = 1,645 

e) Compute N pairs, where N is the integer nearest to the value of the expression: 

0,5 + (Zα + Zβ)2 (2σ2)/δ2 

N = 18 

17.2.4 Response experiments 

These include two-level factorials and composite designs. They are not covered in this International Standard 
and the references given should be consulted. Some examples are given in 17.3.3. 

17.3 Applications to rubber testing 

17.3.1 Descriptive experiments 

17.3.1.1 Refinement of confidence limits 

Reference should be made to 14.3.2, which considers an example of stress relaxation. When the procedure 
given in 17.2.2 is followed, the following results are obtained: 

a) σ = 0,31 (Standard deviation of 0,31 % per decade.) 

b) δ = 0,34 (The half width of the requested confidence interval is 5 % of 6,8 % which is 0,34 %.) 

c) α = 0,01 (A 99 % confidence interval is required.) 

d) Zα = 2,576 (A two-tail figure is needed so that α is split between the two extremes of the distribution.) 
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e) (Zασ/δ)2 = 5,52 

Rounding up: N = 6 

f) When steps 1) and 2) are repeated as necessary, the following results are obtained: 

1) tα = 4,032    (Table 11: two-sided: 99 %: n = 6) 

2) N = 14 

First repeat: 

3) tα = 3,012    (Table 11: two-sided: 99 %: n = 14) 

4) N = 8 

Second repeat: 

5) tα = 3,499    (Table 11: two-sided: 99 %: n = 8) 

6) N = 11 

Third repeat: 

7) tα = 3,169    (Table 11: two-sided: 99 %: n = 11) 

8) N = 9 

Fourth repeat: 

9) tα = 3,355    (Table 11: two-sided: 99 %: n = 9) 

10) N = 10 

Fifth repeat: 

11) tα = 3,25    (Table 11: two-sided: 99 %: n = 10) 

12) N = 9 

Thus repeated iteration gives a value of N that oscillates between 9 and 10. The more reliable choice would 
be 10. 

17.3.1.2 Refinement of a pass/fail status 

Reference should be made to 14.3.3, which considers an example of permeability. When the procedure given 
in 17.2.2 is followed, the following results are obtained: 

a) σ = 1,45 (1,45 × 10–15 m2⋅s–1⋅Pa–1) 

b) δ = 1,1 [(6,1 − 5) × 10–15 m2⋅s–1⋅Pa–1] 

c) α = 0,05 (95 % confidence required.) 

d) Zα = 1,645 (A one-tail figure is needed because the concern is only that the permeability should not 
be less than 5 × 10–15 m2 s–1⋅Pa–1.) 



ISO 19003:2006(E) 

© ISO 2006 – All rights reserved  97

e) (Zασ/δ)2 = 4,7 

Rounding up: N = 5 

f) When steps 1) and 2) are repeated as necessary, the following results are obtained: 

1) tα = 2,132    (Table 11: one-sided: 95 %: n = 5) 

2) N = 8 

First repeat: 

3) tα = 1,895    (Table 11: one-sided: 95 %: n = 8) 

4) N = 7 

Second repeat: 

5) tα = 1,943    (Table 11: one-sided: 95 %: n = 7) 

6) N = 7 

Thus seven test pieces are needed. 

17.3.2 Comparative experiments 

17.3.2.1 Comparison of a new material against a standard material 

Reference should be made to 14.3.3. In this application, let the standard rubber membrane have a 
permeability of 5 × 10–15 m2⋅s–1⋅Pa–1 with a known standard deviation of σ = 1,45 × 10–15 m2⋅s–1⋅Pa–1. 
Assuming that the permeability of the new material has the same variance, the size of the sample needed to 
detect an improvement, δ, of at least 1 × 10–15 m2⋅s–1⋅Pa–1 can be calculated. When the procedure given in 
17.2.3.1 is followed, the following results are obtained: 

a) Let the true mean permeability of the standard material be µ0 and the true mean permeability of the new 
material be µ1. 

Then 

H0: µ1 = µ0    (Null hypothesis is that there is no difference.) 

Ha: µ1 > µ0    (Alternative hypothesis is that there is an increase in permeability: a one-sided change.) 

b) α, β, δ are chosen. 

α = 0,05 (In order to look for a 95 % confidence interval.) 

β = 0,05 (In order to have a 95 % chance of detecting the difference if it exists.) 

δ = 1 (Only a difference of at least 1 × 10–15 m2⋅s–1⋅Pa–1 would be deemed to have any 
technical merit.) 

c) Zα = 1,645 

d) Zβ = 1,645 
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e) [(Zα + Zβ)σ/δ]2 = 22,5 

Rounding up: N = 23 

17.3.2.2 Comparison of two materials using independent samples 

Reference should be made to 7.3.3. A single compound material is tear-tested by two laboratories to discover 
if there is any bias one way or another in the tear-testing methods. It is assumed that there is no difference in 
the test pieces supplied to the two laboratories. The true mean values and variances are the same. However, 
there can be a difference between the measured results, caused by a difference in the measuring equipment 
or method. 

Let δ1 be the true mean measured value obtained by laboratory 1 and µ2 be the true mean measured value 
obtained by laboratory 2. 

From experience, or a preliminary trial, it is known that with this material a standard deviation, σ, of 0,9 can be 
expected. 

A prior specification could be that a difference, δ, of more than 1 would trigger a technical enquiry. 

When the procedure given in 17.2.3.2 is followed, the following results are obtained: 

a) The alternative hypotheses are: 

H0: µ1 = µ0 (The laboratory test methods produce the same results.) 

Ha: µ1 ≠ µ0 (The laboratory test methods produce different results even when testing the same 
materials.) 

b) α, β, δ, σ are chosen. 

α = 0,05 (In order to look for a 95 % confidence interval.) 

β = 0,1 (In order to have a 90 % chance of detecting the difference if it exists.) 

δ = 1 

σ = 0,9 

c) Zα = 1,960    (two-sided) 

d) Zβ = 1,282    (one-sided) 

e) 2(Zα + Zβ)2σ2/δ2 = 17,08 

Rounding up: N = 18 

Thus 36 test pieces should be cut from the source material and randomly allocated, 18 to each laboratory. 
The original positions of the 36 pieces should be recorded in case widely divergent values suggest that there 
could have been segregation of material composition and properties in the source material. 

17.3.2.3 Comparison of two materials with paired samples 

17.3.2.3.1 Example 1 

Random allocation was recommended in 17.3.2.2. An alternative would be to cut sample test pieces in pairs. 
Their adjacency would ensure that the effect of any segregation of properties for the source material would be 
minimized. 



ISO 19003:2006(E) 

© ISO 2006 – All rights reserved  99

The two pieces in each pair should be labelled A and B, then a random sequence of As and Bs should be 
used to allocate the test pieces to the two laboratories. 

Thus, if N = 12, a random sequence could be: 

laboratory 1: B A B B A B A A B B B A 

laboratory 2: A B A A B A B B A A A B 

In this experiment, the variable of interest is the difference between the measured values of each pair of test 
pieces. 

When the procedure given in 17.2.3.3 is applied, the following results are obtained: 

a) H0: µdiff = 0 

NOTE 1 This is the null hypothesis that there is no mean difference between the measured values of the two 
laboratories. 

Ha: µdiff > 0 

NOTE 2 The alternative hypothesis is that there is a difference. 

b) σdiff = σ√2 

= 0,90 × 1,414 

= 1,273 

Using the same values as those in 17.3.2.2: 

α = 0,05; 

β = 0,1; 

δ = 1. 

c) Zα = 1,645 

NOTE This is a single-sided value. 

d) Zβ = 1,282 

NOTE This is a single-sided value. 

e) (Zα + Zβ)2(2σ2)/δ2 = 13,88 

Rounding up: N = 14 

Thus 14 pairs of test pieces should be cut from the source material. In this case a comparison with paired 
samples is cheaper than a comparison with independent samples. 
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17.3.2.3.2 Example 2: A comparison of resistance to wear 

There is a choice of two materials, A and B, for making rubber soles for boys’ shoes. One experimental design 
would be to provide one group of boys with shoes soled with material A and a second group with shoes soled 
with material B. However, if the boys vary greatly in the rates at which they wear out shoes, any difference 
between the two materials could be hidden. A paired design would remove much of that variability. Each boy 
would be given a pair of shoes with the sole of one shoe made from material A and the sole of the other from 
material B. The choice of which was left or right for each boy would be determined by randomization. 

A preliminary trial reveals that the standard deviation, σ, of wear after a month is 2 mm. It is agreed that a 
difference, δ, between means of 1 mm will be sufficient to rule that one material is better than the other. It is 
necessary to calculate how many pairs of shoes should be made in order to demonstrate with a confidence of 
95 % (α = 0,05) that a difference of 1 mm is statistically significant. It is also specified that there should be a 
95 % chance (β = 0,05) of detecting that difference if it exists. 

When the procedure given in 17.2.3.3 is applied, the following results are obtained: 

a) H0: µmdiff = 0 

NOTE 1 The null hypothesis is that the wear rates of the two materials are the same. 

Ha: µmdiff > 0 

NOTE 2 The alternative hypothesis is that there is a difference. 

b) σ = 2 

Therefore 

σdiff = σ√2 

 = 2 × 1,414 

 = 2,828 

In addition 

α = 0,05; 

β = 0,05; 

δ = 1. 

c) Zα = 1,645 

NOTE This is a single-sided value. 

d) Zβ = 1,645 

NOTE This is a single-sided value. 

e) (Zα + Zβ)2(2σ2)/δ2 = 86,59 

Rounding up: N = 87 
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Thus 87 pairs of shoes should be made and allocated to boys for a month’s wear. 

It is instructive to repeat this calculation using different values of α, β, δ, σ. 

17.3.3 Response experiments 

17.3.3.1 Two-level factorial designs 

17.3.3.1.1 A nitrile rubber compound is being developed to have: 

a) Good fluid resistance. 

NOTE 1 The volume swell should be as low as possible when a test piece is immersed in a standard oil in 
accordance with ISO 1817. 

b) Good low-temperature characteristics. 

NOTE 2 The brittleness temperature should be as low as possible when measured in accordance with ISO 812. 

The types of factor that the technologist would want to examine would be: 

1) the grade of nitrile rubber as characterized by the acrylonitrile (ACN) content, typically grade 1 
(28 %), grade 2 (34 %) and grade 3 (40 %); 

2) the type of plasticizer used, typically dioctyl phthalate (DOP) and butylcarbitoladipate (BCA); 

3) the amount of plasticizer, typically from 10 parts per hundred to 30 parts per hundred of rubber 
(p.h.r.); 

4) the type of carbon black, typically N550 and N330; 

5) the amount of carbon black, typically from 30 p.h.r. to 70 p.h.r. 

The grading of the nitrile rubber into three distinct grades presents a problem. They are ordered into three 
levels of ACN and can crudely be treated as a continuous variable. However, a better design and analysis 
would follow if the experimental levels of ACN could be chosen at any points between 28 % and 40 %. Also, 
since this is a wide range of ACN, a linear model appropriate to a two-level design is better served by 
choosing two grades whose ACN values are close together. 

17.3.3.1.2 The specification for the experimental design is: 

a) Response variables: 

1) Y1 is the fluid resistance as measured by fluid swell; 

2) Y2 is the brittleness temperature. 

b) Control variables: 

1) X1 = GRADE: low level 1, high level 2; 

2) X2 = PLAS: two levels DOP (level 1) and BCA (level 2); 

3) X3 = PX: low level 10 p.h.r., high level 15 p.h.r.; 

4) X4 = BLACK: two levels N550 (level 1) and N330 (level 2); 

5) X5 = BX: low level 30 p.h.r., high level 40 p.h.r. 
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PX and BX are the amounts of plasticizer and black, respectively. 

NOTE The ranges of the continuous variables, X1, X3, X5, have been chosen so that they are wide enough for some 
effects to be observed, but not so wide as to cover all possibilities. Wider ranges can include large quadratic (curvature) 
effects that would obscure the main linear effects. See 17.1.2.4.7. 

17.3.3.1.3 Without any prior knowledge about interactions, the experiment should be designed to permit the 
estimation of all 10 first-order interactions: 

⎯ GRADE.PLAS 

⎯ GRADE.PX 

⎯ GRADE.BLACK 

⎯ GRADE.BX 

⎯ PLAS.PX 

⎯ PLAS.BLACK 

⎯ PLAS.BX 

⎯ PX.BLACK 

⎯ PX.BX 

⎯ BLACK.BX 

If there were more factors, some consideration could be given to selecting interactions for inclusion according 
to the results of earlier experiments or a deep knowledge of the controlling physics and chemistry. 

17.3.3.1.4 With this specification, the experimental design given in Table 43 is produced. 
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Table 43 — Experimental design for nitrile rubber compound development (full factorial analysis) 

Observation GRADE PLAS PX BLACK BX 

1 1,0 1,0 10,0 1,0 30,0 
2 2,0 1,0 10,0 1,0 30,0 

3 1,0 2,0 10,0 1,0 30,0 

4 2,0 2,0 10,0 1,0 30,0 

5 1,0 1,0 15,0 1,0 30,0 

6 2,0 1,0 15,0 1,0 30,0 

7 1,0 2,0 15,0 1,0 30,0 

8 2,0 2,0 15,0 1,0 30,0 

9 1,0 1,0 10,0 2,0 30,0 

10 2,0 1,0 10,0 2,0 30,0 

11 1,0 2,0 10,0 2,0 30,0 

12 2,0 2,0 10,0 2,0 30,0 

13 1,0 1,0 15,0 2,0 30,0 

14 2,0 1,0 15,0 2,0 30,0 

15 1,0 2,0 15,0 2,0 30,0 

16 2,0 2,0 15,0 2,0 30,0 

17 1,0 1,0 10,0 1,0 40,0 

18 2,0 1,0 10,0 1,0 40,0 

19 1,0 2,0 10,0 1,0 40,0 

20 2,0 2,0 10,0 1,0 40,0 

21 1,0 1,0 15,0 1,0 40,0 

22 2,0 1,0 15,0 1,0 40,0 

23 1,0 2,0 15,0 1,0 40,0 

24 2,0 2,0 15,0 1,0 40,0 

25 1,0 1,0 10,0 2,0 40,0 

26 2,0 1,0 10,0 2,0 40,0 

27 1,0 2,0 10,0 2,0 40,0 

28 2,0 2,0 10,0 2,0 40,0 

29 1,0 1,0 15,0 2,0 40,0 

30 2,0 1,0 15,0 2,0 40,0 

31 1,0 2,0 15,0 2,0 40,0 

32 2,0 2,0 15,0 2,0 40,0 

 

This is a full factorial analysis (25 = 32 observations). With fewer interactions selected, a half-factorial of 16 
observations, or even a quarter-factorial of eight observations, could be possible. 

The 32 test pieces should be prepared in a random order. They should be tested for fluid resistance, Y1, in a 
second random order and tested for brittleness temperature, Y2, in a third random order. The measured 
results should be analysed using least-squares regression analysis. 

17.3.3.2 Two-level fractional factorial design 

17.3.3.2.1 Suppose that, from previous experience, only one interaction (PX.BX) is believed to be effective 
and the available budget forces the use of the smallest possible experiment. A two-level fractional factorial 
experiment, a quarter-factorial, is produced. This is shown in Table 44. 
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Table 44 — Experimental design for nitrile rubber compound development (quarter-factorial) 

Observation GRADE PLAS PX BLACK BX 

1 1,0 1,0 10,0 1,0 30,0 

2 1,0 1,0 15,0 2,0 30,0 

3 1,0 2,0 10,0 2,0 40,0 

4 1,0 2,0 15,0 1,0 40,0 

5 2,0 2,0 10,0 2,0 30,0 

6 2,0 2,0 15,0 1,0 30,0 

7 2,0 1,0 10,0 1,0 40,0 

8 2,0 1,0 15,0 2,0 40,0 

 

17.3.3.2.2 This is a small experiment, a quarter-factorial, and there are two dangers associated with it: 

a) there could be some interactions other than the one specified (PX.BX); 

b) there could be insufficient information for error analysis and for satisfactory testing of the fitted model. 

These dangers should be traded against the economic advantage of a small experiment. 

Alternatively, there are two approaches to dealing with these dangers: 

1) more interactions can be introduced so that a half design (16 observations) would be produced; 

2) the experiment can be replicated so that two test pieces would be made for each observation point. 

17.3.3.3 Composite designs 

17.3.3.3.1 Suppose that, after running the experiment specified in 17.3.3.1, or the one in 17.3.3.2, and 
analysing the results, the indications are that the optimum values of the two response variables are achieved 
using the plasticizer DOP and the carbon black N550, with high levels of plasticizer (PX) and high levels of 
carbon black (BX). At this stage, an experiment to fit a quadratic response function would be appropriate. 

NOTE The two response variables are: 

1) high fluid resistance as measured by low volume swell; 

2) low brittleness temperature. 

17.3.3.3.2 A specification for this further experiment to discover the best composition could be as given in 
Table 45. 

Table 45 — Experimental specifications for nitrile rubber compound development  
(quadratic response function) 

Variable Low High Increment Interactions Quadratic terms 

GRADE 1 3 1 GRADE.PX (GRADE)2 

PX (using DOP) 18 30 2 GRADE.BX (PX)2 

BX (using N550) 40 70 5 PX.BX (BX)2 

NOTE PX and BX are measured in parts per hundred of rubber (p.h.r.). 
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This would produce the composite design given in Table 46. 

Table 46 — Experimental design for nitrile rubber compound development 
(quadratic response function) 

Observation GRADE PX BX 

1 1,0 20,0 45,0 

2 3,0 20,0 45,0 

3 1,0 28,0 45,0 

4 3,0 28,0 45,0 

5 1,0 20,0 65,0 

6 3,0 20,0 65,0 

7 1,0 28,0 65,0 

8 3,0 28,0 65,0 

9 1,0 24,0 55,0 

10 3,0 24,0 55,0 

11 2,0 18,0 55,0 

12 2,0 30,0 55,0 

13 2,0 24,0 40,0 

14 2,0 24,0 70,0 

15 2,0 24,0 55,0 

16 2,0 24,0 55,0 

 

17.3.3.3.3 An experiment carried out according to this design would produce observed values 
(measurements of the response variables) which would permit the fitting of a model of the form: 

y = a + b1x1 + b2x2 + b3x3 + c1x1
2 + c2x2

2 + c3x3
2 + d1x1x2 + d2x1x3 + d3x2x3 (91) 

for each of the response variables. 

NOTE Random orders of preparation and testing should be used. 

These fitted models can then be used to make a close estimate of the optimum conditions, together with 
measures of confidence of those estimates based on analysis of variation of responses. 

18 Statistical quality control 

18.1 Principles 

Variation in the quality of any product (or service) is inevitable, but the application of statistical principles to 
data systematically gathered on the product enables decisions and courses of action to be taken which can 
significantly reduce the amount of reject material produced. In processes of any complexity, there will be 
several stages of quality control applied at key points in the manufacturing process, but at each stage the 
principle is the same, i.e. to monitor the process so that deviations which are unlikely to have occurred by 
chance can be detected quickly and corrective action taken to bring the process back into statistical control. 
The question of sampling is dealt with in Clause 13. 
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18.2 Methodology 

18.2.1 General 

Since visual representations are the preferable means for handling the data obtained in this type of situation, 
the most effective way of assessing the stability of a process is by means of a chart. Several types of control 
chart have been developed for the purpose. The subject is extensively covered in books devoted to quality 
control and in the standards literature so that only the outlines of the techniques are given in this International 
Standard. Reference should be made, for example, to British Standards BS 5700, BS 5701, BS 5703 and, for 
Shewhart control charts, ISO 8258. 

Control charts may be based either on attributes or on variables. 

18.2.2 Control charts by attributes 

In a particular process, a small sample of items can be taken at regular intervals and inspected against agreed 
criteria (or a single criterion) such as appearance, dimensions and properties. The outcome of the inspection 
is simply the number of nonconforming items found in the sample where one of the following applies: 

a) there is no objective measurement that can be made (for example in assessing the appearance of a 
moulding); 

b) an objective pass/fail decision can be taken (for example by the use of a Go/No-Go dimensioning gauge). 

This number is plotted against, typically, a time line or other logical unit of production (for example every 500th 
item). BS 5701 deals in detail with this class of control chart. 

18.2.3 Control charts by variables 

18.2.3.1 General 

The limitation of counting numbers of nonconformities is that this does not indicate how close to the 
acceptance limits the items are. While it can be relatively quick to apply such methods, it is an all or nothing 
approach. It is often desirable, therefore, to monitor the change in a property that is occurring in a process. 

18.2.3.2 Control charts 

18.2.3.2.1 Where, for example, a dimensional value is required to be recorded, or where a physical property 
such as tensile strength is being measured, the following procedure can be adopted: 

a) Take a small number of items. 

b) Determine the mean and the range (or the standard deviation) of the property. The mean and the range, 
providing the two independent statistics of a normal distribution (see Clause 6), define the distribution that 
is being achieved in the process. 

c) Plot the mean and range (or the standard deviation) on a time line in an analogous way to the attributes 
control chart. 

NOTE Since the number of items in the sample is generally quite small (of the order of five), it is usually much more 
convenient to employ the range as the measure of the spread of the distribution than the standard deviation (the 
relationship between these statistics is given in Clause 6). However, standard deviation can be used for the same 
purpose, as illustrated by the example in Table 47 and Figure 15. 
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18.2.3.2.2 The equivalent of the warning and action limits are called the inner and outer control limits. For 
the mean-value chart, these are both symmetrically displaced from the mean line. The usual limits chosen are 
those that should provide: 

a) only a 1 in 40 probability of a given mean deviating from the process mean by purely chance events for 
the inner control limit; 

b) only a 1 in 1 000 probability of a given mean deviating from the process mean by purely chance events 
for the outer control limit. 

From the properties of the normal distribution curve (see 6.2.1.1), these limits can be shown to be at: 

1) ± 1,96s/n for the inner control limit; 

2) ± 3,09s/n for the outer control limit. 

where 

s is the standard deviation of the distribution of results for individual items; 

n is the number of items sampled on each occasion (e.g. five) to provide the mean that is to be 
plotted on the chart. 

For simplicity, these numerical factors are sometimes replaced by 2 and 3, making little practical difference to 
the probability values involved. However, as with many statistical situations, the appropriate factors to use 
have been tabulated for convenience and can be found in British Standard BS 600. 

In the case of the range (or standard deviation) plot, the control limits are not symmetrically placed about the 
average value (the range cannot be negative and hence is, itself, numerically asymmetrical). BS 600 again 
provides the necessary factors to apply for construction of the control limits. 

18.2.3.3 Cusum charts 

18.2.3.3.1 An alternative to the conventional Shewhart-type control chart is the cumulative sum (cusum) 
chart in which, instead of the mean value of a property being plotted against time, the accumulated difference 
between the mean and some target value is plotted against time. 

18.2.3.3.2 For example, consider a set of property values yi, representing the hardness of the product being 
made, where every value of i relates to a logical and consistent feature of production. This could be one of the 
following: 

a) the mean hardness of five items in every two hundred made; 

b) the mean of five items taken every 4 h. 

Consider also that there is a required specification hardness. It would be convenient to make this the target 
value, T. From the sequence of y-values available, the corresponding cusum values are calculated as: 

1
( )

i

i j
j

C y T
=

= −∑  (92) 

and the Ci values are plotted against i in place of yi. 

18.2.3.3.3 The power of the cusum technique lies in the ease with which changes in the average 
performance of the process can be detected as changes in slope of the cusum line. A process which is 
producing material 

⎯ at the required target value generates a horizontal cusum line; 
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⎯ at above the target level generates a cusum line which slopes away from the horizontal with a positive 
slope; 

⎯ at consistently less than the target level generates a cusum line with a negative slope. 

The choice of the target value to use and of the scaling factor to apply to the cusum scale needs to be made 
with care if the resulting chart is to be optimized to the process under investigation. 

18.2.3.3.4 The charts can be used quantitatively for making decisions over the process in much the same 
way as control limits are used in the control charts. However, details of this kind are outside the scope of this 
International Standard and reference should be made to, for example, BS 5703-1 to 5703-3. 

18.3 Applications to rubber testing 

18.3.1 General 

Charts form a simple but powerful tool for the assessment of the quality level in any on-going process of 
rubber manufacture. 

18.3.2 Control charts 

18.3.2.1 The hardness of five consecutive rubber bushes which are specified as being (60 ± 5) IRHD was 
was determined every 200th bush made and the mean hardness plotted against its index number. From the 
calculation of overall (process) mean and standard deviation, which were found to be 59,5 IRHD and 
1,2 IRHD, respectively, the limits for the process were found to be at: 

a) 60,6 IRHD and 58,4 IRHD for the inner control limit;  

b) 61,2 IRHD and 57,8 IRHD for the outer control limit. 

Table 47 shows the results obtained. 
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Table 47 — Hardness results 

Index number Mean hardness Standard deviation 
 IRHD IRHD 

1 59,2 0,45 
2 59,6 0,55 
3 59,0 0,71 
4 60,2 0,84 
5 60,1 0,55 
6 59,0 0,71 
7 60,4 0,45 
8 60,0 0,00 
9 59,2 0,45 

10 59,8 0,45 
11 60,2 0,55 
12 58,6 0,55 
13 59,6 0,89 
14 59,6 0,55 
15 59,8 0,45 
16 59,8 0,45 
17 59,8 0,45 
18 60,0 0,00 
19 60,2 0,55 
20 60,0 0,71 
21 60,0 0,00 
22 60,5 0,00 
23 60,2 0,45 
24 60,0 0,71 
25 60,0 0,71 
26 60,2 0,45 
27 60,0 0,71 
28 60,0 0,71 
29 59,0 0,00 
30 58,8 0,45 
31 59,6 0,55 
32 59,6 0,55 
33 59,0 0,00 
34 59,4 0,55 
35 59,2 0,84 
36 59,2 0,45 
37 58,4 0,55 
38 58,4 0,55 
39 59,6 0,55 
40 58,8 0,84 
41 58,2 0,45 
42 59,2 0,45 
43 58,2 0,45 
44 57,0 0,71 
45 58,0 0,00 
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18.3.2.2 The chart obtained using these results is shown in Figure 14. It can be seen that, although the 
process is producing bushes which are well within specification, there is a clear trend towards lower hardness 
readings beyond index number 25, and the requirement to take action to correct the drift is indicated by the 
lower warning and action limits being reached. 

The corresponding standard deviation chart shown in Figure 15 shows no significant loss of consistency over 
the range being charted. The points that are below the lower action limit on this chart all correspond to 
standard deviation values of zero. Such a situation can arise when there is little discrimination in a test 
parameter, as is the case for hardness where readings can only be made to a whole number and the range 
over five readings can very easily be zero. In situations like this, common sense should prevail over the blind 
application of statistical principles, and no corrective action needs to be considered. 

 

Key 

X index number 
Y mean 

Figure 14 — Control chart of mean hardness values (using the data of Table 47) 
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Key 

X index number 
Y standard deviation 

Figure 15 — Control chart of hardness standard deviation values (using the data of Table 47) 

18.3.3 Cusum chart 

18.3.3.1 In the manufacture of a compound for O-rings, a sample sheet was taken every day and the 
tensile strength of the compound measured in accordance with ISO 37. Initially, the mean strength for each 
sample was plotted as a control chart (see Figure 16). The specification called for the strength to be a 
minimum of 20 MPa and, from observations made over a period of time, the process average was 
approximately 25 MPa with a coefficient of variation for the samples found to be 8 % of the mean. It appeared 
that everything was operating under control. 

18.3.3.2 However, it was decided to plot a cusum chart from the same data, a suitable target value to 
choose being 25 as this was close to the normal process average, hence the cusum table could be 
constructed as shown in Table 48. 
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Table 48 — Cusum table for mean strength values 

Index number Mean strength Deviation from target Cusum value 
 MPa   

1 25,0 0,0 0,0 
2 26,2 1,2 1,2 
3 22,8 − 2,2 − 1,0 
4 24,6 − 0,4 − 1,4 
5 24,2 − 0,8 − 2,2 
6 22,2 − 2,8 − 5,0 
7 26,0 1,0 − 4,0 
8 25,0 0,0 − 4,0 
9 25,6 0,6 − 3,4 

10 24,6 − 0,4 − 3,8 
11 26,6 1,6 − 2,2 
12 24,2 − 0,8 − 3,0 
13 25,0 0,0 − 3,0 
14 27,0 2,0 − 1,0 
15 26,0 1,0 0,0 
16 25,2 0,2 0,2 
17 22,2 − 2,8 − 2,6 
18 22,4 − 2,6 − 5,2 
19 23,0 − 2,0 − 7,2 
20 24,4 − 0,6 − 7,8 
21 23,4 − 1,6 − 9,4 
22 22,2 − 2,8 − 12,2 
23 24,6 − 0,4 − 12,6 
24 26,4 1,4 − 11,2 
25 25,4 0,4 − 10,8 
26 22,6 − 2,4 − 13,2 
27 23,2 − 1,8 − 15,0 
28 25,0 0,0 − 15,0 
29 23,8 − 1,2 − 16,2 
30 24,0 − 1,0 − 17,2 
31 25,8 0,8 − 16,4 
32 24,6 − 0,4 − 16,8 
33 26,0 1,0 − 15,8 
34 27,6 2,6 − 13,2 
35 25,6 0,6 − 12,6 
36 26,4 1,4 − 11,2 
37 26,8 1,8 − 9,4 
38 26,8 1,8 − 7,6 
39 27,8 2,8 − 4,8 
40 24,0 − 1,0 − 5,8 
41 28,0 3,0 − 2,8 
42 26,8 1,8 − 1,0 
43 28,4 3,4 2,4 
44 28,0 3,0 5,4 
45 24,0 − 1,0 4,4 
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18.3.3.3 The cusum chart is given in Figure 17. It is immediately apparent that, after a reasonably 
consistent period of about 15 index points, the average tensile strength began to fall until, at some point 
around index number 30, an increasing strength became apparent. It is quite likely that inspection of the batch 
records would show some characteristic changes in the process about indexes 15 and 30, such as the use of 
a new batch of carbon black or compounding operator. Notice that these clear trends in the cusum chart are 
not at all obvious in the normal control chart, where the individual sample-to-sample differences tend to mask 
the more subtle underlying changes that have taken place. 

 

Key 

X index number 
Y mean 

Figure 16 — Control chart of mean tensile strength 
(using the data of Table 48 and omitting action and warning limits) 
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Key 

X index number 
Y cusum 

Figure 17 — Cusum chart of mean tensile strength (using the data of Table 48) 
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Annex A 
(informative) 

 
Mathematical form of the distribution functions referenced in this 

International Standard 

A.1 The normal density distribution is a symmetrical bell-shaped function which can be defined 
mathematically by the equation: 

2

2
1 ( )( ) exp
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σ σ

⎡ ⎤− −
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 (A.1) 

In this form, the area under the curve (shown in Figure 1) is equal to 1, irrespective of the values of µ and σ. 

For the most general application, the abscissa, y, is presented in reduced form as given by the equation: 

xy µ
σ
−

=  (A.2) 

The proportion of the whole distribution which lies between x1 and x2 (i.e. the probability distribution function) 
can be determined by the equation: 

2

1

2

2
1 ( )( ) exp
2 2

x

x

xp x µ
σ σ

⎡ ⎤− −
= × ⎢ ⎥

π ⎢ ⎥⎣ ⎦
∫  (A.3) 

but, since the integral cannot be expressed analytically, it is more convenient to use tabulated values, which 
again are available in the form of the reduced variable, y, in any standard text on statistics. 

A.2 The double exponential density distribution function is given by: 

( ) exp( )exp exp( )f x ε ε= −⎡ ⎤⎣ ⎦  (A.4) 

which is shown in Figure 2. The corresponding probability distribution function is given by: 

( ) exp exp( )p x ε= − ⎡ ⎤⎣ ⎦  (A.5) 

The parameter, ε, which characterizes the distribution is related to the mean and standard deviation by the 
equation: 

( )
6

x Eµε
σ

π −
= −  (A.6) 

where E is Euler’s constant: 0,577 216. 

A.3 The Weibull density distribution function can be defined by the equation: 

( 1)
( ) exp

k kk x a x af x
b b b

− ⎡ ⎤− −⎛ ⎞ ⎛ ⎞⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (A.7) 

The form of the function is shown in Figure 3. 
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The probability distribution function is the integral of this, and fortunately there is a simple analytical form for it 
which is given by the equation: 

( ) 1 exp
kx ap x

b

⎡ ⎤−⎛ ⎞⎢ ⎥= − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (A.8) 

In this form, the parameter a represents the minimum life parameter for x at which the probability of failure just 
reaches zero (this denotes an infinite lifetime). In most practical applications, a is taken to be zero but, where 
there is a genuine fatigue limit, a can take a finite, non-zero value. 

The parameter b affects both the spread of results and the position of the peak of the density function, while k 
alters the shape of the density distribution. 
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Annex B 
(informative) 

 
Additional forms of mean value 

B.1 The geometrical mean, geomx , can sometimes be encountered in situations where differences in 
individual results can be over several decades, such as with some electrical tests or fatigue life. The 
geometrical mean is the nth root of the product of the n-values in the sample, which is given by the equation: 

geom 1 2 3... nx x x x x=   (B.1) 

It can be shown that the geometrical mean is the anti-logarithm of the arithmetic mean of the logarithms of the 
values. 

B.2 The root-mean-square (r.m.s.) or quadratic mean of a set of numbers is given as the square root of the 
mean of the squares of the values, i.e.: 

( )2r.m.s. x n= ∑  (B.2) 

This mean is frequently found to be useful where various elements of a test or process produce uncertainties 
in the property of interest and their combined effect is being sought. Also, when points are scattered on both 
sides of a line and an overall measure of the mean deviation is sought (e.g. a.c. voltage is listed as an r.m.s 
value since other averages of the sine wave are zero). 
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Annex C 
(informative) 

 
Inter-relationships for measures of central tendency in the double 

exponential and Weibull distributions 

C.1 Double exponential distribution 

From the equation of the double exponential distribution function, the following can be noted: 

a) the mode occurs when the parameter ε = 0; 

b) the median occurs when ε = ln(ln 2); 

c) the mean occurs when ε = − E (where E is Euler’s constant: 0,577 216). 

From this, it has been shown (see Reference [8]) that: 

Mode = Mean + 0,450 05σ 

Median = Mean + 0,164 28σ 

where σ is the population standard deviation (see 6.2.3). 

C.2 Weibull distribution 

For the Weibull distribution function, the mean can be shown to be given by the equation: 

1 (1/ )x a b kΓ= + +⎡ ⎤⎣ ⎦  (C.1) 

where 

x  is the mean; 

Γ is the gamma function. 

The standard deviation, σ, is given by the equation: 

{ }2 21 (2 / ) 1 (1/ )b k kσ Γ Γ= + − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (C.2) 

Similarly, it can be shown that: 

Median = a + b(ln2)(1/k) (C.3) 

Mode = a + b
(1/ )1 kk

k
−⎛ ⎞

⎜ ⎟
⎝ ⎠

 (C.4) 
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Annex D 
(informative) 

 
Equation for the calculation of standard deviation 

D.1 The form of the equation given in 6.2.3.2 is not always the most convenient to use since the mean 
should be calculated first and then a second calculation performed on the deviations. A more convenient form 
of the equation is, therefore, often used: 

1/ 22 2( ) ( ) /i iX x n
S

n

⎡ ⎤Σ − Σ
′ = ⎢ ⎥

⎢ ⎥⎣ ⎦
 (D.1) 

While this is mathematically precise, care should be taken in its use when computers or calculators are used 
to implement it. A large number of readings differing only in their fourth or more significant figure can give rise 
to truncation errors in the summation of the xi terms. As the difference in the two expressions in the numerator 
is relatively small in this case, surprisingly large errors can result. 

D.2 Consider the following example of only 15 results given in Table D.1. 

Table D.1 — Standard deviation comparisons 

Value Small Medium Large 

1 109,585 8 10 09,586 10 009,59 

2 106,336 9 10 06,337 10 006,34 

3 107,006 0 10 07,006 10 007,01 

4 106,607 0 10 06,607 10 006,61 

5 109,854 0 10 09,854 10 009,85 

6 103,337 5 10 03,337 10 003,34 

7 105,088 8 10 05,089 10 005,09 

8 107,605 3 10 07,605 10 007,61 

9 103,619 6 10 03,620 10 003,62 

10 104,260 0 10 04,260 10 004,26 

11 108,163 3 10 08,163 10 008,16 

12 103,354 7 10 03,355 10 003,35 

13 103,952 0 10 03,952 10 003,95 

14 103,021 2 10 03,021 10 003,02 

15 105,104 8 10 05,105 10 005,10 

Mean 105,793 1 10 05,793 10 005,79 

SD1 2,210 593 2,210 586 2,210 653 

SD2 2,210 874 2,245 459 4,532 608 
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D.3 The statistics were calculated using a BASIC programme with single-precision variables. The standard 
deviation, SD1, was calculated using the equation in 6.2.3.2 and standard deviation, SD2, using the equation 
in this annex. It is immediately apparent that no significant error in the standard deviation occurs using the first 
equation, while the second equation does lead to a rapid escalation in the error when the variation occurs in 
the fifth rather than the fourth or earlier significant figure. (Statistically, the significant figures in each of these 
three columns are in the units column. The hundreds, thousands and tens of thousands are not, statistically 
speaking, significant in the variations taking place.) 

D.4 When the calculation was performed on 150 values, SD2 for column three became four times larger 
than SD1 rather than twice as big as in the above example. 

D.5 In rubber testing, the situations in which the above are a serious problem are few and far between. 
Nevertheless, to be safe and to cover all eventualities, one of the following strategies should be adopted: 

a) Use the equation in 6.2.3.2. 

b) Ensure that the software or calculator used is working in double precision (i.e. to at least twelve significant 
figures). 

c) Subtract a constant from each value before performing the standard deviation calculation to remove the 
most numerically significant but unvarying figures from the values. In the above example, this could be 
effected by subtracting 1 000 from each value in the second column and 10 000 from each value in the 
third column. This procedure does not alter the standard deviation. 
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Annex E 
(informative) 

 
Construction of Weibull probability paper 

E.1 It is convenient for Weibull analysis to have the probability function as the ordinate and the observed 
lifetime as the abscissa. 

E.2 If the percentage of failed samples is F, then the ordinates corresponding to these percentage failure 
points are located at the values log[100/(100 − F)], these being plotted along one axis of normal log-log graph 
paper (2- or 3-cycle paper is usually sufficient). For example, the ordinate position for F = 10 is the line at 
which the graph scale = 0,045 8, for F = 50 the line is at the position 0,301 0, at F = 90 the position is 1,000 0, 
etc. 

The percentage failure parameter, Pm, is given by the equation: 

100
( 1)m

mP
n

=
+

 (E.1) 

where 

m is the mth value of the observations after being sorted into increasing numerical value; 

n is the total number of observations. 

E.3 The parameter Pm is then plotted at the equivalent F position along the ordinate against the 
corresponding lifetime along the logarithmic scale of the abscissa. 

From the resulting straight line, the shape parameter, k, is given by the slope of the line and the parameter b is 
the lifetime corresponding to a Pm value of 63,212 %. 

E.4 The above method implicitly assumes that the parameter a is zero. If it is not, then the resulting line will 
not be linear, but will increasingly deviate from a straight line as the lifetimes and probabilities decrease, the 
curvature being towards the life axis. In this instance, an estimate for a can be made by noting the value of the 
life which the curve asymptotically approaches (it can also be estimated by extrapolating the linear part of the 
curve at high probabilities to a low probability of around 5 %). 

This estimate for a is then subtracted from all the lifetime values and a second graph constructed using these 
adjusted lifetimes as the abscissae. Further refinements along the same lines can be made if required and if 
the quality of the data warrants it. 
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Annex F 
(informative) 

 
Equations for the calculation of Student’s t-values 

Provided an error not exceeding 0,5 % of the true t-value is acceptable, then the following equation can be 
used: 

1/( 1)nt A BCα
−= +  (F.1) 

where the constants A, B and C are as given in Table F.1. 

Table F.1 — Constants for t-value calculations 

t A B C 

t0,95 0,875 7 0,770 03 7,062 3 

t0,975 1,053 1 0,909 30 12,819 2 

t0,99 1,264 0 1,069 9 28,559 0 

t0,995 1,418 7 1,171 7 53,120 9 
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Annex G 
(informative) 

 
Analysis of variance 

G.1 Details for two factors 

G.1.1 Consider a set of observations, xijk 

where 

1 u i u a for factor A; 

1 u j u b for factor B; 

1 u k u r for the level of replication; 

and where b is constant for each level of A and r is constant for each level of A and B. This is a full three-
factorial experiment having abr elements. For cases where a full factorial analysis is not performed, the 
technique outlined in 10.2.2 should be followed for estimating the sums of squares. 

G.1.2 The following terms are defined: 

1 1 1

a b r

ijk
i j k

T x
= = =

= ∑∑∑     (i.e. T is the sum total of all the observations) (G.1) 

CF = T2/abr (G.2) 

1

r

ij ijk
k

X x
=

= ∑  (G.3) 

A
1

b

i ij
j

X x
=

= ∑  (G.4) 

B
1

a

j ij
i

X x
=

= ∑  (G.5) 

2 2
AB

1 1

a b

ij
i j

X X
= =

= ∑∑  (G.6) 

The sums of squares corresponding to the various sources of variation can then be determined. 

The sums of squares for factor A alone, Sa, is given by the equation: 

2
A

1 CF

a

i
i

a

X

S
br

== −
∑

 (G.7) 
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and the number of degrees of freedom, DFa, is given by the equation: 

DFa = a − 1 (G.8) 

The sums of squares for factor B alone, Sb, is given by the equation: 

2
B

1 CF

b

j
j

b

X

S
ar

== −

∑
 (G.9) 

and the number of degrees of freedom, DFb, is given by the equation: 

DFb = b − 1 (G.10) 

The sums of squares for factors A and B together, Sab, is given by the equation: 

2
CFab a b

ABXS S S
r

= − − −  (G.11) 

where A and B are the effects of factor A and factor B, respectively, 

and the number of degrees of freedom, DFab, is given by the equation: 

DFab = (a − 1)(b − 1) (G.12) 

The total sums of squares is given by: 

2
t

1 1 1
CF

a b r

ijk
i j k

S x
= = =

= −∑∑∑  (G.13) 

and the total number of degrees of freedom, DFt, is given by the equation: 

DFt = abr − 1 (G.14) 

From this, the residual sum of squares and residual number of degrees of freedom can be derived by 
difference, as follows: 

The residual sum of squares, Sr, is given by the equation: 

Sr = St − Sab − Sa − Sb (G.15) 

and the residual number of degrees of freedom, DFr, is given by the equation: 

DFr = DFt − DFab − DFa − DFb (G.16) 

As before, the mean square for each factor is calculated by dividing the corresponding sums of squares by the 
degrees of freedom. 

G.1.3 In principle, this process can be extended to any number of factors, although in practice it is often 
found that, beyond three or four factors, high-level interactions between the factors cause the untangling of 
their effects to be complicated and it is better to start with simpler experimental procedures (see Clause 17). 
As noted in Clause 10, some spreadsheet programmes for personal computers have built-in statistical 
procedures, including analysis of variance (ANOVA), which can greatly ease the mathematical burden of the 
calculations, although these can be limited to one- or two-factor problems. 
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G.2 Processing a three-factor analysis for interactions 

G.2.1 Consider a three-factor analysis of variance; the parameters derived in the analysis, as in 10.2.4, can 
be summarized in Table G.1. 

The residual corresponds to the within-factor source of variation in the simple one-factor case. 

G.2.2 Since there are now seven mean squares for comparison with the residual variance, there are seven 
F-tests to perform. The highest-order interaction should always be tested first against the residual. Thus, in 
this case, the test is for: 

(5,DF , DF )abc
abc r

r

M
F

M
>  (G.17) 

Table G.1 — Three-factor analysis of variance 

Source of variation Sum of squares Degrees of freedom Mean square 

Factor A Sa DFa Ma 

Factor B Sb DFb Mb 

Factor C Sc DFc Mc 

A/B interaction Sab DFab Mab 

A/C interaction Sac DFac Mac 

B/C interaction Sbc DFbc Mbc 

A/B/C interaction Sabc DFabc Mabc 

Residual Sr DFr Mr 

Total St DFt Mt 

 

G.3 If this inequality is true, then a significant interaction between all three of the factors has been 
demonstrated at the 95 % confidence level. If it is not, then it is concluded that there is no significant 
interaction and the next-lowest interaction(s) can be tested. 

G.4 However, if no significant difference between Mabc and Mr is revealed by this test, then it is clear that 
they are both equally valid estimates of the residual variance and that a more precise estimate should be 
obtained by pooling them. Thus, Table G.1 (ignoring the totals line which remains unchanged throughout) 
becomes as shown in Table G.2. 

Table G.2 — Revised parameters 

Source of variation Sum of squares Degrees of freedom Mean square 

Factor B Sb DFb Mb 

Factor C Sc DFc Mc 

A/B interaction Sab DFab Mab 

A/C interaction Sac DFac Mac 

B/C interaction Sbc DFbc Mbc 

Revised residual rS ′  rDF′  rM ′  
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In Table G.2, 

rS ′  = Sabc + Sr 

DFr′  = DFabc + DFr 

rM ′  = rS ′ /DFr′  

G.5 The variances associated with the interactions Ma, Mac and Mbc are then tested against rM ′  by the 
F-ratio test. Strictly, the smallest variance should be tested first and, if this is found to be non-significant, it 
should be pooled with the revised residual to form a new revised residual before the next-smallest variance is 
tested with this latest estimate of the residual, and so on. Once all the first-order interactions are tested in this 
way, the main factors can then be tested similarily. 

G.6 If an interaction is observed to be significant, then this residual is no longer simply a measure of the 
variance of the experimental conditions but has an additional variance associated with the values of the 
factors involved and hence it cannot be pooled into the residual variance. In such an instance, the next-lower-
order interactions to be tested which are associated with this significant interaction should not be compared 
with the residual variance but with the interaction variance. Thus if Ma is shown to be significantly different 
from rM ′ , then Ma and Mb should be ratioed with Mab and not with rM ′ . Mc on the other hand should still be 
ratioed with rM ′  as it is not involved in the interaction which is significant. 

G.7 Where an interaction is shown to be significant, it is always worth examining the data (a simple 
graphical method is very effective) to see that the trends are consistent and reasonable with what could be 
intuitively expected from a knowledge of the processes involved. Statistical tests are no more than tools to be 
used alongside expert knowledge and common sense in drawing conclusions over the observations made in 
the particular circumstances. 

G.8 Thus, in the example above, if Ma were shown to be significant, plots should be made of the sum of the 
observations at constant a and b, against a at constant b, and against b at constant a. If these two plots show 
a reasonable measure of consistency in their form and/or are consistent with prior knowledge of the processes 
involved, then the interaction should be accepted. It would then be reasonable to perform the analysis of 
variance again, taking out the factor A so that A was constant in each analysis. The analysis would therefore 
have to be performed na times, where na is the number of levels of factor A. (Alternatively, the factor B could 
be kept constant and nb analyses performed.) 

G.9 If, on examination of the plots, no clear or consistent trends are observed, or if the trends are 
contradictory to those expected from a knowledge of the processes (e.g. decreasing hardness with increasing 
carbon black content), then either chance has indeed intervened, despite the probabilities, or factors that have 
not been considered and hence not controlled are causing the observations encountered. Either way, further 
experimental work would be prudent. 
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Annex H 
(informative) 

 
Equations for the calculation of regression coefficients 

H.1 General 

Where access to suitable computer software is unavailable or restricted, the following factor equations may be 
used to enable the coefficients of the regression line to be determined. 

H.2 Quadratic least-squares regression analysis 

Calculate the factors C11, Cyy and Cy1 as for the linear case and, in addition, the following factors: 

( )24 2
22 /C x x n= Σ − Σ  (H.1) 

( )23 2
12 /C x x x n= Σ − Σ Σ  (H.2) 

( )2 2 2 /yC x y y x n= Σ − Σ Σ  (H.3) 

Then find the best estimates for the coefficients from the identities: 

1 12 2 11

12 12 22 11

y yC C C C
c

C C C C
−

=
−

 (H.4) 

2 12 1 11

12 12 22 11

y yC C C C
b

C C C C
−

=
−

 (H.5) 

( )2 /a y b x c x n= Σ − Σ − Σ  (H.6) 

For checking the variance ratio to see how significant the regression line is, the factor D is given by: 

D = bCy1 + cCy
2 (H.7) 

and the F-ratio is given by: 

r
3

2 yy

D nF
C D

−
= ×

−
 (H.8) 
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H.3 Cubic least-squares regression analysis 

Calculated the factors C11, C22, C12, Cyy, Cy1 and Cy2 as for the linear and quadratic cases. Then, in addition, 
the following factors: 

( )26 3
33 /C x x n= Σ − Σ  (H.9) 

( )24 3
13 /C x x x n= Σ − Σ Σ  (H.10) 

5 2 3
23 /C x x x n= Σ − Σ Σ  (H.11) 

3 3
3 ( ) /yC x y y x n= Σ − Σ Σ  (H.12) 

Define a denominator, which is constant for each of the coefficients, as 

Den = C13(C13C22 − C12C23) + C23(C11C23 − C12C13) + C33(C12C12 − C11C22) (H.13) 

Then the coefficients are given by: 

d = [Cy1(C13C22 − C12C23) + Cy2(C11C23 − C12C13) + Cy3(C12C12 − C11C22)]/Den (H.14) 

c = [Cy1(C12C33 − C13C23) + Cy2(C13C13 − C11C33) + Cy3(C11C23 − C12C13)]/Den (H.15) 

b = [Cy1(C23C23 − C22C33) + Cy2(C12C33 − C13C23) + Cy3(C13C22 − C12C23)]/Den (H.16) 

2 3( ) /a y b x c x d x n= Σ − Σ − Σ − Σ  (H.17) 

For checking the variance ratio to see how significant the regression line is, the factor D is given by: 

D = bCy1 + cCy2dCy3 (H.18) 

and the F-ratio by the equation: 

r
4

3 yy

D nF
C D

−
= ×

−
 (H.19) 
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Annex I 
(informative) 

 
The intercal method 

I.1 Inter-laboratory test trials often produce surprisingly large reproducibility, R, values, and experience 
indicates that a given laboratory tends to produce consistently low or high mean values for a given test relative 
to the grand mean for the trial as a whole. In other words, that laboratory tends to have a consistent bias in its 
response. (See for example W.J. Youden [10] to [12].) 

I.2 On this basis, it is possible to produce a calibration curve for each laboratory for each type of test being 
considered and then to use that calibration curve to correct for the bias of the laboratory, in much the same 
way as calibration corrections are applied to test instruments. 

I.3 A series of calibration materials covering the required range of the property being measured is supplied 
to the participating laboratories which make a measurement [either a single test result or a mean (median) of 
several replicates as previously agreed by the participants] on each material. 

I.4 The mean value, M, for each material, taken over all the laboratories, is found and then the deviation 
(d = m − M) between each individual laboratory (m) and this mean is calculated. 

I.5 For each laboratory, its value of d is plotted against the M-value for each material and a linear least-
squares regression determined which gives a slope and intercept value characteristic of that laboratory for the 
given test. These characteristics can be interpreted as follows: 

a) a slope and intercept of (near) zero indicate that the laboratory is close to the overall mean throughout the 
property range; 

b) a non-zero intercept and zero slope show that the laboratory has a consistent bias across the range; 

c) a non-zero slope shows that the laboratory has a systematically varying bias across the range. 

I.6 Once the slope and intercept factors are known, the assumption is made that these are constant for the 
laboratory (in terms of the test in question). Hence for any further test results a correction to its normal value 
can be made from the equation: 

Corrected value = Observed value − (Intercept + Slope − Observed value) (I.1) 

I.7 These corrected values can then be used either in terms of the analysis of an inter-laboratory test 
programme or for routine commercial use such as supplier/purchaser test schemes. 
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variances 

[26] ISO 2859 (all parts), Sampling procedures for inspection by attributes 

[27] ISO 2921, Rubber, vulcanized — Determination of low-temperature characteristics — Temperature-
retraction procedure (TR test) 

[28] ISO 3384, Rubber, vulcanized or thermoplastic — Determination of stress relaxation in compression at 
ambient and at elevated temperatures 

[29] ISO 3534 (all parts), Statistics — Vocabulary and symbols 

[30] ISO 3951 (all parts), Sampling procedures for inspection by variables 

[31] ISO 4633, Rubber seals — Joint rings for water supply, drainage and sewerage pipelines — 
Specification for materials 

[32] ISO 4649, Rubber, vulcanized or thermoplastic — Determination of abrasion resistance using a 
rotating cylindrical drum device 

[33] ISO 5479, Statistical interpretation of data — Tests for departure from the normal distribution 

[34] ISO 5725 (all parts), Accuracy (trueness and precision) of measurement methods and results 

[35] ISO 6133, Rubber and plastics — Analysis of multi-peak traces obtained in determinations of tear 
strength and adhesion strength 

[36] ISO 6943, Rubber, vulcanized — Determination of tension fatigue 

[37] ISO 8258, Shewhart control charts 

[38] ISO 8423, Sequential sampling plans for inspection by variables for percent nonconforming (known 
standard deviation) 

[39] ISO/TR 8550, Guide for the selection of an acceptance sampling system, scheme or plan for 
inspection of discrete items in lots 

[40] ISO/TR 9272, Rubber and rubber products — Determination of precision for test method standards 

[41] BS 600, A guide to the application of statistical methods to quality and standardization 

[42] BS 5700, Guide to process control using quality control chart methods and cusum techniques 
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[43] BS 5701 (all parts), Guide to quality control and performance improvement using qualitative (attribute) 
data 

[44] BS 5703 (all parts), Guide to data analysis and quality control using cusum techniques 

The following list of references will be found useful for the user who wishes to study particular statistical 
techniques to a greater depth than is possible to provide in this International Standard 

[45] EHRENBURG, A.S.C.: A primer in data reduction, Wiley, Chichester, 1982 

[46] CHATFIELD, C.: Statistics for technology, London: Chapman and Hall, London, 1983 

[47] CALCULL, R. Statistics in research and development, Chapman and Hall, London, 1991 

[48] GROVE, D.M., and DAVIS, T.P.: Engineering quality and experimental design, Longman, Harlow, 1992 

[49] BOX, G.E.P., HUNTER, W., and HUNTER, S.: Statistics for experimenters, Wiley, Chichester, 1983 

[50] BOX, G.E.P., and DRAPER, N.R.: Empirical model building and response surfaces, Wiley, Chichester, 
1987 

[51] CORNELL, J.A.: Experiments with mixtures, Wiley, Chichester, 1981 

[52] PEARSON, E.S., and HARTLEY, H.O. (eds).: Biometrika Tables for Statisticians, Charles Griffin and Co., 
London, 1976 

[53] DRAPER, N.R., and SMITH, H.: Applied Regression Analysis, Wiley, 1981 

[54] HAGN, G.J., and MEEKER, W.Q.: Statistical Intervals — A Guide for Practitioners, Wiley, 1991 
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