INTERNATIONAL STANDARD ISO 18739 First edition 2016-03-01 # Dentistry — Vocabulary of process chain for CAD/CAM systems Médecine bucco-dentaire — Vocabulaire de la chaîne de procédé applicable aux systèmes de CFAO # **COPYRIGHT PROTECTED DOCUMENT** # © ISO 2016, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Con | tent | ts | Page | |-------|----------------|-------------------------------------------------------------------------|------| | Forev | vord | | iv | | Intro | ductio | on | v | | 1 | Scop | pe | 1 | | 2 | Nori | mative references | 1 | | 3 | 3.1 | ms and definitions Process step terms Measurement and calibration terms | 1 | | Anne | x A (in | nformative) Flow chart of process chain for CAD/CAM-systems | 9 | | Indox | , | | 10 | # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received. www.iso.org/patents Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT), see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 106, *Dentistry*, Subcommittee SC 9, *CAD/CAM-Systems*. # Introduction Terms and designations for individual system parts and process steps used in product descriptions and instructions for use provided by the manufacturers of dental CAD/CAD systems differ from each other, thus creating confusion among dentists and dental technicians. In order to overcome these ambiguities, it was decided to prepare an International Standard for terminology used in the process chain for CAD/CAM systems. For the purposes of illustrating the logic sequence of the process chain for CAD/CAM systems, a flow chart of this process chain is shown in <u>Annex A</u>. # Dentistry — Vocabulary of process chain for CAD/CAM systems # 1 Scope This International Standard specifies terms, synonyms for terms and definitions used in the process chain for CAD/CAM systems in dentistry. # 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 1942, Dentistry — Vocabulary ISO 5725-1, Accuracy (trueness and precision) of measurement methods and results — Part 1: General principles and definitions ISO 16443, Dentistry — Vocabulary for dental implants systems and related procedure ISO/ASTM 52900, Additive manufacturing — General principles — Terminology # 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 1942, ISO 5725-1, ISO 16443, ISO/ASTM 52900 and the following apply. NOTE In the following, first the preferred term and then the synonyms which have been in use so far are given. For the future it is recommended to use the preferred terms instead of the synonyms. # 3.1 Process step terms #### 3.1.1 # 3D data acquisition # three dimensional data acquisition 3D digitization and generation of a digital data set #### 3.1.2 #### 3D data acquisition system #### three dimensional data acquisition system hardware and software used for 3D data acquisition #### 3.1.3 # 3D scanning 3D digitizing raw data acquisition method of acquiring the shape and size of an object as a 3-dimensional representation by recording x,y,z coordinates on the objects surface and through software the collection of points is converted into digital data Note 1 to entry: This collection of data via the scanning process creates a raw data set (3.1.14). # ISO 18739:2016(E) Note 2 to entry: Typical scanning methods use some amount of automation, coupled with a touch probe or an optical sensor, or other device. [SOURCE: ISO/ASTM 52900:2015, definition 2.4.1, modified] #### 3.1.4 # additive manufacturing #### **AM** process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies [SOURCE: ISO/ASTM 52900:2015, definition 2.1.2, modified] #### 3.1.5 #### artifact any undesired alteration of data introduced in a digital process by an involved technique and/or technology #### 3.1.6 #### **CAD** computer-aided design hardware and software supporting the designing process Note 1 to entry: The acronym CAD is commonly used as preferred term. #### 3.1.7 #### **CAD** data design data set result of the *CAD process* (3.1.8) gained by manipulating the model data set for the purposes of transfer to the CAM system # 3.1.8 # **CAD process** design process (DEPRECATED) process of generating design data sets #### 3.1.9 #### **CAD** software design system system for the generation of a design data set #### 3.1.10 # **CAM** computer-aided manufacturing hardware and software supporting the manufacturing process Note 1 to entry: The acronym CAM is commonly used as preferred term. # 3.1.11 # **CAM system** manufacturing system digitally controlled system for the manufacture of CAD/CAM dental restorations EXAMPLE Milling machine, CAM software. # 3.1.12 #### **CAM software** software used for manipulating design data for manufacturing EXAMPLE Software for the calculation of milling paths. #### 3.1.13 #### data record one or more data items treated as a unit within a data set #### 3.1.14 #### data set complete numerical description EXAMPLE Raw data set (dot model), digitization data set (manipulated raw data set), surface model, facet model or volume model. Note 1 to entry: Raw data set is obtained by processing scanning data. #### 3.1.15 #### data structure defined format interrelating the data (records) in the data set #### 3.1.16 #### dental CAD/CAM system a set of hardware, software, materials, and devices, used to fabricate dental restorations Note 1 to entry: Hardware and software are used for data acquisition, design and manufacturing. #### 3.1.17 # dental CAD/CAM restoration *dental restoration* (3.1.18) produced by a dental CAD/CAM system #### 3.1.18 #### dental restoration any kind of restoration which replaces intra-oral hard and/or soft tissues # 3.1.19 # design data manipulation process CAD data manipulation process process of generating the manufacturing data set EXAMPLE Tooth path generation process. #### 3.1.20 #### digital impression acquisition of a data set with the numerical 3D-representation of the surfaces from the patient directly #### 3.1.21 #### digitizing device hardware for computer-aided design and manufacturing of custom-made indirect dental restorations used to record the topographical characteristics (e.g. surface) of teeth and surrounding tissues, implant connecting components, dental impressions, dental moulds or stone models by analogue or digital methods Note 1 to entry: These systems consist of a scanning device, hardware and software. Note 2 to entry: A surface digitization procedure starts with the generation of actually measured surface points (or their conversion, for example, in STL format), which are the measured digitization data. In most digitizing systems, the measured points are mathematically processed by operations such as: - matching - filtering - weighing - selective removal - smoothing, etc. # ISO 18739:2016(E) Note 3 to entry: This results in the processed digitization data (or surface data). These data depend very much on, for example, the digitization protocol (for example the number of passes), the extraction method of a surface from the raw data points and the matching of point clouds. #### 3.1.22 #### direct error error resulting in corrupted set of data values in its intended use #### 3.1.23 #### fit range of tightness or looseness between two or more mating parts Note 1 to entry: It is relative to a device, process or material in the accurate reproduction of a copy or product that has the accuracy within the tolerance of the device, process, or material used. #### 3.1.24 # indirect data acquisition data acquisition process performed not directly on the patient #### 3.1.25 #### indirect dental restoration any kind of restoration manufactured extraorally which replaces intra-oral hard and/or soft tissues EXAMPLE Crowns, bridges, inlays, implant superstructures, prostheses, provisional restorations. #### 3.1.26 #### indirect error error resulting in corrupted set of data values when communicating the data from one device or software to another #### 3.1.27 # **IGES** initial graphics exchange specification platform neutral CAD data exchange format intended for exchange of product geometry and geometry annotation information Note 1 to entry: The abbreviation IGES is commonly used as preferred term. [SOURCE: ISO/ASTM 52900:2015, definition 2.4.10, modified] #### 3.1.28 #### manufacturing data set manufacturing process data set data set, resulting from the manipulation of the design data, used for the manufacturing process EXAMPLE CAM software output file. # 3.1.29 # transfer function relative accuracy between a device's output measurement and the device's returned data value measurement that can be mathematically calculated and independently be measured # 3.1.30 # laboratory aid laboratory accessory tool, prosthetic implement or oral replication not directly applied to the patient EXAMPLE Master model. #### 3.1.31 # light scanning structured light scanning method using a narrowband spectrum of various light waves (e.g. blue, white, red) to scan a 3D object with precise measurements independent of environmental lighting conditions #### 3.1.32 #### optical scanning method and process of a scanning device that uses an optical lens to collect raw data from an observed object that can be digitized to a usable form so that a computer can produce an representative image #### 3.1.33 #### polygonization action of creating a surface by means of connecting points to form a multitude of small polygons #### 3.1.34 #### reflective surface surface of a dental model or intraoral dental structure to be digitally scanned and its ability to reflect light waves to provide accurate scan data to create a three dimensional image #### 3.1.35 # rapid prototyping <in additive manufacturing> application of additive manufacturing intended for reducing the time needed for producing prototypes Note 1 to entry: Historically, rapid prototyping (RP) was the first commercially significant application for additive manufacturing, and have therefore been commonly used as a general term for this type of technology. [SOURCE: ISO/ASTM 52900:2015, definition 2.6.4] #### 3.1.36 #### STL #### stereolithography file format for model data describing the surface geometry of an object as a tessellation of triangles used to communicate 3D geometries to machines in order to build physical parts Note 1 to entry: The STL file format was originally developed as part of the CAD package for the early STereoLithography Apparatus, thus referring to that process. It is sometimes also described as "Standard Triangulation Language" or "Standard Tessellation Language", though it has never been recognized as an official standard by any standardization organization. Note 2 to entry: STL is an interchange file format used to save computer-aided design files in a standard format that can be read by multiple computer-aided design and computer-aided manufacturing applications. Note 3 to entry: The abbreviation STL is commonly used as preferred term. [SOURCE: ISO/ASTM 52900:2015, definition 2.4.16, modified] #### 3.1.37 # subtractive manufacturing process process of machining, grinding, or reducing a larger bulk object to create a smaller detailed three dimensional object using computer aided design software and computer aided manufacturing methods #### 3.1.38 #### surface reverse engineering production of a virtual surface model (positive model) using the data set resulting from a digital impression (negative model) Note 1 to entry: A dot model is a suitable data set. #### 3.1.39 # triangulation method of determining the distance of a third object or point by measuring the distance between two separated points and the angles between the line joining them and the lines to the distant object or point # 3.1.40 #### virtual model a representative model of a three-dimensional object displayed through the use of computer aided design software #### 3.1.41 # virtual model data set manipulated digital data set #### 3.1.42 #### volume data acquisition acquisition of a volume in a 3D space Note 1 to entry: The description can be performed on the basis of density differences inside the three-dimensional space. #### 3.2 Measurement and calibration terms # 3.2.1 #### accuracy closeness of agreement between an individual result and an accepted reference value Note 1 to entry: This definition was described earlier in ISO 5725-1 as: Closeness of agreement between the result of a measurement and the true value of the measurand. Note 2 to entry: Accuracy is a qualitative concept. Its quantitative counterpart is error of measurement. [SOURCE: ISO/ASTM 52900:2015, definition 2.7.1, modified] #### 3.2.2 # calibration set of operations that establish, under specified conditions, the relationship between values of quantities indicated by a measuring instrument system, or values represented by a material measure or a reference material and the corresponding values realized by standards #### 3.2.3 #### drift slow change of a metrological characteristic of a measuring instrument #### 3.2.4 #### error of measurement result of a measurement minus a true value of the measurand Note 1 to entry: When it is necessary to distinguish "error" from "relative error", the former is sometimes called 'absolute error of measurement'. Note 2 to entry: In many instances the error of measurement is called 'total error'. #### 3.2.5 #### measurand particular quantity subject to measurement #### 3.2.6 # measurement procedure set of operations, described specifically, used in the performance of particular measurements according to a given method Note 1 to entry: In a quality system a measurement procedure is recorded as a working instructions document, and should be described in sufficient detail to enable an operator to carry out a measurement without additional information. Note 2 to entry: Metrological characteristics such as a repeatability, systematic error or minimum detectable value can be assessed in measurement procedures, not in methods of measurement. #### 3.2.7 # precision closeness of agreement between independent results of measurement obtained under stipulated conditions Note 1 to entry: Precision is a qualitative concept. The operational definition that applies in this standard is the standard deviation. [SOURCE: ISO 5725-1:1994, definition 3.12, modified] #### 3.2.8 #### random error result of a measurement minus the mean that would result from an infinite number of measurements of the same measurand carried out under repeatability conditions Note 1 to entry: Random error is equal to trueness minus systematic error. Note 2 to entry: In practice, random error may be estimated from 20 or more repeated measurements of a measurand under specified conditions. #### 3.2.9 #### relative error error of measurement divided by the true value of the measurement #### 3.2.10 # repeatability degree of alignment of two or more measurements of the same property using the same equipment and in the same environment Note 1 to entry: Also described as: Precision under repeatability conditions or closeness of the agreement between the results of successive measurements of the same measurand carried out under the same conditions of measurement. Note 2 to entry: Repeatability is a qualitative concept. Its quantitative counterpart is standard deviation of repeatability or coefficient of variation of repeatability of the measurement results. [SOURCE: ISO/ASTM 52900:2015, definition 2.7.6, modified] # 3.2.11 # repeatability conditions conditions where independent results of measurements are obtained with the same measurement procedure in the same laboratory by the same operator using the same equipment within short intervals of time #### 3.2.12 #### reproducibility precision under reproducibility conditions Note 1 to entry: Reproducibility is a qualitative concept. Its quantitative counterpart is standard deviation of reproducibility or coefficient of variation of reproducibility of the measurement results. # ISO 18739:2016(E) Note 2 to entry: Also described as: Closeness of the agreement between the results of measurements of the same measurand carried out under changed conditions of measurement. Note 3 to entry: The set of specified condition is termed 'reproducibility conditions'. Note 4 to entry: The changed conditions may include: principle of measurement, method of measurement, observer, measuring instrument, reference standard, location, conditions of use, time. [SOURCE: ISO 5725-1:1994, definition 3.17, added NOTES] #### 3.2.13 # reproducibility conditions conditions where results of measurements are obtained on the same measurand in different laboratories with different conditions Note 1 to entry: The different conditions should be specified. [SOURCE: ISO 5725-1:1994, definition 3.18, modified] #### 3.2.14 # systematic error mean that would result from an infinite number of measurements of the same measurand carried out under repeatability conditions minus a true value of the measurand Note 1 to entry: Systematic error is equal to trueness minus random error. Note 2 to entry: Systematic error may be constant or proportional to the value of the measurand. Note 3 to entry: In practice systematic error is estimated from 30 or more repeated measurements of a measurand under specified conditions. Note 4 to entry: In many instances the systematic error is called 'bias', but the International Vocabulary of Basic and General Terms in Metrology only uses this term as a characteristic of a measuring instrument. # 3.2.15 # true value (of a quantity) value consistent with the definition of a given particular quantity Note 1 to entry: This is a value that would be obtained by a perfect measurement. True values are by nature indeterminate. Note 2 to entry: The indefinite article 'a', rather than the definite article 'the' is used in conjunction with 'true value' because there may be many values consistent with the definition of a given particular quantity. #### 3.2.16 #### trueness closeness of agreement between the mean obtained from a large series of results of measurement and a true value or a conventional true value Note 1 to entry: Trueness is a qualitative concept. Its quantitative counterpart is systematic error. #### 3.2.17 #### uncertainty of measurement parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand Note 1 to entry: The parameter may be, for example, a standard deviation (or given multiple of it), or the half-width of an interval having a stated level of confidence. # Annex A (informative) # Flow chart of process chain for CAD/CAM-systems ${\bf Table~A.1-Flow chart~of~process~chain~for~CAD/CAM-systems}$ # Index | 3D data acquisition <u>3.1.1</u> | error of measurement <u>3.2.4</u> | |-----------------------------------------|-------------------------------------------------------| | 3D data acquisition system <u>3.1.2</u> | fit <u>3.1.23</u> | | 3D digitizing <u>3.1.3</u> | IGES <u>3.1.27</u> | | 3D scanning <u>3.1.3</u> | indirect data acquisition 3.1.24 | | accuracy <u>3.2.1</u> | indirect dental restorations 3.1.25 | | additive manufacturing <u>3.1.4</u> | indirect error <u>3.1.26</u> | | artefact <u>3.1.5</u> | initial graphics exchange specification <u>3.1.27</u> | | CAD <u>3.1.6</u> | laboratory accessory <u>3.1.30</u> | | CAD data <u>3.1.7</u> | laboratory aid <u>3.1.30</u> | | CAD data manipulation process 3.1.19 | light scanning 3.1.31 | | CAD process <u>3.1.8</u> | manufacturing data set 3.1.28 | | CAD software <u>3.1.9</u> | manufacturing process data set 3.1.28 | | calibration <u>3.2.2</u> | manufacturing system <u>3.1.11</u> | | CAM <u>3.1.10</u> | measurand 3.2.5 | | CAM software <u>3.1.12</u> | measurement procedure 3.2.6 | | CAM system <u>3.1.11</u> | optical scanning <u>3.1.32</u> | | computer-aided design <u>3.1.6</u> | polygonization 3.1.33 | | computer-aided manufacturing 3.1.10 | precision 3.2.7 | | data record <u>3.1.13</u> | random error 3.2.8 | | data set <u>3.1.14</u> | rapid prototyping <u>3.1.35</u> | | data structure <u>3.1.15</u> | raw data acquisition 3.1.3 | | dental CAD/CAM restoration 3.1.17 | reflective surface 3.1.34 | | dental CAD/CAM system <u>3.1.16</u> | relative error 3.2.9 | | dental restorations <u>3.1.18</u> | repeatability <u>3.2.10</u> | | design data manipulation process 3.1.19 | repeatability conditions 3.2.11 | | design data set <u>3.1.7</u> | reproducibility <u>3.2.12</u> | | design system <u>3.1.9</u> | reproducibility conditions 3.2.13 | | digital impression <u>3.1.20</u> | stereolithography <u>3.1.36</u> | | digitizing device <u>3.1.21</u> | STL <u>3.1.36</u> | | direct error <u>3.1.22</u> | subtractive manufacturing process 3.1.37 | | drift <u>3.2.3</u> | surface reverse engineering 3.1.38 | systematic error 3.2.14 three dimensional data acquisition 3.1.1 three dimensional data acquisition system 3.1.2 transfer function 3.1.29 triangulation 3.1.39 true value (of a quantity) 3.2.15 trueness 3.2.16 uncertainty of measurement 3.2.17 virtual model 3.1.40 virtual model data set 3.1.41 volume data acquisition 3.1.42