
Reference number

ISO 18443:2016(E)

© ISO 2016

INTERNATIONAL
STANDARD

ISO
18443

Space data and information transfer
systems — Space link extension —
Application program interface for return
channel frames service

Systémes de transfert des informations et données spatiales — Extension de
liaisons spatiales — Interface du programme d'application pour service de
réseau pour liaison retour

Second edition

2016-11-15

ISO 1 8443:201 6(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO 201 6

Al l rights reserved. Unless otherwise specified, no part of this publ ication may be reproduced or uti l ized otherwise in any form or by any

means, electronic or mechanical , including photocopying, or posting on the internet or an intranet, without prior written permission.

Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office
Ch. de Blandonnet 8  CP 401
CH-1 21 4 Vernier, Geneva, Switzerland
Tel. + 41 22 749 01 1 1
Fax + 41 22 749 09 47
copyright@iso.org
Web www. iso.org

Published in Switzerland

i i © ISO 201 6 – Al l rights reserved

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved i i i

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in l iaison with ISO, also take part in the work. ISO col laborates closely with the
International Electrotechnical Commission (IEC) on al l matters of electrotechnical standardization.

The procedures used to develop this document and those intended for i ts further maintenance are described
in the ISO/IEC Directives, Part 1 . In particular the different approval cri teria needed for the different types of
ISO documents should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2. www. iso.org/directives

Attention is drawn to the possibi l i ty that some of the elements of this document may be the subject of patent
rights. ISO shal l not be held responsible for identifying any or al l such patent rights. Detai ls of any patent
rights identified during the development of the document wi l l be in the Introduction and/or on the ISO l ist of
patent declarations received. www. iso.org/patents

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT)
see the fol lowing URL: Foreword - Supplementary information

ISO 1 8443 was prepared by the Consultative Committee for Space Data Systems (CCSDS) (as CCSDS
91 5.2-M-2, September 201 5) and was adopted (without modifications except those stated in clause 2 of this
International Standard) by Technical Committee ISO/TC 20, Aircraft and space vehicles, Subcommittee
SC 1 3, Space data and information transfer systems.

This second edition cancels and replaces the first edition (ISO 1 8443:201 3), which has been technically

revised. 	

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page ii September 2015

STATEMENT OF INTENT

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially

established by the management of its members. The Committee meets periodically to address

data systems problems that are common to all participants, and to formulate sound technical

solutions to these problems. Inasmuch as participation in the CCSDS is completely voluntary,

the results of Committee actions are termed Recommendations and are not in themselves

considered binding on any Agency.

CCSDS Recommendations take two forms: Recommended Standards that are prescriptive

and are the formal vehicles by which CCSDS Agencies create the standards that specify how

elements of their space mission support infrastructure shall operate and interoperate with

others; and Recommended Practices that are more descriptive in nature and are intended to

provide general guidance about how to approach a particular problem associated with space

mission support. This Recommended Practice is issued by, and represents the consensus of,

the CCSDS members. Endorsement of this Recommended Practice is entirely voluntary

and does not imply a commitment by any Agency or organization to implement its

recommendations in a prescriptive sense.

No later than five years from its date of issuance, this Recommended Practice will be

reviewed by the CCSDS to determine whether it should: (1) remain in effect without change;

(2) be changed to reflect the impact of new technologies, new requirements, or new

directions; or (3) be retired or canceled.

In those instances when a new version of a Recommended Practice is issued, existing

CCSDS-related member Practices and implementations are not negated or deemed to be non-

CCSDS compatible. It is the responsibility of each member to determine when such Practices

or implementations are to be modified. Each member is, however, strongly encouraged to

direct planning for its new Practices and implementations towards the later version of the

Recommended Practice.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page iii September 2015

FOREWORD

This document is a technical Recommended Practice for use in developing ground systems

for space missions and has been prepared by the Consultative Committee for Space Data

Systems (CCSDS). The Application Program Interface described herein is intended for

missions that are cross-supported between Agencies of the CCSDS.

This Recommended Practice specifies service type-specific extensions of the Space Link

Extension Application Program Interface for Transfer Services specified by CCSDS

(reference [3]). It allows implementing organizations within each Agency to proceed with

the development of compatible, derived Standards for the ground systems that are within

their cognizance. Derived Agency Standards may implement only a subset of the optional

features allowed by the Recommended Practice and may incorporate features not addressed

by the Recommended Practice.

Attention is drawn to the possibility that some of the elements of this document may be the

subject of patent rights. CCSDS has processes for identifying patent issues and for securing

from the patent holder agreement that all licensing policies are reasonable and non-

discriminatory. However, CCSDS does not have a patent law staff, and CCSDS shall not be

held responsible for identifying any or all such patent rights.

Through the process of normal evolution, it is expected that expansion, deletion, or

modification of this document may occur. This Recommended Standard is therefore subject

to CCSDS document management and change control procedures, which are defined in

Organization and Processes for the Consultative Committee for Space Data Systems

(CCSDS A02.1 -Y-4). Current versions of CCSDS documents are maintained at the CCSDS

Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be sent to the CCSDS

Secretariat at the e-mail address indicated on page i.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page iv September 2015

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies

– Agenzia Spaziale Italiana (ASI)/Italy.

– Canadian Space Agency (CSA)/Canada.

– Centre National d’Etudes Spatiales (CNES)/France.

– China National Space Administration (CNSA)/People’s Republic of China.

– Deutsches Zentrum für Luft- und Raumfahrt (DLR)/Germany.

– European Space Agency (ESA)/Europe.

– Federal Space Agency (FSA)/Russian Federation.

– Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

– Japan Aerospace Exploration Agency (JAXA)/Japan.

– National Aeronautics and Space Administration (NASA)/USA.

– UK Space Agency/United Kingdom.

Observer Agencies

– Austrian Space Agency (ASA)/Austria.

– Belgian Federal Science Policy Office (BFSPO)/Belgium.

– Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

– China Satellite Launch and Tracking Control General, Beij ing Institute of Tracking and

Telecommunications Technology (CLTC/BITTT)/China.

– Chinese Academy of Sciences (CAS)/China.

– Chinese Academy of Space Technology (CAST)/China.

– Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

– Danish National Space Center (DNSC)/Denmark.

– Departamento de Ciência e Tecnologia Aeroespacial (DCTA)/Brazil.

– Electronics and Telecommunications Research Institute (ETRI)/Korea.

– European Organization for the Exploitation of Meteorological Satellites

(EUMETSAT)/Europe.

– European Telecommunications Satellite Organization (EUTELSAT)/Europe.

– Geo-Informatics and Space Technology Development Agency (GISTDA)/Thailand.

– Hellenic National Space Committee (HNSC)/Greece.

– Indian Space Research Organization (ISRO)/India.

– Institute of Space Research (IKI)/Russian Federation.

– KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

– Korea Aerospace Research Institute (KARI)/Korea.

– Ministry of Communications (MOC)/Israel.

– National Institute of Information and Communications Technology (NICT)/Japan.

– National Oceanic and Atmospheric Administration (NOAA)/USA.

– National Space Agency of the Republic of Kazakhstan (NSARK)/Kazakhstan.

– National Space Organization (NSPO)/Chinese Taipei.

– Naval Center for Space Technology (NCST)/USA.

– Scientific and Technological Research Council of Turkey (TUBITAK)/Turkey.

– South African National Space Agency (SANSA)/Republic of South Africa.

– Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

– Swedish Space Corporation (SSC)/Sweden.

– Swiss Space Office (SSO)/Switzerland.

– United States Geological Survey (USGS)/USA.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page v September 2015

DOCUMENT CONTROL

Document Title Date Status

CCSDS

91 5.2-M-1

Space Link Extension—Application

Program Interface for Return

Channel Frames Service,

Recommended Practice, Issue 1

October

2008

Original issue, superseded

CCSDS

91 5.2-M-2

Space Link Extension—Application

Program Interface for Return

Channel Frames Service,

Recommended Practice, Issue 2

September

2015

Current issue:

– updates text to

accommodate changes

in current version of

SLE service

specification;

– differentiates

applicability by SLE

service specification

version;

– updates references.

NOTE – Substantive changes from the previous issue are marked with change bars in the

inside margin.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page vi September 2015

CONTENTS

Section Page

1 INTRODUCTION. 1-1

1 .1 PURPOSE . 1 -1

1 .2 SCOPE . 1 -1

1 .3 APPLICABILITY . 1 -2

1 .4 RATIONALE . 1 -2

1 .5 DOCUMENT STRUCTURE . 1 -3

1 .6 DEFINITIONS, NOMENCLATURE, AND CONVENTIONS . 1 -5

1 .7 REFERENCES . 1 -8

2 OVERVIEW . 2-1

2.1 INTRODUCTION . 2-1

2.2 PACKAGE RCF SERVICE INSTANCES . 2-1

2.3 PACKAGE RCF OPERATIONS . 2-5

2.4 SECURITY ASPECTS OF THE SLE RCF TRANSFER SERVICE . 2-8

3 RCF SPECIFIC SPECIFICATIONS FOR API COMPONENTS . 3-1

3 .1 API SERVICE ELEMENT . 3 -1

3 .2 SLE OPERATIONS . 3 -6

3 .3 SLE APPLICATION . 3 -7

3 .4 SEQUENCE OF DIAGNOSTIC CODES . 3 -7

ANNEX A RCF SPECIFIC INTERFACES (NORMATIVE) . A-1

ANNEX B ACRONYMS (INFORMATIVE) .B-1

ANNEX C INFORMATIVE REFERENCES (INFORMATIVE) . C-1

Figure

1 -1 SLE Services and SLE API Documentation . 1 -4

2-1 RCF Service Instances . 2-2

2-2 RCF Operation Object Interfaces . 2-7

Table

2-1 RCF Configuration Parameters . 2-4

2-2 RCF Status Information . 2-5

2-3 Mapping of RCF Operations to Operation Object Interfaces . 2-6

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 1 -1 September 2015

1 INTRODUCTION

1.1 PURPOSE

The Recommended Practice Space Link Extension—Application Program Interface for

Transfer Services—Core Specification (reference [3]) specifies a C++ API for CCSDS Space

Link Extension Transfer Services. The API is intended for use by application programs

implementing SLE transfer services.

Reference [3] defines the architecture of the API and the functionality on a generic level,

which is independent of specific SLE services and communication technologies. It is thus

necessary to add service type-specific specifications in supplemental Recommended

Practices. The purpose of this document is to specify extensions to the API needed for

support of the Return Channel Frames (RCF) service defined in reference [2] .

1.2 SCOPE

This Recommended Practice defines extensions to the SLE API in terms of:

a) the RCF-specific functionality provided by API components;

b) the RCF-specific interfaces provided by API components; and

c) the externally visible behavior associated with the RCF interfaces exported by the

components.

It does not specify:

a) individual implementations or products;

b) the internal design of the components; and

c) the technology used for communications.

This Recommended Practice defines only interfaces and behavior that must be provided by

implementations supporting the Return Channel Frames service in addition to the

specification in reference [3] .

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 1 -2 September 2015

1.3 APPLICABILITY

The Application Program Interface specified in this document supports three versions of the

Return Channel Frames service, namely:

a) Generation 1 identified by the version number 1 in the BIND operation, as specified

by reference [C2] ;

b) Generation 2 identified by the version number 2 in the BIND operation, as specified

by reference [C3] ;

c) Generation 3 identified by the version number 4 in the BIND operation, as specified

by reference [2] .

NOTE – The use of the term ‘Generation’ follows the definition in the API Core

Specification (reference [3]) where it is used to classify all SLE Transfer

Services.

Support for Generation 1 and Generation 2 of this service is included for backward

compatibility purposes for a limited time and may not be continued in future versions of this

specification. Support for Generation 1 (i.e. , version 1 of the RCF service) implies that SLE

API implementations of this specification are able to interoperate with peer SLE systems that

comply with the specification of the Transport Mapping Layer (TML) in ‘Specification of a

SLE API Proxy for TCP/IP and ASN.1 ’ , ESOC, SLES-SW-API-0002-TOS-GCI, Issue 1 .1 ,

February 2001 . For Generation 2 and 3 of these services, SLE API implementations of this

specification are able to interoperate with peer SLE systems that comply with the

specification of the Transport Mapping Layer (TML) in reference [C5] .

Provisions within this Recommended Practice that are specific for one or more generations

are marked as follows:

– [Gn:] for provisions specific to Generation n;

– [Gn,m:] for provisions specific to Generation n and Generation m.

Provisions that apply to all generations are not marked.

1.4 RATIONALE

This Recommended Practice specifies the mapping of the RCF service specification to

specific functions and parameters of the SLE API. It also specifies the distribution of

responsibility for specific functions between SLE API software and application software.

The goal of this Recommended Practice is to create a standard for interoperability between:

a) application software using the SLE API and SLE API software implementing the SLE

API; and

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 1 -3 September 2015

b) service user and service provider applications communicating with each other using

the SLE API on both sides.

This interoperability standard also allows exchangeability of different products implementing the

SLE API, as long as they adhere to the interface specification of this Recommended Practice.

1.5 DOCUMENT STRUCTURE

1.5.1 ORGANIZATION

This document is organized as follows:

– section 1 provides purpose and scope of this specification, identifies conventions, and

lists definitions and references used throughout the document;

– section 2 provides an overview of the RCF service and describes the API model

extension including support for the RCF service;

– section 3 contains detailed specifications for the API components and for applications

using the API;

– annex A provides a formal specification of the API interfaces and data types specific

to the RCF service;

– annex B lists all acronyms used within this document;

– annex C lists informative references.

1.5.2 SLE SERVICE DOCUMENTATION TREE

The SLE suite of Recommended Standards is based on the cross support model defined in the

SLE Reference Model (reference [1]). The services defined by the reference model constitute

one of the three types of Cross Support Services:

a) Part 1 : SLE Services;

b) Part 2: Ground Domain Services; and

c) Part 3 : Ground Communications Services.

The SLE services are further divided into SLE service management and SLE transfer

services.

The basic organization of the SLE services and SLE documentation is shown in figure 1 -1 .

The various documents are described in the following paragraphs.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 1 -4 September 2015

Core Specification

Appl ication
Programmer’s

Guide

SLEAPI forTransferServices

Forward
SLE Service
Specifications

Return
SLE Service
Specifications

Summary of
Concept and
Rationale

Cross Support

Reference Model

Part 1 : SLE Services

Cross Support Concept

Part 1 : SLE Services

SLE Executive

Summary

Space Link Extension

Return SLE Service

Specifications

SLETransfer Services

SLE Service

Management Suite

I nternet Protocol for

Transfer Services

Forward SLE Service

Specifications

Legend:
Recommended

Practice (Magenta)
Report (Yellow)Report (Green)

Recommended

Standard (Blue)

Figure 1-1: SLE Services and SLE API Documentation

a) Cross Support Reference Model—Part 1: Space Link Extension Services, a

Recommended Standard that defines the framework and terminology for the

specification of SLE services.

b) Cross Support Concept—Part 1: Space Link Extension Services, a Report introducing

the concepts of cross support and the SLE services.

c) Space Link Extension Services—Executive Summary, an Administrative Report

providing an overview of Space Link Extension (SLE) Services. It is designed to

assist readers with their review of existing and future SLE documentation.

d) Forward SLE Service Specifications, a set of Recommended Standards that provide

specifications of all forward link SLE services.

e) Return SLE Service Specifications, a set of Recommended Standards that provide

specifications of all return link SLE services.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 1 -5 September 2015

f) Internet Protocol for Transfer Services, a Recommended Standard providing the

specification of the wire protocol used for SLE transfer services.

g) SLE Service Management Specifications, a set of Recommended Standards that

establish the basis of SLE service management.

h) Application Program Interface for Transfer Services—Core Specification, a

Recommended Practice document specifying the generic part of the API for SLE

transfer services.

i) Application Program Interface for Transfer Services—Summary of Concept and

Rationale, a Report describing the concept and rationale for specification and

implementation of a Application Program Interface for SLE Transfer Services .

j) Application Program Interface for Return Services, a set of Recommended Practice

documents specifying the service type-specific extensions of the API for return link

SLE services.

k) Application Program Interface for Forward Services, a set of Recommended Practice

documents specifying the service type-specific extensions of the API for forward link

SLE services.

l) Application Program Interface for Transfer Services—Application Programmer’s

Guide, a Report containing guidance material and software source code examples for

software developers using the API.

1.6 DEFINITIONS, NOMENCLATURE, AND CONVENTIONS

1.6.1 DEFINITIONS

1.6.1.1 Definitions from SLE Reference Model

This Recommended Practice makes use of the following terms defined in reference [1] :

a) Return Channel Frames service (RCF service);

b) operation;

c) service provider (provider);

d) service user (user);

e) SLE transfer service instance;

f) SLE transfer service production;

g) SLE transfer service provision.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 1 -6 September 2015

1.6.1.2 Definitions from RCF Service

This Recommended Practice makes use of the following terms defined in reference [2] :

a) association;

b) communications service;

c) confirmed operation;

d) delivery mode;

e) global VCID;

f) invocation;

g) latency limit;

h) lock status;

i) notification;

j) offline processing latency;

k) parameter;

l) performance;

m) permitted global VCID set;

n) port identifier;

o) production status;

p) return;

q) service instance provision period;

r) transfer buffer;

s) unconfirmed operation;

t) virtual channel.

1.6.1.3 Definitions from ASN.1 Specification

This Recommended Practice makes use of the following term defined in reference [5] :

a) Object Identifier;

b) Octet String.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 1 -7 September 2015

1.6.1.4 Definitions from UML Specification

This Recommended Practice makes use of the following terms defined in reference [C9] :

a) Attribute;

b) Base Class;

c) Class;

d) Data Type;

e) Interface;

f) Method.

1.6.1.5 Definitions from API Core Specification

This Recommended Practice makes use of the following terms defined in reference [3] :

a) Application Program Interface;

b) Component.

1.6.2 NOMENCLATURE

1.6.2.1 Normative Text

The following conventions apply for the normative specifications in this Recommended

Standard:

a) the words ‘ shall’ and ‘must’ imply a binding and verifiable specification;

b) the word ‘ should’ implies an optional, but desirable, specification;

c) the word ‘may’ implies an optional specification;

d) the words ‘ is’ , ‘are’ , and ‘will’ imply statements of fact.

NOTE – These conventions do not imply constraints on diction in text that is clearly

informative in nature.

1.6.2.2 Informative Text

In the normative sections of this document, informative text is set off from the normative

specifications either in notes or under one of the following subsection headings:

– Overview;

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 1 -8 September 2015

– Background;

– Rationale;

– Discussion.

1.6.3 CONVENTIONS

This document applies the conventions defined in reference [3] .

The RCF-specific model extensions in section 2 are presented using the Unified Modeling

Language (UML) and applying the conventions defined in reference [3] .

The RCF-specific specifications for API components in section 3 are presented using the

conventions specified in reference [3] .

The RCF-specific data types and interfaces in annex A are specified in the notation of the

C++ programming language using the conventions defined in reference [3] .

1.7 REFERENCES

The following publications contain provisions which, through reference in this text,

constitute provisions of this document. At the time of publication, the editions indicated

were valid. All publications are subject to revision, and users of this document are

encouraged to investigate the possibility of applying the most recent editions of the

publications indicated below. The CCSDS Secretariat maintains a register of currently valid

CCSDS publications.

NOTE – A list of informative references is provided in annex C.

[1] Cross Support Reference Model—Part 1: Space Link Extension Services. Issue 2.

Recommendation for Space Data System Standards (Blue Book), CCSDS 910.4-B-2.

Washington, D.C.: CCSDS, October 2005.

[2] Space Link Extension—Return Channel Frames Service Specification. Issue 2.

Recommendation for Space Data System Standards (Blue Book), CCSDS 91 1 .2-B-2.

Washington, D.C.: CCSDS, January 2010.

[3] Space Link Extension—Application Program Interface for Transfer Services—Core

Specification. Issue 2. Recommendation for Space Data System Practices (Magenta

Book), CCSDS 914.0-M-2. Washington, D.C.: CCSDS, September 2015.

[4] Programming Languages—C++ . 3rd ed. International Standard, ISO/IEC 1 4882:201 1 .

Geneva: ISO, 201 1 .

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 1 -9 September 2015

[5] Information Technology—Abstract Syntax Notation One (ASN.1): Specification of

Basic Notation. 4th ed. International Standard, ISO/IEC 8824-1 :2008. Geneva: ISO,

2008.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 2-1 September 2015

2 OVERVIEW

2.1 INTRODUCTION

This section describes the extension of the SLE API model in reference [3] for support of the

RCF service. Extensions are needed for the API components API Service Element and SLE

Operations.

In addition to the extensions defined in this section, the component API Proxy must support

encoding and decoding of RCF-specific protocol data units.

2.2 PACKAGE RCF SERVICE INSTANCES

2.2.1 GENERAL

The RCF extensions to the component API Service Element are defined by the package RCF

Service Instances. Figure 2-1 provides an overview of this package. The diagram includes

classes from the package API Service Element specified in reference [3] , which provide

applicable specifications for the RCF service.

The package adds two service instance classes:

a) RCF SI User, supporting the service user role; and

b) RCF SI Provider, supporting service provider role.

These classes correspond to the placeholder classes I<SRV>_SI User and I<SRV>_SI

Provider defined in reference [3] .

Both classes are able to handle the specific RCF operations.

For the class RCF SI User, this is the only extension of the base class SI User.

The class RCF SI Provider adds two new interfaces:

a) IRCF_SIAdmin by which the application can set RCF-specific configuration

parameters; and

b) IRCF_SIUpdate by which the application must update dynamic status information,

required for generation of status reports.

These interfaces correspond to the placeholder interfaces I<SRV>_SIAdmin and

I<SRV>_SIUpdate defined in reference [3] .

RCF-specific configuration parameters are defined by the internal class RCF Configuration.

The class RCF Status Information defines dynamic status parameters maintained by the

service instance.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 2-2 September 2015

All specifications provided in this section refer to a single service instance. If more than one

service instance is used, each service instance must be configured and updated independently.

2.2.2 COMPONENT CLASS RCF SI USER

The class defines a RCF service instance supporting the service user role. It ensures that SLE

PDUs passed by the application and by the association are supported by the RCF service and

handles the RCF operation objects defined in 2.3 . It does not add further features to those

provided by the base class SI User.

Figure 2-1: RCF Service Instances

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 2-3 September 2015

2.2.3 COMPONENT CLASS RCF SI PROVIDER

2.2.3.1 General

The class defines a RCF service instance supporting the service provider role. It exports the

interfaces IRCF_SIAdmin for configuration of the service instance after creation and

IRCF_SIUpdate for update of dynamic status parameters during operation.

2.2.3.2 Responsibilities

2.2.3.2.1 Service Specific Configuration

The service instance implements the interface IRCF_SIAdmin to set the RCF-specific

configuration parameters defined by the class RCF Configuration. The methods of this

interface must be called after creation of the service instance. When all configuration

parameters (including those set via the interface ISLE_SIAdmin) have been set, the method

ISLE_SIAdmin: : ConfigCompleted() must be called. This method verifies that all

configuration parameters values are defined and are in the range defined in reference [2] .

In addition, the interface IRCF_SIAdmin provides read access to the configuration

parameters.

2.2.3.2.2 Update of Dynamic Status Parameters

The class implements the interface IRCF_SIUpdate . The methods of this interface update

status parameters defined by the class RCF Status Information. In order to ensure that the

status information is always up to date, all changes of status parameters must be reported to

the service instance during its complete lifetime, independent of the state of the service

instance.

In addition, the class derives some of the parameters in RCF Status Information from RCF

PDUs exchanged between the service provider and the service user. The method used to

update each of the parameters is defined in 2.2.5.

The interface IRCF_SIUpdate provides read access to all status parameters.

2.2.3.2.3 Handling of the RCF–GET-PARAMETER Operation

The class responds autonomously to RCF–GET–PARAMETER invocations. It generates the

appropriate RCF–GET–PARAMETER return using the parameters maintained by the classes

RCF Configuration and RCF Status Information.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 2-4 September 2015

2.2.3.2.4 Status Reporting

The class generates RCF–STATUS–REPORT invocations when required using the

parameters maintained by the class RCF Status Information.

2.2.3.2.5 Processing of RCF Protocol Data Units

The class ensures that SLE PDUs passed by the application and by the association are

supported by the RCF service and handles the RCF operation objects defined in 2.3 .

2.2.4 INTERNAL CLASS RCF CONFIGURATION

The class defines the configuration parameters that can be set via the interface

IRCF_SIAdmin . These parameters are defined by reference [2] . Table 2-1 describes how

the service instance uses these parameters.

2.2.5 INTERNAL CLASS RCF STATUS INFORMATION

The class defines dynamic status parameters handled by the service instance. The parameters

are defined by reference [2] . Table 2-2 describes how the service element updates each of the

parameters and how it uses the parameters.

Table 2-1: RCF Configuration Parameters

Parameter Used for

delivery-mode handling of the transfer buffer (enables / d isables discarding of data)
checking of PDUs
RCF–GET–PARAMETER returns

latency-limit handling of the transfer buffer in the timely online and complete online
delivery modes
RCF–GET–PARAMETER returns

permitted-
global-VCID-set

RCF–GET–PARAMETER returns
checking of RCF-START invocations

transfer-buffer-
size

handling of the transfer buffer
RCF–GET–PARAMETER returns

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 2-5 September 2015

Table 2-2: RCF Status Information

Parameter Update Used for

number-of-frames-
delivered

count of RCF–TRANSFER–DATA invocations
transmitted

status reports

frame-sync-lock-
status

set by a method of IRCF_SIUpdate status reports

symbol-sync-lock-
status

set by a method of IRCF_SIUpdate status reports

subcarrier-lock-
status

set by a method of IRCF_SIUpdate status reports

carrier-lock-
status

set by a method of IRCF_SIUpdate status reports

production-status set by a method of IRCF_SIUpdate status reports

requested-global-
VCID

extracted from RCF-START-return with a
positive result

RCF-GET-
PARAMETER

2.3 PACKAGE RCF OPERATIONS

Figure 2-2 shows the operation object interfaces required for the RCF service. The package

RCF Operations adds operation objects for the following RCF operations:

a) RCF–START;

b) RCF–TRANSFER–DATA;

c) RCF–SYNC–NOTIFY;

d) RCF–STATUS–REPORT;

e) RCF–GET–PARAMETER.

For other operations the API uses the common operation objects defined in reference [3] .

Table 2-3 maps RCF operations to operation object interfaces.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 2-6 September 2015

Table 2-3: Mapping of RCF Operations to Operation Object Interfaces

RCF Operation Operation Object Interface Defined in Package

RCF–BIND ISLE_Bind SLE Operations

RCF–UNBIND ISLE_Unbind SLE Operations

RCF–START IRCF_Start RCF Operations

RCF–STOP ISLE_Stop SLE Operations

RCF–TRANSFER–DATA IRCF_TransferData RCF Operations

RCF–SYNC–NOTIFY IRCF_SyncNotify RCF Operations

[TRANSFER-BUFFER] (see note) ISLE_TransferBuffer SLE Operations

RCF–SCHEDULE–STATUS–REPORT ISLE_ScheduleStatusRe
port

SLE Operations

RCF–STATUS–REPORT IRCF_StatusReport RCF Operations

RCF–GET–PARAMETER IRCF_GetParameter RCF Operations

RCF–PEER–ABORT ISLE_PeerAbort SLE Operations

NOTE – TRANSFER-BUFFER is a pseudo-operation used to handle the transfer buffer

defined in reference [2] .

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 2-7 September 2015

ISLE_Operation
(from SLE Operations)

<<Interface>>

ISLE_ConfirmedOperation
(from SLE Operations)

<<Interface>>

<<Inheritance>>

ISLE_Bind

(from SLE Operations)

<<Interface>>

ISLE_Unbind
(from SLE Operations)

<<Interface>>

ISLE_PeerAbort

(from SLE Operations)

<<Interface>>

ISLE_ScheduleStatusReport

(from SLE Operations)

<<Interface>>

ISLE_Stop
(from SLE Operations)

<<Interface>>

ISLE_TransferBuffer

(from SLE Operations)

<<Interface>>

IRCF_Start

<<Interface>>

IRCF_StatusReport

<<Interface>>

IRCF_SyncNoti fy

<<Interface>>

IRCF_TransferData

<<Interface>>

IRCF_GetParameter

<<Interface>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

<<Inheritance>>

Figure 2-2: RCF Operation Object Interfaces

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 2-8 September 2015

2.4 SECURITY ASPECTS OF THE SLE RCF TRANSFER SERVICE

2.4.1 SECURITY BACKGROUND/INTRODUCTION

The SLE transfer services explicitly provide authentication and access control. Additional

security capabilities, if required, are levied on the underlying communication services that

support the SLE transfer services. The SLE transfer services are defined as layered

application services operating over underlying communication services that must meet certain

requirements but which are otherwise unspecified. Selection of the underlying

communication services over which real SLE implementations connect is based on the

requirements of the communicating parties and/or the availability of CCSDS-standard

communication technology profiles and proxy specifications. Different underlying

communication technology profiles are intended to address not only different performance

requirements but also different security requirements. Missions and service providers are

expected to select from these technology profiles to acquire the performance and security

capabilities appropriate to the mission. Specification of the various underlying

communication technologies, and in particular their associated security provisions, are

outside the scope of this Recommendation.

The SLE RCF transfer service transfers data that originates on a mission spacecraft. As such,

the SLE RCF transfer service has custody of the data for only a portion of the end-to-end data

path between mission spacecraft and MDOS. Consequently the ability of an SLE transfer

service to secure the transfer of mission spacecraft data is limited to that portion of the end-

to-end path that is provided by the SLE transfer service (i.e. , the terrestrial link between the

MDOS and the ground termination of the space-ground link to the mission spacecraft). End-

to-end security must also involve securing the data as it crosses the space-ground link, which

can be provided by some combination of securing the mission data itself (e.g., encryption of

the mission data within CCSDS space packets) and securing the space-ground link (e.g.,

encryption of the physical space-ground link). Thus while the SLE RCF transfer service plays

a role in the end-to-end security of the data path, it does not control and cannot ensure that

end-to-end security. This component perspective is reflected in the security provisions of the

SLE transfer services.

2.4.2 STATEMENTS OF SECURITY CONCERNS

2.4.2.1 Overview

This subsection identifies RCF transfer service support for capabilities that responds to these

security concerns in the areas of data privacy, data integrity, authentication, access control,

availability of resources, and auditing.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 2-9 September 2015

2.4.2.2 Data Privacy (Also Known As Confidentiality)

This SLE RCF transfer service specification does not define explicit data privacy

requirements or capabilities to ensure data privacy. Data privacy is expected to be ensured

outside of the SLE transfer service layer, by the mission application processes that

communicate over the SLE transfer service, in the underlying communication service that lies

under the SLE transfer service, or some combination of both. For example, mission

application processes might apply end-to-end encryption to the contents of the CCSDS space

link data units carried as data by the SLE transfer service. Alternatively or in addition, the

network connection between the SLE entities might be encrypted to provide data privacy in

the underlying communication network.

2.4.2.3 Data Integrity

The SLE RCF transfer service defines and enforces a strict sequence of operations that

constrain the ability of a third party to inject operation invocations or returns into the transfer

service association between a service user and provider (see 4.2.2 in reference [2]). This

constrains the ability of a third party to seize control of an active RCF transfer service

instance without detection.

The SLE RCF transfer service requires that the underlying communication service transfer

data in sequence, completely and with integrity, without duplication, with flow control that

notifies the application layer in the event of congestion, and with notification to the

application layer in the event that communication between the service user and the service

provider is disrupted (see 1 .3 .1 in reference [2]). No specific mechanisms are identified, as

they will be an integral part of the underlying communication service.

2.4.2.4 Authentication

This SLE RCF transfer service specification defines authentication requirements (see 3 .1 .5 in

reference [2]), and defines initiator-identifier , responder-identifier ,

invoker-credentials , and performer-credentials parameters of the service

operation invocations and returns that are used to perform SLE transfer service

authentication. The procedure by which SLE transfer service operation invocations and

returns are authenticated is described in annex F of the Cross Support Service Green Book

(reference [C4]). The SLE transfer service authentication capability can be selectively set to

authenticate at one of three levels: authenticate every invocation and return, authenticate only

the BIND operation invocation and return, or perform no authentication. Depending upon the

inherent authentication available from the underlying communication network, the security

environment in which the SLE service user and provider are operating, and the security

requirements of the spaceflight mission, the SLE transfer service authentication level can be

adapted by choosing the SLE operation invocation and returns that shall be authenticated.

Furthermore the mechanism used for generating and checking the credentials and thus the

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 2-1 0 September 2015

level of protection against masquerading (simple or strong authentication) can be selected in

accordance with the results of a threat analysis.

2.4.2.5 Access Control

This SLE RCF transfer service specification defines access control requirements (see 3 .1 .4 in

reference [2]), and defines initiator-identifier and responder-identifier

parameters of the service operation invocations and returns that are used to perform SLE

transfer service access control. The procedure by which access to SLE transfer services is

controlled is described in annex F of the Cross Support Service Green Book (reference [C4]).

2.4.2.6 Availability of Resources

The SLE transfer services are provided via communication networks that have some limit to

the resources available to support those SLE transfer services. If these resources can be

diverted from their support of the SLE transfer services (in what is commonly known as

“denial of service”) then the performance of the SLE transfer services may be curtailed or

inhibited. This SLE RCF transfer service specification does not define explicit capabilities to

prevent denial of service. Resource availability is expected to be ensured by appropriate

capabilities in the underlying communication service. The specific capabilities will be

dependent upon the technologies used in the underlying communication service and the

security environment in which the transfer service user and provider operate.

2.4.2.7 Auditing

This SLE RCF transfer service specification does not define explicit security auditing

requirements or capabilities. Security auditing is expected to be negotiated and implemented

bilaterally between the spaceflight mission and the service provider.

2.4.3 POTENTIAL THREATS AND ATTACK SCENARIOS

The SLE RCF transfer service depends on unspecified mechanisms operating above the SLE

transfer service (between a mission spacecraft application process and its peer application

process on the ground), underneath the SLE transfer service in the underlying communication

service, or some combination of both, to ensure data privacy (confidentiality). If no such

mechanisms are actually implemented, or the mechanisms selected are inadequate or

inappropriate to the network environment in which the mission is operating, an attacker could

read the spacecraft telemetry data contained in the RCF protocol data units as they traverse

the WAN between service user and service provider.

The SLE RCF transfer service constrains the ability of a third party to seize control of an

active SLE transfer service instance, but it does not specify mechanisms that would prevent

an attacker from intercepting the protocol data units and replacing the contents of the data

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 2-1 1 September 2015

parameter. The prevention of such a replacement attack depends on unspecified mechanisms

operating above the SLE transfer service (between a mission spacecraft application process

and its peer application process on the ground), underneath the SLE transfer service in the

underlying communication service, in bilaterally agreed extra capabilities applied to the SLE

transfer service (e.g., encryption of the data parameter) or some combination of the three. If

no such mechanisms are actually implemented, or the mechanisms selected are inadequate or

inappropriate to the network environment in which the mission is operating, an attacker could

substitute telemetry data without detection.

If the SLE transfer service authentication capability is not used and if authentication is not

ensured by the underlying communication service, attackers may somehow obtain valid

initiator-identifier values and use them to initiate SLE transfer service instances

by which they could gain access to spacecraft telemetry data.

The SLE RCF transfer service depends on unspecified mechanisms operating in the

underlying communication service to ensure that the supporting network has sufficient

resources to provide sufficient support to legitimate users. If no such mechanisms are actually

implemented, or the mechanisms selected are inadequate or inappropriate to the network

environment in which the mission is operating, an attacker could prevent legitimate users

from receiving telemetry from their spacecraft.

If the provider of SLE RCF transfers service provides no security auditing capabilities, or if a

user chooses not to employ auditing capabilities that do exist, then attackers may delay or

escape detection while stealing or altering telemetry data.

2.4.4 CONSEQUENCES OF NOT APPLYING SECURITY

The consequences of not applying security to the SLE RCF transfer service are possible

degradation and loss of ability to receive telemetry from the spacecraft, or the substitution of

altered telemetry data.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 3-1 September 2015

3 RCF SPECIFIC SPECIFICATIONS FOR API COMPONENTS

3.1 API SERVICE ELEMENT

3.1.1 SERVICE INSTANCE CONFIGURATION

3.1.1.1 The service element shall provide the interface IRCF_SIAdmin for configuration

of a provider-side service instance after creation.

3.1.1.2 The interface shall provide methods to set the following parameters, which the

service element needs for handling of the transfer buffer and delivers to the user in response

to a RCF–GET–PARAMETER invocation:

a) delivery-mode ;

b) transfer-buffer-size , i.e. , the maximum number of RCF–TRANSFER–

BUFFER invocations and RCF–SYNC–NOTIFY invocations that can be stored to a

transfer buffer PDU submitted to the service user;

c) latency-limit , if the delivery mode is either ‘ timely online’ or ‘complete online’;

d) permitted-global-VCID-set , i.e. , the set of master channels or virtual

channels from which the service user may request data.

NOTE – These parameters are defined in reference [2] for the operation RCF-GET-

PARAMETER. Handling of the transfer buffer by the service element is defined

in reference [3] .

3.1.1.3 The interface shall provide methods to set the following parameters, which the

service instance uses to initialize parameters of the status report:

a) the value of the production status at the time the service instance is configured;

b) the lock status of the frame synchronization process at the time the service instance is

configured;

c) the lock status of the symbol synchronization process at the time the service instance

is configured;

d) the lock status of the sub-carrier demodulation process at the time the service instance

is configured;

e) the lock status of the carrier demodulation process at the time the service instance is

configured.

NOTES

1 For the delivery mode ‘offline’ , status reporting is not supported. Therefore, these

parameters need not be specified.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 3-2 September 2015

2 Further configuration parameters must be set using the interface ISLE_SIAdmin

specified in reference [3] . These include the parameter return-timeout-

period required for the RCF-GET-PARAMETER operation.

3.1.1.4 All configuration parameters must be set before the method

ConfigCompleted() of the interface ISLE_SIAdmin is called. If one of the

parameters is omitted or the value of a parameter is not within the range specified by

reference [2] , the method ConfigCompleted() shall return an error.

NOTES

1 As defined in reference [3] , the service element shall start processing of the service

instance only after successful configuration.

2 The range of specific parameter values might be further constrained by service

management. The service element shall only perform checks on the limits specified

by reference [2] .

3.1.1.5 If the delivery mode is ‘offline’ , the service element shall accept the configuration

when the parameters defined in 3 .1 .1 .3 have not been specified.

3.1.1.6 Configuration parameters must not be modified after successful return of the

method ConfigCompleted() defined in the interface ISLE_SIAdmin . The effect of an

attempt to set these parameters after completion of the configuration is undefined.

3.1.1.7 The values of all configuration parameters shall remain unmodified following a

RCF-UNBIND or RCF-PEER-ABORT operation and following a protocol-abort.

3.1.1.8 The interface IRCF_SIAdmin shall provide methods to retrieve the values of the

configuration parameters. The values returned by these methods before configuration has

been completed are undefined.

3.1.2 STATUS INFORMATION

3.1.2.1 The service element shall maintain status parameters for every service instance and

uses them for generation of status reports and for RCF–GET–PARAMETER returns.

NOTES

1 The parameters are defined in reference [2] for the operations RCF–STATUS–

REPORT and RCF–GET–PARAMETER.

2 Handling of the parameter reporting-cycle defined for the RCF–GET–

PARAMETER operation is specified in reference [2] .

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 3-3 September 2015

3.1.2.2 The service element shall update the following status parameters in the methods of

the interface IRCF_SIUpdate described in 3 .1 .2.6.

a) frame-sync-lock-status ;

b) symbol-sync-lock-status ;

c) subcarrier-lock-status ;

d) carrier-lock-status ; and

e) production-status .

NOTE – The initial values of these parameters following configuration of the service

instance are defined in A4.2.

3.1.2.3 The service element shall handle the parameter number-of-frames-

delivered as defined by the following specifications:

a) the parameter shall be set to zero when the service instance is configured;

b) when a TRANSFER–BUFFER PDU is transmitted to the service user, the parameter shall

be incremented by the number of RCF–TRANSFER–DATA invocations in that PDU.

NOTE – Frames in a TRANSFER–BUFFER PDU that is discarded shall not be

included in the count of frames delivered.

3.1.2.4 The service element shall handle the parameter requested-global-VCID as

defined by the following specifications:

NOTE – The parameter requested-global-VCID shall be set by a RCF-START

invocation and can be requested by a RCF–GET-PARAMETER invocation. It

consists of three elements: the spacecraft ID (0 to 1 023), the transfer frame

version number (0 to 3) and the VC ID (0 to 63). According to reference [2] the

VC ID is set to ‘any’ when a master channel is selected. As this cannot be

mapped to C++, the API uses a fourth element which specifies whether the ID

refers to a master channel or a virtual channel.

a) at the time of service instance configuration, the parameter shall be set to NULL;

NOTE – Setting the parameter to NULL only implies that a NULL pointer is returned

in the method reading the parameter.

b) if the application transmits a RCF–START return with a positive result, the value of

the parameter shall be extracted from the RCF–START invocation;

c) the parameter shall be reset to NULL following an accepted RCF–STOP invocation,

and following RCF–PEER–ABORT and protocol abort;

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 3-4 September 2015

d) [G1 :] if transfer of the parameter is requested by an RCF-GET-PARAMETER

invocation and the parameter is NULL, the service element shall return a copy of the

first element in the permitted-global-VCID-set defined in 3 .1 .1 .2.

NOTE – [G2:] Generation 2 of the RCF service foresees returning a NULL value if the

service instance is not in the state ‘active’ .

3.1.2.5 The service element shall provide the interface IRCF_SIUpdate for every service

instance. This interface must be used by the application to update the status parameters

defined in 3 .1 .2.2.

3.1.2.6 If more than one service instance exists, each service instance must be updated

independently.

3.1.2.7 In order to keep the status information up to date and consistent, the methods of the

interface IRCF_SIUpdate must be invoked for every change, independent of the state of

the service instance.

3.1.2.8 The interface IRCF_SIUpdate shall provide read access to all status parameters,

including those that are derived by other means.

NOTE – In the delivery mode ‘offline’ , status reporting is not supported. Therefore, the

application can opt not to update status information in that mode. If status

information is not initialized and not updated, retrieval methods shall return the

initial parameter values defined in A4.2.

3.1.2.9 The service element shall keep the status parameter number-of-frames-

delivered up to date for all delivery modes including the delivery mode ‘offline’ .

3.1.2.10 Status parameters defined in this specification shall not be modified as result of

RCF-UNBIND, RCF-PEER-ABORT, or protocol abort.

3.1.3 PROCESSING OF RCF PROTOCOL DATA UNITS

NOTES

1 The service element shall process RCF PDUs according to the general specifications

in reference [3] . This section only addresses additional checks and processing steps

defined for the RCF service. RCF-specific checks defined in reference [2] , but not

listed in this section, must be performed by the application.

2 It is noted that 3 .1 .2 defines further processing requirements for PDUs with respect to

update of status information. Annex subsection A3 defines the checks that operation

objects perform when the methods VerifyInvocationArguments() and

VerifyReturnArguments() are called. Reference [3] contains specifications

defining how the service element handles error codes returned by these methods.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 3-5 September 2015

3.1.3.1 RCF START

3.1.3.1.1 When receiving a RCF–START invocation, the service element shall perform the

following checks:

a) if the delivery mode is ‘offline’ , the start time must not be null;

b) if the start time is defined and the delivery mode is ‘online’ :

1) the start time must be equal to or later than the start time of the scheduled

provision period of the service instance, and

2) the start time must be earlier than the stop time of the scheduled provision period;

c) if the delivery mode is ‘offline’ :

1) the stop time must not be null, and

2) the stop time must be earlier than current time;

NOTE – Reference [2] defines an offline-processing-latency and

requires that the stop time plus the offline processing latency be earlier

than current time. If the application makes use of the offline processing

latency, the associated checks must be performed by the application.

d) if the stop time is defined and the delivery mode is ‘online’ , the stop time must be

earlier than or equal to the stop time of the scheduled provision period;

NOTE – If the start time and the stop time are defined, the start time must be earlier

than the stop time. This check shall be performed by the operation object

within the method VerifyInvocationArguments() (see 3 .2.1);

e) the global VCID must match one of the entries in the permitted global VCID set.

NOTES

1 This check shall only be performed on the provider side for RCF-START invocations

received from the service user.

2 The service element shall not check the production status, as this could change before

the PDU is processed by the application.

3.1.3.1.2 If any of the checks defined in 3 .1 .3 .1 .1 fail, the service element on the provider

side shall not forward the PDU to the application but shall respond with a RCF–START

return with a negative result and the appropriate diagnostic.

NOTE – As specified in reference [3] , the service element shall reject PDUs with errors

received from the local application with an appropriate result code.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 3-6 September 2015

3.1.3.2 RCF SYNC NOTIFY

When receiving a RCF–SYNC–NOTIFY invocation, the service element on the provider side

shall perform the following checks:

a) if the delivery mode is ‘offline’, the notification type must not be ‘loss of frame

synchronization’, ‘production status change’, or ‘data discarded due to excessive backlog’;

b) if the delivery mode is ‘ timely online’ , the notification type must not be ‘data

discarded due to excessive backlog’ .

NOTE – This check cannot be performed on the user side, because the service element

does not have the required information.

3.1.4 SERVICE INSTANCE SPECIFIC OPERATION FACTORY

For RCF service instances, the interface ISLE_SIOpFactory specified in reference [3] shall

support creation and configuration of operation objects for the operations specified in 3 .2 with

exception of the interfaces IRCF_StatusReport and ISLE_TransferBuffer .

NOTES

1 The initial values of parameters that shall be set for RCF-specific operation objects

are defined in annex A.

2 Status reports and the transfer buffer shall be handled by the API Service Element

without involvement of the application.

3.2 SLE OPERATIONS

3.2.1 The component SLE Operations shall provide operation objects for the following

RCF operations in addition to those specified in reference [3] :

a) RCF–START;

b) RCF–TRANSFER–DATA;

c) RCF–SYNC–NOTIFY;

d) RCF–STATUS–REPORT; and

e) RCF–GET–PARAMETER.

3.2.2 The operation factory shall create the operation objects specified in 3 .2.1 when the

requested service type is RCF.

3.2.3 The operation factory shall additionally create the following operation objects

specified in reference [3] when the requested service type is RCF:

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 3-7 September 2015

a) SLE–BIND;

b) SLE–UNBIND;

c) SLE–PEER–ABORT;

d) SLE–STOP; and

e) SLE–SCHEDULE–STATUS–REPORT.

3.3 SLE APPLICATION

NOTE – This subsection summarizes specific obligations of a RCF provider application

using the SLE API.

3.3.1 Following creation of a service instance, and setting of the configuration parameters

defined in reference [3] , the application shall set the configuration parameters defined in

3 .1 .1 via the interface IRCF_SIAdmin .

3.3.2 The application shall update every service instance in the service element with the

status information defined in 3 .1 .2 by invocation of the appropriate methods in the interface

IRCF_SIUpdate .

3.4 SEQUENCE OF DIAGNOSTIC CODES

3.4.1 GENERAL

3.4.1.1 Reference [2] requires provider applications that do not perform checks in the

sequence of the diagnostic codes defined in the Recommended Standard to document the

sequence in which checks are actually performed.

3.4.1.2 The specification in 3 .1 .3 .1 does not preserve the sequence of the diagnostic codes

defined in reference [2] for the operation RCF–START. This section defines the actual

sequence of checks performed by the API Service Element. For the checks that remain to be

performed by the provider application, the sequence defined in reference [2] is maintained.

Applications applying a different sequence must provide a modified documentation.

3.4.2 SEQUENCE OF RCF START DIAGNOSTIC CODES

3.4.2.1 Codes set by the API Service Element

a) ‘duplicate invoke id’ ;

b) ‘ invalid start time’ ;

c) ‘ invalid stop time’ ;

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page 3-8 September 2015

d) ‘missing time value’ ; and

e) ‘ invalid global VC ID’ .

3.4.2.2 Codes set by the Application

a) ‘out of service’ ;

b) ‘unable to comply’ ;

c) ‘ invalid stop time’ (for the delivery mode ‘offline’ if an offline processing latency is

used); and

d) ‘other’ .

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-1 September 2015

ANNEX A

RCF SPECIFIC INTERFACES

(NORMATIVE)

A1 INTRODUCTION

This annex specifies RCF-specific

a) data types;

b) interfaces for operation objects; and

c) interfaces for service instances.

The specification of the interfaces follows the design patterns, conventions and the additional

conventions described in reference [3] .

The presentation uses the notation and syntax of the C++ programming language as specified

in reference [4] .

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-2 September 2015

A2 RCF TYPE DEFINITIONS

File RCF_Types. h

The following types have been derived from the ASN.1 module CCSDS-SLE-TRANSFER-

SERVICE-RCF-STRUCTURES in reference [2] . The source ASN.1 type is indicated in

brackets. For all enumeration types is defined a special value, ‘ invalid’ , which is returned if

the associated value in the operation object has not yet been set, or is not applicable in case of

a choice.

Antenna Id Format [AntennaId]

typedef enum RCF_AntennaIdFormat
{
 rcfAF_global = 0 ,
 rcfAF_local = 1 ,
 rcfAF_invalid = -1
} RCF_AntennaIdFormat;

Reference [2] defines a Local Form (LF) and a Global Form (GF) for the antenna identifier.

The local form is a string of octets and the global form is an ASN.1 object identifier.

RCF Get Parameter Diagnostic [DiagnosticRcfGet]

typedef enum RCF_GetParameterDiagnostic
{
 rcfGP_unknownParameter = 0 ,
 rcfGP_invalid = -1
} RCF_GetParameterDiagnostic;

RCF Start Diagnostic [DiagnosticRcfStart]

typedef enum RCF_StartDiagnostic
{
 rcfSD_outOfService = 0 ,
 rcfSD_unableToComply = 1 ,
 rcfSD_invalidStartTime = 2 ,
 rcfSD_invalidStopTime = 3 ,
 rcfSD_missingTimeValue = 4 ,
 rcfSD_invalidGvcId = 5 ,
 rcfSD_invalid = -1
} RCF_StartDiagnostic;

Channel Type

typedef enum RCF_ChannelType
{
 rcfCT_MasterChannel = 0 ,
 rcfCT_VirtualChannel = 1 ,
 rcfCT_invalid = -1
} RCF_ChannelType;

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-3 September 2015

Global VCID [GlobalVcId]

typedef struct RCF_Gvcid
{
 RCF_ChannelType type;
 unsigned long scid; / * 0 to 1023 */
 unsigned long version; / * 0 to 3 * /
 unsigned long vcid; / * 0 to 63 * /
} RCF_Gvcid;

The elements of the structure have been defined as ‘ long’ to avoid padding by the compiler.

The member vcId is only defined if type is set to rcfCT_VirtualChannel .

Lock Status [LockStatus]

typedef enum RCF_LockStatus
{
 rcfLS_inLock = 0 ,
 rcfLS_outOfLock = 1 ,
 rcfLS_notInUse = 2 , /*only for
 sub-carrier lock */
 rcfLS_unknown = 3 ,
 rcfLS_invalid = -1
} RCF_LockStatus;

Notification Type [Notification]

typedef enum RCF_NotificationType
{
 rcfNT_lossFrameSync = 0 ,
 rcfNT_productionStatusChange = 1 ,
 rcfNT_excessiveDataBacklog = 2 ,
 rcfNT_endOfData = 3 ,
 rcfNT_invalid = -1
} RCF_NotificationType;

Production Status [RcfProductionStatus]

typedef enum RCF_ProductionStatus
{
 rcfPS_running = 0 ,
 rcfPS_interrupted = 1 ,
 rcfPS_halted = 2 ,
 rcfPS_invalid = -1
} RCF_ProductionStatus;

/RCF Parameter Names [RcfGetParameter]

typedef enum RCF_ParameterName
{
 rcfPN_bufferSize = 4 ,
 rcfPN_deliveryMode = 6,
 rcfPN_latencyLimit = 15,
 rcfPN_permittedGvcidSet = 2 4 ,
 rcfPN_reportingCycle = 2 6,
 rcfPN_requestedGvcid = 2 8,
 rcfPN_returnTimeoutPeriod = 2 9,
 rcfPN_invalid = -1

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-4 September 2015

} RCF_ParameterName;

Parameters that can be read using a RCF–GET–PARAMETER operation. The parameter

name values are taken from the type ParameterName in ASN.1 module CCSDS-SLE-

TRANSFER-SERVICE-COMMON-TYPES in reference [2] .

Delivery Modes

typedef enum RCF_DeliveryMode
{
 rcfDM_timelyOnline = sleDM_rtnTimelyOnline,
 rcfDM_completeOnline = sleDM_rtnCompleteOnline,
 rcfDM_offline = sleDM_rtnOffline,
 rcfDM_invalid = -1
} RCF_DeliveryMode;

The delivery modes are defined as a subset of SLE_DeliveryMode in reference [3] .

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-5 September 2015

A3 RCF OPERATION OBJECTS

A3.1 RCF START OPERATION

Name IRCF_Start

GUID { 638A73E0-7FE6-11d3-9F15-00104B4F22C0}

Inheritance: IUnknown – ISLE_Operation – ISLE_ConfirmedOperation

File IRCF_Start. H

The interface provides access to the parameters of the confirmed operation RCF–START.

Synopsis

#include <RCF_Types. h>
#include <ISLE_ConfirmedOperation. H>
interface ISLE_Time;
#define IID_IRCF_Start_DEF { 0x638a73e0, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }
interface IRCF_Start : ISLE_ConfirmedOperation
{
 virtual const ISLE_Time*
 Get_StartTime() const = 0 ;
 virtual const ISLE_Time*
 Get_StopTime() const = 0 ;
 virtual const RCF_Gvcid*
 Get_Gvcid() const = 0 ;
 virtual RCF_StartDiagnostic
 Get_StartDiagnostic() const = 0 ;
 virtual void
 Set_StartTime(const ISLE_Time& time) = 0 ;
 virtual void
 Put_StartTime(ISLE_Time* ptime) = 0 ;
 virtual void
 Set_StopTime(const ISLE_Time& time) = 0 ;
 virtual void
 Put_StopTime(ISLE_Time* ptime) = 0 ;
 virtual void
 Set_Gvcid(const RCF_Gvcid& id) = 0 ;
 virtual void
 Put_Gvcid(RCF_Gvcid* pid) = 0 ;
 virtual void
 Set_StartDiagnostic(RCF_StartDiagnostic diagnostic) = 0 ;
} ;

Methods

const ISLE_Time* Get_StartTime() const;

Returns the reception time of the first frame to be delivered, or NULL if the parameter is not

defined.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-6 September 2015

const ISLE_Time* Get_StopTime() const;

Returns the reception time of the last frame to be delivered, or NULL if the parameter is not

defined.

const RCF_Gvcid* Get_Gvcid() const;

Returns the global VCID requested by the service user, or a NULL pointer if the parameter

has not been set.

RCF_StartDiagnostic Get_StartDiagnostic() const;

Returns the value of the diagnostic code.

Precondition: the result is negative, and the diagnostic type is set to ‘ specific’ .

void Set_StartTime(const ISLE_Time& time) ;

Copies the argument to the receive time of the first frame to be delivered.

void Put_StartTime(ISLE_Time* ptime) ;

Stores the argument as receive time of the first frame to be delivered.

void Set_StopTime(const ISLE_Time& time) ;

Copies the argument to the receive time of the last frame to be delivered.

void Put_StopTime(ISLE_Time* ptime) ;

Stores the argument as receive time of the last frame to be delivered.

void Set_Gvcid(const RCF_Gvcid& id) ;

Copies the elements of the structure passed as argument to the parameter global VCID.

void Put_Gvcid(RCF_Gvcid* pid) ;

Stores the input argument to the parameter global VCID.

void Set_StartDiagnostic(RCF_StartDiagnostic diagnostic) ;

Sets the result to ‘negative’ , the diagnostic type to ‘ specific’ , and stores the value of the

diagnostic code passed by the argument.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-7 September 2015

Initial Values of Operation Parameters after Creation

Parameter Created directly Created by Service Instance

start time NULL NULL

stop time NULL NULL

global VCID NULL NULL

START diagnostic ‘ invalid’ ‘ invalid’

Checking of Invocation Parameters

Parameter Required condition

start time if the start and the stop time are used, must be earl ier than stop time

stop time if the start and the stop time are used, must be later than start time

global VCID must not be NULL

 type must not be ‘ invalid’

 spacecraft identifier if the version number is 0 (version 1)
 must be a value on the range 0 to 1 023;
if the version number is 1 (version 2)
 must be a value in the range 0 to 255;
otherwise
 no checks are applied.

 version number must be either 0 or 1

 VC ID if the type is ‘virtual channel’ AND the version number is 0 (version 1)
 must be a value in the range 0 to 7;
if the type is ‘virtual channel’ AND the version number is 1 (version 2)
 must be a value in the range 0 to 63;
otherwise
 no checks are applied.

NOTE – In the above table, the parameter ‘version number’ refers to the transfer frame

version number, not the version of the RCF service.

Additional Return Codes for VerifiyInvocationArguments()

SLE_E_TIMERANGE specification of the start and stop times is inconsistent.

SLE_E_INVALIDID the global VC ID (spacecraft ID, version number, and VC ID)

is invalid.

Checking of Return Parameters

Parameter Required condition

START diagnostic must not be ‘ invalid’ if the result is ‘negative’ and the diagnostic type is
‘specific’

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-8 September 2015

A3.2 RCF TRANSFER DATA OPERATION

Name IRCF_TransferData

GUID { 638A73E1-7FE6-11d3-9F15-00104B4F22C0}

Inheritance: IUnknown – ISLE_Operation

File IRCF_TransferData. H

The interface provides access to the parameters of the operation RCF-TRANSFER-DATA.

Synopsis

#include <RCF_Types. h>
#include <ISLE_Operation. H>
interface ISLE_Time;
#define IID_IRCF_TransferData_DEF { 0x638a73e1, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }
interface IRCF_TransferData : ISLE_Operation
{
 virtual const ISLE_Time*
 Get_EarthReceiveTime() const = 0 ;
 virtual RCF_AntennaIdFormat
 Get_AntennaIdFormat() const = 0 ;
 virtual const SLE_Octet*
 Get_AntennaIdLF(size_t& size) const = 0 ;
 virtual const int*
 Get_AntennaIdGF(int& length) const = 0 ;
 virtual char*
 Get_AntennaIdGFString() const = 0 ;
 virtual int
 Get_DataLinkContinuity() const = 0 ;
 virtual const SLE_Octet*
 Get_PrivateAnnotation(size_t& size) const = 0 ;
 virtual SLE_Octet*
 Remove_PrivateAnnotation(size_t& size) = 0 ;
 virtual const SLE_Octet*
 Get_Data(size_t& size) const = 0 ;
 virtual SLE_Octet*
 Remove_Data(size_t& size) = 0 ;
 virtual void
 Set_EarthReceiveTime(const ISLE_Time& time) = 0 ;
 virtual void
 Put_EarthReceiveTime(ISLE_Time* ptime) = 0 ;
 virtual void
 Set_AntennaIdLF(const SLE_Octet* id, size_t size) = 0 ;
 virtual void
 Set_AntennaIdGF(const int* id, int length) = 0 ;
 virtual void
 Set_AntennaIdGFString(const char* id) = 0 ;
 virtual void
 Set_DataLinkContinuity(int numFrames) = 0 ;
 virtual void
 Set_PrivateAnnotation(const SLE_Octet* pannotation,
 size_t size) = 0 ;
 virtual void
 Put_PrivateAnnotation(SLE_Octet* pannotation,
 size_t size) = 0 ;
 virtual void
 Set_Data(const SLE_Octet* pdata, size_t size) = 0 ;
 virtual void

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-9 September 2015

 Put_Data(SLE_Octet* pdata, size_t size) = 0 ;
} ;

Methods

virtual const ISLE_Time* Get_EarthReceiveTime() const;

Returns the earth receive time of the frame delivered, if the parameter has been set in the

object. Returns NULL otherwise.

RCF_AntennaIdFormat Get_AntennaIdFormat() const;

Returns the format of the antenna identifier (octet string or object identifier) or ‘ invalid’

when the parameter has not been set.

const SLE_Octet* Get_AntennaIdLF(size_t& size) const;

Returns the antenna identifier in the local form, i.e. , a string of octets.

Arguments

size the number of octets in the antenna ID (1 to 1 6)

Precondition: Get_AntennaIdFormat() returns rcfAF_local.

const int* Get_AntennaIdGF(int& length) const;

Returns the antenna identifier in the global form, i.e. , an object identifier as defined by

ASN.1 . In C++ this is represented as a sequence of integers.

Arguments

length the number of elements in the antenna ID

Precondition: Get_AntennaIdFormat() returns rcfAF_global .

char* Get_AntennaIdGFString() const;

Returns the antenna ID as a character string formatted as a dot separated list of numbers. The

string is allocated on the heap and must be deleted by the client.

Precondition: Get_AntennaIdFormat() returns rcfAF_global .

int Get_DataLinkContinuity() const;

Returns the data link continuity parameter, if the parameter has been set in the object, or –2 if

the parameter has not been set. A valid value can be –1 , 0, or any positive number.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-10 September 2015

const SLE_Octet* Get_PrivateAnnotation(size_t& size) const;

Returns a pointer to the private annotation in the object or NULL if the private annotation has

not been set.

Arguments

length the length of the private annotation in bytes

SLE_Octet* Remove_PrivateAnnotation(size_t& size) ;

Returns the private annotation data and removes them form the object. The memory

allocated by the parameter must be released by the client. If the parameter has not been set

returns NULL.

Arguments

length the length of the private annotation in bytes

const SLE_Octet* Get_Data(size_t& size) const;

Returns a pointer to the frame in the object or NULL if the frame has not been inserted.

Arguments

length the length of the frame in bytes

SLE_Octet* Remove_Data(size_t& size) ;

Returns the frame and removes it form the object. The memory allocated by the frame must

be released by the client. If the parameter has not been set returns NULL.

Arguments

length the length of the frame in bytes

void Set_EarthReceiveTime(const ISLE_Time& time) ;

Copies the value of the argument to the earth receive time.

void Put_EarthReceiveTime(ISLE_Time* ptime) ;

Stores the argument to the parameter earth receive time.

void Set_AntennaIdLF(const SLE_Octet* id, size_t size) ;

Sets the antenna id format to ‘ local form’ and the antenna id to the value of the argument.

The local form of the antenna id is a string of octets.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-1 1 September 2015

void Set_AntennaIdGF(const int* id, int length) ;

Sets the antenna id format to ‘global form’ and the antenna id to the value of the argument.

The global form the antenna id is an object identifier as defined by ASN.1 , represented as a

sequence of integers.

void Set_AntennaIdGFString(const char* id) ;

Sets the antenna id format to ‘global form’ and the antenna id to the value of the argument. If

the argument is badly formatted, the parameter is reset to its initial state, i.e. , ‘not set’ .

Arguments

id an object identifier formatted as a dot separated list of numbers

void Set_DataLinkContinuity(int numFrames) ;

Sets the parameter data link continuity to the value of the argument.

void Set_PrivateAnnotation(const SLE_Octet* pannotation, size_t
size) ;

Copies size bytes from the argument pannotation to the parameter private annotation.

Arguments

pannotation pointer to the private annotation

length the length of the annotation in bytes

void Put_PrivateAnnotation(SLE_Octet* pannotation, size_t size) ;

Stores the argument pannotation to the parameter private annotation.

Arguments

pannotation pointer to the private annotation

length the length of the annotation in bytes

void Set_Data(const SLE_Octet* pdata, size_t size) ;

Copies size bytes from the argument pdata to the parameter ‘data’ .

Arguments

pdata pointer to the data

length the length of the data in bytes

void Put_Data(SLE_Octet* pdata, size_t size) ;

Stores the argument pdata to the parameter ‘data’ .

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-12 September 2015

Arguments

pdata pointer to the data

length the length of the data in bytes

Initial Values of Operation Parameters after Creation

Parameter Created directly Created by Service Instance

earth receive time NULL NULL

antenna id NULL NULL

antenna id format ‘ invalid’ ‘ invalid’

data l ink continuity -2 -2

private annotation NULL NULL

data NULL NULL

Checking of Invocation Parameters

Parameter Required condition

earth receive time must not be NULL

antenna id must not be NULL

data l ink continuity must be > -2

data must not be NULL

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-1 3 September 2015

A3.3 RCF SYNC NOTIFY OPERATION

Name IRCF_SyncNotify

GUID { 638A73E2-7FE6-11d3-9F15-00104B4F22C0}

Inheritance: IUnknown – ISLE_Operation

File IRCF_SyncNotify. H

The interface provides access to the parameters of the unconfirmed operation

RCF-SYNC-NOTIFY.

Synopsis

#include <RCF_Types. h>
#include <ISLE_Operation. H>
interface ISLE_Time;
#define IID_IRCF_SyncNotify_DEF { 0x638a73e2, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }
interface IRCF_SyncNotify : ISLE_Operation
{
 virtual RCF_NotificationType
 Get_NotificationType() const = 0 ;
 virtual const ISLE_Time*
 Get_LossOfLockTime() const = 0 ;
 virtual RCF_LockStatus
 Get_CarrierDemodLock() const = 0 ;
 virtual RCF_LockStatus
 Get_SubCarrierDemodLock() const = 0 ;
 virtual RCF_LockStatus
 Get_SymbolSyncLock() const = 0 ;
 virtual RCF_ProductionStatus
 Get_ProductionStatus() const = 0 ;
 virtual void
 Set_LossOfFrameSync(const ISLE_Time& time,
 RCF_LockStatus symbolSyncLock,
 RCF_LockStatus subCarrierDemodLock,
 RCF_LockStatus carrierDemodLock) = 0 ;
 virtual void
 Set_ProductionStatusChange(RCF_ProductionStatus status) = 0 ;
 virtual void
 Set_DataDiscarded() = 0 ;
 virtual void
 Set_EndOfData() = 0 ;
} ;

Methods

RCF_NotificationType Get_NotificationType() const;

Returns the type of the notification.

const ISLE_Time* Get_LossOfLockTime() const;

Returns the time at which the frame synchronizer lost lock.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-14 September 2015

Precondition: notification type is ‘ loss of frame synchronization’ .

RCF_LockStatus Get_CarrierDemodLock() const;

Returns the lock status of the carrier demodulation process.

Precondition: notification type is ‘ loss of frame synchronization’ .

RCF_LockStatus Get_SubCarrierDemodLock() const;

Returns the lock status of the sub-carrier demodulation process.

Precondition: notification type is ‘ loss of frame synchronization’ .

RCF_LockStatus Get_SymbolSyncLock() const;

Returns the lock status of the symbol synchronization process.

Precondition: notification type is ‘ loss of frame synchronization’ .

RCF_ProductionStatus Get_ProductionStatus() const;

Returns the production status.

Precondition: notification type is ‘production status change’ .

void Set_LossOfFrameSync(const ISLE_Time& time,
 RCF_LockStatus symbolSyncLock,
 RCF_LockStatus subCarrierDemodLock,
 RCF_LockStatus carrierDemodLock) ;

Sets the notification type to ‘ loss of frame synchronization’ and the notification values as

specified by the arguments.

Arguments

time the time at which the frame synchronizer lost lock

symbolSyncLock the lock status of the symbol synchronization process

subCarrierDemodLock the lock status of the sub-carrier demodulation process

carrierDemodLock the lock status of the carrier demodulation process

void Set_ProductionStatusChange(RCF_ProductionStatus status) ;

Sets the notification type to ‘production status change’ and the notification value as defined

by the argument.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-1 5 September 2015

void Set_DataDiscarded() ;

Sets the notification type to ‘data discarded due to excessive backlog’ .

void Set_EndOfData() ;

Sets the notification type to ‘ end of data’ .

Initial Values of Operation Parameters after Creation

Parameter Created directly Created by Service Instance

notification-type ‘ invalid’ ‘ invalid’

loss of lock time NULL NULL

symbol-sync-lock-
status

‘ invalid’ ‘ invalid’

subcarrier-lock-
status

‘ invalid’ ‘ invalid’

carrier-lock-status ‘ invalid’ ‘ invalid’

production-status ‘ invalid’ ‘ invalid’

Checking of Invocation Parameters

Parameter Required condition

notification-type must not be ‘ invalid’

loss of lock time if notification type is ‘loss of frame synchronization’ must not be
NULL

symbol-sync-lock-
status

if notification type is ‘ loss of frame synchronization’ must not be
‘ invalid’ or ‘not in use’

subcarrier-lock-
status

if notification type is ‘ loss of frame synchronization’ must not be
‘ invalid’

carrier-lock-status if notification type is ‘ loss of frame synchronization’ must not be
‘ invalid’ or ‘not in use’

production-status if notification type is ‘production status change’ must not be ‘ invalid’

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-16 September 2015

A3.4 RCF STATUS REPORT OPERATION

Name IRCF_StatusReport

GUID { 638A73E3-7FE6-11d3-9F15-00104B4F22C0}

Inheritance: IUnknown – ISLE_Operation

File IRCF_StatusReport. H

The interface provides access to the parameters of the unconfirmed operation

RCF-STATUS-REPORT.

Synopsis

#include <RCF_Types. h>
#include <ISLE_Operation. H>
#define IID_IRCF_StatusReport_DEF { 0x638a73e3, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }
interface IRCF_StatusReport : ISLE_Operation
{
 virtual unsigned long
 Get_NumFrames() const = 0 ;
 virtual RCF_LockStatus
 Get_FrameSyncLock() const = 0 ;
 virtual RCF_LockStatus
 Get_CarrierDemodLock() const = 0 ;
 virtual RCF_LockStatus
 Get_SubCarrierDemodLock() const = 0 ;
 virtual RCF_LockStatus
 Get_SymbolSyncLock() const = 0 ;
 virtual RCF_ProductionStatus
 Get_ProductionStatus() const = 0 ;
 virtual void
 Set_NumFrames(unsigned long count) = 0 ;
 virtual void
 Set_FrameSyncLock(RCF_LockStatus status) = 0 ;
 virtual void
 Set_CarrierDemodLock(RCF_LockStatus status) = 0 ;
 virtual void
 Set_SubCarrierDemodLock(RCF_LockStatus status) = 0 ;
 virtual void
 Set_SymbolSyncLock(RCF_LockStatus status) = 0 ;
 virtual void
 Set_ProductionStatus(RCF_ProductionStatus status) = 0 ;
} ;

Methods

unsigned long Get_NumFrames() const;

Returns the total number of frames delivered.

RCF_LockStatus Get_FrameSyncLock() const;

Returns the lock status of the frame synchronization process.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-17 September 2015

RCF_LockStatus Get_CarrierDemodLock() const;

Returns the lock status of the carrier demodulation process.

RCF_LockStatus Get_SubCarrierDemodLock() const;

Returns the lock status of the sub-carrier demodulation process.

RCF_LockStatus Get_SymbolSyncLock() const;

Returns the lock status of the symbol synchronization process.

RCF_ProductionStatus Get_ProductionStatus() const;

Returns the production status.

void Set_NumFrames(unsigned long count) ;

Sets the total number of frames delivered as defined by the argument.

void Set_FrameSyncLock(RCF_LockStatus status) ;

Sets the frame synchronizer lock status as defined by the argument.

void Set_CarrierDemodLock(RCF_LockStatus status) ;

Sets the carrier demodulator lock status as defined by the argument.

void Set_SubCarrierDemodLock(RCF_LockStatus status) ;

Sets the sub-carrier demodulator lock status as defined by the argument.

void Set_SymbolSyncLock(RCF_LockStatus status) ;

Sets the symbol synchronizer lock status as defined by the argument.

void Set_ProductionStatus(RCF_ProductionStatus status) ;

Sets the production status as defined by the argument.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-18 September 2015

Initial Values of Operation Parameters after Creation

Parameter Created directly

number-of-frames 0

frame-sync-lock-
status

‘ invalid’

symbol-sync-lock-
status

‘ invalid’

subcarrier-lock-
status

‘ invalid’

carrier-lock-status ‘ invalid’

production-status ‘ invalid’

NOTE – The interface ISLE_SIOpFactory does not support creation of status report

operation objects, as this operation is handled by the service instance internally.

Checking of Invocation Parameters

Parameter Required condition

frame-sync-lock-
status

must not be ‘ invalid’ or ‘not in use’

symbol-sync-lock-
status

must not be ‘ invalid’ or ‘not in use’

subcarrier-lock-
status

must not be ‘ invalid’

carrier-lock-status must not be ‘ invalid’ or ‘not in use’

production-status must not be ‘ invalid’

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-19 September 2015

A3.5 RCF GET PARAMETER OPERATION

Name IRCF_GetParameter

GUID { 638A73E4-7FE6-11d3-9F15-00104B4F22C0}

Inheritance: IUnknown – ISLE_Operation – ISLE_ConfirmedOperation

File IRCF_GetParameter. H

The interface provides access to the parameters of the confirmed operation

RCF-GET-PARAMETER.

Synopsis

#include <RCF_Types. h>
#include <ISLE_ConfirmedOperation. H>
#define IID_IRCF_GetParameter_DEF { 0x638a73e4, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }
interface IRCF_GetParameter : ISLE_ConfirmedOperation
{
 virtual RCF_ParameterName
 Get_RequestedParameter() const = 0 ;
 virtual RCF_ParameterName
 Get_ReturnedParameter() const = 0 ;
 virtual RCF_DeliveryMode
 Get_DeliveryMode() const = 0 ;
 virtual unsigned short
 Get_LatencyLimit() const = 0 ;
 virtual unsigned long
 Get_TransferBufferSize() const = 0 ;
 virtual const RCF_Gvcid*
 Get_RequestedGvcid() const = 0 ;
 virtual const RCF_Gvcid*
 Get_PermittedGvcidSet(size_t& size) const = 0 ;
 virtual RCF_Gvcid*
 Remove_PermittedGvcidSet(size_t& size) = 0 ;
 virtual unsigned long
 Get_ReportingCycle() const = 0 ;
 virtual unsigned long
 Get_ReturnTimeoutPeriod() const = 0 ;
 virtual RCF_GetParameterDiagnostic
 Get_GetParameterDiagnostic() const = 0 ;
 virtual void
 Set_RequestedParameter(RCF_ParameterName name) = 0 ;
 virtual void
 Set_DeliveryMode(RCF_DeliveryMode mode) = 0 ;
 virtual void
 Set_LatencyLimit(unsigned short limit) = 0 ;
 virtual void
 Set_TransferBufferSize(unsigned long size) = 0 ;
 virtual void
 Set_RequestedGvcid(const RCF_Gvcid* id) = 0 ;
 virtual void
 Put_RequestedGvcid(RCF_Gvcid* pid) = 0 ;
 virtual void
 Set_PermittedGvcidSet(const RCF_Gvcid* idSet,
 size_t size) = 0 ;
 virtual void
 Put_PermittedGvcidSet(RCF_Gvcid* idSet,
 size_t size) = 0 ;

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-20 September 2015

 virtual void
 Set_ReportingCycle(unsigned long cycle) = 0 ;
 virtual void
 Set_ReturnTimeoutPeriod(unsigned long period) = 0 ;
 virtual void
 Set_GetParameterDiagnostic(RCF_GetParameterDiagnostic
 diagostic) = 0 ;
} ;

Methods

RCF_ParameterName Get_RequestedParameter() const;

Returns the identification of the parameter whose value shall be returned.

RCF_ParameterName Get_ReturnedParameter() const;

Returns the identification of the parameter whose value is reported.

RCF_DeliveryMode Get_DeliveryMode() const;

Returns the delivery mode of the service instance.

Precondition: the returned parameter is delivery-mode .

unsigned short Get_LatencyLimit() const;

Returns the latency limit defined by service management. If the delivery mode is ‘offline’

returns zero.

Precondition: the returned parameter is latency-limit .

unsigned long Get_TransferBufferSize() const;

Returns the size of the transfer buffer as the maximum number of RCF–TRANSFER–DATA

invocations and RCF–SYNC–NOTIFY invocations that can be stored in the buffer.

Precondition: the returned parameter is transfer-buffer-size .

const RCF_Gvcid* Get_RequestedGvcid() const;

Returns the requested global VCID if that has been set. Otherwise returns a NULL pointer.

This parameter is only meaningful if the VCID has been set by a START operation.

Precondition: the returned parameter is ‘ requested global VCID’.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-21 September 2015

const RCF_Gvcid* Get_PermittedGvcidSet(size_t& size) const;

Returns the set of global VCIDs to which the service instance has access. If the parameter has

not been set or the set has been removed, returns a NULL pointer.

Precondition: the returned parameter is ‘permitted global VCID set’ .

RCF_Gvcid* Remove_PermittedGvcidSet(size_t& size) ;

Returns the list of global VCIDs to which the service instance has access and removes the list

from the object. If the parameter has not been set or the list has been removed, returns a

NULL pointer.

Precondition: the returned parameter is ‘permitted global VCID set’ .

unsigned long Get_ReportingCycle() const;

Returns the reporting cycle requested by the user if periodic reporting is active. If reporting is

not active, returns zero.

Precondition: the returned parameter is ‘ reporting cycle’ .

unsigned long Get_ReturnTimeoutPeriod() const;

Returns the return timeout period used by the provider.

Precondition: the returned parameter is ‘ return timeout period’ .

RCF_GetParameterDiagnostic Get_GetParameterDiagnostic() const;

Returns the diagnostic code.

Precondition: the result is negative, and the diagnostic type is set to ‘ specific’ .

void Set_RequestedParameter(RCF_ParameterName name) ;

Sets the parameter for which the provider shall report the value.

void Set_DeliveryMode(RCF_DeliveryMode mode) ;

Sets the returned parameter name to ‘delivery mode’ and the value as defined by the

argument.

void Set_LatencyLimit(unsigned short limit) ;

Sets the returned parameter name to ‘ latency limit’ and the value as defined by the argument.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-22 September 2015

void Set_TransferBufferSize(unsigned long size) ;

Sets the returned parameter name to ‘ transfer buffer size’ and the value as defined by the

argument.

void Set_RequestedGvcid(const RCF_Gvcid* id) ;

Sets the returned parameter name to ‘ requested global VCID’ and copies its value from the

argument.

void Put_RequestedGvcid(RCF_Gvcid* pid) ;

Sets the returned parameter name to ‘ requested global VCID’ and stores the argument as the

value of this parameter.

void Set_PermittedGvcidSet(const RCF_Gvcid* idSet, size_t size) ;

Sets the returned parameter name to ‘permitted global VCID set’ and copies its value from

the argument.

void Put_PermittedGvcidSet(RCF_Gvcid* idSet, size_t size) ;

Sets the returned parameter name to ‘permitted global VCID set’ and stores the argument as

the value of this parameter.

void Set_ReportingCycle(unsigned long cycle) ;

Sets the returned parameter name to ‘ reporting cycle’ and the value as defined by the

argument.

void Set_ReturnTimeoutPeriod(unsigned long period) ;

Sets the returned parameter name to ‘ return timeout period’ and the value as defined by the

argument.

void Set_GetParameterDiagnostic(RCF_GetParameterDiagnostic
diagostic) ;

Sets the result to ‘negative’ , the diagnostic type to ‘ specific’ , and stores the value of the

diagnostic code passed by the argument.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-23 September 2015

Initial Values of Operation Parameters after Creation

Parameter Created directly Created by Service Instance

requested parameter ‘ invalid’ ‘ invalid’

returned parameter ‘ invalid’ ‘ invalid’

delivery-mode ‘ invalid ’ ‘ invalid’

latency-limit 0 0

transfer-buffer-
size

0 0

requested-global-
VCID

NULL NULL

permitted-global-
VCID-set

NULL NULL

reporting-cycle 0 0

return-timeout-
period

0 0

GET PARAMETER diagnostic ‘ invalid ’ ‘ invalid’

Checking of Invocation Parameters

Parameter Required condition

requested parameter must not be ‘ invalid’

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-24 September 2015

Checking of Return Parameters

Parameter Required condition

returned parameter must be the same as ‘requested parameter’

delivery-mode I f the returned parameter is ‘delivery mode’ must not be ‘ invalid’

transfer-buffer-
size

I f the returned parameter is ‘transfer buffer size’ must not be 0

requested-global-
VCID

[G1 :] if the returned parameter is ‘requested global VCID’, must not
be NULL and must have the following structure

[G2,3:] if the returned parameter is ‘requested global VCID’, must
either be NULL or must have the fol lowing structure

 Type must not be ‘ invalid’

 spacecraft ID if the version number is 0 (version 1)
 must be a value on the range 0 to 1 023;
if the version number is 1 (version 2)
 must be a value in the range 0 to 255;
otherwise
 no checks are applied.

 version number must be either 0 or 1

 VCID if the type is ‘virtual channel’ AND the version number is 0 (version 1)
 must be a value in the range 0 to 7
if the type is ‘virtual channel’ AND the version number is 1 (version 2)
 must be a value in the range 0 to 63
otherwise
 no checks are applied

permitted-global-
VCID-set

i f the returned parameter is ‘permitted global VCID set’ must not be
NULL

return-timeout-
period

I f the returned parameter is ‘return timeout period’ must not be 0

GET PARAMETER diagnostic must not be ‘ invalid’ if the result is ‘negative’ and the diagnostic type is
‘specific’

NOTE – In the above table, the parameter ‘version number’ refers to the transfer frame

version number, not the version of the RCF service.

The interface ensures consistency between the returned parameter name and the parameter

value, as the client cannot set the returned parameter name. Therefore, this consistency need

not be checked on the provider side. The checks defined above only need to be performed

when the return is received by the service user.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-25 September 2015

A4 RCF SERVICE INSTANCE INTERFACES

A4.1 SERVICE INSTANCE CONFIGURATION

Name IRCF_SIAdmin

GUID { 638A73E5-7FE6-11d3-9F15-00104B4F22C0}

Inheritance: IUnknown

File IRCF_SIAdmin. H

The interface provides write and read access to the RCF-specific service instance

configuration-parameters. All configuration parameters must be set as part of service

instance configuration. When the method ConfigCompleted() is called on the

interface ISLE_SIAdmin , the service element checks that all required parameters have

been set and returns an error when the configuration is not complete.

Configuration parameters must not be set after successful return of the method

ConfigCompleted() . The effect of invoking these methods at a later stage is undefined.

As a convenience for the application, the interface provides read access to the configuration

parameters, except for parameters used to initialize the status report. If retrieval methods are

called before configuration, the value returned is undefined.

Synopsis

#include <RCF_Types. h>
#include <SLE_SCM. H>
#define IID_IRCF_SIAdmin_DEF { 0x638a73e5, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }
interface IRCF_SIAdmin : IUnknown
{
 virtual void
 Set_DeliveryMode(RCF_DeliveryMode mode) = 0 ;
 virtual void
 Set_LatencyLimit(unsigned short limit) = 0 ;
 virtual void
 Set_TransferBufferSize(unsigned long size) = 0 ;
 virtual void
 Set_PermittedGvcidSet(const RCF_Gvcid* idSet,
 size_t size) = 0 ;
 virtual void
 Set_InitialProductionStatus(RCF_ProductionStatus status) = 0 ;
 virtual void
 Set_InitialFrameSyncLock(RCF_LockStatus status) = 0 ;
 virtual void
 Set_InitialCarrierDemodLock(RCF_LockStatus status) = 0 ;
 virtual void
 Set_InitialSubCarrierDemodLock(RCF_LockStatus status) = 0 ;
 virtual void
 Set_InitialSymbolSyncLock(RCF_LockStatus status) = 0 ;
 virtual RCF_DeliveryMode
 Get_DeliveryMode() const = 0 ;
 virtual unsigned short
 Get_LatencyLimit() const = 0 ;
 virtual unsigned long

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-26 September 2015

 Get_TransferBufferSize() const = 0 ;
 virtual const RCF_Gvcid*
 Get_PermittedGvcidSet(size_t& size) const = 0 ;
} ;

Methods

void Set_DeliveryMode(RCF_DeliveryMode mode) ;

Sets the delivery mode of the service instance.

void Set_LatencyLimit(unsigned short limit) ;

Sets the latency limit in seconds for transmission of the transfer buffer. If the delivery mode

is offline, the parameter need not be set.

void Set_TransferBufferSize(unsigned long size) ;

Sets the maximum number of RCF–TRANSFER–DATA invocations and RCF–SYNC–

NOTIFY invocations that shall be stored in one transfer buffer PDU.

void Set_PermittedGvcidSet(const RCF_Gvcid* idSet, size_t size) ;

Sets the set of global VCIDs to which the service instance has access. This set must not be

empty and all members must be valid global VCIDs.

void Set_InitialProductionStatus(RCF_ProductionStatus status) ;

Sets the value of the production status at the time of configuration. The parameter is used to

initialize status report parameters. If the delivery mode is ‘offline’ , this parameter need not

be set.

void Set_InitialFrameSyncLock(RCF_LockStatus status) ;

Sets the lock status of the frame synchronization process at the time of configuration. The

parameter is used to initialize status report parameters. If the delivery mode is ‘offline’ , this

parameter need not be set.

void Set_InitialCarrierDemodLock(RCF_LockStatus status) ;

Sets the lock status of the carrier demodulation process at the time of configuration. The

parameter is used to initialize status report parameters. If the delivery mode is ‘offline’ , this

parameter need not be set.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-27 September 2015

void Set_InitialSubCarrierDemodLock(RCF_LockStatus status) ;

Sets the lock status of the sub-carrier demodulation process at the time of configuration. The

parameter is used to initialize status report parameters. If the delivery mode is ‘offline’ , this

parameter need not be set.

void Set_InitialSymbolSyncLock(RCF_LockStatus status) ;

Sets the lock status of the symbol synchronization process at the time of configuration. The

parameter is used to initialize status report parameters. If the delivery mode is ‘offline’ , this

parameter need not be set.

RCF_DeliveryMode Get_DeliveryMode() const;

Returns the value of the parameter delivery-mode .

unsigned short Get_LatencyLimit() const;

Returns the value of the parameter latency-limit .

unsigned long Get_TransferBufferSize() const;

Returns the value of the parameter transfer-buffer-size .

const RCF_Gvcid* Get_PermittedGvcidSet(size_t& size) const;

Returns the set of global VCIDs to which the service instance has access.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-28 September 2015

A4.2 UPDATE OF SERVICE INSTANCE PARAMETERS

Name IRCF_SIUpdate

GUID { 638A73E6-7FE6-11d3-9F15-00104B4F22C0}

Inheritance: IUnknown

File IRCF_SIUpdate. H

The interface provides methods to update parameters that shall be reported to the service user

via the operation STATUS-REPORT. In order to keep this information up to date the

appropriate methods of this interface must be called whenever the information changes,

independent of the state of the service instance.

The interface provides read access to the parameters set via this interface and to parameters

accumulated or derived by the API according to the specifications in 3 .1 . The API sets the

parameters to the initial values specified at the end of this section when the service instance is

configured. Parameter values retrieved before configuration are undefined.

In the delivery mode ‘offline’ , status reporting is not supported. Therefore configuration

parameters used to initialize the status report need not be supplied and the status information

need not be updated. If the initial values and updates are not supplied, the retrieval methods

return the values defined at the end of this section. Values accumulated by the service

element are kept up to date for all delivery modes, including the mode ‘offline’ .

Synopsis

#include <RCF_Types. h>
#include <SLE_SCM. H>
#define IID_IRCF_SIUpdate_DEF { 0x638a73e6, 0x7fe6, 0x11d3, \
 { 0x9f, 0x15, 0x0, 0x10, 0x4b, 0x4f, 0x22, 0xc0 } }
interface IRCF_SIUpdate : IUnknown
{
 virtual void
 Set_ProductionStatus(RCF_ProductionStatus status) = 0 ;
 virtual void
 Set_FrameSyncLock(RCF_LockStatus status) = 0 ;
 virtual void
 Set_CarrierDemodLock(RCF_LockStatus status) = 0 ;
 virtual void
 Set_SubCarrierDemodLock(RCF_LockStatus status) = 0 ;
 virtual void
 Set_SymbolSyncLock(RCF_LockStatus status) = 0 ;
 virtual RCF_ProductionStatus
 Get_ProductionStatus() const = 0 ;
 virtual RCF_LockStatus
 Get_FrameSyncLock() const = 0 ;
 virtual RCF_LockStatus
 Get_CarrierDemodLock() const = 0 ;
 virtual RCF_LockStatus
 Get_SubCarrierDemodLock() const = 0 ;
 virtual RCF_LockStatus
 Get_SymbolSyncLock() const = 0 ;
 virtual unsigned long
 Get_NumFrames() const = 0 ;
 virtual RCF_Gvcid*
 Get_RequestedGvcid() const = 0 ;
} ;

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-29 September 2015

Methods

void Set_ProductionStatus(RCF_ProductionStatus status) ;

The method must be called whenever the production status changes to set the new value.

void Set_FrameSyncLock(RCF_LockStatus status) ;

The method must be called whenever the lock status of the frame synchronization process

changes to set the new value.

void Set_CarrierDemodLock(RCF_LockStatus status) ;

The method must be called whenever the lock status of the carrier demodulation process

changes to set the new value.

void Set_SubCarrierDemodLock(RCF_LockStatus status) ;

The method must be called whenever the lock status of the sub-carrier demodulation process

changes to set the new value.

void Set_SymbolSyncLock(RCF_LockStatus status) ;

The method must be called whenever the lock status of the symbol synchronization process

changes to set the new value.

RCF_ProductionStatus Get_ProductionStatus() const;

Returns the value of the production status.

RCF_LockStatus Get_FrameSyncLock() const;

Returns the lock status of the frame synchronization process.

RCF_LockStatus Get_CarrierDemodLock() const;

Returns the lock status of the carrier demodulation process.

RCF_LockStatus Get_SubCarrierDemodLock() const;

Returns the lock status of the sub-carrier demodulation process.

RCF_LockStatus Get_SymbolSyncLock() const;

Returns the lock status of the symbol synchronization process.

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page A-30 September 2015

unsigned long Get_NumFrames() const;

Returns the total number of frames delivered by the service instance. In the delivery mode

timely online this number can be smaller than the number of frames passed to the service

element because data might have been discarded because of excessive backlog.

RCF_Gvcid* Get_RequestedGvcid() const;

Returns a copy of the global VCID requested by the service user, or a NULL pointer if the

service instance is not in the state ‘active’ . If a non-NULL pointer is returned, the client must

release the memory allocated by the global VCID.

Initial Parameter Values

Parameter Value

production-status initial production status set via the interface IRCF_SIAdmin , in
the delivery mode ‘offl ine’ set to ‘ invalid’ if not set via

IRCF_SIAdmin

frame-sync-lock-
status

initial frame synchronizer lock set via the interface

IRCF_SIAdmin , in the delivery mode ‘offl ine’ set to ‘unknown’ if

not set via IRCF_SIAdmin

symbol-sync-lock-
status

initial symbol synchronizer lock set via the interface

IRCF_SIAdmin , in the delivery mode ‘offl ine’ set to ‘unknown’ if

not set via IRCF_SIAdmin

subcarrier-lock-
status

initial sub-carrier demodulator lock set via the interface
IRCF_SIAdmin, in the delivery mode ‘offl ine’ set to ‘unknown’ if not
set via IRCF_SIAdmin

carrier-lock-
status

initial carrier demodulator lock set via the interface

IRCF_SIAdmin , in the delivery mode ‘offl ine’ set to ‘unknown’ if

not set via IRCF_SIAdmin

number-of-frames-
delivered

0

requested-global-
VCID

NULL (if NULL, RCF-GET-PARAMETER returns the first element of
the ‘permitted global VCID set’)

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page B-1 September 2015

ANNEX B

ACRONYMS

(INFORMATIVE)

This annex expands the acronyms used throughout this Recommended Practice.

API Application Program Interface

CCSDS Consultative Committee for Space Data Systems

GUID Globally Unique Identifier

GVCID Global Virtual Channel Identifier

ID Identifier

IEC International Electrotechnical Commission

ISO International Organization for Standardization

MC Master Channel

OMG Object Management Group

PDU Protocol Data Unit

RCF Return Channel Frames

SI Service Instance

SLE Space Link Extension

UML Unified Modeling Language

VC Virtual Channel

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

CCSDS RECOMMENDED PRACTICE: API FOR THE SLE RCF SERVICE

CCSDS 91 5.2-M-2 Page C-1 September 2015

ANNEX C

INFORMATIVE REFERENCES

(INFORMATIVE)

[C1] Organization and Processes for the Consultative Committee for Space Data Systems.

Issue 4. CCSDS Record (Yellow Book), CCSDS A02.1 -Y-4. Washington, D.C.:

CCSDS, April 2014.

[C2] Space Link Extension—Return Virtual Channel Frames Service Specification . Issue 1 .7.

Draft Recommendation for Space Data System Standards (Draft Red Book), CCSDS

91 1 .2-R-1 .7. Washington, D.C.: CCSDS, September 1 999.

[C3] Space Link Extension—Return Channel Frames Service Specification. Issue 1 -S.

Recommendation for Space Data System Standards (Historical), CCSDS 91 1 .2-B-1 -S.

Washington, D.C.: CCSDS, (December 2004) January 2010.

[C4] Cross Support Concept—Part 1: Space Link Extension Services. Issue 3 . Report

Concerning Space Data System Standards (Green Book), CCSDS 910.3 -G-3.

Washington, D.C.: CCSDS, March 2006.

[C5] Space Link Extension—Internet Protocol for Transfer Services. Issue 2.

Recommendation for Space Data System Standards (Blue Book), CCSDS 91 3.1 -B-2.

Washington, D.C.: CCSDS, September 2015.

[C6] Space Link Extension—Application Program Interface for Transfer Services—Summary

of Concept and Rationale. Issue 1 . Report Concerning Space Data System Standards

(Green Book), CCSDS 914.1 -G-1 . Washington, D.C.: CCSDS, January 2006.

[C7] Space Link Extension—Application Program Interface for Transfer Services—

Application Programmer's Guide. Issue 2. Report Concerning Space Data System

Standards (Green Book), CCSDS 914.2-G-2. Washington, D.C.: CCSDS, October 2008.

[C8] The COM/DCOM Reference. COM/DCOM Product Documentation, AX-01 . San

Francisco: The Open Group, 1 999.

[C9] Unified Modeling Language (UML) . Version 2.4.1 . Needham, Massachusetts: Object

Management Group, August 201 1 .

ISO 1 8443:201 6(E)

© ISO 201 6 – Al l rights reserved

ISO 1 8443:201 6(E)

ICS 49.1 40

Price based on 63 pages

© ISO 201 6 – Al l rights reserved

