INTERNATIONAL STANDARD ISO 18369-1 First edition 2006-08-15 # Ophthalmic optics — Contact lenses — # Part 1: Vocabulary, classification system and recommendations for labelling specifications Optique ophtalmique — Lentilles de contact — Partie 1: Vocabulaire, système de classification et recommandations pour l'étiquetage des spécifications #### PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. #### © ISO 2006 The reproduction of the terms and definitions contained in this International Standard is permitted in teaching manuals, instruction booklets, technical publications and journals for strictly educational or implementation purposes. The conditions for such reproduction are: that no modifications are made to the terms and definitions; that such reproduction is not permitted for dictionaries or similar publications offered for sale; and that this International Standard is referenced as the source document. With the sole exceptions noted above, no other part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Contents | Page | |--|------| | Foreword | iv | | Introduction | v | | 1 Scope | 1 | | 2 Terms, definitions and symbols | 1 | | 2.1 Terms and definitions | | | 2.1.1 Basic terms | | | 2.1.2 Contact lens parameters and design | | | 2.1.3 Aspheric contact lenses | | | 2.1.4 Bifocal and multifocal contact lenses | 16 | | 2.1.5 Scleral contact lenses and shells | 18 | | 2.1.6 Contact lens material properties | 20 | | 2.1.7 Tinted contact lenses | 23 | | 2.1.8 Contact lens manufacture | | | 2.1.9 Packaging and labelling of contact lenses and contact lens care products | 23 | | 2.1.10 Contact lens usage and wear modality | | | 2.1.11 Contact lens hygienic management and contact lens care products | | | 2.1.12 Miscellaneous | | | 2.2 Symbols | 31 | | 3 Classification of contact lens materials | 32 | | Annex A (informative) Specification of rigid contact lenses | 35 | | Annex B (informative) Specification of soft contact lenses | | | Bibliography | | | | | | Alphabetical index | 46 | ISO 18369-1:2006(E) # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 18369-1 was prepared by Technical Committee ISO/TC 172, *Optics and photonics*, Subcommittee SC 7, *Ophthalmic optics and instruments*. This first edition cancels and replaces ISO 8320-1:2003, ISO 8320-2:2001 and ISO 11539:1999, which have been technically revised. Furthermore, together with ISO 18369-2, it cancels and replaces ISO 8321-1:2002 and ISO 8321-2:2000, which have been technically revised. ISO 18369 consists of the following parts, under the general title *Ophthalmic optics* — *Contact lenses*: - Part 1: Vocabulary, classification system and recommendations for labelling specifications - Part 2: Tolerances - Part 3: Measurement methods - Part 4: Physicochemical properties of contact lens materials # Introduction The ISO 18369 series applies to contact lenses, which are devices worn over the front surface of the eye in contact with the preocular tear film. This part of ISO 18369 covers rigid (hard) corneal and scleral contact lenses, as well as soft contact lenses. Rigid lenses maintain their own shape unsupported and are made of transparent optical-grade plastics, such as polymethylmethacrylate (PMMA), cellulose acetate butyrate (CAB), polyacrylate/siloxane copolymers, rigid polysiloxanes (silicone resins), butylstyrenes, fluoropolymers, and fluorosiloxanes, etc. Soft contact lenses are easily deformable and require support for proper shape. A very large subset of soft contact lenses consists of transparent hydrogels containing water in concentrations greater than 10 %. Soft contact lenses can also be made of non-hydrogel materials, e.g. flexible polysiloxanes (silicone elastomers). The ISO 18369 series is applicable to determining allowable tolerances of parameters and properties important for proper functioning of contact lenses as optical devices. The ISO 18369 series includes tolerances for single vision contact lenses, bifocal lenses, lenses that alter the flux density and/or spectral composition of transmitted visible light (tinted or pigmented contact lenses, such as those with enhancing, handling, and/or opaque tints), and lenses that significantly attenuate ultraviolet radiation (UVR absorbing lenses). The ISO 18369 series covers contact lenses designed with spherical, toric, and aspheric surfaces, and recommended methods for the specification of contact lenses. The vocabulary portion (2.1) of this part of ISO 18369 contains the terms and definitions primarily used in the contact lens field. A list of terms having special symbols is given in Table 1. The list of terms and definitions does not include all ISO terms, definitions, and symbols used in the contact lens field. It is intended to be a convenient reference source from which the contents have been compiled from the text of this and other ISO standards applicable to the manufacture, evaluation, measurement, labelling and marketing of contact lenses and contact lens care products. An alphabetical index was added for rapid finding of terms. Words are grouped under several topics by reference number according to the general category into which each word logically fitted. The preferred form of each term is listed on the first line after its reference number. Other admitted forms have been placed on subsequent lines after the preferred form. All admitted terms are given in bold-faced type. A few obsolete and superseded terms are listed for historical reference and convenience and as an aid to comprehension but are indicated as deprecated and are no longer to be used. Obsolete and superseded terms are not in bold-faced type so that they may be clearly identified as terms used historically. Figure 1 gives a schema of the classification and provides examples. It does not take into account all possible characteristics (hence resulting qualifiers) used in contact lens designation. Combinations of more than one qualifier are often used in contact lens designation. Figure 1 — Classification of contact lenses according to various characteristics leads to various qualifiers used in their designation # Ophthalmic optics — Contact lenses — # Part 1: # Vocabulary, classification system and recommendations for labelling specifications # 1 Scope This part of ISO 18369 identifies and defines the terms applicable to the physical, chemical and optical properties of contact lenses, their manufacture and uses. It provides a vocabulary of terms and, when appropriate, the international symbol and abbreviation associated with a specific term. This part of ISO 18369 also defines the terms relating to contact lens care products. It also incorporates the classifications of contact lens materials and gives recommendations for the labelling of the specifications of contact lenses. # 2 Terms, definitions and symbols #### 2.1 Terms and definitions # 2.1.1 Basic terms #### 2.1.1.1 #### contact lens any ophthalmic lens designed to be worn on the front surface of the eye NOTE This term includes contact lenses of plano power. #### 2.1.1.2 # corneal contact lens contact lens having a total diameter less than the visible iris diameter and designed to be worn in its entirety on the cornea # 2.1.1.3 #### scleral contact lens contact lens designed to be worn in front of the cornea and on the adjacent portion of the surrounding bulbar conjunctiva NOTE See 2.1.5 for specific terms concerning scleral contact lenses. #### 2.1.1.4 #### lenticular contact lens contact
lens having a front optic zone made smaller than the total diameter NOTE This construction is conventionally used to reduce the centre thickness of a positive power contact lens or reduce the edge thickness of a negative power contact lens. # 2.1.1.5 #### contact shell contact lens not designed to correct vision # ISO 18369-1:2006(E) #### 2.1.1.6 #### scleral shell rigid contact shell with a scleral zone NOTE See 2.1.5 for specific terms concerning scleral shells. #### 2.1.1.7 # rigid contact lens # hard contact lens contact lens which, in its final form and under normal conditions, retains its form without support #### 2.1.1.8 #### rigid gas-permeable contact lens #### **RGP** contact lens hard gas-permeable contact lens (deprecated) rigid contact lens which contains one or more components in the contact lens polymer in sufficient concentration to permit oxygen transmission through the contact lens #### 2.1.1.9 #### soft contact lens contact lens which requires support to maintain its form #### 2.1.1.10 #### hydrogel contact lens hydrophilic contact lens (deprecated) contact lens made of water-absorbing material having equilibrium water content greater than or equal to 10 % in standard saline solution at 20 °C NOTE Standard saline solution is prepared as specified in ISO 18369-3. #### 2.1.1.11 # composite contact lens contact lens composed of two or more different materials Laminated lens, a fused segment lens, or a lens with a rigid centre and a flexible periphery. #### 2.1.1.12 #### surface treated contact lens contact lens whose surfaces have been modified to make the surface characteristics different to those of the bulk material # 2.1.1.13 #### bifocal contact lens multifocal contact lens having two optic zones, usually for distance and near-vision correction NOTE See 2.1.4 for specific terms concerning bifocal contact lenses. #### 2.1.1.14 # multifocal contact lens contact lens designed to provide two or more zones of different corrective powers NOTE See 2.1.4 for specific terms concerning multifocal contact lenses. #### 2.1.1.15 #### progressive power contact lens #### varifocal power contact lens contact lens designed to provide correction for more than one viewing range in which the power changes continuously, rather than discretely, over a part or the whole of the lens NOTE See 2.1.4 for specific terms concerning progressive power contact lenses. #### 2.1.1.16 #### contact lens accessory article intended specifically by its manufacturer to be used with a contact lens to enable the lens to be used in accordance with its intended purpose NOTE This term includes all devices recommended for use in the hygienic management of contact lenses, for hydrating contact lenses, or alleviating discomfort of contact lens wear by physical means. #### 2.1.1.17 #### contact lens care product contact lens accessory intended for use in maintaining the safety and performance of a contact lens after opening and removal of the lens from its primary container NOTE See 2.1.9 and 2.1.11 for specific terms concerning contact lens care products and the hygienic management of contact lenses. #### 2.1.1.18 # other accessory for contact lenses item used for handling contact lenses or as a part of a contact lens care regimen excluding contact lens care products EXAMPLE Suction cup used to aid in the insertion of a contact lens onto or removal from the surface of the eye. NOTE This definition does not include the primary packaging (e.g. vials, blister packs or mailers) intended by the manufacturer to be used only for shipment of the contact lenses. #### 2.1.1.19 #### suction cup hand-held device designed with a small concave flexible tip intended to aid the insertion of a contact lens onto or removal from the eye by means of suction NOTE A suction cup is designed primarily for use with rigid corneal contact lenses. #### 2.1.1.20 # contact lens container storage container contact lens case storage case container in which contact lenses are stored either dry or in a suitable solution by the user after removal from the primary container or the eye #### 2.1.2 Contact lens parameters and design #### 2.1.2.1 General terms #### 2.1.2.1.1 #### front vertex power F_{v} reciprocal of the paraxial front vertex focal length [ISO 13666:1998] NOTE The front vertex power is expressed in dioptres. # 2.1.2.1.2 #### back vertex power F' reciprocal of the paraxial back vertex focal length [ISO 13666:1998] NOTE The back vertex power is expressed in dioptres. #### 2.1.2.1.3 # positive power contact lens plus-power contact lens contact lens which causes parallel incident light (incident on a single optic zone) to converge to a real focus #### 2.1.2.1.4 # negative power contact lens minus-power contact lens contact lens which causes parallel light (incident on a single optic zone) to diverge from a virtual focus #### 2.1.2.1.5 # plano contact lens afocal contact lens contact lens whose back vertex power is zero #### 2.1.2.1.6 liquid lens fluid lens tear lens #### **lacrimal lens** refractive element formed by the liquid between the back optic zone of the contact lens and the cornea NOTE The liquid element of this lens is typically composed of tear fluid. #### 2.1.2.1.7 # optic zone that part of a contact lens which has a prescribed optical effect NOTE The term may be qualified by either the prefix "back" or "front" in the case of a surface with a single optical component. In the case of an alternating image translating bifocal contact lens, the term may be qualified by either the prefix "distance" or "near". In the case of a concentric multifocal contact lens, the term may be qualified by the prefix "central" or "peripheral". # 2.1.2.1.8 #### peripheral zone region with no prescribed refractive effect, of specified dimensions, surrounding the optic zone(s) NOTE There can be more than one peripheral zone. # 2.1.2.1.9 #### displacement of optic d (non-scleral lenses) displacement of the optic zone relative to the lens periphery NOTE This term does not apply to scleral contact lenses. ## 2.1.2.1.10 # geometric centre Č centre of the circle containing the contact lens edge NOTE For a scleral contact lens, the geometric centre is taken as the centre of the optic zone. For a truncated contact lens, the geometric centre is taken as the centre of the circle that contains the circular portion of the edge. #### 2.1.2.1.11 # optical decentration positioning of the optical centre at a point other than the geometric centre of the optic zone or central optic zone #### 2.1.2.1.12 # contact lens axis line passing through the geometric centre, perpendicular to a plane containing the edge of a contact lens See Figure 2. ---,,---,,-------,,-,-,-,-- # 2.1.2.1.13 #### back vertex point on the posterior contact lens surface lying on the contact lens axis See Figure 2. # 2.1.2.1.14 #### vertex sphere imaginary spherical surface touching the back vertex NOTE The radius of curvature of the vertex sphere is the same as the steepest back optic zone radius, back central optic radius, or back vertex radius of an aspheric lens (see Figure 2). #### Key - 1 contact lens axis - 2 centre of vertex sphere - 3 back vertex - 4 vertex sphere - 5 peripheral junction thickness, t_{PJ0} - 6 overall posterior sagitta Figure 2 — Schematic representation of a tri-curve contact lens including symbols of the main parameters describing its back surface # 2.1.2.1.15 sagitta sagittal depth #### sagittal height maximum distance from a chord, which is perpendicular to the axis of rotation of a surface, to the curved surface .,,..,... #### 2.1.2.1.15.1 #### overall posterior sagitta distance along the contact lens axis from the back vertex to a plane containing the contact lens edge See Figure 2. # 2.1.2.1.16 #### edge that part of a contact lens which is contiguous with the front and back surfaces #### 2.1.2.1.17 # edge form # edge profile profile of the edge in a plane containing the contact lens axis #### 2.1.2.1.18 #### bevel narrow back peripheral zone, of a single spherical or aspherical curvature, adjacent to the edge of a contact #### 2.1.2.1.19 #### radial lift distance between a specified point on the back surface of a contact lens and the vertex sphere measured along a radius of curvature of the latter See Figure 3. # Key - 1 front surface of contact lens - back surface of contact lens - vertex sphere 3 - 4 centre of vertex sphere - 5 junction - specified point on the back surface of the contact lens; for radial and axial edge lift, specified point at the edge of the contact lens - 7 axial lift, l_A - radial lift, l_{R} Figure 3 — The difference between radial and axial lift #### 2.1.2.1.20 # radial edge lift distance between a point on the back surface of a contact lens at the edge and the vertex sphere measured along the radius of curvature of the latter See Figure 3. NOTE This is often a value computed by the manufacturer and may be altered by the edging process. #### 2.1.2.1.21 #### axial lift l_{Δ} distance between a specified point on the back surface and the vertex sphere measured parallel to the contact lens axis See Figure 3. #### 2.1.2.1.22 #### axial edge lift l_{EA} distance between a point on the back of a contact lens at the edge and the vertex sphere, measured parallel to the contact lens axis See Figure 3. NOTE This is often a value computed by the manufacturer and may be altered by the edging process. #### 2.1.2.1.23 #### spherical surface (non-aspheric) surface described by rotating a circle about a line containing its centre #### 2.1.2.1.24 # spherical surface (non-toric) surface having the same radius of curvature for meridians in all directions #### 2.1.2.1.25 #### sagittal radius of curvature radius of curvature in the sagittal plane at a specified off-axis point on the surface NOTE 1 The radius at a specified point on the surface is equal to the distance along the normal at that point to its intersection with the axis of rotation. NOTE
2 The sagittal plane contains the normal to the surface at the specified point, but does not contain the axis of rotation, being perpendicular to the tangential plane. # 2.1.2.1.26 #### tangential radius of curvature radius of curvature in the tangential plane at a specified off-axis point on a surface NOTE The tangential plane contains both the normal to the surface at the point specified and the axis of rotation. #### 2.1.2.1.27 #### bi-curve contact lens contact lens whose back surface is composed of two intersecting spherical zones #### 2.1.2.1.28 #### tri-curve contact lens contact lens whose back surface is composed of three intersecting coaxial spherical zones #### 2.1.2.1.29 #### multi-curve contact lens contact lens with a back surface that is composed of more than three intersecting spherical zones # 2.1.2.1.30 #### aspheric contact lens contact lens with its front or back optic zone of aspheric form NOTE See 2.1.3 for specific terms concerning aspheric contact lenses. # 2.1.2.1.31 #### toric contact lens contact lens with front and/or back optic zone of toroidal form ---,,...,...---,,,.,.,..--- # ISO 18369-1:2006(E) #### 2.1.2.1.32 # bi-toric contact lens contact lens having both front and back optic zones of toroidal form #### 2.1.2.1.33 #### toroidal zone zone having a surface with its maximum and minimum radii of curvature perpendicular to each other #### 2.1.2.1.34 #### toric periphery contact lens contact lens with one or more back peripheral zones of toroidal form that surround a spherical back optic zone #### 2.1.2.1.35 #### junction intersection of two adjacent zones NOTE This applies to both back and front surfaces. #### 2.1.2.1.36 #### tangential junction junction where the curvatures of adjacent zones have a common tangent See Figure 4. #### 2.1.2.1.37 #### transition #### transition zone junction which has been modified to smooth the change between adjacent curvatures See Figure 5. #### 2.1.2.1.38 # blend polished, smoothed junction or transition zone between two different adjacent surface curvatures, typically applied at the junction (transition) between posterior zones cf. transition (2.1.2.1.37) NOTE This does not constitute the formation of an aspheric zone. #### 2.1.2.1.39 # ballast rotationally asymmetrical distribution of thickness for the purpose of effecting rotational orientation of a contact lens on the eye NOTE The most common method of achieving ballast in contact lenses is with the use of base-down vertical prism. # 2.1.2.1.40 #### prism ballast vertical prism used to create a wedge design that will help stabilize the rotation and orientation of a contact lens on the eye NOTE 1 A vertical prism may also be used to correct a vertical hyperphoria or hypertropia. The asymmetrical distribution of thickness, rather than the effect of mass, is responsible for the rotational orientation of the contact lens that incorporates prism. #### 2.1.2.1.41 #### wedge design rotationally asymmetric distribution of thickness to effect the required rotational orientation of a contact lens on the eye, or to improve the centration of a high-riding lens NOTE One common way of creating a wedge design is to incorporate base-down vertical prism into a contact lens. # Key - 1 tangent common to both circles - 2 contact lens axis NOTE This is an example of a back surface of a contact lens. It is a bi-curve surface with a tangential junction T. The back peripheral zone would be formed by rotating the arc TE around the lens axis; the back optic zone is formed by rotating the arc YT around the lens axis. The back optic zone diameter is 2 LT; the total diameter is 2 EA; the overall posterior sagitta is YA. Figure 4 — Example of a tangential junction #### Key - 1 zone A - 2 zone B - 3 original junction of zone A and zone B - 4 radius of curvature of the transition - 5 transition Figure 5 — Example of a transition on the back surface of a contact lens # ISO 18369-1:2006(E) # 2.1.2.1.42 # peripheral thinning #### slab-off thinning, towards the edge, of the front periphery of the contact lens, in one or more discrete areas NOTE This is normally applied to achieve contact lens rotational stabilization. It is different from both ballast and a lenticular contact lens construction. #### 2.1.2.1.43 #### truncation altered portion of the edge, after a contact lens has been truncated #### 2.1.2.1.44 #### fenestration specified hole which passes through a contact lens #### 2.1.2.1.45 #### carrier that part of a plus or minus lenticular contact lens peripheral to the front optic zone(s) NOTE The carrier may be negative, positive or parallel in construction, but it is radially symmetrical. #### 2.1.2.1.46 #### negative carrier #### minus carrier carrier having an edge thickness that is greater than the junction thickness See Figure 6 a). #### 2.1.2.1.47 # parallel carrier # plano carrier carrier having an edge thickness and junction thickness that are equal See Figure 6 b). #### 2.1.2.1.48 #### positive carrier # plus carrier carrier having an edge thickness that is less than the junction thickness See Figure 6 c). #### Key - 1 optic zone - 2 junction - 3 edge Figure 6 — Different types of carrier # 2.1.2.2 Radius of curvature NOTE 1 Radii relating to zones on the back surface of the lens are designated by a numerical subscript starting with zero (r_0) . The subscript becomes larger from the lens centre to the lens edge. See Figure 2. NOTE 2 Radii relating to the front surface of the lens have a double subscript, the first part of which is the letter "a". The second part is a number from zero upward, for example, r_{a2} . NOTE 3 In the case of an aspheric zone, a mathematical equation or expression may be used to describe the curvature of the zone. # 2.1.2.2.1 # back optic zone radius base curve radius r_0 radius of curvature of the back optic zone of a surface with a single refractive element NOTE 1 On a toroidal zone there will be two radius values. NOTE 2 The term "base curve" used in a contact lens context must not be confused with the same term when used in a spectacle lens context (see ISO 13666:1998). # 2.1.2.2.2 # back central optic zone radius r_0 radius of curvature of the back central optic zone of a multifocal contact lens #### 2.1.2.2.3 #### back peripheral optic zone radius radius of curvature of a back peripheral optic zone of a multifocal contact lens #### 2.1.2.2.4 # back peripheral radius *r*₁, *r*₂, ... radius of curvature of the back peripheral zone NOTE This term may be preceded by first, second, third, etc. #### 2.1.2.2.5 #### front optic zone radius r_{a0} radius of curvature of the front optic zone of a surface with a single refractive element #### 2.1.2.2.6 ## front central optic zone radius radius of curvature of the front central optic zone of a multifocal contact lens #### 2.1.2.2.7 # front peripheral optic zone radius *r*_{a1}, *r*_{a2}, ... radius of curvature of a front peripheral optic zone of a multifocal contact lens #### 2.1.2.2.8 #### front peripheral radius *r*a1, *r*a2, ⋅⋅⋅ radius of curvature of a front peripheral zone NOTE This term may be preceded by first, second, third, etc. #### 2.1.2.3 Diameter - NOTE 1 In cases of elliptical shapes, the maximum and minimum sizes are used for measurement purposes. - NOTE 2 Elliptical zones that are toroidal, or adjacent to a toroidal zone, have their diameter specified on the flattest meridian. - In lenses with concentric posterior surface zones, the zones are qualified by a subscript number from zero starting with the innermost zone (\emptyset_0) . See Figure 2. On the anterior surface the number is always preceded by the letter "a", for example (\emptyset_{a0}). # 2.1.2.3.1 ### total diameter overall diameter \emptyset_T maximum external dimension of the finished contact lens or shell # 2.1.2.3.2 # optic zone diameter maximum diameter of the specified optic zone NOTE The optic zone of a toric periphery contact lens is usually elliptical in shape. # 2.1.2.3.3 # back optic zone diameter \emptyset_0 diameter of the back optic zone on a surface with a single optical component NOTE On a toroidal zone there will be two values. #### 2.1.2.3.4 #### back central optic zone diameter Ø۸ diameter of the posterior central optic zone of a concentric multifocal contact lens #### 2.1.2.3.5 #### back peripheral optic zone diameter $\emptyset_1, \emptyset_2, \dots$ diameter of a posterior peripheral optic zone of a concentric multifocal contact lens #### 2.1.2.3.6 # back peripheral zone diameter Ø₁, Ø₂, ... diameter of a back peripheral zone NOTE This term may be preceded by first, second, third, etc. #### 2.1.2.3.7 #### front optic zone diameter Ø_a(diameter of the front optic zone on a surface with a single refractive element #### 2.1.2.3.8 # front central optic zone diameter Q_{ac} diameter of the anterior central optic zone of a multifocal contact lens #### 2.1.2.3.9 # front peripheral optic zone diameter Ø_{a1}, Ø_{a2}, ... diameter of an anterior peripheral optic zone of a multifocal contact lens #### 2.1.2.3.10 # front peripheral zone diameter $\emptyset_{a1}, \emptyset_{a2}, ...$ diameter of a front peripheral zone NOTE This term may be preceded by first, second, third, etc. # 2.1.2.4 Thickness NOTE It is common in France to use the symbol e for épaisseur, rather than t for thickness. #### 2.1.2.4.1 # geometric centre thickness t_{C} thickness of the contact lens or shell at its geometric centre # 2.1.2.4.2 #### optical centre thickness l_{O} thickness of the contact lens at its optical centre NOTE This symbol is used only if the optical centre does not coincide with the geometric centre. #### 2.1.2.4.3 # harmonic mean thickness thickness of a rotationally symmetric contact lens calculated from a series of (h + 1) radial thickness measurements at intervals of equal annular area from the centre point (point 0) to the edge point (point h) of the circular zone by the expression $$t_{\mathsf{HM}} = \frac{h+1}{1/t_0 +
1/t_1 + 1/t_2 + 1/t_3 \dots 1/t_h}$$ where is a series of concentric circles indicating zones of equal surface area from the lens geometric h centre to the edge of the exposed sample area; is the harmonic mean thickness of a radially symmetric test sample; $t_{\rm HM}$ are the radial thicknesses measured at intervals of equal area from the centre (t_0) to the edge (t_h) of the exposed sample area. NOTE The number of zones is equal to h + 1. #### 2.1.2.4.4 # axial thickness thickness of a contact lens along a line parallel to the lens axis, at a specified position #### 2.1.2.4.5 # axial edge thickness axial thickness at a defined distance from the edge See Figure 7. #### 2.1.2.4.6 #### radial thickness thickness of a contact lens along a line which passes through the centre of the vertex sphere and intersects the lens at a specified point #### 2.1.2.4.7 # radial edge thickness thickness of the lens measured normal to the front surface at a specified distance x from the edge See Figure 7. **EXAMPLE** $t_{\text{ER}(0,2)}$ indicates the radial edge thickness is measured 0,2 mm from the contact lens edge. # 2.1.2.4.8 # carrier junction thickness radial thickness at the carrier junction NOTE To indicate the zone concerned, the subscript is followed by the number of the inner zone. #### 2.1.2.4.9 #### peripheral junction thickness radial thickness of the contact lens measured at a specified junction NOTE The subscript may be followed by a number to indicate the junction concerned. See Figure 2. # Key - 1 front surface of contact lens - 2 vertex sphere - 3 back vertex - 4 centre of vertex sphere - 5 contact lens axis - 6 axial edge thickness, t_{FA} - 7 radial edge thickness, t_{ER} - ^a The radial edge thickness would normally be measured 0,2 mm to 0,8 mm from the edge of the contact lens. Figure 7 — The difference between radial and axial edge thickness # 2.1.3 Aspheric contact lenses # 2.1.3.1 ## aspheric zone zone with surface having a form generated by the rotating of a curve of continuously varying radius about the contact lens axis ## 2.1.3.2 # bi-aspheric contact lens contact lens having both front and back optic zones of aspheric form # 2.1.3.3 # aspheric periphery contact lens contact lens with one or more back peripheral aspheric zones and a spherical back optic zone #### 2.1.3.4 # aspheric bi-curve contact lens contact lens whose back surface is composed of two intersecting coaxial aspheric zones #### 2.1.3.5 # aspheric tri-curve contact lens contact lens whose back surface is composed of three intersecting coaxial aspheric zones #### 2.1.3.6 #### aspheric multi-curve contact lens contact lens whose back surface is composed of more than three intersecting coaxial aspheric zones #### 2.1.3.7 #### apical radius of curvature radius of curvature at the apex of an aspheric surface having a sagittal depth that is approximately equal to the sagittal depth of the aspheric surface in a small area surrounding its apex #### 2.1.4 Bifocal and multifocal contact lenses #### 2.1.4.1 #### addition power addition difference between the vertex power of the near portion and the vertex power of the distance portion #### 2.1.4.2 #### progressive optical zone aspheric zone designed to provide a continuous change of surface power #### 2.1.4.3 #### concentric bifocal contact lens contact lens having two optic zones of different power, each having coincident geometric centres See Figure 8. NOTE This excludes diffractive bifocal contact lenses. # Key - carrier - 2 central optic zone - peripheral optic zone Figure 8 — The surface of a solid, concentric bifocal contact lens #### 2.1.4.4 # concentric multifocal contact lens contact lens having two or more optic zones of different power, each having coincident geometric centres # 2.1.4.5 #### central optic zone innermost optic zone of a concentric bifocal or other multifocal contact lens #### 2.1.4.6 #### peripheral optic zone optic zone surrounding the central optic zone of a concentric multifocal contact lens NOTE There can be more than one peripheral optic zone. #### 2.1.4.7 #### centre distance contact lens #### **CD** contact lens multifocal or progressive power contact lens where the maximum minus (or minimum plus) power is found in the central optic zone of the lens #### 2.1.4.8 # centre near contact lens #### **CN** contact lens multifocal or progressive power contact lens where the maximum plus (or minimum minus) power is found in the central optic zone of the lens #### 2.1.4.9 # solid bifocal contact lens # one-piece bifocal contact lens non-composite bifocal contact lens bifocal contact lens formed from only one material #### 2.1.4.10 # solid multifocal contact lens one-piece multifocal contact lens # non-composite multifocal contact lens multifocal contact lens formed from only one material #### 2.1.4.11 #### fused segment contact lens multifocal contact lens made from materials of different refractive indices #### 2.1.4.12 # segment height vertical distance of the segment extreme point above the horizontal tangent to the contact lens periphery at its lowest point See Figure 9. NOTE This dimension does not apply to concentric and diffractive multifocal contact lenses. #### 2.1.4.13 # diffractive bifocal contact lens simultaneous image bifocal contact lens which utilizes diffraction as well as refraction to focus retinal images of distant and near objects # 2.1.4.14 #### simultaneous image multifocal contact lens simultaneous vision contact lens (deprecated) bifocal or multifocal contact lens whose performance does not primarily depend on lens movement for different viewing distances NOTE It is intended that two or more zones continually cover the pupil area. ### 2.1.4.15 # alternating image bifocal contact lens translating bifocal contact lens alternating vision bifocal contact lens (deprecated) translating vision bifocal contact lens (deprecated) bifocal contact lens whose performance depends primarily on movement of the contact lens to position either the near or the distance portion in front of the pupil See Figure 9. #### Key - distance optic zone - near optic zone 2 - 3 truncation - segment height Figure 9 — Example of an alternating image bifocal contact lens #### 2.1.5 Scleral contact lenses and shells # 2.1.5.1 # impression scleral contact lens scleral contact lens, the back surface of which has been produced by moulding from a cast of the eye of the wearer #### 2.1.5.2 # impression scleral shell scleral shell, the back surface of which has been produced by moulding from a cast of the eye of the wearer # 2.1.5.3 #### impression tray type of shell used to hold impression material in contact with the eye # preformed scleral contact lens scleral contact lens, not an impression lens, the back surface of which is of a specified form # 2.1.5.5 # back scleral size maximum internal dimension of the back scleral surface before the sharp edges have been rounded See Figure 10. # Key - 1 displacement of optic d = (AB + CD)/2 - 2 scleral zone - 3 optic-scleral junction - 4 edge - 5 centre of circle enclosing edge - 6 centre of circle enclosing the optic zone - 7 back scleral size = AD Figure 10 — Posterior view of a scleral contact lens or shell #### 2.1.5.6 # displacement of optic d (scleral lenses) half of the difference between the maximum and minimum scleral chords See Figure 10. NOTE This assumes a round contact lens with a round optic zone. # 2.1.5.7 # primary optic diameter diameter of the optic zone before any transition is added See Figure 10. NOTE In a case where the optic zone is not circular, the longest chord passing through the geometric centre is used. # 2.1.5.8 # primary optic plane plane perpendicular to the lens axis and containing the primary optic diameter # 2.1.5.9 # primary sagitta distance along the lens axis from the back vertex of the optic zone to the primary optic plane ---,,...,...---,,,.,...--- #### 2.1.5.10 #### scleral chord distance in a specified meridian from the optic-scleral junction to the junction of the back scleral surface with the edge NOTE See Figure 10, where distances AB and CD are examples of scleral chords. #### 2.1.5.11 #### scleral thickness thickness of the scleral zone measured normal to the front scleral surface at any specified point #### 2.1.5.12 #### scleral zone zone of a scleral lens (or shell) designed to lie in front of the sclera #### 2.1.5.13 #### channel specified groove in a scleral contact lens or shell #### **Contact lens material properties** 2.1.6 #### 2.1.6.1 # dimensional stability degree to which a contact lens maintains its original dimensions over time #### 2.1.6.2 # gas permeability gas flux, j, under specified conditions through contact lens material of unit thickness when subjected to unit pressure difference $$P = \frac{V \times t}{A \times \Delta p \times t_{\Delta p}}$$ #### where - is the volume, expressed in centimetres cubed, of gas; - is the axial thickness, expressed in centimetres, of the contact lens material; t - is the surface area, expressed in centimetres squared; A - is the difference in pressure, expressed in hectopascals; - is the time, expressed in seconds, during which the contact lens material is subjected to the difference in pressure. #### 2.1.6.3 #### oxygen permeability oxygen flux, j, under specified conditions through contact lens material of unit thickness when subjected to unit pressure difference - NOTE 1 This is the most commonly used gas permeability for contact lens materials. - Oxygen permeability, Dk, is expressed in units of $10^{-11} (\text{cm}^2/\text{s}) [\text{ml O}_2/(\text{ml} \cdot \text{hPa})]$, or equivalently, 10^{-11} (cm³ O₂ · cm)/(cm² · s · hPa). For simplicity, the units for Dk are referred to as "Dk units". - NOTE 3 For Dk units in terms of mmHg instead of hPa (760 mmHg = 1 013,25 hPa) multiply the numerical value obtained using hPa by 1,333 22. NOTE 4 Oxygen permeability is a physical property of the material and is not a function of the
shape or thickness of a contact lens or material sample. #### 2.1.6.4 # oxygen flux -22**9** ; ; net volume of oxygen gas passing through a unit area of sample contact lens material per unit time under specified conditions, including temperature, sample thickness and partial pressures of oxygen on both sides of the sample NOTE A convenient unit of oxygen flux for contact lens material is $\mu l/(cm^2 \cdot s)$. #### 2.1.6.5 # oxygen transmissibility Dklt oxygen permeability, Dk, divided by the thickness, t, in centimetres, of the measured sample under specified conditions NOTE 1 Oxygen transmissibility, Dk/t, is expressed in units of 10^{-9} (cm/s) [ml O₂/(ml · hPa)], or equivalently, 10^{-9} (cm³ O₂)/(cm² · s · hPa). For simplicity, the units for Dk/t are referred to as "Dk/t units". NOTE 2 For Dk/t units in terms of mmHg instead of hPa (760 mmHg = 1 013,25 hPa) multiply the numerical value obtained using hPa by 1,333 22. NOTE 3 Unlike permeability, oxygen transmissibility depends upon the thickness and, therefore, the cross-sectional shape or design of a contact lens or material sample. #### 2.1.6.6 #### water content amount of water (expressed as a percentage by mass fraction) present in a hydrated contact lens under specified conditions of temperature NOTE 1 The term is most often used when dealing with hydrogel materials. NOTE 2 Water content influences many of the physical properties of hydrogel materials as well as various parameters of the finished contact lens. #### 2.1.6.6.1 # low water content contact lens hydrogel contact lens having a water content, w_{water} , that is greater than or equal to 10 % and less than 50 % [10 % $\leq w_{\text{water}} <$ 50 %] # 2.1.6.6.2 #### mid water content contact lens hydrogel contact lens having a water content, w_{water} , that is greater than or equal to 50 % and less than or equal to 65 % [50 % $\leq w_{\text{water}} \leq$ 65 %] # 2.1.6.6.3 #### high water content contact lens hydrogel contact lens having a water content that is greater than 65 % [$w_{water} > 65$ %] # 2.1.6.7 #### ionic containing greater than 1 % (expressed as mole fraction) monomers which are ionic at pH 7,2 #### 2.1.6.8 #### non-ionic containing less than or equal to 1 % (expressed as mole fraction) monomers which are ionic at pH 7,2 #### 2.1.6.9 #### spectral transmittance ratio of the spectral radiant flux transmitted by the contact lens to the incident spectral flux at any specified wavelength (λ) [ISO 13666:1998] #### 2.1.6.10 #### **luminous transmittance** ratio of the luminous flux transmitted by the lens to the incident luminous flux [ISO 13666:1998] NOTE 1 In order to calculate this, it is necessary to know the spectral luminous efficiency. NOTE 2 It is necessary to specify the light source (e.g. D65 or illuminant A). An average transmittance summed over the wavelengths of a visible spectrum is given by the formula NOTE 3 $$au_{ m V} = 1/400 \int\limits_{ m 380~nm} au(\lambda) { m d}\lambda$$ #### 2.1.6.11 # **UV-absorbing contact lens** # **UV-blocking contact lens** #### **UV-filtering contact lens** contact lens having a specification in compliance with either Class 1 or Class 2 NOTE See 2.1.6.11.3 and 2.1.6.11.4. # 2.1.6.11.1 #### **UVA** radiation of wavelengths between 316 nm and 380 nm # 2.1.6.11.2 #### **UVB** radiation of wavelengths between 280 nm and 315 nm #### 2.1.6.11.3 #### Class 1 classification for a contact lens whose luminous transmittance of UVA $(\tau_{\rm INA})$ < 10 % of $\tau_{\rm V}$ and whose luminous transmittance of UVB (τ_{LIVB}) < 1 % of τ_{V} ## 2.1.6.11.4 #### Class 2 classification for a contact lens whose luminous transmittance of UVA ($\tau_{\rm IVA}$) < 50 % of $\tau_{\rm V}$ and whose luminous transmittance of UVB (τ_{LIVB}) < 5 % of τ_{V} #### 2.1.6.12 ## contact angle angle formed by an intersection of the tangents at the solid-liquid-gaseous interface comprised of a contact lens material, a known liquid, and air, under specified conditions NOTE The contact angle is formed between a tangent to the air/liquid interface and a tangent to the liquid/solid interface. #### 2.1.6.13 # advancing contact angle contact angle created when the liquid has been moving towards a dry solid surface #### 2.1.6.14 #### equilibrium contact angle contact angle created when there has been no movement of the liquid across the solid surface for a substantial time period #### 2.1.6.15 #### receding contact angle contact angle created when the liquid has been moving away from an area of solid surface which was previously wet #### 2.1.7 Tinted contact lenses #### 2.1.7.1 #### tinted contact lens contact lens with some colouration for a specified or an intended use #### 2.1.7.2 # opaque tinted contact lens # eye-masking tinted contact lens contact lens with sufficient colour in order to mask all or most of the natural iris colour NOTE This is a colloquial term and not all such lenses are completely opaque. #### 2.1.7.3 #### enhancing tint colouration which is added to a contact lens in order to alter the apparent iris colour of the wearer #### 2.1.7.4 # handling tint # visibility tint colouration added to a contact lens which is intended to improve the visibility of the lens during handling but which is not intended to have any apparent effect on iris colour # 2.1.8 Contact lens manufacture ### 2.1.8.1 # lathe-cut contact lens #### turned contact lens contact lens primarily manufactured by removal of material with a lathe # 2.1.8.2 #### spin-cast contact lens contact lens manufactured by a process where a concave mould containing monomer is spun around a vertical axis #### 2.1.8.3 # moulded contact lens contact lens manufactured primarily in a mould # 2.1.8.4 #### truncate to remove a specified part of the contact lens periphery in order to make it non-circular # 2.1.9 Packaging and labelling of contact lenses and contact lens care products # 2.1.9.1 # intended purpose use for which a product is intended according to the information supplied by the manufacturer on the labelling, in the instructions and/or in promotional materials #### 2.1.9.2 #### performance suitability of a product to achieve its intended purpose #### 2.1.9.3 # multi-dose solution liquid preparation in a primary container whose volume allows the user to expel an appropriate amount of the product on more than one occasion #### 2.1.9.4 #### unit dose contact lens care solution packaged within a primary container that contains sufficient product intended for only one use #### 2.1.9.5 #### blister pack disposable primary container consisting of a thin moulded depression of material containing a product sealed with appropriate material #### 2.1.9.6 #### tamper-evident package package having an indicator or barrier to entry which, if damaged, breached or missing, can reasonably be expected to provide evidence to practitioners or users that the package may have been opened #### 2.1.9.7 # primary packaging #### primary container element of the packaging system that maintains the sterility or cleanliness of the product [ISO 11134:1994] NOTE Primary packaging is intended for storage and protection of the finished product for the duration of the labelled shelf-life or until the integrity of the package has been compromised. #### 2.1.9.8 # labelling all information given on any label, the primary container, the secondary carton or in a leaflet supplied with the product # 2.1.9.9 # expiration date #### expiry date end date of period of time, designated by the manufacturer, beyond which the product should not be first used # 2.1.9.10 #### shelf-life specified period of time from the date of manufacture of a product to its labelled expiration date #### 2.1.9.11 #### discard date in-use period (deprecated) specified period of time from first use to when the product should be discarded # 2.1.9.12 #### in-use stability ability of a contact lens or contact lens care product to retain its performance and safety from first opening to its discard date #### 2.1.9.13 #### batch defined quantity of bulk, intermediate or finished product that is intended or purported to be uniform in character and quality, and which has been produced during a defined cycle of manufacture [ISO 11137:1995] NOTE Refer to ISO 15223 or EN 980 for applicable symbols. # 2.1.10 Contact lens usage and wear modality #### 2.1.10.1 #### disposable contact lens contact lens intended for a single use (wearing period) NOTE A disposable contact lens is not intended to be reused. It is intended to be discarded after removal from the eye. #### 2.1.10.2 #### reusable contact lens contact lens intended to be reprocessed for reuse according to the manufacturer's instructions between periods of wear NOTE Reprocessing of a reusable contact lens would conventionally include contact lens cleaning and disinfection. #### 2.1.10.3 #### replacement frequency time period recommended by the manufacturer for discarding a contact lens NOTE The replacement frequency is determined starting from the first use of the lens until the recommended time for discarding is reached. #### 2.1.10.3.1 # frequent replacement contact lens planned replacement contact lens for which the replacement period is three months or less ### 2.1.10.3.2 #### planned replacement contact lens contact lens for which the manufacturer has recommended a replacement period ### 2.1.10.4 #### contact lens wear modality prescribed form or manner in which a contact lens is worn # 2.1.10.4.1 # daily wear contact lens wear modality in which a contact lens is worn only during waking periods #### 2.1.10.4.2 # extended wear contact lens wear modality in which a contact lens is worn continuously during successive waking and sleeping periods ## 2.1.10.5 #### cosmetic contact lens contact lens specifically designed to change or mask the appearance of the eye NOTE Cosmetic lenses are devices which can also be used for therapeutic
purposes. #### 2.1.10.6 #### cosmetic contact shell contact lens shell specifically designed to change or mask the appearance of the eye NOTE Cosmetic shells are devices which can also be used for therapeutic purposes. # ISO 18369-1:2006(E) #### 2.1.10.7 # bandage contact lens protective contact lens #### therapeutic contact lens contact lens designed to protect, maintain, or aid in restoring integrity of ocular tissue NOTE This type of contact lens can be designed to include a refractive element. #### 2.1.10.8 # trial contact lens #### diagnostic contact lens contact lens only used by a practitioner or fitter for the purpose of selecting the appropriate contact lens parameters for the intended wearer #### 2.1.10.8.1 #### multipatient use trial contact lens trial contact lens permitted to be used on more than one person #### 2.1.11 Contact lens hygienic management and contact lens care products #### 2.1.11.1 #### active ingredient component present in sufficient quantity that relates to an intended purpose #### 2.1.11.2 #### antimicrobial activity ability to kill/destroy/inactivate microorganisms, prevent their proliferation and/or prevent their pathogenic action #### 2.1.11.3 #### antimicrobial agent compound capable of antimicrobial activity # 2.1.11.4 ### neutralization process by which active ingredients (e.g. hydrogen peroxide) in a contact lens care product which can compromise ocular tissue are rendered inactive and/or non-toxic NOTE There is no implication that pH 7,0 has been achieved by this process. #### 2.1.11.5 # neutralizing agent chemically active ingredient(s) capable of neutralization # 2.1.11.6 ## surfactant agent that modifies the surface energy (surface tension) of a solution NOTE Surfactants are common ingredients used in the formulation of contact lens cleaners. # 2.1.11.7 # preservative component intended to prevent the growth of microorganisms in or on a product # 2.1.11.8 # stasis inhibition of microbial growth #### 2.1.11.9 #### bioburden population of viable microorganisms on a raw material, component, a finished product and/or a package [ISO 11134:1994] NOTE Bioburden is expressed as the total viable count (TVC), or colony forming units (CFU, cfu) per lens or tablet, or CFU per millilitre of solution. #### 2.1.11.10 #### sterile free of viable microorganisms [ISO 11135:1994] NOTE 1 In practice, no such absolute statement regarding the absence of microorganisms can be proven. The nature of microbial death is described by an exponential function. Therefore, the presence of viable microorganisms on any individual item can be expressed in terms of probability. Although this probability can be reduced to a very low number, it can never be reduced to zero. NOTE 2 Refer to ISO 15223 or EN 980 for applicable symbols. #### 2.1.11.11 # sterility assurance level #### SAL probability of a viable microorganism being present on a product unit after sterilization [ISO 11135:1994] NOTE SAL is normally expressed as a negative power (n) of ten, in the form 10^{-n} . #### 2.1.11.12 #### hygienic management procedure by which contact lenses are maintained in a condition for safe reuse #### 2.1.11.13 #### contact lens cleaning process of removing surface contaminants from a contact lens NOTE Cleaning is usually the first step in the hygienic management of a reusable contact lens. Chemical agents (e.g. surfactants) are often employed in contact lens cleaning products to facilitate the removal of foreign matter from a contact lens. #### 2.1.11.14 # contact lens care regimen series of processes specified by the contact lens or care product manufacturer and used by the contact lens wearer to maintain ocular health, lens condition, comfort and vision # 2.1.11.15 #### contact lens disinfection chemical or physical process to reduce the number of viable microorganisms on a contact lens to a level which is neither harmful to ocular health nor to the quality of contact lenses and accessories NOTE Bacterial spores, acanthamoeba, some fungal spores, prions and some viruses might not necessarily be inactivated during the contact lens disinfection process. #### 2.1.11.15.1 # contact lens disinfecting agent chemically or physically active ingredient in contact lens disinfection #### 2.1.11.15.2 # contact lens disinfecting product product that possesses biocidal activity (kills, destroys, or inactivates), meeting the primary criteria of the stand-alone test specified in ISO 14729:2001 #### 2.1.11.15.3 #### contact lens disinfecting regimen contact lens care regimen designed to meet both the secondary criteria of the stand-alone test and the regimen test as specified in ISO 14729:2001 #### 2.1.11.16 #### abrasive cleaner suspension in sufficient concentration used to facilitate cleaning of contact lenses by friction enhancement #### 2.1.11.17 # enzymatic cleaner #### protein or lipid remover liquid or solid preparation containing one or more enzymes as active ingredients with the intended purpose of reducing adsorbed and absorbed proteins and/or lipids on a contact lens NOTE Enzymatic cleaners are optional contact lens care products recommended for use in the hygienic management of contact lenses. #### 2.1.11.18 #### rinsing act of removing physical and chemical contaminants from a contact lens by allowing the flow of a suitable liquid over the surfaces of the lens NOTE A minimum time for rinsing lenses is generally recommended by the manufacturer in the labelling of a rinsing solution to achieve its intended purpose. #### 2.1.11.19 #### soaking act of immersing a contact lens in a specified solution for a specified time NOTE A minimum time for soaking lenses is generally recommended by the manufacturer in the labelling of a soaking or storage solution to achieve its intended purpose. #### 2.1.11.20 # soaking solution # storage solution liquid preparation with the intended purpose of keeping a contact lens in a condition suitable for reuse while the lens is not in the eye NOTE Soaking solutions can contain preservatives. #### 2.1.11.21 # conditioning solution liquid preparation formulated for soaking and storage of a contact lens for the intended purpose of maintaining the lens in a condition suitable for reuse NOTE Conditioning solutions are generally formulated with antimicrobial agents and viscosity agents and are primarily intended for use in the hygienic management of rigid contact lenses. #### 2.1.11.22 #### wetting solution liquid preparation applied to contact lenses to improve the short-term hydrophilicity of the lens surface NOTE Because these solutions normally contain viscosity increasing agents, they can also act to improve lubrication between the eyelid and the contact lens. # 2.1.11.23 #### eve drops # lubricating and rewetting solution #### rewetting drops liquid preparation intended for occasional use directly in the eye by a contact lens wearer for alleviating discomfort of lens wear and improving lens tolerance by physical means NOTE The term "comfort drops" is sometimes also used but is deprecated because it is a registered trademark of a contact lens care product in some countries and is no longer a generic term. #### 2.1.11.24 #### multipurpose solution combination solution (deprecated) liquid preparation which has more than one claimed function in the hygienic management of a contact lens #### 2.1.11.25 # packaging solution #### shipping solution liquid preparation used by the contact lens manufacturer or practitioner to dispatch or store lenses in a primary container #### 2.1.12 Miscellaneous # 2.1.12.1 # aphakia condition where the natural crystalline lens of the eye is absent #### 2.1.12.2 #### biocompatibility #### ocular biocompatibility property of a material that will not cause an allergenic, hypersensitive, irritative, or toxic reaction when it is in contact with human ocular tissue or preocular tear film #### 2.1.12.3 #### clinical investigator individual and/or institution responsible for the conduct of a clinical investigation who and/or which takes the clinical responsibility for the wellbeing of the subjects involved [ISO 14155-1:2003] NOTE Whether this is an individual or an institutional responsibility can depend on national legislation. # 2.1.12.4 #### elution less aggressive form of extraction for removing chemicals from a contact lens material NOTE Generally, the process of elution uses either distilled water, saline, cottonseed oil or tissue culture media as solvents, room temperature as a specified condition and extended time periods (e.g. 24 h to 72 h) for removing or greatly diluting the presence of some chemicals or imputed impurities from the contact lens material. #### 2.1.12.5 #### extractable substance # leachable substance #### residual chemical removed from the material composing contact lenses, during the process of extraction # 2.1.12.6 #### extraction process of removing residual chemicals that are present in materials by using a specified solvent, for a specified time, under specified conditions NOTE The process of extraction is typically associated with aggressive conditions such as short time periods (e.g. 1 h) and high solvent temperatures (e.g. 37 °C) for removing chemicals from a material. ### 2.1.12.7 #### inoculum suspension of known microorganisms #### 2.1.12.8 #### accuracy closeness of agreement between the test result and the accepted reference value (true value) NOTE When applied to a set of observed values, accuracy describes a combination of random components (precision) and a common systematic error component (trueness). --,,---,,-,--- #### 2.1.12.9 #### precision closeness of agreement between mutually independent test results obtained under stipulated conditions [ISO 3534-1:1993] NOTE Precision depends only on the distribution of random errors and does not relate to the true or accepted reference value of the parameter tested. Repeatability and reproducibility are concepts of precision. See the appropriate part of ISO 5725.) #### 2.1.12.9.1
repeatability closeness of agreement between mutually independent test results obtained following the same test procedure on identical test material in the same laboratory by the same operator using the same equipment within short intervals of time NOTE The value of repeatability is expressed as the difference between test results below which the absolute difference between two single test results can be expected to lie with a probability of 95 %. #### 2.1.12.9.2 #### reproducibility closeness of agreement between mutually independent test results obtained following the same test procedure on identical test material in different laboratories by different operators using different equipment NOTE The value of reproducibility is expressed as the difference between test results below which the absolute difference between two single test results can be expected to lie with a probability of 95 %. #### 2.1.12.10 # prism dioptre Δ pdpt unit of prismatic deviation, equal to 100 tan δ , where δ is the angle of deviation in degrees (°) [ISO 13666:1998] NOTE Prism dioptre is expressed in centimetres per metre (cm/m). ## 2.1.12.11 #### ophthalmometer # keratometer instrument used to measure the radius of curvature of the primary front and back curve of a contact lens #### 2.1.12.12 # radiuscope # microspherometer instrument used to measure a radius of curvature of a contact lens NOTE The instrument is typically used to measure the back optic zone radius of a rigid contact lens. Table 1 — Symbols | Symbol | Term | Reference | | |-----------------------------------|--|------------------------|--| | r_0 | Back optic zone radius | 2.1.2.2.1 | | | r_0 | Back central optic zone radius | 2.1.2.2.2 | | | r_1, r_2 | Back peripheral optic zone radius | 2.1.2.2.3 | | | r_1, r_2 | Back peripheral radius | 2.1.2.2.4 | | | r_{a0} | Front optic zone radius | 2.1.2.2.5 | | | r_{a0} | Front central optic zone radius | 2.1.2.2.6 | | | r _{a1} , r _{a2} | Front peripheral optic zone radius | 2.1.2.2.7 | | | r _{a1} , r _{a2} | Front peripheral radius | 2.1.2.2.8 | | | Ø ₀ | Back optic zone diameter | 2.1.2.3.3 | | | Ø ₀ | Back central optic zone diameter | 2.1.2.3.4 | | | \emptyset_1, \emptyset_2 | Back peripheral optic zone diameter | 2.1.2.3.5 | | | \emptyset_1, \emptyset_2 | Back peripheral zone diameter | 2.1.2.3.6 | | | Ø _{a0} | Front optic zone diameter | 2.1.2.3.7 | | | Ø _{a0} | Front central optic zone diameter | 2.1.2.3.8 | | | Ø _{a1} , Ø _{a2} | Front peripheral optic zone diameter | 2.1.2.3.9 | | | Ø _{a1} , Ø _{a2} | Front peripheral zone diameter | 2.1.2.3.10 | | | Ø _T | Total diameter | 2.1.2.3.1 | | | t _A | Axial thickness ^a | 2.1.2.4.4 | | | $t_{\sf EA}$ | Axial edge thickness ^a | 2.1.2.4.5 | | | t_{CJ} | Carrier junction thickness ^a | 2.1.2.4.8 | | | t_{C} | Geometric centre thickness ^a | 2.1.2.4.1 | | | t _O | Optical centre thickness ^a | 2.1.2.4.2 | | | t_{HM} | Harmonic mean thickness ^a | 2.1.2.4.3
2.1.2.4.9 | | | t_{PJ} | Peripheral junction thickness ^a | | | | t_{R} | Radial thickness ^a | 2.1.2.4.6 | | | $t_{\sf ER}$ | Radial edge thickness ^a | 2.1.2.4.7 | | | l _A | Axial lift | 2.1.2.1.21 | | | l_{EA} | Axial edge lift | 2.1.2.1.22 | | | l_{R} | Radial lift | 2.1.2.1.19 | | | l_{ER} | Radial edge lift | 2.1.2.1.20 | | | F'_{V} | Back vertex power | 2.1.2.1.2 | | | F_{V} | Front vertex power | 2.1.2.1.1 | | | d | Displacement of optic | 2.1.2.1.9 | | | τ _V | Luminous transmittance | 2.1.6.10 | | | $ au_{\lambda}$ | Spectral transmittance | 2.1.6.9 | | | Dk | Oxygen permeability | 2.1.6.3 | | | Dklt | Oxygen transmissibility | 2.1.6.5 | | | j | Oxygen flux | 2.1.6.4 | | #### 3 Classification of contact lens materials 3.1 The specific name of a contact lens or contact lens material is given as a six-part coding as follows: #### (prefix) (stem) (series) (group suffix) (Dk range) (modification code) For hydrogel lens materials, the classification denotes whether the material is ionic and the range in which the water content falls. For non-hydrogel lens materials, the classification indicates the presence/absence of silicone/fluorine and oxygen permeability grouping. For both types of material the presence or absence of surface modifications is indicated (see 3.7). - **3.2** The **prefix** is a term assigned to a material to designate a specific chemical formulation. Use of this prefix, which is administered by the United States Adopted Names (USAN) Council, is optional outside the United States of America.¹⁾ - **3.3** Two types of **stems** are used. The **filcon** stem is affixed to the prefix for materials that contain equal to or greater than 10 % water by mass. The **focon** stem is affixed to the prefix for materials which contain less than 10 % water by mass. - **3.4** The **series** suffix is also administered by the USAN Council and is used in cases in which the original ratio of monomers of an existing contact lens material is changed to make a new contact lens material. In this case, the capital letter "A" is added after the stem designation. Subsequent changes in ratio of identical monomers are designated by the next letter of the alphabet. These letters are used to differentiate polymers of identical monomeric components but with different ratios. - **3.5** The **group** suffix, represented by Roman numerals, indicates the range of water content measured according to ISO 18369-4 and ionic content for filcon materials. For focon materials it indicates the presence or absence of silicone/fluorine. - **3.5.1** For **hydrogel** materials, the group suffixes in Table 2 shall apply. Table 2 — Group suffixes for hydrogel materials | Group
suffix | Hydrogel material | Description | | | | | | |-----------------|---------------------------------------|--|--|--|--|--|--| | I | Low water content, non-ionic | Materials which contain less than 50 % water and which contain 1 % or less (expressed as mole fraction) of monomers that are ionic at pH 7,2 | | | | | | | II | Mid and high water content, non-ionic | Materials which contain 50 % water or more, and which contain 1 % or less (expressed as a mole fraction) of monomers which are ionic at pH 7,2 | | | | | | | III | Low water content, ionic | Materials which contain less than 50 % water and which contain greater than 1 % (expressed as a mole fraction) of monomers which are ionic at pH 7,2 | | | | | | | IV | Mid and high water content, ionic | Materials which contain 50 % water or more, and which contain greater than 1 % (expressed as a mole fraction) of monomers which are ionic at pH 7,2 | | | | | | NOTE Low water content is defined as less than 50 % water (< 50 %); mid water content is from 50 % to 65 % water, inclusive (50 % to 65 % water); and high water content is greater than 65 % water (> 65 %). Hence, group suffixes II and IV include all materials having water content of 50 % or greater. _ ¹⁾ United States Adopted Names Council, c/o American Medical Association, P.O. Box 10970, Chicago, Illinois, USA, 60610; phone (312) 464-4046. **3.5.2** For **non-hydrogel** materials, the group suffixes in Table 3 shall apply. Table 3 — Group suffixes for non-hydrogel materials | Group
suffix | Non-hydrogel material | | | | | | | |--|--|--|--|--|--|--|--| | I | Materials which do not contain either silicone or fluorine | | | | | | | | II | II Materials which contain silicone but not fluorine | | | | | | | | III | Materials which contain both silicone and fluorine | | | | | | | | IV | IV Materials which contain fluorine but not silicone | | | | | | | | NOTE Polymer formulations can also contain initiators, catalysts, tints, UV absorbers, fillers and wetting agents which can be present in the final material. For clarity and simplicity, these additives have been omitted from the stated composition. | | | | | | | | **3.6** Oxygen permeability range (Dk range), presented as a numeric designation, which categorizes the Dk of the material in ranges that are considered to be of significance in contact lens wear. For contact lenses and contact lens materials, the oxygen permeability is measured according ISO 18369-4. The permeability range is then denoted in the classification by the number corresponding to the categories in Table 4. Table 4 — Oxygen permeability range | Category | Dk units using hPa | Dk units using mmHg | | | | | |----------|--|---|--|--|--|--| | 0 | < 0,75 <i>Dk</i> unit | < 1 <i>Dk</i> unit | | | | | | 1 | 0,75 Dk unit to 11,75 Dk units | 1 Dk unit to 15 Dk units | | | | | | 2 | 12,0 Dk units to 22,5 Dk units | 16 Dk units to 30 Dk units | | | | | | 3 | 22,75 Dk units to 45,0 Dk units | 31 Dk units to 60 Dk units | | | | | | 4 | 45,25 Dk units to 75,0 Dk units | 61 Dk units to 100 Dk units | | | | | | 5 | 75,25 Dk units to 112,5 Dk units | 101 Dk units to 150 Dk units | | | | | | 6 | 112,75 Dk units to 150,0 Dk units | 151 Dk units to 200 Dk units | | | | | | 7, etc. | increasing in increments of 37,5 Dk units | increasing in increments of 50 Dk units | | | | | - **3.7** The **modification** code, designated by a lower case "m", denotes that the lens has a modified surface which has different characteristics from the bulk of the material. This suffix is only used if the contact lens has been subjected to a surface modification process. Examples
include: - plasma treatment, - acid/base hydrolysis, - incorporation of a material which migrates to the surface, etc. Certain types of tinted lenses may also be considered surface modified. In the case of an unmodified surface, this suffix is omitted. ## ISO 18369-1:2006(E) #### 3.8 Examples of classification by code: **EXAMPLE 1** Hydrogel material. Hydrogel material whose formulation has the USAN code "Cromo", of monomer ratio modification "A", containing 78 % water, 0,6 % mole fraction ionic monomers and exhibiting an oxygen permeability of 42 Dk units is classified by the following code: #### Cromofilcon A II 3 **EXAMPLE 2** Non-hydrogel material. Non-hydrogel material whose formulation has the USAN code "Fluorsil", containing both silicone and fluorine, exhibiting an oxygen permeability of 132 Dk units and subjected to plasma treatment is classified by the following code: #### Fluorsilfocon III 6 m # **Annex A** (informative) ## Specification of rigid contact lenses #### A.1 General The contact lens is viewed from the front, as if on the eye. All linear dimensions are in millimetres (mm). Additional specific requirements, such as degree of blending of transitions, edge form and material tint, may be included as "Additional notes" to the specification. Front surface geometry and thickness are sometimes not included in the specification. In such instances, the manufacturer will need to allocate appropriate values to these parameters. The specification may include a description of the material from which the contact lens is to be fabricated. A diagram should be included in the specification of a bifocal contact lens. Examples of the methods of presenting specifications are given in A.2. See Table 1 for the explanation of symbols used in these examples. ## A.2 Examples ## A.2.1 EXAMPLE 1 — Tri-curve corneal contact lens with fenestration Figure A.1 provides three examples (bordered) of alternative presentation of the specification for a tri-curve corneal contact lens with fenestration. > \emptyset_1 \emptyset_{T} F'_{v} t_{C} 8,30 12,25 9,20 -6,007,60 7,00 8,80 0,10 1 fenestration: 0,3 mm diameter, 2 mm from edge Specified fenestration #### a) Alternative 1 | r_0 | : | \varnothing_0 | 7,60 | : | 7,00 | | | |-------------|--------------------|-----------------|--------------------------|-------|----------------|--|--| | r_1 | : | \varnothing_1 | 8,30 | : | 8,80 | | | | r_2 | : | \varnothing_T | 12,25 | : | 9,20 | | | | | F'_{V} | | | -6,00 | | | | | | \varnothing_{a0} | | 7,40 | | | | | | | t_{C} | | | 0,10 | | | | | Specified f | enestr | ation | 1 fenestrat
2 mm from | | 3 mm diameter, | | | #### b) Alternative 2 | r_0 | 7,60 | |-------------------------|---| | F'_{V} | -6,00 | | \varnothing_T | 9,20 | | t_{C} | 0,10 | | r_1 / \varnothing_0 | 8,30 / 7,00 | | r_2 / \varnothing_1 | 12,25 / 8,80 | | \varnothing_{a0} | 7,40 | | Specified fenestration | 1 fenestration: 0,3 mm diameter, 2 mm from edge | In this form of the specification only, the radius and width of the peripheral curves may be specified; in this example as 8,30/0,9 and 12,25/0,2 respectively. #### c) Alternative 3 Figure A.1 — Presentations of specification for a tri-curve corneal contact lens with fenestration ## A.2.2 EXAMPLE 2 — Corneal contact lens with a toric back surface and a spherical front surface Figure A.2 provides two examples (bordered) of alternative presentation of the specification for a corneal contact lens with a toric back surface and a spherical front surface. | _ | r_0 | : | \varnothing_0 | 1 | <i>r</i> ₁ | : | \varnothing_1 | 1 | r_2 | : | \varnothing_2 | 1 | r_3 | : | \varnothing_T | F'_{V} | |---|--------------|---|-----------------|---|-----------------------|---|-----------------|---|--------------|---|-----------------|---|--------------|---|-----------------|----------| | | 8,20
7,60 | : | 7,50 | 1 | 8,70
8,10 | : | 8,30 | 1 | 9,20
8,60 | : | 9,10 | / | 9,70
9,10 | : | 9,50 | +0,75 | #### a) Alternative 1 | r_0 | 8,20 / 7,60 | | | | | | | | |-----------------|-------------|--|--|--|--|--|--|--| | F'_{V} | +0,75 | | | | | | | | | \varnothing_T | 9,50 | | | | | | | | | t_{C} | 0,15 | | | | | | | | | r_1 | 8,70 / 8,10 | | | | | | | | | \varnothing_0 | 7,50 | | | | | | | | | r_2 | 9,20 / 8,60 | | | | | | | | | \varnothing_1 | 8,30 | | | | | | | | | r_3 | 9,70 / 9,10 | | | | | | | | | \varnothing_2 | 9,10 | | | | | | | | b) Alternative 2 A toroidal surface is specified by the radii of curvature in its two principal meridians, the radius in the flatter meridian being written first, or above the line, and the radius in the steeper meridian second, or below it. The zone diameter is specified for the flatter principal meridian. The back vertex power in air is specified along only the flatter principal meridian (in this example, +0,75 along 8,20 radius). This is only appropriate for a toric corneal lens with a back toric surface and a spherical front surface. Figure A.2 — Presentations of specification for a corneal contact lens with a toric back surface and a spherical front surface ## A.2.3 EXAMPLE 3 — Peripheral back toric contact lens Figure A.3 provides two examples (bordered) of alternative presentation of the specification for a peripheral back toric contact lens. a) Alternative 1 | r_0 | 7,80 | |--------------------|---------------| | F'_{V} | +15,00 | | \varnothing_T | 9,00 | | t_{C} | 0,25 | | r_1 | 8,80 / 8,20 | | \varnothing_0 | 7,00 | | r_2 | 11,00 / 10,40 | | \varnothing_1 | 8,40 | | \varnothing_{a0} | 7,40 | b) Alternative 2 The toroidal peripheral surface is specified by the radii of curvature in its two principal meridians. The zone diameter is specified for the flatter principal meridian. Figure A.3 — Presentations of specification for a peripheral back toric contact lens ## A.2.4 EXAMPLE 4 — Front toric corneal contact lens Figure A.4 provides two examples (bordered) of alternative presentation of the specification for a front toric corneal contact lens. a It is assumed that in wear the prism will locate with its base downwards (i.e. at 270°). Figure A.4 — Presentations of specification for a front toric corneal contact lens #### A.2.5 EXAMPLE 5 — Bi-toric corneal contact lens Figure A.5 provides two examples (bordered) of alternative presentation of the specification for a bi-toric corneal contact lens. | r_0 | : | \varnothing_0 | / | <i>r</i> ₁ | : | \varnothing_1 | 1 | r_2 | : | \varnothing_T | F'_{V} | |--------------|---|-----------------|---|-----------------------|---|-----------------|---|----------------|---|-----------------|-----------------------| | 8,00
7,40 | : | 7,50 | 1 | 9,95
8,85 | : | 9,00 | / | 12,75
10,65 | : | 9,50 | $\frac{-2,50}{-6,00}$ | #### a) Alternative 1 b) Alternative 2 The back vertex powers in air are specified along both the flatter and steeper meridians (in this example, -2,50 along 8,00 radius and -6,00 along 7,40 radius). Figure A.5 — Presentations of specification for a bi-toric corneal contact lens ## A.2.6 EXAMPLE 6 — Solid front surface concentric bifocals Figure A.6 provides an example (bordered) of the presentation of the specification for a solid front surface concentric bifocals contact lens. Figure A.7 gives the diagram that forms part of the specification. Figure A.6 — Presentation of specification for a solid front surface concentric bifocals contact lens Dimensions in millimetres Figure A.7 — Example 6 ## A.2.7 EXAMPLE 7 — Fused crescent segment bifocals Figure A.8 provides two examples (bordered) of alternative presentation of the specification for a fused crescent segment bifocals contact lens. Figure A.9 gives the diagram that forms part of the specification. | r_0 | : | \varnothing_0 | 7,85 | : | 8,00 | |---------------------------|------------------------|-------------------|---------------|----------|----------------| | r_1 | : | \varnothing_1 | 8,60 | : | 9,00 | | r_2 | : | \varnothing_{T} | 9,70 | : | 10,00 | | F' _∨ of distar | nce portic
near add | | +1,5 | 60 Add + | 2,00 | | Pres | scribed pr | ism | 1,5 | 5 Base 2 | 70 | | Segment | size and | position | Segment 7,5 m | m wide, | height 3,75 mm | | Speci | fied trunc | ation | Truncate 0,7 | 5 mm al | ong 5 inferior | ## a) Alternative 1 | r_0 | 7,85 | | | | | | |--------------------------------|-------------------------------------|--|--|--|--|--| | F'_{V} | +1,50 | | | | | | | \varnothing_T | 10,00 | | | | | | | t_{C} | 0,30 | | | | | | | r_1 / \varnothing_0 | 8,60 / 8,00 | | | | | | | r_2 / \varnothing_1 | 9,70 / 9,00 | | | | | | | Near addition Prescribed prism | Add +2,00 1,5 Base 270 | | | | | | | Segment size and position | Segment 7,5 mm wide, height 3,75 mm | | | | | | | Specified truncation | Truncate 0,75 mm along 5 inferior | | | | | | b) Alternative 2 Figure A.8 -- Presentations of specification for a fused crescent segment bifocals contact lens 41 Dimensions in millimetres Figure A.9 — Example 7 #### A.2.8 EXAMPLE 8 — Preformed scleral contact lens Figure A.10 provides an example (bordered) of the presentation of the specification for a preformed scleral contact lens. | r_0 | : | \varnothing_0 | / | r_1 | : | \varnothing_1 | 1 | r_2^{a} | : | \varnothing_T^b | С | d^{d} | F'_{V} | |-------|---|-----------------|---|-------|---|-----------------|---|-----------|---|-------------------|-----|------------------|----------| | 8,50 | : | 12,50 | 1 | 11,00 | : | 14,00 | 1 | 13,00 | : | 23,00 x 21,00 | L30 | <i>d</i> 1,00 in | -8,00 | - a Radius of scleral portion. - b Total diameter: long and short axes. - ^c Orientation of long axis in standard axis notation. - d Displacement of optic (in this example, 1,00 mm towards the nose). Figure A.10 — Presentation of specification for a preformed scleral contact lens ## A.2.9 EXAMPLE 9 — Impression
scleral contact lens Figure A.11 provides an example (bordered) of the presentation of the specification for an impression scleral contact lens. Figure A.11 — Presentation of specification for an impression scleral contact lens ## Annex B (informative) ## Specification of soft contact lenses #### **B.1** General Hydrogel contact lenses are at times available in a limited range of parameters. The range of parameters corresponds to a standard contact lens design. The specifications of a hydrogel contact lens should give the contact lens type and the relevant dimensions necessary to uniquely identify the contact lens. In the specification of a non-standard contact lens design, all the parameters necessary to define that contact lens should be specified. As with rigid contact lenses, the soft contact lens is viewed from the front, as if on the eye. All linear dimensions are given in millimetres (mm). Additional specific requirements, such as degree of blending of transitions, edge form and material tint, are included as "Additional notes". Front surface geometry and thickness are seldom included in the specification. In such instances, the manufacturer will need to allocate appropriate values to these parameters. It is assumed that during wear any prism will locate with its base downwards. Examples of the method of presenting specifications are given in B.2. See Table 1 for the explanation of symbols used in these examples. ## **B.2 Examples** #### B.2.1 EXAMPLE 1 — Bi-curve hydrogel contact lens Figure B.1 provides two examples (bordered) of alternative presentation of the specification for a bi-curve hydrogel contact lens. Figure B.1 — Presentations of specification for a bi-curve hydrogel contact lens ## B.2.2 EXAMPLE 2 — Front toric hydrogel contact lens Figure B.2 provides two examples (bordered) of alternative presentation of the specification for a front toric hydrogel contact lens. Figure B.2 — Presentations of specification for a front toric hydrogel contact lens ## **Bibliography** - [1] ISO 3534-1:1993, Statistics Vocabulary and symbols Part 1: Probability and general statistical terms - [2] ISO 5725 (all parts), Accuracy (trueness and precision) of measurement methods and results - [3] ISO 11134:1994, Sterilization of health care products Requirements for validation and routine control Industrial moist heat sterilization - [4] ISO 11135:1994, Medical devices Validation and routine control of ethylene oxide sterilization - [5] ISO 11137:1995, Sterilization of health care products Requirements for validation and routine control Radiation sterilization - [6] ISO 13666:1998, Ophthalmic optics Spectacle lenses Vocabulary - [7] ISO 14155-1:2003, Clinical investigation of medical devices for human subjects Part 1: General requirements - [8] ISO 14534:2002, Ophthalmic optics Contact lenses and contact lens care products Fundamental requirements - [9] ISO 14729:2001, Ophthalmic optics Contact lens care products Microbiological requirements and test methods for products and regimens for hygienic management of contact lenses - [10] ISO 15223, Medical devices Symbols to be used with medical device labels, labelling and information to be supplied - [11] ISO 18369-2, Ophthalmic optics Contact lenses Part 2: Tolerances - [12] ISO 18369-3, Ophthalmic optics Contact lenses Part 3: Measurement methods - [13] ISO 18369-4, Ophthalmic optics Contact lenses Part 4: Physicochemical properties of contact lens materials - [14] EN 980, Graphical symbols for use in the labelling of medical devices ## Alphabetical index Α abrasive cleaner 2.1.11.16 accuracy 2.1.12.8 active ingredient 2.1.11.1 add 2.1.4.1 addition 2.1.4.1 addition power 2.1.4.1 advancing contact angle 2.1.6.13 afocal contact lens 2.1.2.1.5 alternating image bifocal contact lens 2.1.4.15 antimicrobial activity 2.1.11.2 antimicrobial agent 2.1.11.3 aphakia 2.1.12.1 apical radius of curvature 2.1.3.7 aspheric bi-curve contact lens 2.1.3.4 aspheric contact lens 2.1.2.1.30 aspheric multi-curve contact lens 2.1.3.6 aspheric periphery contact lens 2.1.3.3 aspheric tri-curve contact **lens** 2.1.3.5 aspheric zone 2.1.3.1 axial edge lift 2.1.2.1.22 axial edge thickness 2.1.2.4.5 axial lift 2.1.2.1.21 axial thickness 2.1.2.4.4 В back central optic zone diameter 2.1.2.3.4 back central optic zone radius 2.1.2.2.2 back optic zone diameter 2.1.2.3.3 back optic zone radius 2.1.2.2.1 back peripheral optic zone diameter 2.1.2.3.5 back peripheral optic zone radius 2.1.2.2.3 back peripheral radius 2.1.2.2.4 back peripheral zone diameter 2.1.2.3.6 back scleral size 2.1.5.5 back vertex 2.1.2.1.13 back vertex power 2.1.2.1.2 **ballast** 2.1.2.1.39 bandage contact lens 2.1.10.7 base curve radius 2.1.2.2.1 batch 2.1.9.13 bevel 2.1.2.1.18 bi-aspheric contact lens 2.1.3.2 bi-curve contact lens 2.1.2.1.27 bifocal contact lens 2.1.1.13 bioburden 2.1.11.9 biocompatibility 2.1.12.2 bi-toric contact lens 2.1.2.1.32 blend 2.1.2.1.38 blister pack 2.1.9.5 C carrier 2.1.2.1.45 carrier junction thickness 2.1.2.4.8 CD contact lens 2.1.4.7 central optic zone 2.1.4.5 centre distance contact lens 2.1.4.7 centre near contact lens 2.1.4.8 **channel** 2.1.5.13 Class 1 2.1.6.11.3 **Class 2** 2.1.6.11.4 clinical investigator 2.1.12.3 CN contact lens 2.1.4.8 composite contact lens 2.1.1.11 concentric bifocal contact lens 2.1.4.3 concentric multifocal contact lens 2.1.4.4 conditioning solution 2.1.11.21 contact angle 2.1.6.12 contact lens 2.1.1.1 contact lens accessory 2.1.1.16 contact lens axis 2.1.2.1.12 contact lens care product 2.1.1.17 contact lens care regimen 2.1.11.14 contact lens case 2.1.1.20 contact lens cleaning 2.1.11.13 contact lens container 2.1.1.20 contact lens disinfecting agent 2.1.11.15.1 contact lens disinfecting **product** 2.1.11.15.2 contact lens disinfecting regimen 2.1.11.15.3 contact lens disinfection 2.1.11.15 contact lens wear modality 2.1.10.4 contact shell 2.1.1.5 corneal contact lens 2.1.1.2 cosmetic contact lens 2.1.10.5 D daily wear 2.1.10.4.1 diagnostic contact lens 2.1.10.8 diffractive bifocal contact lens 2.1.4.13 dimensional stability 2.1.6.1 discard date 2.1.9.11 displacement of optic 2.1.5.6, 2.1.2.1.9 disposable contact lens 2.1.10.1 Ε edge 2.1.2.1.16 edge form 2.1.2.1.17 edge profile 2.1.2.1.17 elution 2.1.12.4 enhancing tint 2.1.7.3 enzymatic cleaner 2.1.11.17 equilibrium contact angle 2.1.6.14 expiration date 2.1.9.9 expiry date 2.1.9.9 extended wear 2.1.10.4.2 extractable substance 2.1.12.5 extraction 2.1.12.6 eye drops 2.1.11.23 eye-masking tinted contact lens 2.1.7.2 F fenestration 2.1.2.1.44 fluid lens 2.1.2.1.6 frequent replacement contact lens 2.1.10.3.1 front central optic zone diameter 2.1.2.3.8 front central optic zone radius 2.1.2.2.6 front optic zone diameter 2.1.2.3.7 front optic zone radius 2.1.2.2.5 front peripheral optic zone diameter 2.1.2.3.9 front peripheral optic zone radius 2.1.2.2.7 front peripheral radius 2.1.2.2.8 front peripheral zone diameter 2.1.2.3.10 front vertex power 2.1.2.1.1 fused segment contact lens 2.1.4.11 cosmetic contact shell 2.1.10.6 G gas permeability 2.1.6.2 geometric centre 2.1.2.1.10 geometric centre thickness 2.1.2.4.1 Н handling tint 2.1.7.4 hard contact lens 2.1.1.7 harmonic mean thickness 2.1.2.4.3 high water content contact lens 2.1.6.6.3 hydrogel contact lens 2.1.1.10 hygienic management 2.1.1.12 ı impression scleral contact lens 2.1.5.1 impression scleral shell 2.1.5.2 impression tray 2.1.5.3 inoculum 2.1.12.7 intended purpose 2.1.9.1 in-use stability 2.1.9.12 ionic 2.1.6.7 J junction 2.1.2.1.35 Κ keratometer 2.1.12.11 L labelling 2.1.9.8 lacrimal lens 2.1.2.1.6 lathe-cut contact lens 2.1.8.1 leachable substance 2.1.12.5 lenticular contact lens 2.1.1.4 liquid lens 2.1.2.1.6 low water content contact lens 2.1.6.6.1 lubricating and rewetting solution 2.1.11.23 luminous transmittance 2.1.6.10 M microspherometer 2.1.12.12 mid water content contact lens 2.1.6.6.2 minus carrier 2.1.2.1.46 minus-power contact lens 2.1.2.1.4 moulded contact lens 2.1.8.3 multi-curve contact lens 2.1.2.1.29 multi-dose solution 2.1.9.3 multifocal contact lens 2.1.1.14 multipatient use trial contact lens 2.1.10.8.1 multipurpose solution 2.1.11.24 Ν negative carrier 2.1.2.1.46 negative power contact lens 2.1.2.1.4 neutralization 2.1.11.4 neutralizing agent 2.1.11.5 non-composite bifocal contact lens 2.1.4.9 non-composite multifocal contact lens 2.1.4.10 non-ionic 2.1.6.8 0 ocular biocompatibility 2.1.12.2 one-piece bifocal contact lens 2.1.4.9 one-piece multifocal contact lens 2.1.4.10 opaque tinted contact lens 2.1.7.2 ophthalmometer 2.1.12.11 optic zone 2.1.2.1.7 optic zone diameter 2.1.2.3.2 optical centre thickness 2.1.2.4.2 optical decentration 2.1.2.1.11 other accessory for contact lenses 2.1.1.18 overall diameter 2.1.2.3.1 overall posterior sagitta 2.1.2.1.15.1 oxygen flux 2.1.6.4 oxygen permeability 2.1.6.3 oxygen transmissibility 2.1.6.5 Ρ packaging solution 2.1.11.25 parallel carrier 2.1.2.1.47 performance 2.1.9.2 peripheral junction thickness 2.1.2.4.9 peripheral optic zone 2.1.4.6 peripheral thinning 2.1.2.1.42 peripheral zone 2.1.2.1.8 planned replacement contact lens 2.1.10.3.2 plano carrier 2.1.2.1.47 plano contact lens 2.1.2.1.5 plus carrier 2.1.2.1.48 plus-power contact lens 2.1.2.1.3 positive carrier 2.1.2.1.48 positive power contact lens 2.1.2.1.3 **precision** 2.1.12.9 preformed scleral contact lens 2.1.5.4 preservative 2.1.11.7 primary container 2.1.9.7 primary optic diameter 2.1.5.7 primary optic plane 2.1.5.8 primary packaging 2.1.9.7 primary sagitta 2.1.5.9 prism ballast 2.1.2.1.40 prism dioptre 2.1.12.10 progressive optical zone 2.1.4.2 progressive power contact lens 2.1.1.15 protective contact lens 2.1.10.7 protein or lipid remover 2.1.11.17 R radial edge lift 2.1.2.1.20 radial edge thickness 2.1.2.4.7 radial lift 2.1.2.1.19 radial thickness 2.1.2.4.6 radiuscope 2.1.12.12 receding contact angle 2.1.6.15 repeatability 2.1.12.9.1 replacement frequency 2.1.10.3 reproducibility 2.1.12.9.2 residual 2.1.12.5 reusable contact
lens 2.1.10.2 rewetting drops 2.1.11.23 RGP contact lens 2.1.1.8 rigid contact lens 2.1.1.7 rigid gas-permeable contact lens 2.1.1.8 rinsing 2.1.11.18 S sagittal depth 2.1.2.1.15 sagittal depth 2.1.2.1.15 sagittal height 2.1.2.1.15 sagittal radius of curvature 2.1.2.1.25 #### ISO 18369-1:2006(E) **SAL** 2.1.11.11 scleral chord 2.1.5.10 scleral contact lens 2.1.1.3 scleral shell 2.1.1.6 scleral thickness 2.1.5.11 scleral zone 2.1.5.12 segment height 2.1.4.12 **shelf-life** 2.1.9.10 shipping solution 2.1.11.25 simultaneous image multifocal contact lens 2.1.4.14 slab-off 2.1.2.1.42 **soaking** 2.1.11.19 soaking solution 2.1.11.20 soft contact lens 2.1.1.9 solid bifocal contact lens 2.1.4.9 solid multifocal contact lens 2.1.4.10 spectral transmittance 2.1.6.9 spherical surface 2.1.2.1.23, 2.1.2.1.24 spin-cast contact lens 2.1.8.2 stasis 2.1.11.8 sterile 2.1.11.10 sterility assurance level 2.1.11.11 storage case 2.1.1.20 storage container 2.1.1.20 storage solution 2.1.11.20 **suction cup** 2.1.1.19 surface treated contact lens 2.1.1.12 surfactant 2.1.11.6 U unit dose 2.1.9.4 UVA 2.1.6.11.1 **UV-absorbing contact** lens 2.1.6.11 **UVB** 2.1.6.11.2 UV-blocking contact lens 2.1.6.11 UV-filtering contact lens 2.1.6.11 varifocal power contact lens 2.1.1.15 vertex sphere 2.1.2.1.14 visibility tint 2.1.7.4 W water content 2.1.6.6 wedge design 2.1.2.1.41 wetting solution 2.1.11.22 Т tamper-evident package 2.1.9.6 tangential junction 2.1.2.1.36 tangential radius of **curvature** 2.1.2.1.26 tear lens 2.1.2.1.6 therapeutic contact lens 2.1.10.7 tinted contact lens 2.1.7.1 toric contact lens 2.1.2.1.31 toric periphery contact lens 2.1.2.1.34 toroidal zone 2.1.2.1.33 total diameter 2.1.2.3.1 **transition** 2.1.2.1.37 transition zone 2.1.2.1.37 translating bifocal contact lens 2.1.4.15 trial contact lens 2.1.10.8 tri-curve contact lens 2.1.2.1.28 truncate 2.1.8.4 truncation 2.1.2.1.43 turned contact lens 2.1.8.1 ISO 18369-1:2006(E) ICS 01.040.11; 11.040.70 Price based on 48 pages