INTERNATIONAL ISO
STANDARD 17987-2

First edition
2016-08-15

Road vehicles — Local Interconnect
Network (LIN) —

Part 2:
Transport protocol and network layer
services

Véhicules routiers — Réseau Internet local (LIN) —

Partie 2: Protocole de transport et couches de services réseau

_ Reference number
—/@\— ISO 17987-2:2016(E)

ISO

N
- © ISO 2016

ISO 17987-2:2016(E)

COPYRIGHT PROTECTED DOCUMENT

© IS0 2016, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +4122 749 09 47
copyright@iso.org

WWwWWw.iso.org

ii © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

Contents Page
FOT@WOTIT ... vi
IIEEIOUICEIONN ... vii
1
2
3 Terms, definitions, symbols and abbreviated terms................, 2
3.1 TermS ANd AefiNTTIONIS ..ot 2
3.2 Symbols ...
3.3 Abbreviated terms
COMVEIEIOINS ...t 5
5 NetWOTK MANAGEIMIEIITcccooooiieeiieeee et
51 Network management general information
5.2 LIN node communication state diagram........
5.3 WaKe UP s
5.3.1 Wake up general information......
5.3.2 Master enerated WaKe UP ...
5.3.3 Slave enerated WaKe UP....... e
5.4 GOE0-SIEETD e
6 NEEWOTK LAYET OVEIVICWoooo oottt
6.1 (T3 1T=) -
6.2 Format description of network layer services...
6.3 Internal operation of network layer.................
6.4 Service data unit specification...................
6.4.1 AN IR Ua Ko BC=YTR 000 (01 9 00 F= 1 (o) o Ao
6.4.2 LIRS e
6.4.3 <MessageData>
6.4.4 <N_RESUIE>oooooooiiioeeeeeeeeeeeeeeeee,
6.5 Services provided by network layer to higher layers.......
6.5.1 Specification of network layer service primitives...
6.5.2 N_USDAta.reqUEST ...
6.5.3 N_USDALA.CONTITII .oooiiieeeieeee et
(SIS T T \ L 0153 D F=Xw= T O 263 U (z= 5 (o) o W H0ooosossss s
LTSRS TN \\ L U5 DT 18 o U b Uor= U) o 1O OSSO
7 TranSPOTt JaYET PIOTOCOL.............ooo et
7.1 Protocol functions ...
7.2 Single frame transmission..............
7.3 Multiple frame transmission.........e.
7.4 Transport layer protocol data units
7.4.1 Protocol data UNIT EFPeS . ..o
742 SEIN_PDU oo
743 FFN_PDU..
744 CFN_PDU. .
7.4.5 Protocol data unit field description
7.5 Protocol control information specification......
751 N_PCL e
7.5.2 SingleFrame N_PCI parameter definition ...
7.5.3 FirstFrame N_PCI parameter definition. ...
7.5.4 ConsecutiveFrame N_PCI parameter definition...
7.6 INEEWOTK LAYET TIMIIIZ oottt
7.6.1 TIMING CONSTIAINTS ...ooocciiiiiiiii oo
7.6.2 Network layer timeouts........cccooccc.ee
7.6.3 Network layer error handling
7.6.4 Unexpected arrival of N_PDU...

© ISO 2016 - All rights reserved iii

ISO 17987-2:2016(E)

10

11

12

iv

Data HNK LAYET WSAGE ...t 27

8.1 Data link layer SEIrviCe PAraMIELOI'S 28

8.2 Data link [ayer INTerface SEIVICES ... 28
8.2.1 L_Datarequest

LS T2/ TR D T= U= e{0 01§ 10 o 0 DSOS
ES 07205 TR PR D F- 8 0 4 U & or= s [) o 00O
8.3 Mapping of the N_PDU fields.......ccics,
8.4 Transport layer PDU structure and communication..
8.4.1 PDU StrUCTUIe ...coocccriiriircnccsecesesec e
8.4.2 Communication
Diagnostic communication reqUIT@MIENTSco i 31
9.1 Definition of diagnostic classes
.11 GEINETAL oo
0.1.2 DHAGNOSTIC CLASS ..ottt
9.1.3 Diagnostic class Il
9.1.4 Diagnostic class III
9.1.5 Summary of slave node diagnostic ClasSes. ... 32
9.2 DIQZNOSTIC INESSAZESooooieiieieeoesee oot
9.3 Using the transport layer
9.4 Slave node diagnostic timing reqUITEIMENTS ...
9.5 RESPOMNSE PEIAIINIG ..ot
9.6 Transport protocol handling in LIN master-..
9.6.1 General.....eee
9.6.2 Diagnostic master request schedule...
9.6.3 Diagnostic slave response schedule....
9.6.4 Diagnostic schedule execution..........
9.7 Transmission handler reqUITrEMENTES ...
O.7.1 GEIETAL oo
9.7.2 Master node transmission handler.
9.7.3 Slave node transmission handler.....
9.8 Diagnostic service prioritization............
LIN node capability 1anguage (NCL) ... sseessessesseessesssssesseeeeseeeseeees
TO. L GOIIETAL oot
10.2 Plug and play workflow concept
T0.2.1 GOIIETAL oo
10.2.2 LIN NOAE GENETATION ...oooccetieieiits oot
10.2.3 LIN cluster design
10.2:4 DEDUGZINIG ..ot
Node capability file (INCF) ...
111 OVEIVIEW Of NCEF SYIITAX ..ot s
11.2 Global Structure definition ...

11.2.1 Node capability file marker
11.2.2 Language version number definition

L11.2.3 NCF TOVISIOM oottt
11.2.4 Big-endian signal encoding variant
11.3 Node definition ...
11.3.1 General N0de definition ...
11.3.2 Diagnostic definition ...
11.3.3 Frame definition
11.3.4 Signal encoding type definition. ...
11.3.5 Status MaANAZEIMEIIE ...t e
11.3.6 Free text definition
114 NCF @XAIMIPLE ..o
LIN deScription file (LDF) ... s e 57
T2.1 GOIIETAL oo 57
12.2 OVEIVIEW Of LDF SYIEAX oot 57

© IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

D720 T 0 D) 2 (=Y 01 0 (e) o 1 58
12.3.1 Global Structure definitioN ... sssssseesssssssssssessssssssse s 58
12.3.2 SigNAl A@fIMITION ..o
12.3.3 Frame definition
12.3.4 Node definition..........occcce.
12.3.5 Schedule table definition
12.3.6 Signal encoding type definition.
12.3.7 Signal representation definition

12.4 LDF example
Bibliography ...

© ISO 2016 - All rights reserved v

ISO 17987-2:2016(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

The committee responsible for this document is ISO/TC 22, Road vehicles, SC 31, Data communication.

Alist of all parts in the ISO 17987 series can be found on the ISO website.

Vi © IS0 2016 - All rights reserved

www.iso.org/directives
www.iso.org/patents
www.iso.org/iso/foreword.html

ISO 17987-2:2016(E)

Introduction
This ISO 17987 (all parts) specifies the use cases, the communication protocol and physical layer
requirements of an in-vehicle communication network called Local Interconnect Network (LIN).

The LIN protocol as proposed is an automotive focused low speed universal asynchronous receiver
transmitter (UART) based network. Some of the key characteristics of the LIN protocol are signal
based communication, schedule table based frame transfer, master/slave communication with error
detection, node configuration and diagnostic service transportation.

The LIN protocol is for low cost automotive control applications, for example, door module and air
condition systems. It serves as a communication infrastructure for low-speed control applications in
vehicles by providing:

— signal based communication to exchange information between applications in different nodes;
— bitrate support from 1 kbit/s to 20 kbit/s;

— deterministic schedule table based frame communication;

— network management that wakes up and puts the LIN cluster into sleep mode in a controlled manner;
— status management that provides error handling and error signalling;

— transport layer that allows large amount of data to be transported (such as diagnostic services);
— specification of how to handle diagnostic services;

— electrical physical layer specifications;

— node description language describing properties of slave nodes;

— network description file describing behaviour of communication;

— application programmer’s interface.

ISO 17987 (all parts) is based on the open systems interconnection (OSI) basic reference model as
specified in ISO/IEC 7498-1 which structures communication systems into seven layers.

The OSI model structures data communication into seven layers called (top down) application layer
(layer 7), presentation layer, session layer, transport layer, network layer, data link layer and physical layer
(layer 1). A subset of these layers is used in [SO 17987 (all parts).

[SO 17987 (all parts) distinguishes between the services provided by a layer to the layer above it and
the protocol used by the layer to send a message between the peer entities of that layer. The reason for
this distinction is to make the services, especially the application layer services and the transport layer
services, reusable also for other types of networks than LIN. In this way, the protocol is hidden from the
service user and it is possible to change the protocol if special system requirements demand it.

ISO 17987 (all parts) provides all documents and references required to support the implementation of
the requirements related to the following.

— IS0 17987-1: This part provides an overview of the ISO 17987 (all parts) and structure along with
the use case definitions and a common set of resources (definitions, references) for use by all
subsequent parts.

— IS0 17987-2: This part specifies the requirements related to the transport protocol and the network
layer requirements to transport the PDU of a message between LIN nodes.

— SO 17987-3: This part specifies the requirements for implementations of the LIN protocol on the
logical level of abstraction. Hardware related properties are hidden in the defined constraints.

© ISO 2016 - All rights reserved vii

ISO 17987-2:2016(E)

— ISO 17987-4: This part specifies the requirements for implementations of active hardware
components which are necessary to interconnect the protocol implementation.

— ISO/TR 17987-5: This part specifies the LIN application programmers interface (API) and the
node configuration and identification services. The node configuration and identification services
are specified in the API and define how a slave node is configured and how a slave node uses the
identification service.

— 1S0O 17987-6: This part specifies tests to check the conformance of the LIN protocol implementation
according to ISO 17987-2 and ISO 17987-3. This comprises tests for the data link layer, the network
layer and the transport layer.

— IS0 17987-7: This part specifies tests to check the conformance of the LIN electrical physical layer
implementation (logical level of abstraction) according to ISO 17987-4.

viii © IS0 2016 - All rights reserved

INTERNATIONAL STANDARD ISO 17987-2:2016(E)

Road vehicles — Local Interconnect Network (LIN) —

Part 2:
Transport protocol and network layer services

1 Scope

This document specifies a transport protocol and network layer services tailored to meet the
requirements of LIN-based vehicle network systems on local interconnect networks. The protocol
specifies an unconfirmed communication.

The LIN protocol supports the standardized service primitive interface as specified in ISO 14229-2.

This document provides the transport protocol and network layer services to support different
application layer implementations like

— normal communication messages, and
— diagnostic communication messages.

The transport layer defines transportation of data that is contained in one or more frames. The
transport layer messages are transported by diagnostic frames. A standardized API is specified for the
transport layer.

Use of the transport layer is targeting systems where diagnostics are performed on the backbone bus
(e.g. CAN) and where the system builder wants to use the same diagnostic capabilities on the LIN sub-
bus clusters. The messages are in fact identical to the ISO 15765-2 and the PDUs carrying the messages
are very similar.

The goals of the transport layer are

— low load on LIN master node,

— to provide full (or a subset thereof) diagnostics directly on the LIN slave nodes, and
— targeting clusters built with powerful LIN nodes (not the mainstream low cost).

A typical system configuration is shown in Figure 1.

© ISO 2016 - All rights reserved 1

ISO 17987-2:2016(E)

back-bone bus

Tester

Master

LIN cluster

Slave 1 Slave 2

Figure 1 — Typical system setup for a LIN cluster using the transport layer

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 14229-1, Road vehicles — Unified diagnostic services (UDS) — Part 1: Specification and requirements
ISO 14229-2, Road vehicles — Unified diagnostic services (UDS) — Part 2: Session layer services

ISO 14229-7:2015, Road vehicles — Unified diagnostic services (UDS) — Part 7: UDS on local interconnect
network (UDSonLIN)

ISO 17987-3:2016, Road vehicles — Local Interconnect Network (LIN) — Part 3: Protocol specification

3 Terms, definitions, symbols and abbreviated terms

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 7498-1 and the
following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— IEC Electropedia: available at http://www.electropedia.org/

— ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1

broadcast NAD

slave node receiving a message with a NAD equal to the broadcast NAD 7F16 the message is received
and processed

2 © IS0 2016 - All rights reserved

http://www.electropedia.org/
http://www.iso.org.obp/
http://www.iso.org.obp/

ISO 17987-2:2016(E)

3.1.2
configured NAD
value in the range of (0114 to 7D1¢) which is assigned to each slave node

Note 1 to entry: The assignment of configured NAD to each slave node is defined in the LDF. The configured NAD
is used for node configuration and identification services, as well as UDS services according to ISO 14229-7.

Note 2 to entry: When communication is initialized configured NADs of slave nodes may be identical. The master
shall assign unique configured NADs to all slave nodes before diagnostic communication begins.

Note 3 to entry: Setting or altering the configured NAD in a slave node can be done by the following ways:
— the master node assigns a new configured NAD to a slave node supporting the “Assign NAD” service;
— an APl call in a slave node assigns the configured NAD;

— the configured NAD is assigned with a static configuration.

3.1.3
functional NAD

(7E16)
used to broadcast diagnostic requests

3.14
initial NAD
constant/static value in the range of (0116 to 7D16)

Note 1 to entry: initial NAD value may be derived from a pin configuration, EEPROM or slave node position
detection algorithm before entering the operational state (regular LIN communication).

Note 2 to entry: The combination of initial NAD, Supplier ID and Function ID unique for each slave node is used in
the “Assign NAD” command allowing an unambiguous configured NAD assignment.

Note 3 to entry: [f no initial NAD is defined for a slave node (LDF, NCF) the value is identical to the configured NAD.

3.1.5
P2 timing parameter
application timing parameter for the ECU(s) and the external test equipment

3.1.6

P2* timing parameter

enhanced response timing parameter for the ECU(s) application after response pending frame
transmission

3.1.7

P4 timing parameter

timing parameter for the ECU(s) application defining the time between reception of a request and the
final response

3.1.8

proprietary NAD

NAD values in the range [8016 — FF14] are used for not standardized communication purpose, such as
Tier-1 slave node diagnostics

© IS0 2016 - All rights reserved 3

ISO 17987-2:2016(E)

3.2 Symbols

% percentage

us microsecond

ms millisecond

| The vertical bar indicates choice. Either the left hand side or the right hand side of the vertical
bar shall appear

3.3 Abbreviated terms

API

BNF

CAN

CF

FF

LDF
L_Data
MRF
N_AI
N_As
N_ASmax
N_Cr
N_Crmax
N_Cs
N_Csmax
N_Data
N_PCI
N_PCltype
N_PDU
N_SA
N_SDU
N_TAtype
N_USData
NAD

application programmers interface
Bachus-Naur format

Controller Area Network
ConsecutiveFrame

FirstFrame

LIN description file

data link data

master request frame

network address information
network layer timing parameter As
timeout on As

network layer timing parameter Cr
timeout on Cr

network layer timing parameter Cs
timeout on Cs

network data

network protocol control information
network protocol control information type
network protocol data unit

network source address

network service data unit

network target address type

network layer LIN data transfer service name

node address for slave nodes

© ISO 2016 - All rights reserved

ISO 17987-2:2016(E)

NCF node capability file

NCL node capability language
NRC negative response code
NWL network layer

OBD on-board diagnostics

OSI Open Systems Interconnection
PDU protocol data unit

PID protected identifier

RSID response service identifier
SF SingleFrame

SID service identifier

SN SequenceNumber

SRF slave response frame
STmin SeparationTime minimum

4 Conventions

[SO 17987 (all parts) and ISO 14229-7 are based on the conventions specified in the OSI Service
Conventions (ISO/IEC 10731) as they apply for physical layer, protocol, transport protocol and network
layer services and diagnostic services.

5 Network management

5.1 Network management general information

Network management in a LIN cluster refers to cluster wake up and go-to-sleep only. Other network
management features, for example, configuration detection and limp home management are left to the
application.

5.2 LIN node communication state diagram
The state diagram in Figure 2 shows the behaviour model for LIN communication state.
— Bus Sleep

Bus Sleep state is entered after first connection to power source and the system initialization, reset
or when a go-to-sleep command is transmitted by the master or received by the slave node. The
level on the bus is set to recessive. Only the wake up signal may be transmitted on the cluster.

— Operational

The protocol behaviour (transmitting and receiving frames) specified in this document only applies
to the Operational state.

NOTE The LIN “Bus Sleep” state does not necessarily correlate to the node’s power state.

© IS0 2016 - All rights reserved 5

ISO 17987-2:2016(E)

Wake up signal received
OR
internal reason to wake up the cluster

~

Bus Sleep j Operational
\ Go-to-sleep command /

transmitted / received OR
bus inactivity for 4 to 10 s

Figure 2 — LIN node communication state diagram

5.3 Wake up

5.3.1 Wake up general information

Any node in a sleeping LIN cluster may request a wake up, by transmitting a wake up signal. The wake
up signal is started by forcing the bus to the dominant state for 250 ps to 5 ms, and is valid with the
return of the bus signal to the recessive state.

5.3.2 Master generated wake up

The master node may issue a break field, e.g. by issuing an ordinary header since the break acts as a
wake up signal (in this case, the master shall be aware of that this frame may not be processed by the
slave nodes since they may not yet awake and ready to listen to headers).

Every slave node (connected to power) should detect the wake up signal (a dominant pulse longer than
150 ps followed by a rising edge of the bus signal) and be ready to listen to bus commands within
100 ms, measured from the ending edge of the dominant pulse (see Figure 3). The check for the rising
edge shall be done by the transceiver and also could be done by the microcontroller LIN interface.

A detection threshold of 150 ps combined with a 250 ps pulse generation gives a detection margin that
is enough for uncalibrated slave nodes. Following the detection of the wake up pulse, the Slave task
machine (ISO 17987-3:2016, 7.5.3) shall start and enter into the idle state. During the idle state, the slave
shall never issue a dominant level pulse on the bus until the state machine enters into an active state.

5.3.3 Slave generated wake up

If the node that transmitted the wake up signal is a slave node, it shall be ready to receive or transmit
frames immediately. The master node shall also wake up and, when the slave nodes are ready (>100 ms),
start transmitting headers to find out the cause (using signals) of the wake up.

6 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

The slave node is ready
toreceive or transmit
Slave node is initializing frames

>150 ps) <100 ms

Y

Figure 3 — Wake up signal reception in slave nodes

The master node shall detect the wake up signal (a dominant pulse longer than 150 us followed by a
rising edge of the bus signal) and be ready to start communication within a time that is decided by the
cluster designer or application specific. The check for the rising edge shall be done by the transceiver
and also could be done by the microcontroller LIN interface.

If the master node does not transmit a break field (i.e. starts to transmit a frame) or if the node issuing
the wake up signal does not receive a wakeup signal (from another node) within 150 ms to 250 ms
from the wake up signal, the node issuing the wake up signal shall transmit a new wake up signal
(see Figure 4). In case the slave node transmits a wake up signal in the same time as the master node
transmits a break field, the slave shall receive and recognize this break field.

5ms 250 ms 5 ms 250 ms 5 ms
250 ps 150 ms 250ps 150 ms 250 ps

[
L |

\
I’y

Figure 4 — One block of wake up signals

After three (failing) requests, the node shall wait minimum 1,5 s before issuing a fourth wake up signal.
The reason for this longer duration is to allow the cluster to communicate in case the waking slave node
has problems, e.g. if the slave node has problems with reading the bus it probably retransmit the wake
up signal infinitely. There is no restriction of how many times a slave may transmit the wake up signal.
However, it is recommended that a slave node transmits not more than one block of three wake up signals
for each wake up condition. Figure 5 shows how wake up signals are transmitted over a longer time

B 1 1

Figure 5 — Wake up signals over long time

>1,5s >1,5s >1,5s

© ISO 2016 - All rights reserved 7

ISO 17987-2:2016(E)

5.4 Go-to-sleep

The master sets each node in the cluster instantly into bus sleep state by transmitting a go-to-sleep
command. The request does not necessarily enforce the slave nodes into a low-power mode. The slave
node application may still be active after the go-to-sleep command has been received. This behaviour
is application specific. The go-to-sleep command is a master request frame with the first data field
(Byte 1) set to 0016 and the rest set to FF14 (see Table 1). The slave nodes shall ignore the data fields
Byte 2 to Byte 8 and interpret only the first data field (Byte 1).

Table 1 — Go-to-sleep command

LIN frame
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
0016 FF1¢ FF16 FF16 FF16 FF16 FF16 FF16

The normal way for setting the cluster to sleep is that the master node transmits the go-to-sleep
command. In case of bus inactivity, a slave node shall be able to receive/transmit frames for 4 s. The
slave node shall automatically enter bus sleep mode earliest 4 s and latest 10 s of bus inactivity. Bus
inactivity is defined as no transitions between recessive and dominant bit values. Bus activity is the
inverse.

NOTE LIN transceivers normally have filters to remove short spikes on the bus. The transition here refers to
the signal after this filter.

6 Network layer overview

6.1 General

This document specifies an unconfirmed network layer communication protocol for the exchange of
data between network nodes, e.g. from ECU to ECU, or between external test equipment and an ECU. If
the data to be transferred do not fit into a single LIN frame, a segmentation method is provided.

In order to describe the function of the network layer, services provided to higher layers and the
internal operation of the network layer shall be considered.

All network layer services have the same general structure. To define the services, three types of
service primitives are specified:

— aservice request primitive, used by higher communication layers or the application to pass control
information and data required to be transmitted to the network layer;

— aservice indication primitive, used by the network layer to pass status information and received
data to upper communication layers or the application;

— a service confirmation primitive, used by the network layer to pass status information to higher
communication layers or the application.

This service specification does not specify an application programming interface, but only a set of
service primitives that are independent of any implementation.

8 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

6.2 Format description of network layer services

All network layer services have the same general format. Service primitives are written in the form:

service_name.type (

parameter A,

parameter B

[,parameter C, ...]

)
where service_name is the name of the service, e.g. N_USData, type indicates the type of the service
primitive, and “parameter A, parameter B [parameter C, ...]” are the N_SDU as a list of values passed by
the service primitive. The brackets indicate that this part of the parameter list may be empty.

The service primitives define how a service user (e.g. diagnostic application) cooperates with a service
provider (e.g. network layer). The following service primitives are specified in this document: request,
indication and confirm.

— Using the service primitive request (service_name.request), a service user requests a service
from the service provider.

— Using the service primitive indication (service_name.indication), the service provider
informs a service user about an internal event of the network layer or the service request of a peer
protocol layer entity service user.

— With the service primitive confirm (service name.confirm), the service provider informs the
service user about the result of a preceding service request of the service user.

6.3 Internal operation of network layer

The internal operation of the network layer provides methods for segmentation and reassembly. The
main purpose of the network layer is to transfer messages that might or might not fit in a single LIN
frame. Messages that do not fit into a single LIN frame are segmented into multiple parts, where each
can be transmitted in a LIN frame.

Figures 6 and 7 show, respectively, an example of an unsegmented message transmission and of a
segmented message transmission.

Sender Receiver

SingleFrame (SF)

Figure 6 — Example of an unsegmented message

© ISO 2016 - All rights reserved 9

ISO 17987-2:2016(E)

Sender Receiver

 —— FirstFrame

(FF) \>
[——————__ ConsecutiveFrame

(CH) \
\ ConsecutiveFrame

(CF) \

Figure 7 — Example of a segmented message

6.4 Service data unit specification

In the following subclauses, all network layer service parameters are described which are used by the
LIN network layer services.

6.4.1 N_A] address information

6.4.1.1 N_Al description

The N_AT is used to identify the communicating peer entities of the network layer. N_AT consists of a
LIN ID and a N_NAD. Two dedicated LIN IDs are used for any transport layer protocol communication.

ID 3C16 (MasterReq) is assigned to the message transmissions sent by the master node.
ID 3D1¢ (SlaveResp) is assigned to the message transmissions sent by any slave node.

Because the node type (Master or Slave) is always fixed for all nodes in a LIN cluster, the LIN ID used is
no subject of the service primitive parameters (6.5.1) but assigned to each node by this document.

Additionally, a N_NAD comprises the slave node addressed by the request/response and also the
addressing type (physical, functional and broadcast).

These parameters refer to addressing information. As a whole, the N_AT parameters are used to identify
the message senders and recipients as well as the communication model for the message (N_TAtype).

6.4.1.2 N_NAD, Network NAD

Type: 1 byte unsigned integer value

Range: 0116 - FF1¢

Description: Two communication models are specified

— 1to 1 communication, called physical addressing, and

— 1 to n communication called functional addressing or broadcast addressing.

10 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

Depending on the N_NAD value the communication model is given
— 0016: not applicable, reserved for sleep command frame,

— 0116 - 7D16: physical addressing type,

— 7Eq¢: functional addressing type,

— 7F16: broadcast addressing type, and

— 8016 - FF16: proprietary addressing type.

Physical addressing shall be supported for all types of network layer messages. Responses on requests
are expected. The N_NAD value shall always be validated against the configured NAD in a slave node.

Functional addressing shall only be supported for SingleFrame communication. No responses shall be
transmitted on functional requests. The master node is the only node transmitting functional messages.

Broadcast addressing shall be supported for all types of network layer messages. Responses are
unexpected, but supported, even if they could raise collisions. The master node shall be the only node
transmitting broadcast messages.

The addressing type of NAD values in range 8016 — FF14 is unassigned by this document and shall be
assigned by users when this range of NAD is used.

6.4.2 <Length>
Type: 12 bit
Range: 00146 to FFF¢

Description: This parameter includes the length of data to be transmitted/received.

6.4.3 <MessageData>
Type: string of bytes
Range: notapplicable

Description: This parameter includes all data the higher layer entities exchange.

6.4.4 <N_Result>
Type: enumeration

Range: N_OK, N_TIMEOUT_As, N TIMEOUT_Cs, N_.TIMEOUT_Cr, N WRONG_SN, N_UNEXP_PDU, N_
ERROR, N_UNEXP_NEW_REQ

Description: This parameter contains the status relating to the outcome of a service execution. If two
or more errors are discovered at the same time, then the network layer entity shall use the parameter
value first found in this list in the error indication to the higher layers.

— N_OK

This value means that the service execution has completed successfully, it can be issued to a service
user on both the sender and receiver side.

— N_TIMEOUT_As

This value is issued to the service user on the sender side when the timer N_As has passed its timeout
value N_ASmax.

— N_TIMEOUT._Cs

© IS0 2016 - All rights reserved 11

ISO 17987-2:2016(E)

This value is issued to the protocol user on the sender side when the timer N_Cs has passed its timeout
value N_Cspax.

— N_TIMEOUT_Cr

This value is issued to the service user on the sender side when the timer N_Cr has passed its timeout
value N_Crmax.

— N_WRONG_SN

This value is issued to the service user upon reception of an unexpected SequenceNumber (N_PCIL.SN)
value, it can be issued to the service user on the receiver side only.

— N_UNEXP_PDU

This value is issued to the service user upon reception of an unexpected protocol data unit, it can be
issued to the service user on the receiver or transmitter side.

— N_ERROR

This is the general error value. It shall be issued to the service user when an error has been detected
by the network layer and no other parameter value can be used to better describe the error. It can be
issued to the service user on both the sender and receiver side.

— N_UNEXP_NEW_REQ
This value is issued

a) to the lower priority service instances with an active diagnostic communication as parameter of
N_USData.indication() upon service call of a new higher priority call of N_USData.request,

b) when a N_USData.request can’t be accepted due to a currently active diagnostic communication
with a higher priority, and

c) this value is issued to the service user upon service call of a new N_USData.request with the same
priority.

6.5 Services provided by network layer to higher layers

6.5.1 Specification of network layer service primitives

The service interface defines a set of services that are needed to access the functions offered by the
network layer, i.e. transmission/reception of data and setting of protocol parameters.

The communication services, of which the following are defined, enable the transfer of up to 4 095 bytes
of data.

a) N_USData.request
This service is used to request the transfer of data. If necessary, the network layer segments the data.
b) N_USData_FF.indication
This service is used to signal the beginning of a segmented message reception to the upper layer.
c¢) N_USData.indication
This service is used to provide received data to the higher layers.
d) N_USData.confirm

This service confirms to the higher layers that the requested service has been carried out
(successfully or not).

12 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

6.5.2 N_USData.request

The service primitive requests transmission of <MessageData> with <Length> bytes from the
sender to the receiver peer entities identified by the address information in N_NAD (see 6.4.1.2 for
parameter definition).

Each time the N_USData.request service is called, the network layer shall signal the completion
(or failure) of the message transmission to the service user by means of the issuing of a N_USData.
confirm service call:

N_USData.request (
N_NAD
<MessageData>
<Length>
)

6.5.3 N_USData.confirm

The N _USData.confirm service is issued by the network layer. The service primitive confirms the
completion of a N_USData.request service identified by the address information in N_NAD. The
parameter <N_Result> provides the status of the service request (see 6.4.4 for parameter definition).

N_USData.conﬁrm (
N_NAD
<N_Result>
)

6.5.4 N_USData_FF.indication

The N_USData_FF.indication service is issued by the network layer. The service primitive
indicates to the adjacent upper layer the arrival of a FirstFrame (FF) of a segmented message received
from a peer protocol entity, identified by the address information in N_NAD (see 6.4.1.2 for parameter
definition). This indication shall take place upon reception of the FirstFrame (FF) of a segmented
message.

N_USData_FF.indication (
N_NAD
<Length>
)
The N_USData_FF.indication service shall always be followed by an N_USData.indication

service call from the network layer, indicating the completion (or failure) of the message reception.

A N_USData_FF.indication service call shall only be issued by the network layer if a correct
FirstFrame (FF) message segment has been received.

If the network layer detects any type of error in a FirstFrame (FF), then the message shall be ignored
by the network layer and no N_USData_FF.indication shall be issued to the adjacent upper layer.

If the network layer receives a FirstFrame (FF) with a data length value (FF_DL) that is greater than the
available receiver buffer size, then this shall be considered as an error condition and no N_USData_
FF.indication shall be issued to the adjacent upper layer.

6.5.5 N_USData.indication

The N_USData.indication service is issued by the network layer. The service primitive indicates
<N_Result> events and delivers <MessageData> with <Length> bytes received from a peer
protocol entity identified by the address information in N_NAD to the adjacent upper layer (see 6.4.1.2
for parameter definition).

© ISO 2016 - All rights reserved 13

ISO 17987-2:2016(E)

The parameters <MessageData> and <Length> are only valid if <N_Result> equals N_OK.

N_USData.indication (
N_NAD
<MessageData>
<Length>
<N_Result>
)
The N_USData.indication service call is issued after the reception of a SingleFrame (SF) message

or as an indication of the completion (or failure) of a segmented message reception.

If the network layer detects any type of error in a SingleFrame (SF), then the message shall be ignored
by the network layer and no N_USData . indication shall be issued to the adjacent upper layer.

7 Transport layer protocol

7.1 Protocol functions
The transport layer protocol performs the following functions:
— transmission/reception of messages up to 4 095 data bytes;

— reporting of transmission/reception completion/failure occurrence.

7.2 Single frame transmission

Figure 8 shows the transmission of a SingleFrame (SF) called LIN frame, which consists of 8 bytes
(Byte 1 ... Byte 8) with Byte 1 = N_ NAD, Byte 2 = N_PCI and Byte 3 ... Byte 8 = N_Data. The actual
message payload of a SF (see 7.4.2) is up to 6 data bytes (see also 8.3).

Higher Layer of Higher Layer of
the Sender the Receiver
N_SDU with less or N_SDU with less or
equal than 6 data equal than 6 data
bytes bytes
Transmission
to peer entity
SFN_PDU SFN_PDU
Network Layer of Network Layer of
the Sender the Receiver

Figure 8 — Example of a SingleFrame (SF) transmission

7.3 Multiple frame transmission

Transmission of longer messages is performed via segmentation of the message into LIN frames
(transmission of multiple N_PDUs). Reception of longer messages is performed via reception of multiple
LIN frames (N_PDUs) and reassembly of the received data bytes (concatenation) into a message. The
multiple N_PDUs are called FirstFrame (for the first N_PDU of the message) and ConsecutiveFrame (for
all the following N_PDUs).

14 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

Messages longer than the allowed number of data bytes contained in a SF N_PDU are segmented into

— a FirstFrame protocol data unit (FF N_PDU), containing Byte 1 = N_ NAD, Byte 2 + Byte 3 = N_PCI
and Byte 4 .. Byte 8 = N_Data. The actual payload of a FF (see 7.4.3 and 8.3) is 5 data bytes, and

— one or more ConsecutiveFrame protocol data units (CF N_PDU), containing Byte 1 = N_NAD,
Byte 2 = N_PCI and Byte 3 .. Byte 8 = N_Data. The actual payload of a CF (see 7.4.4 and 8.3) is 6 data
bytes. The last CF N_PDU contains the remaining valid payload data bytes N_Data. Unused data
bytes in the last CF N_PDU are stuffed with value FFy¢.

Figure 9 shows segmentation at the sender side and reassembly at the receiver side.

Higher Layer of Higher Layer of
the Sender the Receiver
N_SDU with more N_SDU with more
than 6 than 6
data bytes data bytes
FF N_PDU FF N_PDU
CFN_PDU (1) CFN_PDU (1)
Transmission
to peer entity
CFN_PDU (2) |:“> CFN_PDU (2)

CFN_PDU (n) CFN_PDU (n)
Network Layer of Network Layer of
the Sender the Receiver

Figure 9 — Example of a multiple frame transmission (segmentation and reassembly)

The message length is transmitted in the FF N_PDU. All CF N_PDUs are numbered by the sender to
support verification of correct order of transmission.

The master node application layer shall conform to the slave nodes capabilities. This can be realized by
schedule table design, scheduling mode (diagnostic only vs. interleaved mode) or by application specific
scheduling control. The transport layer of receiving slave nodes does not observe the STpjn.

These slave node capabilities are defined as follows.

SeparationTime minimum (STpin) is the minimum time the master node shall wait between the
transmissions of a FF and its first CF, as well as two CF. The separation time is statically specified for
each slave node (LDF/NCF) when supporting transport layer communication. The measurement of the
STmin starts after completion of transmission of a ConsecutiveFrame (CF) and ends at the request for
the transmission of the next CF.

© IS0 2016 - All rights reserved 15

ISO 17987-2:2016(E)

A slave node shall not take care on the capabilities of the master node (STmin) because it is the
responsibility of the master node application layer to apply an appropriate scheduling.

Capabilities of all nodes is that, each time the sender/receiver waits for an N_PDU from the
receiver/sender, a timeout mechanism allows detection of a transmission failure (see 7.6.2).

7.4 Transport layer protocol data units

7.4.1 Protocol data unit types

The communication between the peer protocol entities of the network layer in different nodes is done
by means of exchanging N_PDUs.

This document specifies three different types of transport layer protocol data units:
— SingleFrame (SF N_PDU);

— FirstFrame (FF N_PDU);

— ConsecutiveFrame (CF N_PDU);

which are used to establish a communication path between the peer network layer entities, to exchange
communication parameters, to transmit user data and to release communication resources.

7.4.2 SFN_PDU

The SF N_PDU is identified by the SingleFrame protocol control information (SF N_PCI). The SF N_PDU
shall be sent out by the sending network entity and received by all network entities. Only the one entity
that is addressed by the N_AI shall proceed this request for the duration of the segmented message
transmission. Other nodes which are not addressed shall reject already pending connections. It shall be
sent out to transfer a service data unit that can be transferred via a single service request to the data
link layer, and to transfer unsegmented messages.

7.4.3 FFN_PDU

The FF N_PDU is identified by the FirstFrame protocol control information (FF N_PCI). The FF N_
PDU shall be sent out by the sending network entity and received by all network entities. Only the
one entity that is addressed by the N_AI shall proceed this request for the duration of the segmented
message transmission. Other nodes which are not addressed shall reject already pending connections.
It identifies the first N_PDU of a segmented message transmitted by a network sending entity and
received by a receiving network entity. The receiving network layer entity shall start assembling the
segmented message on receipt of a FF N_PDU.

7.4.4 CFN_PDU

The CF N_PDU is identified by the ConsecutiveFrame protocol control information (CF N_PCI). The CF N_
PDU transfers segments (N_Data) of the service data unit message data (<MessageData>). All N_PDUs
transmitted by the sending entity after the FF N_PDU shall be encoded as CF N_PDUs. The receiving
entity shall pass the assembled message to the service user of the network receiving entity after the
last CF N_PDU has been received. The CF N_PDU shall be sent out by the sending network entity and
received by a unique receiving network entity for the duration of the segmented message transmission.

7.4.5 Protocol data unit field description

7.4.5.1 N_PDU format

The protocol data unit (N_PDU) enables the transfer of data between the network layer in one node and
the network layer in one or more other nodes (peer protocol entities). All N_PDUs consist of three fields,
as specified in Table 2.

16 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

Table 2 — N_PDU format

Address information Protocol control information Data field
N_AI N_PCI N_Data

7.4.5.2 Address information (N_AI)

The N_Al is used to identify the communicating peer entities of the network layer. The N_AI information
received in the N_SDU — N_NAD shall be copied and included in the N_PDU. If the message data
(<MessageData> and <Length>) received in the N_SDU is so long that segmentation is needed for
the network layer to transmit the complete message, the N_NAD shall be copied and included (repeated)
in every N_PDU that is transmitted.

This field contains address information that identifies the type of message exchanged and the
recipient(s) and sender between whom data exchange takes place.

NOTE For a detailed description of address information, see 6.4.1.

7.4.5.3 Protocol control information (N_PCI)

This field identifies the type of N_PDUs exchanged. It is also used to exchange other control parameters
between the communicating network layer entities.

NOTE For a detailed specification of all N_PCI parameters, see 7.5.

7.4.5.4 Data field (N_Data)

The N_Data in the N_PDU is used to transmit the service user data received in the <MessageData>
parameter in the N_USData.request service call. The <MessageData>, if needed, is segmented
into smaller parts that each fit into the N_PDU data field before they are transmitted over the network.

The size of N_Data depends on the N_PDU type and on the number of remaining MessageData in case
of a SF or the last CF belonging to the message.

7.5 Protocol control information specification

7.5.1 N_PCI

Each N_PDU is identified by means of an N_PCI (see Tables 3 and 4).

Table 3 — Summary of N_PCI bytes

N_PCI bytes
N_PDU name Byte #1 Byte #2
Bits 7 -4 Bits3 -0 Bits7-0
SingleFrame (SF) N_PCltype =0 SingleFrame_DataLength (SF_DL) N/A
FirstFrame (FF) N_PCltype=1 FirstFrame_DataLength (FF_DL)
ConsecutiveFrame (CF) N_PCltype =2 SequenceNumber (SN) | N/A

© ISO 2016 - All rights reserved 17

ISO 17987-2:2016(E)

Table 4 — Definition of N_PCltype values

Value |Description

016 SingleFrame (SF)

For unsegmented messages, the network layer protocol provides an optimized implementation of
the network protocol with the message length embedded in the N_PCI byte only. SF shall be used to
support the transmission of messages that can fit in a single LIN frame.

116 FirstFrame (FF)

A FF shall only be used to support the transmission of messages that cannot fit in a single LIN frame,
i.e. segmented messages. The FF of a segmented message is encoded as a FF. On receipt of a FF, the
receiving network layer entity shall start assembling the segmented message.

216 ConsecutiveFrame (CF)

When sending segmented data, all CFs following the FF are encoded as CF. On receipt of a CF, the receiv-
ing network layer entity shall assemble the received data bytes until the whole message is received.
The receiving entity shall pass the assembled message to the adjacent upper protocol layer after the
last frame of the message has been received without error.

316 Reserved
This range of values is reserved by this document. A FlowControl is not supported with LIN.

416 - F16 |Reserved

This range of values is reserved by ISO 15765-2.

7.5.2 SingleFrame N_PCI parameter definition

7.5.2.1 SF N_PCI byte

Table 5 provides an overview of the SF N_PCI byte.

Table 5 — Overview of SF N_PCI byte

SF N_PCI byte
N_PDU name Byte #1
3 | 2 | 1 | o
SingleFrame 0 0 0 0 SingleFrame_DataLength (SF_DL)

7.5.2.2 SingleFrame_Data Length (SF_DL) parameter definition

The parameter SingleFrame Data Length (SF_DL) is used in the SF N_PDU to specify the number of
service user data bytes. See Table 6.

Table 6 — Definition of SF_DL values

Value Description

Invalid
016 . . .
This value is invalid.

SingleFrame_Data Length (SF_DL)

116 - 616 |The SF_DL is encoded in the low nibble of N_PCI byte #1 value. It shall be assigned the value of the
service parameter <Length>.

Invalid
716 - F16

This range of values is invalid.

18 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

7.5.3 FirstFrame N_PCI parameter definition

7.5.3.1 FF N_PCI bytes

Table 7 provides an overview of the FF N_PCI bytes.

Table 7 — Overview of FF N_PCI bytes

FF N_PCI bytes
N_PDU name Byte #1 Byte #2
7 |6 | 5|43]2]1]0 7-0
FirstFrame 0 0 0 1 FirstFrame_DataLength (FF_DL)

7.5.3.2 FirstFrame_DataLength (FF_DL) parameter definition

The parameter FF_DL is used in the FF N_PDU to specify the number of service user data bytes. See
Table 8.

Table 8 — Definition of FF_DL values

Value Description

016 - 616 Invalid
This range of values is invalid.
716 - FFF16 |FirstFrame_DataLength (FF_DL)

The encoding of the segmented message length results in a twelve bit length value (FF_DL) where
the least significant bit (LSB) is specified to be bit “0” of the N_PCI byte #2 and the most significant
bit (MSB) is bit three of the N_PCI byte #1. The maximum segmented message length supported is
equal to 4095 bytes of user data. It shall be assigned the value of the service parameter <Length>.

7.5.4 ConsecutiveFrame N_PCI parameter definition

7.54.1 CF N_PCI byte

Table 9 provides an overview of the CF N_PCI byte.

Table 9 — Overview of CF N_PCI byte

CF N_PCI byte
N_PDU name Byte #1
5 4 3 | 2 | 1 | o
ConsecutiveFrame 0 0 1 0 SequenceNumber (SN)

7.5.4.2 SequenceNumber (SN) parameter definition
The parameter SN is used in the ConsecutiveFrame (CF) N_PDU to specify the following.
— The numeric ascending order of the ConsecutiveFrames (CF).

— The SN shall start with zero for all segmented messages. The FirstFrame (FF) shall be assigned
the value zero. It does not include an explicit SequenceNumber (SN) in the N_PCI field, but shall be
treated as the segment number zero.

— The SN of the first ConsecutiveFrame (CF) that immediately follows the FirstFrame (FF) shall be
set to one.

© ISO 2016 - All rights reserved 19

ISO 17987-2:2016(E)

— The SN shall be incremented by one for each new ConsecutiveFrame (CF) that is transmitted during
a segmented message transmission.

— When the SN reaches the value of Fqg, it shall wrap around and be set to 016 for the next
ConsecutiveFrame (CF).

This shall lead to the sequence given in Table 10.

Table 10 — Summary of SN definition

N_PDU FF CF CF CF CF CF CF CF
SN 016 116 E16 F1ig6 016 116

See Table 11 for definition of SN values.

Table 11 — Definition of SN values

Value Description

016to F16 |SequenceNumber (SN)

The SN shall be encoded in the lower nibble bits of N_PCI byte #1. The SN shall be set to a value
within the range of 016 - F16.

7.6 Network layer timing

7.6.1 Timing constraints

The timing constraints for the transport layer (based on ISO 15765-2) are defined in Table 12. The
properties shall be within a defined range. Since LIN is slower than CAN, the values shall be adjusted
accordingly. These properties are part of the transport layer and shall not have any constraint on the
node configuration.

Performance requirement values are the binding communication requirements to be met by each
communication peer in order to be compliant with the specification. Since the LIN schedules vary with
the specific use case, a certain application may define specific performance requirements within the
ranges defined in Table 12. The time between transport layer N_SDUData.request and data link layer
start of frame transmission depends on the schedule table definition and the schedule mode (see 9.6.4
for more information).

Timeout values are defined to be higher than the values for the performance requirements to ensure a
working system and to overcome communication conditions where the performance requirement can
absolutely not be met (e.g. high bus load). Specified timeout values in Table 12 or values given by the
node (i.e. the NCF) shall be treated as the upper limit for any given implementation.

The network layer shall issue an appropriate service primitive to the network layer service user upon
detection of an error condition.

If a communication path is established between peer protocol entities, identified by N_AI (see 6.4.1 and
7.4.5.2 for further details), a single set of network layer timing parameters is assigned statically to this
communication path. For the selection of the network layer timing parameters no other information
beside N_Al is used.

20 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

Table 12 — Network layer timing parameter definition

I Data link layer service . Performance
Timing - Timeout .
Description requirement
parameter Start End ms ms
Time for trans- When the transport | When the diagnostic
mission of the LIN layer requests a frame has been con-
N_As frame (MRF or | diagnostic frame to be |firmed as transmitted 1000 N/A
SRF) on the trans- transmitted
mitter side
Time until request| When the previous When the transport
to transmit the diagnostic frame in | layer requests the CF (N_Cs+N_As)
N_Cs next Consecutive- | the same message has | to be transmitted N/A <
Frame been confirmed as (0,9*N_Crmax)
(CF) transmitted.
Time until When the previous | When the next diag-
reception of the diagnostic frame in nostic frame in the
N_Cr . 1000 —
next Consecutive- | the message has been | message has been
Frame (CF) indicated as received. |indicated as received.

The N_Cs parameter does not require a timeout monitoring in the transmitting node since N_As ensures
the correct timeout behaviour. However, N_Cs shall be considered in the system design (scheduling and
transmitter software design) so that a timeout on the receiver’s side (N_Cr) can be avoided.

Figure 10 shows the network layer timing parameters of an unsegmented message, while Table 12
defines the network layer timing parameter values and their corresponding start and end positions
based on the data link layer services.

I1SO 17987-2 1SO 17987-2
Sender Sender Start Start Receiver Receiver
N_USData L_Data 1 L_Data N_USData
Restar Stop
NW_ NW_
sender receiver
1

[req [req

N_ As Si ngle

Frame

[eon] [con | [ma] | [nd]

y time

1 Sender N_USData.req: the session layer issues an unsegmented message to the transport layer.

Sender L_Data.req: the transport layer requests the SingleFrame transmission to the data link layer and starts
the N_As timer. This diagram shows the timing relationship between the data link and the transport layers and
does not imply actual bus message scheduling.

2 Receiver L_Data.ind: the data link layer issues to the transport layer the reception of the LIN frame.

Receiver N_USData.ind: the transport layer issues to the session layer the completion of the unsegmented

massage.

Sender L_Data.con: the data link layer confirms to the transport layer that the transport layer LIN frame has
been transmitted successfully. The sender stops the N_As timer.

Sender N_USData.con: the transport layer issues to the session layer the completion of the unsegmented

message.

Figure 10 — Placement of network layer timing parameters — unsegmented message

© ISO 2016 - All rights reserved

21

ISO 17987-2:2016(E)

Figures 11 and 12 illustrate the parameters in the time domain. The intention of the figures is to show
the transport layer timing parameters, not to require a certain implementation. The behaviour for the
master node and the slave node in the lower layers are generalized.

22

Transportlayer

N_As

N_Cs

Driver Bus
Request transmission of diagnostic
frame (SF, FF or CF)
-
Start frame transmission
>
Diagnostic frame
(MRF or SRF)
Frame transmitted
<<
Transmission confirmation
Request transmission of next
diagnostic frame (CF)
L
time time time

Figure 11 — Transport layer timing on transmitter side

© ISO 2016 - All rights reserved

ISO 17987-2:2016(E)

Figure 12 shows the transport layer timing on receiver side.

Transportlayer Driver Bus
Diagnostic frame
(MRF or SRF)
frame received
-t
diagnostic frame (FF or CF)
reception indication
. Diagnostic frame
< (MRF or SRF)
= frame received
-
diagnostic frame (CF) reception
indication
time time time

Figure 12 — Transport layer timing on receiver side

Figure 13 shows the network layer timing parameters of a segmented message, while Table 12 defines

the network layer timing parameter values and their corresponding start and end positions based on
the data link layer services.

© ISO 2016 - All rights reserved 23

ISO 17987-2:2016(E)

4,6

57

24

1SO 17987-2 1SO 17987-2
Sender Sender Start Start Receiver Receiver
N_USData L_Data 1 L_Data N_USData
Restar Stop
NW_ NW_
sender receiver
First
Frame
® [ind | [FF.ind
N_Cr
Consecutive
Frame
® [nd]
N_Cr
Consecutive
Frame
® [ind |
N_Cr
@ last
Consecutive
Frame
[nd | [ind |
;
] .
| time
v \ 4 \ 4

Sender N_USData.req: the session layer issues a segmented message to the transport layer.

Sender L_Data.req: the transport layer requests the FirstFrame transmission to the data link layer and starts
the N_As timer. This diagram shows the timing relationship between the data link and the transport layers and
does not imply actual bus message scheduling.

Receiver L_Data.ind: the data link layer issues to the transport layer the reception of the LIN transport layer
frame. The receiver starts the N_Cr timer.

Receiver N_USData_FFE.ind: the transport layer issues to the session layer the reception of a FirstFrame of a
segmented message.

Sender L_Data.con: the data link layer confirms to the transport layer that the LIN frame has been transmitted
successfully. The sender stops the N_As timer and starts the N_Cs timer.

Sender L_Data.req: the transport layer requests the first ConsecutiveFrame transmission to the data link layer
and starts the N_As timer.

Receiver L_Data.ind: the data link layer issues to the transport layer the reception of the LIN frame. The receiver
restarts the N_Cr timer.

Sender L_Data.con: the data link layer confirms to the transport layer that the LIN frame has been transmitted
successfully. The sender stops the N_As timer and starts the N_Cs timer according to the separation time value

(STmin)-
SenderL_Data.req:whentheN_Cstimeriselapsed (STin) thetransportlayerrequests the next ConsecutiveFrame
transmission to the data link layer and starts the N_As timer.

Receiver L_Data.ind: the data link layer issues to the transport layer the reception of the LIN frame. The receiver
stops the N_Cr timer.

Sender L_Data.con: the data link layer confirms to the transport layer that the LIN frame has been transmitted
successfully. The sender stops the N_As timer.

Receiver N_USData.ind: the transport layer issues to the session layer the completion of the segmented massage.
Sender N_USData.con: the transport layer issues to session layer the completion of the segmented message.

Figure 13 — Placement of network layer timing parameters — segmented message

© ISO 2016 - All rights reserved

ISO 17987-2:2016(E)

7.6.2 Network layer timeouts

Table 13 defines the cause and action in a network layer timeout.

Table 13 — Network layer timeout error handling

Timeout Cause Action
Any N_PDU not transmitted in time on the sender side. |Abort message transmission and issue
N_As N_USData.confirm with
<N_Result>=N_TIMEOUT_As.
ConsecutiveFrame N_PDU not transmitted in time on Abort message transmission and issue
N_Cs the sender side. N_USData.confirm with

<N_Result>=N_TIMEOUT_Cs.

N_Cr |transmitted) on the receiver side. N_USData.indication with

ConsecutiveFrame N_PDU not received (disturbed or not|Abort message reception and issue

<N_Result> = N_TIMEOUT Cr.

7.6.3 Network layer error handling

The following error handling applies.

A SingleFrame PDU (SF) with a DataLength (DL) value greater than six bytes shall be ignored by the
receiver.

A FirstFrame PDU (FF) with a DataLength (DL) value less than seven bytes shall be ignored by the
receiver.

A FirstFrame PDU (FF) with a DataLength (DL) value greater than the maximum available receive
buffer size of the slave node shall be ignored by the receiver and the receiver shall not start the
reception of a segmented message. This implies of course that the receiving node is receiving the
complete message (the target node) and not a fragmented (in case of gateway).

If the network layer receives a SF with a SF_DL equal to zero then the network layer shall ignore the
received SF N_PDU.

PDUs with unexpected N_PCI types from any node shall be ignored except SingleFrame (SF) and
FirstFrame PDUs (FF).

When a SingleFrame (SF) or FirstFrame (FF) PDU is received in a slave node, with a NAD not equal
to the functional NAD, while a message reception (request) or transmission (response) is already
ongoing the current reception or transmission shall be aborted. Reception of the new message shall
be started if the NAD equals the node’s configured NAD or broadcast NAD.

When a SingleFrame (SF) or FirstFrame (FF) PDU is received in a master node while a message
reception (response) is already ongoing the current reception shall be aborted.

Reception of the new message shall only be started if the NAD equals the NAD that was addressed
in the appropriate request.

If a CF N_PDU message is received with an SequenceNumber (SN) not according to the definition
in 7.5.4.2, the message reception shall be aborted, and the network layer shall make aN_USData.
indication service call with the parameter <N_Result> = N_WRONG_SN to the adjacent
upper layer.

The message reception shall be aborted by the receiver after occurrence of an N_Crpyx timeout.

The message transmission shall be aborted by the transmitter after occurrence of an N_As timeout
(see Table 13).

© IS0 2016 - All rights reserved 25

ISO 17987-2:2016(E)

— Ifthe time between two subsequent CFs of a segmented data transmission (N_As + N_Cs) is smaller
than the STy, value or the receiving node there is no guarantee that the receiver of the segmented
data transmission correctly receives and process all frames. In any case, the receiver of the
segmented data transmission is not required to monitor the adherence of the STi, value.

7.6.4 Unexpected arrival of N_PDU

An unexpected N_PDU is defined as one that has been received by a node outside the expected order
of N_PDUs. It could be an N_PDU defined by this document (SF N_PDU, FF N_PDU, CF N_PDU) that is
received out of the normal expected order or with a NAD that is different to the currently used NAD. As
described in 7.6.3 already a N_PDU with unknown PCI type is ignored.

Tables 14 and 15 define the network layer behaviour in the case of the reception of an unexpected N_
PDU for Master and Slave node. It considers the current internal network layer status (NWL status) and
different possible NAD values received.

When the specified action is to ignore an unexpected N_PDU, this means that the network layer shall

not notify the upper layers of its arrival.

Table 14 — Master node handling of unexpected N_PDUs

Reception of Reception of Reception of
NWL status SFN_PDU FF N_PDU CFN_PDU
Segmented Ignore Ignore Ignore
transmission in
progress
Segmented New NAD equals current New NAD equals current New NAD equals current
reception in NAD: NAD: NAD:
progress . . .
Terminate the current Terminate the current Terminate the current
reception, report a reception, report a reception, report a
N_USData.indication, with N_USData.indication, with N_USData.indication, with
<N_Result> setto N UNEXP_ |<N_Result>setto N UNEXP_ [<N_Result>setto N WRONG_
PDU, to the upper layer,and |PDU, to the upper layer,and |SN, to the upper layer. (Only a
process the SF N_PDU as the |process the FF N_PDU as the |wrong SequenceNumber can
start of a new reception. start of a new reception. be unexpected)
Other NAD: Other NAD: Other NAD:
Ignored Ignored Ignored
26 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

Table 15 — Slave node handling of unexpected N_PDUs

Reception of

Reception of

Reception of

in progress

Terminate the current
transmission, report a N_US-
Data.confirm with <N_Result>
setto N_.UNEXP_PDU, to the
upper layer, and process the
SF N_PDU as the start of a new
reception.

Functional NAD:

Ignore
Other NAD:

Terminate the current
transmission, reporta N_US-
Data.confirm with <N_Result>
set to N_UNEXP_PDU, to the
upper layer. A different slave
is addressed.

NWL status SFN_PDU FF N_PDU CFN_PDU
Segmented New NAD equals configured |New NAD equals configured |Ignore
transmission |NAD or broadcast NAD: NAD or broadcast NAD:

Terminate the current
transmission, report a N_US-
Data.confirm with <N_Result>
setto N_.UNEXP_PDU, to the
upper layer, and process the
FF N_PDU as the start of a new
reception.

Functional NAD:

Ignore (invalid N_PDU format)
Other NAD:

Terminate the current
transmission, reporta N_US-
Data.confirm with <N_Result>
setto N_UNEXP_PDU, to the
upper layer. A different slave is
addressed.

Segmented
reception in
progress

New NAD equals configured
NAD or broadcast NAD:

Terminate the current
reception, report a N_USData.
indication, with <N_Result>
set to N_.UNEXP_PDU, to the
upper layer, and process the
SF N_PDU as the start of a new
reception.

Functional NAD:

Ignore
Other NAD:

Terminate the current
reception, report a N_USData.
indication, with <N_Result>
setto N_UNEXP_PDU, to the
upper layer. A different slave
is addressed.

New NAD equals configured
NAD or broadcast NAD:

Terminate the current
reception, report a N_USData.
indication, with <N_Result>
setto N_.UNEXP_PDU, to the
upper layer, and process the
FF N_PDU as the start of a new
reception.

Functional NAD:

Ignore (invalid N_PDU format)
Other NAD:

Terminate the current
reception, report a N_USData.
indication, with <N_Result>
setto N_UNEXP_PDU, to the
upper layer. A different slave is
addressed.

New NAD equals configured
NAD:

Terminate the current
reception, report a N_USData.
indication, with <N_Result> set
to N_WRONG_SN, to the upper
layer. (Only a wrong Sequence-
Number can be unexpected)

Other NAD:

Ignored

8 Datalink layer usage

The data link layer services defined in this document are providing an interface for transport/network
layer services only. Any data exchange on LIN is controlled by the usage of schedule tables in the master
node. Service defined therefore always requires a LIN master node application which serves the current
communication demand. In case of diagnostic communication using transport layer services the master
nodes application shall activate appropriate schedule tables that contain MRF and SRF.

© ISO 2016 - All rights reserved

27

ISO 17987-2:2016(E)

8.1 Datalink layer service parameters
The following data link layer service parameters are defined in ISO 17987-3.
— <Data>: LIN frame data

— <Transfer_Status>: status of a transmission
8.2 Data link layer interface services

8.2.1 L_Data.request

The service primitive requests transmission of <Data> that shall be mapped into a MRF/SRF. <Data>
consist of the N_NAD, N_PCI and N_Data field. In case of the SF or last CF additional stuffing data may
also be provided.

L_Data.request (
<Data>

)
8.2.2 L_Data.confirm

The service primitive confirms the completion of an L_Data.request service.

The parameter <Transfer_Status> provides the status of the service request:

L Data.confirm (
<Transfer_ Status>

)
8.2.3 L_Data.indication
The service primitive indicates data link layer event to the adjacent upper layer and delivers <Data>
identified:

IL_Data.indication (
<Data>

)
8.3 Mapping of the N_PDU fields

N_PCI and N_Data are placed in the LIN frame data field (see Table 16). If the N_PDU to be transmitted
in a SF or last CF is shorter than SF N_PDU/CF N_PDU filed the sender shall pad any unused bytes in the
frame with FF1¢.

28 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

Table 16 — Mapping of N_PDU parameters into LIN frame

LIN frame
Byte 1 Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8
LIN frame LIN frame data field
N_PDU type address field .
(N_NAD) N_PCI LIN SF N_PDU field
SingleFrame (SF) NAD SF N_Data/Byte Padding
N_PCI LIN FF N_PDU field

FirstFrame (FF) NAD FF N_Data

N_PCI LIN CF N_PDU field
ConsecutiveFrame (CF) NAD CF N_Data

N_PCI LIN CF N_PDU field
last CF NAD CF N_Data/Byte Padding

8.4 Transportlayer PDU structure and communication
8.4.1 PDU structure

8.4.1.1 Mapping of CAN to LIN and LIN to CAN frame data field

The units that are transported in a transport layer frame are called PDU. A PDU can be a complete
message or part of a message; in the latter case, multiple concatenated PDUs form the complete message.

Messages issued by the client (tester, master node) are called requests and messages issued by the
server (master node, slave node) are called responses.

The first byte in the payload is used as a node address (NAD). The transport layer frames have fixed
frame IDs, since the diagnostic frames are used. This means that the addressing of a node (or function)
is made using the NAD.

IMPORTANT — No FlowControl frames are supported in LIN clusters. If the backbone bus, for
example, CAN test equipment needs FlowControl PDUs, these shall be generated by the master
node on the backbone (CAN) side.

A routing of backbone bus transport layer frames (such as defined in ISO 15765-2) to a LIN cluster is
possible on data link layer already when the mapping of N_PDU fields is similar to LIN. This means that
Byte 1 of the back bone bus N_PDU is used to identify the LIN subscriber(s) and can be converted by the
LIN master into a N_NAD.

In case of CAN, this condition is fulfilled for

— 11 bit CAN ID mixed addressing Tp,

— 29 bit CAN ID mixed addressing Tp, and

— extended addressing.
NOTE Extended addressing uses a target address N_TA definition. Only in case each slave node
represents an own unambiguous N_TA value in the master node a conversion into N_NAD is possible.
Otherwise, data link layer routing is not supported by mixed addressing.

This data link layer routing is depicted in Figure 14 and called Tp raw.

If data mapping of the back bone bus does not match the LIN format, routing is supported on

application/session layer level. The message data reception shall be confirmed by a N_USData.indication

© ISO 2016 - All rights reserved 29

ISO 17987-2:2016(E)

service call issued by the back bone bus network layer. The master node application/session layer shall
forward this message as a new N_USData.request service request to the LIN network layer. Reception is
handled accordingly.

4 LIN Master Node (Data Link Layer Gateway CAN to LIN: Mapping of data fields) N
N_AE addresses a LIN slave node represented by it3 configured NAD in parameter N.NAD
| CAN network with mixed addressing with 11 bit CAN identifier | | LIN network |
[1SO 15765-2 CAN Transport Protocol frame [IS0 17987-2 LIN Transport Protocol frame
| cANID [Byte1 | Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte7 | Bytes [uNID [Bytet | Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte7 | Bytes
NIEDY N_AI N_AE CAN frame data field RUALY N_AI LIN frame data field
type type
1 1
SF | CANID ” N_AE |N,Pc1 |N,Data 4—|—> Byte Padding |<—>| SF | MRF/SRF " N_NAD |N_PC1 |N_Data 4_|_> Byte Padding |
FF | CAN ID " N_AE |N_PCI |N_Dam |<—>| FF | MRF/SRF " N_NAD |N_PCI |N_Data |
1
FC | CAN ID " N_AE | N_PCI | N/A |
0 !
CF | CAN ID ” N_AE |N_PCI |N_Data |<—>| CF | MRF/SRF " N_NAD |N_PCI |N_Data |
1 1
last CF | CANID " N_AE |N,Pc1 last N_Data <—|—> Byte Padding |<—>| last CF | MRF/SRF " N_NAD | N_PCI | lastN_Data <—|—> Byte Padding |
AN J

Figure 14 — Mapping of data fields of 11 bit CAN ID with mixed addressing

To simplify conversion between ISO 15765-2 transport layer frames with 29 bit CAN IDs and transport
layer frames of this document a very similar structure is defined which supports the PDU types shown

in Figure 15.

4 LIN Master Node (Data Link Layer Gateway CAN to LIN: Mapping of data fields) N
N_AE addresses a LIN slave node represented by it configured NAD in parameter N.NAD
| CAN network with mixed addressing with 29 bit identifier | | LIN network |
IS0 15765-2 CAN Transport Proto col frame | 1SO 17987-2 LIN Transport Protocol frame
[canm][Bytet | Byte2 [Byte3 | Byte4 | Byte5 | Byte6 | Byte7 | Bytes [LNID [Byte1 [Byte2 [Byte3 | Byte4 | Byte5 | Byte6 | Byte7 | Bytes
NPDU 1\ p | nNsa || NaE CAN frame data field NEDY N_AI LIN frame data field
type type

|SF | CANID " N_AE |N_PCI |N_Dal:a <—|—> Byte Padding |<—>|sn= |MRF/SRF " N_NAD |N_PC1 |N_Data 4—|—> Byte Padding |
FF | CAN ID " N_AE |N_PC1 |N_Data |<—>| FF | MRF/SRF " N_NAD |N_PCI |N_Data |

FC | CAN ID " N_AE |N_PCI |N/A |

) |
CF | CAN ID " N_AE |N,Pc1 |N,Data |<—>| CF | MRF/SRF " N_NAD |N,PCI |N,Dala |
lastN_Data <—|—> Byte Padding |<—>| last CF | MRF/SRF " N_NAD | N_PCI |lastN_Data 4—'—» Byte Padding |

last CF | CAN ID || N_AE |N,PC[

Figure 15 — Mapping of data fields of 29 bit CAN ID with mixed addressing

Requests are always sent in master request frames and responses are always sent in slave response
frames.

8.4.1.2 Service identifier (SID)

The service identifier (SID) specifies the request that shall be performed by the slave node addressed.
0016 .. AF16 and CO1¢ .. FE16 are used for diagnostics while BO1¢ .. BF14 are used for node configuration
and node identification (see ISO 17987-3). The Response Service Identifier (RSID), SID+401¢, specifies
to which requested service the response belongs to.

The Response Service Identifier (RSID), SID + 4016, specifies the content of the response message.

30 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

8.4.1.3 Data field (N_Data)

The interpretation of the data bytes depends on the SID or RSID. In multi-PDU messages, all data bytes
in all PDUs of the message shall be concatenated into a complete message, before being parsed.

If a PDU is not completely filled with payload data (applies to last CF and SF PDUs only), the publisher of
the PDU shall pad the unused bytes with FF1g.

8.4.2 Communication

8.4.2.1 General

It is required that a transport layer message is exclusive on one bus. This means that no inter-leaving
frames are allowed to the “request receiving” and “response transmission” of a slave during a multi-
frame transport message with the exception of a functional request.

9 Diagnostic communication requirements
9.1 Definition of diagnostic classes

9.1.1 General

Architectural, diagnostic communication performance and transport protocol needs of slave nodes are
accommodated by dividing diagnostic services functionality into three diagnostic classes.

Therefore, a diagnostic class is assigned to each slave node according to its level of diagnostic
functionality and complexity.

9.1.2 Diagnosticclass1

Smart and simple devices like intelligent sensors and actuators, requiring none or very low amount of
diagnostic functionality. Actuator control, sensor reading and fault memory handling is done by the
master node, using signal carrying frames. Therefore, specific diagnostic support for these tasks is not
required. Fault indication is always signal based.

9.1.3 Diagnostic class II

A diagnostic class II slave node is similar to a diagnostic class I slave node, but it provides node
identification support. The extended node identification is normally required by vehicle manufacturers.
Testers or master nodes use ISO 14229-1 diagnostic services to request the extended node identification
information. Actuator control, sensor reading and fault memory handling is done by the master node,
using signal carrying frames. Therefore, specific diagnostic support for these tasks is not required.
Fault indication is always signal based.

9.1.4 Diagnostic class III

Diagnostic class III slave nodes are devices with enhanced application functions, typically performing
their own local information processing (e.g. function controllers, local sensor/actuator loops). The slave
nodes execute tasks beyond the basic sensor/actuator functionality, and therefore require extended
diagnostic support. Direct actuator control and raw sensor data is often not exchanged with the master
node, and therefore not included in signal carrying frames. ISO 14229-1 diagnostic services for 1/0
control, sensor value reading and parameter configuration (beyond node configuration) are required.

Diagnostic class IlI slave nodes have internal fault memory, along with associated reading and clearing
services. Optionally, reprogramming (flash/NVRAM reprogramming) of the slave node is possible. This
requires an implementation of a boot loader and necessary diagnostic services to unlock the device
initiate downloads and transfer data, etc.

© ISO 2016 - All rights reserved 31

ISO 17987-2:2016(E)

The primary difference between diagnostic class Il and diagnostic class III is the distribution of
diagnostic capabilities between the LIN master node and the LIN slave node for diagnostic class Il while
for a diagnostic class III LIN slave node no diagnostic application features of the LIN slave node are
implemented in the LIN master node.

9.1.5 Summary of slave node diagnostic classes

Table 17 shows a list of diagnostic services supported by the different diagnostic classes. All supported
configuration and diagnostic services of a slave node are listed in the node capability file, see Node
Capability Language Specification. See 1SO 17987-3:2016, 6.3.4.4 for a detailed description of node
configuration and identification services. ISO 14229-7 provides the list of UDS based services for LIN.

Table 17 — Slave node diagnostic properties

Slave diagnostic class I II 111 Service
identifier
Diagnostic transport protocol requirements
SingleFrame (SF) transport only mandatory N/A N/A N/A
Full function transport protocol N/A mandatory mandatory |N/A
(multi-segment)
Required configuration services
AssignNAD optional optional optional B016
AssignFrameldentifier (legacy) optional optional optional Blie
ReadByldentifier (0016 = Product ID) mandatory mandatory mandatory [B216 0016
ReadByldentifier (all except Product ID) optional optional mandatory [B216XX16
DataDump optional optional optional B416
AutoAddressingSlave (legacy SID) optional optional optional B516
Targeted Reset (SAE J2602 nodes only) mandatory mandatory mandatory |[B51¢
SaveConfiguration optional optional optional B616
AssignFrameldentifierRange mandatory mandatory mandatory [B716
AutoAddressingSlave optional optional optional B816

9.2 Diagnostic messages

The LIN transport layer uses the same diagnostic messages as defined in ISO 14229-7. The SID and RSID
shall be according to ISO 14229-7. A node may implement a subset of the services defined in ISO 14229-7.

Some very simple LIN slaves (ASIC-based) may implement a fault reporting form of diagnostics
using custom parameters in the data fields. Since these parameters may be vehicle manufacturer or
application-specific, they should be processed by the LIN node application.

9.3 Using the transport layer

Two communication cases exist using the transport layer, the master node wants to transmit a
diagnostic request to a slave node or the slave node wants to transmit a diagnostic response. There are
several use cases for a master node why a request message is sent

— diagnostic request from backbone,
— slave node self-diagnostics, and
— slave node configuration and identification.

Figures 16 and 17 show the message flow in these two cases.

32 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

It is important that the unit controlling the communication (the tester or the master) avoids requesting
multiple slaves to respond simultaneously as each new request is rejecting any pending response from

a slave node addressed before.

IS0 17987-2 LIN

Master Slave
Silent slot
(no pending diagnostic request)
ID=3C16
———————————— e e
iagnostic reques
> 4 q
Silent slot
(no pending diagnostic request)
Figure 16 — Diagnostic request
IS0 17987-2 LIN
Master Slave
ID=3D1¢
———————————— = Header, but no
response from slave
ID=3D16
———————————— = I
Diagnostic response
<
ID=3D16
———————————— T
Header, but no
response from slave

Figure 17 — Diagnostic response

© ISO 2016 - All rights reserved

33

ISO 17987-2:2016(E)

9.4 Slave node diagnostic timing requirements

This subclause contains the timing parameter requirements that shall be taken into account when
designing the LIN cluster. The monitoring for diagnostic class Il and I1I slave nodes shall be implemented
by the slave node itself.

Table 18 defines the diagnostic communication timings.

Table 18 — Diagnostic communication timings

Parameter | Affected Description Minimum value | Maximum
device /performance value/
requirement timeout
p2 masternode | Time between reception of the last frame of a diagnostic 50 ms 500 ms

request on the LIN bus and the slave node being able
to provide data for a response.

The maximum value defines the time after which a
slave node shall have received a slave response header
before it discards its response.

Each slave node defines this minimum value in the
NCF or LDF, see 11.3.2 and 12.3.4.

STmin masternode |The minimum time the slave node needs to prepare 0 ms n/a
the reception of the next frame of a diagnostic request
or the transmission of the next frame of a diagnostic
response.

Each slave node defines this minimum value in the
NCF or LDF, see 11.3.2 and 12.3.4.

p2* masternode | Time between sending a NRC 7816 and the LIN-slave P2 2000 ms
being able to provide data for a response.

A timing sequence chart of the diagnostic communication is shown in Figure 18. The external test
equipment is shown only as an example.

34 © IS0 2016 - All rights reserved

Tester

ISO 17987-2:2016(E)

Diagnostic
request

Diagnostic
response

FF - FirstFrame

CF - ConsecutiveFrame

FC - FlowControl

Master

“*
4—’/&’//

—

4””11”#’/’
“‘-JL*

*—/’E'F’/

Af”JE”””‘

Slave

—_——
—_——

—_——
—_——
-

ID=3D16

et ~
ID=3D16
ID=3D16

T

— —
-
—_——

STmin

P2

STmin

STmin

Figure 18 — Timing sequence chart of the diagnostic communication from the tester to LIN via

© ISO 2016 - All rights reserved

a backbone bu

S

35

ISO 17987-2:2016(E)

9.5 Response pending

Slave nodes of diagnostic class II and Il are supporting ISO 14229-7 UDSonLIN based diagnostic
services. In case a service requires more time than P2 for processing, a response pending frame
according to ISO 14229-1 and ISO 14229-2 is transmitted by the slave node to extend the maximum
response time. A response pending frame may be repeated within P4 timing. Whenever a response
pending frame is used a final positive or negative response is mandatory for this request. A master
node receiving a response pending frame extends the response timeout to P2* and continues waiting
for the final slave response.

The response pending frame is defined as a SingleFrame negative response with NRC 781¢.

Table 19 defines the response pending frame format.

Table 19 — Response pending frame format

NAD

PCI

RSID

D1

D2

D3

D4

D5

NAD

0316

7F16

SID

7F16

FF16

FF16

FF16

9.6 Transport protocol handling in LIN master

9.6.1 General

The LIN master is responsible for handling the scheduling according to the currently active diagnostic
transmissions. This subclause defines the requirements for schedules and schedule handling which
shall be implemented to enable diagnostic communication with any slave node. The master node acts
as a network layer router between the backbone bus and the LIN cluster, implying that the transport
protocols on the backbone bus and on the LIN cluster are handled by the master.

Within the next chapters several communication sequence diagrams are used. Refer to Figure 19 for
the explanation of communication diagrams. For clearness of the communication sequence charts, the
size of the interleaved normal communication schedules as well as the size of the diagnostic schedules
do not represent the correct delays in the schedules and is only a schematic graphical representation.

Active schedule table
Master Slave

Master request frame

Diagnostic master request
schedule

Slave response frame Diagnostic slave response

schedule

Slave response frame

. Diagnostic slave response
without response g P

schedule

Empty slot /
normal communication

Normal communication schedule

s Al
x |
S |1
|
|
|
|
|
|
i
— ——F—

Figure 19 — Legend of communication sequence charts

9.6.2 Diagnostic master request schedule

The master node shall support a diagnostic master request schedule table that contains a single master
request frame. It is up to the LDF designer to add this specific schedule table.

36 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

The diagnostic master request schedule table shall be executed whenever a master request frame shall
be transmitted (see Figure 20).

NOTE By insertion of an execution of the diagnostic master request schedule table, the overall timing of the
normal communication schedule is affected.

Active schedule table

Normal communication
schedule

Diagnostic master request
schedule

Normal communication
schedule

ty

Figure 20 — Interleaving of normal communication schedule table

9.6.3 Diagnostic slave response schedule

The master node shall support a diagnostic slave response schedule table that contains a single slave
response frame. It is up to the LDF designer to add this specific schedule table.

The diagnostic slave response schedule table shall be inserted between the executions of the normal
communication schedules whenever a slave response frame shall be transmitted (see Figure 21).

NOTE Note that by insertion of an additional execution of the diagnostic slave response schedule table the
overall timing of the normal communication is affected.

Active schedule table

Normal communication
schedule

Diagnostic slave response
schedule

Normal communication
schedule

ty

Figure 21 — Interleaving of a diagnostic slave response schedule table

9.6.4 Diagnostic schedule execution

9.6.4.1 General

When no diagnostic communication is active, the master node shall not execute diagnostic schedules
tables (see Figure 22). This shall be the default behaviour of the master node.

© ISO 2016 - All rights reserved 37

ISO 17987-2:2016(E)

Active schedule table

Normal communication
—_ schedule

Normal communication
-t schedule

Normal communication
-t schedule

Normal communication
-rr—- schedule

tv

Figure 22 — No diagnostic communication

A master node supports the following different scheduling modes:
— interleaved diagnostics mode (mandatory);
— diagnostics only mode (optional).

The two modes are defined in greater detail in 9.6.4.2 and 9.6.4.3. The master node shall support to
operate each of its connected LIN clusters in the one or the other mode upon request from an external
diagnostic test tool.

9.6.4.2 Diagnostic interleaved mode

When diagnostic schedules need to be executed, the master node shall finish the currently running
normal communication schedule with the last defined frame entry and then switch to the required
diagnostic schedule to perform the transmission (see Figures 20 and 21). After execution of a diagnostic
schedule, the master node starts again the previous normal communication table from its beginning
or changes to another schedule table and frame index if another schedule table has been requested in
the meantime. A new diagnostic schedule table is not executed until the end of the interleaved normal
communication schedule table.

When using the diagnostic interleaved mode, it shall be ensured (via normal communication schedule
design) that the time between two subsequent diagnostic schedules fulfils the vehicle manufacturer-
specific diagnostic requirements.

38 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

Active schedule table

Normal communication
—_— schedule

Diagnostic master request
-t schedule

Normal communication
- schedule

I Diagnostic slave response
-r—- schedule

tVv

Figure 23 — Normal diagnostic communication mode

The number of executions of the diagnostic master request schedule table depends on the amount of
data that needs to be transmitted and shall be determined by the master node considering the LIN
transport protocol (e.g. two executions of the schedule for transmitting 10 user data bytes using the
LIN transport protocol).

The subsequent interleaved execution of the diagnostic slave response schedule table depends on
the amount of data to be transferred and shall therefore be performed by the master node until the
transmission has been successfully finished or a transport protocol timeout occurs.

If a diagnostic transmission from a slave node to the master node has been started, the master node
shall keep executing the diagnostic slave response schedule even when one or several slave response
frame headers have not been answered (see Figure 24) until

— aP2nax/P2*nax timeout occurs (see 9.4), and

— atransport protocol timeout occurs (see Table 12).

© ISO 2016 - All rights reserved 39

ISO 17987-2:2016(E)

External
test tool

Master Slave
=
Diagnostic request to slave _
node D=3C6 _ _ _ _ _ _ >
Master request frame
>
ID=3D16
_________ _D
Slave response header
without response
CAN
ID=3D1s
_________ -
Slave response header
without response
ID=3D1s
e e —I>
Slave response header
<1 withresponse (SF)
Diagnostic response

[~

[~

e~

.

I~

I~

I~

—

Active schedule table

Diagnostic master
request schedule

Normal communication
schedule

Diagnostic slave
response schedule

Normal communication
schedule

Diagnostic slave
response schedule

Normal communication
schedule

Diagnostic slave
response schedule

Figure 24 — Continued execution of diagnostic slave response schedule table until response is

9.6.4.3 Diagnostic only mode

received

The master node may optionally implement a “diagnostics only mode” in which only the diagnostic
schedules and no normal communication schedules are executed. The basic principles to use master
request frame schedule tables and slave response frame schedule tables are the same as for the
diagnostics interleaved mode except that no normal communication schedules are interleaved between

the diagnostic schedule tables.

This is to allow for optimized diagnostic data transmission (e.g. when reading slave node identifications
or during flash reprogramming, see Figure 25 for the different use cases).

40

© ISO 2016 - All rights reserved

ISO 17987-2:2016(E)

0 ® ®

Active schedule table Active schedule table Active schedule table

Diagnostic master
request schedule

Diagnostic slave response
schedule

Diagnostic master
request schedule

Diagnostic master
request schedule

Diagnostic slave response
schedule

Diagnostic slave response
schedule

Diagnostic master
request schedule

Diagnostic slave response
schedule

Diagnostic master
request schedule

Diagnostic master
request schedule

Diagnostic slave response
schedule

Diagnostic slave response
schedule

f— f— f— f—
f— f— f— f—
f— f— 7 f—

tV . A 4 . ty
Key

1 long transmission to diagnostic slave

2 long transmission from diagnostic slave

3 subsequent requests with responses from diagnostic slave nodes
Figure 25 — Use cases for diagnostic only mode

The diagnostic only mode shall be enabled and disabled via diagnostic service request from external
test tool (e.g. service “communication control” in ISO 14229-7 to disable normal communication on the
LIN cluster leads to the activation of the “diagnostic only mode”). When operating in the diagnostic
only mode without any active transmission the master node shall execute diagnostic slave response
schedule tables to prevent slave nodes to enter sleep mode (see Figure 26).

© ISO 2016 - All rights reserved 41

ISO 17987-2:2016(E)

Active schedule table

-1T Diagnostic slave response
] schedule

T Diagnostic slave response
schedule

-T Diagnostic slave response
schedule

T Diagnostic slave response
—_) = schedule

Figure 26 — Default schedule in the diagnostic only mode

9.7 Transmission handler requirements

9.7.1 General

For each LIN cluster, the master node implements one instance of the transmission handler specified
in 9.7.2. The transmission handler shall be capable to operate in either interleaved diagnostics mode or
diagnostics only mode.

At least one active master to slave node physical transmission plus one functional transmission can be
handled per cluster.

Broadcasting to all LIN clusters of a master node shall always be possible regardless of the currently
active connections.

Asynchronous responses from slave nodes without any prior request are prohibited. A slave node with
boot loader capability may however confirm a programming request that has not been received by the
transport layer/diagnostic layer in the same runtime context. When entering a programming session,
the positive response is transmitted after the slave node has performed a physical reset to enter the
boot loader.

9.7.2 Master node transmission handler

A transmission handler shall be implemented by the master node according to Figure 27. Scheduling is
completely under the control of the application. The following states are defined for both modes:

— Idle:

In this state, the master node is neither receiving nor transmitting any transmission on the LIN
cluster. It is continuously available for any new transmission request.

— Tx functional active:

In this state, the master node is routing a functional addressed request from the backbone bus
to the LIN cluster. This can only be a SingleFrame (SF) according to restrictions for the transport
protocol on LIN.

42 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

— Tx physical active:

In this state, the master node is currently routing data from the backbone bus to one slave node
in the LIN cluster. The master node is consequently occupied and cannot route any other physical
transmission from the backbone bus to the LIN cluster. Also, no response from a slave node can be
routed to the backbone bus.

— Rx physical active:

In this state, the master node is routing a transmission from a slave node to the backbone bus. It
is possible to transmit functional addressed requests to the LIN cluster but cannot handle further
physical transmissions to a slave node.

— Interleaved functional during Tx:

This is the state in which the master node routes a functional addressed request from the backbone
bus to the LIN cluster, while a transmission to a slave node is currently active. Functional addressed
SingleFrames (SF) can be transmitted, but shall be ignored by the active slave node while receiving
a physically addressed transmission.

— Interleaved functional during Rx:

In this state, the master node routes a functional addressed request from the backbone bus
to the cluster, while a reception from a slave node is currently active. Functional addressed
SingleFrames (SF) can be transmitted, but shall be ignored by the active slave node while
transmitting the physically addressed response.

© ISO 2016 - All rights reserved 43

ISO 17987-2:2016(E)

Tx functional active

(11) (13) (12)
Idle
(2) (10)
(1) (14)
(6) > 4
&) Tx physical Rx physical ™)
(15)

N

N []

4) [5)\ 28) 9)
Interleaved Tx Interleaved Tx
functional during Tx functional during Rx
physical physical

Key
1 Idle state — Tx physical active state

— Trigger: Start of a physical transmission from the backbone bus to a slave node.

— Effect: Start executing diagnostic master request frame schedule tables and handle the transport protocol.
2 Txphysical active state — Idle state

— Condition: Routing of the physical transmission from the backbone bus to the cluster has finished or a
transport protocol transmission error (e.g. timeout) on the backbone bus occurred.

— Action: Stop executing master request frame schedule tables.
3 Txphysical active state — Tx physical active state

— Condition: A new physical request is triggered while a previous one is operated.

— Action: A new transmission request is accepted and the previous pending physical request is discontinued.
4 Tx physical active state — Interleaved functional request during Tx physical state

— Condition: Functional addressed request from the backbone bus has been received.

— Action: Interrupt the physical transmission to the slave node and execute a single master request frame
schedule to transmit the functional addressed request onto the cluster.

5 Interleaved functional during Tx physical state — Tx physical active state
— Condition: Functional addressed request has been routed onto the cluster.
— Action: Continue the interrupted physical transmission to the slave node.
6 Tx physical active state — Rx physical active state
— Condition: The physical transmission to the slave node has been successfully completed.

— Action: Stop executing master request frame schedule tables, start executing slave response frame schedule
tables and handle the incoming response from the previously addressed slave node.

44 © IS0 2016 - All rights reserved

10

11

12

13

14

15

ISO 17987-2:2016(E)

Rx physical active state — Rx physical active state

— Condition: The response from the slave node has not been started or has not finished yet or a response
pending frame has been received.

— Action: Transmit slave response frame schedule tables and handle the LIN transport protocol (i.e. route
transmission from the slave node to the backbone bus).

Rx physical active state — Interleaved functional request during Rx physical state
— Condition: Functional addressed request from the backbone bus has been received.

— Action: Interrupt the scheduling of a slave response frame schedule and execute a single master request
frame schedule table to transmit the functional addressed request onto the cluster.

Interleaved functional during Rx physical state — Rx physical active state
— Condition: Functional addressed request has been routed onto the cluster.

— Action: Restart executing slave response frame schedules and continue the interrupted reception from the
slave node.

Rx physical active state — Idle state

— Condition: Reception from the slave node has been completed or a transport protocol error on the backbone
bus has occurred or the timeout P2 max respective P2* max has elapsed (according to the NRC 781¢ handling
as defined in ISO 14229-2).

— Action: In “diagnostic interleaved mode®, stop executing slave response frame schedules and recover
application schedule table. In “diagnostic only mode”, slave response frame scheduling is continued until a new
transmission is started from IDLE mode.

Idle state — Tx functional active state
— Condition: Functional addressed request from the backbone bus has been received.

— Action: Execute a single master request frame schedule table to transmit the functional addressed request
onto the cluster.

Tx functional active state — Idle state

— Condition: Functional addressed request has been routed onto the cluster.
— Action: Stop executing master request frame schedules.

Idle state — Idle state

— Condition: Neither physical transmission from the backbone bus to be routed to a slave node nor any
response to be routed from a slave node to the backbone bus.

— Action: Diagnostics interleaved mode. Do not execute any master request frame schedule tables or slave
response frame schedule tables. Diagnostics only mode: execute slave response frame schedule tables.

Idle state = Rx physical active state (for “diagnostics only mode” only)

— Condition: A slave node is Broadcasting to all LIN clusters of a master node initiated a transmission via one
of the slave response frame schedule tables.

— Action: Handle the incoming response from the responding slave node and start routing to the backbone bus.

Broadcasting to all LIN clusters of a master node or transmitting a new request while waiting for a response
shall always be possible regardless of the currently active connections. Any pending physical reception is
rejected when a new physical transmission is requested.

Figure 27 — Master node transmission handler

The master shall only accept a physical reception if the received NAD in the SF or FF matches the
transmitted NAD of the previous physical request.

In case of an error condition during reception, another response with this NAD shall be ignored until
renewed physical request.

Several valid physical responses with the same NAD shall be accepted to support response pending
frames defined in UDSonLIN as specified in ISO 14229-1 and ISO 14229-2.

© IS0 2016 - All rights reserved 45

ISO 17987-2:2016(E)

9.7.3 Slave node transmission handler

Each slave node shall implement a transmission handler as defined in Figure 28. This is to allow for
diagnostic communication without frame collisions on the cluster. During diagnostics, the broadcast
NAD is normally not used. If this happens, the slave node processes the requests with broadcast
NAD (7F16) in the same way as if it is the slave node’s configured NAD.

The following states are defined.

46

Idle:

In this state, the slave node is neither receiving nor transmitting any messages in the cluster. It is
accepting incoming request from the master node. It shall not respond to slave response headers.

Receive physical request:

In this state, the slave node is receiving and processing transport layer frames from the master node.
The slave node shall ignore any interleaved functional addressed requests from the master node.

Transmit physical response:

In this state, a slave node is currently still processing the previously received request, is ready to
transmit a physical response or is actually transmitting the response to the previously received
request. A slave node shall ignore interleaved functional addressed (NAD 7E1¢) requests from
the master node. New physical requests shall be received and make the slave node discard the
current request or response. If the new request is addressed to the slave node, the request shall be
processed.

Receive functional request:

In this state, a slave node is receiving a functional transmission from the master node. The slave
node shall not respond to any slave response header.

© ISO 2016 - All rights reserved

ISO 17987-2:2016(E)

Receive functional
request

T |(91] (i)
Idle
(2)

/‘”
g

\ (4) 4’
3 Receive physical I i Transmit physical (5)

(6)

request response

(10)

Key

1 Idle state — Receive physical request state
— Condition: A master request frame has been received with the NAD matching the slave node’s configured NAD.
— Action: Start processing the physical request according to the transport layer requirements.

2 Receive physical request state — Idle state

— Condition: A transport layer error has occurred or a master request frame with a NAD different from the
slave node’s configured NAD has been received or a physical request has been received completely where no
response is expected.

— Action: Stop processing the physical request. Do not respond to slave response headers.
3 Receive physical request state — Receive physical request state

— Condition: The physical request has not been completely received yet and a new master request frame (CF)
is received with the NAD set to the slave node’s configured NAD. The physical request has not been completely
received yet and a new physical request is received with the NAD set to the slave node’s configured NAD. A
functional addressed request shall be ignored.

— Action: Continue/restart the physical request.
4 Receive physical request state — Transmit physical response state
— Condition: The physical request has been completely received.

— Action: Process the diagnostic request. If a new physical request with the NAD set to the slave node’s
configured NAD is received while processing the previous request, the slave node shall discard the current
request or response data and shall start receiving the new request.

5 Transmit physical response state — Transmit physical response state

— Condition: The physical response has not been completely transmitted yet. A functional addressed request
shall be ignored.

— Action: Keep responding to slave response frames according to the transport layer requirements.
6 Transmit physical response state — Idle state

— Condition: The physical response has been completely transmitted, a LIN transport layer error occurred or
a request with the NAD set to a different as the slave node’s configured NAD has been received.

— Action: Discard the request and response data. Stop responding to slave response frames.

© ISO 2016 - All rights reserved 47

ISO 17987-2:2016(E)

7 ldle state — Receive functional request state
— Condition: A master request frame with the NAD parameter set to the functional NAD has been received.

— Action: Receive and process the master request frame according to the transport layer. Do not respond to
the slave response frame headers.

8 Receive functional request state — Idle state

— Condition: The functional request was processed.

— Action: Discard any response data. Stop responding to slave response frames.
9 Idle state — Idle state

— Condition: No request is received and no response is pending.

— Action: Do not respond to any slave response frames.
10 Transmit physical response state — Receive physical request state

— Condition: The previous response transmission has not been completely processed and a new physical
diagnostic master request frame with the slave node’s configured NAD is received.

— Action: Discard the response data. Start receiving and processing the physical request according to the LIN
transport protocol requirements.

Figure 28 — Slave node transmission handler

9.8 Diagnostic service prioritization

In LIN networks MasterReq and SlaveResp frames are used for diagnostic communication where the
Slave node is addressed using a configured NAD. Beside the session layer UDS diagnostic services, this
document specifies also node configuration and identification services which are provided on data
link layer and also proprietary services in the NAD range 8014 — FF14 on session/application layer. As
all of these three, “service instances” access the same frame resources MasterReq and SlaveResp and
additionally LIN is limited to half-duplex communication conflicts are possible where an active service
from one instance is interrupted by another instance request.

On network design level, those conflicts should be addressed by defining distinctive time lots for the
usage of the different service instances, e.g. ISO 14229-7 UDSonLIN services should not be used if
slave nodes are reconfigured. Proprietary services should not be used during normal live cycle of LIN
clusters.

To resolve these conflicts on the data link layer in master and slave nodes, a priority scheme is provided
meaning that a service with a higher priority interrupts a service with a lower priority.

a) Node configuration and identification services have the highest priority. Any other diagnostic
communication is interrupted. Please note that using an AssignNAD service a new configured NAD
is assigned to a slave node. This

b) ISO 14229-7 UDSonLIN diagnostics services have medium priority. Those are operated when no
node configuration and identification service is active.

c) Proprietary services (NAD = 801¢) have low priority. Those are operated only if no other diagnostic
communication is active.

10 LIN node capability language (NCL)

10.1 General

The intention of a node capability language is to be able to describe the possibilities of a slave node in a
standardized, machine readable syntax.

The availability of premade off-the-shelf slave nodes is expected to grow in the next years. If they are
all accompanied by a node capability file (NCF), it is possible to generate both the LIN description file

48 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

(LDF), see Clause 12 and initialization code (configuring the cluster, e.g. reconfigure conflicting frame
identifiers) for the master node.

If the setup and configuration of any cluster is fully automatic, a great step towards plug-and-play
development with LIN is taken. In other words, it is just as easy to use distributed nodes in a cluster as
a single CPU node with the physical devices connected directly to the node.

10.2 Plug and play workflow concept

10.2.1 General

The LIN workflow concept allows for the implementation of a seamless chain of design and development
tools and it enhances the speed of development and the reliability of the LIN cluster.

The LDF specification allows for safe sub-contracting of nodes without jeopardizing the LIN system
functionality by, e.g. message incompatibility or network overload. It is also a powerful tool for
debugging of a LIN cluster, including emulation of non-finished nodes.

The Node Capability Language Specification provides a standardized syntax for specification of off-
the-shelves slave nodes. This simplifies procurement of standard slave nodes, as well as provides
possibilities for tools that automate node generation. Thus, true Plug-and-Play with slave nodes in a
cluster becomes reality.

The slave nodes are connected to the master node forming a LIN cluster. The corresponding node
capability files are parsed by the LIN cluster design tool to generate a LIN description file (LDF) in
the LIN cluster design process. The LDF is parsed by the LIN node generator to automatically generate
LIN related functions in the desired nodes (the Master node and Slave 3 node in the example shown in

Figure 29).
The LDF is also used by a LIN bus analyser/emulator tool to allow for cluster debugging.

Figure 29 shows the development of a cluster split in three areas; design, debugging and the LIN
physical cluster. This specification focuses on the design phase.

© ISO 2016 - All rights reserved 49

ISO 17987-2:2016(E)

Design
B |-
NCF N : LIN cluster design tool
Ll
NCF
LINnode generator |- LDF
LIN Debugging
cluster
Bus analyzer and
Slave 1 Slave 2 Slave 3 Master emulator

LIN

Key
1 LIN description file

Figure 29 — Development of a LIN cluster

10.2.2 LIN node generation

The core description file of a LIN cluster is the LIN description file (LDF). Based on this file, it is possible
to generate communication drivers of all nodes in the cluster, a process named LIN node generation. All
signals, frames and in case of a master node also schedule tables are declared in this files.

10.2.3 LIN cluster design

The process of creating the LDF file is named LIN cluster design. When you design a completely
new cluster, writing the LDF file (by hand or with computer aid) is an efficient way to define the
communication of your cluster.

However, when you have existing slave nodes and want to create a cluster of them starting from scratch
is not that convenient. This is especially true if the defined cluster contains slave node address conflicts
or frame identifier conflicts.

By receiving a node capability file, NCF, with every existing slave node, the LIN cluster design step is
automatic: Just add the NCF files to your project in the LIN cluster design tool and it produces the LDF file.

If you want to create new slave nodes as well, Figure 29, Slave 3, the process becomes somewhat more
complicated. The steps to perform depend on the LIN cluster design tool being used, which is not part
of the LIN specification. A useful tool allows entering additional information before generating the
LDF file. (It is always possible to write a fictive NCF file for the non-existent slave node and thus, it is
included.)

[t is worth noticing that the generated LDF file reflects the configured network; any conflicts originally
between slave nodes or frames shall have been resolved before activating the cluster traffic or by
means of node configuration services ahead of application communication (initialization schedule table
containing schedule table commands to resolve existing conflicts).

50 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

10.2.4 Debugging
Debugging and node emulation is based on the LDF file produced in the LIN cluster design.

Emulation of the master adds the requirement that the cluster shall be configured to be conflict
free. Hence, the emulator tool shall be able to read reconfiguration data produced by the LIN cluster
design tool.

11 Node capability file (NCF)
The NCF provides a capability definition for at least one slave node.

11.1 Overview of NCF syntax

The syntax is described using a modified BNF (Bachus-Naur Format), as summarized in Table 20.

Table 20 — BNF syntax used for NCF

Symbol Meaning

u= A name on the left of the ::= is expressed using the syntax on its right

<> Used to mark objects specified later

| The vertical bar indicates choice. Either the left-hand side or the right hand side of the
vertical bar shall appear

bold The textin bold isreserved, either because itis areserved word, or mandatory punctuation
[] The text between the square brackets shall appear once or multiple times
0) The text between the parenthesis are optional, i.e. shall appear once or zero times
char_string Any character string enclosed in quotes “like this”
identifier An identifier. Typically used to name objects. Identifiers shall follow the normal C rules

for variable declaration

integer An integer. Integers can be in decimal or hexadecimal (1) format.

real_or_integer |Areal or integer number. A real number is always in decimal and has an embedded
decimal point.

Within files using this syntax, comments are allowed anywhere. The comment syntax is the same as
that for C++ where anything from // to the end of a line and anything enclosed in /* and */ delimiters
shall be ignored.

The reserved text and identifiers are case sensitive.

11.2 Global structure definition

The syntax of a node capability file is defined as follows.

<node_ capability file def>
<language_version_def>

(NCF file revision def)
(LIN_sig_byte_order_big_endian_def)
[<node_ definition>]

11.2.1 Node capability file marker

<node capability file def> ::= node capability file;
node capability file tagis used to declare the file as node capability file (NCF).

© IS0 2016 - All rights reserved 51

ISO 17987-2:2016(E)

11.2.2 Language version number definition

<language version def> ::=
LIN language version = char string;

LIN_language_version shall be “ISO17987:2015".

11.2.3 NCF revision

NCF file revision def ::=

NCF file revision = <ncf revision>;
<ncf revision> ::= "int major.int minor.int sub";
This revision number ncf_revision is used to check consistency of slave nodes against a LIN cluster.
Updates in the communication definition (new signal, changed signal mapping, ...) are represented by
an increment in the unsigned 8-bit integer value(s) of int major, int minor or int_sub. The
data link layer provides this revision version to the network via ReadByldentifier B214 service and to
the application. For more details, refer to ISO 17987-3:2016, 6.3.6.6.

11.2.4 Big-endian signal encoding variant

<LIN sig byte order big endian def> ::=

LIN sig byte order big endian;
If this optional tag is defined in the NCF, signals are mapped in big-endian order to the frames. See
ISO 17987-3:2016, 5.2.2.6 for more information.

11.3 Node definition

<node_definition> ::=
node <node_name> {
<general definition>
<diagnostic definition>
<frame definition>
<encoding_definition>
<status_management>
(<free text definition>)
}
<node name> ::= identifier
If a node capability file contains more than one slave node, the node_name shall be unique within the

file. The declared slave nodes shall be seen as classes (templates) for physical slave node instances.

The properties of a node definition are defined in the following subclauses.

11.3.1 General node definition

<general definition> ::=
general {
LIN protocol version = <protocol version>;
supplier = <supplier id>;
function = <function id>;

variant = <variant id>;
bitrate = <bitrate definition>;
sends wake up signal = "yes" | "no";

}
The general definition declares the properties that specify the general compatibility with the
cluster and also general node properties.

52 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

11.3.1.1 LIN protocol version number definition

<protocol version> ::= char string
This specifies the protocol used by the slave node and shall be in the range of “IS017987:2015", “2.2”,
“2.1”7,“2.0”, “<SAE]2602 protocol version tag>"

NOTE LIN 1.3 is not in the list since NCF definitions start with LIN 2.0.

11.3.1.2 LIN product identification

<supplier id> ::= integer
<function id> ::= integer
<variant id> = integer

The supplier_id is assigned to each supplier as a 16 bit number. The function_id is a 16 bit
number assigned to the product by the supplier to make it unique. Finally, variant_id is an 8 bit
value specifying the variant, see ISO 17987-3.

11.3.1.3 Bitrate

<bitrate definition> ::=
automatic (min <bitrate>) (max <bitrate>) |
select {<bitrate> [, <bitrate>]} |
<bitrate>

Three kinds of bitrate definition are possible:

— automatic,

the slave node can adopt to any legal bit rate used on the bus. If the words min and/or max is added,
any bit rate starting from/up to the provided bit rate can be used.

— select,

the slave node can detect the bit rate if one of the listed bit rates are used, otherwise it fails.
— fixed,

only one bit rate can be used.

Manufacturers of standardized, off-the-shelf, slave nodes are encouraged to build automatic slave nodes
since this gives the most flexibility to the cluster builder.

<bitrate> ::= real or integer kbps

The bit rates are specified in the range of 1 kbit/s to 20 kbit/s.

11.3.1.4 Sends wake up signal
This parameter is set to “yes”, if the slave is able to transmit the wake up signal. Otherwise, it is set to “no”.

11.3.2 Diagnostic definition

<diagnostic definition> ::=
diagnostic {

NAD = integer ([, integer]); | (integer to integer);
diagnostic class = integer;

(P2min = real or integer ms;)

(STmin = real or integer ms;)

(N_As timeout = real or integer ms;)

(N_Cr timeout = real or integer ms;)

(support sid { integer ([, integer]) };)

(max message length = integer;)

}
The diagnostic_ definition specifies the properties for transport layer and configuration.

© IS0 2016 - All rights reserved 53

ISO 17987-2:2016(E)

The NAD property defines the initial node address; the value shall be set according to
ISO 17987-3:2016, 6.3.4.2. Either a list of values or a range can be given. The range is inclusive, i.e. both
values are included in the range. If more than one value is given, the slave shall dynamically select one
of the values within the given NAD set based on a physical property.

The diagnostic class defines the supported class [, II or III.
— The default value of P2iy, is specified in ISO 14229-2 as parameter P2server-
— The default value of STy, is specified in 9.4.

— The default values of N_As_timeout, N_Cs_timeout and N_Cr_ timeout are defined in
Table 12.

Above timing parameters are only relevant for diagnostic class Il and class III slave nodes.

The max_message_length property only applies to the diagnostic transport layer; it defines the
maximum length of a diagnostic message. Default value is defined in 4095.

The support_sidlists all SID values (node configuration, identification and diagnostic services) that
are supported by the slave node. Default values are mandatory node configuration and identification
services B216 and B714 according to ISO 17987-3.

11.3.3 Frame definition

<frame definition> ::=
frames {
[<single_frame>]
}
The frames listed shall be all unconditional frames and event triggered frames processed by the slave
node. Event triggered frames refer to the event triggered frame header, it therefore does not contain
any signals. The diagnostic frames shall always be supported and therefore are not listed.

<single_ frame> ::=
<frame_kind> <frame_name> {
<frame_properties>
(<signal definition>)
}
<frame kind> ::= publish | subscribe
<frame name> ::= identifier

Each frame published or subscribed is declared as defined above. The frame_name is the symbolic
name of the frame. The frame_kind is determined from the slave node point of view (e.g. a transmitted
frame shall be a published frame).

11.3.3.1 Frame properties

<frame properties> ::=
frame length = integer;

(min period = integer ms;)
(max period = integer ms;)
(event triggered frame = identifier;)

The frame_length is the length of a LIN frame (1 to 8).

The optional values for min_period and max_period are used to guide the tool in generation of the
schedule table.

The event_triggered_frame refers to an event triggered frame, in case that the described frame is
associated with it.

Several restrictions apply when a frame is also event triggered, see ISO 17987-3:2016, 5.2.4.3.

54 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

11.3.3.2 Signal definition

<signal definition> ::=
signals {
[<signal_name> { <signal_properties> }]
}
<signal name> ::= identifier
All frames (except diagnostic frames) carry signals, which are declared in according to the signal_
definition.

<signal properties> ::=
<init_value>

size = integer;

offset = integer;

(<encoding name>;)
<init_value> ::= <init value_scalar> | <init_ value_array>
<init value scalar> ::= init value = integer
<init value array> ::= init value = {integer ([, integer])}

The init_value specifies the value used for the signal from power on until first set by the publishing
application. The init_value_scalar isused for scalar signalsand the init_value_array isused
for byte array signals. The init_value_array is given in big-endian order.

The size is the number of bits reserved for the signal and the of fset specifies the position of the
signal in the frame (LIN default signal encoding: number of bits in the frame response to the LSB of the
signal, see ISO 17987-3: 2016, Figure 12, LIN big-endian signal encoding variant: number of bits in the
frame response to the MSB of the signal, see SO 17987-3:2016, Figure 13).

For a byte array, both size and offset shall be multiples of eight.

The only way to describe if a signal with size 8 or 16 is a byte array with one or two elements or a scalar
signal is by analysing the init_value, i.e. the curly parenthesis are very important to distinguish
between arrays and scalar values.

The encoding_name is a reference to an encoding defined in encoding clausal, see 11.3.4.

11.3.4 Signal encoding type definition

The encoding is intended for providing representation and scaling properties of signals.

<encoding_definition> ::=
encoding {
[<encoding_name> {
[<logical value> |
<physical range> |
<bcd value> |
<ascii_value>]
H
}

<encoding name> ::= identifier

<logical value> = logical value, <signal value> (, <text info>);

<physical range> ::= physical value, <min value>, <max value>, <scale>,
<offset> (, <text info>);

<bcd_value> ::= bcd value;

<ascii value> ::= ascii value;

<signal value> ::= integer

<min_value> ::= integer

<max value> ::= integer

<scale> ::= real or_ integer

<offset> ::= real or integer

<text info> ::= char _string

The signal_value themin_value and the max_value shall be in range of 0 to 65 535.

© IS0 2016 - All rights reserved 55

ISO 17987-2:2016(E)

The max_value shall be greater than or equal to min_value. If the raw value is within the range
defined by the min and max value, the physical value shall be calculated as defined in Formula (1):

physical_value = (scale * raw_value) + offset (@8]

11.3.5 Status management

<status_management> ::=
status_management {

response error = identifier;
(fault state signals = identifier ([, identifier]);)
}
<published signal> ::= identifier

The status_management specifies which published signal the master node shall monitor to
determine if the slave node is operating as expected.

The identifiers above refer each to one unique published signal in the signal definition, see 12.3.2.
See the definition of the response_error signal in ISO 17987-3:2016, 5.5.4 and the fault state signals
in ISO 14229-7:2015, 6.4.1.

Legacy LIN 2.0 slave nodes set the response_error signal also if the response of an unconditional
frame is fully absent. This is in conjunction to later LIN standard revisions [LIN 2.1, LIN 2.2(A) and
[SO 17987]. This may be considered in the network design.

11.3.6 Free text definition

<free text definition> ::=
free_text {
char_string
}
The free text definition is used to bring up help text, limitations, etc., in the LIN cluster design
tool, if desired.

Typical information provided in the free text definition is
— slave node purpose and physical world interaction, e.g. motor speed, power consumption etc., and

— deviations from the LIN standard.

11.4 NCF example

node capability file;
LIN language version = "IS017987:2015";
NCF file revision = "1.07.04";
node step_motor {
general {
LIN protocol version = "IS017987:2015";
supplier = 0x0005; function = 0x0020; variant = 1;
bitrate = automatic min 10 kbps max 20 kbps;
sends wake up signal = "yes";
}
diagnostic {
NAD = 1 to 3;
diagnostic class = 2;
P2 min = 100 ms;
ST min = 40 ms;
support sid { 0xBO, 0xB2, 0xB7 };
}

frames {
publish node_status {
length = 4; min period = 10 ms; max period = 100 ms;
signals {
state {init value = 0; size = 8; offset = 0;}
fault state {init value = 0; size = 2; offset = 9; fault enc;}
error bit {init value = 0; size = 1; offset = 8;}

56 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

angle {init value = {0x22, 0x11l}; size = 16; offset = 16;}
}
}
subscribe control {
length = 1; max period = 100 ms;
signals {
command {init value = 0; size = 8; offset = 0; position;}
}
}
}

encoding {

position {physical value, 0, 199, 1.8, 0, "deg";}
fault enc {logical value, 0, "no result";
logical value, 1, "failed";
logical value, 2, "passed";}
}
status _management { response error = error bit;
fault state signals = fault state; }
free text { "step motor signal values outside 0 - 199 are ignored" }

}

12 LIN description file (LDF)

12.1 General

The language described in this document is used in order to create a LIN description file. The LIN
description file describes a complete cluster and also contains all information necessary to monitor the
cluster. This information is sufficient to make a limited emulation of one or multiple nodes if it/they are
not available.

The LIN description file can be one component used in order to write software for an electronic
control unit which shall be part of the cluster. An application program interface (API) is described in
Reference [2], in order to have a uniform way to access the cluster from within different application
programs. However, the functional behaviour of the application program is not addressed by the LIN
description file.

The syntax of a LIN description file is simple enough to be entered manually, but the development and
use of computer based tools is encouraged. Node capability files as described in 11 provide one way to
(almost) automatically generate LIN description files. The same specification also gives an example of a
possible workflow in the development of a cluster.

12.2 Overview of LDF syntax

The syntax is described using a modified BNF (Bachus-Naur Format), as summarized in Table 21.

Table 21 — BNF syntax used in LDF

Symbol Definition

n= A name on the left of the ::= is expressed using the syntax on its right

<> Used to mark objects specified later

| The vertical bar indicates choice. Either the left-hand side or the right hand side of the
vertical bar shall appear

bold The textin bold is reserved - either because itis a reserved word, or mandatory punctuation
[The text between the square brackets shall appear once or multiple times
) The text between the parenthesis are optional, i.e. shall appear once or zero times

char_string Any character string enclosed in quotes “like this”

© IS0 2016 - All rights reserved 57

ISO 17987-2:2016(E)

Table 21 (continued)
Symbol Definition
identifier An identifier. Typically used to name objects. Identifiers shall follow the normal C rules

for variable declaration

integer An integer. Integers can be in decimal or hexadecimal (1¢) format.

real_or_integer |A real or integer number. A real number is always in decimal and has an embedded
decimal point.

Within files using this syntax, comments are allowed anywhere. The comment syntax is the same as
that for C++ where anything from // to the end of a line and anything enclosed in /* and */ delimiters
shall be ignored.

The reserved text and identifiers are case sensitive.

12.3 LDF definition
The syntax of the LDF is specified in 12.2.

12.3.1 Global structure definition

<LIN description file def>
<LIN_protocol_version_def>
<LIN_language_version_def>
<LDF file revision def>
<LIN_speed_def>
(<Channel_name_def>)
(<LIN_sig_byte_order_big_endian_def>)
<Node_def>

<Signal_def>
(<Diagnostic_signal_def>)
<Frame_def>
(<Sporadic_frame_def>)
(<Event_triggered_frame_def>)
(<Diagnostic_frame_def>)
<Node_attributes_def>
<Schedule_table_def>
(<Signal_encoding_type_def>)
(<Signal_representation_def>)

The overall syntax of a LIN description file shall be as above.

12.3.1.1 LIN description file marker

<LIN description file def> ::= LIN description file;

LIN description file tagisused to declare the file as LIN description file (LDF).
12.3.1.2 LIN protocol version number definition

<LIN protocol version def> ::=
LIN protocol version = char string;

LIN_protocol_version defines the LIN master protocol version and shall be in the range of
“IS017987:2015”, “2.2”, “2.1”, “2.0”, “1.3”, “<J2602 protocol version tag>". The master protocol version
shall be equal or higher than any slave node defined in the cluster.

12.3.1.3 LIN language version number definition
<LIN language version def> ::=

LIN language version = char string;

LIN_language_version shall be “IS017987:2015".

58 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

12.3.1.4 LIN file revision number

<LDF_file revision def> ::=

LDF file revision = "int major.int minor.int sub";
This revision number is used to check consistency of master and slave nodes against a LIN cluster.
Updates in the communication definition (new signal, changed signal mapping, ...) are represented by
an increment in the unsigned 8-bit integer value(s) of int_major, int_minor or int_sub. The data link
layer provides this revision version to the network via ReadByldentifier B21¢ service (slave nodes) and
to the application (master and slave nodes). For more details, refer to ISO 17987-3:2016, 6.3.6.6.

12.3.1.5 LIN speed definition

<LIN speed def> ::=
LIN speed = real or integer kbps;
This sets the nominal bit rate for the cluster. It shall be in the range of 1 kbit/s to 20 kbit/s.

12.3.1.6 Channel postfix name definition

<Channel name def> ::=
Channel name = identifier;

Postfix for all named objects in the LDF. The postfix is mandatory for master nodes that are connected
too more than one cluster. It is used to avoid naming collision if a node is connected to several clusters
(i.e. using several LDFs). If given all named objects shall add this postfix to its name.

“w n

The postfix name shall be added with an underscore “_” to the named object.

Example: If signal name is “signall” and Channel_name = “netl” in the LDF, then generated signal
name is “signall netl”

12.3.1.7 Big-endian signal encoding variant

<LIN sig byte order big endian def> ::=

LIN sig byte order big endian;
If this optional tag is defined in the LDF, signals are mapped in big-endian order to the frames. See
[SO 17987-3:2016, 5.2.2.6 for more information.

12.3.2 Signal definition

12.3.2.1 General

The signal definition subclauses identify the name of all signals in the cluster and their properties. The
definitions in this subclause create a signal identifier set. All identifiers in this set shall be unique.

12.3.2.2 Standard signals

<Signal def> ::=
Signals {
[<signal name>: <signal size>, <init value>, <published by>[
,<subscribed by>];]
}

<signal name> ::= identifier
All signal_name identifiers shall be unique within the signal identifier set.

<signal size> ::= integer
The signal_size specifies the size of the signal. It shall be in the range 1 bits to 16 bits for scalar
signals and 8, 16, 24, 32, 40, 48, 56 or 64 for byte array signals.

<init value> ::= <init value scalar> | <init value array>
<init value scalar> ::= integer
<init value array> = {integer ([, integer])}

The init_value specifies the signal value that shall be used by all subscriber nodes until the frame
containing the signal is received. The init_value_scalar is used for scalar signals and the init_

© IS0 2016 - All rights reserved 59

ISO 17987-2:2016(E)

value_array is used for byte array signals. The initial_value for byte arrays shall be arranged
in big endian order (i.e. with the most significant byte first).

The only way to describe if a signal with size 8 or 16 is a byte array with one or two elements or a scalar
signal is by analysing the init_value, i.e. the curly parenthesis are very important to distinguish
between arrays and scalar values.

<published by> identifier
<subscribed by> ::= identifier
The published_by identifier and the subscribed_by identifier shall all exist in the node identifier set.

12.3.2.3 Diagnostic signals

<Diagnostic signal def> ::=
Diagnostic_signals {
MasterRegBO: 8,
MasterRegBl:
MasterRegB2:
MasterRegB3:
MasterRegB4:
MasterRegBb5:
MasterRegB6:
MasterRegB7:
SlaveRespBO:
SlaveRespBl:
SlaveRespB2:
SlaveRespB3:
SlaveRespB4:
SlaveRespBb:
SlaveRespB6:
SlaveRespB7:
}
Diagnostic signals have a separate subclause in the LIN description file due to the fact that the

publisher/subscriber information is predefined.

~

QO CO 0O OO CO 0O OO CO 0O OO CO 0O OO CO OO
OO OO OO IODODODOOOOOoOooOo
Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne o Ne o Ne Ne e

N N SN S SN SN S S S S S S S 0~

12.3.3 Frame definition

12.3.3.1 General

The frame definition identifies the name of all frames in the cluster as well as their properties. The
definitions create a frame identifier set (their symbolic name) and an associated frame ID set (the frame
identifier). All members in these sets shall be unique.

12.3.3.2 Unconditional frames

<Frame def> ::=
Frames {
[<frame name>: <frame id>, <published by>, <frame size> ({
[<signal name>, <signal offset>;]
]
}

<frame name> ::= identifier
All frame_name identifiers shall be unique within the frame identifier set.

<frame id> ::= integer
The frame_id specifies the frame identifier number in range 0 to 59. The frame identifier shall be
unique for all frames within the frames identifier set.

<published by> ::= identifier
The published_by identifier shall exist in the node identifier set.

<frame size> ::= integer
The frame_size specifies the size of the frame in range 1 bytes to 8 bytes.

<signal name> ::= identifier

60 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

The signal_name identifier shall exist in the signal identifier set.

All signals within one frame definition shall be published by the same node as specified in the
published_by identifier for that frame.

<signal offset> ::= integer
This value is in the range of 0 to (8 * frame size - 1).signal_offset depends on the used
signal encoding type, see 12.3.1.7.

LIN default signal encoding (little-endian) according to ISO 17987-3:2016, Figure 12: The signal_
offset value specifies the position of the least significant bit of the signal in the frame. The least
significant bit of the signal is transmitted first.

LIN big-endian signal encoding variant according to ISO 17987-3:2016, Figure 13: The signal_offset
value specifies the position of the most significant bit of the signal in the frame.

EXAMPLE (LIN default signal encoding) Table 22 shows a ten bit signal mapped in a frame with a four byte
data field. The LSB of signal S is at offset 16 (signal_offset) and the MSB is at offset 25.

Table 22 — Packing of a signal

Byte0 Bytel Byte2 Byte3

| LT PP PP PPl Isisfsfs|s[s[s[sfs|s] [[|] |

0 7 8 15 16 23 24 31

Transmitted first Transmitted last

12.3.3.3 Sporadic frames

<Sporadic frame def> ::=
Sporadic_frames {
[<sporadic_ frame name>: <frame name> ([, <frame name>]) ;]

}

<sporadic frame name> ::= identifier
All sporadic_frame_name identifiers shall be unique within the frame identifier set.

<frame name> ::= identifier

All frame_name identifiers shall exist in the frame identifier set and refer to unconditional frames.
In the case that more than one of the declared frames needs to be transferred, the one first listed shall
be chosen (prioritization). All frame_name identifiers shall be unconditional frames published by the
master node. Furthermore, they shall not be scheduled as unconditional frames directly in the same
schedule table as the sporadic_frame_name.

12.3.3.4 Event triggered frames

<Event_ triggered frame_ def> ::=
Event_triggered_frames {
[<event trig frm name>:
<collision_resolving_schedule_table>,
<frame_id>
[, <frame name>];]
}

<event trig frm name> ::= identifier
All event_trig_frm_name identifiers shall be unique within the frame identifier set.

<collision resolving schedule table> ::= identifier
This refers to a schedule table in the schedule table set. This schedule shall automatically be activated
after the collision. It shall minimum contain the associated unconditional frames.

<frame id> ::= integer
The frame_id specifies the frame ID number in the range 0 to 59. The ID shall be unique for all frames
within the frames ID set.

<frame name> ::= identifier

© ISO 2016 - All rights reserved 61

ISO 17987-2:2016(E)

All frame_name identifiers shall exist in the frame identifier set and refer to unconditional frames.
Remark

The first byte of the frame carries the protected identifier (PID) of the associated frame and, hence,
cannot be used for other purposes.

12.3.3.5 Diagnostic frames

< Diagnostic frame def> ::=
Diagnostic_frames {

MasterReqg: 60 {
MasterRegBO, O;
MasterRegBl, 8;
MasterRegB2, 16;
MasterRegB3, 24;
MasterReqgB4, 32;
MasterRegB5, 40;
MasterRegB6, 48;
MasterRegB7, 56;

}

SlaveResp: 61 {
SlaveRespBO, O0;
SlaveRespBl, 8;
SlaveRespB2, 16;
SlaveRespB3, 24;
SlaveRespB4, 32;
SlaveRespB5, 40;
SlaveRespB6, 48;
SlaveRespB7, 56;

}

}
The MasterReq and SlaveResp reserved frame names are identifying the diagnostic frames (see

ISO 17987-3:2016, 5.2.4.5) and shall be unique in the frame identifier set.

If the LIN big-endian signal encoding variant according to ISO 17987-3:2016, 5.2.2.6.2 is used the MSB
of each signal is used for frame signal mapping:

< Diagnostic frame def> ::=
Diagnostic_frames {
MasterReqg: 60 {
MasterRegBO, 7;
MasterRegBl, 15;

MasterRegB7, 63;
}
SlaveResp: 61 {
SlaveRespBO, 7;
SlaveRespBl, 15;

SlaveRespB7, 63;
}
}

12.3.4 Node definition

12.3.4.1 General

The node definition subclauses identify the name of all participating nodes, as well as specifying time
base and jitter for the master. The definitions in this subclause create a node identifier set. All identifiers
in this set shall be unique.

12.3.4.2 Participating nodes
<node_def> ::=

Nodes {
Master: <node name>, <time base> ms, <jitter> ms;

62 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

Slaves: <node name> ([, <node name>]);
}

<node_name> ::= identifier
The nodes clause lists the physical nodes participating in the cluster. All node_name identifiers shall
be unique within the node identifier set.

The node_name identifier after the master reserved word specifies the master node.

<time base> ::= real or integer
The time_base value specifies the used time base in the master node to generate the maximum
allowed frame transfer time. The time base shall be specified in milliseconds.

<jitter> ::= real or integer
The jitter shall be specified in milliseconds. For more information on t ime_base and jitter, see 12.3.4.

12.3.4.3 Node attributes for ISO 17987:2015, LIN 2.2, LIN 2.1 slave nodes

Node attributes provides all necessary information on the behaviour of a single slave node.

<Node_attributes def> ::=
Node_attributes {
[<node_name> {
LIN protocol = <protocol version>;
configured NAD = <diag address>;
(initial NAD = <diag address>;)
<attributes def>;
H]
}

<node name> ::= identifier
All node_name identifiers shall exist within the node identifier set and refer to a slave node.

<protocol version> ::= char string

Shall be in the range of “IS017987:2015”, “2.2”, “2.1".

<diag address> ::= integer

The diag_address specifies the diagnostic address for the identified slave node in the range as
defined in 3.1.2. It shall specify the unique NAD used for the slave node after resolving any cluster
conflicts, i.e. it shall be unique within the cluster.

In case the initial_NAD is not giventhe initial_NAD is the same as the configured NAD.

<attributes def> ::=

product id = <supplier id>, <function id> (, <variant>);
response_error = <signal name>;

(fault state signals = <signal name>([, <signal name>]) ;)
(P2min = real or integer ms;)

(STmin = real or integer ms;)

(N_As timeout = real or integer ms;)

(N _Cr timeout = real or integer ms;)

<configurable frames def>

<supplier id> ::= integer
<function id> ::= integer
<variant> = integer

The supplier_id, function_idand variant_id ranges are defined in 11.3.1.2.

The variant ID is optional since it is a property of the slave node and not the cluster.

<signal name> ::= identifier

The signal name identifiers for the response_error signal shall exist within the signal
identifier set and refer to a one bit standard signal, see 12.3.2.2. The response_error signal shall be
published by the specified slave node. For more information refer to status managementin 11.3.5.

The fault_state_signals is a property of LIN slave nodes and are used for diagnostic class I and
II, see ISO 14229-7:2015, 6.4.1.

The default value of P2y, is 50 ms and STy is 0 ms, see ISO 14229-7 as parameter P2server-

© ISO 2016 - All rights reserved 63

ISO 17987-2:2016(E)

The default values of N_As_timeout and N_Cr_timeout are defined in Table 12.

Configurable frames shall list all frames (unconditional frames, event triggered frames and sporadic
frames) processed by the slave node.

Definition of configurable_frames_def:

<configurable frames_def> ::=
configurable frames {
[<frame name>;]

}

The order of the frames are important since the node configuration request AssignFrameldentifierRange
dependent on the order, see ISO 17987-3:2016 6.3.6.5.

12.3.4.4 Node attributes for LIN 2.0 slave nodes

Node attributes provides all necessary information on the behaviour of a single node.

<Node attributes def> ::=
Node_attributes {
[<node_name> {
LIN protocol = <protocol version>;
configured NAD = <diag address>;
(product_id = <supplier id>, <function id>, <variant>;)

(response error = <signal_name>;)
(P2 min = real or integer ms;)
(ST _min = real or integer ms;)

(

configurable frames ({
[<frame name> = <message id>;]
})
}]
}

<node_name> ::= identifier
<protocol version> ::= "2.0"
<supplier id> = integer
<function id> = integer
<variant> = integer
<message_ id> = integer

All node name identifiers shall exist within the node identifier set and refer to a slave node.
supplier_id shall be in the range 016 .. 7FFE16, function_id in the range 016 .. FFFE16, variant
in the range 019 .. 25510 and message_id in the range 016 ..FFFE16.

<signal name> ::= identifier

The signal_name identifiers for the response_error signal shall exist within the signal identifier
set and refer to a one bit standard signal, see 12.3.2.2. The response_error signal shall be published
by the specified slave node. For more information refer to status management in 11.3.5.

<diag address> ::= integer

The diag_address specifies the diagnostic address for the identified node in the range of 119 to 12719
as further defined in LIN Diagnostic and Configuration Specification. It shall specify the unique NAD
used for the node after resolving any cluster conflicts, i.e. it shall be unique within the cluster.

configurable frames shall list all frames processed by the node and their associated unique
identifier message_id.

12.3.4.5 Node attributes for LIN 1.3 slave nodes

Node attributes provides all necessary information on the behaviour of a single node.

<Node_ attributes def> ::=
Node_attributes {
[<node_name> {
LIN protocol = <protocol version>;
configured NAD = <diag address>;
}]

64 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

}
<node_name> ::= identifier
<protocol version> ::= "1.3"

12.3.4.6 Node attributes for J2602 slave nodes

Node attributes provides all necessary information on the behaviour of a single node.

<Node attributes def> ::=
Node_attributes {
[<node_name> {
LIN protocol = <protocol version>;
configured NAD = <diag address>;
product id = <supplier id>, <function id>, <variant>;
response_error = <signal name>;

(P2 min = real or integer ms;)
(ST_min = real or integer ms;)
(configurable frames {
[<frame name> = <message id>;]
1)
(response tolerance = real or integer %;)
(wakeup time = integer ms;)
(poweron time = integer ms;)

H
}

<node_name> ::= identifier
<protocol version> ::= "J2602 1 1.0"
<supplier id> = integer
<function id> = integer
<variant> = integer
<message id> = integer

All node_name 1dent1f1ers shall exist within the node identifier set and refer to a slave node.
supplier_id shall be in the range 016 .. 7FFE1¢, function_id in the range 016 .. FFFE1g, variant
in the range 019 .. 25510 and message_id in the range 014 ..FFFE16.

<signal name> ::= identifier

The signal_name identifier shall exist within the signal identifier set and refer to a three bit signal.
The signal shall be published by the specified node in each non-diagnostic transmit frame. Refer to the
SAE]J2602 standard for more information.

<diag address> ::= integer

The diag_address specifies the diagnostic address for the identified node in the range of 11¢to 12719
as further defined in LIN Diagnostic and Configuration Specification. It shall specify the unique NAD
used for the node after resolving any cluster conflicts, i.e. it shall be unique within the cluster.

configurable frames shall list all frames processed by the node and their associated unique
identifier message_id.

The response_tolerance specifies the node specific frame reception tolerance. Default is 40 %.

12.3.5 Schedule table definition

The schedule table describes the frames and the timing of the frames transmitted on the bus. Valid
frames in the schedule tables are the frame types defined in see ISO 17987-3:2016, 5.2.4 (with the
exception of the reserved frames) and the node configuration commands listed below.

<Schedule table def> ::=
Schedule_tables {
[<schedule_table_name> {
[<command> delay <frame time> ms;]
H]
}

<schedule table name> ::= identifier
All schedule_table_name identifiers shall be unique within the schedule table identifier set.

<command> ::=
<frame name> |

© IS0 2016 - All rights reserved 65

ISO 17987-2:2016(E)

MasterReqg |

SlaveResp |

AssignNAD {<node name>} |

DataDump {<node name>, <Dl1>, <D2>, <D3>, <D4>, <D5>} |

SaveConfiguration {<node name>} |

AssignFrameId {<node name>, <frame name>} |

AssignFrameIdRange {<node_name>, <frame_index> (, <frame_PID>, <frame_PID>,
<frame PID>, <frame PID>)} |

FreeFormat {<D1>, <D2>, <D3>, <D4>, <D5>, <D6>, <D7>, <D8>}

The command specifies what shall be done in the frame slot. Providing a frame name transfers the
specified frame.

<frame name> ::= identifier

The frame_name identifier shall exist in the frame identifier set. If the frame_name refers to an event
triggered frame or a sporadic frame, the associated unconditional frames may not be used in the same
schedule table.

<node name> ::= identifier
The node_name refers to one slave node, see 11.3.

MasterReqg and SlaveResp are either defined as frames in 12.3.3.5 or, if this subclause is left
out, automatically defined. The content of these frames is provided via the services and specified in
IS0 17987-3:2016, Clause 6.

AssignNAD generates an AssignNAD request, see ISO 17987-3:2016, 6.3.4.2.
DataDump generates a DataDump request, see SO 17987-3:2016, 6.3.6.3.

SaveConfiguration generates a SaveConfiguration request, see ISO 17987-3:2016, 6.3.6.4.
configured NAD parameter is taken from the node attributes section.

AssignFrameId generatesan AssignFrameldentifier request with a contents based on the parameters:
NAD, supplier_idand message_id are taken from the node attributes of the node_name, and the
protected_id is taken from the frame definition for frame_name, see 12.3.3.

AssignFrameIdRange generates an AssignFrameldentifierRange request with the contents based on
the parameters: NAD and the order of the frames (frame_1index) are taken from the node attributes,
see12.3.4.3.

<frame index> ::= integer
The frame_index sets the index to the first frame to assign a PID, see 12.3.4.3.

<frame PID> ::= integer
If the optional four frame_PID are given the request include these values. If frame_PID are not given
the PIDs for the four frames are taken from the frame definition for frame_name, see 12.3.3.

All data in this frame is fixed and determined during the processing of the LDF file. This service is only
supported if the master node also supports this configuration service.

FreeFormat transmits a fixed master request frame with the eight data bytes provided. This may for
instance be used to issue user specific fixed frames.

<frame time> ::= real or integer
The frame_time specifies the duration of the frame slot, see ISO 17987-3:2016, 5.3.3. The frame_
t ime value shall be specified in milliseconds.

The handling and switching of schedule table is controlled by the master application program, see
description in [SO 17987-3:2016, 5.3 and the schedule table handling API in Reference [2].

EXAMPLE Figure 30 shows a time line that corresponds to the schedule table VL1_ST1. It is assumed that
the time_base (see 12.3.4.2) is set to 5 ms.

schedule_tables {

VL1 ST1 {
VL1 CEM Frml delay 15 ms;

66 © IS0 2016 - All rights reserved

ISO 17987-2:2016(E)

VL1 LSM Frml delay 15 ms;
VL1 CPM Frml delay 15 ms;
VL1 CPM Frm2 delay 20 ms;
}
}

Entry # 1 Entry # 2 Entry # 3 Entry # 4 Entry # 1
VL 1_CEM_Frm1 VL 1_LSM_Frm 1 VL1 CPM Frm1 VL 1_CPM_Frm 2 VL 1_CEM_Frm1
delay 15 ms delay 15 ms delay 15 ms delay 20 ms delay 15 ms
s - - | 1 ¢
s ~. T= | |
sy ~ ~—
Jitter TFrame_Maximum inter-frame space time_base = 5 ms

Figure 30 — Time line for the VL1_ST1 schedule table

The delay specified for every schedule entry shall be longer than the jitter and the worst case frame
transfer time.

12.3.6 Signal encoding type definition

12.3.6.1 General

The signal encoding type is intended for providing representation and scaling properties of signals.
Although this information may be used to generate automatically scaling API routines in the node
application, those API routines would require quite powerful nodes. The main purpose of the signal
encoding type declarations is in bus traffic analysing tools, which can present the recorded traffic in an
easily accessed way.

12.3.6.2 ASCII (ASC)

ASCII data uses a one byte code to represent a text character. ASCII data is most often used where the
consumer of the data is a display device which recognizes ASCII characters and can therefore display
the data without further conversion. The least significant 7 bits represent the standard ASCII codes
from 0 to 127. The most significant bit is reserved at this time but may be assigned a special function in
the future. All ASCII signals shall have a length in bits which is a multiple of 8.

12.3.6.3 Binary coded decimal (BCD)

Binary coded decimal (BCD) encoding is used when it is desirable to report decimal data in a nibble,
and is often used where the data consumer is a display device. A BCD encoded signal shall be 4 bits long.
Valid BCD data are the hex characters 0-9 with the encoding specified in Table 23.

© ISO 2016 - All rights reserved 67

ISO 17987-2:2016(E)

Table 23 — BCD to decimal value conversion

BCD value Decimal value
016 0
116

216

316

416
516
616

716

VI ||| AW

816
916 9
A16to Fig invalid

EXAMPLE 2516 would be interpreted as 37 decimal. As two BCD characters, the value is interpreted as 25
decimal.

12.3.6.4 Signal encoding

<Signal encoding type def> ::=
Signal_encoding_types {
[<signal_encoding_type_name> {
[<logical value> |
<physical range> |
<bcd value> |
<ascii_value>]
3]
}
<signal encoding type name> ::= identifier
All signal_encoding_type_name identifier shall be unique within the signal encoding type
identifier set.

<logical value> ::= logical value, <signal value> (, <text info>);

<physical range> ::= physical value, <min value>, <max value>, <scale>,
<offset> (, <text info>);

<bcd value> ::= bcd value;

<ascii value> ::= ascii value;

<signal value> = integer

<min_value> = integer

<max value> = integer

<scale> ::= real or integer

<offset> ::= real or integer

<text info> ::= char_string

The signal_value the min_value and the max_value shall be in range of 0 to 65 535. The max__
value shall be greater than or equal to min_value. If the raw value is within the range defined by the
min and max value, the physical value shall be calculated as defined in Formula (1).

EXAMPLE The V_battery signal is an eight bit representation that follows the graph Figure 31, i.e. the
resolution is high around 12 V and has three special values for out of range values.

signal_encoding_types {
power_state {
logical value, 0, "off";
logical value, 1, "on";
}
V_battery {
logical value, 0, "under voltage";

68 © ISO 2016 - All rights reserved

ISO 17987-2:2016(E)

physical value, 1, 63, 0.0625, 7.0, "Volt";
physical value, 64, 191, 0.0104, 11.0, "volt";
physical value, 192, 253, 0.0625, 1.3, "Volt";
logical value, 254, "over voltage";

logical value, 255, "invalid";

Signal A
255 —

192 —
128 —

64 —

Figure 31 — Representation of V_battery

12.3.7 Signal representation definition

The signal representation declaration is used to associate signals with the corresponding signal
encoding type.

<Signal_ representation_def> ::=
Signal_representation {
[<signal encoding type name>: <signal name> ([, <signal name>]) ;]

}

<signal encoding type name> ::= identifier

The signal_encoding_type_name identifier shall exist in the signal encoding type identifier set.

<signal name> ::= identifier

The signal_name identifier shall exist in the signal identifier set (both scalar and byte array signals
are applicable). Each signal may only be associated with one signal_encoding_type_name and
may not be nested ina signal_group_name.

12.4 LDF example

LIN description file;

LIN protocol version = "IS017987:2015";
LIN language version = "IS017987:2015";
LDF file revision = "14.23.01";

LIN speed = 19.2 kbps;

Channel name = "DB";

Nodes {

Master: CEM, 5 ms, 0.1 ms;
Slaves: LSM, RSM;

}

Signals {
InternallightsRequest: 2, 0, CEM, LSM, RSM;
RightIntLightsSwitch: 8, 0, RSM, CEM;
LeftIntLightsSwitch: 8, 0, LSM, CEM;
LSMerror: 1, 0, LSM, CEM;
RSMerror: 1, 0, RSM, CEM;
IntTest: 2, 0, LSM, CEM;

© ISO 2016 - All rights reserved 69

ISO 17987-2:2016(E)

Frames {

CEM Frml: 0x01, CEM, 1 {
InternallightsRequest,

}

LSM Frml: 0x02, LSM,
LeftIntLightsSwitch,

}

LSM Frm2: 0x03,
LSMerror, 0;
IntTest, 1;

}

RSM Frml: 0x04, RSM, 2 {
RightIntLightsSwitch,

}

RSM Frm2: 0x05,
RSMerror, 0;

}

0;

2 A
8;

LSM, 1 {

87

RSM, 1 {

}
Event_triggered_frames {
Node Status_ Event Collision resolver, 0x06,
}
Node_attributes {
RSM {
LIN protocol = "2.1";
configured NAD = 0x20;
product id = Ox4E4E, 0x4553;
response error = RSMerror;
P2 min = 150 ms;
ST min = 50 ms;
configurable frames {
Node Status Event;
CEM Frml;
RSM_Frml;
RSM Frm2;
}
}
LSM {

LIN protocol = "IS017987:2015";

configured NAD = 0x21;
initial NAD = 0x01;
product id = Ox4A4F, 0x4841;

response error = LSMerror;

fault state signals = IntTest;
P2 min = 150 ms;
ST min = 50 ms;

configurable frames {
Node Status Event;
CEM Frml;
LSM_Frml;
LSM Frm2;

}
}
Schedule_tables {

Configuration Schedule ({

AssignNAD {LSM} delay 15 ms;
AssignFrameIdRange {LSM, 0} delay 15 ms;
AssignFrameIdRange {RSM, 0} delay 15 ms;
SaveConfiguration {LSM} delay 10 ms;
SaveConfiguration {RSM} delay 10 ms;

}

Normal_ Schedule {
CEM Frml delay 15
LSM Frm2 delay 15
RSM Frm2 delay 15
Node Status Event

}

MRF_schedule {
MasterReqg delay 10 ms;

}

SRF_schedule {

ms;
ms;
ms;
delay 10 ms;

70

RSM Frml,

LSM Frml;

© ISO 2016 - All rights reserved

SlaveResp delay 10 ms;

}

Collision_resolver { // Keep timing of other frames if collision

CEM _Frml delay 15
LSM Frm2 delay 15
RSM Frm2 delay 15
RSM Frml delay 10
CEM _Frml delay 15
LSM Frm2 delay 15
RSM Frm2 delay 15
LSM Frml delay 10

}

}
Signal_encoding_types

Dig2Bit {
logical value,
logical value,
logical value,
logical value,

}

ErrorEncoding {
logical value,
logical value, 1,

}

FaultStateEncoding {
logical value, O,
logical value, 1,
logical value, 2,
logical value, 3

}

LightEncoding {
logical value, 0,
physical value, 1,

~

w N = O
~ ~

~

(@]
~

ms;
ms;
ms;
ms; // Poll the RSM node
ms;
ms;
ms;
ms; // Poll the LSM node

{

"off";
"on";
"error";
"void";

HOK" .
;
"error";

"No test result";
"failed";
"passed";

"not used";

"off";
254, 1, 100, "lux";

logical value, 255, "error";

}
}

Signal_representation

{

Dig2Bit: InternallightsRequest;
ErrorEncoding: RSMerror, LSMerror;

FaultStateEncoding:

LightEncoding: RightIntLightsSwitch,

IntTest;

© ISO 2016 - All rights reserved

LeftIntLightsSwitch;

ISO 17987-2:2016(E)

71

ISO 17987-2:2016(E)

72

Bibliography

ISO 17987-4, Road vehicles — Local Interconnect Network (LIN) — Part 4: Electrical Physical Layer
(EPL) specification (12V/24V)

ISO/TR 17987-5, Road vehicles — Local Interconnect Network (LIN) — Part 5: Application
Programmers Interface (API)

[SO 17987-6, Road vehicles — Local Interconnect Network (LIN) — Part 6: Protocol conformance
test specification

[SO 17987-7, Road vehicles — Local Interconnect Network (LIN) — Part 7: Electrical Physical Layer
(EPL) conformance test specification

ISO/IEC 7498-1, Information processing systems — Open Systems Interconnection — Basic
Reference Model: The Basic Model — Part 1

ISO/IEC 10731, Information technology — Open Systems Interconnection — Basic Reference
Model — Conventions for the definition of OSI services

© ISO 2016 - All rights reserved

ISO 17987-2:2016(E)

ICS 35.240.60; 43.040.15

Price based on 72 pages

© ISO 2016 - All rights reserved

