INTERNATIONAL STANDARD ISO 17454 First edition 2006-02-01 # Plastics piping systems — Multilayer pipes — Test method for the adhesion of the different layers using a pulling rig Systèmes de canalisations en plastiques — Tubes multicouches — Méthode d'essai de l'adhérence des différentes couches utilisant un anneau de traction #### PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below #### © ISO 2006 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 17454 was prepared by Technical Committee ISO/TC 138, *Plastics pipes, fittings and valves for the transport of fluids*, Subcommittee SC 5, *General properties of pipes, fittings and valves of plastic materials and their accessories* — *Test methods and basic specifications*. # Introduction In response to the worldwide demand for specifications, requirements and test methods for multilayer pipes, WG 16 of ISO/TC 138/SC 5 was created at a meeting held in Kyoto, Japan, in 1998. The working group then started drafting three test standards (including ISO 17454) for multilayer pipes: - ISO 17456, Plastics piping systems Multilayer pipes Determination of long-term hydrostatic strength; - ISO 17455, Plastics piping systems Multilayer pipes Determination of the oxygen permeability of the barrier pipe. Only multilayer pipes are dealt with in this International Standard and for these purposes cross-linked polyethylene (PE-X) as well as adhesives are to be considered as a thermoplastics material. # Plastics piping systems — Multilayer pipes — Test method for the adhesion of the different layers using a pulling rig # 1 Scope This International Standard specifies a method for testing the adhesion between layers of multilayer pipes using a pulling test rig. The bond between the metal layer and the inside (underlying) layer is measured. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 5893, Rubber and plastics test equipment — Tensile, flexural and compression types (constant rate of traverse) — Specification #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 #### multilayer pipe pipe comprising layers of different materials #### 3.2 #### multilayer M pipe multilayer pipe comprising layers of polymers and one or more metal layers NOTE The wall thickness of the pipe consists of at least 60 % polymer layers. #### 3.3 ### inner layer layer in contact with the liquid or gas #### 3.4 #### outer layer layer exposed to the outer environment #### 3.5 #### embedded layer layer between the outer and inner layer NOTE There can be more than one embedded layer. ---,,---,,------,,-,,-,--- # ISO 17454:2006(E) #### 3.6 #### joint line location of the joint line (welded or adhesion bonded) of the metal layer # **Symbols** - d_{i} inside diameter of the test piece (pipe), in millimetres (mm) - manufacturer's nominal outside diameter, expressed in millimetres (mm) d_{e} - number of measurements - pulling force of the pulling rig, in newtons - $F_{\mathsf{cal},i}$ calibration force, all forces occurring during the pulling process, other than the adhesion force, in newtons per millimetre - average calibration force, in newtons per millimetre $F_{\rm cal}$ - general force, all forces occurring during the pulling process, in newtons per millimetre $F_{d,i}$ - average minimum general force, in newton per millimetre F_{d} - adhesion force, in newtons per millimetre F_{ad} - W_{p} length of the test piece, in millimetres - l_{c} needed (fixed) length (± 0,1 mm) for the clamp-grip, in millimetres # **Principle** A tensile-force is introduced to the metal (embedded) layer of a test piece perpendicular to the axial direction. This pulling force is measured. ### **Apparatus** - Tensile testing machine, in accordance with ISO 5893. 6.1 - 6.2 Rotating test rig, with - for every pipe diameter (d_i) , a **support mandrill**, having an outside diameter of $0.95d_i$ and a length of at least (12 ± 1) mm, able to rotate without significant resistance, preferably by the inclusion of a roller bearing, and - b) a **pulling rig**, conforming to the principle as represented in Figure 1. #### Key - 1 clamp - 2 inner layer - 3 support axle that includes a roller bearing - 4 weld line - 5 pivoted sample holder Figure 1 — Pulling rig (Test I shown) - **6.3 Device capable of monitoring** the force applied to the metal (embedded) layer of a test piece. - **6.4 Device capable of measuring** either the pulling speed arranged so as to subject the test piece to a constant pulling speed, or the angle of rotation of the support mandrill. # 7 Calibration #### 7.1 Principle Before starting the test, all forces F_{cal} (e.g. the bending force) other than the adhesive force shall be determined by following the procedure given in 7.4. The force remaining after reduction of the test results using F_{cal} is the adhesive force. # 7.2 Test piece sampling procedure Samples for the pipe diameter to be tested shall contain no adhesive between the metal layer and the inner layer. In total, five samples shall be used for the calibration procedure. # 7.3 Preparation of test pieces The test pieces shall be rings cut from the pipe. Each test piece shall have a minimum length $W_{\rm p}$ of 10 mm and shall have no loose layers. # ISO 17454:2006(E) The metal layer shall be cut in the axial direction and pulled loose over fixed length $l_{\rm c}$ to enable the clamp to be attached for pulling and where The outer layer has no significant contribution to the bending force and the test can therefore be carried out without the outer layer. #### 7.4 Procedure - **7.4.1** Unless otherwise specified in the referring system standard or product standard, conduct the test at a temperature of (23 ± 2) °C. - **7.4.2** Insert the support-axle into the test piece and ensure free rotation of the (pipe) test piece. - 7.4.3 Install the clamp on the loosened part and check that the joint will be measured during the test. - **7.4.4** Apply a crosshead spread speed of (50 \pm 5) mm/min. - **7.4.5** For the calculation of the results, use only the range of the angle of rotation from 30° to 255°. - **7.4.6** For all five test pieces, record the applied forces $F_{\rm p,max}$ and $F_{\rm p,min}$. The average between the minimum and the maximum measured force shall be used to calculate $F_{\rm cal}$. # 7.5 Processing the results Calculate the average force, $F_{cal.i}$, using Equation (1): $$F_{\text{cal},i} = \frac{F_{\text{p,max}} - F_{\text{p,min}}}{2W_{\text{p}}} \quad [\text{N/mm}] \tag{1}$$ Calculate the force F_{cal} using Equation (2): $$F_{\text{cal}} = \frac{\sum_{i=1}^{n} F_{\text{cal},i}}{n} \quad [\text{N/mm}]$$ (2) where n = 5 (for five samples). Reduce the test results from Clause 8 using $F_{\rm cal}$ to obtain the remaining force corresponding to the adhesive force. #### 8 Test method #### 8.1 Sampling In total, 10 samples shall be cut from the pipe to be tested, equally divided over 1 m of the pipe. # 8.2 Preparation of test piece The test pieces shall be rings cut from the pipe. Each test piece shall have a minimum length W_p of 10 mm and shall have no loose layers. The metal layer shall be cut in the axial direction and pulled loose over fixed length $l_{\rm c}$ to enable the clamp to be attached for pulling, where $$l_{\rm c} \leqslant$$ 12 mm For the location of the joint line, the test procedure shall be followed according to 8.3. # 8.3 Location of joint line To neutralize the negative influence of the cutting, two series of tests shall be performed at different angles α: For **Test I**, the angle α shall be 135° \pm 5°, see Figure 1. For **Test II**, the angle α shall be 315° \pm 5°. The joint shall be measured in both tests. #### 8.4 Procedure - **8.4.1** Unless otherwise specified in the referring system standard or product standard that refer to this International Standard, conduct the test at a temperature (23 ± 2) °C. - **8.4.2** Insert the support-axle into the test piece and ensure free rotation of the test (pipe) piece. - **8.4.3** Install the clamp on the loosened part and check that the angle α is still as specified in 8.3. - **8.4.4** Apply a crosshead spread speed of (50 ± 5) mm/min. - **8.4.5** Record the applied force F_p over the angle of rotation from 30° to 255° during the test. # 8.5 Processing of results For all 10 samples, the minimum value for $F_{\rm p}$ is recorded. Calculate the force $F_{d,i}$ using Equation (3): $$F_{d,i} = \frac{F_p}{W_p} \text{ [N/mm]}$$ Calculate the minimum force F_d using Equation (4): $$F_{d} = \frac{\sum_{i=1}^{n} F_{d,i}}{n}$$ [N/mm] (4) where n = 10 (for 10 samples). Calculate the adhesive force $F_{\rm ad}$ using Equation (5): $$F_{\text{ad}} = F_{\text{d}} - F_{\text{cal}} [\text{N/mm}] \tag{5}$$ # ISO 17454:2006(E) #### 9 **Test report** The test report shall include the following information: - reference to this International Standard, as well as to the referring standard and the manufacturer's information; - complete identification of the multilayer pipe component from which the test piece was taken, including manufacturer, material type, code number, size, source and significant history, if any; - dimensions of the pipes tested; c) - test conditions; d) - e) number of test pieces; - calculated values; f) - any observations of damage; g) - h) location of failures relative to the joint line; - details of any factors which could have affected the results, such as incidents or any operational details i) not mentioned in this International Standard; - date of the test. j) ICS 23.040.20 Price based on 6 pages