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Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an

International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. 1ISO shall not be held responsible for identifying any or all such patent rights.

ISO 16269-4 was prepared by Technical Committee ISO/TC 69, Applications of statistical methods.
ISO 16269 consists of the following parts, under the general title Statistical interpretation of data:
— Part 4: Detection and treatment of outliers

— Part 6: Determination of statistical tolerance intervals

— Part 7: Median — Estimation and confidence intervals

— Part 8: Determination of prediction intervals

© 1SO 2010 — All rights reserved
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Introduction

Identification of outliers is one of the oldest problems in interpreting data. Causes of outliers include
measurement error, sampling error, intentional under- or over-reporting of sampling results, incorrect
recording, incorrect distributional or model assumptions of the data set, and rare observations, etc.

Outliers can distort and reduce the information contained in the data source or generating mechanism. In the
manufacturing industry, the existence of outliers will undermine the effectiveness of any process/product
design and quality control procedures. Possible outliers are not necessarily bad or erroneous. In some
situations, an outlier may carry essential information and thus it should be identified for further study.

The study and detection of outliers from measurement processes leads to better understanding of the
processes and proper data analysis that subsequently results in improved inferences.

In view of the enormous volume of literature on the topic of outliers, it is of great importance for the
international community to identify and standardize a sound subset of methods used in the identification and
treatment of outliers. The implementation of this part of ISO 16269 enables business and industry to recognize
the data analyses conducted across member countries or organizations.

Six annexes are provided. Annex A provides an algorithm for computing the test statistic and critical values of
a procedure in detecting outliers in a data set taken from a normal distribution. Annexes B, D and E provide
the tables needed to implement the recommended procedures. Annex C provides the tables and statistical
theory that underlie the construction of modified box plots in outlier detection. Annex F provides a structured
guide and flow chart to the procedures recommended in this part of ISO 16269.

A1aA ARAA Al
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Statistical interpretation of data —

Part 4:
Detection and treatment of outliers

1 Scope

This part of ISO 16269 provides detailed descriptions of sound statistical testing procedures and graphical
data analysis methods for detecting outliers in data obtained from measurement processes. It recommends
sound robust estimation and testing procedures to accommodate the presence of outliers.

This part of ISO 16269 is primarily designed for the detection and accommodation of outlier(s) from univariate
data. Some guidance is provided for multivariate and regression data.

2 Terms and definitions
For the purposes of this document, the following terms and definitions apply.

21

sample

data set

subset of a population made up of one or more sampling units

NOTE 1 The sampling units could be items, numerical values or even abstract entities depending on the population of
interest.

NOTE2 A sample from a normal (2.22), a gamma (2.23), an exponential (2.24), a Weibull (2.25), a
lognormal (2.26) or a type | extreme value (2.27) population will often be referred to as a normal, a gamma, an
exponential, a Weibull, a lognormal or a type | extreme value sample, respectively.

2.2

outlier

member of a small subset of observations that appears to be inconsistent with the remainder of a given
sample (2.1)

NOTE 1 The classification of an observation or a subset of observations as outlier(s) is relative to the chosen model for
the population from which the data set originates. This or these observations are not to be considered as genuine
members of the main population.

NOTE 2  An outlier may originate from a different underlying population, or be the result of incorrect recording or gross
measurement error.

NOTE 3  The subset may contain one or more observations.

23
masking
presence of more than one outlier (2.2), making each outlier difficult to detect
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24

some-outside rate

probability that one or more observations in an uncontaminated sample will be wrongly classified as
outliers (2.2)

25
outlier accommodation method
method that is insensitive to the presence of outliers (2.2) when providing inferences about the population

2.6

resistant estimation

estimation method that provides results that change only slightly when a small portion of the data values in a
data set (2.1) is replaced, possibly with very different data values from the original ones

27

robust estimation

estimation method that is insensitive to small departures from assumptions about the underlying probability
model of the data

NOTE An example is an estimation method that works well for, say, a normal distribution (2.22), and remains
reasonably good if the actual distribution is skew or heavy-tailed. Classes of such methods include the L-estimation
[weighted average of order statistics (2.10)] and M-estimation methods (see Reference [9]).

2.8
rank
position of an observed value in an ordered set of observed values

NOTE 1 The observed values are arranged in ascending order (counting from below) or descending order (counting
from above).

NOTE 2 For the purposes of this part of ISO 16269, identical observed values are ranked as if they were slightly
different from one another.

29

depth

(box plot) smaller of the two ranks (2.8) determined by counting up from the smallest value of the
sample (2.1), or counting down from the largest value

NOTE 1 The depth may not be an integer value (see Annex C).

NOTE 2 For all summary values other than the median (2.11), a given depth identifies two (data) values, one below
the median and the other above the median. For example, the two data values with depth 1 are the smallest value
(minimum) and largest value (maximum) in the given sample (2.1).

210
order statistic
statistic determined by its ranking in a non-decreasing arrangement of random variables

[ISO 3534-1:2006, definition 1.9]

NOTE 1 Let the observed values of a random sample be {xq, xo, ..., x,}. Reorder the observed values in non-
decreasing order designated as x(1) < x2) < ... < X < ... < X(,); then x, is the observed value of the kth order statistic in
a sample of size n.

NOTE 2 In practical terms, obtaining the order statistics for a sample (2.1) amounts to sorting the data as formally
described in Note 1.

n .
Copyright International Organization for Standardization © ISO 201 0 - A” rlghts reserved
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale



I1ISO 16269-4:2010(E)

2.11

median

sample median

median of a set of numbers

0,
[(» + 1)/2]th order statistic (2.10), if the sample size n is odd; sum of the [#/2]th and the [(»/2) + 1]th order
statistics divided by 2, if the sample size n is even

[ISO 3534-1:2006, definition 1.13]

NOTE The sample median is the second quartile (Q,).

212

first quartile

sample lower quartile

04

for an odd number of observations, median (2.11) of the smallest (n — 1)/2 observed values; for an even
number of observations, median of the smallest n/2 observed values

NOTE 1 There are many definitions in the literature of a sample quartile, which produce slightly different results. This
definition has been chosen both for its ease of application and because it is widely used.

NOTE 2  Concepts such as hinges or fourths (2.19 and 2.20) are popular variants of quartiles. In some cases
(see Note 3 to 2.19), the first quartile and the lower fourth (2.19) are identical.

213

third quartile

sample upper quartile

03

for an odd number of observations, median of the largest (n — 1)/2 observed values; for an even number of
observations, median of the largest n/2 observed values

NOTE 1 There are many definitions in the literature of a sample quartile, which produce slightly different results. This
definition has been chosen both for its ease of application and because it is widely used.

NOTE 2  Concepts such as hinges or fourths (2.19 and 2.20) are popular variants of quartiles. In some cases
(see Note 3 to 2.20), the third quartile and the upper fourth (2.20) are identical.

214

interquartile range

IQR

difference between the third quartile (2.13) and the first quartile (2.12)

NOTE 1 This is one of the widely used statistics to describe the spread of a data set.

NOTE 2  The difference between the upper fourth (2.20) and the lower fourth (2.19) is called the fourth-spread and is
sometimes used instead of the interquartile range.

215
five-number summary
the minimum, first quartile (2.12), median (2.11), third quartile (2.13), and maximum

NOTE The five-number summary provides numerical information about the location, spread and range.
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216
box plot
horizontal or vertical graphical representation of the five-number summary (2.15).

NOTE 1 For the horizontal version, the first quartile (2.12) and the third quartile (2.13) are plotted as the left and
right sides, respectively, of a box, the median (2.11) is plotted as a vertical line across the box, the whiskers stretching
downwards from the first quartile to the smallest value at or above the lower fence (2.17) and upwards from the third
quartile to the largest value at or below the upper fence (2.18), and value(s) beyond the lower and upper fences are
marked separately as outlier(s) (2.2). For the vertical version, the first and third quartiles are plotted as the bottom and the
top, respectively, of a box, the median is plotted as a horizontal line across the box, the whiskers stretching downwards
from the first quartile to the smallest value at or above the lower fence and upwards from the third quartile to the largest
value at or below the upper fence and value(s) beyond the lower and upper fences are marked separately as outlier(s).

NOTE 2 The box width and whisker length of a box plot provide graphical information about the location, spread,
skewness, tail lengths, and outlier(s) of a sample. Comparisons between box plots and the density function of a) uniform,
b) bell-shaped, c) right-skewed, and d) left-skewed distributions are given in the diagrams in Figure 1. In each distribution,
a histogram is shown above the boxplot.

NOTE 3 A box plot constructed with its lower fence (2.17) and upper fence (2.18) evaluated by taking & to be a value
based on the sample size n and the knowledge of the underlying distribution of the sample data is called a modified box
plot (see example, Figure 2). The construction of a modified box plot is given in 4.4.
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a) Uniform distribution b) Bell-shaped distribution

Figure 1 (continued)
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d) Left-skewed distribution

In each distribution, a histogram is shown above the box plot.

Figure 1 — Box plots and histograms for a) uniform, b) bell-shaped, c) right-skewed,
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* <—— Maximum observation
-------------------- <+—  Upper fence (not drawn)
<«— Maximum observation below
1,5 x1QR upper fence
4‘— <«——— Third quartile
IQR
<+— Median
<+———  First quartile
—_— <— Minimum observation
1,5 x IQR

AL .................... <———— Lower fence (not drawn)

..............................................................................................................................................

Figure 2 — Modified box plot with lower and upper fences

2.17

lower fence

lower outlier cut-off

lower adjacent value

value in a box plot (2.16) situated & times the interquartile range (2.14) below the first quartile (2.12), with
a predetermined value of £

NOTE In proprietary statistical packages, the lower fence is usually taken to be Q4 — k (O3 — O1) with k taken to be
either 1,5 or 3,0. Classically, this fence is called the “inner lower fence” when % is 1,5, and “outer lower fence” when & is
3,0.

2.18

upper fence

upper outlier cut-off

upper adjacent value

value in a box plot situated k£ times the interquartile range (2.14) above the third quartile (2.13), with a
predetermined value of k&

NOTE In proprietary statistical packages, the upper fence is usually taken to be Q3 + £ (Q3 — Q4), with & taken to be
either 1,5 or 3,0. Classically, this fence is called the “inner upper fence” when k is 1,5, and the “outer upper fence” when &
is 3,0.

o .
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219

lower fourth

XLin

for a set x(1) < x(2) < ... < x(,) of observed values, the quantity 0,5 [x;) + x(; ;. 1)l when /=0 or x , 1) when />0,
where i is the integral part of n/4 and f'is the fractional part of n/4

NOTE 1 This definition of a lower fourth is used to determine the recommended values of % and &y given in Annex C
and is the default or optional setting in some widely used statistical packages.

NOTE 2  The lower fourth and the upper fourth (2.20) as a pair are sometimes called hinges.
NOTE 3  The lower fourth is sometimes referred to as the first quartile (2.12).
NOTE 4 When /=0, 0,5 or 0,75, the lower fourth is identical to the first quartile. For example:
Sample size i = integral f=fractional | First quartile | Lower fourth
n part of n/4 part of n/4

9 2 0,25 [X(z) + X(3)]/2 X(3)

10 2 0,50 X(3) )C(3)

1 1 2 0,75 X(3) )C(3)

12 3 0 [)C(3) + X(4)]/2 [X(3) + )C(4)]/2
2.20
upper fourth
XU:n

for a set X(1) < X(2) < ... < x(,) Of observed values, the quantity 0,5 [x(, _ ;) +x(, _;, 1] when f=0 or x,, _,
when /> 0, where i is the integral part of n/4 and f'is the fractional part of n/4

NOTE 1 This definition of an upper fourth is used to determine the recommended values of k_and .y given in Annex C
and is the default or optional setting in some widely used statistical packages.

The upper fourth is sometimes referred to as the third quartile (2.13).

The lower fourth (2.19) and the upper fourth as a pair are sometimes called hinges.

When /=0, 0,5 or 0,75, the upper fourth is identical to the third quartile. For example:

Sample size i = integral f=fractional | Third quartile | Upper fourth
n part of n/4 part of n/4
9 2 0,25 [x@y + x@)/2 X7
10 2 0,50 x(8) x(8)
11 2 0,75 X(9) X(9)
12 3 0 [x@) +xpol/2  |[x@) + x@0)l2
o o SR oS reserved 7
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2.21
Type | error
rejection of the null hypothesis when in fact it is true

[ISO 3534-1:2006, definition 1.46]

NOTE 1 A Type | error is an incorrect decision. Hence, it is desired to keep the probability of making such an incorrect
decision as small as possible.

NOTE 2 It is possible in some situations (for example, testing the binomial parameter p) that a pre-specified
significance level such as 0,05 is not attainable due to discreteness in outcomes.

2.22

normal distribution

Gaussian distribution

continuous distribution having the probability density function

2
(x-u)
20'2

exps —

L
f(x)_o_\/g

where —eo < x < o and with parameters ——~ < y< s and ¢>0
[1ISO 3534-1:2006, definition 2.50]

NOTE 1 The location parameter x is the mean and the scale parameter o is the standard deviation of the normal
distribution.

NOTE 2 A normal sample is a random sample (2.1) taken from a population that follows a normal distribution.

2.23
gamma distribution
continuous distribution having the probability density function

x*exp(-x/ )
B°T(a)

f(x)=

where x > 0 and parameters o> 0, >0
[ISO 3534-1:2006, definition 2.56]

NOTE 1 The gamma distribution is used in reliability applications for modelling time to failure. It includes the
exponential distribution (2.24) as a special case as well as other cases with failure rates that increase with age.

NOTE 2  The mean of the gamma distribution is 8. The variance of the gamma distribution is o/52.
NOTE 3 A gamma sample is a random sample (2.1) taken from a population that follows a gamma distribution.
2.24

exponential distribution
continuous distribution having the probability density function

f(x)= B exp(~x/ j)
where x > 0 and with parameter 5> 0

[ISO 3534-1:2006, definition 2.58]

o .
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NOTE 1 The exponential distribution provides a baseline in reliability applications, corresponding to the case of “lack of
ageing” or memory-less property.

NOTE 2  The mean of the exponential distribution is 5. The variance of the exponential distribution is 2.

NOTE 3  An exponential sample is a random sample (2.1) taken from a population that follows an exponential
distribution.

2,25

Weibull distribution

type lll extreme-value distribution

continuous distribution having the distribution function

F(x)=1-exp _(x;sr]

where x > @ with parameters —~ < <, >0, k>0
[1ISO 3534-1:2006, definition 2.63]

NOTE 1 In addition to serving as one of the three possible limiting distributions of extreme order statistics, the Weibull
distribution occupies a prominent place in diverse applications, particularly reliability and engineering. The Weibull
distribution has been demonstrated to provide usable fits to a variety of data sets.

NOTE 2 The parameter @is a location or threshold parameter in the sense that it is the minimum value that a Weibull
variate can achieve. The parameter S is a scale parameter (related to the standard deviation of a Weibull variate). The
parameter x is a shape parameter.

NOTE 3 A Weibull sample is a random sample (2.1) taken from a population that follows a Weibull distribution.

2.26
lognormal distribution
continuous distribution having the probability density function

2
f)=— exp{—"”’“‘”’}

202

where x > 0 and with parameters -~ < yy<~ and >0
[ISO 3534-1:2006, definition 2.52]

2.27

type | extreme-value distribution

Gumbel distribution

continuous distribution having the distribution function

F(x)= exp{—e‘(x_“)/a}

where —eo < x < o0 and with parameters —~ < g<~ and ¢>0

NOTE Extreme-value distributions provide appropriate reference distributions for the extreme order statistics (2.10)
X(»]) and X(n).

[ISO 3534-1:2006, definition 2.61]
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3 Symbols
The symbols and abbreviated terms used in this part of ISO 16269 are as follows:

GESD generalized extreme studentized deviate

Gg Greenwood's statistic
8En critical value of the Greenwood's test statistic for sample size
I, reduced sample of size n — / after removing the most extreme observation x(0) in the original sample

Iy of size n, removing the most extreme observation x() in the reduced sample 1, of size n—1,....,
and removing the most extreme observation x( - ) in the reduced sample /, _ ; of size n — [ + 1

Fpy.v, pthpercentile of a F-distribution with v4 and v, degrees of freedom

A critical value of the GESD test in testing whether the value x() is an outlier
Lg lower fence of a modified box plot

Ur upper fence of a modified box plot

M or O, sample median

Moy median absolute deviation about the median

01 first quartile

03 third quartile

R, GESD test statistic for testing whether the value x() is an outlier
s(Ip) standard deviation of the reduced sample J,

Ty total median

T, biweight location estimate from a sample of size n

7Y estimate of T, at the ith iteration based on a sample of size n
byy pth percentile of a #-distribution with v degrees of freedom

;(;;V pth percentile of a chi-square distribution with v degrees of freedom

(i) ith observation in the ordered data set
x() most extreme value in the reduced sample /
x(/;)  mean of the reduced sample /;

x1(e)  ortrimmed mean

Xy lower fourth of a box plot for a sample of size »
XUop' upper fourth of a box plot for a sample of size n
Copyright In?eﬂational Organization for Standardization © ISO 201 0 - A” rlghts reserved
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4 Outliers in univariate data
4.1 General

4.1.1 What is an outlier?

In the simplest case, an outlier is an observation that appears to be inconsistent with the rest of a given data
set. In general, there may be more than one outlier at one or both ends of the data set. The problem is to
determine whether or not apparently inconsistent observations are in fact outliers. This determination is
performed by means of a pre-specified significance test with respect to a presumed underlying distribution.
Observations that lead to a significant result are deemed to be outliers with respect to that distribution.

The importance of using the correct underlying distribution in an outlier test cannot be over-stressed. Often in
practice, an underlying normal distribution is assumed when the data arise from a different distribution. Such
an erroneous assumption can lead to observations being incorrectly classified as outliers.

4.1.2 What are the causes of outliers?

Outlying observations or outliers typically are attributable to one or more of the following causes (see
Reference [1] for more detail and perspective):

a) Measurement or recording error. The measurements are imprecisely generated, incorrectly observed,
incorrectly recorded, or incorrectly entered into the database.

b) Contamination. The data arise from two or more distributions, i.e. the basic one and one or more
contaminating distributions. If the contaminating distributions have significantly different means, larger
standard deviations and/or heavier tails than the basic distribution, then there is a possibility that extreme
observations coming from the contaminating distributions may appear as outliers in the basic distribution.

NOTE 1 The cause of contamination can be due to sampling error where a small portion of sample data is
inadvertently regarded as having been drawn from a different population than the rest of sample data; or intentional
under- or over-reporting of experiments or sampling surveys.

c) Incorrect distributional assumption. The data set is regarded as drawn from a particular distribution, but it
should have been regarded as drawn from another distribution.

EXAMPLE The data set is regarded as drawn from a normal distribution, but it should have been regarded as
drawn from a highly skewed distribution (e.g. exponential or lognormal) or a symmetric but heavier-tailed distribution
(e.g. a r-distribution). Therefore, observations that deviate far from the central location can be incorrectly labelled as
outliers even though they are valid observations with respect to a highly skewed or heavy-tailed distribution.

d) Rare observations. Highly improbable observations might occur on rare occasions, in samples regarded
as drawn from an assumed probability distribution. These extreme observations are usually incorrectly
labelled as outliers due to their rare occurrence, but they are not truly outliers.

NOTE 2  The occurrence of rare observations when the underlying distribution is symmetric but heavy-tailed may
lead to incorrect distributional assumptions.

41.3 Why should outliers be detected?

Outliers are not necessarily bad or erroneous. They can be taken as an indication of the existence of rare
phenomena that could be a reason for further investigation. For example, if an outlier is caused exclusively by
a particular industrial treatment, important discoveries may be made by investigating the cause.

Many statistical techniques and summary statistics are sensitive to the presence of outliers. For example, the
sample mean and sample standard deviation are easily influenced by the presence of even a single outlier
that could subsequently lead to invalid inferences.
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The study of the nature and frequency of outliers in a particular problem can lead to appropriate modifications
of the distributional or model assumptions regarding the data set, and also lead to appropriate choices of
robust methods that can accommodate the presence of possible outliers in subsequent data analyses and
thus result in improved inferences (see Clause 6).

4.2 Data screening

Data screening can begin with a simple visual inspection of the given data set. Simple data plots, such as dot
plot, scatter diagram, histogram, stem-and-leaf plot, probability plot, box plot, time series plot or arranging
data in non-decreasing order of magnitude, can reveal unanticipated sources of variability and
extreme/outlying data points. For example, a bimodal distribution of a data set revealed by the histogram or
stem-and-leaf plot might be evidence of a contaminated sample or mixture of data regarded as drawn from
two different populations. Probability plots and box plots are recommended for identifying extreme/outlying
data points. These possible outliers can then be further investigated using the methods given in 4.3 or 4.4.

A probability plot not only provides a graphical test of whether the observations, or the majority of the
observations, can be regarded as following an assumed distribution; it also reveals outlying observations in
the data set. Data points that deviate markedly from a straight line fitted by eye to the points on a probability
plot can be considered as possible outliers. Probability plot facilities for a wide range of distributions are
available in proprietary software.

Thezﬁbox plot is one of the most popular graphical tools for exploring data. It is useful for displaying the central
location, spread and shape of the distribution of a data set. The lower and upper fences of the box plot are
defined as

‘lower fence = 01—k (03 -04)

upper fence = Q3 +k (O3 —04) (1)

where 0, and Q5 are the first and third quartiles of the data set and £ is a constant value.

Tukey!?] labelled data values that lie outside the lower and upper fences with k= 1,5 as suspected (possible)
outliers, and those that lie outside the fences with k£ = 3,0 as extreme outliers.

NOTE 1 Probability plotting paper for the normal, exponential, lognormal and Weibull distributions may be obtained at
the time of publication from http://www.weibull.com/GPaper/index.htm.

NOTE 2  The type of probability plot should depend on the distributional assumption of the population. For example, the
exponential probability plot should be used if it is assumed, or there is a priori knowledge, that the data set can be
regarded as drawn from an exponential population.

NOTE 3 A large number of observations may incorrectly be identified as potential outliers by the box plot with its lower
and upper fences defined in Equation (1) when the data set can be regarded as sampled from skewed distributions. The
recommended modified box plot that is able to handle this problem is given in 4.4.

EXAMPLE The dot plot, histogram, box plot and stem-and-leaf plot of the following data values are plotted in
Figures 3 a), 3 b), 3 c) and 3 d), respectively.

0,745 0,883 0,351 0,806 2908 1,09 1,310 1,261 0,637 1,226
1418 0430 1870 0543 0,718 1,229 1312 1544 0,965 1,034
1,818 1,409 2,773 1,293 0,842 1,469 0804 2219 0,892 1,864
1,214 1,093 0,727 1,527 3,463 2,158 1,448 0,725 0,699 2,435
0,724 0,551 0,733 0,793 0,701 1,323 1,067 0,763 1,375 0,763
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Figure 3 — Plots of the data set

These plots reveal that the given data set has a longer right tail than left tail. Figures 3 a), 3 b) and 3 d) indicate that its
largest value (3,463) appears to be a potential outlier, whereas the box plot in Figure 3 c) classifies the three largest values
that fall above the upper fence as outliers. The first column of the stem-and-leaf display in Figure 3 d) is called the depth,
the second column contains the stems, and the third column contains the leaves. The rows of the depth column give the
cumulative count of leaves from the top and from the bottom except for the row that contains the median in parentheses.
The leaf unit indicates the position of decimal points. Leaf unit = 0,1 means that the decimal point goes before the leaf, thus
the first number in the display is 0,3, the second and third numbers are 0,4 and 0,5, respectively. (This example is
considered further in 4.3.5.)
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4.3 Tests for outliers

4.3.1 General

There are a large number of outlier tests (see Reference [1]). ISO 5725-2[3] provides the Grubbs and Cochran
tests to identify outlying laboratories that yield unexplained abnormal test results. The Grubbs test is
applicable to individual observations or to the means of sets of data taken from normal distributions, and it can
only be used to detect up to the two largest and/or smallest observations as outliers in the data set. The
testing procedure given in 4.3.2 is more general, being capable of detecting multiple outliers from individual
observations or from the means of sets of data taken from a normal distribution. The procedures given in 4.3.3
and 4.3.4 are capable of detecting multiple outliers for data taken from an exponential, type | extreme-value,
Weibull or gamma distribution. The procedure given in 4.3.5 should be used to detect outliers in samples
regarded as taken from populations with unknown distribution. A test procedure that detects outliers from a
given set of variances evaluated from sets of samples is given in 4.3.6.

4.3'3.:2 Sample from a normal distribution

One or more outliers on either side of a normal data set can be detected by using a procedure known as the
generalized extreme studentized deviate (GESD) many-outlier procedure (see Reference [4]). The GESD
procedure is able to control the Type | error of detecting more than [ outliers at a significance level « when
there are [ outliers present in the data set (1 < [ <m), where m is a prescribed maximum number of outliers.

Before adopting this outlier detection method, it should be verified that the majority of the sample data
approximately follow the normal distribution. The graphical normal probability plot of ISO 5479[18l can be used
to test the validity of the normality assumption.

Steps to follow when using the GESD many-outlier procedure

Step 1. Plot the given sample data x4, x,, ..., x,, on normal probability paper. Count the number of points that
appear to deviate significantly from a straight line that fits the remaining data points. This is the
suspected number of outliers.

Step 2. Select a significance level « and prescribe the number of outliers m to be larger than or equal to the
suspected number of outliers from step 1. Start the following steps with /= 0.

Step 3. Compute the test statistic

max|x —x(1, )
_ xiE€l) )
s(1;)

Ig denotes the original sample data set;

I denotes the reduced sample of size n — / obtained by deleting the point x( -1 in 7,_, that
yields the value R, _ 4;

x(;) is the sample mean of the sample /;;
s(I;) is the standard deviation of the sample .

NOTE 1 For the case when /=0: x(/;) and s(lp) are the sample mean and sample standard deviation
obtained from the original sample Iy={x4, x5, ..., x,} of size n, when the largest value among the values
x1—=X(1g), xg=X(Ig), -, x,—%(Iy) is xo—X(Iy) (say), we then have Ry =[x,—x(Iy)]/s(Iy) and x(O) =x,.
Subsequently, Iy = Ip\ {x(O} = {x{, x3, ..., x,,} is the reduced sample of size n—1 obtained by deleting the data
value x), i.e. x,, in I.
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Step 4. Compute the critical value

(n—-1- 1)tp;n—l—2

1= 2
\/(”_l_2+tp;n—l—2)(”_l)

Yl ©)

where p = (1 - &/2)"" =) and 1. represents the 100pth percentile of a r-distribution with v degrees of
freedom. Note that if one has the additional information that the outliers occur only on either the
upper or the lower extreme, substitute « for /2 in the equation.

Step 5. Set/=1+1.
Step 6. Repeat step 2 to step 4 until / = m.

Step7. If R, < 4 forall [=0,1,2,...,m then no outliers are declared. Otherwise, the n,, most extreme
observations x(0), x(1), ..., x(rout=1) in the successively reduced samples are declared as outliers
when ngy =1+ max {/:R; > 4;}.
O<ligsm
A computer algorithm that describes the necessary steps in implementing the GESD many-outlier procedure
is given in Annex A.

NOTE 2 The GESD test is equivalent to the Grubbs test when it is used to test whether the largest or the smallest
outlying observation is an outlier. The critical values of the Grubbs test are given in Table 5 of ISO 5725-2:199403], and can
also be approximated from A, of step 4 by taking /= 0.

NOTE 3 In practice, the number of outliers m envisaged in the sample should be small. If many outlying observations
are expected in the sample, then it ceases to be an outlier detection problem and different approaches are needed.
However, m should not be too small, otherwise there is a possibility of a masking effect.

EXAMPLE Consider a data set of 20 observations:

-2,21 -1,84 -09 -091 -036 -0,19 -0,11 -0,10 0,18 0,30
043 051 064 067 093 122 135 1,73 580 126

where the latter two observations were originally 0,58 and 1,26, but the decimal commas were entered at the wrong place.
In detecting outliers using the GESD procedure, we shall first verify that the given observations are taken from a normal
distribution. The data points of the normal probability plot given in Figure 4 a) appear to be scattered around a straight line,
with the exception of the two largest values which distinctly depart from the straight line. This plot reveals that the data set,
with the exception of the two extreme data values, can be assumed to come from a normal distribution. This assumption is
confirmed in Figure 4 b) in which the data values, without the two extreme values, all plot inside the 95 % confidence band
of the normal probability plot. Accordingly, we can then select the number of outliers to be m = 2 in step 2. The GESD test
statistics R, and its respective critical value A, for / = 0, 1, 2 with significance level = 0,05 are given in the table below.

/ 0 1 2

R, 36559 3,2634 2,1761
A 2,7058 2,6785 2,6992
x 12,60 5,80 2,21

As Ry =3,6559 > 4= 2,705 8, Ry = 3,2634 > 11 = 2,678 5 and R, = 2,1761 < 1, = 2,699 2, we have max {/: R, >4} =1

0<l<2

and ngy = 1+0max2{l :R; >4} =2. Thus, we declare the two most extreme values x(%) = 12,60 and x(") = 5,80 as outliers.
<l<

NOTE 4 In this and in the following examples, the units for the observations are omitted because they are not relevant
for the graphical plots and tests in this part of ISO 16269.
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Figure 4 — Probability plots

4.3.3 Sample from an exponential distribution

4.3.31 General

Greenwood's test (see 4.3.3.2) is the recommended test for outliers in samples regarded as having been
drawn from an exponential distribution. However, this test only indicates the presence of outliers but cannot
identify the individual outliers and the number of outliers in the sample. Two alternative consecutive tests that
can identify up to m possible upper or m possible lower outliers in exponential samples are given in 4.3.3.3
and 4.3.3.4, respectively.

4.3.3.2 Greenwood's test for the existence of outliers

This is a powerful test for outliers in samples regarded as having been drawn from an exponential distribution
with probability density function f(x) = A~ exp [-(x — a)/1], x > a, where A is the scale parameter and « is the
location or threshold parameter. For a given exponential sample x4, xo, ..., x, of size n regarded as drawn from
an exponential distribution with known parameter value q, the test statistic is given as (Reference [1]):

Do —a)?

O —t (4)

(Z;;xi —naj2

A significantly high value of Gg indicates the likely presence of an unknown number of outliers that are the high
extreme values in the sample; however, a significantly low value of Gg indicates the presence of outliers that are
the low extreme values or the combination of low and high extreme values. The lower and upper 2,5 % and 1 %
critical values gg., of Gg are given in Table B.1 for selected sample sizes n. For the case when the origin a is
unknown, it is estimated by the value of the smallest observation x(1), and the critical value of G is then gg.,, _ 4.

LN .
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4.3.3.3 Consecutive tests for m possible upper outliers

The test statistics that can be used to declare up to the m largest observations as outliers in an exponential
sample of size n with known location parameter « are given as (Reference [5]):

S‘U X(n —j+1) /Zn J+1 )C(l ) j=1, 2,...,m (5)

where X(1y S X(2) < ... < X are the order statistics of the given sample. Significantly large values of SU
indicate that the high extreme values are outliers. The upper 5 % and 1 % critical values sl;Jl of S are glven
in Table B.2 for selected values of n with m =2, 3 and 4. If SU > Smn , declare the m largest observatrons as
outlrers if SU < sb’ forj=m,m-1,...,1+1, but S, > s,n, declare the / largest observations as outliers; if

S]U < s for allj=1,2, ..., m, declare there to be no outliers in the sample.

For the case when the parameter ais unknown, it can be estimated by the value of the smallest observation

x(1y and the critical value of S is then sj e -

4.3.3.4 Consecutive tests of m possible lower outliers

The test statistics that can be used to declare up to the m smallest observations as outliers in an exponential
sample of size n with known location parameter a are given as (Reference [5]):

S% = (xu1) - /Zl1x(l a), j=12.,m (6)

where X(1) SX(2) < ... SX(p are the order statistics of the given sample. Significantly high values of SL

indicate that the low extreme values are outliers. The lower and upper 5 % and 1 % critical values s] , Of S"

are given in Table B.3 for selected values of n with m=2,3 and 4. If S,';, > sk declare the m smallest
L
Jn

observations as outliers; if S'j‘ < s/;,, forallj=1, 2, ..., m, declare there to be no outliers in the sample.

mn

for j=m,m-1,...,1+1, but S}->s'-. declare the [/ smallest

observations as outliers; if S'j'ss In»

This test can only be used to detect outliers from exponential samples with known parameter a. For
exponential samples with unknown «, the procedure discussed in 4.4 can be used to detect outliers from the
sample data.

EXAMPLE Consider the following 22 observations that are arranged in ascending order:

10,10 10,27 10,85 11,38 12,85 13,13 14,07 14,26 14,51 14,55 15,73
17,43 17,72 18,49 20,75 21,37 22,50 24,22 25,61 33,84 43,00 84,94

In detecting outliers using the Greenwood statistic, the first step is to verify that the given observations are
regarded as drawn from an exponential distribution. The data points of the exponential probability plot given in
Figure 5 a) appear to be scattered around a straight line, with the exception of the largest or the two largest
values. This plot reveals that the data set, with the exception of one or two extreme data values, can be
assumed to come from an exponential distribution. This assumption is confirmed in Figure 5 b) in which the
data values, without the two largest values, are scattered around a straight line. With an estimated location '
parameter a = 10,10, the Greenwood statistic is Gg = 8 386,326/(249, 37)2=0,134 86. From Table B.1, the :
lower and upper 2,5 % critical values gg.p¢ of Gg are 0,067 3 and 0,133 8, respectively. Thus, the calculated -
Gg value of 0,134 86 falls above the upper critical value of 0,133 8 and we conclude that one or more of the -
high extreme value(s) in the given data set are outliers.

16 Anan
Copyright International Orgamzauon for Slandardlzatlon ghtS reserved 1 7
Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale



ISO 16269-4:2010(E)

YA YA
99 99

95 |- 95 |-
90 |- 90
5+ 75 k-
50 | 50
25} 251

1 | | | | | | | | > 1 | | | —

10 20 30 40 50 60 70 80 90 X1 10 20 30 40 X2

a) Exponential probability plot b) Exponential probability plot
of original data set of reduced data set

Key

X1 original data set

X2 reduced data set

Y exponential probabilities

Figure 5 — Exponential probability plots

As the questionable data points are the two high extreme values, the tests of 4.3.3.3 can be used to check for
up to two possible outliers in the sample. Taking m =2, we have Sg: (43,0 - 10,1)/174,53 = 0,188 5 and
S1U = (84,94 — 10,1)/249,37 = 0,300 1. After comparing these values with the respective critical values of
s%ﬁ: 0,231 3 and s1L;121= 0,283 4 taken from Table B.2 at o= 0,05, only the largest value (84,94) is declared
as an outlier at the 5 % significance level.

4.3.4 Samples taken from some known non-normal distributions
4.3.41 General

Detection of outliers in samples taken from non-normal distributions is of considerable practical importance.
Outliers in exponential and gamma samples arise in the study of life testing, traffic and river flows, etc.,
whereas the extreme-value sample arises in the study of extremes, such as maximum wind speeds, or
sporting achievements. The lognormal and Weibull distributions often arise in reliability applications. In cases
when the non-normal family of distributions is known and is either the lognormal, extreme-value, Weibull or
gamma distribution, the following transformations are recommended to transform the data to resemble the
required distribution.

4.34.2 For a sample of data x4, x,, ..., x,, regarded as drawn from a lognormal distribution with probability
density function

1 _(Inx—p)?
f(x) - xO'\/E exp{ 20_2 }

the transformed values In x4, In x,, ..., In x, are a sample from a normal distribution with mean x and variance o2.
The test procedure of 4.3.2 and/or 4.4 can then be used to detect outliers among the transformed values.

10 .
Copyright International Organization for Standardization ©1S0 2010 — All r|ght3 reserved

Provided by IHS under license with ISO
No reproduction or networking permitted without license from IHS Not for Resale



I1ISO 16269-4:2010(E)

4.3.4.3 For a sample of data x4, x5, ..., x,, taken from a type 1 extreme-value distribution with distribution
function

P(X < x)=exp{-exp[~(x—a)/b]}, —eo < x <o,

the transformed sample values exp(—x4/b), exp(—xy/b), ..., exp(-x,/b) follow the exponential distribution with
mean exp(—al/b). The test procedures of 4.3.3 and/or 4.4 can then be used to detect outliers from the
transformed values.

4.3.4.4 For a sample of data x4, xo, ..., x, taken from a Weibull distribution with distribution function
P(X < x):1—exp{—[(x—a)/b]r}, x>a,b>0,r>0

the transformed sample values (x — a)', (x, —a)’, ..., (x,, — a)" follow an exponential distribution with mean &".
The test procedures of 4.3.3 and/or 4.4 can then be used to detect outliers among the transformed values.

NOTE Exponentially distributed data x can be transformed to ¥x to give approximately normally distributed datal®l.
4.3.4.5 For a sample of data x4, x,, ..., x,, regarded as drawn from a gamma distribution with probability

density function
-1 i
Sf(x)= [brl"(r)] x"'exp(-x/b), x>0, b>0

the transformed values %/Z 31/x2, ?/xn approximately follow a normal distribution. The test procedure in
4.3.2 and/or 4.4 can then be used to detect outliers among the transformed values.

4.3.5 Sample taken from unknown distributions

When detecting outliers in samples regarded as drawn from populations with unknown and skewed
distribution, a general method is to transform the non-normal data to resemble a normal distribution. The
outlier tests of 4.3.3 for the normal samples can then be applied to the transformed normal sample. Two

widely used methods are the Box-Cox transformation and the Johnson transformation. The Box-Cox family of
power transformations takes the form[7!:

y= (x+m)/1, A#0;
log(x+m), A=0,

where

if 1# 0, the parameter m is chosen so that x + m is positive, and

if A=1, the parameter m is set equal to zero to ensure that the original data x remain unchanged.
Optimal selection of the transformation parameter A is provided automatically in some statistical packages.

The Johnson transformation transforms data to resemble a normal distribution using the families of Johnson "
distributions!(8l.

NOTE 1 The Box-Cox power transformation and Johnson transformation are available in relevant statistical software
packages.

NOTE 2 The Box-Cox transformation is simple and easy to understand. However, the Johnson transformation system
is able to accommodate data containing negative values.
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EXAMPLE Consider the data set in 4.2 which is taken from a population with unknown distribution. As its dot plot,
histogram, box plot and stem-and-leaf plot (shown in Figure 3) indicate that the data are taken from a skewed distribution,
a data transformation is required to transform the data values to resemble a normal distribution. The Box-Cox plot and
probability plot of the data set given in Figures 6 and 7 were obtained from a readily available statistical package. Figure 6
contains an estimate A value of —0,19, and the rounded A value of 0,00 which is the value used in the transformation. The
figure also includes the 95 % lower confidence limit of —0,77 and upper confidence limit of 0,36, which are marked on the
graph by vertical lines. In practical situations, a value of A that corresponds to a common transformation, such as the
square root (4=0,5) or the natural log (1=0), should be used. In this example, taking the value of A to be zero is a
reasonable choice because it falls within the 95 % confidence interval. Therefore, the natural log transformation may be
preferred to the transformation defined by the best estimate of A. The probability plots of the original and transformed data
are given in Figure 7. A p-value of 0,318 given in Figure 7(b), evaluated from the Anderson-Darling test statistic, indicates
that the transformed data resemble a normal distribution.

Y4 1 2
6

Lambda
(using 95,0 % confidence)

Estimate -0,19
Lower confidence limit  -0,77
Upper confidence limit 0,36
Rounded value 0,00

Key
X lambda
Y standard deviation

1 lower confidence limit
2 upper confidence limit

Figure 6 — Box-Cox plot of data set
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Figure 7 — Probability plots of original and transformed data

4.3.6 Cochran's test for outlying variance

It is of great importance to detect outliers from a given set of variances evaluated from sets of sample data, in
particular in estimating the precision of measurement methodsl3l by means of a collaborative interlaboratory
experiment. Cochran's test is a widely used test for ascertaining whether the largest variance value in a given
set of variances is significantly larger than the rest.

Given a set of p variances s12, ...,sf, computed from p samples each of size n, Cochran's test statistic is given by
2
N
C — max 7
<, 3 (7)

i=1%1
where Sr2r1ax is the largest variance in the set of p variances.

The 5%, 1 % and 0,1 % critical values of the test statistic C are given in the tables of Annex E for p =2(1)40 1)
sample variances evaluated from p samples each of size n = 2(1)10. The largest variance is then declared as
an outlier if the computed value of C exceeds the critical value.

NOTE The critical values of Cochran's test given in Annex E should ideally be applied only when all the standard
deviations are obtained from the same number () of test results.

1) The convention 2(1)40 refers to the numbers from 2 to 40 in increments of 1.
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EXAMPLE Five laboratories participated in an experiment to determine the absorption of moisture in concrete
aggregates. Eight test results are obtained under repeatability conditions and according to a standardized measurement
method by each of the laboratories. The set of variances obtained are

Laboratories, i 1 2 3 4 5

Variance, s2 12,134 2,303 3,594 3,319 3,455

1

From Table E.1, the 5 % critical value of Cochran's test for p =5 laboratories and n =8 replicates is 0,456 4. Since the
Cochran's test statistic value C=12,134/(12,134 + 2,303 + 3,594 + 3,319 + 3,455) = 0,489 2 exceeds the critical value, we
conclude that the variance of laboratory 1 may be regarded as significantly larger than the rest.

4.4 Graphical test of outliers

The following modified box plot is recommended for detecting outliers when the population distribution of the
given data set is assumed to follow a normal or exponential distribution. Unlike the hypothesis testing
procedures of 4.3, this graphical test of outliers based on the box plot has no prior requirement on the
knowledge of the number of outliers or in which direction the outliers are located.

The lower and upper fourths x., and x., are used instead of the first and third quartiles O, and Q3 in
evaluating the lower fence Lg and upper fence Uf of this distribution-specific modified box plot, i.e.

Lg = xp. =k (xyy, —x10) ®)
UF =Xy, t kU(xU:n _xL:n)

where
n is the sample size;

k_and k; are values that depend upon the underlying distribution of the hypothesized population and the
sample size n;

X is the lower fourth of the box plot evaluated as
XLy = I:X(l-) +X(i+1):|/2 If f = 0,
’ X(i+1) if f > 0;

XUen is the upper fourth of the box plot evaluated as

X[, = |:x('1—i)+x(n—i+1)]/2 if f=0;
o X(n—i) if >0,

in which n/4 =i+ f where i is the integral part of n/4 and f is the fractional part of »n/4, and
X(1y S X(2) < ... < X(,) are the order statistics from the sample.

NOTE 1 This definition of lower and upper fourths is used to determine the recommended values of k_and .y given in
Annex C and is the default or optional setting in some widely used statistical packages.

Observations that fall above the upper fence or below the lower fence are labelled as possible outliers. A
salient feature of this modified box plot is that its constant values k and k; are determined from the
requirement that for an outlier-free sample the some-outside rate per sample, i.e. the probability that one or
more observations in the sample will be falsely classified as outliers, is equal to a small given value a. This
modified box plot reduces to the classical box plot discussed in 4.2 when & =k, =1,5. The values of k_and
ky can be determined from Equation (C.2) given in Annex C for samples taken from the normal and
exponential distributions for selected values of awhen 9 < n < 500.
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NOTE 2  The lower fence of a modified box plot constructed under the exponential distribution assumption may take a
negative value if the given data set does not closely follow an exponential distribution.

EXAMPLE 1 From the n =20 observations of the example in 4.3.2, we have n/4 =20/4 =5 which leads to i =5 and
f=0. Thus, the lower and upper fourths of the box plot are evaluated as

XL = [x(5) + x(G)]/Z =0,5(-0,36 - 0,19) =-0,275
and
XU = [x(15) + x(16)]/2 =0,5(0,93 +1,22) = 1,075

For normal samples, the lower and upper fences of the box plot with some-outside rate per sample of o= 0,05 are
constructed using &= ky = 2,238 2 (as illustrated in Example 1 in Annex C)

Lg =x1., — kL (xy-p — X)) =-0,275 - 2,238 2 (1,075 + 0,275) = 3,297
Ur = xy:,, + ky (xy-p, — xLn) = 1,075 + 2,238 2 (1,075 + 0,275) = 4,097
Therefore the two large extreme values 5,80 and 12,60 that fall above the upper fence are declared to be outliers.

EXAMPLE 2 From the n = 22 observations of the example in 4.3.3.4, we have n/4 =22/4 =5 + 1/2, thus the lower and
upper fourths of box plot are evaluated as

XL ZX(G) = 13,13 and XUy = X(17) = 22,50

For this exponential sample, the lower and upper fences of the box plot with some-outside rate of o= 0,05 are computed
as

Le = XUp — kL (U:n — Xn) = 13,13 = 0,665 0 (22,50 — 13,13) = 6,899
Ur = XUy + ky (tUsn — X1n) = 22,50 + 6,231 3 (22,50 — 13,13) = 80,887

Thus, the extreme value 84,94 that falls above the upper fence is declared as an outlier. The values of 4= 0,665 0 and
ky = 6,231 3 are obtained from Annex C, Example 2.

EXAMPLE 3 Suppose that the second largest value 43,0 of the example in 4.3.3.4 has been wrongly recorded as
4,30. As the value 4,30 falls below the lower fence Lg = 6,899 of the box plot, it is then declared as an outlier. However,
due to the masking effect of the extreme values 4,30 and 84,94, not only are the formal testing procedures of 4.3
incapable of detecting the value 4,30 as an outlier, but they also fail to detect the largest value 84,94 as an outlier.

5 Accommodating outliers in univariate data

5.1 Robust data analysis

Any detected outlier should be investigated for explanations. If it is caused by an error for which the cause can
be found (e.g. clerical error, dilution error, measurement error, etc.), its value should be corrected or deleted if
the actual value is not known. If the presence of outliers cannot be reasonably explained, then they should not
be removed; they should be treated as valid observations and used in subsequent data analysis using robust
procedures that are resistant to the influence of outliers. The outlier accommodation methods of 5.2 and 5.3
can reduce the influence of outlying observations on the results of data analysis without deleting them.
Another alternative is to conduct analyses both with and without the outliers.
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5.2 Robust estimation of location

5.21 General

The sample mean is the optimal estimate of centre location for normal data. However, it is not a resistant and
robust estimate of centre location. A large assortment of robust estimation methods of location have been
proposed in the literature. The trimmed mean given in 5.2.2 has been widely used to alleviate the distortion
caused by outlying observations when estimating the centre location from samples taken from symmetrical
population distributions. For samples taken from asymmetrical population distributions the location estimator
described in 5.2.3 is recommended.

5.2.2 Trimmed mean

When possible outliers are detected in samples taken from symmetric population distributions, the trimmed
mean is recommended for estimating the centre of the symmetric distributions.

Letx(q) < x(0) < ... < x(, be the order statistics from a sample of size n.

Let »=[on] denote the greatest integer less than or equal to an and g= an — r be the fractional part of on,
where 0 < o< 0,5 is the proportion of outlying observations in the data set.

The o+trimmed meanl®], denoted by X1(«), is computed by omitting the » smallest and r largest observations
of the given sample, and by including the two nearest retained observations x,, 4 and x, _ ) with reduced
weight (1 - g), i.e.

. 1 n—r—1
xr(or)= m[(1 = &)(X(pt) + X(n=r)) + Zi:Hz x(l’)} ®)

NOTE 1 When an is an integer, we have g = 0, thus the c+trimmed mean is the sample mean of the trimmed sample.

NOTE 2  The pre-specified value of «is usually taken to be less than 0,25. The classical sample mean is a 0-trimmed
mean, whereas the sample median is approximately a 0,5-trimmed mean.

NOTE 3  The o~Winsorized mean is another popular alternative in which the r =[an] smallest observations are each
truncated to take the value x(,, 1) and the r largest observations of a data set are each truncated to x, _ ,, i.e. replacing
the (1 — g) of X1 () by the value r.

EXAMPLE For the data set of n = 20 observations given in 4.3.2, we compute the mean, median, 5 %, 10 %, 15 %,
18 % and 20 %-trimmed means. These values are

Mean = i 2

20~ (19,69)=0,9845
20 ~i=1"1 " 20

. 1 1
Median = E[X(»]O) + X(1 1)j| = E(O, 30+ 0,43) = O, 365

_ 1 19 1
0,05)=———+ S~ 193)-05167
*7(0.09) 20(1—2xo,05)zz:2x(') 18>

_ 1 18 1
010)=—— S8 o~ 1(534)-0,33375
x7(0.10) 20(1—2xo,10)zzz3x(') 16 >3

_ 1 17 1
0,15)=—— 57 .~ ' (456)=03257
*7(019) 20(1—2xo,15)zz=4x(’) 12 +%9)
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_ 1 16 1
0,18)=—— | (1-0,6 + +> A |=-—==(0,176+4,12)=0,3356
7 ) 20(1-2x0,18) |:( )(x(4) x(17)) Zzzsx( ):| 12,8( )

_ 1 16 1
0,20)=——— S~ 1 412)-0,3433
*7(0.20) 20(1—2xo,20)zz=5x(" 12 +12)

These results suggest that the relatively large sample mean is due to the presence of the two outliers, whereas the
trimmed means stabilize after 10 % to 20 % of the data have been trimmed.

5.2.3 Biweight location estimate

The biweight location estimatel®! is resistant to the presence of outliers for samples taken from asymmetrical
distributions and is robust to small departures from the normality assumptions. Given a sample x4, x,, ..., x,, of
size n, the biweight location estimate can be obtained as

Z‘ui‘(]xi (1_”"2)2
T, = 2
Z‘ui\<1(1_ui )

where u; :(xl. -7, )/cMad, with ¢ = 6,0, M,q =Median(|x; - M|,i=12,..,n) and M is the sample median.
The estimate of T, needs to be computed iteratively. Letting Tn(") and u;; = (x,- —Tn(k))/cMad be the estimate
of 7, and u; at the kth iteration, the estimate of T, at the (k + 1)th iteration is

2
) 2o (1-uf)
Z‘ui‘<1(1 _u’?’k )2

This iterative computation should continue until the sequence of estimates converges to within a desired
accuracy. For example, the iterations can be terminated if ‘Tn(k”) —Tn(k)‘ <107° (say). An appropriate resistant
starting value T,§°) is the sample median M.

(10)

T(k+1

n

NOTE Under the normality assumption, a biweight estimator with ¢ = 6,0 implies that observations more than about
four standard deviations away from the median will be given zero weight.

EXAMPLE The biweight location estimate of the data set given in 4.3.2 is 7,=0,176 9. It is close to the mean value
(0,156 5) of the data set with the two extreme values (5,80 and 12,8) replaced by their correct values (0,58 and 1,28).

5.3 Robust estimation of dispersion

5.3.1 General

Two of the widely used scale estimators that are resistant to outlying observations and can be used in place of
the sample standard deviation are given below.

5.3.2 Median-median absolute pair-wise deviation

S, = s, Median; (Median ;

xi—xj‘,i;tj,i,j:l 2,...,11) (11)

The constant s, is a correction factor chosen to ensure that S, is an unbiased estimator for the scale
parameter of a hypothesized distribution (normal, exponential, etc.). For large normal samples, the value of s,
is taken to be 1,192 6 (see Reference [10]), whereas s, = 1,698 2 for large exponential samples. The values of
s, are given in Table D.1 for normal samples of size n = 2(1)20(10)100, 120, 150, 200, 300 and 500.
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5.3.3 Biweight scale estimate

The biweight estimate of scale in the sample x4, x,, ..., x,,, follows the discussion given in Reference [9], and
can be obtained as

0 \/Zu,.<1(xi—M)2(1—ui2)4
= Spi
Jn—1 ‘Z‘ui‘<1(1—ui2)(1—5ui2)

where M is the sample median, u; =(x; —M)/(cMad) and My = Median(|xi —M|,i =1, 2n) for normal
samples of size n. A recommended choice for ¢ is the value 9,0. The values of 5,; based on c = 9,0 are given
in Table D.1 for normal samples of size » =2(1)20(10)100, 120, 150, 200, 300 and 500.

Sp

(12)

i

NOTE Under the normality assumption, a biweight estimator with ¢ = 9,0 gives zero weight to observations more than
about 6 standard deviations away from the median.

EXAMPLE For the data set given in 4.3.2, the classical sample standard deviation s, robust scale estimates S, of
5.3.2, and S;; of 5.3.3 are given by

$=31772,85,=1,0150, S,,= 1,156 5

These results clearly reveal that the classical sample standard deviation (s) has been greatly inflated by the two large
observations. The two corresponding robust estimates S, and S;; have relatively smaller values and are close to each
other.

6 Outliers in multivariate and regression data

6.1 General

Outliers are much harder to identify in multivariate and regression data than in univariate data. A multivariate
outlier need not be an outlier in any of its components or bivariate coordinates. Multivariate outliers can also
be cloaked to some extent by the general structure of their generating mechanism and their presence only
comes to light after the structure of the data has been modelled. An outlier in regression data may not be a
simple extreme value, but an observation that significantly deviates from the general pattern of the regression
model.

6.2 Outliers in multivariate data

The general idea behind methods to identify outliers from multivariate data is to transform the multivariate
observations into univariate statistics. One widely used statistic is the Mahalanobis distance, which measures
the distance of a multivariate observation to the sample mean of the data set, standardized by the sample
covariance matrix. Suppose that we have p variables, given by X, X, o X, which are arranged in a
p-component vector X = (Xq, Xp, ..., X,)".

Let = (14, to, ..., up)T be the vector of the means of the p random variables in X, and let the variances and
covariances of the random variables in X be denoted by a p xp covariance matrix 2 in which the main
diagonal elements of Yare the variances and the off-diagonal elements are the covariances of the X''s in X.

The Mahalanobis distance from X to uis defined as

Mp = (X - ) 27X - ) (13)
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The outliers for a sample of » multivariate observations x4, x,, ..., x,, can be detected from the corresponding »
Mahalanobis distances M p; = \/(xi —y)TZ‘1(x,- —u),i=1,2, ..., n For the case when the vector X follows a
multivariate normal distribution with mean y and covariance matrix 2, the squared Mahalanobis distance, Ml%,
is known to follow a chi-square distribution with p degrees of freedom.

The above computation of Mahalanobis distance depends on knowledge of ¢ and X In practice, it is usually
necessary to estimate the values of 4 and X from the sample data. In the presence of outliers, robust
estimates of # and X should be obtained by the minimum covariance determinant (MCD) estimator(1l. The
MCD method looks for the set of & observations out of the »n given observations which yield a covariance
matrix that has the smallest possible determinant. If the data set is presumed to contain at most 100« % of
outlying observations, the value of 4 should be taken close to (1 — a)n; however, it should be greater than the
integer value [(n + p + 1)/2]. The mean value and covariance matrix of these i observations is then the MCD
estimates uy,cp and Zy,cp of # and X, respectively. The robust distance of the observation x; is then defined
as

~ T &- -
Dp; =\/(xi_.”MCD) Eico (x; — Aivep) (14)

Under the multivariate normality assumption, a conservative criterionl!!] is to declare observations that have a
robust distance larger than the cutoff-valueﬁl;(g,gm;p as outliers, where ;(&975;17 is the 97,5 % percentile of a
chi-squared distribution with p degrees of freedom.

A visual comparison between the Mahalanobis distances and the robust distances, and the effectiveness of
using the robust distance in detecting outliers, is given in the following example.

EXAMPLE A set of 35 bivariate observations (x4, x,) collected from an experiment were recorded as follows:
Datum . x1; X, Datum . x4y xo; Datum . x1; X,
number i number ; number i

1 12,00 12,60 13 12,90 12,95 25 15,60 15,64
2 9,30 10,20 14 12,90 13,50 26 13,25 12,85
3 15,00 14,50 15 13,10 13,80 27 16,83 16,85
4 10,15 19,30 16 16,00 16,25 28 12,00 11,70
5 10,45 10,80 17 13,45 13,00 29 17,30 17,25
6 17,45 16,90 18 13,55 15,20 30 10,65 10,80
7 10,80 11,95 19 14,30 15,10 31 17,55 17,70
8 10,80 10,85 20 14,40 14,55 32 18,20 18,35
9 10,75 11,65 21 13,60 14,35 33 19,10 19,30
10 17,00 17,50 22 14,80 14,99 34 13,55 14,00
11 8,25 17,20 23 10,15 9,90 35 12,55 15,10
12 12,66 13,30 24 15,10 15,15

The Mahalanobis distance and robust distance of each observation are computed and plotted in Figure 8 using # =32
observations to calculate the MCD estimator. This figure is plotted using the open-source software LIBRA'1l. The dashed
line is the set of points where the robust distance is equal to the Mahalanobis distance. The horizontal and vertical lines
are drawn at the cutoff-value of ,/;{5’975;2 =/7,378 =2,716 . Points beyond these lines can be declared as outliers. The
robust distance in this plot reveals that points 4, 11 and 35 are outliers. However, only points 4 and 11 are declared as
outliers when the Mahalanobis distance is used. It can be seen as an example of masking defined in 2.3 that the
Mahalanobis distance only declares observations 4 and 11 as outliers. If the Mahalanobis distance is calculated without
using observations 4 and 11, then observation 35 is also declared as an outlier.
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The data are plotted in Figure 11 where the points 4, 11 and 35 are labelled.

Figure 8 — Plot of the Mahalanobis distance against the robust distance of the data set

6.3 Outliers in linear regression

6.3.1 General

In simple linear regression analysis, a data point (¥, X) can be outlying with respect to its Y value, its X value,
or both. In the scatter plot of (y;, x;) given in Figure 9, point 1 is outlying with respect to its y value as it falls far
outside the scatter, although its x value is not an outlying value; point 3 is outlying with respect to its x value as
this x value is much larger than the values of other points and its y value is not an outlying value; point 2 is
outlying with respect to both its x and y values.
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Figure 9 — Scatter plot of (Y, X)

Figure 9 also reveals that not all outlying points have a strong influence on the fitted regression line. Point 1
may not be too influential because a number of points in the scatter plot have similar x values that will prevent
the fitted regression line from being displaced too far by point 1. Point 2 is also not too influential because its
value of y is consistent with the linear regression line formed by the majority of the data points. By contrast,
point 3 is influential in affecting the fit of the regression line, as not only is its x value an outlier, but its y value
is also inconsistent with the linear regression of the other points.

6.3.2 Linear regression models

In relating a response variable Y to a single explanatory variable X, the linear regression line fitted to a sample
of n data points (y,, x,), i=1, 2, ..., n, is given by

Vi =bg +byx; (15)

and the ith residual is defined as the difference between the observed value y; and the corresponding fitted
value y,, i.e.

ei:yl’_)’}l’,l‘:1,2,...,l’l

The ordinary least squares (OLS) estimates by and b, that minimize the error residual sum of square 2?21 ei2

are given by
n
D =Xy
_ i=1
by=mF——
> (x;—x)?
i=1
and (16)
bo = _)_/—b»]f

where X and y are the means of the x; and the y, observations, respectively.
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The influence of outlying X and/or Y observations in fitting the linear regression line using the OLS estimates
can be diagnosed by examining the fitted OLS regression value

D (x; - X)y;

N _ _ _ —\ j=1
Yi =y+b1(xi—x)=y+(xl~—x)‘/n

> —%)?
k=1

or, equivalently,

n
Vi :Zhijyj (17)
J=1

where the values

1 (r-%)x, - )
gt

D —%)?

k=1

involve only the observations on the explanatory variable X. The hij values form a symmetric n x n matrix

n
H= (hl-j), often called a hat matrix. The equation p, = Zhijyj clearly reveals that the hij values measure the

j=1
role of the X values in determining how important the observed value Vi is in influencing the fitted value 7;.

Similarly, in relating a response variable Y to p explanatory variables X;, X5, & the regression function
fitted to a sample of » data points (v;, x;, x;, ..., x;,), i=1, 2, ..., n, can be given by

j;l' Zbo +b1xl~1 + bzxiz +~~+bpxl~p

in which b, refers to the jth fitted regression coefficient, and x;; refers to the ith individual value of the jth
explanatory XJ As in the case of a single explanatory variable, the ith residual of the fitted regression function
is e; = y; —y; . In matrix notation, the multiple regression model is written as

7= Xb (18)

where = (54,....5,)! is an nx 1 vector, b=(bg,by,....b,)" is a (p+1)x 1 vector and X is an nx (p+ 1)

matrix of the form

p

1 X171 X1

P
x= |1 2t Y2
1 x4 - Xnp

The vector of estimated least squares regression coefficients is given as
b= (XTX)'1XTy (19)
and the vector of the fitted values y can be obtained directly in terms of the hat matrix H as

y=Xb=XX"X)"1XTy = Hy

22n .
Copyright International Organization for Standardization ©1S0 2010 — All r|ght3 reserved

Provided by IHS undg‘r license with ISO
No reproduction or networking permitted without license from IHS Not for Resale



I1ISO 16269-4:2010(E)

where y =(y4, ...,yn)T is an n x 1 vector of n observed y values, and

H=XX"x)"1xT
is an n x n matrix.
6.3.3 Detecting outlying Y observations
A robust procedure in detecting outlying Y observations from a sample of size » is to analyse the studentized

deletion residuals r; which are the studentized residual errors of the regression function fitted without using the
ith data point. The studentized deletion residuals r; can be computed asl!?]

r [ n-p=2 i=1,2,.

l=ei\l(1_hii)RSSE —ef ot )
where

e; =y, —J; is the ith residual,

hj; is the ith diagonal element in the hat matrix H,

Rssg = Z?—1ei2 is the residual error sum of squares of the fitted regression function based on the n
B data points, and the number of estimated parameters in the fitted regression function is
p+1.

NOTE The expression for the studentized deletion residual 7, is derived!'?] based on the ith point (y;, x;1, X2y +ees Xip)
being discarded in fitting the regression function to the remaining » — 1 points. It can be calculated without having to fit new
regression functions each time a different data point is omitted as can be seen from Equation (20).

By using the result that each of the studentized deletion residuals r; follows a ¢ distribution with

n —p — 2 degrees of freedom, data points whose studentized deletion residuals have absolute value greater
than 71_y,. ,_,—2 Would be identified as outlying with respect to the Y value.

6.3.4 Identifying outlying X observations

The diagonal elements of the hat matrix H can also be used to detect outlying X observations. Some useful
properties of the elements 7, in the hat matrix of the linear regression model with an intercept parameter are:

— ifh;=0o0rh;=1,thenh;=0forallj=i
where p + 1 is the number of regression parameters in the regression model including the intercept term.

In the special case of linear regression line with one explanatory variable (» = 1) and an intercept term the
diagonal elements /,; in the hat matrix H can be expressed as

1 X, —¥%)2
PO B € StV 1)
123 n
n -2
2. (%)
k=1
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The above equation of #;; reveals that it is a measure of the distance between the X value of the ith point and
the mean of the X values of all » data points. A large #,; value reveals that the value x; deviates away from the
majority of the X observations and that x; can be an outlying value compared with the majority of the X; values
that have smaller values of ‘xj —E‘ for j # i. The diagonal element #;; of the hat matrix in this context is called
the leverage of the ith observation. In general, a leverage value #;; is considered to be large if it is more than
twice as large as the mean leverage value 7 :lZn:hﬁ =(p+1)/n. This rule implies that if 4; > @, then

=1
the ith observed value is taken to be an outlier with regard to its x value. Another simple guideline suggested

by Reference [13] is that
— data with leverage values less than 0,2 can be safely included in the regression analysis,
— data with leverage values between 0,2 and 0,5 may be included in the regression analysis,

— data with leverage values greater than 0,5 should be discarded in the regression analysis.

6.3.5 Detecting influential observations

After identifying data points that are outlying either in their Y values and/or their X values, the next step is to
ascertain whether these outlying data are influential by examining if deleting these data points would lead to
major changes in the fitted regression model. Two of the widely used measures of influence are the DFFITS
value and Cook's distancel12114],

DFFITS value

The notation DFFITS is an abbreviation for “difference in fits”. The DFFITS value for the ith data point is
defined as

5 1/2 5 1/2 5 1/2
(DFFITS), = ¢, s [ i ] =r,( i J (22)
Rssg (1-h;)—e; 1=hy 1=hy

where r; is the studentized deletion residual defined in Equation (20). The ith data point is declared as an
influential point if the absolute value |(DFFITS),| exceeds 1 for small to medium data sets and exceeds

2\/(p+1)/n forlarge data sets.

Cook's distance

Cook's distance, denoted by D,, is defined as

2
n—p-—"1e; h.
D, = (n—p—1e; ii > (23)
(p+MDRsse | (1-hy;)
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where the larger the e; and/or 7, the larger the D,. Therefore, large D, values signify influential observations.
Reference [14] suggests that observations with a Cook's distance greater than the 50th percentile value
Fo,50; p+1n-p—1 Of an F-distribution may be declared as influential outliers, where n is the number of
observations, p + 1 is the number of parameters in the regression model (including the intercept parameter)
and is used to indicate the degrees of freedom associated with the numerator; and n—p—1 is the
denominator degrees of freedom. Observations which have a Cook's distance value that is above
Fo,50;p+1,1-p—1 Should be examined for typographical errors or other causes for the extremeness of the
observation.

NOTE The methods described in this clause will be ineffective if two or more influential outlying data points fall close
to each other. Extensions of the above procedures to detect two or more closely grouped influential data points have been
developed in which extensive computation is required.

EXAMPLE The data obtained in a study conducted to determine the relationship between the amount of body fat ()
to two explanatory variables, triceps skinfold thickness (X4) and thigh circumference (X;), are given in columns 2, 3 and 4
of the table below. The data are taken from Reference [12]. The three-dimensional plot of (Y, X7, Xo) is also given in

Figure 10.
Data points Triceps Thigh Body fat Residual Leverage Studentized
(subject) skinfold circumference value deletion
thickness residual
I X Xo; Y; e hi; 7
1 19,5 43,1 11,9 -1,683 0,201 -0,730
2 24,7 49,8 22,8 3,643 0,059 1,534
3 30,7 51,9 18,7 -3,176 0,372 -1,656
4 29,8 54,3 20,1 -3,158 0,111 -1,348
5 19,1 42,2 12,9 0,000 0,248 0,000
6 25,6 53,9 21,7 -0,361 0,129 -0,148
7 31,4 58,5 27,1 0,716 0,156 0,298
8 27,9 52,1 254 4,015 0,096 1,760
9 22,1 49,9 21,3 2,655 0,115 1,117
10 25,5 53,5 19,3 —2,475 0,110 -1,034
11 31,1 56,6 254 0,336 0,120 0,137
12 30,4 56,7 27,2 2,226 0,109 0,923
13 18,7 46,5 11,7 3,947 0,178 -1,825
14 19,7 44,2 17,8 3,447 0,148 1,524
15 14,6 42,7 12,8 0,571 0,333 0,267
16 29,5 54,4 23,9 0,642 0,095 0,258
17 27,7 55,3 22,6 -0,851 0,106 0,344
18 30,2 58,6 254 -0,783 0,197 0,335
19 22,7 48,2 14,8 —-2,857 0,067 -1,176
20 25,2 51,0 21,1 1,040 0,050 0,409
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Key

X  triceps skinfold thickness
Y thigh circumference

Z body fat

Figure 10 — Scatter plot of body fat vs thigh circumference vs triceps skinfold thickness

The regression function fitted by the OLS method is given by

$; =—=19,174+0,222 4x; + 0,659 4x,,

with sum of squares error, Rgge =Zf?1e,2 =109,95, where the residuals ¢;, leverage h; and the studentized deletion

residuals r; of the fitted regression function are given in columns 5, 6 and 7, respectively.
As n =20 and p = 2, then by taking the significance level to be «= 0,05, we have
1—o/2n; n—p—2 = 10,998 75;16 = 3,580 2
Since |ri| < 3,580 2 for all i, we conclude that none of the data points has an outlying Y value.
In detecting an outlying X value, as both /33 = 0,372 and h15’15 = 0,333 exceed the value
2h =2(p+1)/n=2(2+1)/20=0,3
we conclude that data points 3 and 15 are outlying in terms of their X value.

Finally, we shall ascertain how influential the data points 3 and 15 are in fitting the regression line by using their respective
Cook's distance of

=0,490

_17(-3,176)?| 0,372
7 3(109,95) | (1-0,372)2

and Dq5=0,212. Since these two values are both less than the 50th percentile value Fgs50.347=0,8212 of the F-
distribution, both data points 3 and 15 are not influential enough to declare them as influential outliers.

The regression function fitted with data point 3 discarded is given by

$; =—12,248+0,564 1xy, +0,363 5xy,

in which the values of the estimated parameters are substantially different from those fitted with data point 3.

2A :
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6.3.6 A robust regression procedure

An alternative approach of detecting outliers in regression analysis is to fit a robust regression model to the
majority of the data and then discover the outliers as those points having large residuals from the robust
equation. A widely used robust regression model is the least trimmed squares (LTS) regression[!9l. The
regression coefficients of the LTS regression are those that minimize the sum of the m smallest squared

regression residuals. Consider again a given sample of n data (y;, x;1, x;5, ..., xip), i=1,2, ..., n, with the fitted
values and residuals given as

)‘;i Zbo +b1xl~1 +-~~+bpxl~p
and
e =y =¥

respectively. In this case, the regression coefficients b, b4, ..., b, of the LTS regression are values that
minimize the sum of squares z;;e(zi) , where e(zi) refers to the ith order statistics of the squared residuals
(i.e. the residuals are first squared and then ordered), and m is the number of observations (out of ») that are
presumed to be fitted well by the LTS regression model. When the data set is presumed to contain at most
100 % of outlying observations, the value of m should be taken close to (1 — @)n but not less than the integer
value [(n + p + 1)/2]. Observations with large residuals are then identified as outliers.

NOTE The estimation of LTS regression coefficients is available in proprietary statistical packages.

EXAMPLE The bivariate data of 6.2 are plotted in Figure 11 together with two fitted regression lines of the response
variable x5 (v) to x4 (x), i.e. the ordinary least squares (OLS) line that minimizes the residual sum of squares, and the least
trimmed squared (LTS) line that minimizes the trimmed residual sum of squares with m = [0,9n].

Y

18

16

14

12

10

8 10 12 14 16 18 X

The labelled points 4, 11 and 35 were the points considered to be outliers in 6.2.

Figure 11 — Comparison of the least trimmed squares (LTS) regression line
and the ordinary least squares (OLS) regression line

Note that the two most influential points at the top left hand corner pull the OLS line away from the main
cluster of the data set that has been fitted extremely well by the LTS line. The robust LTS regression
procedure essentially ignores the two influential points as only around 90 % of the data are included in fitting
the LTS line.

AIOA AnAAN AL
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Annex A
(informative)

Algorithm for the GESD outliers detection procedure

Suppose that a sample x4, xo, ..., x,, of size n is taken from a normal distribution. The following algorithm
describes the necessary steps for detecting m possible outliers using the generalized extreme studentized
deviate (GESD) procedure at significance level .

Read ¢, m.

Set/=0.

Set Iy ={x4, x5, ..., x,}.
REPEAT

Compute the sample mean x(/;) and sample standard deviation s(;) from the sample /,.

max|x —x(; )
xiEI]

Compute the statistic R, =
s(1;)

Compute the 100pth percentile byn—1-2 of the t-distribution with (n — I — 2) degrees of freedom, where

p=(1- a/2)1/(n 1)

(n —I- 1)tp,n—l—2

Compute the critical value 4, = .
Jn-1-2422,  o)n-1)

Set/;, ;=1)\{x()}. [See Note 1]
Set/=1+1.

UN%I'IL I=m.

Setil: 0.

REPEAT

If (R, > 4;), then declare x{/) (the value of x in /, that yielded the value R)) as an outlier.

Set/=1+1.
UNTIL / = m.

NOTE 1 I, 1 is the reduced sample of size n — / obtained by deleting the data point x{/) in the sample I, that yields the
value R,.

NOTE 2 If (R;< A4)foralll=0,1, 2, ..., m, itis concluded that no outliers are present in the sample.

20 :
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Annex B
(normative)
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Table B.1 — The lower and upper 2,5 % and 1 % critical values g, of
Greenwood's test statistic Gg for exponential samples

Lower | Lower | Upper | Upper Lower | Lower | Upper | Upper Lower | Lower | Upper | Upper

n 1% [25% |125% | 1% n 1% [25% |125% | 1% n 1% [25% |125% | 1%
2 105000(0,5003|0,9754|0,9901] 34 ]0,04280,0443|0,0790|0,0863] 82 |0,0195|0,0201|0,030 10,0319
3 ]0,3360/0,3402(0,83140,8901| 35 |0,0417]0,0431(0,0765)0,0835] 84 |]0,0191|0,0196 (0,029 30,0311
4 ]0,2585(0,2658|0,6828(0,7563]| 36 |0,0407(0,0421]|0,0742(0,0809]| 86 |0,0187(0,0192|0,0286 | 0,030 2
5 10,2137|0,2217(0,5680|0,6400| 37 |]0,0397|0,0411(0,0720|0,0784] 88 |]0,0183|0,0188 (0,027 9| 0,029 5
6 ]0,1838(0,1914]0,4821|0,5474] 38 ]0,0388(0,0401|0,0699|0,0761] 90 |]0,0179|0,0184|0,027 2| 0,028 8
7 ]0,1620/0,1689 (0,417 3|0,4749| 39 |0,0379|0,0392(0,06800,0738] 92 ]0,0176|0,0180 [ 0,026 6 | 0,028 1
8 101452(0,1514]0,3667(0,4173| 40 |0,0371(0,0383|0,0661|0,0717| 94 |0,0173(0,0177|0,026 0 | 0,027 4
9 10,1318(0,1374|0,3263|0,3710] 41 ]0,0363|0,0375|0,0643|0,0698] 96 |0,0169|0,0174|0,0254 | 0,026 8
10 ]0,1208|0,1260(0,2934|0,3331| 42 |]0,0355|0,0367 (0,0626|0,0679] 98 ]0,0166|0,0170 | 0,024 8| 0,026 2
11 ]0,1116|0,1164 (0,266 1|0,3016| 43 |]0,0348|0,0359(0,0610|0,0661] 100 | 0,016 30,0167 | 0,024 30,0256
12 ]10,1039|0,1082(0,2431|0,2751| 44 ]0,0341|0,0352(0,0595|0,0644] 105 |0,0156|0,016 0 | 0,023 0 | 0,024 2
13 ]0,0972|0,1012(0,2236|0,2525| 45 |]0,0334|0,0345 (0,058 10,0628 110 | 0,0149|0,0153 (0,021 90,0230
14 10,0913|0,0951 (0,206 8|0,2330| 46 |0,0328|0,0338(0,0567|0,0612] 115 ]0,0143|0,0147|0,0209|0,021 9
15 ]0,0862|0,0897(0,1922|0,2161| 47 ]0,0322|0,0332(0,0554|0,0597] 120 |0,0138|0,0141|0,01990,020 9
16 ]0,0816|0,0849(0,1794|0,2013| 48 |]0,0316|0,0326 (0,054 10,0683 125 ]0,0133|0,0136(0,0191]0,0200
17 |]0,0776)0,0807 (0,168 1]0,1883| 49 |0,0310/0,0320(0,0529]0,0570| 130 |0,0128|0,0131(0,0183]0,0191
18 ]0,0739|0,0768 (0,158 10,176 8| 50 |0,0305|0,0314 (0,0517|0,05657| 135 |0,0124|0,0127(0,0176|0,0184
19 ]0,0706|0,0734(0,1491|0,1664| 52 |]0,0294|0,0303 (0,0496|0,0533| 140 ]0,0120|0,0122|0,0169|0,017 6
20 |0,0676)0,0702(0,1411|0,1572] 54 ]0,0284 0,029 30,047 50,0511 145 |0,0116]0,0118(0,0163|0,0170
21 10,064 8)0,0673(0,1338|0,1488] 56 |0,0275]0,0284 |0,0457|0,0490]| 150 |0,0112]0,0115(0,0157|0,016 3
22 ]0,0623|0,0647(0,1272|0,1412] 58 ]0,0267|0,027 50,044 00,047 1] 155 |0,0109]0,0111(0,0152|0,0158
23 ]0,0600)0,0623(0,1212|0,1343] 60 |0,02590,0267 |0,0424|0,0453]| 160 |0,0106|0,0108 0,014 6|0,0152
24 10,0578|0,0600(0,1157|0,1280| 62 ]0,0251|0,0259 (0,0409|0,0437]| 165 |0,0103]0,0105(0,0142|0,0147

- 25 |0,0558(0,0579(0,1107|0,1223| 64 |0,0244[0,0251|0,03950,0421| 170 |0,0100|0,0102|0,0137 |0,014 3

- 26 ]0,0540(0,0560|0,1060|0,1170| 66 ]0,0238|0,0244 (0,0382|0,0407| 175 |0,0097|0,0099|0,0133 (0,013 8

27 ]0,0522)0,0542(0,1017|0,1121] 68 ]0,0231]0,0238 |0,0369|0,0394| 180 |0,0095|0,0097 (0,0129]0,0134

- 28 0,050 60,0525 (0,097 8|0,1076| 70 |0,0225|0,0232(0,0358|0,0381] 185 ]0,0092|0,0094 |0,0125|0,0130
29 ]0,0491)0,0509(0,094 10,1034 72 ]0,0220]0,0226 |0,0347|0,0369]| 190 |0,0090|0,0092(0,0122|0,0126
30 |0,0477(0,0494|0,0906(0,0995| 74 ]0,0214(0,02200,0337(0,0358]| 195 | 0,008 8 (0,0090|0,0119|0,0123
31 |0,0464(0,0480|0,0874(0,0958]| 76 ]0,0209(0,0215|0,0327(0,0347| 200 |0,0086 |0,0087|0,0115|0,0120
32 ]0,0451(0,0467)|0,0844(0,0924] 78 |0,0204 (0,02100,0318(0,0337| 225 | 0,007 7 (0,007 80,0102 |0,0105
33 |0,0439(0,0454|0,0816(0,0893| 80 ]0,0200(0,0205|0,0309 (0,0328]| 250 | 0,007 0 (0,007 10,0091 |0,009 4

NOTE 1 Each of these critical values is based on one hundred million simulated exponential samples of size n.

NOTE 2 Each table entry has been rounded upwards in the fourth decimal place in order to guarantee the significance level.
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Table B.2 — The upper 5 % and 1 % critical values for consecutive tests of up to m = 2 upper outliers
for exponential samples

m=2

5%

1%

5%

1%

n Sgin

U
Stn

U
S22

U
St

n Sgin

U
St

] U
2 St

10 [ 0,4348 | 0,4834
11 | 0,4010 | 0,4533
12 | 0,3724 | 0,426 9
13 | 0,3480 | 0,4033
14 | 0,3268 | 0,3827
15 | 0,3082 | 0,363 9
16 | 0,2916 | 0,347 3
17 |1 0,2770 | 0,3320
18 [ 0,2637 | 0,318 3
19 (02519 | 0,3058
20 | 0,2413 | 0,294 1
21 | 0,2313 | 0,283 4
22 | 0,2224 | 0,273 5
23 |1 0,2142 [ 0,264 4
24 | 0,2065 | 0,2558
25 | 0,1995 | 0,247 8
26 | 0,1929 [ 0,2403
27 | 0,1868 | 0,2333
28 | 0,1812 | 0,226 8
29 | 01757 | 0,2207
30 | 0,1708 | 0,214 8
32 | 0,1617 | 0,204 1
34 [ 0,1535 | 0,194 4
36 | 0,1462 | 0,1857
38 | 0,1397 | 01777
40 | 0,1337 | 0,1706
42 | 0,1283 | 0,163 9
44 | 0,1233 | 0,157 8

05143 | 0,5696 | 46 | 0,1187 | 0,1522
0,4748 | 05363 | 48 | 0,1145 | 0,147 0
0,4412 | 0,5066 | 50 | 0,106 | 0,1421
0,4125 | 0,4793 | 55 | 0,1020 | 0,1314
0,3868 | 0,4555 | 60 | 0,0946 | 0,1222
0,3647 | 0,4345 | 65 | 0,0884 | 0,114 3
0,3447 | 04149 | 70 | 0,0830 | 0,107 4
0,3273 | 03972 | 75 | 0,0783 | 0,1013
03114 | 0,3813 | 80 | 0,0741
0,2971 | 0,3667 | 85 | 0,0703 | 0,0912
0,2845 | 0,3529 | 90 | 0,0670 | 0,0869
0,2723 | 0,3403 | 95 | 0,0639 | 0,0830
0,2618 | 0,3286 | 100 | 0,0612 | 0,079 4
0,2519 | 0,3175 | 110 | 0,0564 | 0,073 2
0,2426 | 0,3074 | 120 | 0,0524 | 0,067 9
0,2340 | 0,2980 | 130 | 0,0489 | 0,063 4
0,2263 | 0,2888 | 140 | 0,0458 | 0,059 5
0,2190 | 0,2805 | 150 | 0,0432 | 0,056 0
0,2123 | 0,2729 | 160 | 0,0409 | 0,053 0
0,2058 | 0,2654 | 170 | 0,0388 | 0,050 3
0,1998 | 0,2584 | 180 | 0,0369 | 0,047 8
0,1890 | 0,2457 | 190 | 0,0353 | 0,0456
0,1792 | 0,2339 | 200 | 0,0337 | 0,0436
0,705 | 0,2235 | 220 | 0,0312 | 0,0404
0,1627 | 0,2139 | 240 | 0,0289 | 0,037 3
0,1555 | 0,2051 | 260 | 0,0269 | 0,034 7
0,1491 | 0,197 2 | 280 | 0,0252 | 0,0325
0,1432 | 0,1898 | 300 | 0,0238 | 0,0306

0,096 0

0,1376 | 0,183 0
0,1327 | 0,176 9
0,1282 | 0,170 8
0,1179 | 0,157 8
0,1092 | 0,146 7
0,1020 | 0,137 1
0,0955 | 0,1287
0,0899 | 0,121 4
0,0849 | 0,1150
0,0807 | 0,109 2
0,076 7 | 0,103 9
0,0732 | 0,099 2
0,0700 | 0,094 9
0,064 4 | 0,087 3
0,0596 | 0,0810
0,0556 | 0,0755
0,0521 | 0,070 8
0,049 1 | 0,066 6
0,046 4 | 0,0629
0,044 0 | 0,0596
0,0418 | 0,056 7
0,0399 | 0,054 0
0,0381 | 0,0516
0,0351 | 0,047 4
0,0325 | 0,0439
0,0303 | 0,0409
0,028 4 | 0,038 2
0,026 7 | 0,0359
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Table B.3 — The upper 5 % and 1 % critical values for consecutive tests of up to m = 3 upper outliers
for exponential samples

m=3

5%

1%

5%

1%

n Sgin

U
2

U
Stn

U
3

U
2

U
Stn

U
S3m

U
2

U
Stn

U
3

U
S22

U
St

15 10,3058
16 10,287 5
17 10,2712
18 10,2570
19 10,2441
20 10,2325
21 (0,222 1
22 (0,2125
23 10,2040
24 10,196 1
25 (0,1890
26 (0,1823
27 10,1761
28 10,1703
29 (0,164 9
30 (0,1600
32 (0,150 9
34 10,1428
36 [0,1356
38 (0,129 2
40 10,1234
42 10,118 2
44 10,1134
46 |0,1091
48 10,1050
50 (0,1013

0,321 0
0,303 5
0,288 1
0,274 3
0,261 9
0,250 7
0,240 3
0,230 9
0,222 4
0,214 2
0,206 8
0,200 0
0,193 7
0,187 8
0,182 1
0,177 0
0,167 4
0,158 9
0,151 3
0,144 4
0,138 2
0,132 6
0,127 4
0,122 6
0,118 2
0,114 2

0,380 3
0,363 0
0,347 0
0,332 6
0,3195
0,307 2
0,296 2
0,2857
0,276 1
0,267 2
0,258 7
0,250 9
0,243 6
0,236 8
0,230 3
0,224 1
0,212 9
0,202 8
0,193 6
0,1853
0,177 8
0,170 8
0,164 4
0,158 5
0,153 1
0,148 0

0,357 7
0,336 0
0,316 5
0,299 4
0,283 7
0,269 8
0,257 9
0,246 2
0,236 2
0,226 8
0,218 1
0,210 4
0,202 9
0,196 2
0,1897
0,184 0
0,173 0
0,163 7
0,155 2
0,147 6
0,1409
0,134 8
0,129 1
0,124 0
0,1193
0,1150

0,377 5
0,356 9
0,3387
0,322 2
0,307 4
0,294 5
0,2817
0,270 7
0,260 5
0,250 7
0,241 9
0,233 8
0,226 3
0,2191
0,2125
0,206 3
0,195 1
0,184 9
0,175 8
0,167 9
0,160 3
0,153 7
0,147 4
0,141 8
0,136 7
0,1320

0,4497
0,429 6
0,4112
0,394 9
0,379 8
0,365 8
0,3525
0,340 4
0,329 0
0,318 6
0,308 7
0,299 3
0,290 7
0,282 9
0,274 9
0,268 0
0,254 6
0,242 6
0,2318
0,221 8
0,212 5
0,204 4
0,196 9
0,189 8
0,183 4
0,176 9

55
60
65
70
75
80
85
90
95
100
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300

0,093 1
0,086 3
0,080 4
0,075 4
0,071 0
0,067 1
0,063 7
0,060 6
0,057 8
0,055 3
0,050 9
0,047 2
0,044 1
0,041 3
0,0390
0,036 8
0,0350
0,033 3
0,031 8
0,030 4
0,028 0
0,026 0
0,024 2
0,0227
0,021 4

0,105 2
0,097 6
0,091 2
0,085 5
0,080 6
0,076 2
0,072 4
0,068 9
0,065 8
0,062 9
0,058 0
0,053 8
0,050 2
0,047 1
0,044 4
0,042 0
0,039 8
0,037 9
0,036 2
0,034 6
0,0318
0,029 5
0,027 6
0,025 8
0,024 3

0,136 7
0,127 1
0,1189
0,1117
0,105 4
0,099 7
0,094 7
0,090 2
0,086 2
0,082 4
0,076 0
0,070 5
0,065 8
0,061 6
0,058 1
0,054 9
0,052 1
0,049 5
0,047 2
0,045 2
0,041 5
0,038 5
0,0359
0,033 6
0,031 6

0,105 6
0,097 5
0,090 8
0,084 9
0,079 9
0,075 4
0,071 5
0,067 9
0,064 8
0,061 9
0,056 9
0,0527
0,049 1
0,046 0
0,043 3
0,040 9
0,038 8
0,036 9
0,035 2
0,033 6
0,030 9
0,028 7
0,026 7
0,025 0
0,023 6

0,121 4
0,112 4
0,104 8
0,098 1
0,092 4
0,087 2
0,082 9
0,078 7
0,075 2
0,071 8
0,066 0
0,061 2
0,057 0
0,053 5
0,050 3
0,047 5
0,045 1
0,042 8
0,040 9
0,0390
0,0359
0,033 2
0,0310
0,029 0
0,027 3

0,163 5
0,152 0
0,142 1
0,133 3
0,1257
0,1190
0,1130
0,107 6
0,102 6
0,098 1
0,090 3
0,083 7
0,078 0
0,073 1
0,068 8
0,065 0
0,061 6
0,058 5
0,055 7
0,053 3
0,048 9
0,045 3
0,042 1
0,039 4
0,037 0
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Table B.4 — The upper 5 % and 1 % critical values for consecutive tests of up to m = 4 upper outliers
for exponential samples

m=4
5% 1%
U U U U U U ] U
n S4:n S3in S2in Stn S4:n S3in S2in Stn

20 | 0,2319 | 0,2381 | 0,2573 | 0,3164 | 0,2675 | 0,2758 | 0,3013 | 0,374 7
21 | 0,2208 | 0,2274 | 0,2465 | 0,3049 | 0,2544 | 0,2635 | 0,2883 | 0,360 7
22 | 02104 | 02175 | 0,2369 | 0,2941 | 0,2420 | 0,2515 | 0,2770 | 0,3485
23 |1 0,2013 | 0,2088 | 0,2280 | 0,2842 | 0,2310 | 0,2412 | 0,2662 | 0,336 8
24 10,1928 | 0,2007 | 0,2196 | 0,2750 | 0,221 1 | 0,2316 | 0,256 3 | 0,326 3
25 | 01852 | 0,1932 | 0,2120 | 0,2662 | 0,2121 | 0,2227 | 0,247 3 | 0,316 3
26 | 01781 | 0,1863 | 0,2049 | 0,2581 | 0,2037 | 0,2148 | 0,2390 | 0,306 5
27 | 01716 | 0,800 | 0,1984 | 0,2507 | 0,196 1 [ 0,207 2 | 0,2313 | 0,297 6
28 | 0,1656 | 0,1740 | 0,1924 | 0,2436 | 0,1890 | 0,2002 | 0,2238 | 0,289 7
29 | 0,1602 | 0,1685 | 0,1866 | 0,2369 | 0,1825 | 0,1934 | 0,2171 | 0,2817
30 | 0,1549 | 0,1634 | 0,1811 | 0,2305 | 0,1764 | 0,1876 | 0,2109 | 0,274 5
32 | 0,1456 | 0,1541 | 0,1713 | 0,2190 | 0,1654 | 0,1763 | 0,1993 | 0,260 7
34 | 0,1375 | 0,1458 | 0,1626 | 0,2085 | 0,1559 | 0,166 8 | 0,1889 | 0,248 3
36 | 0,1302 | 0,1384 | 0,1547 | 0,1990 | 0,1473 | 0,158 1 | 0,1795 | 0,237 3
38 | 0,1238 | 0,1318 | 0,1477 | 0,905 | 0,1400 | 0,1504 | 0,1714 | 0,227 0
40 | 0,1180 | 0,1259 | 0,1413 | 0,1827 | 0,1330 | 0,1435 | 0,1636 | 0,217 7
42 | 0,1128 | 0,1205 | 0,1355 | 0,1755 | 0,1271 | 0,1372 | 0,156 7 | 0,209 2
44 | 0,1080 | 0,1156 | 0,302 | 0,1689 | 0,1215 | 0,1314 | 0,1504 | 0,201 5
46 | 0,1037 | 0,1111 | 0,1252 | 0,1628 | 0,1166 | 0,1262 | 0,1446 | 0,194 3
48 | 0,0097 | 0,1070 | 0,1208 | 0,1572 | 0,1120 | 0,1214 | 0,1393 | 0,187 8
50 | 0,0960 | 0,1032 | 0,1166 | 0,1519 | 0,077 | 0,1170 | 0,1345 | 0,181 1
55 | 0,0881 | 0,0948 | 0,1074 | 0,1404 | 0,0986 | 0,107 3 | 0,1237 | 0,167 2
60 | 0,0814 | 0,0878 | 0,0996 | 0,305 | 0,0909 | 0,0992 | 0,1145 | 0,1555
65 | 0,0758 | 0,0818 | 0,0930 | 0,220 | 0,0845 | 0,0923 | 0,106 8 | 0,1454
70 | 0,0709 | 0,0767 | 0,0872 | 0,1146 | 0,0789 | 0,0863 | 0,0999 | 0,136 3
75 | 0,0667 | 0,0722 | 0,0822 | 0,1080 | 0,0741 | 0,0811 | 0,0941 | 0,128 6
80 | 0,0630 | 0,0682 | 0,0777 | 0,023 | 0,0699 | 0,0765 | 0,0888 | 0,1217
85 | 0,0597 | 0,0647 | 0,0738 | 0,0972 | 0,0662 | 0,0726 | 0,0843 | 0,1155
90 | 0,0568 | 0,0616 [ 0,0702 | 0,0925 | 0,0629 | 0,0689 | 0,0801 | 0,109 9
95 | 0,0541 | 0,0587 | 0,0670 | 0,0883 | 0.0598 | 0.0657 | 0.0765 | 0.1050
100 | 0,0517 | 0,0562 | 0,0641 | 0,0845 | 0,0572 | 0,0628 | 0,0730 | 0,100 3
110 | 0,0476 | 0,0517 | 0,0590 | 0,0778 | 0,0525 | 0,0577 | 0,067 2 | 0,092 3
120 | 0,0441 | 0,0479 | 0,0547 | 0,0722 | 0,0486 | 0,0534 | 0,0622 | 0,0855
130 | 0,0411 | 0,0447 | 0,0511 | 0,0673 | 0,0452 | 0,0498 | 0,0579 | 0,0797
140 | 0,0386 | 0,0420 | 0,0479 | 0,063 1 | 0,0424 | 0,0466 | 0,0543 | 0,0746
150 | 0,0363 | 0,0395 | 0,0451 | 0,0595 | 0,0398 | 0,0439 | 0,0511 | 0,0702
160 | 0,0343 | 0,0374 | 0,0427 | 0,0562 | 0,0376 [ 0,0414 | 0,0483 | 0,066 4
170 | 0,0326 | 0,0355 | 0,0405 | 0,0533 | 0,0357 | 0,0393 | 0,0458 | 0,062 9
180 | 0,0310 | 0,0337 | 0,0385 | 0,0507 | 0,0339 | 0,0374 | 0,0435 | 0,0597
190 | 0,0296 | 0,0322 | 0,0368 | 0,048 3 | 0,03823 [ 0,0356 | 0,0415 | 0,056 9
200 | 0,0283 | 0,0308 | 0,0352 | 0,0462 | 0,0309 | 0,0340 | 0,0396 | 0,054 3
220 | 0,0261 | 0,0284 | 0,0324 | 0,0425 | 0,0284 | 0,0313 | 0,0364 | 0,0499
240 | 0,0242 | 0,0263 | 0,0300 | 0,0393 | 0,0264 | 0,0290 | 0,0337 | 0,046 2
260 | 0,0226 | 0,0246 | 0,0280 | 0,0366 | 0,0246 | 0,0270 | 0,0314 | 0,0430
280 | 0,0212 | 0,0230 | 0,0262 | 0,0343 | 0,0230 | 0,0253 | 0,0294 | 0,040 2
300 | 0,0200 | 0,0217 | 0,0247 | 0,0323 | 0,0217 | 0,0239 | 0,0277 | 0,037 8
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Table B.5 — The upper 5 % and 1 % critical values for consecutive tests of up to m = 2 lower outliers
for exponential samples

m=2

5% 1% 5% 1%

n SIZ_:n S!1_:n SIZ_:n S!1_:n n SIZ_:n S!1_:n SIZ_:n S‘If:n

10 |0,8367|0,9775|0,9216|0,9955| 29 |0,8224 |10,9759| 0,9130 | 0,995 2
11 10,8344)0,9773)0,9200|0,9955| 30 |0,8224)0,9758|0,9128|0,995 2
12 |0,8326|0,9770|0,9191|0,9955| 35 |0,8212|0,9757|0,9122|0,995 2
13 |0,8314)0,9769|0,9177|0,9954| 40 |0,8204)0,9756|0,9117|0,995 2
14 10,8303)0,9767| 0,9174 | 0,9954| 45 |0,8198|0,9755|0,911 40,995 1
15 10,8292)0,9766|0,9173|0,9953| 50 |0,8191)0,9755|0,911 10,995 1
16 |0,8283)0,9765|0,9163|0,9953| 60 |0,8189|0,9755|0,9108|0,995 1
17 10,8270)0,9764|0,9157|0,9953| 70 |0,8179|0,9754|0,9102|0,995 1
18 |10,8266)0,9764)0,9157|0,9953| 80 |0,8179|0,9753|0,909 90,995 1
19 10,8261)0,9763|0,9151|0,9953| 90 |0,8172)0,9753|0,909 90,995 1
20 |0,8254|0,9763|0,9146|0,9953| 100 |0,8172|0,9752|0,910 00,995 1
21 10,8248|0,9762|0,9145|0,9952| 120 |0,8166|0,9752|0,909 50,995 0
22 10,8245|0,9762|0,9141]0,9952| 140 |0,8166|0,9752|0,909 10,995 0
23 10,824110,9761|0,9140]0,9952| 160 |0,8166|0,9751|0,909 10,995 0
24 10,8236|0,9761|0,9140 |0,9952| 180 |0,8162|0,9751|0,908 90,995 0
25 10,8236|0,9760/0,9137|0,9952| 200 |0,8159|0,9751|0,908 90,995 0
26 |0,8231|0,9760|0,9135]0,9952| 300 |0,8157|0,9751|0,909 20,9950
27 10,8228|0,9759|0,9132]0,995 2
28 10,8225|0,9760/0,9130)0,995 2
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Table B.6 — The upper 5 % and 1 % critical values for consecutive tests of up to m = 3 lower outliers
for exponential samples

m=3

5%

1%

L
S3m

L
2

L
St

L
3

L
Stn

L
S3m

L L L L
St 3 S22 Stn

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0,7051
0,703 5
0,701 9
0,700 7
0,699 0
0,698 0
0,697 0
0,696 4
0,695 6
0,694 8
0,693 9
0,693 5
0,692 9
0,692 4
0,691 9
0,691 5

0,855 5
0,854 4
0,853 6
0,853 2
0,8527
0,852 0
0,8517
0,851 1
0,850 7
0,850 2
0,850 3
0,849 9
0,849 5
0,849 3
0,849 1
0,849 1

0,984 0
0,984 0
0,983 9
0,983 9
0,983 8
0,983 8
0,983 7
0,983 7
0,983 7
0,983 6
0,983 6
0,983 6
0,983 5
0,983 5
0,983 5
0,983 4

0,807 3
0,806 2
0,805 0
0,803 4
0,8027
0,801 5
0,801 1
0,799 5
0,799 5
0,798 8
0,797 8
0,798 0
0,797 0
0,797 2
0,796 9
0,796 5

0,931 4
0,930 6
0,9300
0,930 0
0,929 6
0,929 0
0,928 8
0,928 6
0,928 5
0,928 5
0,928 1
0,928 3
0,928 0
0,927 9
0,927 8
0,927 6

0,996 9
0,996 9
0,996 8
0,996 8
0,996 8
0,996 8
0,996 8
0,996 8
0,996 8
0,996 8
0,996 8
0,996 8
0,996 8
0,996 8
0,996 8
0,996 8

40
50
60
70
80
90
100
120
140
160
180
200
250
300

0,688 8
0,687 1
0,685 2
0,684 3
0,683 8
0,683 0
0,683 2
0,682 7
0,682 1
0,682 1
0,6817
0,681 3
0,681 2
0,680 4

0,847 2
0,846 2
0,845 9
0,844 9
0,844 9
0,844 3
0,844 4
0,843 8
0,843 4
0,843 7
0,843 6
0,843 7
0,843 2
0,843 1

0,983 30,793 710,926 6| 0,996 8
0,9832]0,7922)0,926 00,996 7
0,9832]0,7911)0,9257|0,996 7
0,9832]0,7904)0,925 30,996 7
0,9831]0,7895)0,9251|0,996 7
0,9831]0,7895)0,925 00,996 7
0,9830|0,788 70,925 30,996 7
0,9830|0,7885|0,924 70,996 7
0,9830|0,7882|0,924 40,996 7
0,9830|0,787 70,924 50,996 7
0,9829|0,787 410,924 20,996 7
0,9830|0,786 60,924 20,996 7
0,982910,786 90,923 90,996 7
0,9829]0,786 30,924 3| 0,996 6
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Table B.7 — The upper 5 % and 1 % critical values for consecutive tests of up to m = 4 lower outliers

for exponential samples

m=4
5% 1%

"ol sk | sk | sBe | S | Sk | s | sE | sk
20 | 0,5961 | 0,7170 | 0,8683 | 0,9876 | 0,6935 | 0,8164 | 0,9377 | 0,997 6
21 | 05946 | 0,7163 | 0,8682 | 0,987 5 | 0,6916 | 0,8157 | 0,9377 | 0,997 6
22 10,5931 | 0,7152 | 0,8673 | 0,9875 | 0,6911 | 0,8144 | 0,9374 | 0,997 6
23 | 0,5920 | 0,7145 | 0,8670 | 0,9875 | 0,6896 | 0,8142 | 0,937 3 | 0,997 6
24 105916 | 0,7138 | 0,8666 | 0,9875 | 0,6889 | 0,8138 | 0,9372 | 0,997 6
25 105903 | 0,7130 | 0,8666 | 0,987 5 | 0,6873 | 0,8126 | 0,9370 | 0,997 6
26 | 0,5891 | 0,7125 | 0,8664 | 0,9874 | 0,6859 | 0,8128 | 0,937 1 | 0,997 6
28 | 0,5878 | 0,7116 | 0,8658 | 0,9874 | 0,6849 | 0,8124 | 0,9366 | 0,997 6
30 | 05867 | 0,7106 | 0,8655 | 0,9873 | 0,6837 | 0,8113 | 0,9366 | 0,997 6
35 05842 | 0,7093 | 0,8646 | 09873 | 0,6822 | 0,8096 | 0,9360 | 0,997 6
40 | 0,5823 | 0,7078 | 0,8636 | 0,9871 | 0,6801 | 0,8089 | 0,9357 | 0,997 5
45 | 0,5808 | 0,706 3 | 0,863 1 | 0,987 1 | 0,6784 | 0,8079 | 0,9354 | 0,997 5
50 | 0,5797 | 0,7061 | 0,8626 | 0,987 1 | 0,6778 | 0,8075 | 0,9353 | 0,997 5
70 | 0,5774 | 0,7033 | 0,8617 | 0,987 1 | 0,6746 | 0,8053 | 0,9346 | 0,997 5
100 | 0,5749 | 0,7021 | 0,861 1 [ 0,9869 | 0,6728 | 0,8044 | 0,9344 | 0,997 5
150 | 0,5733 | 0,7012 | 0,8600 | 0,9870 | 0,6716 | 0,8032 | 0,9335 | 0,997 5
200 | 0,5728 | 0,7003 | 0,8605 | 0,9869 | 0,6706 | 0,8017 | 0,9334 | 0,997 5
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Annex C
(normative)

Factor values of the modified box plot

When the location parameter ¢ and scale parameter o of a hypothesized location-scale distribution 7 ,(x) are
unknown, its first and third quartiles are estimated by the lower fourth X ., and upper fourth X|,., of a sample of
n observations drawn from Fy(x). There are many definitions for the depth of sample fourths. The
recommended depth is

_]i+0,5 f=0;
depth of fourth—{ i+1 f>0

where i is the integral part and f'is the fractional part of n/4. The two data values with this depth, namely the
lower sample fourth (x.,) and upper sample fourth (x,.,), in a given sample of size » are then evaluated as
in4.4.

An exact expression that can be routinely used to evaluate the factors & and k of the box plot for samples
taken from the hypothesized F ;(x) distribution is given in Reference [16] as

Iflff 116, () (==, U =W} S 2, 2, (ZonrZacn) eiendlzr = (C.1)

where

a) «is the specified some-outside rate per sample, i.e. the probability that one or more outliers in an
outlier-free sample will be falsely labelled as an outlier;

b) YI=Zm — kL (Zu:n - Zl:n) and Yu=Zum — kU (Zu:n - Zl:n);

¢)  fz.,.2,, Cin-Zua) i the joint probability density function of z;,, and z,.,, which takes the form

n!

(- u—-1-D(n-u)

F21 2, (5:7) = - S F T O F() - P ] ™ 1= R )™

d) Z,,=(x

rn

function F(x);

0)/o is the rth-order statistic of the standardized variable Z= (X - 6)/c with distribution

e) G;(»)=FO)F(z,)and G, (y) = [F(y) - Flz,. V1 - F(z,.,)];
f) Ip(a,b) = ﬁﬁt”‘1(1 - t)b_1dt is the incomplete beta function.
a,

A direct search algorithm can be used to search for the values of k_and k that satisfy the double integral
Equation (C.1).

For a symmetric distribution, we take k; = k,, = (k) in Equation (C.1). For an asymmetric distribution, one can obtain
the values of k; and k, separately by taking P(X < L ;) =1-Pr(X >Uy),i.e. I, (L[ =1)=1=1g (,, y(n—u,1) in
Equation (C.1).
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The values of & =k, (= k) for samples of size 9 < n < 500 taken from the standard normal distribution can be
approximated from the following function

k= exp{b0 +byIn(n)+ by IN2(n) + ba I3 (n) + by In* (n) + bis |n5(n)} (C.2)

with coefficients by =0and b;,i=0, 1, 2, 3, 4 given in Table C.1.

The values of & and k for samples taken from the asymmetric exponential and extreme-value distributions
can also be obtained from Equation (C.2) with coefficients b,, i =0, 1, 2, 3, 4, 5 given in Table C.2.

For cases when the sample size is large, the values of & _and k, can be approximated as

_ F_1(1/4)_F_1(an/2) d ~F_1(1_an/2)_F_1(3/4)
“T T (34)- T (14) Y FT(34)-F (14

where a,=1—(1 —0)1" can be interpreted as the error rate that an observation from a random sample of
n regular observations is falsely labelled as an outlier.

EXAMPLE 1 To detect outliers from a normal sample of size n = 20, the value of k_= ky (= k) for a some-outside rate
of = 0,05 is evaluated as

k= exp{o,837 07 +0,075 96 xIn(20) - 0,06119xIn2(20) + 0,013 28 xIn3(20) — 0,000 83x|n4(20)}

= exp(0,805 67) = 2,238 2

EXAMPLE 2 To detect outliers from an exponential sample of size n =22, the values of k_ and iy for a some-outside
rate of o= 0,05 are evaluated as

ky = exp{2,206 04 -1,417 52xIn(20)+0,24170xIn2(20) - 0,020 57 xIn®(20)+ 0,000 72><In4(20)}
= exp(~0,408 02) = 0,665 0

ky = exp{2,741 79-0,770 67 xIn(22) + 0,226 88xIn%(22) - 0,028 53 xIn3(22) + 0,001 70xIn*(22) —0,000 o4x|n5(22)}
= exp(1,829 58) = 6,2313

Table C.1 — Coefficients of the fitted functions for the factors i of the box plot for samples of size
9 < n < 500 taken from the normal distribution with parameters unknown

Normal distribution
o mod(n,4) bg b4 by b3 by bg o
0,05 1 4,01761 | -2,35363 | 0,646 18 | -0,078 93 | 0,003 68 — 0,014 57
2 2,06429 | -0,88523 | 0,222 37 | -0,02391 | 0,000 99 — 0,000 64
3 0,480 06 0,258 54 | 0,096 22 | 0,016 20 | —0,000 92 — 0,004 07
0 0,837 07 0,07596 | -0,061 19 [ 0,013 28 | —0,000 83 — 0,004 62
0,01 1 6,37902 | -3,84770 | 1,044 38 | -0,128 13 | 0,006 01 — 0,041 83
2 3,98772 | -2,00630 | 0,50277 | -0,056 77 | 0,002 48 — 0,006 34
3 2,14895 | -0,65278 | 0,11985 | —0,007 96 | 0,000 13 — 0,004 17
0 2,28507 | -0,66052 | 0,10264 | —0,003 93 | -0,000 13 — 0,006 86
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Table C.2 — Coefficients of the fitted functions for the factors i of the box plot for samples of size
9 < n < 500 taken from the exponential distributions with parameters unknown

Exponential distribution

o factor | mod(n, 4) b b4 by b3 by bs o

0,10 ke 1 3,99024 | -3,24052 | 0,95534 | -0,15995 | 0,014 40 | -0,000 54 | 0,000 22
2 1,13059 | -0,72169 | 0,02306 | 0,01804 | -0,00290 [ 0,000 14 | 0,000 19

3 -1,54986 | 1,60282 | -0,82526 | 0,17801 | -0,01829 | 0,000 74 | 0,000 47

0 -1,95058 | 2,26133 | -1,14744 | 0,24930 | -0,02581 | 0,001 05 | 0,000 67

ky 1 3,58501 | -1,567 11 | 0,464 64 | -0,05769 | 0,002 71 — 0,021 72

2 1,797 40 | -0,22367 | 0,076 84 | -0,007 33 | 0,000 24 — 0,003 45

3 0,33262 | 0,83429 | -0,21797 | 0,02979 | -0,001 53 — 0,011 54

0 1,086 40 | 0,33192 | -0,08635 | 0,013 96 | -0,000 80 — 0,008 07

0,05 kL 1 5,18220 | -4,05528 | 1,22229 | -0,20833 | 0,01901 | -0,000 72 | 0,000 33
2 2,206 04 | -1,41752 | 0,24170 | -0,02057 | 0,000 72 — 0,000 11

3 -0,57542 | 1,02024 | -0,65689 | 0,15043 | -0,01586 | 0,00065 | 0,000 48

0 -1,19027 | 1,864 02 | -1,04428 | 0,23327 | -0,02440 | 0,00099 | 0,000 88

ky 1 5,180 29 | —2,967 81 1,047 43 | -0,18511 | 0,016 83 | —0,000 63 | 0,003 85

2 2,741 79 | -0,77067 | 0,226 88 | —0,028 53 | 0,001 70 | —0,000 04 | 0,001 31

3 0,53026 | 1,19859 | -0,50210 | 0,10967 | -0,01158 | 0,00048 | 0,005 44

0 1,31043 | 0,60192 | -0,30396 | 0,074 56 | -0,008 32 | 0,000 35 | 0,004 37

0,02 ke 1 6,72983 | -5,17448 | 1,60518 | -0,27980 | 0,02596 | —-0,00099 | 0,000 52
2 3,63662 | -2,31042 | 0,53046 | -0,07255 | 0,00566 | —0,000 19 | 0,000 06

3 0,56897 | 0,32976 | -0,45563 | 0,117 23 | -0,01292 | 0,000 54 | 0,000 49

0 -0,38125 | 1,48550 | -0,96254 | 0,22351 | -0,02380 | 0,00098 | 0,001 26

ky 1 5,904 97 | -2,95227 | 0,83153 | -0,103 10 | 0,004 86 — 0,069 00

2 3,794 84 | -1,32856 | 0,35393 | -0,040 15 | 0,001 74 — 0,007 15

3 217127 | -0,13525 | 0,01652 | 0,00286 | —0,000 33 — 0,01278

0 2,67762 | -0,43984 | 0,08873 | -0,00507 | 0,000 01 — 0,013 25

NOTE dis the maximum absolute deviation between the original and the fitted values of & for each class of mod(n, 4)

for 9 < n < 500.
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Values of the correction factors for the robust estimators of the scale
parameter

Table D.1 — Correction factors s, and s,, of the robust scale estimators S, and S,; respectively

A nnan

Sample
size, n

Sn

Factor

Shi

Sample
size, n

Factor

Sn

Shi

© 0 N O o b~ w N

P N U G U
N o o0 A WO N -~ O

0,886 6 1,191 2
2,205 1 1,382 1
1,138 5 1,127 2
1,608 1 1,1855
1,185 8 1,065 0
1,4297 1,111 1
1,198 9 1,036 9
1,350 0 1,076 2
1,201 5 1,021 9
1,307 4 1,056 7
1,200 6 1,013 6
1,281 4 1,044 4
1,199 4 1,008 6
1,264 7 1,036 0
1,197 8 1,005 0
1,252 6 1,029 9

18
19
20
30
40
50
60
70
80
90
100
120
150
200
300
500

1,196 1 1,002 5
1,243 8 1,025 2
1,195 1 1,000 6
1,1927 0,996 2
1,192 1 0,994 4
1,192 0 0,993 5
1,192 0 0,992 9
1,192 1 0,992 5
1,192 1 0,992 3
1,192 2 0,992 1
1,192 3 0,992 0
1,192 4 0,991 8
1,192 5 0,991 5
1,192 6 0,9914
1,1927 0,991 2
1,1927 0,991 0
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Annex E
(normative)

Critical values of Cochran's test statistic

Table E.1 — The 5 % critical values of Cochran's test statistic

p n=2 n=3 n=4 n=>5 n=6 n="7 n=28 n=9 n=10
2 0,998 5 0,975 1 0,939 2 0,905 8 0,877 3 0,853 4 0,833 2 0,816 0 0,801 1
3 0,967 0 0,871 0 0,797 8 0,7457 0,707 0 0,677 1 0,653 1 0,633 4 0,616 8
4 0,906 5 0,768 0 0,683 9 0,628 8 0,589 5 0,559 9 0,536 5 0,517 6 0,501 8
5 0,841 3 0,683 8 0,598 1 0,544 1 0,506 4 0,478 3 0,456 4 0,438 8 0,424 2
6 0,780 8 0,616 2 0,532 2 0,480 4 0,444 8 0,4185 0,398 1 0,3817 0,368 2
7 0,727 0 0,561 2 0,480 0 0,430 8 0,397 2 0,372 6 0,353 6 0,338 4 0,3259
8 0,679 9 0,5157 0,437 8 0,391 0 0,359 4 0,336 3 0,318 5 0,304 3 0,2927
9 0,638 5 0,477 5 0,402 8 0,358 4 0,328 5 0,306 8 0,290 1 0,276 8 0,266 0
1: ,0 0,602 1 0,4450 0,3734 0,331 1 0,302 8 0,282 3 0,266 6 0,254 1 0,243 9
11 0,569 8 0,416 9 0,348 2 0,308 0 0,281 1 0,261 6 0,246 8 0,2350 0,225 4
1:32 0,541 0 0,392 4 0,326 5 0,288 0 0,262 4 0,244 0 0,229 9 0,218 7 0,209 6
13 0,5152 0,370 9 0,307 5 0,270 7 0,246 2 0,228 6 0,215 2 0,204 6 0,196 0
14 0,492 0 0,3518 0,290 7 0,255 4 0,2320 0,215 2 0,202 4 0,192 3 0,184 1
15 0,470 9 0,3347 0,275 8 0,241 9 0,2195 0,203 4 0,191 2 0,1815 0,173 7
16 0,4517 0,3193 0,262 4 0,229 8 0,208 3 0,192 9 0,181 1 0,171 9 0,164 4
17 0,434 2 0,305 3 0,250 4 0,2190 0,198 3 0,183 4 0,172 2 0,163 3 0,156 1
18 0,418 1 0,2927 0,2395 0,209 2 0,189 2 0,174 9 0,164 1 0,155 6 0,148 6
19 0,403 2 0,281 1 0,229 6 0,200 2 0,181 0 0,167 2 0,156 8 0,148 6 0,141 9
20 0,389 5 0,270 5 0,220 5 0,192 1 0,173 5 0,160 2 0,150 1 0,142 2 0,1358
21 0,376 7 0,260 7 0,212 1 0,184 6 0,166 6 0,153 8 0,144 0 0,136 4 0,130 2
22 0,364 9 0,2516 0,204 4 0,177 8 0,160 3 0,147 9 0,138 4 0,1310 0,1250
23 0,353 8 0,243 2 0,197 3 0,171 4 0,154 5 0,142 4 0,133 3 0,126 1 0,120 3
24 0,343 4 0,235 4 0,190 7 0,165 5 0,149 1 0,137 4 0,128 5 0,121 6 0,116 0
25 0,3337 0,228 1 0,184 6 0,160 1 0,144 1 0,1327 0,124 1 0,117 4 0,119
26 0,324 6 0,221 3 0,178 8 0,1550 0,139 4 0,128 4 0,1200 0,113 5 0,108 2
27 0,316 0 0,214 9 0,173 5 0,150 2 0,1351 0,124 3 0,116 2 0,109 8 0,104 7
28 0,307 9 0,208 9 0,168 4 0,145 8 0,1310 0,120 5 0,126 0,106 4 0,101 4
29 0,300 2 0,203 2 0,163 7 0,141 6 0,127 2 0,116 9 0,109 2 0,103 2 0,098 3
30 0,292 9 0,197 9 0,159 2 0,137 6 0,123 6 0,113 6 0,106 1 0,100 2 0,095 4
31 0,286 0 0,192 9 0,155 0 0,1339 0,120 2 0,1105 0,103 1 0,097 4 0,092 7
32 0,2795 0,188 1 0,151 1 0,130 4 0,117 0 0,107 5 0,100 3 0,094 7 0,090 2
33 0,273 3 0,183 6 0,147 3 0,127 1 0,114 0 0,104 7 0,097 7 0,092 2 0,087 8
34 0,267 3 0,179 3 0,143 7 0,124 0 0,111 0,102 0 0,095 2 0,089 8 0,085 5
35 0,2617 0,175 2 0,140 4 0,121 0 0,108 4 0,099 5 0,092 8 0,087 6 0,083 3
36 0,256 3 0,171 3 0,137 1 0,118 1 0,105 8 0,097 1 0,090 6 0,085 4 0,081 3
37 0,251 1 0,167 6 0,134 1 0,1155 0,103 4 0,094 9 0,088 4 0,083 4 0,079 4
38 0,246 2 0,164 0 0,131 2 0,129 0,101 1 0,0927 0,086 4 0,081 5 0,077 5
39 0,241 4 0,160 7 0,128 4 0,110 4 0,098 8 0,090 6 0,084 5 0,079 6 0,075 8
40 0,236 9 0,157 4 0,1257 0,108 1 0,096 7 0,088 7 0,082 6 0,077 9 0,074 1

NOTE 1 n is the number of replicate results per variance and p is the number of variances.

NOTE 2 The final decimal place of each table entry has been rounded upwards in order to guarantee the significance level.

NOTE 3 Each table entry is based on 50 million simulations.
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Table E.2 — The 1 % critical values of Cochran'’s test statistic

P n=2 n=3 n=4 n=>5 n==6 n="7 n=28 n=9 n=10
2 0,99994 | 0,995 1 0,979 4 0,958 6 0,937 3 0,917 2 0,898 9 0,882 3 0,867 4
3 0,993 4 0,942 3 0,883 2 0,833 5 0,793 4 0,760 7 0,733 6 0,710 8 0,691 2
4 0,967 6 0,864 3 0,7815 0,721 3 0,676 2 0,641 1 0,6129 0,589 8 0,570 3
5 0,927 9 0,788 6 0,695 8 0,6329 0,587 6 0,553 1 0,525 9 0,503 8 0,485 4
6 0,882 9 0,721 8 0,6259 0,563 5 0,5196 0,486 6 0,460 9 0,4401 0,423 0
7 0,837 7 0,664 5 0,568 5 0,508 0 0,466 0 0,434 8 0,4106 0,391 2 0,3752
8 0,794 5 0,6152 0,521 0 0,462 7 0,422 7 0,393 2 0,370 5 0,352 3 0,337 4
9 0,754 4 0,572 8 0,481 0 0,425 1 0,387 1 0,359 2 0,337 8 0,320 8 0,306 8
10 0,717 5 0,5359 0,446 9 0,393 4 0,357 2 0,330 9 0,310 6 0,294 6 0,281 4
11 0,683 7 0,503 6 0,417 6 0,366 3 0,3318 0,306 8 0,287 7 0,272 5 0,260 1
12 0,652 8 0,475 2 0,3920 0,342 9 0,3100 0,286 2 0,268 0 0,253 6 0,2419
13 0,624 5 0,449 9 0,369 5 0,322 4 0,290 9 0,268 2 0,251 0 0,237 3 0,226 2
14 0,598 6 0,427 3 0,3496 0,304 3 0,274 2 0,252 5 0,236 0 0,223 0 0,2125
15 0,5747 0,406 9 0,331 8 0,288 2 0,259 4 0,238 6 0,222 9 0,2104 0,200 4
16 0,552 8 0,388 6 0,315 8 0,273 9 0,246 1 0,226 2 0,211 1 0,199 3 0,1896
17 0,5325 0,3719 0,301 4 0,260 9 0,234 2 0,215 1 0,200 6 0,189 3 0,1800
18 0,5137 0,356 6 0,288 3 0,249 2 0,223 5 0,205 1 0,191 2 0,180 2 0,171 4
19 0,496 2 0,342 6 0,276 4 0,238 6 0,2137 0,196 0 0,182 6 0,172 1 0,163 5
20 0,479 9 0,329 8 0,265 5 0,228 8 0,204 8 0,187 7 0,174 8 0,164 7 0,156 4
21 0,464 8 0,317 9 0,255 4 0,2199 0,196 7 0,180 1 0,167 7 0,157 9 0,1499
22 0,450 6 0,306 9 0,246 1 0,2117 0,189 2 0,173 2 0,161 1 0,1517 0,144 0
23 0,437 3 0,296 7 0,237 5 0,204 1 0,182 3 0,166 8 0,155 1 0,1459 0,1385
24 0,424 8 0,287 1 0,229 5 0,197 0 0,175 9 0,160 8 0,149 5 0,140 6 0,133 4
25 0,4130 0,278 2 0,222 1 0,190 5 0,169 9 0,155 3 0,144 3 0,1357 0,128 8
26 0,4019 0,269 9 0,215 1 0,184 4 0,164 4 0,150 2 0,1395 0,1311 0,124 4
27 0,3915 0,262 1 0,208 6 0,178 7 0,159 2 0,145 4 0,1350 0,126 9 0,120 3
28 0,381 6 0,254 8 0,202 5 0,173 3 0,154 3 0,140 9 0,130 8 0,122 9 0,116 5
29 0,372 2 0,247 8 0,196 8 0,168 3 0,149 8 0,136 7 0,126 9 0,119 2 0,113 0
30 0,363 3 0,2413 0,191 4 0,163 6 0,1455 0,132 8 0,123 2 0,1157 0,109 6
31 0,354 8 0,2351 0,186 3 0,159 1 0,1415 0,1290 0,1197 0,112 4 0,106 5
32 0,346 8 0,229 3 0,181 5 0,154 9 0,137 7 0,125 5 0,116 4 0,109 3 0,103 5
33 0,339 1 0,223 7 0,176 9 0,150 9 0,134 1 0,122 2 0,113 3 0,106 4 0,100 8
34 0,3318 0,218 4 0,172 6 0,147 2 0,130 7 0,1191 0,110 4 0,103 6 0,098 1
35 0,324 8 0,213 4 0,168 5 0,143 6 0,127 5 0,116 1 0,107 6 0,1010 0,0956
36 0,318 1 0,208 6 0,164 6 0,140 2 0,124 4 0,113 3 0,1050 0,098 5 0,093 3
37 0,3117 0,204 1 0,160 9 0,136 9 0,121 5 0,1106 0,102 5 0,096 1 0,091 0
38 0,305 6 0,1997 0,157 3 0,133 9 0,118 7 0,108 1 0,100 1 0,093 9 0,088 9
39 0,299 7 0,1956 0,153 9 0,1309 0,116 1 0,1057 0,097 8 0,0917 0,086 8
40 0,294 1 0,1916 0,150 7 0,128 1 0,113 6 0,103 3 0,0957 0,0897 0,084 9

NOTE 1 n is the number of replicate results per variance and p is the number of variances.

NOTE 2 The final decimal place of each table entry has been rounded upwards in order to guarantee the significance level.

NOTE 3 Each table entry is based on 50 million simulations.
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Table E.3 — The 0,1 % critical values of Cochran's test statistic

P n=2 n=3 n=4 n=>5 n=6 n=7 n=28 n=9 n=10
2 0,9999994 | 0,999 6 0,995 6 0,987 1 0,975 5 0,962 5 0,949 2 0,936 1 0,923 6
3 0,999 4 0,981 8 0,946 3 0,907 9 0,8726 0,841 4 0,814 2 0,790 3 0,769 3
4 0,993 0 0,937 1 0,870 3 0,813 2 0,766 8 0,728 8 0,697 3 0,670 8 0,648 1
5 0,977 0 0,881 1 0,794 6 0,728 8 0,678 4 0,638 8 0,606 8 0,580 3 0,558 0
6 0,952 9 0,824 5 0,727 1 0,657 9 0,606 8 0,567 6 0,536 4 0,5109 0,4897
7 0,923 8 0,771 4 0,668 5 0,598 7 0,548 5 0,5105 0,480 6 0,456 4 0,436 3
8 0,892 3 0,723 1 0,618 0 0,549 1 0,500 3 0,463 9 0,4354 0,4125 0,393 6
9 0,860 2 0,679 6 0,574 4 0,507 0 0,460 0 0,425 2 0,398 1 0,376 5 0,358 7
10 0,828 5 0,640 7 0,536 4 0,471 0 0,425 8 0,392 5 0,366 9 0,346 4 0,329 6
11 0,798 0 0,6057 0,503 2 0,439 8 0,396 4 0,364 7 0,340 3 0,320 9 0,3050
12 0,768 8 0,574 3 0,473 9 0,412 6 0,371 0 0,340 6 0,317 4 0,298 9 0,283 9
13 0,741 2 0,545 9 0,447 8 0,388 6 0,348 7 0,3196 0,297 4 0,279 9 0,265 6
14 0,715 2 0,520 2 0,424 6 0,367 4 0,329 0 0,301 1 0,279 9 0,263 2 0,249 5
15 0,690 6 0,496 9 0,403 7 0,348 4 0,311 4 0,284 7 0,264 5 0,248 4 0,2354
16 0,667 6 0,4756 0,384 8 0,3314 0,2957 0,270 1 0,250 6 0,235 3 0,222 8
17 | 0,6459 0,456 1 0,367 7 0,3159 0,281 6 0,256 9 0,238 2 0,223 5 0,2116
18 0,6255 0,438 1 0,352 1 0,302 0 0,268 8 0,2450 0,227 0 0,2129 0,201 4
19 | 0,606 3 0,421 6 0,337 8 0,289 2 0,257 2 0,234 2 0,216 9 0,203 3 0,192 2
20 | 0,5882 0,406 3 0,324 6 0,277 5 0,246 5 0,224 4 0,207 6 0,194 5 0,183 9
21 0,5711 0,392 1 0,312 5 0,266 8 0,236 7 0,2153 0,199 2 0,186 5 0,176 2
22 0,5550 0,378 9 0,3013 0,256 9 0,227 7 0,207 0 0,1914 0,179 1 0,169 2
23 0,539 8 0,366 6 0,290 9 0,247 7 0,2194 0,199 3 0,184 2 0,172 3 0,162 8
24 0,525 4 0,355 1 0,281 2 0,239 2 0,2117 0,192 2 0,177 6 0,166 1 0,156 8
25 0,5118 0,344 3 0,272 1 0,231 2 0,204 6 0,1856 0,171 4 0,160 3 0,1513
26 0,498 8 0,334 2 0,263 7 0,223 8 0,197 9 0,1795 0,1657 0,154 8 0,146 1
27 0,486 5 0,324 6 0,255 8 0,216 9 0,191 6 0,173 7 0,160 3 0,149 8 0,141 3
28 0,474 9 0,3157 0,248 3 0,210 4 0,185 8 0,168 4 0,155 3 0,145 1 0,136 9
29 0,463 8 0,307 2 0,241 3 0,204 3 0,180 3 0,163 3 0,150 6 0,140 7 0,1327
30 0,453 2 0,299 2 0,234 7 0,198 6 0,1752 0,158 6 0,146 2 0,136 5 0,128 7
31 0,443 1 0,2916 0,228 5 0,193 2 0,170 3 0,154 1 0,142 1 0,1326 0,1250
32 0,433 4 0,284 4 0,222 6 0,188 0 0,165 7 0,149 9 0,138 1 0,128 9 0,121 5
33 0,424 2 0,277 6 0,217 0 0,183 2 0,161 4 0,146 0 0,134 4 0,125 5 0,118 2
34 0,415 4 0,271 1 0,211 7 0,178 6 0,157 3 0,142 2 0,1310 0,122 2 0,115 1
35 0,406 9 0,264 9 0,206 7 0,174 3 0,153 4 0,138 6 0,127 6 0,1191 0,112 2
36 0,398 8 0,2590 0,201 9 0,170 1 0,1497 0,1353 0,124 5 0,116 1 0,109 4
37 0,391 0 0,253 4 0,197 3 0,166 2 0,146 1 0,1320 0,121 5 0,113 3 0,106 7
38 0,383 6 0,248 0 0,192 9 0,162 4 0,142 8 0,129 0 0,1187 0,1106 0,104 2
39 0,376 4 0,242 9 0,188 8 0,158 8 0,1396 0,126 1 0,116 0 0,108 1 0,101 8
40 0,369 5 0,238 0 0,184 8 0,1554 0,136 5 0,123 3 0,113 4 0,1057 0,099 5

NOTE 1 n is the number of replicate results per variance and p is the number of variances.

NOTE 2 The final decimal place of each table entry has been rounded upwards in order to guarantee the significance level.

NOTE 3 Each table entry is based on 50 million simulations.
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Annex F
(informative)

A structured guide to detection of outliers in univariate data

A batch/sample of observations or a set of sample means or variances is available. The object is to detect and
identify possible outliers in this data set. This annex is a guide for users of this part of ISO 16269. It leads the
users through a number of stages utilizing the different clauses and subclauses of this part of ISO 16269. The
notation follows that of this part of ISO 16269.

Step 1. Plot the given data set x4, x, ..., x, graphically using dot plot, stem-and-leaf plot or standard box plot,
or rank them numerically in ascending order

X(»]) < X(2) <...< X(k) <...< X(n)

where x;) is the ith smallest observation.

Step 2. Inspect the graphical plot or ranked data of the data set for outlying observations (suspected outliers).
If the suspected observations are without doubt outliers, go to step 5. If one or more of the outlying
observations is suspiciously far from the main part of the data set, go to step 3, or else declare that
there are no outliers and use the given data set in subsequent data analysis.

Step 3. Confirm or transform the distribution of the given data set:

a)

b)

c)

d)

e)

f)

g)

A nnan

if the hypothesized distribution is a normal distribution, confirm it with a normal probability plot;

if the hypothesized distribution is an exponential distribution, confirm it with an exponential
probability plot;

if the hypothesized distribution is a lognormal distribution, transform the given data set to
resemble normal data using the procedure in 4.3.4.2, and subsequently confirm it with a normal
probability plot;

if the hypothesized distribution is an extreme-value distribution, transform the given data set to
resemble exponential data using the procedure in 4.3.4.3, and subsequently confirm it with an
exponential probability plot;

if the hypothesized distribution is a Weibull distribution, transform the given data set to resemble
exponential data using the procedure in 4.3.4.4, and subsequently confirm it with an exponential
probability plot;

if the hypothesized distribution is a gamma distribution, transform the given data set to resemble
normal data using the procedure in 4.3.4.5, and subsequently confirm it with a normal probability
plot;

if the distribution of the given data set is unknown or the assumed distributions cannot be
confirmed or it is not one of the above distributions, transform the data set to resemble normal
data by using the Box-Cox or Johnson transformations, and subsequently confirm it with a
normal probability plot. If the normality of the transformed data cannot be confirmed, then go to
step 6 and conduct the data analysis using robust procedures discussed in Clause 5.

Al Ao
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Step 4. Conduct a testing procedure(s) to determine whether the outlying observations identified in step 2
are outliers:

a) if the original or transformed data set resembles normal data, use the test procedure in 4.3.2
and/or 4.4;

b) if the original or transformed data set resembles exponential data, use the test procedures in
4.3.3 and/or 4.4.

If one or more outlying observations are declared to be outliers, go to step 5, otherwise declare that
there are no outliers and use the original or transformed data set in subsequent data analysis;

Step 5. Identify causes of the declared outliers.

Step 6. If causes of outliers can be identified, remove the declared outliers and use the remaining data in
subsequent data analysis, otherwise use robust procedures in subsequent data analysis.

The flow chart in Figure F.1 summarizes the recommended steps in the detection and treatment of outliers.
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Remove the declared outliers and use the
remaining data in subsequent data analysis

Figure F.1 — Flow chart for the detection and treatment of outliers
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