INTERNATIONAL STANDARD ISO 16165 First edition 2001-04-01 # Ships and marine technology — Marine environment protection — Terminology relating to oil spill response Navires et technologie maritime — Protection de l'environnement marin — Terminologie relative à la réponse aux déversements de pétrole Reference number ISO 16165:2001(E) ### **PDF** disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. ### © ISO 2001 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch Printed in Switzerland | Con | ntents | Page | | | | |-----------|--------------------------------------|------|--|--|--| | Foreword | | | | | | | Introd | ductionduction | v | | | | | 1 | Scope | 1 | | | | | 2 | Terms and definitions | 1 | | | | | 2.1 | Oil/oil slick properties | | | | | | 2.2 | Oil classification | 2 | | | | | 2.3 | Environmental conditions | | | | | | 2.4 | Assessment techniques | 4 | | | | | 2.5 | Sampling | 4 | | | | | 2.6 | Containment (based on ASTM F 818-93) | 5 | | | | | 2.7 | Recovery | | | | | | 2.8 | Dispersant use | 11 | | | | | 2.9 | Removal by in situ burning | 12 | | | | | 2.10 | Shoreline cleanup | | | | | | 2.11 | Disposal | | | | | | 2.12 | Spill management | 17 | | | | | Biblio | ography | 23 | | | | | مر ما مرد | | 25 | | | | # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. International Standard ISO 16165 was prepared by Technical Committee ISO/TC 8, *Ships and marine technology*, Subcommittee SC 2, *Marine environment protection*. # Introduction Communication is important in the implementation of an effective spill response and this communication will be the most effective if there is a common understanding of the terms used. Many of the terms and definitions listed here have been widely used for many years, while others are the results of recent experience. The gradual evolution of our understanding of oil spill behaviour and response measures means that oil spill terminology will continue to develop. # Ships and marine technology — Marine environment protection — Terminology relating to oil spill response # 1 Scope This International Standard contains terms and definitions relating to oil spills and their control. The objective of this International Standard is to provide standardized terminology relating to oil spill response, defined as the broad range of activities related to spill cleanup, including surveillance and assessment, containment, recovery, dispersant-use, in-situ burning, shoreline cleanup and disposal. # 2 Terms and definitions # 2.1 Oil/oil slick properties ### 2.1.1 ### crude oil naturally occurring form of petroleum, mainly occurring in a porous underground formation such as sandstone [ISO 1998-99:2000] ## 2.1.2 # emulsification process in which microscopic droplets of water are mixed into the oil or are dispersed throughout the water ### 2.1.3 # emulsion mixture of oil and water in which droplets of water are dispersed throughout the oil or vice versa, formed when fluids are mixed by mechanical action NOTE Emulsions are more precisely referred to as water-in-oil or oil-in-water emulsions. Water-in-oil emulsions are occasionally referred to as "mousse" or "chocolate mousse". # 2.1.4 # environmental fate form and location of a material resulting from transport and transformation [ASTM E 943-95] ### 2.1.5 # heavy shoreline oiling pooled deposits or a layer of surface oil [AURIS 1994] # 2.1.6 # moderate/light shoreline oiling sheen or film of surface oil [AURIS1994] ### 2.1.7 ### petroleum oil material consisting of, or derived from, a mixture of liquid or semi-solid organic compounds, principally hydrocarbons [ISO 1998] # 2.1.8 ### relative viscosity measured viscosity of an emulsion (in any convenient unit) at a given shear rate divided by the measured viscosity of the oil at the same shear rate - NOTE 1 It is important to report the shear rate used in the viscosity measurements of the emulsion and the water free oil. - NOTE 2 Adapted from ASTM F 873-84 (88). ### 2.1.9 ### pour point lowest temperature at which a sample of petroleum product will continue to flow when it is cooled under specified standard conditions [ISO 3016:1994] # 2.1.10 # sheen very thin oil slicks with a silvery or rainbow-coloured appearance and with a thickness of less than 0,001 mm ### specific gravity ratio of the mass of a given volume of liquid at 15 °C to the mass of an equal volume of fresh water at the same temperature [ASTM D 4410-95] ### 2.1.12 ### viscosity measure of the resistance to flow or deformation of a liquid [ISO 3104:1994] ### 2.1.13 # windrows narrow bands of oil, generally aligned with the wind direction, typical of an oil slick after several hours of exposure (or days for very large spills) # 2.2 Oil classification ### 2.2.1 # group I oil # non-persistent oil petroleum-based oil that consists of hydrocarbon fractions, at least 50 per cent of which distill at a temperature of 340 °C and at least 95 per cent of which distill at a temperature of 370 °C ### 2.2.2 ## group II oil persistent oil with a specific gravity of less than 0,85 ### 2.2.3 # group III oil persistent oil with a specific gravity equal to or greater than 0,85 and less than 0,95 ### 2.2.4 # group IV oil persistent oil with a specific gravity greater than 1,00 ### 2.2.5 # group V oil persistent oil with a specific gravity greater than 1,00 ### 2.2.6 # persistent oil petroleum-based oil that does not meet the distillation criteria for a group I oil # 2.3 Environmental conditions # 2.3.1 ### air temperature average or point temperature of the air measured at or near the ground or water surface (°C) [ASTM F 625-94] ## 2.3.2 ### current average water speed and direction (i.e. velocity) relative to a fixed reference point (m/s) [ASTM F 625-94] # 2.3.3 ### debris solid or semisolid substance that could interfere with the operation of a spill control system [ASTM F 625-94] ### 2.3.4 ### significant wave height average height, measured crest to trough, of the one-third highest waves, considering only short-period waves (i.e. period less than 10 seconds) (m) [ASTM F 625-94] # 2.3.5 # significant wave period average period of the one-third highest waves, measured in seconds as the elapsed time between crests of succeeding waves past a fixed point(s) [ASTM F 625-94] # 2.3.6 ### water temperature average or point temperature of a water body as measured within the top 300 mm (°C) [ASTM F 625-94] # 2.3.7 ### wind direction direction from which the wind is blowing [ASTM F 625-94] # 2.4 Assessment techniques ### 2.4.1 # ladder search aerial surveillance to find and delineate oil slicks, carried out in a direction perpendicular to the wind in order to increase the probability of locating slicks and windrows ### 2.4.2 # oil spill modelling mathematical prediction of the environmental fate and/or behaviour of an oil spill ### 2.4.3 ### remote sensing use of sensors to find delineate oil slicks, mounted on a variety of platforms such as ships, aircraft and satellites ### 2.4.4 ### surveillance response activities with the purpose of detecting a spill, determining the extent and behaviour of a spill, optimizing countermeasures and/or predicting spill movements and effects # 2.5 Sampling ### 2.5.1 ### chain-of-custody documentation chronological evidence defining the history of an item, such as a sample, and identifying an individual responsible for custody of the item at each point in time [ASTM D 4840-95] # 2.5.2 # custody physical possession or control NOTE 1 A sample is under custody if it is in an individual's possession or under the immediate control of an individual to prevent altercation of characteristics.
NOTE 2 Adapted from ASTM D 4840-95. # 2.6 Containment (based on ASTM F 818-93) # 2.6.1 Floating boom equipment terminology ### Key - 1 Boom end connector - 2 Boom segment - 3 Boom section - 4 Water line - 5 Freeboard - 6 Draught - 7 Flotation chamber - h Overall height Figure 1 — Containment boom equipment # 2.6.1.1 # anchor point structural point on the end connector or along the length of a boom section designed for the attachment of anchor or mooring lines # 2.6.1.2 ### barrier method of controlling the movement of oil or other substances on the water surface or in the water column # 2.6.1.3 # boom floating mechanical barrier used to control the movement of substances that float ### 2.6.1.4 # boom section length of boom between two end connectors # 2.6.1.5 # boom segment repetitive and similar portion of the boom section ### 2.6.1.6 # bridle device attached to a boom to distribute the load exerted by towing or anchoring the boom 5 ### 2.6.1.7 ### curtain type boom boom consisting of a flexible skirt supported by vertical centreline flotation ### 2.6.1.8 ### end connector device attached to the boom used for joining boom sections to one another or to other accessory devices ### 2.6.1.9 ### "fence type" boom boom consisting of a self-supporting or stiffened membrane supported by floating devices ### 2.6.1.10 ### fire resistant boom boom intended for containment of burning oil slicks ### 2.6.1.11 ### inflatable boom boom that uses inflatable chambers, self-inflatable or manually, as the flotation device ### 2.6.1.12 ### shore seal boom boom that, when grounded, seals against the shoreline ### 2.6.1.13 ### sorbent boom material contained or arranged in the form of a boom that has absorptive or adsorptive capabilities ### 2.6.1.14 # special purpose boom boom that departs from the general characteristics of "fence type" and "curtain type" booms, either in design or intended use # 2.6.2 Engineering terminology # 2.6.2.1 ### buoyancy chamber enclosed compartment of air or other buoyant material providing flotation for the boom # 2.6.2.2 # gross buoyancy weight of fresh water displaced by an entire boom section when totally submerged ### 2.6.2.3 # gross buoyancy to weight ratio gross buoyancy divided by boom weight ### 2.6.2.4 # operational draft minimum vertical depth of the boom below the water-line ### 2.6.2.5 # operational freeboard minimum vertical height of the boom above the water-line ### 2.6.2.6 ### operational height sum of operational draft and operational freeboard ### 2.6.2.7 ### overall height maximum vertical dimension of boom ### 2.6.2.8 # reserve buoyancy gross buoyancy minus boom weight # 2.6.3 Operational terminology ### 2.6.3.1 ### boom planing heeling over of a boom and a loss of draught ### 2.6.3.2 # boom submergence containment failure due to loss of freeboard ### 2.6.3.3 ### bridging failure portions of a boom emerging from the water due to poor wave conformance, with resulting containment failure # 2.6.3.4 # cascading booms booming configuration formed by positioning two or more booms in a deflection mode such that successive booms progressively move oil into the desired area ### 2.6.3.5 ### catenary configuration booming configuration formed by towing or anchoring each end of a length of boom resulting in a characteristic "J" or "U" shape # 2.6.3.6 # catenary drag force longitudinal load imposed on a boom, deployed in a catenary configuration, resulting from towing, current and/or wind forces # 2.6.3.7 ### diversion mode placement of a boom to redirect the movement of a floating substance # 2.6.3.8 # drainage loss oil lost due to the accumulation or pooling against the boom skirt and escaping with the flow of the water down and along the skirt NOTE Accumulated oil is the cause for loss rather than water flow. ### 2.6.3.9 # entrainment loss oil released from the underside of an oil slick at the boom by the flow of water (e.g. high current conditions) # 2.6.3.10 ### exclusion booming placement of a boom to protect an area from the entry of a floating substance pyright International Or ### 2.6.3.11 # first-loss tow ### current velocity minimum tow/current velocity measured perpendicular to the boom at which oil escapes past a boom ### 2.6.3.12 # gap ratio sweep width divided by boom length ### 2.6.3.13 ### loss rate rate at which oil is lost past a boom (m³/h) # 2.6.3.14 ### splash-over oil passing over the top of the boom ### 2.6.3.15 # straight line drag force longitudinal drag force that results from towing a boom from one end ### 2.6.3.16 ### structural failure failure that occurs when any external force acting on the boom exceeds the tensile strength of the boom ### 2.6.3.17 # sweep width width intercepted by a boom in collection mode, the projected distance perpendicular to the direction of travel or current between the ends of a boom deployed in a "U", "V" or "J" configuration # 2.6.3.18 # tear resistance force required to separate boom parts NOTE Tear resistance is relevant for attachments to the fabric and is also an important measure of boom fabric strength. ### 2.6.3.19 # tensile strength force required to stretch boom material to the point where it fails and tears apart ### 2.6.3.20 # vortex loss oil escaping past a boom due to drainage vortices produced at the boom ### 2.6.3.21 # "J" configuration ### catenary configuration boom positioned in a "J" shape ### 2.6.3.22 # "U" configuration boom positioned in a "U" shape ### 2.6.3.23 # "V" configuration boom positioned in a "V" shape # 2.7 Recovery # 2.7.1 Equipment terminology ### 2.7.1.1 # dedicated response equipment spill response equipment dedicated to an area, port, facility or any other designated place or organization ### 2.7.1.2 # skimmers mechanical devices used to remove oil from the water surface [API 1995] ### 2.7.1.3 ### sorbent material used to recover fluids through the mechanism of absorption or adsorption or both [ASTM F 1127-88] ### 2.7.1.4 ### vessel-of-opportunity watercraft which normally have duties other than spill response, but are pressed into service as available ### 2.7.2 Performance terminology ### 2.7.2.1 # derating factor reduction factor, applied to nameplate recovery rates, to account for less than optimum performance due to less than ideal oil slick and environmental conditions # 2.7.2.2 ### fluid recovery rate total volume of fluid recovered by the skimmer per unit time (m³/h) ### 2.7.2.3 # nameplate recovery rate maximum volume of fluid that can be recovered by a skimmer per unit time, as stated by the manufacturer (m³/h) ### 2.7.2.4 # oil recovery rate volume of water-free oil removed from the water surface by the skimmer, per unit time (m3/h) [ASTM F 808-83 (88)] ### 2.7.2.5 # oil slick oily fluid floating on the surface of the water ### 2.7.2.6 # oil slick encounter rate volume of oil slick per unit time actively encountered by the oil spill response system, and therefore available for containment and recovery (m³/h) [ASTM F 1688-96] # 2.7.2.7 # oil slick recovery efficiency ratio, expressed as a percentage, of the oil slick recovery rate to the total volumetric rate of fluids recovered [ASTM F 808-83 (88)] ### 2.7.2.8 ### oil slick recovery rate volume of oil slick removed from the water surface by the skimmer, per unit time (m³/h) [ASTM F 808-83 (88)] ### 2.7.2.9 ### oil spill recovery system combination of devices that operate together to recover spilled oil The system would include, but is not limited to, some or all of the following components: NOTE 1 - a) floating boom; - b) skimmer; - support vessels to deploy and operate the boom and skimmer; c) - d) discharge/transfer pumps; - oil/water separator; e) - f) temporary storage devices; - shore based storage/disposal. g) NOTE 2 Adapted from ASTM F 1688-96. # 2.7.2.10 ### recovery efficiency ratio, expressed as a percentage, of the volume of oil recovered to the volume of total fluids recovered [ASTM F 631-93] ### 2.7.2.11 # response time time interval between the time of notification of a spill incident and the start of cleanup operations # 2.7.2.12 ### throughput efficiency ratio, expressed as a percentage, of the volume of oil recovered to the volume of oil encountered [ASTM F 631-93] ### 2.7.3 Storage terminology # 2.7.3.1 # temporary storage device receptacle used to hold recovered fluids until they can be disposed of permanently [ASTM F 1599-95] ### 2.7.3.2 ### open pool open-topped container used to store recovered fluids [ASTM F 1599-95] ### 2.7.3.3 ### pillow tank closed, generally rectangular or round coated fabric receptacle [ASTM F 1599-95] NOTE Pillow tanks can be floated and/or land based. ### 2.7.3.4 ### towable flexible tank receptacle that is characterized by flexibility along its length [ASTM F 1599-95] ### 2.7.3.5 ### towable open tank open, inflatable, barge-type vessel that resembles a large inflatable boat, characterized by a portion of the top surface being open to atmosphere [ASTM F 1599-95] # 2.8 Dispersant use ### 2.8.1 # application rate volume of dispersant applied per unit area (m³/km) ### 2.8.2 # application efficiency proportion of the volume of dispersant applied that is deposited on the target slick # 2.8.3 # approved dispersant dispersant accepted and listed for use by authorized regulatory agencies # 2.8.4 # dispersant surface-active agent used to decrease the interfacial tension between oil and water and to enhance the dispersion of the oil into fine droplets into the water column [CONCAWE 1981] # 2.8.5 # dispersant effectiveness for a given oil slick or area, the percentage of oil that is dispersed into the water column # 2.8.6 # dispersant exclusion zone areas in which dispersant is not permitted due to possible detrimental environmental effects or other factors # 2.8.7 # dosage ratio volume of dispersant applied per volume of oil ### 2.8.8 # effects monitoring measurement of effects on specified target species resulting from dispersant application ### 2.8.9 ### effectiveness monitoring visual or other
observations to determine the effectiveness of the dispersant application ### 2.8.10 # emulsion breakers chemicals used to break emulsions ### 2.8.11 ### herdina collection of floating oil into a smaller surface area caused by increasing surface tension exerted by the dispersing applied chemical [Exxon 1994] ### 2.8.12 ### pre-approved zones areas that have received pre-approval (perhaps with specified conditions) for the use of dispersants, bioremediation agents, in-situ burning or other response techniques on marine oil spills, having met certain criteria for possible environmental effects ### 2.8.13 # spray drift movement of airborne spray particles from the intended application (target) area [ASTM E 609-81(91)] # Removal by in situ burning # 2.9.1 # burn rate rate at which an oil slick is combusted per unit area (m³/m²/h) ### 2.9.2 ### combustion promoter substance added to an oil slick to increase the efficiency of in situ burning NOTE These substances typically act as either a wicking agent or an insulator between the water substrate, or a combination of the two. # 2.9.3 ### controlled burning in situ burning application that is started and can be stopped by human intervention # 2.9.4 # igniter device or system used to initiate an in situ burn # 2.9.5 # ignition promoter substance added to an oil slick to increase the ignitability of the slick or to promote spreading of flame over the surface of un-ignited oil # 2.9.6 ### in situ burning burning of marine oil spills "in place" on the water surface ### 2.9.7 ### in situ burning efficiency ratio, expressed as a percentage, of the volume of oil that was removed by burning compared to the total volume of oil that was originally ignited NOTE This value is calculated as the initial volume of oil less the volume remaining as residue, divided by the initial volume. ### 2.9.8 ### in situ burn residue the material remaining after an in situ burn ### 2.9.9 ### overall burning removal rate volume of oil burned per unit time for a given burn application (m³/h) # 2.10 Shoreline cleanup # 2.10.1 Shoreline terminology ### 2.10.1.1 ### asphalt pavement naturally formed cohesive mixture of weathered oil and sediments NOTE 1 Sediments in the mixture are usually in the sand/granule/pebble size range. In appearance, natural asphalt pavement may resemble the mixture artificially created to surface roads. NOTE 2 Adapted from ASTM F 1687-96. # 2.10.1.2 ### ecological recovery progressive change of an ecosystem towards the natural range of dominance, diversity, abundance and zonation characteristics of the local unaffected ecosystems NOTE 1 A shore is in a "recovered" condition when the natural biota has been established and is within the range and diversity and abundance expected for the habitat. NOTE 2 Adapted from AURIS 1994. # 2.10.1.3 # ecosystem combination of populations of different species that live together and interact with each other and the physical and chemical factors making up its environment # 2.10.1.4 ### environmental sensitivity susceptibility of a local environment or area to any disturbance which might decrease its stability or result in either short or long-term adverse effects NOTE 1 Environmental sensitivity generally includes physical, biological and socio-economic parameters. NOTE 2 Adapted from BASICS 1979. # 2.10.1.5 sediment sizes # 2.10.1.5.1 ### boulder component of a sediment with a diameter > 256 mm ### 2.10.1.5.2 # cobble component of a sediment with a diameter of 64 mm to 256 mm ### 2.10.1.5.3 # pebble component of a sediment with a diameter of 4 mm to 64 mm ### 2.10.1.5.4 ### granule component of a sediment with a diameter of 2 mm to 4 mm ### 2.10.1.5.5 ### sand component of a sediment with a diameter of 0,06 mm to 2 mm ### 2.10.1.5.6 ### mud component of a sediment with a diameter < 0,06 mm ### 2.10.1.5.7 component of a sediment with a diameter < 0,06 mm ### 2.10.1.5.8 component of a sediment with a diameter < 0,06 mm ### 2.10.1.6 # special use habitat area of critical concern due to the presence of marine mammals, birds or endangered species Its designation may be seasonal. NOTE 1 NOTE 2 Adapted from API 1995. # 2.10.1.7 # shore zones # 2.10.1.7.1 # foreshore zone area below mean low tide ### 2.10.1.7.2 # intertidal zone shoreline between the low tide mark and the high tide mark which is covered by water at some time during the tide cycle NOTE 1 The size of the intertidal zone varies with the tidal characteristics of a given region as well as the shoreline characteristics. Adapted from BASICS 1979. NOTE 2 # 2.10.1.7.3 area above the mean high tide that experiences wave activity occasionally NOTE 1 Also known as backshore zone. NOTE 2 Adapted from ASTM F 1687-96. ### 2.10.1.8 ### weathered oil oil that has had an alteration of physical or chemical properties, or both, through a natural process such as evaporation, dissolution, oxidation, emulsification and biodegradation ### 2.10.2 Cleanup methods terminology ### 2.10.2.1 ### bioaugmentation addition of microorganisms (predominantly bacteria) to increase the biodegradation rate of target pollutants [ASTM F 1600-95a] ### 2.10.2.2 ### biodegradation chemical alteration and breakdown of a substance to usually smaller products caused by microorganisms or their enzymes [ASTM F 1481-94] ### 2.10.2.3 ### bioremediation enhancement of biodegradation [ASTM F 1600-95a] ### 2.10.2.4 ### bioremediation agents inorganic and organic compounds and microorganisms that enhance biological degradation processes, predominantly by micro-organisms decomposition [ASTM F 1481-94] # 2.10.2.5 ### cleaning stage 1 initial phase in a shoreline treatment operation involving the removal of bulks of oil and oiled beach sediments # 2.10.2.6 # cleaning stage 2 intermediate phase in a shoreline treatment operation involving the removal of the majority of oil beach sediments and floating oil # 2.10.2.7 ### cleaning stage 3 final or cosmetic treatment phase in a shoreline treatment operation # 2.10.2.8 ### cleaning level 1 shoreline condition that results from a decision not to clean # 2.10.2.9 # cleaning level 2 shoreline condition that results from a decision to clean to a minimum level NOTE Removal of floating and bulk of oil is an example of cleaning to a minimum level. # 2.10.2.10 # cleaning level 3 shoreline condition that results from a decision to clean to full restoration ---,,,---,,,,,------,,,-,,-,-,--- ### 2.10.2.11 # cleaning level 4 shoreline condition that results from a decision to clean to a pristine level NOTE This is cleaning beyond the existing background concentration for oil on the shoreline. ### 2.10.2.12 # high pressure flushing removing oil from a shoreline with water streams at a pressure high enough to cause transport of beach sediments and organisms NOTE 1 This is generally more than 0,7 Mpa. NOTE 2 Adapted from API 1995. ### 2.10.2.13 # low pressure flushing removing oil from a shoreline using water streams at a pressure low enough that beach sediments and organisms are not moved NOTE 1 This is generally less than 0,7 Mpa. NOTE 2 Adapted from API 1995. ### 2.10.2.14 ### manual removal removal of oil and contaminated debris by hand tools such as rakes, scrapers, hoses, shovels and buckets [API 1995] ### 2.10.2.15 # natural biodegradation type of natural cleansing characterized by the reduction in concentration of chemical(s) of concern through naturally occurring microbial activity [E 1739-95] # 2.10.2.16 # natural cleansing natural physical, chemical or biological mechanisms such as wind and wave action, sunlight and natural microbial action that promote the removal, breakdown and dispersal of oil [API 1995] # 2.10.2.17 ### shoreline cleanup actions taken to remove oil from a shoreline with the objective of enchancing the process of ecological recovery NOTE Shoreline cleanup options could include flushing and removal of oil, displacement or removal of oiled sediments or natural cleansing. # 2.10.2.18 # steam cleaning using steam or high temperature water under pressure to remove oil from solid surfaces [API 1995] ### 2.10.2.19 # substrate displacement moving oiled sediment to the lower intertidal zone to be reworked and cleaned by natural processes [API 1995] ### 2.10.2.20 ### substrate removal use of equipment such as bulldozers, backhoes and graders to remove oiled substrate NOTE 1 Oiled material is subsequently transported to a disposal site. NOTE 2 Adapted from API 1995. # 2.11 Disposal ### 2.11.1 ### incineration controlled burning of waste products or other combustible material in an incinerator or similar apparatus ### 2.11.2 ### incinerator device constructed for the purpose of disposing of material through thermal oxidation # 2.11.3 # land farming controlled method of spreading a known amount of oil in a nominally uniform layer thickness into a designated land area for the purpose of biological decomposition NOTE This decomposition process is accelerated by mixing the oil layer with the top few inches of soil, aerating the soil by occasional ploughing and adding fertilizers that include nitrogen and potassium to increase the oil decomposition rate. ### 2.11.4 ### landfill land disposal technique that uses excavated pits to contain the oil spill waste material NOTE The waste is placed in the excavation, covered over and left to degrade. ### 2.11.5 # open burning process of burning a material without the aid of an incinerator ### 2.11.6 # recycling disposal method that uses oil spill waste material in some manner other than returning it to a marketed product NOTE Examples are road oiling and direct use as a fuel supplement. ### 2.11.7 # reprocessing reclaimed spilled oil by some type of treatment technique that returns the oil into a product that can be sold NOTE Reprocessing is defined as recycling in Europe. # 2.12 Spill management # 2.12.1 Contingency planning ### 2.12.1.1 ### area contingency plan initial governmental organization structure and mode provided for the spill response
[ASTM 1644-95] ### 2.12.1.2 ### contingency plan plan of action prepared in anticipation of an oil spill A contingency plan usually consists of guidelines developed for a specific industrial facility or an entire region to increase the effectiveness, efficiency and speed of cleanup operations in the event of an oil spill, and, simultaneously, to protect areas of biological, social and economic importance. NOTE 2 Adapted from BASICS 1979. ### 2.12.1.3 # oil pollution incident occurrence or series of occurrences having the same origin, which results or may result in a discharge of oil and which poses or may pose a threat to the marine environment or to the coastline related interests of one or more areas and which requires emergency action or other immediate response Adapted from OPRC 1991. NOTE ### 2.12.1.4 ### oil spill cooperative organization in a given area for the purpose of pooling equipment and training personnel to combat oil spills [BASICS 1979] ### 2.12.1.5 ### public information officer person nominated by the emergency operations centre (EOC) who disseminates appropriate and timely information [ASTM D 1268-90] # 2.12.1.6 ### sensitivity maps maps used by the oil spill response team which designate areas of biological, social and economic importance in a given region - NOTE 1 These maps often rank sensitive areas so that in the event of an extensive spill these areas can be protected or cleaned up first. - NOTE 2 Sensitivity maps usually contain other information useful to the response team such as the location of shoreline access areas, landing strips, roads, communities and the characteristics of the shoreline area. - NOTE 3 Maps of this type form an integral part of local or regional contingency plans. - NOTE 4 Adapted from BASICS 1979. ### 2.12.2 Incident Command System ### 2.12.2.1 # chain of command series of management positions within an organization in order of authority # 2.12.2.2 ### command act of directing and/or controlling resources within an organization by virtue of explicit legal or delegated authority # 2.12.2.3 ### delegation of authority statement to the Incident Commander by the Executive delegating authority and assigning responsibility NOTE 1 The Delegation of Authority can include objectives, priorities, expectations, constraints and other considerations or guidelines as needed. NOTE 2 Many agencies require written Delegation of Authority prior to their assuming command on larger incidents. ### 2.12.2.4 # emergency operations centre ### **EOC** pre-designated facility established by an agency or jurisdiction to coordinate the overall agency or jurisdictional response and support to an emergency ### 2.12.2.5 ### finance/administration section pre-designated facility established by an agency or jurisdiction to coordinate the overall agency or jurisdictional response and support to an emergency ### 2.12.2.6 ### function five major activities in an incident command system, i.e. command, operations, planning, logistics and finance/administration NOTE The term "function" is also used when describing the activity involved, for example the planning function. ### 2.12.2.7 ### incident occurrence, caused by a human or natural phenomenon, that requires action by emergency service personnel to prevent or minimize loss of life or damage to property and/or natural resources ### 2.12.2.8 # incident action plan objectives reflecting the overall incident strategy and specific tactical actions and supporting information for the next operational period NOTE The plan may be oral or written. When written, the plan may have a number of forms as attachments (e.g. traffic plan, safety plan, communications plan, map, etc.). ## 2.12.2.9 ### incident commander individual responsible for the management of all incident operations at the incident site # 2.12.2.10 ### incident command post ### ICP location at which the primary command functions are executed NOTE The ICP may be collocated with the incident base or other incident facilities. ### 2.12.2.11 # incident command system ### **ICS** standardized on-scene emergency management concept specifically designed to allow its user(s) to adopt an integrated organizational structure equal to the complexity and demands of single or multiple incidents, without being hindered by jurisdictional boundaries # 2.12.2.12 ### incident objectives statements of guidance and direction necessary for the selection of appropriate strategy(s) and tactical direction of organizational resources NOTE Incident objectives are based on realistic expectations of what can be accomplished when all allocated resources have been effectively deployed. Incident objectives are achievable and measurable, yet flexible enough to allow for strategic and tactical alternatives. ### 2.12.2.13 ### logistics section section responsible for providing facilities, services and materials for the incident ### 2.12.2.14 # mutual aid agreement written agreement between agencies and/or jurisdictions and/or organizations in which they agree to assist one another upon request by furnishing personnel and equipment resources ### 2.12.2.15 ### operations section section responsible for all tactical operations at the incident ### 2.12.2.16 # planning section section responsible for the collection, evaluation and dissemination of tactical information related to the incident, and for the preparation and documentation of incident action plans The section also maintains information on the current and forecasted situation and on the status of resources NOTE assigned to the incident. ### 2.12.2.17 ### staging area locations set up at an incident where resources can be placed while awaiting a tactical assignment NOTE The operations section manages staging areas. # 2.12.2.18 ### unified command unified team effort which allows all agencies with responsibility for the incident, either geographical or functional, to manage an incident by establishing a common set of incident objectives or strategies NOTE This is accomplished without losing or abdicating agency authority, responsibility or accountability. ### 2.12.3 Safety ### 2.12.3.1 ### ceiling limit exposure which shall not be exceeded during any part of the working day If instantaneous monitoring is not feasible, then the ceiling limit shall be assessed as a time-weight average exposure of 15 minutes not to be exceeded at any time over a working day, except for substances which cause immediate irritation upon short exposure. NOTE 2 Adapted from ASTM E 1542-93. # 2.12.3.2 ### green zone # support zone minimal exposure area maintained as an uncontaminated location for support functions - NOTE 1 Food service, clean equipment storage and financial offices are examples of a green zone. - NOTE 2 Adapted from ASTM E 1644-95. ### 2.12.3.3 ### confined space enclosed space or area, such as a tank, compartment or pit where ventilation or access, or both, may be limited [ASTM F 1644-95] ### 2.12.3.4 ### red zone # early response zone area where there are potential exposure hazards NOTE 1 Airborne concentrations of hazardous substances may require respiratory protection in addition to other personal protective equipment. NOTE 2 Adapted from ASTM F 1644-95. ### 2.12.3.5 ### hyperthermia medical condition involving an abnormally high body temperature caused by exposure to elevated temperatures or radiant heat or both [ASTM F 1644-95] ### 2.12.3.6 ### hypothermia medical condition involving an abnormally low body temperature caused by exposure to cold air or water [ASTM F 1644-95] # 2.12.3.7 ### occupational exposure limit maximum time-weighted average (TWA) concentration to which nearly all workers may be repeatedly subjected for a normal working day of 8 h to 10 h and a normal working week of 40 h without known adverse effects NOTE 1 These concentrations are determined by national legislation. NOTE 2 Adapted from ASTM E 1542-93. ### 2.12.3.8 # personal protective equipment ### PPE equipment used to shield or insulate a person from a chemical, physical or thermal hazard NOTE 1 Personal protective equipment is available for skin, eyes, face, hands, feet, ears and the respiratory system, as appropriate. NOTE 2 Adapted from ASTM F 1644-95. # 2.12.3.9 # short-term exposure limit ### STEL time-weighted average exposure of 15 min not to be exceeded at any time during a working day, even if the occupational exposure limit is not exceeded NOTE 1 Exposures above the occupational exposure limit up to the STEL should not be any longer than 15 min and should not occur more than four times per day. The minimum interval between these exposures should be 60 min. NOTE 2 Adapted from ASTM E 1542-93. ### 2.12.3.10 # site safety and health plan framework that defines safety and health considerations and strategy for a specific site [ASTM F 1644-95] ### 2.12.3.11 ### site safety and health supervisor individual in the field responsible for ensuring that the site safety and health plan is implemented as prescribed [ASTM F 1644-95] # 2.12.3.12 # yellow zone ### contamination reduction zone area where oil is present but in a generally weathered state In addition to decontamination and equipment decommissioning areas, contaminated shorelines containing weathered oil with vapour levels below respiratory protective equipment requirements are considered yellow zones for purposes of this guide. NOTE 2 Adapted from ASTM F 1644-95. # **Bibliography** In developing this International Standard, an attempt was made to use existing definitions wherever possible. For example, comprehensive terminology is available on containment booms, performance of recovery skimmers and on bioremediation, as provided by the publications of the American Society for Testing and Materials (ASTM) CommitteeF20 on Hazardous Substances and Oil Spill Response. Other areas had less coverage by standards organizations and gaps were filled through a review of a variety of sources. In this International Standard, whenever another published
source serves as the primary basis for a definition, this source is indicated by an abbreviated code. The complete cites for these codes are provided below. - [1] ISO 3016:1994, Petroleum Products Determination of pour point. - [2] ISO 3104:1994, Petroleum Products Transparent and opaque liquids Determination of kinematic viscosity and calculation of dynamic viscosity. - [3] ISO/FDIS 14050, Environmental management Vocabulary. - [4] ISO 1998-99:2000, Petroleum industry Terminology Part 99: General and index. - [5] ASTM D 4410-95, Terminology for fluvial sediment, American Society for Testing & Materials. - [6] ASTM D 4840-99, Standard guide for sampling chain-of-custody procedures, American Society for Testing & Materials. - [7] ASTM E 609-81 (97), Standard terminology relating to pesticides, American Society for Testing & Materials. - [8] ASTM E 943-00, Standard terminology relating to biological effects and environmental fate, American Society for Testing & Materials. - [9] ASTM E 1542-93, Standard terminology relating to occupational health and safety, American Society for Testing & Materials. - [10] ASTM E 1739-95, Standard guide for risk-based corrective action applied at petroleum release sites, American Society for Testing & Materials. - [11] ASTM F 625-94, Standard practice for classifying water bodies for spill control systems, American Society for Testing & Materials. - [12] ASTM F 631-99, Standard guide for collecting skimmer performance data in controlled environments, American Society for Testing & Materials. - [13] ASTM F 818-93 (1998), Standard terminology relating to spill response barriers, American Society for Testing & Materials. - [14] ASTM F 873-84 (1996), Standard guide for incinerating oil spill wastes at temporary field locations, American Society for Testing & Materials. - [15] ASTM F 1127-88 (1996), Standard guide for containment by emergency response personnel of hazardous material spills, American Society for Testing & Materials. - [16] ASTM F 1481-94, Standard guide for ecological considerations for the use of bioremediation in oil spill response sand and gravel beaches, American Society for Testing & Materials. - [17] ASTM F 1599-95, Standard guide for collecting performance data on temporary storage devices, American Society for Testing & Materials. - [18] ASTM F 1600-95a, Standard terminology relating to bioremediation, American Society for Testing & Materials, American Society for Testing & Materials. - [19] ASTM F 1644-95, Guide for health and safety training of oil spill responders, American Society for Testing & Materials. - ASTM F 1687-97, Standard guide for terminology and indices to describe oiling conditions on shorelines, [20] American Society for Testing & Materials. - [21] API 1995, Oil spill response: options for minimizing adverse ecological impacts, 4398 American Petroleum Institute (API) publication, Washington, D.C. - [22] AURIS 1994, Scientific criteria for optimizing oil spill clean-up operations and effort. AURIS Environmental, Aberdeen, Scotland. - CONCAWE 1981, A field guide to coastal oil spill control and clean-up techniques, CONCAWE report 9 [23] 1981, CONCAWE, The Hague. - [24] Exxon 1994, Exxon dispersant guidelines, Exxon Research & Engineering, Florham Park, N.J. - BASICS 1979, FINGAS M.F., DUVAL W.S. and STEVENSON G.B. The basics of oil spill cleanup, [25] Environmental Emergency Branch, Environment Canada, Ottawa. - ICS, National Wildfire Co-ordination Group, 1994, Incident command system national training curriculum [26] ICS glossary, National Interagency Fire Center, Bosie, Idaho. - [27] ITOPF, 1986, Response to marine oil spills, The international Tanker Owners Pollution Federation Ltd., London. - [28] OPRC, 1991, International convention on oil pollution preparedeness, response and co-operation, 1990, International Maritime Organization, London. - [29] USCG, 1986, United States Federal Register, volume 61, 41, 96.02.29, Department of Transportation, Washington, D.C. # Index | Α | crude oil 2.1.1
current 2.3.2 | G | |--|---|--| | air temperature 2.3.1 | current velocity 2.6.3.11 | gap ratio 2.6.3.12 | | anchor point 2.6.1.1 | curtain type boom 2.6.1.7 | granule 2.10.1.5.4 | | application efficiency 2.8.2 | custody 2.5.2 | green zone 2.12.3.2 | | application rate 2.8.1 | • | gross buoyancy 2.6.2.2 | | approved dispersant 2.8.3 | _ | gross buoyancy to weight | | area contingency plan 2.12.1.1 | D | ratio 2.6.2.3 | | asphalt pavement 2.10.1.1 | d-b-:- 0.00 | group I oil 2.2.1 | | assessment techniques 2.4 | debris 2.3.3 | group II oil 2.2.2 | | | dedicated response | group III oil 2.2.3 | | D | equipment 2.7.1.1 delegation of authority 2.12.2.3 | group IV oil 2.2.4 | | В | derating factor 2.7.2.1 | group V oil 2.2.5 | | barrier 2.6.1.2 | dispersant 2.8.4 | | | bioaugmentation 2.10.2.1 | dispersant effectiveness 2.8.5 | н | | biodegradation 2.10.2.2 | dispersant exclusion zone 2.8.6 | " | | bioremediation 2.10.2.3 | dispersant use 2.8 | heavy shoreline oiling 2.1.5 | | bioremediation agents 2.10.2.4 | disposal 2.11 | herding 2.8.11 | | boom 2.6.1.3 | diversion mode 2.6.3.7 | high pressure flushing 2.10.2.12 | | boom planing 2.6.3.1 | dosage ratio 2.8.7 | hyperthermia 2.12.3.5 | | boom section 2.6.1.4 | drainage loss 2.6.3.8 | hypothermia 2.12.3.6 | | boom segment 2.6.1.5 | • | | | boom submergence 2.6.3.2 | _ | | | boulder 2.10.1.5.1 | E | I | | bridging failure 2.6.3.3 | | | | bridle 2.6.1.6 | early response zone 2.12.3.4 | ICP 2.12.2.10 | | buoyancy chamber 2.6.2.1 | ecological recovery 2.10.1.2 | ICS 2.12.2.11 | | burn rate 2.9.1 | ecosystem 2.10.1.3 | igniter 2.9.4 | | | effectiveness monitoring 2.8.9 | ignition promoter 2.9.5 | | | effects monitoring 2.8.8 | incident 2.12.2.7 | | • | amargancy aparations | incident action plan 0.40.00 | | С | emergency operations | incident action plan 2.12.2.8 | | | centre 2.12.2.4 | incident command post 2.12.2.10 | | cascading booms 2.6.3.4 | centre 2.12.2.4
emulsification 2.1.2 | incident command post 2.12.2.10
Incident Command System 2.12.2 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 | centre 2.12.2.4 | incident command post 2.12.2.10
Incident Command System 2.12.2
incident command | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary configuration 2.6.3.5 | centre 2.12.2.4
emulsification 2.1.2
emulsion 2.1.3 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 | incident command post 2.12.2.10
Incident Command System 2.12.2
incident command | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary configuration 2.6.3.5 catenary drag force 2.6.3.6 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary configuration 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary configuration 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary configuration 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion
breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary configuration 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 in situ burning efficiency 2.9.7 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning level 4 2.10.2.11 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 in situ burning efficiency 2.9.7 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning level 4 2.10.2.11 cleaning stage 1 2.10.2.5 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 exclusion booming 2.6.3.10 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 in situ burning efficiency 2.9.7 intertidal zone 2.10.1.7.2 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning level 4 2.10.2.11 cleaning stage 1 2.10.2.5 cleaning stage 2 2.10.2.6 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 in situ burning efficiency 2.9.7 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning level 4 2.10.2.11 cleaning stage 1 2.10.2.5 cleaning stage 2 2.10.2.6 cleaning stage 3 2.10.2.7 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 exclusion booming 2.6.3.10 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 in situ burning efficiency 2.9.7 intertidal zone 2.10.1.7.2 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning stage 1 2.10.2.5 cleaning stage 2 2.10.2.6 cleaning stage 3 2.10.2.7 cleanup methods | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 exclusion booming 2.6.3.10 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 in situ burning efficiency 2.9.7 intertidal zone 2.10.1.7.2 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning level 4 2.10.2.11 cleaning stage 1 2.10.2.5 cleaning stage 2 2.10.2.6 cleaning stage 3 2.10.2.7 cleanup methods terminology 2.10.2 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 exclusion booming 2.6.3.10 F "fence type" boom 2.6.1.9 finance/administration section 2.12.2.5 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 in situ burning efficiency 2.9.7 intertidal zone 2.10.1.7.2 J "J" configuration 2.6.3.21 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning stage 1 2.10.2.5 cleaning stage 2 2.10.2.6 cleaning stage 3 2.10.2.7 cleanup methods | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 exclusion booming 2.6.3.10 F "fence type" boom 2.6.1.9 finance/administration section 2.12.2.5 fire resistant boom 2.6.1.10 | incident command post 2.12.2.10 Incident Command System 2.12.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning
2.9.6 in situ burning efficiency 2.9.7 intertidal zone 2.10.1.7.2 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning level 4 2.10.2.11 cleaning stage 1 2.10.2.5 cleaning stage 2 2.10.2.6 cleaning stage 3 2.10.2.7 cleanup methods terminology 2.10.2 cobble 2.10.1.5.2 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 exclusion booming 2.6.3.10 F "fence type" boom 2.6.1.9 finance/administration section 2.12.2.5 fire resistant boom 2.6.1.10 first-loss tow 2.6.3.11 | incident command post 2.12.2.10 Incident Command System 2.12.2.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 in situ burning efficiency 2.9.7 intertidal zone 2.10.1.7.2 J "J" configuration 2.6.3.21 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning level 4 2.10.2.11 cleaning stage 1 2.10.2.5 cleaning stage 2 2.10.2.6 cleaning stage 3 2.10.2.7 cleanup methods terminology 2.10.2 cobble 2.10.1.5.2 combustion promoter 2.9.2 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 exclusion booming 2.6.3.10 F "fence type" boom 2.6.1.9 finance/administration section 2.12.2.5 fire resistant boom 2.6.1.10 first-loss tow 2.6.3.11 floating boom equipment | incident command post 2.12.2.10 Incident Command System 2.12.2.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 in situ burning efficiency 2.9.7 intertidal zone 2.10.1.7.2 J "J" configuration 2.6.3.21 L ladder search 2.4.1 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning level 4 2.10.2.11 cleaning stage 1 2.10.2.5 cleaning stage 2 2.10.2.6 cleaning stage 3 2.10.2.7 cleanup methods terminology 2.10.2 cobble 2.10.1.5.2 combustion promoter 2.9.2 command 2.12.2.2 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 exclusion booming 2.6.3.10 F "fence type" boom 2.6.1.9 finance/administration section 2.12.2.5 fire resistant boom 2.6.1.10 first-loss tow 2.6.3.11 floating boom equipment terminology 2.6.1 | incident command post 2.12.2.10 Incident Command System 2.12.2.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 in situ burning efficiency 2.9.7 intertidal zone 2.10.1.7.2 J "J" configuration 2.6.3.21 L ladder search 2.4.1 land farming 2.11.3 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning level 4 2.10.2.11 cleaning stage 1 2.10.2.5 cleaning stage 2 2.10.2.6 cleaning stage 3 2.10.2.7 cleanup methods terminology 2.10.2 cobble 2.10.1.5.2 combustion promoter 2.9.2 command 2.12.2.2 confined space 2.12.3.3 containment 2.6 contamination reduction | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 exclusion booming 2.6.3.10 F "fence type" boom 2.6.1.9 finance/administration section 2.12.2.5 fire resistant boom 2.6.1.10 first-loss tow 2.6.3.11 floating boom equipment terminology 2.6.1 fluid recovery rate 2.7.2.2 | incident command post 2.12.2.10 Incident Command System 2.12.2.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 in situ burning efficiency 2.9.7 intertidal zone 2.10.1.7.2 J "J" configuration 2.6.3.21 L ladder search 2.4.1 land farming 2.11.3 landfill 2.11.4 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary configuration 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning level 4 2.10.2.11 cleaning stage 1 2.10.2.5 cleaning stage 2 2.10.2.6 cleaning stage 3 2.10.2.7 cleanup methods terminology 2.10.2 cobble 2.10.1.5.2 combustion promoter 2.9.2 command 2.12.2.2 confined space 2.12.3.3 containment 2.6 contamination reduction zone 2.12.3.12 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 exclusion booming 2.6.3.10 F "fence type" boom 2.6.1.9 finance/administration section 2.12.2.5 fire resistant boom 2.6.1.10 first-loss tow 2.6.3.11 floating boom equipment terminology 2.6.1 fluid recovery rate 2.7.2.2 foreshore zone 2.10.1.7.1 | incident command post 2.12.2.10 Incident Command System 2.12.2.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 in situ burning efficiency 2.9.7 intertidal zone 2.10.1.7.2 J "J" configuration 2.6.3.21 L ladder search 2.4.1 land farming 2.11.3 landfill 2.11.4 logistics section 2.12.2.13 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary drag force 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning level 4 2.10.2.11 cleaning stage 1 2.10.2.5 cleaning stage 2 2.10.2.6 cleaning stage 3 2.10.2.7 cleanup methods terminology 2.10.2 cobble 2.10.1.5.2 combustion promoter 2.9.2 command 2.12.2.2 confined space 2.12.3.3 containment 2.6 contamination reduction zone 2.12.3.12 contingency plan 2.12.1.2 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 exclusion booming 2.6.3.10 F "fence type" boom 2.6.1.9 finance/administration section 2.12.2.5 fire resistant boom 2.6.1.10 first-loss tow 2.6.3.11 floating boom equipment terminology 2.6.1 fluid recovery rate 2.7.2.2 | incident command post 2.12.2.10 Incident Command System 2.12.2.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ burning 2.9.6 in situ burning efficiency 2.9.7 intertidal zone 2.10.1.7.2 J "J" configuration 2.6.3.21 L ladder search 2.4.1 land farming 2.11.3 landfill 2.11.4 logistics section 2.12.2.13 loss rate 2.6.3.13 | | cascading booms 2.6.3.4 catenary configuration 2.6.3.21 catenary configuration 2.6.3.5 catenary drag force 2.6.3.6 ceiling limit 2.12.3.1 chain of command 2.12.2.1 chain-of-custody documentation 2.5.1 clay 2.10.1.5.8 cleaning level 1 2.10.2.8 cleaning level 2 2.10.2.9 cleaning level 3 2.10.2.10 cleaning level 4 2.10.2.11 cleaning stage 1 2.10.2.5 cleaning stage 2 2.10.2.6 cleaning stage 3 2.10.2.7 cleanup methods terminology 2.10.2 cobble 2.10.1.5.2 combustion promoter 2.9.2 command 2.12.2.2 confined space 2.12.3.3 containment 2.6 contamination reduction zone 2.12.3.12 | centre 2.12.2.4 emulsification 2.1.2 emulsion 2.1.3 emulsion breakers 2.8.10 end connector 2.6.1.8 engineering terminology 2.6.2 entrainment loss 2.6.3.9 environmental conditions 2.3 environmental fate 2.1.4 environmental sensitivity 2.10.1.4 EOC 2.12.2.4 equipment terminology 2.7.1 exclusion booming 2.6.3.10 F "fence type" boom 2.6.1.9 finance/administration section 2.12.2.5 fire resistant boom 2.6.1.10 first-loss tow 2.6.3.11 floating boom equipment terminology 2.6.1 fluid recovery rate 2.7.2.2 foreshore zone 2.10.1.7.1 | incident command post 2.12.2.10 Incident Command System 2.12.2.2 incident command system 2.12.2.11 incident commander 2.12.2.9 incident objectives 2.12.2.12 incineration 2.11.1 incinerator 2.11.2 inflatable boom 2.6.1.11 in situ burn residue 2.9.8 in situ
burning 2.9.6 in situ burning efficiency 2.9.7 intertidal zone 2.10.1.7.2 J "J" configuration 2.6.3.21 L ladder search 2.4.1 land farming 2.11.3 landfill 2.11.4 logistics section 2.12.2.13 | M manual removal 2.10.2.14 moderate/light shoreline **oiling** 2.1.6 mud 2.10.1.5.6 mutual aid agreement 2.12.2.14 Ν nameplate recovery rate 2.7.2.3 natural biodegradation 2.10.2.15 natural cleansing 2.10.2.16 non-persistent oil 2.2.1 0 occupational exposure limit 2.12.3.7 oil classification 2.2 oil pollution incident 2.12.1.3 oil recovery rate 2.7.2.4 oil slick 2.7.2.5 oil slick encounter rate 2.7.2.6 oil slick recovery efficiency 2.7.2.7 oil slick recovery rate 2.7.2.8 oil spill cooperative 2.12.1.4 oil spill modelling 2.4.2 oil spill recovery system 2.7.2.9 oil/oil slick properties 2.1 open burning 2.11.5 open pool 2.7.3.2 operational draft 2.6.2.4 operational freeboard 2.6.2.5 operational height 2.6.2.6 operational terminology 2.6.3 operations section 2.12.2.15 overall burning removal rate 2.9.9 overall height 2.6.2.7 Р pebble 2.10.1.5.3 performance terminology 2.7.2 persistent oil 2.2.6 personal protective equipment 2.12.3.8 petroleum oil 2.1.7 pillow tank 2.7.3.3 planning section 2.12.2.16 pour point 2.1.9 PPE 2.12.3.8 pre-approved zones 2.8.12 public information officer 2.12.1.5 R recovery 2.7 recovery efficiency 2.7.2.10 recycling 2.11.6 red zone 2.12.3.4 relative viscosity 2.1.8 remote sensing 2.4.3 removal by in situ burning 2.9 reprocessing 2.11.7 reserve buoyancy 2.6.2.8 response time 2.7.2.11 S safety 2.12.3 sampling 2.5 sand 2.10.1.5.5 sediment sizes 2.10.1.5 sensitivity maps 2.12.1.6 **sheen** 2.1.10 shore seal boom 2.6.1.12 shore zones 2.10.1.7 shoreline cleanup shoreline cleanup 2.10.2.17 shoreline terminology 2.10.1 short-term exposure limit 2.12.3.9 significant wave height 2.3.4 significant wave period 2.3.5 silt 2.10.1.5.7 site safety and health plan 2.12.3.10 site safety and health supervisor 2.12.3.11 **skimmers** 2.7.1.2 sorbent 2.7.1.3 sorbent boom 2.6.1.13 special purpose boom 2.6.1.14 special use habitat 2.10.1.6 specific gravity 2.1.11 spill management 2.12 splash-over 2.6.3.14 spray drift 2.8.13 staging area 2.12.2.17 steam cleaning 2.10.2.18 STEL 2.12.3.9 storage terminology 2.7.3 straight line drag force 2.6.3.15 structural failure 2.6.3.16 substrate displacement 2.10.2.19 substrate removal 2.10.2.20 support zone 2.12.3.2 supratidal zone 2.10.1.7.3 surveillance 2.4.4 sweep width 2.6.3.17 Τ tear resistance 2.6.3.18 temporary storage device 2.7.3.1 tensile strength 2.6.3.19 throughput efficiency 2.7.2.12 towable flexible tank 2.7.3.4 towable open tank 2.7.3.5 U "U" configuration 2.6.3.22 unified command 2.12.2.18 "V" configuration 2.6.3.23 vessel-of-opportunity 2.7.1.4 viscosity 2.1.12 vortex loss 2.6.3.20 ۱۸/ water temperature 2.3.6 weathered oil 2.10.1.8 wind direction 2.3.7 windrows 2.1.13 Υ **yellow zone** 2.12.3.12 ICS 01.040.13; 13.020.40; 47.020.99 Price based on 26 pages © ISO 2001 - All rights reserved