TECHNICAL SPECIFICATION # ISO/TS 18530 First edition 2014-04-01 Health Informatics — Automatic identification and data capture marking and labelling — Subject of care and individual provider identification Informatique de santé — identification lisible par capture automatique et marquage — identification des sujets de soins de santé et des professionnels de la santé Reference number ISO/TS 18530:2014(E) # COPYRIGHT PROTECTED DOCUMENT All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Con | ntents | Page | |--------------|---|------| | Forev | Normative references Terms and definitions Abbreviations GS1 specifications and ISO Standards Data structures and semantics 6.1 Application identifiers 6.2 Global service relation number (GSRN) 6.3 Service relation instance number (SRIN) SoC and Individual Provider identification as a recognized priority 7.1 General 7.2 Supported processes Why globally unique identification? 8.1 SoC identification and data processing 8.2 Implementation challenges 8.3 Symbol placement on identification bands | iv | | Intro | oduction | v | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Abbreviations | 4 | | 5 | GS1 specifications and ISO Standards | 4 | | 6 | 6.1 Application identifiers | 4 | | 7 | 7.1 General | 5 | | 8 | 8.1 SoC identification and data processing.8.2 Implementation challenges. | | | Anne | ex A (informative) Examples of use cases (UC) | 9 | | Bibliography | | | # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the WTO principles in the Technical Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information The committee responsible for this document is ISO/TC 215, Health informatics. # Introduction The delivery of healthcare relies heavily on the ability to uniquely and accurately identify people when they attend for care, i.e. the Subject of Care (SoC), as well as, when they provide care, i.e. the Individual Provider. Health informatics, supporting healthcare delivery, requires a clear specification to identify the SoC and the Individual Provider so that they are correctly associated with the health information contained within a healthcare application. This has led to the need to capture and share information across different systems and healthcare applications. Data carriers, such as bar codes and Radio Frequency Identification (RFID), commonly referred to as Automatic Identification and Data Capture (AIDC), have amplified the importance of defining the identifier data structures for the SoC and Individual Provider to prevent ambiguity when information is being captured. AIDC provides a wide spectrum of solutions, in particular, regarding optical carriers (such as bar codes). Furthermore, the semantics of data carried is defined by a number of organizations (also named "issuing agencies"), some of them having commercial activities, others nation-wide missions, as well as, standard development organizations. This Technical Specification focuses on the use of the GS1 System of Standards¹⁾ since a considerable majority of supplies in healthcare around the world are identified in accordance to this multisectorial and global system of standards. Interoperability is easier to secure once a single system of standards is used in the healthcare setting. Interoperability, where information is shared and used by different information systems, requires a common SoC and Individual Provider identification semantic to ensure that shared information is consistent and unambiguous. The same SoC and Individual Provider are accurately identified, referenced and cross-referenced in each system. Effective data capture systems and information sharing is the key to improving the care of SoCs and delivery by Individual Providers in terms of compliance, accuracy and integrity of the health data. In hospitals, a SoC (as in-patient) usually experiences a large number of care instances. Examples of these instances include: prescriptions and medication administration, laboratory testing of SoC bio-samples and subsequent analysis and reporting. Each of these instances requires accurate reconciliation of the instance and delivery to the SoC. Healthcare providers (i.e. organisations that deliver healthcare to the SoC) have introduced AIDC technologies based bar codes to help capture the SoC's identity, as well as, identification of other related items such as biology samples, so that manual key entry can be replaced by AIDC. In the complex hospital environment with many care instances, the need for uniqueness of identifications is generally recognized, since this avoids identification conflicts, overlaps, uncertainty and risks. The use of AIDC in the context of chronic care reinforces the need for standards. The SoC in the chronic care instance is not always in the same fixed location where a single technology is available. AIDC can therefore be interoperable with a variety of technologies, solutions and devices. This will enable a continuum of care. As out-patients, SoCs may be self-medicating. A SoC undergoing treatment for chronic conditions, in particular, should administer and record their medication according to a prescribed treatment plan. This treatment plan can be very prescriptive, on an as-needed basis, or be preventive in nature to avoid dangerous clinical outcomes. There is also a need to manage and clinically monitor the treatment plan for the SoC for safety and stock purposes. AIDC enables capture of the SoC's identification, medication, administration event, recording of relevant data about the medication administered and other data such as batch number, expiration information and amount used. This should be done for in-patients as well as out-patients. This same data capture can be used to efficiently manage and replenish stock. ¹⁾ GS1 is a registered trademark. Any trademark used in this document is information given for the convenience of users and does not constitute an endorsement. Benefits from unique SoC Identification in AIDC can be documented from the following three examples: - Patient, as well as, data can travel outside a provider's environment: Following a devastating tornado in Joplin, Missouri, USA, in 2011, 183 SoCs from St John's Hospital had to be swiftly evacuated to other regional hospitals. Under such "chaotic" conditions, a patient identifier that is truly unique would prevent replacing identification bands immediately for every SoC admitted to a different hospital. - For regional referral laboratories, especially those performing blood bank testing: positively identifying SoCs and linking them to previous records, is essential for patient safety. Two different SoC with the same name, hospitalised at two different facilities using identical patient identification numbering schemes (perhaps because they use the same IT system), could lead to serious errors. - A provider uses two identifiers for the management of care processes: the "patient identification" and the "case identification". One provider organized the number banks for the two identifiers in such a way, that data collision was excluded. After years of use of that solution, number banks started overlapping without anyone noticing, until two SoCs were having the same numbers, one of "patient identification",
the other for "care identification". A mismatch with serious incident occurred. # Health Informatics — Automatic identification and data capture marking and labelling — Subject of care and individual provider identification # 1 Scope This Technical Specification outlines the standards needed to identify and label the Subject of Care (SoC) and the Individual Provider on objects such as wrist bands, identification tags or other objects, to enable automatic data capture using data carriers in the care delivery process. It provides for a unique SoC identification that may be used for other purposes, such as recording the identity of the SoC in medical health records. This Technical Specification serves as a reference for any organization which plans to implement or improve Automatic Identification and Data Capture (AIDC) in their delivery of care process. It is to be used in conjunction with the $GS1^2$ system of standards. This Technical Specification describes good practices to reduce/avoid variation and workarounds which challenge the efficiency of AIDC at the point of care and compromise patient safety. This Technical Specification specifies how to manage identifiers in the AIDC process, and completes the information found in ISO/TS 22220 and ISO/TS 27527. #### 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO/TS 22220, Health informatics — Identification of subjects of health care ISO/TS 27527, Health informatics — Provider identification ISO/IEC 15418, Information technology — Automatic identification and data capture techniques — GS1 Application Identifiers and ASC MH10 Data Identifiers and maintenance ISO/IEC 16022, Information technology— Automatic identification and data capture techniques — Data Matrix bar code symbology specification # 3 Terms and definitions # 3.1 #### application identifier ΑI GS1 prefix that defines the meaning and purpose of the data element that follows, as defined in ISO/IEC 15418 and GS1 General Specifications [SOURCE: ISO 19762-1:2008, 01.01.94] ²⁾ GS1 is a registered trademark. Any trademark used in this document is information given for the convenience of users and does not constitute an endorsement. #### 3.2 #### **AIDC** # automatic identification and data capture refers to the methods or technologies for automatically identifying objects, collecting data about them, and entering that data directly into computer systems, eliminating manual entry Note 1 to entry: The methods or technologies typically considered as part of AIDC include bar codes which can be linear or 2-dimensional symbols and Radio Frequency Identification (RFID) tags/chips. #### 3.3 # business entity recognised formal business entity, such as a corporation or company Note 1 to entry: This entity holds details of the formal 'owner' entity of the organization. [SOURCE: ISO/TS 27527:2010, 3.1 — modified, Note 1 to entry added.] #### 3.4 # data capture deliberate action which results in the registration of a record into a record keeping system #### 3.5 #### care unit subdivision of an organization where the subject of care (3.16) receives the care they need during their stay Note 1 to entry: A care unit may also be referred to as a ward. #### 3.6 #### GSRN³) #### global service relation number used to identify the relationship between an organization offering services and the recipient or provider of services $Note \ 1 \ to \ entry: GSRN \ are \ encoded \ on \ data \ carriers \ with \ an \ Application \ Identifier \ 8018 \ for \ the \ recipient \ of \ a \ service$ (Subject of Care) and with an Application Identifier 8017 for the provider of a service (Individual Provider). #### 3.7 ## healthcare provider organization or facility that delivers healthcare to Subjects of Care # 3.8 #### IHE⁴⁾ #### integrating the healthcare enterprise initiative by healthcare professionals and industry to improve the way computer systems in healthcare share information Note 1 to entry: IHE promotes the coordinated use of established standards to address specific clinical need in support of optimal patient care. Note 2 to entry: Systems developed in accordance with IHE communicate with one another better, are easier to implement, and enable care providers to use information more effectively. ³⁾ GSRN is the GS1 identifier for service relations and is supplied by the GS1 System. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the service relation identifier named. Equivalent products may be used if they can be shown to lead to the same results. ⁴⁾ IHE is a registered trade name. Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. #### 3.9 ### individual provider any person who provides or is a potential provider of a health care service Note 1 to entry: An individual provider is an individual person and is not considered to be a group of providers. Note 2 to entry: Not all health care providers are recognized by professional bodies. It is for this reason the term health care professional has not been used to describe them. All health care professionals are providers, but not all providers are health care professionals. #### 3.10 # individual provider identification unique number or code issued for the purpose of identifying an individual provider #### 3.11 # information system organized collection of hardware, software, supplies, policies, procedures and people that stores, processes and provides access to information #### 3.12 #### machine readable code code, readable by a machine, that contains information used to establish a relationship between a physical object such as a medical product package and data sources such as medical, production, logistical and/or reimbursement coding systems #### 3.13 #### record recorded information, in any form, including data in computer systems, created or received and maintained by an organization or person in the transaction of business or the conduct of affairs and kept as evidence of such activity #### 3.14 #### registration act of giving a record a unique identity in a record keeping system #### 3.15 #### **SRIN** # service relation instance number attribute to a global service relation number (3.6) to identify an instance within a care process EXAMPLE Such as an identification band, an order sheet, test-tube etc. # 3.16 SoC # subject of care person seeking to receive, receiving or having received health care #### 4 Abbreviations AIDC Automatic Identification and Data Capture CIS Clinical Information System GSRN Global Service Relation Number IHE Integrating the Healthcare Enterprise ISBT 128 is the standard for blood transfusion and transplantation, maintained by the International Council for Commonality in Blood Banking Automation (ICCBBA) SOC Subject of Care SRIN Service Relation Instance Number # 5 GS1 specifications and ISO Standards In this Technical Specification, automatic identification and data capture (AIDC) refers to selected data carriers which are widely used across many industries, jurisdictions and which are already based on and specified in International Standards. The benefit of this approach is to use the already widely available applications and devices for encoding and reading the different types of data carriers. It should, however, be noted that certain types of data carriers such as data matrix may only be read by image based scanners. AIDC solutions should be in accordance with GS1 general specifications, which in-turn are based on ISO Standards. If the recommendation is followed, then information contained in the data carriers shall be structured and standardized according to the GS1 semantics. The identification key (global service relation number, GSRN) is the identifier for service relations (such as SoC and Individual Providers) and is supplied by the GS1 System of Standards. #### 6 Data structures and semantics # 6.1 Application identifiers The GS1 item identification system and related encodation standard are complemented by the GS1 maintained application identifiers, hereafter referred to as "GS1 Application Identifiers" or "GS1 AIs". This Technical Specification comprises two principal elements that are the key to any encoding system: the data content and the data carrier. The use of GS1 AIs is subject to the rules established by GS1. GS1 AIs identify generic and simple data fields for use in cross-sectorial and international supply chain applications. The GS1 General Specifications provide rules for the definition, format and structure of the data fields. Each GS1 AI consists of two or more characters. The first two digits determine the length of the AI. SOURCE: ISO/IEC 15418. # 6.2 Global service relation number (GSRN) The Global Service Relation Number (GSRN) is the GS1 Identification Key used to identify the relationship between an organization offering services and the recipient or provider of services. The key comprises of a GS1 Company Prefix, Service Reference and Check Digit, with an 18 numeric digits fix length. Figure 1 — Global service relation number (GSRN) # 6.3 Service relation instance number (SRIN) The Service Relation Instance Number (SRIN) is an attribute to the GSRN which allows distinguishing different encounters during the same episode, or the reuse of the same GSRN in different episodes. SRIN is a 10 numeric digits variable length filed. Figure 2 — Service relation instance number (SRIN) For the purpose of this Technical Specification, for compliance with ISBT 128, the SRIN shall be used as a fixed length string with the first two digits (NN) reserved for the ISBT 128 location code (Table RT018); the selection of the
remaining eight (8) digits is left to the discretion of the user and may be incremental. # 7 SoC and Individual Provider identification as a recognized priority #### 7.1 General The World Health Organization (WHO) and the Joint Commission International (JCI) have developed a list of priority solutions to enhance patient (meaning SoC) safety. Among the list of solutions WHO and JCI recommended is the use of AIDC technology (when the technical framework permits). Among the "Nine patient safety solutions"[1] given by WHO, the second solution addresses patient (SoC) identification and the use of "bar codes" to reduce the risk of identification errors. Other solutions (communication during patient hand-over; performance of correct procedures at correct body site; assuring medication accuracy at transitions in care) require security of a patient's (SoC's) identification. Annex A illustrates how SoC and Individual Provider identification should be enabled for different types of healthcare care use cases. If used, the Informative Annex explains the type of care and how AIDC shall be implemented as a good practice in different use cases. The following use cases (UC) are included: - UC 01 to 04 covers the typical overall SoC flow through a hospital; - UC 05 to 11 describes specific care instances that might arise within a hospital environment; No reproduction or networking permitted without license from IHS - UC 12 to 19 looks at machine readable coding in complex point of care environments; - UC 20 to 24 looks at machine readable coding in the blood transfusion processes; - UC 25 to 27 describes machine readable coding for chronic outpatients; - UC 28 to 30 examines the need to integrate nationwide SoC and Individual Provider identification. The textual presentation of the use cases is completed with UML diagrams where, in particular, data capture is positioned; normative recommendations are included in the "good practice" section. In each of the use cases, there is requirement to provide unambiguous data qualifiers to distinguish between the SoC, the Individual Provider and the product for data capture. Without qualifiers, it is impossible to guarantee that the captured information (or data) is what was intended. There is also the possibility of duplication of identity. This is avoided by using a standardized globally unique identification. # 7.2 Supported processes Annex A provides examples of a series of processes which are supported by capturing SoC identifier, SRIN and Individual Provider identification. Table 1 (based on the examples found in Annex A) provides an overview so that implementers can evaluate their needs and the appropriate solution to adopt. | Usage Requirements | SoC identifier | SRIN | Individual Provider
Identification | |--|----------------|------|---------------------------------------| | SoC and Individual Provider Identification as a recognized priority | X | | X | | Machine readable coding for clinical purpose (point of care) | X | X | X | | Machine readable coding in complex point of care environments | X | X | X | | Machine readable coding to avoid workarounds | X | X | X | | Machine readable coding in the blood transfusion processes | X | Х | Х | | Machine readable coding for chronic outpatient | X | X | X | | Machine readable coding by integrating nationwide SoC identification | X | Х | X | Table 1 — Overview of supported processes # Why globally unique identification? # 8.1 SoC identification and data processing When GSRN is used in data processing, solutions have been developed by IHE International as Master Patient Indexes (MPI), which secure uniqueness of the identification in a defined environment and associates defined demographics to a SoC identifier. MPI should be interconnected by using IHE tools so that heterogenic identifications are linked together by using the associated demographics. The use of GSRN, as described in this document, does not impact data processing and the use of IHE tools, since IHE's MPI are conceived to address situations where SoC are identified with any identifier. GSRN are fixed length 18 digits numeric keys according GS1 General Specifications. In a GS1 DataMatrix, the SoC GSRN shall be headed by a GS1 AI 8018. # 8.2 Implementation challenges Modern Clinical Information Systems (CIS) require the use of a SoC identifier and an Individual Provider identification so that processes can be captured with scanning technologies. Some implementation challenges have been noticed, such as: - Acceptance by Individual Provider: To prevent AIDC technologies consuming the Individual Provider's time, it is important to associate these professionals to the implementation steps, including working ergonomic, graphic user interfaces, etc. A benefit of AIDC should be the reduction of administrative work (manual key entries in the nursing files, reordering of consumed products, etc.). Furthermore, it is important that any implementation secures scanning process occurs *prior* care processes, so that alerts are issued to prevent errors. Some processes require even two data captures: one prior to the care process (checking adequacy) and one after the care process (confirming end of process). An example for this double step is the administration of cytostatics. - CIS data-field limitations: the length of the Individual Provider identification and the SoC identifier, when using GSRN, is 18 numeric digits. The optional SRIN for a SoC is a numeric field of up to 10 digits. The CIS is frequently not able to work with such data fields. It is important that healthcare providers and vendors collaborate to understand the value and the flexibility of the solution so that CIS support the evolution for the benefit of efficiencies (reducing manual key entries for documentation processes) and patient safety (combating workarounds, checks ahead of care processes, etc.). It is recommended to add appropriate reference in the future call for tender. As an intermediary solution, a middleware (e.g. in the form a web service) can be developed or found on the market, to link SoC's GSRN, SRIN, as well as, Individual Provider identification (GSRN) to the existing CIS. # 8.3 Symbol placement on identification bands Barcoding technologies have addressed SoC identifiers on identification bands for years. Therefore the following experiences should be leveraged: - Linear/2-dimensional bar codes: linear bar codes are frequently too long to be easily read on identification bands (i.e. because of the curve of the band around the limb). Therefore DataMatrix is recommended for carrying GSRN and when possible SRIN. - Two data carriers on the identification band may be necessary for a transition period, since some software may not be able to handle long identification keys. It is a common situation which adds to the potential risk that the two identifiers (the long and the short) do not point to the same SoC. Therefore such a situation should only be considered for short periods of time. - Ease of finding the data carrier: industry experience demonstrates that (because of the limb's curve) the identification band is not always in the same position, thus the data carrier not always visible. The same DataMatrix should be printed optimally 4 times along the identification band. Scanner devices shall be programed not to read the same DataMatrix more than once. The presence of SRIN as an attribute to GSRN provides the benefit that the scanner analyzes if the DataMatrix is the same or not. Results of reading more than once the GSRN and SRIN shall be rejected by the scanner. - Ease of reading the data carrier: industry experience demonstrates that the DataMatrix should always be printed in the middle of the identification band or label (not on its side). This avoids truncations and overlaps, which burden Individual Providers and thus could influence their process compliance. - In neonatality, it is usual to affix more than one identification band on young babies (e.g. one on the arm, one on the leg). The use of GSRN and SRIN is compatible with this situation, and the CIS should be able to validate that two SRIN are used on identification bands at the same time, for such particular situations. #### Individual Provider identification Individual Providers do not carry the same type of identification bands as the SoC. Individual Provider identification is frequently stored on cards such as identity cards, which allow computer login, room access, etc. Individual Provider identification may be carried in RFID chips, which are defined by software vendors and the solutions implemented by the healthcare provider. Individual Provider identification is used, not only in the care processes as described in this Technical Specification, but can also be used for rule management (allowing access to information relating to Individual Provider qualifications, functions, etc.), for patient record access and other functionalities at the healthcare provider's discretion. Individual Provider identification should be defined by the healthcare provider for its staff and the Individual Providers licensed to work in its premises. The use of GSRN should allow larger organizations using the same Individual Provider identification with structured decentralised identification management, by avoiding overlaps and identification errors. GSRN are fixed length 18 digits numeric keys according to GS1 General Specifications. In a data carrier such as GS1 DataMatrix, the Individual Provider GSRN shall be headed by a GS1 Application Identifier 8017. # Annex A (informative) # **Examples of use cases (UC)** # A.1 The typical hospital care process (UC 01 to 04) #### A.1.1 General The use of machine readable coding enhances the hospital care delivery at different stages of the care cycle. Typical hospital use cases reflect interaction between the SoC and Individual Providers along a care
pathway. This is simplified, at high level and generic. In reality, each care process may differ from hospital to hospital. The typical hospital stages are: - a) Admissions: the SoC presents at the hospital; - b) Care unit: when the SoC is admitted to the care unit or ward; - c) Surgical: when the SoC undergoes a clinical procedure; - d) Discharge: after the procedure and recovery the SoC is discharged back to the community. Each of these stages is concerned with the movement of the patient through the care pathway and assuring the identity of the SoC. ### A.1.2 Use cases #### A.1.2.1 Admission process (UC 01) The SoC arrives at the admissions department. The SoC provides his/her identity using an identification card or by other means. Other documents such as the referral letter and related insurance details may also be provided. The Admissions Clerk verifies the SoC's identity, the reason for admission as detailed in the referral letter and, registers the SoC for admission. The SoC is issued an identification band and a series of adhesive labels, each detailing the name and appropriate demographics, as well as, the SoC Identifier (GSRN). The identification band is attached to the patient and the labels are placed in a record folder which the SoC brings to the care unit. NOTE Alternatively, stickers should be printed "on demand" at point of care. # **A.1.2.2** At the care unit (UC 02) The SoC is welcomed, brought to the ward, and prepared for bed. Clinical information, i.e. temperature, blood pressure etc., is collected and recorded. Bio samples are collected in a sample tube and sent to the hospital laboratory. #### A.1.2.3 Surgical operation (UC 03) The SoC is prepared for surgical operation. A medicinal product is administered to the SoC and the SoC is brought to the preparation room where anaesthetics are injected. The SoC is wheeled into the operating theatre. After the operation is completed, the SoC is brought to the recovery room. When the SoC is ready, the SoC is returned to the ward. # A.1.2.4 Discharge (UC 04) Once the SoC has recovered, the care pathway is complete. The SoC is transferred to a rehabilitation clinic. A hospital discharge letter is prepared and sent ahead of the arrival SoC at the rehabilitation clinic. # A.1.3 UC 01 to UC 04 process flow Figure A.1 — UC 01 to 04 process flow # A.1.4 Good practice #### A.1.4.1 General Applying AIDC to the above processes, good practice would consist of the following in each of the stages: # A.1.4.2 Admission process (UC 01) Once the identity of the SoC is confirmed (ISO/TS 22220 providing guidance for this process), the identification band(s) should be issued detailing in human readable form the SoC's name, gender and date of birth. GS1 DataMatrix symbols should be printed at least 4 times on the same identification band (See 8.3). The GS1 DataMatrix contains the SoC identifier (Global Service Relationship Number, GSRN), as well as, the attribute Service Instance Number (SRIN). At the same time, adhesive labels are printed containing the same human readable information as the identification band including a GS1 DataMatrix with the same GSRN, but each SRIN shall be different. # **A.1.4.3** At the care unit (UC 02) The Individual Provider at the care unit scans the SoC identification band to register the SoC in the ward and to access the SoC's medical record. Based on the orders, bio-samples are taken and each sample tube should be labelled with the pre-printed labels issued during admissions. Alternatively, the same labels should be printed on demand at the point of care. Each label shall contain a GS1 DataMatrix with the GSRN and a different SRIN. When taking the bio-samples and before shipment of the samples to the laboratory, the GSRN from the identification band should be linked to the GSRN and SRIN stuck on the label sample tube(s). Results of the sample analysis are then used to update the SoC's medical record. #### A.1.4.4 Handover in the preparation room (UC 03) AIDC should be used to transfer the patient to the preparation and trigger the setup of the operation. This should be accomplished using the GSRN and SRIN in the identification band. The SoC's medical health record is updated. Pre-operative bio-samples identified with the GSRN and SRIN are taken, linked to the SoC's GSRN and sent to the laboratory for analysis. Analysis identified with the GSRN and SRIN should be reported and linked to the SoC's medical record. # Operating room (UC 03) The SoC is transferred to the Operating Room. The GSRN should be scanned on the SoC identification band to register the transfer. All Operating Room activities should be linked to the SoC until the end of the operation and should be recorded in SoC's medical record. The SoC is transferred to the recovery room. The transfer to the recovery room should be registered by scanning the GSRN. Finally the SoC is returned to the care unit and should be registered by scanning the GSRN. #### **A.1.4.6** Discharge (UC 04) On discharge, a discharge letter is printed which should include the SoC's GSRN and a different SRIN in a GS1 DataMatrix. The SoC leaves the hospital. # A.1.4.7 Conclusions In conclusion, the use of machine readable coding enhances the verification processes for the SoC care pathway. The risk of error is reduced by assuring the identity of the SoC at each step. Manual data entry can be reduced significantly eliminating key entry errors and improving efficiency. The overall outcome is mitigating risk of administration errors at the point of care. # A.2 Specific care instances that might arise within a hospital environment (UC 05 to 11) #### A.2.1 General There are many circumstances where SoC identification has to be captured in relation with care processes. Some typical situations are grouped in this section to illustrate the diversity of the context and the value of machine readable codes. #### A.2.2 Use cases The following use case instances illustrate typical situations in the care processes. The care instances, which do not correspond to a logical sequence, highlight the added value gained by using internationally adopted identification standards and AIDC. Added value consists of more efficiency in the use of human resources and safer care to the SoC. The examples in this use case illustrate common instances of care delivered to a SoC: - a) Medication is prepared for a SoC and administered to the SoC in the ward, (Use cases 06 and 07); - b) Centrally prepared SoC medication and administered to the SoC in the ward, (Use Cases 08 and 09); - c) SoC Bio-sample taken for laboratory analysis (Use Case 10); - d) SoC transferred from one Provider (hospital) to another Provider (hospital), (Use Case 11). # A.2.2.1 Machine readable codes for care instances at the point of care (UC 05) Care instances a) and b) illustrate machine readable codes validating the administration of the right medicinal product to the right SoC, i.e. the right dose, at the right time, in the right form, through the right route of administration and by the appropriate Individual Provider. This is also referred to as "full match". In the care instances a) and b) the machine readable codes are used for validating the administration of the right medicinal product to the right SoC, i.e. the right dose, at the right time, in the right form, through the right route of administration and by the appropriate Individual Provider (full match). #### A.2.2.2 Medication preparation (UC 06) and medication administration in the ward (UC 07a) Based on the electronic prescription, the Individual Provider in the ward selects and scans the data carriers printed by the medication's manufacturer for each SoC separately and places the medications in an individual drawer identified with a label and with a dedicated space for each time of the day. The Individual Provider scans the GSRN on the identification band and the GSRN and SRIN on the label on the drawer to check the selection of the correct drawer for this SoC (this ensures the right drawer for the right SoC). Each medication should be scanned before administering to SoC. If full match does not occur, an alert is to be issued to prevent potential medication error (e.g. wrong medication, dosage, route of administration or time). When full match occurs, medication administration is captured and documented in the SoC's medical record. # A.2.2.3 Centrally prepared individual medication (UC 08) and medication administration in the ward (UC 09b) Based on the electronic prescription, the hospital pharmacist selects and scans the data carriers printed by the medication's manufacturer for the SoC's prescription and places it in individual bags. Each bag is identified with the SoC's GSRN and a SRIN. A link between bag and medication(s) is established by scanning each of the respective identifiers. The bags are delivered to the ward. The Individual Provider scans the GSRN on the SoC's identification band and the GSRN and SRIN on the bag's label to check the appropriate bag for the SoC (this ensures the right bag for the right SoC). Each medication should be scanned before administering to the SoC. If full match does *not* occur, an alert shall be issued to prevent potential medication error (e.g. wrong medication, dosage, route of administration or time). When full match does occur, medication administration is captured and documented in the SoC's medical record. # A.2.2.4 Bio-sample taken from SoC for analysis (UC 10c) An order having been placed for a bio sample by an Individual Provider; the Individual Provider prints a label containing a GSRN and SRIN and attaches it to the sample tube. The bio-sample is taken from the SoC. The SoC identification band and sample tube are scanned to link them to the order which had requested the analysis. # A.2.2.5 SoC transferred from one Individual Provider to another Individual Provider (UC 11d) This is the situation when a SoC is transferred from one Provider to
another Provider; the second captures the SoC's identification from his/her identification band, recognizes the SoC and links his/her previous identification to the local medical record and GSRN. EXAMPLE A badly burned SoC arrives in emergency at a Provider. Immediate care is provided and the admission process is completed. The SoC is issued with an identification band "1" containing a GSRN. Due to the SoC condition and needs, the SoC has to be transferred to a specialized burns unit Provider. The specialized provider is informed of the SoC identification, the SoC's condition and the care received before transfer. When the SoC arrives at the specialist Provider, the SoC's identification band "1" is read to confirm the correct SoC and a new identification band is issued by the specialist Provider. # A.2.3 UC 05 to 11 process flow Figure A.2 — UC 05 to 11 process flow # A.2.4 Good practice Focusing on AIDC processes, good practice consists in: # A.2.4.1 Medication preparation process (UC 06 and UC 08) Regardless of whether it is preparation in the ward or in central pharmacy at hospital pharmacy, the electronic prescription guides the Individual Provider in the choice of the right medication, which should be verified by scanning the product unique identifier (GS1 Global Trade Item Number – GTIN). The medication is linked to the SoC by scanning the GTIN and GSRN/SRIN on the drawer and placing the medication in the drawer/bag. ### A.2.4.2 Medication administration in the ward (UC 07 and UC 09) The Individual Provider matches the GSRN in the SoC's identification band to the individualized drawer or bag. The GSRN are matched and SRIN differ from each other. This process documents that the right SoC and the right drawer or bag are selected. Before administering medication(s) to the SoC, the Individual Provider scans every medication's single unit so that appropriateness is verified by the IT system toward the electronic prescription (the right medication and dosage, at the right time, through the right route of administration). Once the match is positive, medication is given and recorded in the medical health record. # A.2.4.3 Bio-sample taken from SoC for analysis (UC 10) Laboratory order (electronic prescription) requires an Individual Provider to take a bio-sample from a SoC for analysis purpose. The Individual Provider issues a label for the sample tube including GSRN and SRIN. By taking a bio-sample from the SoC, the identification band and test-tube are matched by a single scan from Individual Provider so that the IT system can verify the GSRN being the same, and the SRIN being different. This done, GSRN and sample tube's SRIN are linked to the electronic prescription (laboratory order). # A.2.4.4 SoC transferred from one Provider to another Provider (UC 11) This Use Case illustrates how first GSRN shall be linked to second GSRN when the SoC does physically transfer from one Provider to another, and accordingly is allocated a new GSRN by the second clinical information or patient administration system. # A.3 Machine readable coding in complex point of care environments (UC 12 to 19) #### A.3.1 General Complex point of care environments such as a (paediatric) intensive care, or an operating room (OR) requires particular attention. In such situations, there is a need for appropriate solutions to ensure consistent data capture. For example, the small size of the child's arm affects the size of the identification band and, therefore, the size and placement of the data carrier. Sometimes, there is the need to remove the identification band and to replace it at later stage. # A.3.2 Use cases The use cases describe what occurs when using AIDC and linking to the interfaces with medical devices used to monitor the SoC's vital signs, point of care testing results, and electronic anaesthesia record (Anaesthesia Workstation). It also describes the case when an Individual Provider has to search and cross-match labile blood products or tissues from outside the operating room. # A.3.2.1 SoC arrives at the OR reception area (UC 12) The SoC's identity is matched to all applicable OR documentation, including the surgical flow sheet used to record the events during surgery. This is done by matching the GSRN to the operating room documents and records. ### A.3.2.2 SoC entry into the operating room (OR) (UC 13) SoC's identification band is scanned. At this point of time, all the IT systems in the OR are linked to this SoC. #### "Time out" period (before the patient is draped) (UC 14) A.3.2.3 The verification process uses AIDC to alert the Individual Provider and block further processes, if there is an error. Verification is based on checking the following: - SoC identification: - surgical procedure; - surgical site; - ordered medications (prophylactic antibiotics); - blood products/tissues. # A.3.2.4 Anaesthesia is administered before SoC is draped (UC 15) At this point, the identification band ("primary identification band") may be removed to facilitate access to the SoC's blood vessels, as in the case of small infants. A new identification band ("secondary identification band") is immediately printed (by scanning the primary identification band), and attached to the OR computer/monitor for identification purposes while the patient is draped. The "primary identification band" is de-activated (archived) and replaced by producing the "secondary identification band". #### Searching labile product during operation (UC 16 and UC 16a) A.3.2.5 If/when a labile product is needed during the procedure, the Individual Provider will take the "secondary identification band" to the refrigerator where a cross-match is processed. When complete, the Individual Provider returns with the "secondary identification band" and the matched products. The "secondary identification band" is immediately placed back on the OR computer/monitor. #### A.3.2.6 SoC is draped and surgery is performed (UC 17 and UC 17a) AIDC is used during surgery to scan and verify each medication and blood product to check their appropriateness and to record their use during surgery. Some drugs (prophylactic antibiotics, steroids) are pre-ordered and issued by the pharmacy to the OR for the specific SoC. These should electronically be matched to the SoC prior to administration to verify and record the right SoC to right drug, dose, batch/lot number and expiry date. Electronic anaesthesia records enable all SoC data (monitored vital signs, all drugs administered) to be electronically recorded. When using AIDC, it prevents the use of the wrong medication and, at the same time, records the administration and usage in the SoC's operation record since all IT systems in the OR are locked to the SoC. As all events in the OR are linked to the particular SoC, there may be no need to repeatedly scan the SoC's identification. # A.3.2.7 The SoC identification is rechecked before leaving the OR (UC 18) If the "primary identification band" remains attached to the SoC during the procedure, it is scanned to record the end of operation. If the "primary identification band" had been removed, the "secondary identification band" is now attached to the SoC and is scanned to record the end of the operation. # A.3.3 UC 12 to 19 process flow Figure A.3 — UC 12 to 19 process flow ## A.3.4 Good practice Focusing on AIDC processes, good practice consists in: ### A.3.4.1 SoC arrives at the OR reception area (UC 12) SoC identification is captured so that the computerized support systems are set up for the individual SoC. The GSRN is scanned to identify the SOC. Individual Provider Identification is captured by reading her/his identification band. #### A.3.4.2 SoC entry into the OR (UC 13) SoC identification band and Individual Provider Identification are scanned to record the SoC entering the OR. #### A.3.4.3 Anaesthesia is administered before SoC is draped (UC 14) If it is necessary, i.e. when a primary identification band is removed to allow access to the SoC, then the process to issue the "secondary identification band" should use the previous ("primary") band. The primary band is scanned and the new secondary identification band is generated which includes the same GSRN and a new SRIN. This allows AIDC on the new secondary identification band to be distinguished from AIDC on previous primary identification band, but at the same time maintains a process link. In such cases, the identification band should be affixed in a distinct, pre-defined place so that AIDC is processed with no confusion risk. ## A.3.4.4 "Time out" period (before the patient is draped) (UC 15) Prior to starting the surgery, inventory should be checked to ensure that all requirements and items needed are available. That check uses AIDC to record the data from the SoC's identification band, medicinal products, medical devices, blood products, etc. #### A.3.4.5 Searching labile product during operation (UC 16 and UC 16a) If/when a labile product is needed during the procedure, the Individual Provider takes the "secondary identification band" to the refrigerator where a cross-match is processed. When complete, the Individual Provider returns with the "secondary identification band" and the matched products. The "secondary identification band" is placed back on the OR computer/monitor. ## A.3.4.6 SoC is draped and surgery is performed (UC 17 and UC 17a) During the surgical process, because the GSRN has already been scanned, registered and locked in the systems, medications, anaesthetics, devices scanned prior to administration or use for SoC are linked to the GSRN. This facilitates continuous recording of events relating to the SoC in the OR linked by the GSRN. It allows for additional alerts as the SoC's surgical process evolves. ## A.3.4.7 The SoC identification is rechecked before leaving the OR (UC 18) AIDC is used to record the end of the surgery by scanning either the primary identification band or, if replaced, the secondary
identification band. This closes and records the end of the surgery. ## A.4 Machine readable coding to avoid workarounds #### A.4.1 General Recent published studies have shown that there are circumstances where the Individual Providers do not capture (scan) the correct data at the right time and that there is a risk leading to errors. These errors shall be avoided using AIDC at the point of care. ## ISO/TS 18530:2014(E) #### A.4.2 Use cases ## A.4.2.1 Sample taking process (UC 19) Based on the order sheet, the Individual Provider takes a bio-sample from the SoC using sample tube. This tube is linked to the SoC and the laboratory order sheet. The test tube is usually sent to the laboratory with the order sheet for analysis. ## A.4.2.2 Radiology process (UC 20) The SoC is brought to the radiology department for an examination. The identification band has to be removed. After the examination, and before the SoC leaves the radiology department, a new band is ## A.4.3 UC 12 to UC 19 Process flow Figure A.4 — UC 12 to UC 19 Process flow ## A.4.4 Good practice ## A.4.4.1 Sample taking process (UC 19) The Individual Provider scans the GSRN on both the identification band and the laboratory order sheet. Both have the same GSRN, but a different SRIN to distinguish between them. A sample tube label is printed with the GSRN and a new SRIN. The Individual Provider completes the process by scanning the label on the tube after taking the sample. As each carries the GSRN and a different SRIN, the Individual Provider scans each element separately. The Individual Provider is prevented from rescanning the same identity more than once, because the SRIN raises an alert of indicating a multiple scan. #### A.4.4.2 Radiology process (UC 20) The SoC is brought to the radiology department for an examination. The identification band may be cut and stored during the radiology examination. At the end of the examination, the damaged identification band is scanned and used to trigger the issue of a new identification band with a new SRIN. Each of the identification bands carries GSRN and SRIN, so that the system captures the identification band change before and after removal. ## A.5 Machine readable coding in the blood transfusion processes (UC 21 to 24) #### A.5.1 General For several years, machine readable coding has been implemented in the blood transfusion process using the ISBT 128 standard. This standard includes attributes to identify the SoC (transfusion receiver) and the Individual Provider. Although ISBT 128 has been implemented in a large number of countries, the attributes for identifying the SoC has not been adopted on a large scale. The experience of the blood transfusion services is leveraged here to provide implementation recommendations to include and extend beyond these specific processes. ## A.5.2 Use cases Transfusion involves a number of processes with the safety of each process being dependent on the accuracy and safety of the previous stages. Safely transfusing a blood product relies on the appropriate pre-transfusion analysis of the SoC bio-sample and then selecting a compatible blood product based on the analysis of that sample. The sample should be drawn from the intended recipient SoC and be properly labelled immediately after sampling, and prior to leaving the SoC, and sending to the laboratory. The best practice requires that: - The Individual Provider (blood taker) is recorded on the pre-transfusion sample label and traceable for at least one year post transfusion. - Just prior to transfusion, verifications are performed to ensure that the blood product supplied and the issue voucher matches the SoC's GSRN on the identification band. The documentation of the verification process (records, written or electronic) is retained indefinitely. The process below represents a routine transfusion event. #### A.5.2.1 Pre-transfusion sample collection (UC 22) At sample collection, AIDC enables the Individual Provider (blood taker) to identify him/herself and positively identify the intended SoC for transfusion. In the presence of the SoC, a computer generated bar coded label containing the SoC name and identification is accurately and efficiently produced using that data scanned on SoC's identification band, and affixed on the blood sample. #### A.5.2.2 Pre-transfusion testing and product selection (UC 23) The use of barcoded labels on the sample tubes eliminates the need to manually enter SoC identifiers, thereby, eliminating key entry errors and ensuring that after analysis the sample analysis are correctly attributed to the right SoC file. Automated analysers, equipped to read the bar codes on the sample tubes likewise eliminate data errors in the laboratory. As well, selected product is assigned to correct SoC when barcoded labels are used. #### A.5.2.3 Transfusion (UC 24) The transfusion standards require vein to vein traceability. In addition, blood products should be scanned at receipt in the care unit. The use of the same AIDC for the blood sample and test process allows verification of the SoC to blood product match. This enables a reduction in the tedious 8-point checklist that shall be completed at the bedside by two professionals. ## A.5.3 UC 21 to 24 process flow Figure A.5 — UC 21 to 24 process flow ## A.5.4 Good practice Focusing on the AIDC processes, good practice requires Identification of the Individual Provider, SoC, test tubes, as well as, blood product. This means, in detail: Identification of Individual Provider, each of them identified uniquely with a Global Service Relationship Number (GSRN). Individual Provider is recognized by the specific GS1 AI 8017. EXAMPLE Individual Provider in this use case include: transfusion requester, blood taker, laboratory staff, courier, transfuser, clerk, nurse, etc. The SoC is identified with a Global Service Relationship Number (GSRN) and printed on an identification band at the admission process. SoC is recognized by the specific GS1 AI 8018. NOTE SoC in this use case is a synonym of "recipient of transfusion." Sample Tubes are identified with the SoC's identification (GSRN) and a Service Relationship Instance Number (SRIN) with each tube corresponding to another SRIN. SRIN (GS1 AI 8019) is an attribute to SoC's GSRN and is only used in combination and following GS1 AI 8018. The implementer can define the structure of SRIN at his/her discretion. The implementer may wish introduce the ISBT 128 location code identifying where the occurrence of an information is held (e.g. identification band, test-tube, etc.) according to the code list "Table RT018". The first 2 digits of the SRIN should then be reserved for that purpose. ## A.6 Machine readable coding for chronic outpatient (UC 25 to 27) #### A.6.1 General There are an increasing number of situations, where SoCs suffering from chronic disease are treated at home (haemophilia, oncology, etc.). The potential for medication error increases in chronic care. Two or more SoCs with the same chronic illness may live in the same house, i.e. a parent and a child or children with a hereditary illness. But it is probable that each SoC may need different treatment plans with different medications and/or different dosages. AIDC in this context enables distinguishing between the differing requirements of each SoC. Patients may also be self-medicating. Patients undergoing treatment for chronic conditions such as Haemophilia administer and record their medication according to the prescribed treatment plan which maybe as needed or as a prophylaxis to prevent dangerous clinical outcomes. SoC treatment plans should be managed and clinically monitored for safety and stock purposes. AIDC enables capturing the SoC, medication administration event, recording of relevant data medication administered and other data such as batch and expiry information and amount used. In addition, the same capture should be used to manage and replenish stock efficiently. #### A.6.2 Use cases In normal circumstances, the Individual Provider checks (using AIDC) and ensures that the medication is appropriate to the administration event for the SoC. However, when a SoC is self-medicating, ensuring safety involves a number of additional requirements. These additional requirements need to ensure that the process is secure, i.e. the SoC is medicating with the right medication according to the prescribed treatment plan. This includes ensuring that expired or recalled medications are not administered. The self-medicating process has to be risk-free. This risk-free process is enabled using AIDC based on mobile technology linked to the medical health record of the SoC. #### A.6.2.1 Home delivery (UC 25) When the medications are delivered to the home of the SoC, documenting the correct medications are supplied to the SoC at that right location (e.g. the fridge of the SoC) has to be captured. If recalled and/or expired medicinal products have been found, these have to be taken back. #### A.6.2.2 Selecting medicinal product (UC 26) The SoC selects the medication from the fridge, uses AIDC to scan their GSRN, then the medication identifier (GTIN, and attributes such as lot number, expiry date and eventually serial number) and automatically registers the transaction removing the medication from the fridge. The scanner also checks the expiry date and ensures that the medication has not expired and checks for any recalled batches. Alerts are displayed on the scanner if either of one of these situations arises. If the SoC is alerted, medicinal product has to be placed on a separate shelf and another medicinal product has to be selected. #### A.6.2.3 Self-medicating and documenting (UC 27) The SoC prepares and self-administers the medication, and records the administration event on the scanner. When the SoC is a child, one parent processes the medication. Additional clinical information may be captured such as the reason for treatment and other conditions experienced by
the SoC. ## A.6.3 UC 25 to 27 process flow Figure A.6 — UC 25 to 27 process flow ## A.6.4 Good practice Focusing on AIDC processes, good practice consists in: ### A.6.4.1 Home delivery (UC 25) The Delivery Staff is already logged in the scanning device, which he/she uses to document the delivery. Delivery location (e.g. fridge) and each medicinal product package are scanned, the information being sent to supplier's IT system. For traceability, the supplier IT system stores information about the actual, real time status and location of medicinal products. If medicinal products are recalled and/or expired, the Delivery Staff scans the location and items using a separate IT routine. This records the movement of product to quarantine. #### A.6.4.2 Selecting medicinal product (UC 26) When the SoC or SoC's parents select a medicinal product for self-medication, a mobile scanning device is used for capture of GSRN and medicinal product GTIN. In the sense of a supply chain transaction, verification of "no-recall" status and that expiry date is in the future is processed by interacting with supplier's IT system. #### A.6.4.3 Self-medication and documenting (UC 27) The SoC uses AIDC to scan their GSRN, then the medication identifier (GTIN, and attributes such as lot number, expiry date and serial number). By interacting with the SoC's medical health record, the application verifies that the right product for the right SoC, at the right dosage at the right time are requirements all met. This prevents selection of a wrong medication in situations where there is more than one SoC at the location and more than one type of medication at the same location. If all is clear, the SoC's medical health record is updated about the administered medicinal product and optional additional information about the care process or conditions. # A.7 Machine readable coding by integrating nationwide SoC identification (UC 28 to 30) #### A.7.1 General Some jurisdictions have developed nationwide SoC identification and recommend/require this identification for AIDC. This use case represents some aspects of the experience in England and Wales. In England and Wales, the primary identifier of a SoC is the NHS (National Health Service) number and this number is always 10 digits in length. Every SoC registered with the NHS in England and Wales has a personal unique NHS number. The NHS number should be found on nearly all SoC information whether it be medical records, specimen samples, SoC identification band, appointment letters, discharge documents etc. If a bar code was required on these items it is still quite common to find the NHS number bar coded using a Code 128 or Code 39 symbology. This practice is gradually being phased out by implementing an international standard (GS1 GSRN). Within the NHS in England, the GS1 GSRN key is used to identify the SoC on the identification band bar code. The GSRN data field is 18 digits in length and used in conjunction with a GS1 UK prefix allocated to the Department of Health. The NHS also requires other fields to be used for patient demographics. To achieve this, the Department of Health decided to allow the use of the GS1 Application Identifiers 91, 92 and 93 (Internal organization information) to be used as the information remains solely within the NHS. The data structures used have been reserved by the NHS Data Dictionary which details all data use within the NHS. All the bar coded information is recommended to be used in one single bar code, a GS1 DataMatrix, which should be printed at both ends of the wrist band to allow easy access for scanning. #### A.7.2 Use cases #### A.7.2.1 SoC admission (UC 28) The admission clerk checks the SoC details on the local Provider Patient Administration System (PAS). If the SoC details available and are able to be validated, then an identification band is generated using the demographic information stored in the PAS. If the SoC details are not available (because a SoC hasn't been treated at that particular Provider before) PAS generates an identification band with PAS number as unique identifier rather than the NHS number (in particular, if SoC is admitted at an emergency department). When the SoC's demographics and NHS number are known, PAS is updated and a new identification band is issued. #### A.7.2.2 SoC identification band and data carried in GS1 DataMatrix (UC 29) Since NHS in England requires patient demographic information to be carried in the GS1 DataMatrix, specific GS1 Application Identifiers (91, 92, 93) have been defined and reserved in the NHS Data Dictionary for that purpose: The reading devices have to be set up to display this information so that the Individual Provider can make use of them in verification dialogue with SoC. #### A.7.2.3 SoC NHS number and PAS number (UC 30) There are NHS legacy systems that use linear bar codes containing the PAS number; these are usually for specific stand-alone systems. These systems are difficult and costly to upgrade and the NHS in England has allowed for system migration purposes only, that a Provider can use the existing linear bar code on the identification band, in addition to the GS1 DataMatrix and associated standards. It is anticipated with technology refreshes, the use of the linear bar code will be phased out and the GS1 DataMatrix will become the sole bar code identifier used on the SoC identification band. ## A.7.3 UC 28 to 30 process flow Figure A.7 — UC 28 to 30 process flow ## A.7.4 Good practice Focusing on AIDC processes, good practice consists in: - SoC admission: Embedding a nation-wide identification key (such as a NHS number) in a GS1 GSRN requires the use of a nation-wide GS1 Global Company Prefix dedicated to that purpose. If a SoC's NHS number is unknown (whatever the reason), a filler number is used instead. - SoC identification band and data carried in GS1 DataMatrix: Decision has been taken that the Individual Provider should have locally (without reading device connecting database) information which allow identification dialogue with the SoC. For that purpose, the NHS has included Application Identifiers which are open for internal use in the NHS Data Dictionary. Reading devices have to be programmed so that they display data carried in GS1 DataMatrix in a human readable format. - SoC NHS number and PAS number: PAS number may be used for specific IT systems, which are unable to handle larger identification keys such as a NHS number and GSRN. PAS numbers should then be printed on a linear bar code, beside GS1 DataMatrix. Individual Provider should scan the linear bar code when required (instead GS1 DataMatrix). ## **Bibliography** - [1] WHO Collaborating Center for Patient Safety Solutions. 2007, http://www.ccforpatientsafety.org/Patient-Safety-Solutions/ (stage April 2012) - [2] SOLUTIONS P.S. vol. 1, solution 2, 2007, http://www.ccforpatientsafety.org/common/pdfs/fpdf/presskit/PS-Solution2.pdf (stage April 2012) - [3] EFFECT OF BAR-CODE TECHNOLOGY ON THE SAFETY OF MEDICATION ADMINISTRATION. Effect of Barcode Technology on the Safety of Medication Administration. *N. Engl. J. Med.* 2010, **362** pp. 1698–1707 - [4] EXPERT GROUP ON SAFE MEDICATION PRACTICES (P-SP-PH/SAFE). Creation of a better medication safety culture in Europe: Building up safe medication practices, Chap III.5.1. p. 95, 2006, http://www.edqm.eu/medias/fichiers/Report_2006.pdf (stage April 2012) - [5] IMPLEMENTING BCMA—WORKAROUND AVOIDANCE IN BARCODE MEDICATION ADMINISTRATION SYSTEMS. Charles Still, MBA; Avis Hayden, PhD; and Edward Lanoue, RPh. *J. Healthc. Inf. Manag.* 2011 Summer, **25** (3) p. 51 - [6] UK Department of Health, Coding for Success: Simple technology for safer patient care, Guidance, 16 February 2007 - [7] GS1, General Specifications, see: www.gs1.org ICS 35.240.80 Price based on 56 pages