

Reference number
ISO/TS 18234-2:2013(E)

© ISO 2013

TECHNICAL
SPECIFICATION

ISO/TS
18234-2

Second edition
2013-10-15

Corrected version
2013-11-01

Intelligent transport systems — Traffic
and travel information via transport
protocol experts group, generation 1
(TPEG1) binary data format —

Part 2:
Syntax, semantics and framing structure
(TPEG1-SSF)

Systèmes intelligents de transport — Informations sur le trafic et le
tourisme via les données de format binaire du groupe d'experts du
protocole de transport, génération 1 (TPEG1)

Partie 2: Structure de syntaxe, de sémantique et de cadrage
(TPEG1-SSF)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any
means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission.
Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2013 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved iii

Contents Page

Foreword ... v

Introduction ... v

1 Scope .. 1

2 Normative references .. 1

3 Abbreviated terms ... 2

4 Design principles ... 3
4.1 TPEG transmission ... 3
4.2 TPEG layer model .. 4

5 Conventions and symbols .. 6
5.1 Conventions ... 6
5.1.1 Byte ordering ... 6
5.1.2 Method of describing the byte-oriented protocol .. 6
5.1.3 Reserved data fields .. 6
5.2 Symbols .. 6
5.2.1 Literal numbers .. 6
5.2.2 Variable numbers .. 6
5.2.3 Implicit numbers .. 7

6 Representation of syntax ... 7
6.1 General ... 7
6.2 Data type notation ... 7
6.2.1 Rules for data type definition representation ... 7
6.2.2 Description of data type definition syntax .. 9
6.3 Application dependent data types ... 10
6.3.1 Data structures .. 11
6.3.2 Using templates as interfaces .. 12
6.3.3 Components ... 13
6.4 Toolkits and external definition ... 15
6.5 Application design principles .. 15
6.5.1 Variable data structures ... 15
6.5.2 Re-usable and extendable structures ... 15
6.5.3 Validity of declarative structures ... 15

7 TPEG data stream description ... 16
7.1 Diagrammatic hierarchy representation of frame structure ... 16
7.2 Syntactical Representation of the TPEG Stream ... 16
7.2.1 TPEG transport frame structure .. 16
7.2.2 TPEG service frame template structure .. 17
7.2.3 Service frame of frame type = 0 ... 17
7.2.4 Service frame of frame type = 1 ... 17
7.2.5 TPEG service component frame multiplex ... 18
7.2.6 Interface to application specific frames .. 18
7.3 Description of data on Transport level .. 21
7.3.1 Syncword ... 21
7.3.2 Field length .. 21
7.3.3 Header CRC .. 21
7.3.4 Frame type ... 21
7.3.5 Synchronization method... 22
7.3.6 Error detection ... 22
7.4 Description of data on Service level .. 22

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

iv © ISO 2013 – All rights reserved

7.4.1 Encryption indicator ..22
7.4.2 Service identification ...22
7.5 Description of data on Service component level ...23
7.5.1 Service component identifier ...23
7.5.2 Field length ...23
7.5.3 Service component frame header CRC ...23
7.5.4 Service component frame data CRC..23

Annex A (normative) Character tables ..24
A.1 Character tables ...24
A.2 Reference character table index ..24

Annex B (normative) Method for coding quantities of objects ..25
B.1 Numag derivation ...25
B.2 Numag table ...26

Annex C (normative) CRC calculation ..27
C.1 CRC calculation ...27
C.2 ITU-T (formerly CCITT) CRC calculation in PASCAL ...27
C.3 ITU-T (formerly CCITT) CRC calculation in C notation ..28

Annex D (normative) Time calculation ..29
D.1 Time calculation ...29
D.2 Time calculation in C notation ..29

Annex E (informative) A description of the TPEG byte-stream using C-type notation32
E.1 Explanation ...32
E.2 Definition of data elements ...32
E.3 Definition of conditional expressions..33
E.4 Byte-stream representation of the TPEG hierarchy ...33
E.4.1 Definition of nextbyte function ...33
E.4.2 Definition of next_start_code function ..33
E.4.3 Definition of tpeg_stream function ..34

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved v

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, a
technical committee may decide to publish other types of normative document:

— an ISO Publicly Available Specification (ISO/PAS) represents an agreement between technical experts in
an ISO working group and is accepted for publication if it is approved by more than 50 % of the members
of the parent committee casting a vote;

— an ISO Technical Specification (ISO/TS) represents an agreement between the members of a technical
committee and is accepted for publication if it is approved by 2/3 of the members of the committee casting
a vote.

An ISO/PAS or ISO/TS is reviewed after three years in order to decide whether it will be confirmed for a
further three years, revised to become an International Standard, or withdrawn. If the ISO/PAS or ISO/TS is
confirmed, it is reviewed again after a further three years, at which time it must either be transformed into an
International Standard or be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/TS 18234-2 was prepared by the European Committee for Standardization (CEN) Technical Committee
CEN/TC 278, Road transport and traffic telematics, in collaboration with ISO Technical Committee
ISO/TC 204, Intelligent transport systems, in accordance with the Agreement on technical cooperation
between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO/TS 18234-2:2006). Clauses 5, 6 and 7 have
been technically revised.

ISO/TS 18234 consists of the following parts, under the general title Intelligent transport systems — Traffic
and travel information via transport protocol experts group, generation 1 (TPEG1) binary data format:

 Part 1: Introduction, numbering and versions (TPEG1-INV)

 Part 2: Syntax, semantics and framing structure (TPEG1-SSF)

 Part 3: Service and network information(TPEG1-SNI)

 Part 4: Road Traffic Message application (TPEG1-RTM)

 Part 5: Public Transport Information (PTI) application

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

vi © ISO 2013 – All rights reserved

 Part 6: Location referencing applications

 Part 7: Parking information (TPEG1-PK1)

 Part 8: Congestion and travel-time application (TPEG1-CTT)

 Part 9: Traffic event compact (TPEG1-TEC)

 Part 10: Conditional access information (TPEG1-CAI)

 Part 11: Location Referencing Container (TPEG1-LRC)

This corrected version of ISO 18234-2:2013 incorporates the following corrections:

 The quality of Figures 4 and 5 has been improved for legibility.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved vii

Introduction

TPEG technology uses a byte-oriented data stream format, which may be carried on almost any digital bearer
with an appropriate adaptation layer. TPEG messages are delivered from service providers to end-users, and
are used to transfer application data from the database of a service provider to a user’s equipment.

This Technical Specification describes the Service and Network Information Application, which provides a
means of informing end-users about all possible services and their content which are considered relevant by a
service provider to either provide continuity of his services or inform the end-user about other related services.
As stated in the design criteria, TPEG is a bearer independent system. Therefore some rules are established
for the relation of information contents of the same service on different bearers. Also the mechanisms for
following a certain service on one single bearer have to be defined. For the receiver it is essential to find an
adjacent or similar service if it leaves the current reception area. Nonetheless, basic information describing the
service itself is necessary. For the ease of the user, e.g. the service name, the service provider name, the
operating time and many other hints are delivered by the TPEG-SNI application.

General models for the hand-over and the referencing of services are developed and shown in detail. It is
important to note that this Technical Specification is closely related to ISO/TS 18234-3 and thus they are
dependent upon each other and must be used together.

The brief history of TPEG technology development dates back to the European Broadcasting Union (EBU)
Broadcast Management Committee establishing the B/TPEG project group in autumn 1997 with the mandate
to develop, as soon as possible, a new protocol for broadcasting traffic and travel-related information in the
multimedia environment. TPEG technology, its applications and service features are designed to enable
travel-related messages to be coded, decoded, filtered and understood by humans (visually and/or audibly in
the user’s language) and by agent systems.

One year later in December 1998, the B/TPEG group produced its first EBU specifications. Two Technical
Specifications were released. ISO/TS 18234-2, this document, described the Syntax, Semantics and Framing
Structure, which is used for all TPEG applications. ISO/TS 18234-4 (TPEG-RTM) described the first
application, for Road Traffic Messages.

Subsequently, CEN/TC 278/WG 4, in conjunction with ISO/TC 204, established a project group comprising the
members of B/TPEG and they have continued the work concurrently since March 1999. Since then two further
parts were developed to make the initial complete set of four parts, enabling the implementation of a
consistent service. ISO/TS 18234-3 (TPEG-SNI) describes the Service and Network Information Application,
which should be used by all service implementations to ensure appropriate referencing from one service
source to another. ISO/TS 18234-1 (TPEG-INV), completes the series, by describing the other parts and their
relationship; it also contains the application IDs used within the other parts.

In April 2000, the B/TPEG group released revised Parts 1 to 4, all four parts having been reviewed and
updated in the light of initial implementation results. Thus a consistent suite of specifications, ready for wide
scale implementation, was submitted to the CEN/ISO commenting process.

In November 2001, after extensive response to the comments received and from many internally suggested
improvements, all four parts were completed for the next stage: the Parallel Formal Vote in CEN and ISO. But
a major step forward has been to develop the so-called TPEG-Loc location referencing method, which
enables both map-based TPEG-decoders and non map-based ones to deliver either map-based location
referencing or human readable information. ISO/TS 18234-6 is now a separate specification and is used in
association with the other parts of ISO/TS 18234 to provide comprehensive location referencing. Additionally,
ISO/TS 18234-5, has been developed and been through the commenting process.

This Technical Specification provides a full specification to the primitives used, framing, time calculation,
numbers and to specific rules such as CRC calculation.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

viii © ISO 2013 – All rights reserved

During the development of the TPEG technology a number of versions have been documented and various
trials implemented using various versions of the specifications. At the time of the publication of this Technical
Specification, all parts are fully inter-workable and no specific dependencies exist.

This Technical Specification has the technical version number TPEG-SSF_3.0/003.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

TECHNICAL SPECIFICATION ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 1

Intelligent transport systems — Traffic and travel information
via transport protocol experts group, generation 1 (TPEG1)
binary data format —

Part 2:
Syntax, semantics and framing structure (TPEG1-SSF)

1 Scope

This Technical Specification establishes the method of referencing used within a TPEG data-stream to allow a
service provider to signal availability of the same service on another bearer channel or similar service data
from another service.

TPEG is a byte-oriented stream format, which may be carried on almost any digital bearer with an appropriate
adaptation layer. TPEG messages are delivered from service providers to end-users, and are used to transfer
application data from the database of a service provider to a user’s equipment.

The protocol is structured in a layered manner and employs a general purpose framing system which is
adaptable and extensible, and which carries frames of variable length. This has been designed with the
capability of explicit frame length identification at nearly all levels, giving greater flexibility and integrity, and
permitting the modification of the protocol and the addition of new features without disturbing the operation of
earlier client decoder models.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 7498-1, Information technology — Open Systems Interconnection — Basic Reference Model: The
Basic Model

ISO/IEC 8859-1, Information technology — 8-bit single-byte coded graphic character sets — Part 1: Latin
alphabet No. 1

ISO/IEC 8859-2, Information technology — 8-bit single-byte coded graphic character sets — Part 2: Latin
alphabet No. 2

ISO/IEC 8859-3, Information technology — 8-bit single-byte coded graphic character sets — Part 3: Latin
alphabet No. 3

ISO/IEC 8859-4, Information technology — 8-bit single-byte coded graphic character sets — Part 4: Latin
alphabet No. 4

ISO/IEC 8859-5, Information technology — 8-bit single-byte coded graphic character sets — Part 5:
Latin/Cyrillic alphabet

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

2 © ISO 2013 – All rights reserved

ISO/IEC 8859-6, Information technology — 8-bit single-byte coded graphic character sets — Part 6:
Latin/Arabic alphabet

ISO/IEC 8859-7, Information technology — 8-bit single-byte coded graphic character sets — Part 7:
Latin/Greek alphabet

ISO/IEC 8859-8, Information technology —8-bit single-byte coded graphic character sets — Part 8:
Latin/Hebrew alphabet

ISO/IEC 8859-9, Information technology — 8-bit single-byte coded graphic character sets — Part 9: Latin
alphabet No. 5

ISO/IEC 8859-10, Information technology — 8-bit single-byte coded graphic character sets — Part 10: Latin
alphabet No. 6

ISO/IEC 8859-13, Information technology — 8-bit single-byte coded graphic character sets — Part 13: Latin
alphabet No. 7

ISO/IEC 8859-14, Information technology — 8-bit single-byte coded graphic character sets — Part 14: Latin
alphabet No. 8 (Celtic)

ISO/IEC 8859-15, Information technology — 8-bit single-byte coded graphic character sets — Part 15: Latin
alphabet No. 9

ISO/IEC 10646, Information technology — Universal Coded Character Set (UCS)

3 Abbreviated terms

For the purposes of this document, the following abbreviated terms apply:

AID Application Identification

BPN Broadcast, Production and Networks (an EBU document publishing number system)

B/TPEG Broadcast/TPEG (the EBU project group name for the specification drafting group)

CEN Comité Européen de Normalisation

DAB Digital Audio Broadcasting

DARC Data Radio Channel - an FM sub-carrier system for data transmission

DVB Digital Video Broadcasting

EBU European Broadcasting Union

INV Introduction, Numbering and Versions (see ISO/TS 18234-1)

IPR Intellectual Property Right(s)

ISO International Organization for Standardization

ITU-T International Telecommunication Union - Telecom

OSI Open Systems Interconnection

RTM Road Traffic Message application (see ISO/TS 18234-4)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 3

SNI Service and Network Information application (see ISO/TS 18234-3)

SSF Syntax, Semantics and Framing Structure (this Technical Specification)

TPEG Transport Protocol Expert Group

TTI Traffic and Travel Information

UAV unassigned value

UTC Coordinated Universal Time

4 Design principles

The following principles have been assumed in the development of the TPEG protocol, structure and
semantics:

 TPEG is unidirectional;

 TPEG is byte-oriented, where a byte is represented by eight bits;

 TPEG provides a protocol structure, which employs asynchronous framing;

 TPEG includes a CRC error detection capability applicable on a variety of different levels;

 TPEG assumes the use of a transparent data channel;

 TPEG assumes that underlying systems will have an appropriate level of reliability;

 TPEG assumes that underlying systems may employ error correction;

 TPEG has a hierarchical data frame structure;

 TPEG is used to transport information from database to database;

 TPEG provides service provider name, service name and network information;

 TPEG permits the use of encryption mechanisms, if required by an application.

4.1 TPEG transmission

TPEG is intended to operate via almost any simple digital data channel, and it assumes nothing of the channel
other than the ability to convey a stream of bytes. To this end, the concept of transmission via a “piece of wire”
is envisaged, in which the bearer has no additional service features.

In Figure 1, a variety of possible transmission channels are shown. The only requirement of the channel is that
a sequence of bytes may be carried between the TPEG generator and the TPEG decoder. This requirement is
described as “transparency”. However it is recognized that data channels may introduce errors. Bytes may be
omitted from a sequence, bytes may become corrupted or additional and erroneous data could be received.
Therefore TPEG incorporates error detection features at appropriate points and levels. It is assumed that
bearer systems will introduce an appropriate level of error correction.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

4 © ISO 2013 – All rights reserved

Figure 1 — TPEG data may be delivered simultaneously via different bearer channels

4.2 TPEG layer model

In Figure 2, the different layers of the TPEG protocol are identified in accordance with the ISO/OSI model
(ISO/IEC 7498-1).

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 5

Figure 2 — TPEG in relation to the ISO/OSI Layer Model via different bearer channels

Layer 7 is the top level and referred to in TPEG as the application layer. Initially the following applications
were defined:

 TPEG specifications - Part 3: Service and Network Information Application (Service provider name, logo,
hand-over information, etc.) (CEN ISO/TS 18234-3);

 TPEG specifications - Part 4: Road Traffic Message application (Event description, location description,
etc.) (CEN ISO/TS 18234-4).

Layer 4 is the packetization layer. Components are merged into a single stream and encrypted and/or
compressed.

Layer 3 is the network layer. This layer defines the means for synchronization and routing. This is the lowest
layer of the TPEG protocol.

Layer 2 is the datalink layer. This layer consists of a wide range of different bearers, which are suitable
carriers for the TPEG protocol. An adaptation layer may be required in order to map the TPEG stream onto
that bearer.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

6 © ISO 2013 – All rights reserved

Layer 1 is the physical layer. This defines the transmission medium (radio waves, wire, optical, etc.). One
particular bearer can make use of different physical layers.

5 Conventions and symbols

5.1 Conventions

5.1.1 Byte ordering

All numeric values using more than one byte are coded in “Big Endian” format (most significant byte first).
Where a byte is subdivided into bits, the most significant bit (“b7”) is at the left-hand end and the least
significant bit (“b0”) is at the right-hand end of the structure.

5.1.2 Method of describing the byte-oriented protocol

TPEG uses a data-type representation for the many structures that are integrated to form the transmission
protocol. This textual representation is designed to be unambiguous, easy to understand and to modify, and
does not require a detailed knowledge of programming languages.

Data types are built up progressively. Primitive elements, which may be expressed as a series of bytes are
built into compound elements. More and more complex structures are built up with compound elements and
primitives. Some primitives, compounds and structures are specified in this Technical Specification, and apply
to all TPEG Applications. Other primitives, compounds and structures are defined within applications and are
local only to that application.

A resultant byte-stream coded using C-type notation is shown in CEN ISO/TS 18234-2:2006, Annex E.

5.1.3 Reserved data fields

If any part of a TPEG data structure is not completely defined, then it should be assumed to be available for
future use. The notation is UAV (unassigned value). This unassigned value should be encoded by the service
provider as the value 00 hex. This allows newer decoders using a future TPEG Standard to ignore this data
when receiving a service from a provider encoding to this older level of specification. A decoder which is not
aware of the use of any former UAVs can still make use of the remaining data fields of the corresponding
information entity. However, the decoder will not be able to process the newly defined additional information.

5.2 Symbols

5.2.1 Literal numbers

Whenever literal numbers are quoted in TPEG Standards, the following applies:

 123 = 123 decimal

 123 hex = 123 hexadecimal

5.2.2 Variable numbers

Symbols are used to represent numbers whose values are not predefined within the TPEG Standards. In
these cases, the symbol used is always local to the data type definition. For example, within the definition of a
data type, symbols such as “n” or “m” are often used to represent the number of bytes of data within the
structure, and the symbol “id” is used to designate the occurrence of the identifier of the data type.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 7

5.2.3 Implicit numbers

Within the definition of a data structure it is frequently necessary to describe the inclusion of a component
which is repeated any number of times, zero or more. In many of these cases it is convenient to use a
numerical symbol to show the component structure being repeated a number of times, but the number itself is
not explicitly included within the definition of the data structure. Often, the symbol “m” is used for this purpose.

6 Representation of syntax

6.1 General

This clause introduces the terminology and the syntax that is used to define TPEG data elements and
structures.

6.2 Data type notation

6.2.1 Rules for data type definition representation

The following general rules are used for defining data types:

 a data type is written in upper camel case letters in one single expression.1 The data type may contain
letters (a-z), number (0-9), underscore "_", round brackets "()" and colon ":"; the first must be a letter;

EXAMPLE 1 IntUnLo stands for Integer Unsigned Long

 a data type is framed by angle brackets “ < > ” ;

 the content of a data type is defined by a colon followed by an equal sign “ := ”;

 the end of a data type is indicated by a semicolon “ ; ”;

 a descriptor written in lower camel case may be added to a data type as one single expression without spaces;

 a descriptor is framed by round brackets “ () ”;

 the descriptor contains either a value or a name of the associated type;

 data types in a definition list of another one are separated by commas “ , ”. The order of definition is defined as the
order of occurrence in a data stream;

 curly brackets (braces) “ { } ” group together a block of data types;

 control statements (“if”, “infinite”, “unordered” or “external”) are noted in lower case letters. A control statement is
followed by a block statement or only one data type:

1) “if” defines a condition statement. The block’s (or data type’s) occurrence is conditional to the condition
statement being valid. The condition statement is framed with round brackets. This statement applies to any
data type;

2) “infinite” defines endless repetition of the block (or data type). This is only used to mark the main TPEG stream
as not ending stream of data;

1 Camel case is the description given to the use of compound words wherein each individual word is signalled by a
capital letter inside the compound word. Upper camel case means that the compound word begins with an upper-case
(capital) letter, and lower camel case means the compound word begins with a small letter.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

8 © ISO 2013 – All rights reserved

3) “unordered” defines that the following block contains data types which may occur in any order, not only the one
used to specify subsequent data types. This statement applies to components only. (See Clause A2.3.3 -
Components);

4) “external” defines that the content of the data type is being defined external to the scope of given specification.
The control statement “external” must be followed by only one data. A reference to the corresponding
specification should follow in the comment. All types specified in TYP specification are treated as being in scope
of any application

EXAMPLE 2

<MMCLink(1)>:= : externally defined component

external <MessageManagementContainer(1)>; : id = 1, See Annex B (Message Management
Container)

 the expression “ n * ” indicates multiplicity of occurrence of a data type . The lower and upper bound are
implicitly from 0 to infinite; other bounds are described in square brackets between two points " .. " and
behind the data type descriptor. The " * " stands for no limitation at upper bound

EXAMPLE 3

m * <IntUnTi>(Attribute) [1..*] , : The “Attribute” must occur once at least and up
to infinite.

 a function “ fn () ” that is calculated over a data type is indicated by italic lower case letters. The comment
behind the definition of the function shall explain which function is used;

 any text after a colon “ : ” is regarded as a comment;

 a data type definition can be a template (i.e. not fully defined declarative structure) having a parameter
inside of round brackets "(x)" at the end of the data type name. Templates define structures, whose
structural definition is included as a basis for other data type definitions. To declare the given template
(making it identifiable) the name of the parameter is repeated as a descriptor in a nested data type of the
subsequent definition list. Templates allow for reading the generalised part of different instances i.e. to
specify data type interfaces. (See Clause A2.3.2 - Using templates as interfaces for further description)

EXAMPLE 4

<Template(x)> := : x defines the template parameter

<IntUnTi>(x); : descriptor x defines position of setting the
parameter in the list

 a data type can inherit a template by concatenating the data type name of the template including the
square brackets to its own name. The data type itself can again be a template having the "(x)" at its end
of name, or it instantiates the inherited template by defining the value of the parameter in the brackets. In
the latter case the brackets shall contain the decimal number of the identifier and the value shall be set in
the subsequent definition list. The structural definition of the inherited template is repeated as the first part
of the definition list before new data types are specified. (See Clause A2.3.2 - Using templates as
interfaces for further description)

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 9

EXAMPLE 5

<AnotherTemplate(x)<Template(x)>>:= : second template inherits first

<IntUnTi>(x), : repeated definition from 1st template

<IntUnLi>(n); : additional structural definition

<Instance<AnotherTemplate(1)>>:= : instantiation of the second template

<IntUnTi>(1), : definition of parameter in the stream

<IntUnLi>(n), : structural definition from template

<IntUnTi>(value); : some more definition

 in the definition list a specific instance of a template (i.e. declarative structure) is described without the
brackets. Any inherited data type of this template may occur at that position in the data stream

EXAMPLE 6

<SomeData>:=

<AnotherTemplate>(anyAnotherTemplate); : Data stream contains e.g. <Instance>

The following additional guidelines help to improve the readability of data type definitions:

 data type names are written in bold;

 nested data type definitions are defined from top to bottom (i.e. higher levels first, then lower levels);

 a box is drawn around a data type definition;

 for clear graphical presentation, lines in a coding box if they are too long to fit, are broken with a
backslash “\” followed by a carriage return. The broken line restarts with an additional backslash

EXAMPLE 7

<LongLinesExample>:=
 <DateTimeVeryLongType\

 \NameMayBeInSeveralLines>,
 <DateTime>,
 <ShortString>;

: First line

: Second line

6.2.2 Description of data type definition syntax

A data type is an interpretation of one or more bytes. Each data type has a structure, which may describe the
data type as a composition of other defined data types. The data type structure shows the composition and
the position of each data element. TPEG defines data structures in the following manner:

<NewDataType>:=
 <DataTypeA>(descriptorA),
 <DataTypeB>(descriptorB);

: Description of data type
: Description of data A
: Description of data B

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

10 © ISO 2013 – All rights reserved

This shows an example data structure, which has just two parts, one of type <DataTypeA> and the other of
<DataTypeB>. A descriptor may be assigned to the data type, to relate the element to another part of the
definition. Comments about the data structure are included at the right-hand side delimited by the colon “:”
separator. Each of the constituent data types may be itself composed of other data types, which are defined
separately. Eventually each data type is expressible as one or more bytes.

Where a data structure is repeated a number of times, this may be shown as follows:

<NewDataType>:=
 <DataTypeA>,
 m * <DataTypeB>[0..*];

: Description of data type
: Description of data A
: Description of data B

Often, in such cases it is necessary to explicitly deliver to the decoder the number of times a data type is
repeated; sometimes it is not, because other means like framing or internal length coding allows knowledge of
the end of the list of the repeated data type. In other cases the overall length of a data structure in bytes
needs to be specified. Additionally the constraint on occurrences can be added, which tells how many
instances of the data type must be expected by the decoder. The “*” as upper bound means in this case that
at this place no restriction is given to the upper bound; in other words, infinite elements may follow.

Where the number of repetitions must be signalled, it may be accomplished using another data element as
follows:

<NewDataType>:=
 <IntUnTi>(n),
 n * <DataTypeA>[0..255],
 <DataTypeB>;

: Description of data type
: An integer representing the value of "n"
: Description of data A
: Description of data B

In the above example a decoder has to have the value of “n” in order to correctly determine the n’th position of
the <DataTypeB> in the list. Here as consequence of data type IntUnTi not more as 255 instances of the data
type can be coded.

In the following example the decoder uses the value of “n” to determine the overall length of the data
structure, and the value of “m” determines that <DataTypeB> is repeated m times:

<NewDataType>:=
 <IntUnTi>(n),
 m * <DataTypeA>;

: Description of data type
: Length, n, of data structure in bytes
: Description of data A

This data type definition is used to describe a variable structure switched by the value of x:

<NewDataType>:=
 <IntUnTi>(x),
 if (x=1) then <DataTypeA>,
 if (x=2) then <DataTypeB>,

: Description of data type
: Select parameter, x
: Included if x equals 1
: Included if x equals 2

6.3 Application dependent data types

This clause describes the methodology and syntax by which application data types may be constructed within
TPEG Applications. Two basic forms are described: data structures (being non-declarative) and components
(being declarative). Components contain an identifier which labels the structure, and which can be used by a
decoder to determine the definition of content of the structure. As such, components are used where options
are required, or where an application needs to build in ‘future proofing’. Data structures do not contain such
information, and are used in all other positions.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 11

This Annex does not specify the structures, which are actually used in TPEG Applications. Such specifications
are made in the respective parts of the Standard. However examples are given to show how such structures
may be built from the primitive elements already described above.

6.3.1 Data structures

Data structures are built up from several (i.e. more than one) elements: primitive, compound or other
structures (both non-declarative and declarative). As such, any application specific data type definition having
no component identifier is per definition a data structure. The term data structure is specifically used for data
type definitions having more than one sub element defined.

Examples of data structure might be:

EXAMPLE 1

<Activity>:=
 <DateTime>,
 <DateTime>,
 <ShortString>;

: Activity
: Beginning
: End
: Text

EXAMPLE 2

<Wave>:=
 <IntUnLi>(n),
 n * <IntSiTi>(sample)[0..8000];

: Sound sample
: Length of samples, n
: Between 0 and 8000 occurrences of a sample

Another example making use of a condition within a data type definition is shown below.

EXAMPLE 3 An application could use the example data types above in the following way

<Appointment>:=
 <IntUnTi>(at),
 if (at = 1)

 <WaveAlarm>,
 if (at = 2)

 <TextAlarm>,
 <Activity>;

: Appointment
: Alarm type

: Remind with a sound

: Remind with a text

: Let some action follow

<WaveAlarm>:=

 <DateTime>,
 <Wave>;

: Sound alarm
: When to wake up
: Sound to wake up to!

<TextAlarm>:=
 <DateTime>,
 <ShortString>;

: Text alarm
: When to display
: Text to display

For optional values a general mechanism is provided, using a bitarray for signalling optional values. In the
case that a corresponding bit of the bitarray is set (=1), the optional attribute is stored in the stream. In case
the bit is unset the attribute is not available and the next following attribute shall be processed in the stream.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

12 © ISO 2013 – All rights reserved

EXAMPLE 4 Data structure with optional elements, signalled by a preceding bitarray as selector

<TimeInterval>:=
 <BitArray>(selector),

 if (bit 0 of selector is set)

 <IntUnTi>(years),
 if (bit 1 of selector is set)

 <IntUnTi>(months),
 if (bit 2 of selector is set)

 <IntUnTi>(days),
 if (bit 3 of selector is set)

 <IntUnTi>(hours),
 if (bit 4 of selector is set)

 <IntUnTi>(minutes),
 if (bit 5 of selector is set)

 <IntUnTi>(seconds);

: DaySelector

: Number of years between 0 and 100

: Number of months between 0 and twelve

: Number of days between 0 and 31

: Number of hours between 0 and 24

: Number of minutes between 0 and 60

: Number of seconds between 0 and 60

6.3.2 Using templates as interfaces

In addition to the possibility of coding the complete and static structural definition of a data structure, the
syntax does foresee that parts of the structure are conditionally different; signalled by a well defined first part
some other data types are different.

EXAMPLE

A tagged value (also known as TagLengthValue-Coding) starts with a type and length; afterwards the value follows. Let's
assume the type is an enumeration of some possible values, one would first specify the interface having only the type
defined. The different tagged value types would now inherit this interface, i.e. would have the type defined as first element
amended with the definition of the tagged value data type. The decoder now reads the interface information (the type
attribute) and knows how to proceed for reading the rest of the tagged value from the stream.

<DifferentDataList>:=
 n * <TaggedValue>(value);

: A list of data

: Different instances can have different types

<TaggedValue(x)>:=
 <tav001:ValueType>(type),

 <IntUnTi>(length);

: Template for tagged value

: Type of this tagged value

: Length in bytes in case that value type is
unknown

Example table tav001:ValueType:

Code Reference-English ‘word’ Comment

001 Service name

002 Price per month

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 13

Then the resulting list of inherited tagged value data types would be:

<ServiceName<TaggedValue(1)>>:=
 <tav001:ValueType>(1),

 <IntUnTi>(length),

 <ShortString>(serviceName);

: Template for tagged value

: Type of this tagged value

: Length in bytes in case that value type is
unknown

: Service name

<ServiceName<TaggedValue(2)>>:=
 <tav001:ValueType>(2),

 <IntUnTi>(length),

 <Float>(pricePerMonth);

: Template for tagged value

: Type of this tagged value

: Length in bytes in case that value type is
unknown

: Price per month

This interface allows a subsequent list of data types which can easily be extended, by using the same interface.

6.3.3 Components

A component is understood as a declarative structure having an interface as described in the previous clause.
A decoder of the data stream can identify the content of the structure with the help of the identifier which is
unique in the scope of any one TPEG Application Standard. In addition to the identifier a length indicator
allows the decoder to step over those components whose ids are unknown to it. This enables the possibility of
introducing new components in the data stream although decoders in the market do not know their content.
The old decoder does expect the content of the first version of a protocol and ignores simply unrecognized
data with small performance loss. The new decoder expects the second version of the protocol and can fully
decode that version of the protocol. Components should be used wherever future extensions are envisioned,
and where ‘future proofing’ is a strong requirement.

NOTE With this method even non-backwards compatible changes can be introduced into the existing market by
having a migration period being backward compatible and then later cutting of not longer supported devices, even though
it is expected that the migration will take its time.

In Addition to the concept of declarative structuring a second step of improvement of size efficiency combined
with the backward compatibility is specified. The first part following the header of a component in the data
stream is defined as attribute block. The attribute block starts with the length of the block in bytes which again
allows the decoder to step over attributes that are not specified in a first version of the protocol.

The decoder reads the attribute block length and decreases the count of bytes while reading the attributes in
case that the last known attribute is read, and the attribute block count is not zero, the remaining bytes in the
data stream are omitted to step over to the next well-known part of the data stream.

6.3.3.1 Definition of standard component interface

A component, including attributes, which is the general standard component, containing a unique "generic
component id", a length indicating count of bytes following as data after the component length and an attribute
length indicating the count of bytes in the attribute block (as first part of the component data). The structure is
defined by:

<Component(x)>:= : Component template used for standard components

 <IntUnTi>(x), : id is unique within the scope of the application.

 <IntUnLoMB>(compLengthInByte), : length of the component counted in bytes.

 <IntUnLoMB>(attributeBlockLengthInByte); : length of the attribute block in bytes.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

14 © ISO 2013 – All rights reserved

6.3.3.2 Example for jumping over unknown content types

 let C1 be a component with an attribute a1 as ShortInt and a sub component C2;

 let C2 be a component with an attribute a2 as one IntUnTi and a second a3 as ShortString;

 let C3 be a component being the successor of C1.

<C1<Component(1)>>:=

 <IntUnTi>(1), : id = 1.

 <IntUnLoMB>(compLengthInByte), : length of the component counted in bytes

 <IntUnLoMB>(attributeBlockLengthInByte); : length of the attribute block in bytes

 <ShortInt>(a1), : first attribute in C1

 <C2>(c2); : sub component from C1

<C2<Component(2)>>:=

 <IntUnTi>(2), : id = 2.

 <IntUnLoMB>(compLengthInByte), : length of the component counted in bytes

 <IntUnLoMB>(attributeBlockLengthInByte); : length of the attribute block in bytes

 <IntUnTi>(a2), : first attribute in C2

 <ShortString>(a3); : second attribute in C2

<C3<Component(3)>>:=

 <IntUnTi>(3), : id = 3.

 <IntUnLoMB>(compLengthInByte), : length of the component counted in bytes

 <IntUnLoMB>(attributeBlockLengthInByte); : length of the attribute block in bytes

For example to demonstrate the method some padding bytes with value CD hex could be added to the stream
whereby a decoder could still read C1 – C3. In Figure A.1 one can see a first line with a position number, a
second line with the abbreviated function of that byte and a third line with sample content. The arrows under
the table show the possible jumps allowing the seeking over the different padding bytes.

Line function abbreviations mean:
CL : component (data) length in bytes AL : attribute block length in bytes
P : padding bytes A1, A2, A3 : attributes
C1, C2, C3 : component identifier, begin of the component

Figure 3 — Example for jumping over unknown content with component header information

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 15

6.4 Toolkits and external definition

Some functionality is shared between different TPEG Applications. This is for example the case for location
referencing container and message management container. A TPEG Application therefore can refer to a data
type definition not specified in the same Technical Specification.

Toolkits are designed, so that the root components usable as external reference are defined as templates. A
TPEG Application using a toolkit template therefore needs to specify a unique generic component id for this
instantiation of the interface.

All subsequent components in a toolkit are defined as out of scope of the TPEG Application; i.e. the toolkit on
its own defines subcomponents beginning with 0. With that on one hand application decoder must be aware
that component ids of the application may be repeated in sub components of a toolkit. On the other hand
further development of application and toolkit can be done independently.

6.5 Application design principles

This clause describes design principles that will be helpful in building TPEG applications. A fundamental
assumption is that applications will develop and new features will be added. If design principles are adopted
properly then older decoders will still operate properly after extending features. Correct design should permit
applications to be upgraded and extended over time, providing new features to new decoders, and yet permit
existing decoders to continue to operate.

6.5.1 Variable data structures

Switches may be included within an application, which permit variations in the subsequent data structure.
However, the switch fixes the values of variations. A new type cannot be introduced without breaking
backward compatibility. This may be achieved by using components. When new features are likely to be
incorporated, attention should be given to the fact that old decoders just ‘skip over’ new data fields and still
expect the old components if they were mandatory.

6.5.2 Re-usable and extendable structures

Within an application there will be data structures, which are used repeatedly in a variety of places. There will
also certainly be an ever-growing set of structures, as the application protocol develops and incorporates new
features. Component templates may be used to minimize the number of occasions within the decoder’s
software in which the structure needs to be defined, and to permit an increasing variety of structures to be
used in a given location.

6.5.3 Validity of declarative structures

The Identifier of a component is uniquely defined within each application. The same number may be used in
different applications for completely different purposes. Within an application one identifier designates one
definition of a component. The design of an application may use components to implement placeholders or to
change the composition of elements in a fixed structure.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

16 © ISO 2013 – All rights reserved

7 TPEG data stream description

7.1 Diagrammatic hierarchy representation of frame structure

Transport Frame: Sync Word Field Length Header CRC
Frame Type

= 0
Service Frame

Service Frame:
Service 3
(SID-A,
SID-B,
SID-C)

Number
of

Services
= n

Service 1
(SID-A,
SID-B,
SID-C)

Service 2
(SID-A,
SID-B,
SID-C)

Service ...
(SID-A,
SID-B,
SID-C)

Service n
(SID-A,
SID-B,
SID-C)

CRC

Figure 4 — TPEG Frame Structure, Frame Type = 0 (i.e. stream directory)

Transport Frame: Sync Word Field Length Header CRC
Frame Type

= 1
Service Frame

Service Frame:
Service

Identification
SID-A

Service
Identification

SID-B

Service
Identification

SID-C

Encryption
Indicator

fn (component multiplex)

...Service Component Multiplex:
Service

Component
Frame 1

Service
Component

Frame n

Service
Component

Frame ...

Encryption/Compression
Function

Field Length CRCService Component Frame:
Service

Component
Identifier

Component data

Figure 5 — TPEG Frame Structure, Frame Type = 1 (i.e. conventional data)

7.2 Syntactical Representation of the TPEG Stream

7.2.1 TPEG transport frame structure

The following boxes are the syntactical representation of the TPEG frame structure shown in Clause 7.1 The
byte stream contains consecutive transport frames. Each frame includes:

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 17

The synchronization word (syncword) 2 bytes (See Clause A.3.3.1)

The length of the service frame in bytes (field length) 2 bytes (See Clause A.3.3.2)

The header CRC 2 bytes (See Clause A.3.3.3)

The frame type indicator 1 byte (See Clause A.3.3.4)

The service frame n bytes (n = Field Length)

The byte stream is built according to the above-mentioned repetitive structure of transport frames. Normally
one transport frame should follow another directly, however if any spacing bytes are required these should be
set to 0 hex (padding bytes).

<TpegStream>:=
 infinite {
 n * <IntUnTi>(0),
 <TransportFrame>
 };

: The data stream.
: Control element, (loop continues infinitely)
: Any number of padding bytes (0 hex)
: Transport frames

<TransportFrame>:=
 <IntUnLi>(FF0F hex),
 <IntUnLi>(m),

 <CRC>(headCRC),

 <IntUnTi>(x),

 <ServiceFrame(x)>;

: Sync word (FF0F hex)
: Number of bytes in Service Frame
: Header CRC, (See Clause A.3.3.4)

: Frame type of service frame

: Any service frame follows

7.2.2 TPEG service frame template structure

This service frame comprises:

<ServiceFrame(x)>:=
 n * <byte>;

: Template for service frame
: Content of service frame

7.2.3 Service frame of frame type = 0

The service frame is solely used to transport the stream directory information.

Number of services (n) 1 byte

n *(SID-A, SID-B, SID-C) n * (3 bytes)

CRC 2 bytes

<StreamDirectory<ServiceFrame(0)>>:=

 <IntUnTi>(n),
 n * <ServiceIdentifier>,

 <CRC>;

: Stream directory

: Number of services

: Any number of Service IDs

: CRC of Service IDs

7.2.4 Service frame of frame type = 1

Each service frame comprises:

SID-A, SID-B, SID-C 3 bytes (See Clause A.3.4.2)

The encryption indicator 1 byte (See Clause A.3.4.1)

The component data m bytes

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

18 © ISO 2013 – All rights reserved

The service level is defined by the service frame. Each transport frame carries one and only one service
frame. The service frame includes a component multiplex comprising one or more component frames.

Each service frame may contain a different range and number of component frames as required by the
service provider.

Each transport frame may be used by only one service provider and one dedicated service, which supports a
mixture of applications. A multiplex of service providers or services is realized by concatenation of multiple
transport frames. Each service frame includes service information that comprises the service identification
elements and the encryption indicator.

<ConventionalData<ServiceFrame(1)>>:=
 <ServiceIdentifier>,

 <IntUnTi>(encIdentifier),

 fn(<ServCompMultiplex>);

: Conventional data

: Service identification

: Encryption indicator n. 0 = no encryption

: Function fn (…) is utilized according to the chosen
encryption algorithm

7.2.5 TPEG service component frame multiplex

The component multiplex is a collection of one or more component frames, the type and order of which are
freely determined by the service provider. The resultant multiplex is transformed according to the encryption
method required (if the encryption indicator is not 0) or is left unchanged (if the encryption indicator = 0). The
length of the resultant data must be less than or equal to 65531 bytes.

<ServCompMultiplex>:=
 n * <ServCompFrame>(data);

: Any number of any component frames

7.2.6 Interface to application specific frames

The service component frame introduces the application specific code. This means further details of the data
stream are specified by the application specification. In the history for different needs slightly different frames
have been defined in the existing application specifications. To harmonize this kind of frames, especially for
new developments of specifications, this clause specifies not only a basic frame, which is required for any
application but also a selection of possible other frames, whereof an application can just choose one without
the need to specify its own frame.

An application specification, however, can specify its own frame, which shall at minimum include the following
base service component frame as first sub type.

7.2.6.1 TPEG base service component frame structure

In a TPEG data stream it shall be possible to have not only one content stream but more; even different from
the same application. This is possible with the help of the Service and Network Information (SNI) Application,
which is served like variable directory information in the data stream. Therein a table defines a unique number
for any content stream being transmitted. This includes also the definition which application is expected in one
specific frame. In other words the frame starts not with a typical interface template, but with a header, defining
three first values being in common with all service component frames. Therefore, any service component
frame is built as shown below:

<ServCompFrame>:=

 <ServCompFrameHeader>(header),

 <ApplicationData>(data);

: Service component frame

: Common service component header

: Component data

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 19

Where the service component header is specified as:

<ServCompFrameHeader>:=
 <IntUnTi>(scId),

 <IntUnLi>(lengthInByte),
 <CRC>(headerCRC);

: Common service component frame header
: Service component identifier (scid is defined by SNI
service component designating the application in this
service component frame)

: Length, n, of component data in bytes
: Header CRC (See Clause A.3.5.3)

At the component level data is carried in component frames which have a limited length. If applications require
greater capacity then the application must be designed to distribute data between component frames and to
recombine this information in the decoder.

The inclusion of the field length enables the decoder to skip a component.

The maximum field length of the component data (assuming that there is no transformation, and only one
component is included in the service frame) = 65526.

7.2.6.2 TPEG specialized service component data schemata

It is in interest of consistency to make sure that service component frames still become defined in as similar
as possible in different applications. Specifically with three further attributes being of general nature. The
following proposed specialized service component data schemata can be used to inform on this general level
about following information:

a) The application data of a component frame with dataCRC is error-free.

Data CRC on this level makes it possible, that in case of errors only the service component frame (e.g. one
relatively small package of data) would be lost. Other parts of the service multiplex may still be valid and could
still be used. (See Clause A.3.5.4)

b) Count of messages the service component frame contains named messageCount.

Sometimes it is useful not only to know the opaque count of bytes, but also how many different message have
to be expected by the decoder (e.g. for displaying purpose).

c) Prioritization can be made by assigning a groupPriority.

In some cases the different service components received shall not just be handled by a FIFO buffer but also
with some qualification of priority of messages. In this case high priority message may take precedence over
other messages in the decoder. These may be presented to the user even before low priority messages are
decoded.

7.2.6.2.1 Service component data with dataCRC

Any application should at least specify a data CRC as defined in Clause A.3.5.4 at the end of application data
ensuring that bit errors can be detected on service component frame level.

< ServCompFrameProtected >:=

 <ServCompFrameHeader>(header),

 external <ApplicationContent>(content),

 <CRC>(dataCRC);

: CRC protected service component frame

: Component frame header as defined in A.3.2.6.1

: Content specified by the individual application

: CRC starting with first byte after the header

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

20 © ISO 2013 – All rights reserved

7.2.6.2.2 Service component data with dataCRC and messageCount

This service frame is used for applications containing messages more or less directly presented to the user
which indicate already on frame level how many messages are to be expected. Data CRC is contained as
well.

< ServCompFrameCountedProtected>:=

 <ServCompFrameHeader>(header),

 <IntUnTi>(messageCount),

 external <ApplicationContent>(content),
 <CRC>(dataCRC);

: CRC protected service component frame with
message count

: Component frame header as defined in A.3.2.6.1

: count of messages in this ApplicationContent

: actual payload of the application

: CRC starting with first byte after the header

7.2.6.2.3 Service component data with dataCRC and groupPriority

When messages need to be grouped by priority, this service component frame is used. If not all messages
within the frame have the same priority, 'typ007_000: undefined' shall be used. Data CRC is contained as
well.

< ServCompFramePrioritisedProtected>:=

 <ServCompFrameHeader>(header),

 <typ007:Priority>(groupPriority),

 external <ApplicationContent>(content),

 <CRC>(dataCRC);

: CRC protected service component frame with
message count

: Component frame header as defined in A.3.2.6.1

: group priority applicable to all messages in this
ApplicationContent

: actual payload of the application

: CRC starting with first byte of after the header

7.2.6.2.4 Service component frame with dataCRC, groupPriority, and messageCount

Additionally, an application can also make use of all features described in previous clauses.

< ServCompFramePrioritisedCountedProtected>:=

 <ServCompFrameHeader>(header),

 <typ007:Priority>(groupPriority),

 <IntUnTi>(messageCount),

 external <ApplicationContent>(content),

 <CRC>(dataCRC);

: CRC protected service component frame with group

priority and message count

: Component frame header as defined in A.3.2.6.

: group priority applicable to all messages in the

ApplicationContent

: count of messages in this ApplicationContent

: actual payload of the application

: CRC starting with first byte after the header

7.2.6.3 Example of an application implementing a service component frame

An application specification is required to specify first the component frame just as a written sentence. It may
for information repeat the definition of the frame, but in this case it shall add a note, that this definition can be
superseded by a future release of this specification.

As second definition tree of application starts with:

<ApplicationContent>:=
 n * <MyComponent>(comp);

: link provided by SSF

: n root components of the application

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 21

<MyComponent<Component(0)>>:=

 <IntUnTi>(0), : id = 1

 <IntUnLoMB>(compLengthInByte), : length of the component in bytes

 <IntUnLoMB>(attributeBlockLengthInByte), : length of the attribute block in bytes

 <ShortString>(myText), : some first attribute of the application

 <SubComp>(sub); : some sub components of Component(0)

7.3 Description of data on Transport level

7.3.1 Syncword

The syncword is 2 bytes long, and has the value of FF0F hex.

The nibbles F hex and 0 hex have been chosen for simplicity of processing in decoders. The patterns
0000 hex and FFFF hex were deprecated to avoid the probability of false triggering in the cases of some
commonly used transmission channels.

7.3.2 Field length

The field length consists of 2 bytes and represents the number of bytes in the service frame.

This derives from the need of variable length frames.

7.3.3 Header CRC

The Header CRC is two bytes long, and is based on the ITU-T polynomial x16 + x12 + x5 + 1. The Header CRC
is calculated on 16 bytes including the syncword, the field length, the frame type and the first 11 bytes of the
service frame. In the case that a service frame is shorter than 11 bytes, the sync word, the field length, the
frame type and the whole service frame shall be taken into account.

In this case the Header CRC calculation does not run into the next transport frame.

The calculation of the CRC is described in Annex C.

7.3.4 Frame type

The frame type (FTY) indicates the content of the service frame. Its length is 1 byte. The following table gives
the meaning of the frame type:

FTY value (dec): Content of service frame: Kind of information in service frame:

0 Number of services, n * (SID-A, SID-B, SID-C) Stream directory information

1 SID-A, SID-B, SID-C, Encryption ID,

Component Multiplex

Conventional service frame data

If FTY = 0, an extra CRC calculation is done over the whole service frame, i.e. starting with n (number of
services) and ending with the last SID-C of the last service.

The calculation of the CRC is described in Annex C.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

22 © ISO 2013 – All rights reserved

7.3.5 Synchronization method

A three-step synchronization algorithm can be implemented to synchronize the receiver:

a) search for an FF0F hex value;

b) calculate and check the header CRC, which follows;

c) check the two bytes, which follow the end of the service frame as defined by the field length.

The two bytes following the end of the service frame should either be a sync word or 00 hex, when spaces are
inserted.

7.3.6 Error detection

The CRC header provides error detection and protection for the synchronization elements and not for the data
within the service frame (except the first 11 bytes, when applicable).

7.4 Description of data on Service level

7.4.1 Encryption indicator

Length: 1 byte

The encryption indicator is defined as one byte according to TPEG primitive syntax. If the indicator has value
00 hex all data in the component multiplex are non-encrypted. Every other value of the encryption indicator
indicates that one of several mechanisms for data encryption or compression has been utilized for all data in
the following data multiplex. The encryption/compression technique and algorithms may be freely chosen by
the service provider.

0 = no encryption/compression

1 to 127 = reserved for standardized methods

128 to 255 = may be freely used by each service provider, may indicate the use of proprietary
methods

7.4.2 Service identification

The service IDs are structured in a similar way to Internet IP addresses as follows:

SID-A . SID-B . SID-C

The combination of these three SID elements must be uniquely allocated on a worldwide basis.

The following address allocation system applies:

 SID range for TPEG technical tests SIDs = 000.000.000 - 000.127.255

 SID range for TPEG public tests SIDs = 000.128.000 - 000.255.255

 SID range for TPEG regular public services SIDs = 001.000.000 - 100.255.255

 SID range: reserved for future use SIDs = 101.000.000 - 255.255.255

NOTE The above allocations and structure is significantly changed from that originally specified in
CEN ISO/TS 18234-2.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 23

7.5 Description of data on Service component level

7.5.1 Service component identifier

The service component identifier with the value 0 is reserved for the SNI Application. (See
CEN ISO/TS 18234-3)

7.5.2 Field length

The field length consists of 2 bytes and represents the number of bytes of the component data.

7.5.3 Service component frame header CRC

The component header CRC is two bytes long, and based on the ITU-T polynomial x16+x12+x5+1.

The component header CRC is calculated from the service component identifier, the field length and the first
13 bytes of the component data. In the case of component data shorter than 13 bytes, the component
identifier, the field length and all component data shall be taken into account.

The calculation of the CRC is described in Annex C.

7.5.4 Service component frame data CRC

The DataCRC is two bytes long, and is based on the ITU polynomial x16+x12+x5+1. This CRC is calculated
from all the bytes of the service component frame data after the service component frame header.

The calculation of the CRC is described in Annex C.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

24 © ISO 2013 – All rights reserved

Annex A
(normative)

Character tables

A.1 Character tables

The default character coding table used in TPEG is ISO/IEC 8859-1.

A.2 Reference character table index

Table A.1 — Reference character table index

t = Char-Tab k = bytes/char Name of Character Table
0 - Reserved
1 1 ISO/IEC 8859-1 (Default)
2 1 ISO/IEC 8859-2
3 1 ISO/IEC 8859-3
4 1 ISO/IEC 8859-4
5 1 ISO/IEC 8859-5
6 1 ISO/IEC 8859-6
7 1 ISO/IEC 8859-7
8 1 ISO/IEC 8859-8
9 1 ISO/IEC 8859-9
10 1 ISO/IEC 8859-10
11 1 Reserved
12 1 Reserved
13 1 ISO/IEC 8859-13
14 1 ISO/IEC 8859-14
15 1 ISO/IEC 8859-15
....
125 1 Unicode ISO/IEC 10646 UTF-8
126 2 Unicode ISO/IEC 10646 UTF-16
127 4 Unicode ISO/IEC 10646 UTF-32
128 Reserved
...
255 Reserved

The selection of TPEG coding tables is implemented according to the character table switch in 6.3.1.4 with the
following value ranges:

a) The range t = 1 to 127 is reserved for standardized character tables.

b) The range t = 128 to 255 may be freely used by a service provider and may indicate the use of proprietary
character tables. In combination with the service provider identification this guarantees uniqueness.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 25

Annex B
(normative)

Method for coding quantities of objects

B.1 Numag derivation

Within applications of TPEG there is a frequent need to describe with a single byte a quantity of people,
objects, etc., using a non-linear coding system which provides a high resolution for low numbers and
progressively lower resolution for higher numbers.

The primitive <numag> describes, in a single byte, quantities which lie in the range 0 - 3 000 000.

<numag>:=
<intunti>(n);

: Counting numbers with magnitude, 0 <= r <= 3 x 106
: Where r := (5 + sign(n-5) x (abs(n-5) mod 45)) x 10(n-5) div 45

The following formula translates the value, n, to the result, r.

r := (5 + sign(n-5) x (abs(n-5) mod 45)) x 10(n-5) div 45

This formula, which produces the sequence of numbers shown in Table B.2, is calculated as follows:

a) n is an integer in the range 0.255 and is used to code the number, r

b) Intermediate values are generated:

 a := sign(n-5)

 b := abs(n-5) mod 45

 c := (n-5) div 45

c) The result, r, is generated from these intermediate values as follows:

 r := (a x b + 5) x 10c

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

26 © ISO 2013 – All rights reserved

B.2 Numag table
Table B.1 — Numag table

n: R: n: r: n: r: n: r:
0 0 64 190 128 3 800 192 120 000
1 1 65 200 129 3 900 193 130 000
2 2 66 210 130 4 000 194 140 000
3 3 67 220 131 4 100 195 150 000
4 4 68 230 132 4 200 196 160 000
5 5 69 240 133 4 300 197 170 000
6 6 70 250 134 4 400 198 180 000
7 7 71 260 135 4 500 199 190 000
8 8 72 270 136 4 600 200 200 000
9 9 73 280 137 4 700 201 210 000
10 10 74 290 138 4 800 202 220 000
11 11 75 300 139 4 900 203 230 000
12 12 76 310 140 5 000 204 240 000
13 13 77 320 141 6 000 205 250 000
14 14 78 330 142 7 000 206 260 000
15 15 79 340 143 8 000 207 270 000
16 16 80 350 144 9 000 208 280 000
17 17 81 360 145 10 000 209 290 000
18 18 82 370 146 11 000 210 300 000
19 19 83 380 147 12 000 211 310 000
20 20 84 390 148 13 000 212 320 000
21 21 85 400 149 14 000 213 330 000
22 22 86 410 150 15 000 214 340 000
23 23 87 420 151 16 000 215 350 000
24 24 88 430 152 17 000 216 360 000
25 25 89 440 153 18 000 217 370 000
26 26 90 450 154 19 000 218 380 000
27 27 91 460 155 20 000 219 390 000
28 28 92 470 156 21 000 220 400 000
29 29 93 480 157 22 000 221 410 000
30 30 94 490 158 23 000 222 420 000
31 31 95 500 159 24 000 223 430 000
32 32 96 600 160 25 000 224 440 000
33 33 97 700 161 26 000 225 450 000
34 34 98 800 162 27 000 226 460 000
35 35 99 900 163 28 000 227 470 000
36 36 100 1 000 164 29 000 228 480 000
37 37 101 1 100 165 30 000 229 490 000
38 38 102 1 200 166 31 000 230 500 000
39 39 103 1 300 167 32 000 231 600 000
40 40 104 1 400 168 33 000 232 700 000
41 41 105 1 500 169 34 000 233 800 000
42 42 106 1 600 170 35 000 234 900 000
43 43 107 1 700 171 36 000 235 1 000 000
44 44 108 1 800 172 37 000 236 1 100 000
45 45 109 1 900 173 38 000 237 1 200 000
46 46 110 2 000 174 39 000 238 1 300 000
47 47 111 2 100 175 40 000 239 1 400 000
48 48 112 2 200 176 41 000 240 1 500 000
49 49 113 2 300 177 42 000 241 1 600 000
50 50 114 2 400 178 43 000 242 1 700 000
51 60 115 2 500 179 44 000 243 1 800 000
52 70 116 2 600 180 45 000 244 1 900 000
53 80 117 2 700 181 46 000 245 2 000 000
54 90 118 2 800 182 47 000 246 2 100 000
55 100 119 2 900 183 48 000 247 2 200 000
56 110 120 3 000 184 49 000 248 2 300 000
57 120 121 3 100 185 50 000 249 2 400 000
58 130 122 3 200 186 60 000 250 2 500 000
59 140 123 3 300 187 70 000 251 2 600 000
60 150 124 3 400 188 80 000 252 2 700 000
61 160 125 3 500 189 90 000 253 2 800 000
62 170 126 3 600 190 100 000 254 2 900 000
63 180 127 3 700 191 110 000 255 3 000 000

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 27

Annex C
(normative)

CRC calculation

C.1 CRC calculation

The TPEG <crc> primitive is represented by a word <intunli> which itself represents the result of a 16-bit
cyclic redundancy check (CRC) calculation upon a designated range of elements.

The calculation starts with the most significant bit of the first designated element field and ends with the least
significant bit of the last byte of the last designated element.

The divisor polynomial used to generate the CRC is:

x 16 + x 12 + x 5 + 1

The CRC is initialized by a value of FFFF hex, and the two check bytes are formed from the inverse of the
result (1’s complement). The eight most significant bits are represented by the first check field byte, and the
eight least significant bits are represented by the last check field byte.

Example: When applied to a sequence of 47 bytes:

32 44 31 31 31 32 33 34 30 31 30 31 30 35 41 42 43 44 31 32 33 46 30 58 58 58 58 31 31 30 36 39 32 31 32 34
39 31 30 30 30 33 32 30 30 36 36 hex,

the CRC generated is 97 23 hex.

C.2 ITU-T (formerly CCITT) CRC calculation in PASCAL

Type STRING is a PACKED ARRAY of CHAR with zero'th element holding the length of the string.

SWAP is a library function that swaps the high- and low-order bytes of the argument.

EXAMPLE 1

VAR X: WORD;
BEGIN
 X:= SWAP ($1234) [$3412]
END;

LO is a library function which returns the low-order byte of the argument.

EXAMPLE 2

VAR W: WORD;
BEGIN
 W:= LO ($1234) [$34]
END;

FUNCTION CRCVALUE (STRINGTOEVAL : STRING): INTEGER;
VAR
COUNT: BYTE;
TEMPCRC: WORD;
BEGIN
 TEMPCRC:= $FFFF;
 FOR COUNT:= 1 TO LENGTH (STRINGTOEVAL) DO

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

28 © ISO 2013 – All rights reserved

 BEGIN
 TEMPCRC:= SWAP (TEMPCRC) XOR ORD (STRINGTOEVAL [COUNT]);
 TEMPCRC:= TEMPCRC XOR (LO (TEMPCRC) SHR 4);
 TEMPCRC:= TEMPCRC XOR (SWAP (LO (TEMPCRC)) SHL 4) XOR (LO (TEMPCRC) SHL 5)
 END;
 CRCVALUE:= TEMPCRC XOR $FFFF
END; [OF FUNCTION CRCVALUE]

C.3 ITU-T (formerly CCITT) CRC calculation in C notation

#define swap(a) (((a)<<8)|((a)>>8))
//---
unsigned short usCalculCRC(unsigned char *buf,unsigned long lg)
//---
{
unsigned short crc;
unsigned long count;
crc= 0xFFFF;
for (count= 0; count < lg; count++)
 {
 crc = (unsigned short) (swap(crc) ^ (unsigned short)buf[count]);
 crc ^= ((unsigned char)(crc) >> 4);
 crc = (unsigned short) (crc ^ (swap((unsigned char)(crc)) << 4)
 ^ ((unsigned char)(crc) << 5));
 }

return((unsigned short)(crc ^ 0xFFFF));
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 29

Annex D
(normative)

Time calculation

D.1 Time calculation

The TPEG <time_t> compound element is represented by the primitive element <intunlo>. It represents the
number of seconds since 1970-01-01T00:00:00 Universal Coordinated Time (UTC). Since <intunlo> ranges
from 0..4 294 967 295, Date and Time ranging from 1970-01-01T00:00:00 to 2106-02-07T06:28:15 can be
represented.

This annex provides some functions to code from date and time to seconds and vice versa. It just intends to
provide one example of how to implement time calculation for TPEG. Other and probably better solutions will
exist.

Some examples of calculation have been provided to check the time calculation. The examples specified in
the table are well chosen based on highly possible bugs (range, representation, leap year, Y2K problem,
signed/unsigned overflow, etc.).

Table D.1 — Examples of time calculation

Seconds (decimal) Seconds (hexadecimal) Date/Time
0 0x00000000 1970-01-01T00:00:00Z
1500 0x000005DC 1970-01-01T00:25:00Z
2429884 0x002513BC 1970-01-29T02:58:04Z
68179407 0x041055CF 1972-02-29T02:43:27Z
946684800 0x386D4380 2000-01-01T00:00:00Z
951788609 0x38BB2441 2000-02-29T01:43:29Z
970315500 0x39D5D6EC 2000-09-30T12:05:00Z
1102118400 0x41B0FE00 2004-12-04T00:00:00Z
2147483646 0x7FFFFFFE 2038-01-19T03:14:06Z
2147483648 0x80000000 2038-01-19T03:14:08Z
4107580093 0xF4D4B2BD 2100-03-01T10:28:13Z
4294967295 0xFFFFFFFF 2106-02-07T06:28:15Z

D.2 Time calculation in C notation

TPEG time is calculated according the following formulas:

#define SECS_PER_MIN 60
#define MINS_PER_HOUR 60
#define HOURS_PER_DAY 24
#define DAYS_PER_WEEK 7
#define DAYS_PER_NYEAR 365
#define DAYS_PER_LYEAR 366
#define SECS_PER_HOUR (SECS_PER_MIN * MINS_PER_HOUR)
#define SECS_PER_DAY (SECS_PER_HOUR * HOURS_PER_DAY)
#define MONS_PER_YEAR 12

#define TM_SUNDAY 0
#define TM_MONDAY 1
#define TM_TUESDAY 2
#define TM_WEDNESDAY 3
#define TM_THURSDAY 4

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

30 © ISO 2013 – All rights reserved

#define TM_FRIDAY 5
#define TM_SATURDAY 6

#define TM_JANUARY 0
#define TM_FEBRUARY 1
#define TM_MARCH 2
#define TM_APRIL 3
#define TM_MAY 4
#define TM_JUNE 5
#define TM_JULY 6
#define TM_AUGUST 7
#define TM_SEPTEMBER 8
#define TM_OCTOBER 9
#define TM_NOVEMBER 10
#define TM_DECEMBER 11

#define L_JANUARY 31
#define L_FEBRUARY 28
#define L_LONG_FEBRUARY 29
#define L_MARCH 31
#define L_APRIL 30
#define L_MAY 31
#define L_JUNE 30
#define L_JULY 31
#define L_AUGUST 31
#define L_SEPTEMBER 30
#define L_OCTOBER 31
#define L_NOVEMBER 30
#define L_DECEMBER 31

#define TM_YEAR_BASE 1900

#define EPOCH_YEAR 1970
#define EPOCH_WDAY TM_THURSDAY

#define isleap(y) (((((y) % 4) == 0) && (((y) % 100) != 0)) || (((y) % 400) == 0))
/* Leap-year: If year divided without remainder by 4, but not by 100.
 * Exception: also leap-year if divided by 400 */

/* macro to get the number of days in a year (depends on being a leap year) */
#define days_in_year(y) (isleap((y)) ? DAYS_PER_LYEAR : DAYS_PER_NYEAR)

/* take days in month from monthdays except for leap year February */
#define days_in_month(y,m) ((isleap((y)) && ((m) == TM_FEBRUARY)) \
 ? L_LONG_FEBRUARY : monthdays[(m)])

typedef struct {
 int tm_sec; /* 0 - 59 */
 int tm_min; /* 0 - 59 */
 int tm_hour; /* 0 - 23 */
 int tm_mday; /* 1 - 31 */
 int tm_mon; /* 0 - 11 */
 int tm_year; /* years since 1900 */
 int tm_wday; /* 0 - 6 sunday=0 */
 int tm_yday; /* 0 - 365 */
} tm;

static int monthdays[MONS_PER_YEAR] = {
 L_JANUARY, L_FEBRUARY, L_MARCH, L_APRIL, L_MAY, L_JUNE, L_JULY,
 L_AUGUST, L_SEPTEMBER, L_OCTOBER, L_NOVEMBER, L_DECEMBER
};

static void
calc_time(unsigned long timep, tm *tmp)
{
 unsigned long days;
 unsigned long rem;
 int y;

 days = timep / SECS_PER_DAY;
 rem = timep % SECS_PER_DAY;
 tmp->tm_hour = (int) (rem / SECS_PER_HOUR);
 rem = rem % SECS_PER_HOUR;
 tmp->tm_min = (int) (rem / SECS_PER_MIN);
 tmp->tm_sec = (int) (rem % SECS_PER_MIN);
 tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYS_PER_WEEK);

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 31

 for (y = EPOCH_YEAR; days >= days_in_year(y); y++) {
 days -= days_in_year(y);
 }

 for (tmp->tm_mon = TM_JANUARY;
 days >= days_in_month(y, tmp->tm_mon);
 (tmp->tm_mon)++) {
 days -= days_in_month(y, tmp->tm_mon);
 }

 tmp->tm_year = y - TM_YEAR_BASE;
 tmp->tm_yday = (int) days;
 tmp->tm_mday = (int) (days + 1);
}

static unsigned long
recalc_time(int year, int month, int day, int hour, int min, int sec)
/* year : 1970-2106, month 1-12, day 1-31, hour 0-23, min 0-59, sec 0-59 */
{
 unsigned long secs;
 int days;
 int y;
 int m;

 days = 0;

 for (y = year - 1; y >= EPOCH_YEAR; y--) {
 days += days_in_year(y);
 }

 for (m = TM_JANUARY; m < (month - 1); m++) {
 days += days_in_month(year, m);
 }

 days += day - 1;

 secs = (days * SECS_PER_DAY);
 secs += (hour * SECS_PER_HOUR);
 secs += (min * SECS_PER_MIN);
 secs += sec;

 return (secs);
}

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

32 © ISO 2013 – All rights reserved

Annex E
(informative)

A description of the TPEG byte-stream using C-type notation

E.1 Explanation

A byte stream consists of a sequence of data elements. Each data element in the byte stream is in bold type.
It is described by its name, its length in bytes and a mnemonic for its type. A sequence of data elements may
be defined as a function. The scope of the name of the data elements is local to the function. To address a
data element of a parent function, the dotted notation, ‘function.data_element_name’ is used. This notation
can be nested to work back to the top-level function, e.g. function1.function2.data_element_name.

The action caused by a decoded data element in a byte stream depends on the value of that data element
and on data elements previously decoded. The decoding of the data elements and definition of the state
variables used in their decoding are described in the clauses containing the semantic description of the
syntax. The following constructs are used to express the conditions when data elements are present and are
in normal type:

E.2 Definition of data elements

data_element [] data_element [] is an array of data. The number of data elements
is indicated by the context

data_element [n] data_element [n] is the n+1 th element of an array of data
data_element [m][n] data_element [m][n] is the m+1, n+1 th element of a two-

dimensional array of data
data_element [m..n] is the inclusive range of bits between bit m and bit n in the

data_element

The syntax described in procedural terms defines a correct and error-free input bitstream. Actual decoders
must include a means to look for start codes and sync bytes in order to begin decoding correctly and to
identify errors, erasures and insertions while decoding. The methods to identify these situations and the
actions to be taken are not standardized.

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

© ISO 2013 – All rights reserved 33

E.3 Definition of conditional expressions

NOTE This syntax uses the ‘C’-code convention that a variable or expression evaluating to a non-zero value
is equivalent to a condition that is true.

while (condition) {
 data_element
 …
}

If the condition is true, the group of data elements occurs next in
the data-stream. This repeats until the condition is not true.

do {
 data_element
 …
}
while (condition)

The data element always occurs at least once. The data element
is repeated until the condition is not true.

if (condition) {
 data_element
 …
}
else {
 data_element
 …
}

If the condition is true, then the first group of data elements
occurs next in the data-stream.

If the condition is not true, then the second group of data
elements occurs next in the data-stream.

for (i=0 ; i<n ; i++) {
 data_element
 …
}

The group of data elements occurs n times. Conditional
constructs within the group of data elements may depend on the
value of the loop control variable i, which is set to zero for the first
occurrence, incremented to 1 for the second occurrence and so
forth.

E.4 Byte-stream representation of the TPEG hierarchy

E.4.1 Definition of nextbyte function

The function nextbyte() permits comparison of a byte string with the next bytes to be decoded in the byte
stream. The function does not consume any bytes from the stream.

E.4.2 Definition of next_start_code function

The next_start_code() function removes any zero byte stuffing and locates the next start code.

Syntax No. of bytes Mnemonic
next_start_code() {
 while (TRUE) {
 while (nextbyte() != ‘FF hex') {
 byte;
 }
 byte;
 if (nextbyte() == '0F hex') {
 byte;
 return;
 }
 }
}

1

1

1

garbage

FF hex

0F hex

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

ISO/TS 18234-2:2013(E)

34 © ISO 2013 – All rights reserved

E.4.3 Definition of tpeg_stream function

The tpeg_stream() function processes the input byte stream.

Syntax No. of bytes Mnemonic
tpeg_stream() {
 while (TRUE) {
 next_start_code();
 field_length;
 header_crc;
 frame_type;
 if (header_crc_check()) {
 service_frame(frame_type);
 }
 }
}

2
2
1

intunli
crc
fty

Syntax No. of bytes Mnemonic
service_frame(00) {
 number_of_services;
 while (number_of_services > 0) {
 service_identification_a;
 service_identification_b;
 service_identification_c;
 number_of_services = number_of_services - 1;
 }
 service_crc;
}

1

1
1
1

2

intunti

intunti
intunti
intunti

crc

Syntax No. of bytes Mnemonic
service_frame(01) {
 service_identification_a;
 service_identification_b;
 service_identification_c;
 encryption_indicator;
 component_multiplex();
}

1
1
1
1

intunti
intunti
intunti
intunti

Syntax No. of bytes Mnemonic
component_multiplex() {
 if (encryption_indicator == 0) {
 length = tf_field_length - 5;
 do {
 component_identifier;
 field_length;
 component_header_crc;
 if (component_header_crc_check()) {
 component_data();
 }
 } while (length = length - (field_length + 5));
 } else {
 decompression();
 get_new_length_and_add_five();
 encryption_indicator = 0;
 component_multiplex();
 }
}

1
2
2

intunti
intunli
crc

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
`
`
,
`
,
,
`
,
`
,
,
`
`
`
`
`
`
`
`
,
,
,
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

ISO/TS 18234-2:2013(E)

ICS 03.220.01; 35.240.60
Price based on 34 pages

© ISO 2013 – All rights reserved

Copyright International Organization for Standardization
Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 12/17/2013 10:54:48 MSTNo reproduction or networking permitted without license from IHS

--``,`,```,`,,`,`,,````````,,,``-`-`,,`,,`,`,,`---

	1 Scope
	2 Normative references
	3 Abbreviated terms
	4 Design principles
	4.1 TPEG transmission
	4.2 TPEG layer model

	5 Conventions and symbols
	5.1 Conventions
	5.1.1 Byte ordering
	5.1.2 Method of describing the byte-oriented protocol
	5.1.3 Reserved data fields

	5.2 Symbols
	5.2.1 Literal numbers
	5.2.2 Variable numbers
	5.2.3 Implicit numbers

	6 Representation of syntax
	6.1 General
	6.2 Data type notation
	6.2.1 Rules for data type definition representation
	6.2.2 Description of data type definition syntax

	6.3 Application dependent data types
	6.3.1 Data structures
	6.3.2 Using templates as interfaces
	6.3.3 Components
	6.3.3.1 Definition of standard component interface
	6.3.3.2 Example for jumping over unknown content types

	6.4 Toolkits and external definition
	6.5 Application design principles
	6.5.1 Variable data structures
	6.5.2 Re-usable and extendable structures
	6.5.3 Validity of declarative structures

	7 TPEG data stream description
	7.1 Diagrammatic hierarchy representation of frame structure
	7.2 Syntactical Representation of the TPEG Stream
	7.2.1 TPEG transport frame structure
	7.2.2 TPEG service frame template structure
	7.2.3 Service frame of frame type = 0
	7.2.4 Service frame of frame type = 1
	7.2.5 TPEG service component frame multiplex
	7.2.6 Interface to application specific frames
	7.2.6.1 TPEG base service component frame structure
	7.2.6.2 TPEG specialized service component data schemata
	7.2.6.2.1 Service component data with dataCRC
	7.2.6.2.2 Service component data with dataCRC and messageCount
	7.2.6.2.3 Service component data with dataCRC and groupPriority
	7.2.6.2.4 Service component frame with dataCRC, groupPriority, and messageCount

	7.2.6.3 Example of an application implementing a service component frame

	7.3 Description of data on Transport level
	7.3.1 Syncword
	7.3.2 Field length
	7.3.3 Header CRC
	7.3.4 Frame type
	7.3.5 Synchronization method
	7.3.6 Error detection

	7.4 Description of data on Service level
	7.4.1 Encryption indicator
	7.4.2 Service identification

	7.5 Description of data on Service component level
	7.5.1 Service component identifier
	7.5.2 Field length
	7.5.3 Service component frame header CRC
	7.5.4 Service component frame data CRC

