
©  ISO 2015

Statistical methods of uncertainty 
evaluation — Guidance on evaluation 
of uncertainty using two-factor 
crossed designs

Méthodes statistiques d’évaluation  de l’incertitude — Lignes 
directrices pour l’évaluation  de l’incertitude des modèles à deux 
facteurs croisés

TECHNICAL 
SPECIFICATION

ISO/TS
17503

Reference number
ISO/TS 17503:2015(E)

First edition
2015-11-01

International  Organization  for Standardization

 



 

ISO/TS 17503:2015(E)
 

ii  © ISO 2015  – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

©  ISO 2015, Published in Switzerland

All rights reserved.  Unless otherwise specified,  no part of this publication may be reproduced or utilized otherwise in any form 
or by any means,  electronic or mechanical,  including photocopying,  or posting on the internet or an intranet,  without prior 
written permission.  Permission can be requested from either ISO at the address below or ISO’s  member body in the country of 
the requester.

ISO copyright office
Ch.  de Blandonnet 8  •  CP 401
CH-1214 Vernier,  Geneva, Switzerland
Tel.  +41  22  749 01  11
Fax +41  22  749 09 47
copyright@iso.org
www.iso.org

International  Organization  for Standardization

 



 

ISO/TS 17503:2015(E)
 

Foreword  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v

1 Scope  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2  Normative references  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3	 Terms	and	definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

4 Symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

5 Conduct of experiments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

6 Preliminary review of data — Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

7 Variance components and uncertainty estimation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
7.1  General considerations for variance components and uncertainty estimation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
7.2  Two-way layout without replication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

7.2.1  Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
7.2.2  Preliminary inspection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
7.2.3  Variance component estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
7.2.4 Standard uncertainty for the mean of all  observations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
7.2.5  Degrees of freedom for the standard uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

7.3  Two-way balanced experiment with replication (both factors random)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.3.1  Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.3.2  Preliminary inspection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.3.3  Variance component extraction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.3.4 Standard uncertainty for the mean of all  observations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7.3.5  Degrees of freedom for the standard uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7.4 Two-way balanced experiment with replication (one factor fixed,  one factor random)  . . . . .10
7.4.1  Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.4.2  Preliminary inspection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
7.4.3  Variance component extraction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7.4.4 Standard uncertainty for the mean of all  observations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
7.4.5  Degrees of freedom for the standard uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

8 Application to observations on a relative scale  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

9 Use of variance components in subsequent measurements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

10 Alternative treatments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
10.1  Restricted (or residual)  maximum likelihood estimates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
10.2  Alternative methods for model reduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

11 Treatment with missing values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Annex A (informative)  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

© ISO 2015  – All rights reserved iii

Contents Page

International  Organization  for Standardization

 



 

ISO/TS 17503:2015(E)

Foreword

ISO (the International Organization for Standardization)  is  a worldwide federation of national standards 
bodies (ISO member bodies) .  The work of preparing International Standards is  normally carried out 
through ISO technical committees.  Each member body interested in a subject for which a technical 
committee has been established has the right to be represented on that committee.  International 
organizations,  governmental and non-governmental,  in liaison with ISO, also take part in the work.  
ISO collaborates closely with the International Electrotechnical Commission (IEC)  on all  matters of 
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are 
described in the ISO/IEC Directives,  Part 1 .   In particular the different approval criteria needed for the 
different types of ISO documents should be noted.   This document was drafted in accordance with the 
editorial rules of the ISO/IEC Directives,  Part 2  (see www.iso.org/directives) .   

Attention is  drawn to the possibility that some of the elements of this document may be the subject of 
patent rights.  ISO shall not be held responsible for identifying any or all such patent rights.   Details of 
any patent rights identified during the development of the document will  be in the Introduction and/or 
on the ISO list of patent declarations received (see www.iso.org/patents) .  

Any trade name used in this document is  information given for the convenience of users and does not 
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity 
assessment,  as  well as information about ISO’s adherence to the WTO principles in the Technical 
Barriers to Trade (TBT)  see the following URL:   Foreword -  Supplementary information

The committee responsible for this document is  ISO/TC 69,  Applications of statistical methods,  
Subcommittee SC 6,  Measurement methods and results.
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Introduction

Uncertainty estimation usually requires the estimation and subsequent combination of uncertainties 
arising from random variation.  Such random variation may arise within a particular experiment under 
repeatability conditions,  or over a wider range of conditions.  Variation under repeatability conditions 
is  usually characterized as repeatability standard deviation or coefficient of variation;  precision under 
wider changes in conditions is  generally termed intermediate precision or reproducibility.

The most common experimental design for estimating the long- and short-term components of variance 
is  the classical balanced nested design of the kind used by ISO 5725-2 .  In this design,  a (constant)  
number of observations are collected under repeatability conditions for each level of some other factor.  
Where this additional factor is  ‘Laboratory’,  the experiment is  a balanced inter-laboratory study, and 

can be analysed to yield estimates of within-laboratory variance,  σ
r

2 ,  the between-laboratory 

component of variance,  σ
L

2 ,  and hence the reproducibility variance,  σ σ σ
R L r

2 2 2
= + .  Estimation of 

uncertainties based on such a study is  considered by ISO 21748.  Where the additional grouping factor is  
another condition of measurement,  however,  the between-group term can usefully be taken as the 
uncertainty contribution arising from random variation in that factor.  For example,  if several different 
extracts are prepared from a homogeneous material and each is  measured several times,  analysis of 
variance can provide an estimate of the effect of variations in the extraction process.  Further 
elaboration is  also possible by adding successive levels of grouping.  For example,  in an inter-laboratory 
study the repeatability variance,  between-day variance and between-laboratory variance can be 
estimated in a single experiment by requiring each laboratory to undertake an equal number of 
replicated measurements on each of two days.

While nested designs are among the most common designs for estimation of random variation,  they 
are not the only useful class of design.  Consider,  for example,  an experiment intended to characterize 
a reference material,  conducted by measuring three separate units of the material in three separate 
instrument runs,  with (say)  two observations per unit per run.  In this experiment,  unit and run are 
said to be ‘crossed’;  all  units are measured in all  runs.  This design is  often used to investigate variation 
in ‘fixed’  effects,  by testing for changes which are larger than expected from the within-group or 
‘residual’  term. This particular experiment,  for example,  could easily test whether there is  evidence 
of significant differences between units or between runs.  However,  the units are likely to have been 
selected randomly from a much larger (if ostensibly homogeneous)  batch,  and the run effects are also 
most appropriately treated as random. If the mean of all  the observations is  taken as the estimate of 
the reference material value,  it becomes necessary to consider the uncertainties arising from both run-
to-run and unit-to-unit variation.  This can be done in much the same way as for the nested designs 
described previously,  by extracting the variances of interest using two-way analysis of variance.  In the 
statistical literature,  this  is  generally described as the use of a random-effects or (if one factor is  a fixed 
effect)  mixed-effects model.

Variance component extraction can be achieved by several methods.  For balanced designs,  equating 
expected mean squares from classical analysis of variance is  straightforward.  Restricted (sometimes 
also called residual)  maximum likelihood estimation (REML)  is  also widely recommended for estimation 
of variance components,  and is  applicable to both balanced and unbalanced designs.  This Technical 
Specification describes the classical ANOVA calculations in detail and permits the use of REML.

Note that random effects rarely include all of the uncertainties affecting a particular measurement 
result.  If using the mean from a crossed design as a measurement result,  it is  generally necessary 
to consider uncertainties arising from possible systematic effects,  including between-laboratory 
effects,  as well as  the random variation visible within the experiment,  and these other effects can be 
considerably larger than the variation visible within a single experiment.

This present Technical Specification describes the estimation and use of uncertainty contributions 
using factorial designs.
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Statistical methods of uncertainty evaluation — Guidance on 
evaluation of uncertainty using two-factor crossed designs

1 Scope

This Technical Specification describes the estimation of uncertainties on the mean value in experiments 
conducted as crossed designs,  and the use of variances extracted from such experiments and applied to 
the results of other measurements (for example,  single observations) .

This Technical Specification covers balanced two-factor designs with any number of levels.  The 
basic designs covered include the two-way design without replication and the two-way design with 
replication,  with one or both factors considered as random. Calculations of variance components from 
ANOVA tables and their use in uncertainty estimation are given.  In addition,  brief guidance is  given on 
the use of restricted maximum likelihood estimates from software,  and on the treatment of experiments 
with small numbers of missing data points.

Methods for review of the data for outliers and approximate normality are provided.

The use of data obtained from the treatment of relative observations (for example,  apparent recovery 
in analytical chemistry)  is  included.

2  Normative references

The following documents,  in whole or in part,  are normatively referenced in this document and are 
indispensable for its  application.  For dated references,  only the edition cited applies.  For undated 
references,  the latest edition of the referenced document (including any amendments)  applies.

ISO  3534-1,  Statistics — Vocabulary and symbols — Part 1 :  General statistical terms and terms used 
in  probability

ISO 3534-3,  Statistics — Vocabulary and symbols — Part 3: Design  of experiments

3	Terms	and	definitions

For the purposes of this document,  the terms and definitions in ISO 3534-1,  ISO 3534-3  and the 
following apply.

3.1
factor
predictor variable that is  varied with the intent of assessing its effect on the response variable

Note 1  to entry:  A factor may provide an assignable cause for the outcome of an experiment.

Note 2  to entry:  The use of factor here is  more specific than its generic use as a synonym for predictor variable.

Note 3  to entry:  A factor may be associated with the creation of blocks.

[SOURCE:  ISO 3534-3:2013,  3 .1 .5 ,  modified — cross-references within ISO 3534-3  omitted from 
Notes to  entry]

3.2
level
potential setting,  value or assignment of a factor

Note 1  to entry:  A synonym is  the value of a predictor variable.

TECHNICAL SPECIFICATION ISO/TS 17503:2015(E)
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Note 2  to entry:  The term “level”  is  normally associated with a quantitative characteristic.  However,  it also serves 
as the term describing the version or setting of qualitative characteristics.

Note 3  to entry:  Responses observed at the various levels of a factor provide information for determining the 
effect of the factor within the range of levels of the experiment.  Extrapolation beyond the range of these levels is  
usually inappropriate without a firm basis for assuming model relationships.  Interpolation within the range may 
depend on the number of levels and the spacing of these levels.  It is  usually reasonable to interpolate,  although 
it is  possible to have discontinuous or multi-modal relationships that cause abrupt changes within the range of 
the experiment.  The levels may be limited to certain selected fixed values (whether these values are or are not 
known)  or they may represent purely random selection over the range to be studied.

EXAMPLE The ordinal-scale levels of a catalyst may be presence and absence.  Four levels of a heat treatment 
may be 100 °C ,  120 °C ,  140 °C and 160 °C .  The nominal-scale variable for a laboratory can have levels A,  B  and C ,  
corresponding to three facilities.

[SOURCE:  ISO 3534-3:2013,  3 .1.12]

3.3
fixed	effects	analysis	of	variance
analysis of variance in which the levels of each factor are pre-selected over the range of values of the 
factors

Note 1  to entry:  With fixed levels,  it is  inappropriate to compute components of variance.  This model is  sometimes 
referred to as a model 1  analysis of variance.

[SOURCE:  ISO 3534-3:2013,  3 .3 .9]

3.4
random effects analysis of variance
analysis of variance in which each level of each factor is  assumed to be sampled from the population of 
levels of each factor

Note 1  to  entry:  With random levels,  the primary interest is  usually to obtain components of variance estimates.  
This model is  commonly referred to as a model 2  analysis of variance.

EXAMPLE Consider a situation in which an operation processes  batches of raw material .  “Batch”  may be 
considered a random factor in an experiment when a few batches are randomly selected from the population 
of all  batches.

[SOURCE:  ISO 3534-3:2013,  3 .3 .10]

4 Symbols

νeff Calculated effective degrees of freedom for a standard error calculated from a two-way factorial 
(crossed)  experiment

σ1 True between-level standard deviation for the first factor (if considered a random effect)  in a 
two-way factorial (crossed)  experiment

σ2 True between-level standard deviation for the second factor (if considered a random effect)  in a 
two-way factorial (crossed)  experiment

σI True between-group standard deviation for the interaction term in a factorial experiment (where 
one or more of the factors is  considered a random effect)

σr True standard deviation for the residual term in a classical analysis of variance for a two-way 
factorial (crossed)  experiment

dij Residual corresponding to level i of one factor and level j of a second factor in a two-way factorial 
experiment without replication
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M1 Mean square for the first factor in a classical analysis of variance for a two-way factorial 
(crossed)  experiment

M2 Mean square for the second factor in a classical analysis of variance for a two-way factorial 
(crossed)  experiment

MI Mean square for the interaction term in a classical analysis of variance for a two-way factorial 
(crossed)  experiment with replication

Mr Mean square for the residual term in a classical analysis of variance for a two-way factorial 
(crossed)  experiment

Mtot Mean square calculated from the “Total” sum of squares in a classical analysis of variance for a 
two-way factorial (crossed)  experiment

n The number of replicate observations at each combination of factor levels (that is,  within each 
“cell”)  in a two-way factorial (crossed)  experiment with replication

p The number of levels for the first factor in a two-way factorial (crossed)  experiment

q The number of levels for the second factor in a factorial (crossed)  experiment

xij Observation corresponding to level i of one factor and level j of a second factor in a two-way fac-
torial experiment without replication

xijk kth  observation corresponding to level i of one factor and level j of a second factor in a two-way 
factorial experiment with replication

S1 Sum of squares for the first factor in a classical analysis of variance for a two-way factorial 
(crossed)  experiment

S2 Sum of squares for the second factor in a classical analysis of variance for a two-way factorial 
(crossed)  experiment

SI Sum of squares for the interaction term in a classical analysis of variance for a two-way factorial 
(crossed)  experiment with replication

Sr Sum of squares for the residual term in a classical analysis of variance for a two-way factorial 
(crossed)  experiment

Stot “Total”  sum of squares in a classical analysis of variance for a two-way factorial (crossed)  exper-
iment

s Standard deviation of a set of independent observations

s1 Estimated between-level standard deviation for the first factor (if considered a random effect)  in 
a two-way factorial (crossed)  experiment

s2 Estimated between-level standard deviation for the second factor (if considered a random effect)  
in a two-way factorial (crossed)  experiment

sI Estimated between-group standard deviation for the interaction term in a factorial experiment 
(where one or more of the factors is  considered a random effect)

sr Estimated standard deviation for the residual term in a classical analysis of variance for a two-
way factorial (crossed)  experiment

s
x

Estimated standard error associated with the mean in a two-way factorial (crossed)  experiment
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u A standard uncertainty

u
x

Standard uncertainty,  associated with random variation,  for the mean in a two-way factorial 
(crossed)  experiment

x
i•

The mean of all data for a particular level i of Factor 1  in a factorial design

x
j•

The mean for a particular level j of Factor 2  in a factorial design

x The mean for all  data in a given experiment

5 Conduct of experiments

It should be noted that as far as possible,  observations should be collected in randomized order.  Action 
should also be taken to remove confounding effects;  for example,  a design intended to investigate the 
effect of changes in test material matrix and different analyte concentrations on recovery in analytical 
chemistry should not run each different sample type in a single run on a different day.

6 Preliminary review of data — Overview

In general,  preliminary review should rely on graphical inspection.  The general principle is  to form 
and fit the appropriate linear model (for balanced designs this is  adequately done by estimating row, 
column and, if necessary,  cell  means in the two-way layout)  and inspect the residuals.

Mandel’s  statistics,  as  presented in ISO 5725-2 ,  are applicable to  inspection of individual data points 
in two-way designs,  by replacing the ‘laboratory’  in ISO 5725-2  by the ‘cell’  in a two-way design and 
are recommended.

Ordinary residual plots and normal probability plots are also applicable to the residuals.

Outlier tests might additionally be suggested, though they would need to be used with care;  the degrees 
of freedom for the residuals is  smaller than for the whole data set,  compromising critical values.  In 
addition,  in designs for duplicate measurements,  the residuals for a cell with a serious outlier typically 
appear as two outliers equidistant from a common mean.  Residuals for the ‘main effects’  model as well 
as the model including cell means (the interaction term)  may usefully be inspected separately to avoid 
such an effect.

7 Variance components and uncertainty estimation

7.1 General considerations for variance components and uncertainty estimation

Basic calculations are based on the two-way ANOVA tables obtained from classical ANOVA for the two-
way layout.  Detailed procedures are shown below. The use of software implementations of restricted 
maximum likelihood estimation (“REML”)  is  permitted when normality is  a realistic assumption for all  
random effects.

When calculating variance estimates from classical ANOVA tables negative estimates of variance can 
arise.  In the following calculations (7.2  to 7.4) ,  it is  recommended that these estimates be set to zero.  It 
is  further recommended that terms in the initial,  complete,  statistical model that are associated with 
negative or zero estimates of variance are dropped from the model and the model recalculated when 
standard uncertainties and associated effective degrees of freedom are of interest.

NOTE 1  REML calculations do not return negative estimates of variance and it is  then unnecessary to reduce 
and re-fit models unless effective degrees of freedom are of interest.
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NOTE 2  Variance estimates from small data sets are highly variable from one sample to another.  For example,  
estimated variances taken from independent samples of 10 observations drawn from a normal distribution can 
vary by more than a factor of two (that is,  either greater or smaller)  from the true variance.  Variance estimates 
from other distributions can vary more.

7.2  Two-way layout without replication

7.2.1  Design

The experiment involves variation in two different factors (for example,  test item and instrument)  with 
a single observation per factor combination.  Let p  be the number of levels for the first factor of interest,  
and q  the number of levels for the second, so that there are pq  observations xij,  where the subscripts 
denote level i of Factor 1  and level j of Factor 2 .

7.2.2  Preliminary inspection

Calculate the mean x
i•
of all  data for each level i of Factor 1,  the mean x

j•
for each level j of Factor 2 ,  and 

the mean x for all  data.  Calculate the residuals dij from

d x x x x
ij ij i j
= − − +

• •
 (1)

Plot the residuals in run order and inspect for unexpected trends and outlying observations.  Additionally,  
prepare a normal probability plot and inspect for serious departures from normality.  Check and correct 
any aberrant values,  by re-measurement if necessary.  If outlying observations are found and cannot 
reasonably be corrected, inspect other values within the same factor levels.  If values within the same 
level of one factor all appear discrepant (for example,  if results for a particular test material appear 
unusually imprecise) ,  discard all  data from that factor level before estimating variances.  If this  affects 
more than one factor level,  discontinue the analysis and either treat different factor levels separately or 
investigate the cause and repeat the experiment.

NOTE A single missing value can be removed if it is  inconsistent with normal performance of the 
measurement,  that is,  it can be attributable to instrumental or other causes.  Refer to ‘treatment with missing 
values’  below for further analysis.

7.2.3  Variance component estimation

Conduct an analysis of variance to obtain the ANOVA table of the form shown in Table 1 .

Table 1  — ANOVA table for two-way design without replication

Factor SS DF MS Expected mean 
square

Factor 1 S1 p  −  1 M1  =  S1/(p  −  1)
σ σ

r 1

22
+ q  

Factor 2 S2 q  −  1 M2  =  S2/(q  −  1)
σ σ

r 2

22
+ p  

Residual Sr (p  −  1)(q  −  1) Mr  =  Sr/[(p  −  1)  (q  −  1)]
σ

r

2
 

Total Stot =  S1  +  S2  +  Sr pq  −  1 Mtot =  Stot/(pq  −  1)
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From the table,  the variance estimates s
1

2 ,  s
2
2  and s

r

2 for Factor 1,  Factor 2  and the repeatability 

variance,  respectively,  are given by

s
M M

q1

2 1
=

−
r  with p  −  1  degrees of freedom

s
M M

p2

2 2
=

−
r  with q  −  1  degrees of freedom

s M
r r

2
=

Where a variance component is less than zero and is of interest for uncertainty evaluation other than in 
the assessment of the uncertainty for the mean value from the experiment, set the estimate equal to zero.

EXAMPLE In a randomized block design used to determine a between-unit variance for a reference material,  
the between-unit variance is  of interest for uncertainty evaluation even though the mean of the homogeneity 
experiment is  of no importance.

7.2.4 Standard uncertainty for the mean of all observations

Where the experiment is  intended to yield a mean value x over all observations and all  variance 
estimates are positive,  the standard uncertainty arising from repeatability,  r,  and from variation in the 

two experimental factors F1  and F2  is  identical to the standard error s
x
 calculated from

s
s

p

s

q

s

pq
x
= + +

1

2

2

2 2

r  (2)

Where one or more variance estimates are negative or zero,  either set the corresponding term in 
Formula (2)  to zero if only the standard uncertainty in the mean is  of interest or,  if the effective degrees 
of freedom is  also of interest,  proceed as in 7.2 .5 .2 .

7.2.5  Degrees of freedom for the standard uncertainty

7.2.5.1  All variance estimates positive

Where all  variance estimates are positive:

— calculate

ν
eff

2 r

r

=
+ −( )

−
+

−
+

− −

M M M

M

p

M

q

M

p q

1

2

1

2

2

2 2

1 1 1 1( ) ( )

 (3)

 

— set the degrees of freedom νs for s
x
 as

ν ν
s

p q= − −( ) max min , ,1 1 eff  (4)

 

6 © ISO 2015  – All rights reservedInternational  Organization  for Standardization

 



 

ISO/TS 17503:2015(E)

7.2.5.2  One or more variance estimates zero or negative

Where one of the variance estimates s
1

2  or s
2
2  is  zero or negative (see 7.2 .3):

— remove the corresponding term from the model and recalculate as a one-way analysis of variance 
(“reduced model”)  to give a single between-group mean square Mb  with degrees of freedom νb;

NOTE The analysis of variance will also provide a within-group mean square Mw  which is  not used 
further here) .

— calculate the standard error s
x
 from

s
M

pqx
=

b ;

— set the number of degrees of freedom to the degrees of freedom associated with the between-group 
mean square in the reduced model.

Where the variance estimates for both of the two random factors are zero or negative,  treat the 
complete data set as pq  independent observations:

— calculate the standard deviation s in the usual way;

— calculate the standard error s
x
 from

s
s

pq
x
=

2

;

— set the degrees of freedom for the standard error to pq  −  1 .

7.3  Two-way balanced experiment with replication (both factors random)

7.3.1  Design

The experiment involves variation in two different factors (for example,  test item and measurement 
run)  with a single observation per factor combination.  Let p  be the number of levels for the first factor of 
interest,  q  the number of levels for the second, and n  the number of observation per factor combination,  
so that there are pqn  observations.

7.3.2  Preliminary inspection

Calculate cell means,  subtract from the data and plot the resulting residuals in run order to check for 
unexpected trends or outlying values.  If discrepant values are found, the discrepant values should be 
checked and corrected if possible.  If correction is  not possible,  and if the discrepancy can be attributed 
to instrumental error or other identifiable cause,  remove the data point and refer to ‘treatment with 
missing values.

Inspect a normal probability plot of the residuals to check for significant departures from normality as 
above.

Optionally,  calculate Mandel’s statistics for cells  and plot as in ISO 5725-2 .  Check extreme cell means 
(Mandel’s  h)  or extreme standard deviation (Mandel’s  k)  and if necessary correct any aberrant data.

NOTE In experiments conducted in duplicate,  individual outliers in duplicate data will  usually appear as 
pairs of outlying values equidistant from the mean for the cell.

7.3.3  Variance component extraction

a)  Conduct an analysis of variance with interactions.  This will yield a table of the form shown in Table 2 .
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Table 2  — ANOVA table for two-way design with replication, both effects random

Factor SS DF MS Expected mean square

Factor 1 S1 p  −  1 M1  =  S1/(p  −  1)
σ σ σ

r I 1

22 2
+ +n qn  

Factor 2 S2 q  −  1 M2  =  S2/(q  −  1)
σ σ σ

r I 2

22 2
+ +n pn  

Interaction SI (p  −  1)(q  −  1) MI  =  SI/[(p  −  1)  (q  −  1)]
σ σ

2

2
+ n

I

2
 

Residuala Sr pq(n −  1) Mr  =  Sr/[pq(n  −  1)]
σ

r

2
 

Total Stot =  S1  +  S2  +  SI  +  Sr pqn  −  1 Mtot =  Stot/(pqn  −  1)

a  The residual term in two-way analysis  of variance with replication is  sometimes called the ‘within-group’  term.

b)  Calculate the variance estimates s
1

2 ,  s
2
2 ,  s

I

2  and s
r

2 for Factor 1,  Factor 2 ,  the interaction term and 

the repeatability variance,  respectively,  as  follows:

s
M M

qn1

2 1
=

−
I  with p  −  1  degrees of freedom

s
M M

pn2

2 2
=

−
I  with q  −  1  degrees of freedom

s
M M

n
I

I r2
=

−

 with (p  — 1)(q  -  1)  degrees of freedom

s M
r r

2
=

Where a variance component is  less than zero and is  itself of interest for uncertainty evaluation other 
than determining the uncertainty associated with the mean value for the experiment,  set the estimate 
equal to zero.

7.3.4 Standard uncertainty for the mean of all observations

Where the experiment is  intended to yield a mean value x  over all observations and all  variance 
estimates are positive,  the standard uncertainty arising from repeatability,  r,  and from variation in the 

two experimental factors F1  and F2  and the interaction term I,  is  identical to the standard error s
x
 

calculated from

s
s

p

s

q

s

pq

s

npq
x
= + + +

1

2

2

2 2 2

I r  (5)

Where one or more variance estimates are negative or zero,  either set the corresponding term in 
Formula (5)  to zero if only the standard uncertainty in the mean is  of interest or,  if the effective degrees 
of freedom is also of interest,  proceed as in 7.3 .5 .2 .

NOTE It can be useful to calculate and inspect F statistics and associated p-values to determine whether 
particular factors are important.  Where the interaction term is  not significant compared to the within-
group (residual)  term, the individual factor effects can be estimated by two-way analysis of variance without 
replication,  applied to the cell means,  or by forming an analysis of variance table for main effects only.
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7.3.5  Degrees of freedom for the standard uncertainty

7.3.5.1  All variance estimates positive

Where all variance estimates are positive:

— calculate the effective degrees of freedom, νeff,  as:

ν
eff

2 I

I

2
=

+ −( )

−
+

−
+

− −

M M M

M

p

M

q

M

p q

1

2

1

2

2

2

1 1 1 1( ) ( )

 (6)

 

— set the degrees of freedom νs for s
x
 as:

ν νs p q= − −( ) max min , ,1 1 eff  (7)

where max(.)  denotes the maximum of terms enclosed in parentheses and min(.)  denotes the minimum.

7.3.5.2  Interaction variance zero or negative

If the variance estimate s
I

2  for the interaction term is negative or zero:

— recalculate the ANOVA table using a ‘main effects only’  model to give an analysis of variance of the 
form of Table 3 .

Table 3  — ANOVA table for two-way design with replication, both effects random  
(omitting interaction)

Factor SS DF MS Expected mean square

Factor 1 S1 p  −  1 M1  =  S1/(p  −  1)
σ σ

r 1

22
+ qn  

Factor 2 S2 q  −  1 M2  =  S2/(q  −  1)
σ σ

r 2

22
+ pn  

Residuala Sr’ pqn  −  p  −  q  +  1 Mr’  =  Sr ’/(pqn  −  p  −  q  +  1)
σ

r

2
 

Total S’tot =  S1  +  S2  +  Sr ’ pqn  −  1 M’tot =  S’tot/(pqn  −  1)

NOTE This table may be constructed from Table 2  by calculating Sr ’  =  Sr  +  SI  and using degrees of freedom as above.

a  The residual term in two-way analysis of variance with replication is  sometimes called the ‘within-group’  term.

— recalculate s
1

2 ,  s
2
2  and s

r

2  as  follows:

s
M M

qn1

2 1
=

−
r

'
 with p  −  1  degrees of freedom

s
M M

pn2

2 2
=

−
r

'
 with q  −  1  degrees of freedom

s M
r r

2
= '  with (pqn  −  p  −  q  +  1)  degrees of freedom
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If both of the variance estimates s
1

2  and s
2
2  are positive:

— recalculate s
x
 from

s
s

p

s

q

s

npq
x
= + +

1

2

2

2 2

r

— recalculate the effective degrees of freedom νeff as

ν
eff

2 r

r

=
+ −( )

−
+

−
+

− − +

M M M

M

p

M

q

M

pqn p q

1

2

1

2

2

2 2

1 1 1

 

— set the degrees of freedom νs for s
x
 as

ν ν
s

p q= − −( ) max min , ,1 1 eff

where max(.)  denotes the maximum of terms enclosed in parentheses and min(.)  the minimum.

If one or both of s
1

2  or s
2
2  is  zero or negative,  reduce the analysis further by removing the term(s)  

corresponding to negative variances,  and proceed as in 7.2 .5 .2 .

7.3.5.3  One factor variance estimate zero or negative

Where either s
1

2  or s
2
2  is  zero or negative,  remove the corresponding term from the model and 

reanalyse as a nested two-factor analysis of variance following the methods of ISO/TS 21749.

7.4	Two-way	balanced	experiment	with	replication	(one	factor	fixed,	one	factor	random)

7.4.1 Design

The experiment involves variation in two different factors (for example,  test item and measurement 
Run)  with a single observation per factor combination.  One of the factors is,  however,  the subject of 
an investigation and held to be a fixed effect;  that it,  the levels of the factor are not selected at random 
from a larger population and their effect is  constant over time.  For the purpose of this guide,  Factor 2  
is  taken as the fixed effect.  As before,  let p  be the number of levels for the first factor of interest,  q  the 
number of levels for the second, and n  the number of observation per factor combination,  so that there 
are pqn  observations.

NOTE Information about the fixed factor (Factor 2)  is  not useful in the uncertainty experiment but can still  
be important and should be studied elsewhere if so.

7.4.2  Preliminary inspection

Inspection should follow the same procedure as for the two-way layout with both factors random.
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Table	4	—	ANOVA	table	for	two-way	design	with	replication,	one	fixed	effect

Factor SS DF MS Expected mean square

Factor 1  (Ran-
dom)

S1 p − 1 M1=S1/(p − 1)
σ σ σ

r I

2 2

1

2
+ +n nq

Factor 2  (Fixed) S2 q − 1 M2=S2/(q − 1)
σ σ σ

r I

22

2

2
+ +n np c

Interaction SI (p − 1)(q − 1) MI=SI/[(p − 1)  (q − 1)]
σ σ

r I

2 2
+ n

Residualb Sr pq(n  − 1) Mr=Sr/[pq(n − 1)]
σ

r

2

Total Stot=S1  +  S2  +  SI  +  Sr pqn − 1 Mtot=Stot/(pqn − 1)  

a  The F statistic for the fixed effect,  Factor 2 ,  is  calculated by dividing by the mean square for the interaction term 
because the expected mean square includes random deviations associated with the random interaction with Factor 1 .

b  The residual term in two-way analysis of variance with replication is  sometimes called the ‘within-group’  term.

c  Strictly,  the effect of Factor 2 ,  denoted σ
2
2
 in this table,  is  not a variance but a function of fixed deviations from the 

mean.

7.4.3  Variance component extraction

a)  Conduct an analysis of variance ‘with interactions’.  This will  yield a table of form shown in Table 4.

b)  Calculate the variance estimates s
1

2 ,  s
I

2  and s
r

2  for Factor 1,  the interaction term and the 

repeatability variance,  respectively,  as  follows:

s
M M

qn1

2 1
=

−
I  with p  −  1  degrees of freedom

s
M M

n
I

I r2
=

−

 with (p  −  1)(q  −  1)  degrees of freedom

s M
r r

2
=

NOTE No variance component is  calculated for Factor 2  as this is  taken as a fixed effect.  The interaction term 
is  taken as random because it arises from interaction between a fixed and a random effect.

7.4.4 Standard uncertainty for the mean of all observations

Where the experiment is  intended to yield a mean value x  over all  observations,  the standard 
uncertainty arising from repeatability and from variation in the two experimental factors is  identical 

to the standard error s
x
 calculated from

s
s

p

s

pq

s

npq
x
= + +

1

2 2 2

I r

NOTE 1  If the fixed effect is  statistically significant,  it is  inappropriate to estimate a single mean value for all 
observations.  Instead, mean values for each level of the fixed effect is  estimated separately.

NOTE 2  Pairwise,  comparisons between mean values for different levels of the fixed effect allows the 
correlation introduced by the common effects of Factor 1 .  This is  beyond the scope of this Technical Specification.

 

© ISO 2015  – All rights reserved 11International  Organization  for Standardization

 



 

ISO/TS 17503:2015(E)

7.4.5  Degrees of freedom for the standard uncertainty

Degrees of freedom for the standard error s
x
 and for the estimated standard deviation s1  should be 

taken as p  −  1 .

8 Application to observations on a relative scale

Some experiments yield data in the form of relative deviations di′  =  (xi-xref)/xref from a reference value 
xref,  or as ratios ri =  xi/xref.  For example,  in analytical chemistry,  it is  common to investigate the recovery 
of material added to a (usually blank)  test material and to report the results as a fraction or percentage 
of the amount added.  It is  also sometimes convenient to examine the dispersion of relative results xi/xref 

or x x
i

 (where x  is  the mean of the observations)  at a number of different values of the measurand in 

the expectation that the standard deviation is  proportional to the value of the measurand to a good 
approximation,  allowing performance to be described in the form of an approximately constant relative 
standard deviation.

The methods described in Clause 6  of this  Technical Specification may be applied to relative 
observations.

NOTE 1  The variance components and standard deviations resulting from the use of relative observations are 
the variances and standard deviations of the relative values and it is  not always safe to treat these as estimates 
of the relative standard uncertainties ui(y)/y.  This interpretation is  strictly valid only when the uncertainty in 
the reference value is  negligible compared to the dispersion of results or where the dispersion of results is  small 
compared to the reference value and the dispersion can be shown to be proportional to measurand value to an 
adequate approximation in the range of interest.  An adequate approximation for this purpose is  an approximation 
showing deviations from exact values that are small compared to the corresponding uncertainties in estimated 
standard deviations (see 7.1) .

NOTE 2  It might be possible to use s( x x
i

)  as an estimate of ui(y)/y where,  for example,  s( x x
i

)  <  0,1,  but 

the resulting bias is  to  be checked

NOTE 3  For pooling a relative standard deviation over several levels (values of the measurand)  it might be 
necessary to treat the value of the measurand as one of the (fixed)  factors of interest.  Some authorities also 
recommend taking logs before processing ratio data;  where this is  done,  the resulting standard deviation of log 
values should be converted to standard uncertainties.  For this purpose,  the approximation s(ln(X))  approximately 
s(X)/E[X]  holds to approximately two significant digits if s(X)/E[X]  <  0,1;  that is,  a standard deviation of natural 
logs of the raw data are approximately equal to the relative standard deviation of the raw data.

9 Use of variance components in subsequent measurements

Variance components estimated as in Clause 7  may be used in subsequent experiments provided that 
the effect is  considered to be of similar magnitude.  For example,  a variance derived from an instrument 
effect study may be used as the basis for a standard uncertainty,  as  defined in ISO/IEC Guide 98-3,  for a 
measurement of mass on an instrument of closely similar type to those studied and for a mass similar 
to those studied.

Where such an experiment averages of the effect of nF levels of a factor F,  the uncertainty contribution 
uF is  calculated from

u
s

n
F

F

F

=

2

 (8)

where sF is  the standard deviation derived from the procedures above.
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10 Alternative treatments

10.1 Restricted (or residual)  maximum likelihood estimates

Variance component extraction by specialist software is  permitted by this Technical Specification 
provided that the software returns restricted maximum likelihood (“REML”)  estimates of variance.

NOTE REML estimates are guaranteed to be non-negative.

10.2  Alternative methods for model reduction

The removal of terms from the analysis only when the corresponding variance estimates reach zero is  
intended to retain model terms as far as possible.  This is  motivated by two considerations:

a)  Early removal of terms from a model based on significance tests is  insufficiently conservative when 
the number of degrees of freedom is small,  as  insignificant findings are then likely even when the 
corresponding true variance is  important;

b)  There is  good reason, based on prior knowledge,  to include the relevant terms in the model.

Where the degrees of freedom are large or where a term has been included in the experiment as a 
precaution,  the data analyst may adopt a less conservative methodology for model reduction.  The 
alternative methodology recommended for this situation by this Technical Specification is  to choose 
the model corresponding to the minimum value for Akaike’s  Information Criterion (AIC) .  For the case 
of classical analysis of variance assuming normality of errors,  AIC comparison may be carried out by 
calculating the AIC criterion IAIC  for each model as

I N S N NAIC r r= + −ln( / ) ( )2 ν  (9)

where N is  the total number of observations,  Sr  the residual (or within-group)  sum of squares from the 
corresponding ANOVA table,  and νr  the corresponding residual degrees of freedom from the same table.

NOTE This simplified implementation of the AIC is  sufficient for comparison between classical ANOVA 
models but differs by an additive constant (for a given data set)  from the general formulation based on calculated 
log-likelihood.

11 Treatment with missing values

If values are missing from the compiled data table,  either through measurement failure or rejection 
on technical grounds,  variance components should be extracted using restricted maximum likelihood 
procedures implemented in software.
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Annex A 
(informative)  

 
Examples

A.1 Example 1:  Estimation of a between-unit term using a randomized block 
design over three runs

A.1.1  Overview

The experiment is  intended to estimate the between-unit standard deviation for a candidate reference 
material.  The between-unit standard deviation will form the basis for a subsequent estimate of the 
uncertainty associated with homogeneity in the final certified value.  The between-unit term is  used to 
estimate the contribution of inhomogeneity to the uncertainty in certified value for an individual unit 
provided to the end user of the material.  The experiment was constructed as a randomized block design 
in which 10  units of the material were measured once each in each of three separate runs.  The run 
order was randomized for each run.  This layout corresponds to the two-way layout without replication 
described in 7.2 .

A.1.2  Data

The data are from a homogeneity study on a candidate reference material for the fungicide malachite 
green in fish tissue.  The experiment was a randomized block design,  with one observation on each of 12  
units of the material in each of three instrument runs,  with observations taken in random order.  Units 
were selected randomly from a test batch of 100.  The data are listed in unit order in Table A.1 .

Table A.1  — Homogeneity data for a candidate reference material

Unit Run

Run 1 Run 2 Run 3

2 2 ,801  8 2 ,845  7 2 ,791  2

10 2 ,860 1 2 ,832  3 2 ,722  1

14 2 ,832  6 2 ,849 4 2 ,661  9

20 2 ,872  2 2 ,872  3 3 ,474 2

23 2 ,614 3 2 ,821  6 2 ,866 6

34 2 ,677 9 2 ,723  2 2 ,742  9

37 2 ,907 7 2 ,813  7 2 ,672  3

43 2 ,869 6 2 ,851  6 2 ,697 1

51 2 ,608 3 2 ,697 5 2 ,678 1

56 2 ,804 8 2 ,887 4 2 ,757 9

60 2 ,771  6 2 ,803  5 2 ,673  0

65 2 ,812  5 2 ,768 8 2 ,846 1

The table shows the measured malachite green content in 
mg kg−1  in reference material unit order within Runs.
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A.1.3  Review of data

The data from Table A.1  are plotted in run order in Figure A.1.  The data show no strong run effects but 
there is  a marked outlier at observation 25.  Inspection of the instrument output suggested a possible 
instrument fault for one observation for reference material unit 20.  Following 7.2 .2 ,  all  observations for 
unit 20  were removed from the data set.

Figure A.1  — Homogeneity data for a candidate reference material (run order)

Figure A.1  shows the data from Table A.1,  plotted in run sequence.

A.1.4 Variance component estimation

The analysis of variance table for the data in Table A.1  is  shown as Table A.2 .  Following paragraph 7.2 .3,  
the estimated variance components are

s s
Unit

2

1

2
0 007 21 0 005 77

3
0 000 48= =

−

=

, ,

,  with 10  degrees of freedom (there were 11  units 

after removing unit 20)

s s ,
Run

2

2

2
0 014 13 0 005 77

11
0 000 76= =

−

=

, ,

 with 2  degrees of freedom

s
r

2
0 005 77= ,  with 20  degrees of freedom

The between-unit standard deviation is  therefore 0,022  mg kg−1 .

NOTE The uncertainty included in the case of a certified reference material is  discussed in detail in 
ISO Guide 35  and can be larger than the between-unit standard deviation.
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Table A.2  — Analysis of variance for reference material homogeneity data

Effect Df Sum Sq Mean Sq F value Pr(>F)

Unit 10 0,072  1 0,007 21 1,25 0,32

Run 2 0,028 3 0,014 13 2 ,45 0,11

Residuals 20 0,115  4 0,005  77   

A.2  Example 2:  Standard uncertainty associated with Run and Unit effects in a 
reference material characterization measurement

A.2.1  Overview

This Example describes the determination of a standard uncertainty associated with random variation 
in a two-factor crossed experiment to determine a reference value for mercury in a candidate reference 
material (RM).

A.2.2  Data

The experiment involved isotope dilution measurements.  Three units (bottles)  of the reference 
material were randomly selected from the production batch and measured.  For each unit,  duplicate 
measurements were made in each of three different runs.  Observations were carried out in random 
order within each run.  The results obtained are shown in Table A.3 .

Table A.3  — Mercury measurements (μg kg−1)  on a gypsum candidate reference material

RM Unit 
Number

Run

A B C

77 627,247 650,980 649,989

77 632 ,721 655,328 638,066

87 627,170 638,822 641,432

87 613,682 634,851 643,924

127 635,729 648,628 641,972

127 638,025 657,087 651,948

A.2.3  Review of the data

The data from Table A.3  are plotted in Figure A.2 ,  grouped by measurement run and RM Unit number.  
There is  a strong suggestion of a difference between different runs (run A appearing consistently lower 
than runs B  and C) ,  and a possible difference between units.  There are no severe outliers.  A normal 
probability plot of residuals calculated as in 7.3 .2  gave no reason to suspect non-normality.

A.2.4 Variance component analysis

Two-way analysis of variance with allowance for interactions leads to the ANOVA table shown as Table A.4.

Table A.4 — Analysis of variance for mercury data in a candidate reference material

Factor SS DF MS

Unit 485,08 2 242 ,54

Run 1182 ,74 2 591,37

Unit:Run 155,77 4 38,94

Residuals 285,64 9 31,74
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Figure A.2  — Mercury measurements on a gypsum candidate reference material

Figure A.2  shows measurements grouped by Run and RM Unit number.

Both the RM unit and the run error are random effects in the present experiment.  The variance 

estimates s
1

2 ,  s
2
2 ,  s

I

2  and s
r

2 for Factor 1  (the Unit term),  Factor 2  (the Run term),  the interaction term 

and the repeatability variance,  respectively,  are therefore calculated from Table A.4 as follows:

s
1

2 242 54 38 94

3 2
33 93=

−

×

=

, ,

,  with 3  – 1  =  2  degrees of freedom

s
2

2 591 37 38 94

3 2
92 07=

−

×

=

, ,

,  with 3  −  1  =  2  degrees of freedom

s
I

2 38 94 31 74

2
3 60=

−

=

, ,

,  with (3  −  1)(3  −  1)  =  4 degrees of freedom

s
r

2
31 74= ,

NOTE In this experiment,  n  =  2  and P =  q  =  3 .

None of the variance components is  zero or negative,  so the present model is  retained.

A.2.5  Standard uncertainty for the mean of all observations

The mean of the observations can be calculated from Table A.3  as  640,422  μg kg−1 .  The standard 

uncertainty u
x
 arising from variation visible in the experiment can be calculated from Formula (5) ,  

7.3 .4 as

u s
x x
= = + +

×
+

33 93

3

92 07

3

3 60

3 3

31 74

18

, , , ,

= 6,78 μg kg−1
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NOTE Other uncertainties,  including (for example)  calibration uncertainties and allowances for 
inhomogeneity will normally be combined with the standard uncertainty calculated here to obtain the 
uncertainty for a certified value.

A.2.6 Degrees of freedom for the standard uncertainty

Since all  variance components are positive,  the effective degrees of freedom for the above standard 
uncertainty can be calculated from Formulae (6)  and (7) ,  7.3 .5 .1 .  These yield

ν
eff

=
+ −( )

−
+

−
+

−

242 54 591 37 38 94

242 54

3 1

591 37

3 1

38 94

3

2

2 2 2

, , ,

, , ,

( 11 3 1

3 09

) ( )

,

−

=

and

ν s = − −( )  =max min , , , ,3 1 3 1 3 09 3 09

The degrees of freedom associated with the standard uncertainty calculated in A.2 .6 is  therefore set to 
3 ,09.

NOTE If used to calculate a confidence interval using the corresponding value of student’s t from statistical 
tables,  the calculated value of 3 ,09 will normally be rounded down to 3 .
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