TECHNICAL SPECIFICATION ISO/TS 16610-49 First edition 2006-11-01 ## Geometrical product specifications (GPS) — Filtration — Part 49: Morphological profile filters: Scale space techniques Spécification géométrique des produits (GPS) — Filtrage — Partie 49: Filtres de profil morphologiques: Techniques d'analyse par espace d'échelle Reference number ISO/TS 16610-49:2006(E) #### ISO/TS 16610-49:2006(E) #### PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below #### © ISO 2006 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland #### **Contents** Page Foreword......iv Introduction vi 1 Scope1 2 3 Terms and definitions...... 1 General scale space background.......2 4.1 General 2 4.2 4.3 4.4 5 Recommendations....... 5 5.1 Horizontal line structuring element5 5.3 Annex A (informative) Illustrative examples of scale space 6 #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. In other circumstances, particularly when there is an urgent market requirement for such documents, a technical committee may decide to publish other types of normative document: - an ISO Publicly Available Specification (ISO/PAS) represents an agreement between technical experts in an ISO working group and is accepted for publication if it is approved by more than 50 % of the members of the parent committee casting a vote; - an ISO Technical Specification (ISO/TS) represents an agreement between the members of a technical committee and is accepted for publication if it is approved by 2/3 of the members of the committee casting a vote. An ISO/PAS or ISO/TS is reviewed after three years in order to decide whether it will be confirmed for a further three years, revised to become an International Standard, or withdrawn. If the ISO/PAS or ISO/TS is confirmed, it is reviewed again after a further three years, at which time it must either be transformed into an International Standard or be withdrawn. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO/TS 16610-49 was prepared by Technical Committee ISO/TC 213, *Dimensional and geometrical product specifications and verification*. ISO/TS 16610 consists of the following parts, under the general title *Geometrical product specifications* (GPS) — Filtration: - Part 1: Overview and basic concepts - Part 20: Linear profile filters: Basic concepts - Part 22: Linear profile filters: Spline filters - Part 29: Linear profile filters: Spline wavelets - Part 31: Robust profile filters: Gaussian regression filters - Part 32: Robust profile filters: Spline filters - Part 40: Morphological profile filters: Basic concepts - Part 41: Morphological profile filters: Disk and horizontal line-segment filters - Part 49: Morphological profile filters: Scale space techniques The following parts are under preparation: - Part 21: Linear profile filters: Gaussian filters - Part 26: Linear profile filters: Filtration on nominally orthogonal grid planar data sets - Part 27: Linear profile filters: Filtration on nominally orthogonal grid cylindrical data sets - Part 30: Robust profile filters: Basic concepts - Part 42: Morphological profile filters: Motif filters - Part 60: Linear areal filters: Basic concepts - Part 61: Linear areal filters: Gaussian filters - Part 62: Linear areal filters: Spline filters - Part 69: Linear areal filters: Spline wavelets - Part 70: Robust areal filters: Basic concepts - Part 71: Robust areal filters: Gaussian regression filters - Part 72: Robust areal filters: Spline filters - Part 80: Morphological areal filters: Basic concepts - Part 81: Morphological areal filters: Sphere and horizontal planar segment filters - Part 82: Morphological areal filters: Motif filters - Part 89: Morphological areal filters: Scale space techniques ## Introduction This part of ISO/TS 16610 is a geometrical product specification (GPS) Technical Specification and is to be regarded as a global GPS Technical Specification (see ISO/TR 14638). It influences the chain links 3 and 5 of all chains of standards For more detailed information of the relation about this part of ISO/TS 16610 to the GPS matrix model, see Annex D. This part of ISO/TS 16610 develops the terminology and concepts for morphological scale space techniques. ## Geometrical product specifications (GPS) — Filtration — ## Part 49: ## Morphological profile filters: Scale space techniques ### 1 Scope This part of ISO/TS 16610 specifies morphological scale space techniques. The basic terminology for scale space techniques is given together with their usage. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO/TS 16610-1:2006, Geometrical Product Specification (GPS) — Filtration — Part 1: Overview and basic terminology ISO/TS 16610-40:2006, Geometrical product specifications (GPS) — Filtration — Part 40: Morphological profile filters: Basic concepts #### 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO/TS 16610-1 and ISO/TS 16610-40 and the following apply. #### 3.1 #### size distribution indexed family of **openings** (3.1.1) which satisfies the **sieve criterion** (3.3) #### 3.1.1 #### opening (morphological filters) morphological operation obtained by applying the erosion followed by the dilation NOTE An opening is both a morphological filter and one of the two basic building blocks for other morphological filters. [ISO/TS 16610-40:2006] #### 3.2 #### anti-size distribution indexed family of closings (3.2.1) which satisfies the sieve criterion (3.3) [ISO/TS 16610-1:2006] #### 3.2.1 #### closing (morphological filters) morphological operation obtained by applying the dilation followed by the erosion NOTE A closing is both a morphological filter and one of the two basic building blocks for other morphological filters. [ISO/TS 16610-40:2006] #### ISO/TS 16610-49:2006(E) #### 3.3 #### sieve criterion criterion where two primary mappings (PM) applied one after another to a surface portion (SP) is entirely equivalent to only applying one of these two primary mappings to the surface portion, namely that primary mapping with the highest nesting index (NI) NOTE The sieve criterion is defined in terms of mathematical mappings as $$PM[PM(SP | NI_1) | NI_2] = PM(SP | NI) \text{ with } NI = max(NI_1, NI_2)$$ (1) where SP is the surface portion. #### 3.4 #### scale indexing parameter in a size distribution (3.1) or anti-size distribution (3.2) A size and an anti-size distribution are often combined to create a continuous real scale, where the positive scale uses the size distribution and the negative scale uses the anti-size distribution with minus scale values. NOTE 2 Scale is a nesting index. #### 3.5 #### scale space size distribution (3.1) or anti-size distribution (3.2) with the monotone property (3.5.1) #### 3.5.1 #### monotone property property that once an object in a signal (profile/surface) is present at some scale (3.4), it must persist all the way through scale space (3.5) to zero scale. #### 3.6 #### alternating symmetrical filter morphological filter satisfying the sieve criterion (3.3) which can eliminate peaks and valleys below a given **scale** (3.4) #### General scale space background #### 4.1 General A scale space technique conforming to this part of ISO/TS 16610 shall exhibit the characteristics described in 4.2, 4.3, 4.4, 5.1, 5.2 and 5.3. Scale space is a way of decomposing a signal (profile/surface) into objects of different scales. A defining feature of scale space is the property that an object, once present at some scale in a signal, must persist all the way through scale space to zero scale. This is often called the monotone property, since the number of objects must necessarily be a monotone decreasing function of scale. To define scale space, we need to define the size of objects in a signal (profile/surface). The concept of the size and anti-size distribution is a mathematical generic approach to the definition of size of objects in a signal (profile/surface). NOTE Examples of scale space are given in Annex A. A concept diagram for the concepts for morphological profile filters: scale space techniques is given in Annex B. The relationship to the filtration matrix model is given in Annex C. #### 4.2 Size and anti-size distributions Sieving is a commonly used sizing technique. In physical terms, sieving involves classifying small solid particles according to a series of sieves with decreasing mesh openings. In the first place, the population of different sized grains are allowed to work their way through the sieves (a transformation) in order to classify the different sizes of grains. The contents of each sieve are then either counted or weighed to obtain a histogram of the size distribution of the original population of particles. Matheron^[4] was the first to define mathematically the concept of size. He demonstrated that a family of morphological openings, satisfying the sieve criterion and indexed by a positive number called the scale, could be used to define the concept of size and size distributions, analogous to physically sieving a population of particles as described above. Since size distributions are based on a family of opening filters, the size distribution measures the width of peaks on the signal/image. Using the opening filter of a particular scale eliminates peaks whose widths are less than this given scale (see Figure 1). The dual concept of anti-size distributions based on a family of closing filters measures the width of valleys on the signal/image. Using the closing filter of a particular scale eliminates valleys whose widths are less than this given scale (see Figure 1). #### Key - A original profile - 3 profile after closing with a horizontal line - C profile after opening with a horizontal line NOTE The process illustrated in Figure 1 eliminates features whose widths are less than the size of the structural element, i.e. size 2. Figure 1 — Closing and opening with a horizontal line structural element of size 2 #### 4.3 Alternating symmetrical filters An opening filter of a particular scale from a size distribution removes peaks whose widths are less than this given scale, while a closing filter of the same scale from an anti-size distribution removes valleys whose widths are less than this given scale. To eliminate both peaks and valleys whose widths are less than this given scale at the same time, alternating symmetrical filters are required. #### ISO/TS 16610-49:2006(E) To eliminate both peak and valleys at the same time, we need to combine openings and closings from a size and anti-size distribution respectively. It can be shown that there are only four possibilities for composing an opening $O_j(\cdot)$ and a closing $C_j(\cdot)$ with a given scale j, as follows: - a) mj = Oj [Cj ()]; - b) $n_i = C_i [O_i ()];$ - c) $r_j = C_j \{O_j [C_j ()]\};$ - d) $s_j = O_j \{C_j [O_j ()]\}.$ We can define the following four alternating symmetrical filters with a given scale i - M-sieve: $Mi = m_1 m_2 m_3 \dots m_{i-1} m_i m_{i-1} \dots m_3 m_2 m_1$ - N-sieve: $N_i = n_1 n_2 n_3 \dots n_{i-1} n_i n_{i-1} \dots n_3 n_2 n_1$ - R-sieve: $Ri = r_1r_2r_3 \dots r_{i-1} r_ir_{i-1} \dots r_3r_2r_1$ - S-sieve: $s_1 s_2 s_3 \dots s_{i-1} s_i s_{i-1} \dots s_3 s_2 s_1$ where the increasing number of the indices represents increasing scale (i.e. if u < v, then the scale of m_u is less than the scale of m_u). It can be shown^{[5][6]} that these alternating symmetrical filters are morphological filters which satisfy the sieve criterion and which eliminate peaks and valleys whose widths are less than the scale i. Alternating symmetrical filters allow the construction of a ladder structure of higher order scale space representations of the original signal/image (see Figure 2). The first rung is the original signal (profile/surface). At each rung in the ladder, the signal S^i is filtered by an alternating symmetrical filter of order i+1, say Mi+1, in order to obtain the next order scale space representation of the signal/image S^{i+1} , which becomes the next rung, and a component that is the difference between the two rungs d^{i+1} . The original signal can be reconstructed from $(d^1, d^2, d^3, ..., d^n, S^n)$ by reversing the ladder structure. #### 4.4 Nested mathematical models The ladder structure lends itself naturally to a set of nested mathematical models of the surface, with the *i*th model, say model^{*i*}, reconstructed from $(d^i, d^{i+1}, ..., d^n, s^n)$. The scale of the model is equivalent to a cut-off value λ_s . A "transmission bandwidth" can be defined using the nested mathematical models by calculating the height difference between two specified models, e.g. $\mathsf{model}^{i,j} = \mathsf{model}^i - \mathsf{model}^j$ with i < j. Thus, in this particular example, scale i is equivalent to cut-off value λ_{S} and scale j is equivalent to cut-off value λ_{C} . Figure 2 — Schematic representation of the ladder structure of scale space #### Recommendations #### 5.1 Circular disk structuring element The definitions for openings and closings with a circular disk structural element are given in ISO/TS 16610-41. To implement the alternating symmetrical filters, it is recommended to use the M-sieve with a logarithmic series (constant ratio) of scale values (the radius of the circular disk of the structural element). Experience has shown that a constant ratio of around two between successive scale values is optimal. This value is sufficiently large to distinguish and interpret the details in the ladder structure, whilst remaining sufficiently small that the partition of scale space can still be considered diagnostic. To start the alternating series filter, a scale value not less than the stylus tip radius should be selected in order that each successive level of the ladder has approximately the same ratio of scale values. The following series of scale values has a ratio of around 2: ``` ...1 mm, 2 mm, 5 mm, 10 mm, 20 mm, 50 mm, 100 mm, 200 mm, 500 mm, 1 mm, 2 mm, 5 mm, 10 mm, ... ``` This series has an additional advantage that it is consistent with the recommended stylus tip radii for surface texture (see ISO 3274). Hence, surfaces measured with different styli have an overlap of scale values and so are directly comparable. #### 5.2 Horizontal line structuring element The definitions for openings and closings with a horizontal line structural element are given in ISO/TS 16610-41. To implement the alternating symmetrical filters, it is recommended to use the M-sieve with a logarithmic series (constant ratio) of scale values (the length of the horizontal line of the structural element). Experience has shown that a constant ratio of around two between successive scale values is optimal. This value is sufficiently large to distinguish and interpret the details in the ladder structure, whilst remaining sufficiently small that the partition of scale space can still be considered diagnostic. To start the alternating series filter, a scale value not less than the stylus tip diameter should be selected in order that each successive level of the ladder has approximately the same ratio of scale values. The following series of scale values has a ratio of around 2: ``` ...1 mm, 2 mm, 5 mm, 10 mm, 20 mm, 50 mm, 100 mm, 200 mm, 500 mm, 1 mm, 2 mm, 5 mm, 10 mm, ... ``` This series has the additional advantage that it is consistent with the recommended stylus tip radii for surface texture (see ISO 3274). Hence, surfaces measured with different styli have an overlap of scale values and so are directly comparable. #### 5.3 Default scale space technique If not otherwise specified, the default scale space technique shall be a M-sieve with a circular disk structuring element. #### Filter designation Morphological profile filters according to this part of ISO/TS 16610 are designated Filter designation Alternating series Disk **FPMAD** Alternating series Horizontal segment **FPMAH** See also ISO/TS 16610-1:2006, Clause 5. ## Annex A (informative) ## Illustrative examples of scale space ## A.1 Circular disk on a profile from a milled surface The profile is taken from a milled surface, measured with a 5 mm tip stylus. The series of scale values given in Clause 4 is used, starting with the first value larger than the stylus tip radius. Figure A.1 shows the successively smoothed profiles, together with the original profile at the top. - distance - height - scale Figure A.1 — Successively smoothed profiles of a profile from a milled surface using a circular disk Figure A.2 shows the differences between successive smoothings. Notice how the deflective milling mark has been easily identified at scales 2 mm and 5 mm, and the milling marks at scales 0,5 mm and 0,2 mm. - X distance, mm - Y height, μm - A scale, mm Figure A.2 — Differences on a profile from a milled surface using a circular disk ## A.2 Horizontal line on a profile from a milled surface This is the same profile from a milled surface as in A.1. Again the series of scale values given in Clause 4 is used, starting with the first value larger than the stylus tip radius. Figure A.3 shows the successively smoothed profiles, together with the original profile at the top. - distance, mm - height, µm - scale, mm Figure A.3 — Successively smoothed profiles of a profile from a milled surface using a horizontal line segment Figure A.4 shows the differences between successive smoothings. Notice how the defective milling mark has been easily identified at scale 0,1 mm and the milling marks at scale 0,05 mm, reflecting the width of these features. - X distance, mm - Y height, µm - A scale, mm Figure A.4 — Differences on a profile from a milled surface using a horizontal line segment ## A.3 Circular disk on a profile from a ceramic surface The profile is taken from a rough ceramic surface, measured with a 5 mm tip stylus. The series of scale values given in Clause 4 is used, starting with the first value larger than the stylus tip radius. Figure A.5 shows the successively smoothed profiles, together with the original profile at the top. Notice how the smoothed profiles at larger scales are robust against the deep valleys. Figure A.5 — Successively smoothed profiles of a profile from a ceramic surface using a circular disk Figure A.6 shows the differences between successive smoothings. Notice how the deep valleys are easily identified at scales 0,2 mm to 0,01 mm. - X distance, mm - Υ height, μm - A scale, mm Figure A.6 — Differences on a profile from a ceramic surface using a circular disk ## A.4 Horizontal line on a profile from a ceramic surface This is the same rough ceramic surface as in A.3. The series of scale values given in Clause 4 is used, starting with the first value larger than the stylus tip radius. Figure A.7 shows the successively smoothed profiles, together with the original profile at the top. Notice how the smoothed profiles at larger scales are robust against the deep valleys. - X distance, mm - Y height, μm - A scale, mm Figure A.7 — Successively smoothed profiles of a profile from a ceramic surface using a horizontal line Figure A.8 shows the differences between successive smoothings. Notice how the deep valleys are easily identified at scales 0,05 to 0,01mm reflecting the width of these features. - X distance, mm - Y height, µm - A scale, mm Figure A.8 — Differences on a profile from a ceramic profile using a horizontal line ## **Annex B** (informative) ## **Concept diagram** The following is a concept diagram for this part of ISO/TS 16610. ## **Annex C** (informative) ## Relationship to the filtration matrix model For full details about the filtration matrix model see ISO/TS 16610-1. #### C.1 Position in the filtration matrix model This part of ISO/TS 16610 is a specific document that influences particular filters in the column: Profile filters, Morphological (see Figure C.1). | General | Filters: ISO/TS 16610 series | | | | | | | | | | |----------------------|------------------------------|-------------|---------------|----------------------|-------------|---------------|--|--|--|--| | | Part 1 | | | | | | | | | | | Fundamental | Profile filters | | | Areal filters | | | | | | | | | Part 11 ^a | | | Part 12 ^a | | | | | | | | | Linear | Robust | Morphological | Linear | Robust | Morphological | | | | | | Basic concepts | Part 20 | Part 30 | Part 40 | Part 60 | Part 70 | Part 80 | | | | | | Particular filters | Parts 21-25 | Parts 31-35 | Parts 41-45 | Parts 61-65 | Parts 71-75 | Parts 81-85 | | | | | | How to filter | Parts 26-28 | Parts 36-38 | Parts 46-48 | Parts 66-68 | Parts 76-78 | Parts 86-88 | | | | | | Multiresolution | Part 29 | Part 39 | Part 49 | Part 69 | Part 79 | Part 89 | | | | | | a At present include | d in Part 1. | | | | | | | | | | Figure C.1 — Relationship to the filtration matrix model ## Annex D (informative) ## Relationship to the GPS matrix model For full details about the GPS matrix model see ISO/TR 14638. #### D.1 Information about this Technical Specification and its use This part of ISO/TS 16610 defines the basic terminology for envelope scale space techniques. #### D.2 Position in the GPS matrix model This part of ISO/TS 16610 is a global GPS Technical Specification, which influences chain links 3 and 5 of all chains of standards in the GPS matrix structure, as graphically illustrated in Figure D.1. | | Global GPS standards | | | | | | | | | | | |---------------------------------|--------------------------------------|---|---|---|---|---|---|--|--|--|--| | | | | | | | | | | | | | | Fundamental
GPS
standards | General GPS standards | | | | | | | | | | | | | Chain link number | 1 | 2 | 3 | 4 | 5 | 6 | | | | | | | Size | | | X | | X | | | | | | | | Distance | | | X | | X | | | | | | | | Radius | | | X | | X | | | | | | | | Angle | | | X | | X | | | | | | | | Form of line independent of datum | | | X | | X | | | | | | | | Form of line dependent of datum | | | X | | X | | | | | | | | Form of surface independent of datum | | | X | | X | | | | | | | | Form of surface dependent of datum | | | X | | X | | | | | | | | Orientation | | | X | | X | | | | | | | | Location | | | X | | X | | | | | | | | Circular run-out | | | X | | X | | | | | | | | Total run-out | | | X | | X | | | | | | | | Datums | | | X | | X | | | | | | | | Roughness profile | | | X | | X | | | | | | | | Waviness profile | | | X | | X | | | | | | | | Primary profile | | | X | | X | | | | | | | | Surface imperfections | | | X | | X | | | | | | | | Edges | | | X | | X | | | | | | Figure D.1 — Position in the GPS matrix model #### **D.3 Related International Standards** The related International Standards are those of the chains of standards indicated in Figure D.1. ## **Bibliography** - [1] ISO 3274:1996, Geometrical Product Specifications (GPS) Surface texture: Profile method Nominal characteristics of contact (stylus) instruments - [2] ISO/TR 14638:1995, Geometrical Product Specifications (GPS) Masterplan - [3] ISO/TS 16610-41:2006, Geometrical product specifications (GPS) Filtration Part 41: Morphological profile filters: Disk and horizontal line segment filters - [4] MATHERON, G., Random Sets and Integral Geometry, John Wiley & Sons, New York 1975 - [5] SERRA, J., Image analysis and mathematical morphology vol. 1, Academic Press, New York, 1982 - [6] SERRA, J. (ed), Image analysis and mathematical morphology vol. 2, Academic Press, New York, 1988 ICS 17.040.20 Price based on 17 pages