TECHNICAL SPECIFICATION ISO/TS 15830-5 First edition 2017-04 # Road vehicles — Design and performance specifications for the WorldSID 50th percentile male side-impact dummy — ## Part 5: # **Dummy design updates** Véhicules routiers — Conception et spécifications de performance pour le mannequin mondial (WorldSID), 50e percentile homme, de choc latéral — Partie 5: Mise à jour de conception applicables #### ISO/TS 15830-5:2017(E) #### **COPYRIGHT PROTECTED DOCUMENT** #### © ISO 2017, Published in Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Ch. de Blandonnet 8 • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel. +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org | Con | tent | S | Page | |--------|--------|--|------| | Forev | vord | | iv | | Intro | ductio | n | v | | 1 | | e | | | 2 | Norn | native references | 1 | | 3 | Tern | ns and definitions | 1 | | 4 | Mecl | nanical requirements for WorldSID | 2 | | | 4.1 | Mass properties | 2 | | | | 4.1.1 Body segment mass specifications | 2 | | | | 4.1.2 DAS mass | 2 | | | 4.2 | Permissible DAS mounting locations | 3 | | | 4.3 | Mechanical modifications | | | | | 4.3.1 Arm detents | | | | | 4.3.2 Suit modifications | | | | | 4.3.3 Ankle design | | | | | 4.3.4 Pelvis flesh | | | | | 4.3.5 Neck ring | | | | 4.4 | Mechanical assembly | | | 5 | | ors | | | 6 | Posi | tioning of the WorldSID | 9 | | 7 | Certi | ification | 9 | | 8 | Who | le body dimensions | 12 | | 9 | Wor | dSID design revision dates | 14 | | 10 | | perature measurement | | | Biblio | ograpł | -
ny | 17 | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 36, *Safety and impact testing*. A list of all parts in the ISO 15830- series can be found on the ISO website. #### Introduction The purpose of the ISO 15830- series is to document the design and specifications of this side-impact dummy in a form suitable and intended for worldwide regulatory use. In 1997, ISO/TC 22/SC 12 initiated the WorldSID 50th percentile adult male dummy development, with the aims of defining a global-consensus side-impact dummy, having a wider range of humanlike anthropometry, biofidelity, and injury monitoring capabilities suitable for regulatory use. Participating in the development were research institutes, dummy and instrumentation manufacturers, governments, and vehicle manufacturers from around the world. With regard to potential regulatory, consumer information, or research and development use of the ISO 15830- series, users will need to identify which of the permissive (i.e. optional) sensors and other elements defined in ISO 15830-3 are to be used in a given application. WorldSID drawings in electronic format as of June 6, 2004 are available. This document is intended to document information and design changes which have become available since the publication of the second edition of the ISO 15830- series, (2013-05-15). In order to apply the ISO 15830- series properly, it is important that all five parts be used together. # Road vehicles — Design and performance specifications for the WorldSID 50th percentile male side-impact dummy — #### Part 5: # **Dummy design updates** #### 1 Scope This document specifies requirements and other design information which became available since 2013 for the WorldSID 50th percentile side-impact dummy, a standardized anthropomorphic dummy for side-impact tests of road vehicles. It is applicable to impact tests involving: - passenger vehicles of category M₁ and goods vehicles of category N₁; - impacts to the side of the vehicle structure; and - impact tests involving use of an anthropomorphic dummy as a human surrogate for the purpose of evaluating compliance with vehicle safety standards. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO/TR 27957, Road vehicles — Temperature measurement in anthropomorphic test devices — Definition of the temperature sensor locations #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminological databases for use in standardization at the following addresses: - IEC Electropedia: available at http://www.electropedia.org/ - ISO Online browsing platform: available at http://www.iso.org/obp #### 3.1 #### angular rate sensor ARS sensor which records angular velocity 3.2 #### data acquisition system DAS system that includes sensors, recorders, cables, and other associated hardware #### 3.3 #### H-point tool device which can be inserted into index holes in the dummy pelvis, which provides an external surface for indicating the orientation of the pelvis and an imaginary line connecting the left and right hip ball joint centres # 3.4 infrared telescoping rod for assessment of chest compression IR-TRACC sensor for deflection measurements #### 4 Mechanical requirements for WorldSID #### 4.1 Mass properties #### 4.1.1 Body segment mass specifications The body segment specifications noted in ISO 15830-2 were based on the parts that are included in specified assembly drawings. For statistical purposes, prior to delivery, actual body segment mass measurements are made, but the split line used between the upper leg and the lumbar spine and pelvis is different than that specified by the assembly drawings. Specifically, the ISO specification included the upper femur and ball socket in the upper leg, whereas the measured masses included these parts in the lumbar spine and pelvis assembly. As a result of the different split lines, some confusion has existed as users compare the measured dummy body segments masses with ISO 15830-2 specifications. In addition, with time, more manufactured dummies have been included in the statistical database, resulting in minor changes to the specified masses. To clarify this situation, Table 1 shows the ISO 15830-2 specifications, updated mass specifications based on recent statistical studies, and updated mass specifications with the alternative split line. | Body segment | ISO 15830-2:2013
mass specification
kg | 2015 updated
specifications
kg | 2015 updated
specifications with
alternative split line
kg | |-----------------------------------|--|--------------------------------------|---| | Head | 4,22 ± 0,05 | 4,29 ± 0,05 | 4,29 ± 0,05 | | Neck | 2,84 ± 0,15 | 2,86 ± 0,02 | 2,86 ± 0,02 | | Thorax/abdomen/shoulder | 20,55 ± 1,0 | 20,56 ± 0,35 | 20,56 ± 0,35 | | Two full arms | 7,44 ± 0,30 | 7,44 ± 0,30 | 7,44 ± 0,30 | | Two half arms | 3,54 ± 0,18 | 3,52 ± 0,08 | 3,52 ± 0,08 | | Lumbar spine and pelvis | 17,75 ± 0,90 | 17,76 ± 0,20 | 19,30 ± 0,20 | | Two upper legs | 13,42 ± 0,60 | 13,26 ± 0,08 | 11,72 ± 0,08 | | Two lower legs/ankles/feet | 10,18 ± 0,26 | 10,12 ± 0,14 | 10,12 ± 0,14 | | Clothing | 1,85 ± 0,09 | 1,54 ± 0,10 | 1,54 ± 0,10 | | | | | | | Total with clothing and half arms | 74,35 ± 3,74 | 73,91 ± 1,02 | 73,91 ± 1,02 | Table 1 — Body segment mass specifications #### **4.1.2 DAS** mass The body segment masses shown in <u>Table 1</u> include sensors and allocations for DAS components (data recorders, batteries, and other DAS-related components). Each non-load bearing sensor and DAS component shall have a mass replacement and load cells shall have structural replacements which are to be installed any time the actual component is removed from the dummy. Thus, body segment masses shall not change as DAS components are added or removed from various segments. Over time, DAS mass allocations and locations have changed slightly. <u>Table 2</u> shows DAS mass allocations from 2005, 2013, and the current specifications which reflect actual DAS component masses measured by VRTC. | Body segment | 2005
kg | 2013
kg | 2015 specification kg | |------------------|-------------------|-------------------|-----------------------| | Spine box/thorax | 1,35 ± 0,300 | 1,56 ± 0,350 | 2,23 ± 0,30a | | Pelvis | 0,21 ± 0,040 | | 0,22 ± 0,04 | | Left femur | 0,287 ± 0,060 | 0,287 ± 0,060 | 0,26 ± 0,06 | | Right femur | 0,287 ± 0,060 | 0,287 ± 0,060 | 0,26 ± 0,06 | | Thorax cabling | 0,075 ± 0,015 | 0,075 ± 0,030 | 0.08 ± 0.03 | | | | | | | Total | 2,21 ± 0,500 | 2,21 ± 0,500 | 3,05 ± 0,50 | Table 2 — DAS mass allocation specifications #### 4.2 Permissible DAS mounting locations Volumes within the thorax, pelvis, and upper leg have been designated as permissible locations for the mounting of various DAS components within the WorldSID. The general locations and basic dimensions of these volumes are shown in Figures 1 to 4. Figure 1 — Spine box volume available for DAS components a The spine box DAS mass may be placed inside the spine box, on the non-struck side of spine box, or some combination. $Figure\ 2-Non-struck\ thorax\ volume\ available\ for\ DAS\ components$ Figure 3 — Pelvis volume available for DAS components Figure 4 — Upper leg volume available for DAS components #### 4.3 Mechanical modifications #### 4.3.1 Arm detents A system with a spring loaded ball and detents, to help users properly position the arms for testing, exists between the shoulder and upper arm mount fittings. The design was changed in 2015 to facilitate the positioning of the arm in three different positions as shown in Figure 5. The detent position did not change between 2008 and 2015, but the ball detent size and spring tension were increased to better hold the arm at the correct angle during positioning. The extra detent positions that allowed a universal clevis were removed to eliminate confusion of which positions were to be used. The new design requires separate right and left side clevis components. Figure 5 — Arm detent positions #### 4.3.2 Suit modifications The WorldSID suit has been improved as follows. - The H-point tool opening was repositioned. - The front of the suit was reinforced locally to minimize wear caused by shoulder belts. - The front pockets have been removed. - The arm sleeves have been removed and the arm openings have been made smaller (incorporated in 2015). NOTE Some users modified older suits by cutting off the sleeves which resulted in suits with no sleeves and larger arm openings. #### 4.3.3 Ankle design The ankle design was changed to eliminate resistance until the end of travel stops are engaged. This aids in the dummy set-up in the vehicle environment as the ankle angle can be set and will remain in the required position. A friction element has been added to allow 1-2 G adjustment for the ankle. The 1-2 G ranges of motion before engaging stops are: - plantarflexion = 40° (see <u>Figure 6</u>); - dorsiflexion = 55° (see Figure 7); and - inversion and eversion = 30° (see Figure 8). $Figure\ 6 - Ankle\ plantar flexion$ Figure~7 - Ankle~dors if lexion Figure 8 — Ankle inversion and eversion #### 4.3.4 Pelvis flesh A modified pelvis flesh was approved by the WorldSID Task Group in 2014. The modified pelvis flesh allows instrumentation cabling from the legs to be routed inside the pelvis flesh. The left side of Figure 9 shows the new design while the right side of the figure shows the old design. Figure 9 — New and old pelvis flesh designs #### 4.3.5 Neck ring A modified neck ring was incorporated into the neck shroud assembly (WS50-24017) in 2015. The modified ring improves the interface between the ring and the neck shroud. #### 4.4 Mechanical assembly The positioning of the thorax/abdomen foam pad (W50-35024) can influence test results. The user should ensure that the padding is installed such that the padding centreline is aligned with the most lateral position of the ribs. #### 5 Sensors Permissible WorldSID sensors are listed in ISO 15830-3. Changes to the sensor list include the following. - Remove the ankle angular displacement potentiometer. - Angular rate sensors with a full scale range of 8 000°/s may be used. - One, two, or three degree of freedom deflection sensors may be used. This would include, for example, what other ISO documents refer to as 2D IR-TRACCs. #### 6 Positioning of the WorldSID For installing the WorldSID in vehicles, the official WorldSID seating position is defined in ISO 17949. When implementing ISO 17949, it should be noted that the half arms should be positioned using the "middle" arm detent (the first detent downward of the most upward detent). This detent creates a 32° differential between the rib angle sensor and the arm angle. #### 7 Certification Over the last several years, the WorldSID certification testing has been reviewed. As a result of this review and update, the ISO WorldSID Task Group has agreed to 1) delete the thorax impact with arm from the certification requirements and 2) modify some requirements for the remaining certification tests. The current certification specifications are shown in <u>Tables 3</u> to <u>10</u>. Table 3 — Certification specifications — Head drop — Frontal | Head drop — Frontal | | |-------------------------------|--------------| | Temperature (°C) | 20,6 to 22,2 | | Humidity (%) | 10 to 70 | | Resultant acceleration (G) | 205 to 255 | | Peak lateral acceleration (G) | <15 | | Unimode (%) | <10 | Table 4 — Certification specifications — Neck pendulum test — Lateral | Neck pendulum test — Lateral | | | |--|--------------|--| | Temperature (°C) | 20,6 to 22,2 | | | Humidity (%) | 10 to 70 | | | Pendulum velocity (m/s) | 3,4 ± 0,1 | | | Pendulum velocity change (m/s) | | | | NOTE $T = 0$ s at initial pendulum contact with the honeycomb. | | | Table 4 (continued) | Neck pendulum test — Lateral | | |--|--------------| | 4 ms | 0,77 to 1,04 | | 8 ms | 1,60 to 1,90 | | 12 ms | 2,43 to 3,29 | | Maximum angular displacement of the headform relative to the pendulum, Beta (°) | 50 to 61 | | Decay time of Beta to 0° (ms) | 58 to 72 | | Peak moment at occipital condyle (Nm) | 55 to 68 | | Peak moment decay time to 0 Nm (ms) | 71 to 87 | | Peak forward potentiometer angular displacement (°) | 32 to 39 | | Time of peak forward potentiometer angular displacement (ms) | 56 to 68 | | Peak rearward potentiometer angular displacement, θ_f (°) | 30 to 37 | | Time of peak rearward potentiometer angular displacement, $\boldsymbol{\theta}_{-}\boldsymbol{r}$ (ms) | 56 to 68 | | NOTE T = 0 s at initial pendulum contact with the honeycomb. | | Table 5 — Certification specifications — Shoulder | Shoulder | | |-----------------------------------|--------------| | Temperature (°C) | 20,6 to 22,2 | | Humidity (%) | 10 to 70 | | Velocity (m/s) | 4,3 ± 0,1 | | Peak pendulum force (kN) | 2,60 to 3,30 | | Peak shoulder rib deflection (mm) | 33 to 45 | ${\bf Table~6-Certification~specifications-Thorax~without~arm}$ | Thorax without arm | | |--|--------------| | Temperature (°C) | 20,6 to 22,2 | | Humidity (%) | 10 to 70 | | Velocity (m/s) | 4,3 ± 0,1 | | Peak pendulum force (kN) | 3,2 to 3,8 | | Peak thorax rib 1 deflection (mm) | 33 to 43 | | Peak thorax rib 2 deflection (mm) | 35 to 43 | | Peak thorax rib 3 deflection (mm) | 32 to 40 | | Peak T4 acceleration along y-axis (G) | 14 to 20 | | Peak T12 acceleration along y-axis (G) | 14 to 22 | Table 7 — Certification specifications — Head drop — Lateral | Head drop — Lateral | | |-------------------------------|--------------| | Temperature (°C) | 20,6 to 22,2 | | Humidity (%) | 10 to 70 | | Resultant acceleration (G) | 104 to 123 | | Peak frontal acceleration (G) | <15 | | Unimode (%) | <10 | ${\bf Table~8-Certification~specifications-Abdomen}$ | Abdomen | | |--|--------------| | Temperature (°C) | 20,6 to 22,2 | | Humidity (%) | 10 to 70 | | Velocity (m/s) | 4,3 ± 0,1 | | Peak pendulum force (kN) | 2,7 to 3,1 | | Peak abdomen rib 1 deflection (mm) | 33 to 40 | | Peak abdomen rib 2 deflection (mm) | 30 to 36 | | Peak T12 acceleration along y-axis (G) | 15 to 20 | Table 9 — Certification specifications — Pelvis | Pelvis | | |--|--------------| | Temperature (°C) | 20,6 to 22,2 | | Humidity (%) | 10 to 70 | | Velocity (m/s) | 6,7 ± 0,1 | | Peak pendulum force (kN) | 6,8 to 8,2 | | Peak pelvis acceleration (G) | 37 to 47 | | Peak T12 acceleration along y-axis (G) | 10 to 14 | | Pubic forces | Monitor | Table 10 — Certification specifications — Filter class | Filter class | SAE J211-1
filter | |----------------------------------|----------------------| | Head drop test | | | Acceleration Ax, Ay, Az | CFC 1000 | | Neck pendulum test | | | Pendulum acceleration | CFC 60 | | Angular displacement | | | θ_F | CFC 1000 | | θ_R | CFC 1000 | | θ_Η | CFC 1000 | | Moment Mx | CFC 600 | | Force Fy | CFC 1000 | | Shoulder test | | | Pendulum acceleration | CFC 180 | | Shoulder rib deflection | CFC 600 | | Thorax without arm | | | Pendulum acceleration | CFC 180 | | Thorax rib 1, 2 and 3 deflection | CFC 600 | | T4 acceleration | CFC 180 | | T12 acceleration | CFC 180 | | Abdomen test | | | Pendulum acceleration | CFC 180 | | Abdomen rib 1 and 2 deflection | CFC 600 | | T12 acceleration | CFC 180 | Table 10 (continued) | Filter class | SAE J211-1
filter | |-----------------------|----------------------| | Pelvis test | | | Pendulum acceleration | CFC 180 | | Pelvis acceleration | CFC 180 | | T12 acceleration | CFC 180 | | Pubic forces | CFC 1000 | #### 8 Whole body dimensions In addition to checking dimensions on individual components and body segment assemblies, experience with dummies has shown that the measurement of whole body dimensions is a good way to identify dummy damage, component fractures, misassembly or other problems not obvious when looking at individual parts or sub-assemblies. With a dummy seated in a WorldSID impact seat (seat pan angle $21,6^{\circ}$ to horizontal and 93° between the seat pan and seat back) with the thorax angle at 0° , the whole body measurements shown in Figures 10 and 11 shall meet the specifications shown in Table 11. Figure 10 — Whole body dimensions — Side view Figure 11 — Whole body dimensions — Front view ${\bf Table~11-Whole~body~dimensional~specifications}$ | Linear parameter | Symbol | Specification
based on data
mm | |--|-----------|--------------------------------------| | Seated height | L1 | 869 ± 30 | | Hip pivot height | L2-Left | 79 ± 15 | | Hip pivot height | L2-Right | 79 ± 15 | | Hip pivot to back line | L3-Left | 175 ± 28 | | Hip pivot to back line | L3-Right | 175 ± 28 | | Thigh clearance-left | L4-Left | 176 ± 29 | | Thigh clearance-right | L4-Right | 176 ± 29 | | Knee to shoe height-left | L5-Left | 588 ± 30 | | Knee to shoe height-right | L5-Right | 588 ± 30 | | Knee to back line-left | L6-Left | 670 ± 30 | | Knee to back line-right | L6-Right | 670 ± 30 | | Head back to seat back line | L7 | 147 ± 22 | | Upper thoracic rib depth-left | L8-Left | 208 ± 30 | | Upper thoracic rib depth-right | L8-Right | 208 ± 30 | | Lower abdominal rib depth-left | L9-Left | 228 ± 30 | | Lower abdominal rib depth-right | L9-Right | 228 ± 30 | | Half arm length-left ^a | L10-Left | 330 ± 30 | | Half arm length-right ^a | L10-Right | 330 ± 30 | | Width across arms | L11 | 468 ± 30 | | Waist width | L12 | 324 ± 30 | | ^a If equipped with half arms. | • | • | #### 9 WorldSID design revision dates During the last 10 years, the WorldSID has undergone several design changes of varying degrees. Some of the early changes were extensive and some of the more recent changes have been minor in nature, not changing biofidelity. A history of the changes for WorldSID is found in <u>Table 12</u>. A list of drawings which are new or revised for the change dates are found in <u>Tables 13</u>, 14, 15, 16, and 17. Table 12 — Summary of WorldSID 50th change dates | Dates | Parts which changed | Biofidelity
change | |------------------|---|-----------------------| | 2003 | Original design | Yes | | May 15, 2004 | ISO 15830 First Draft | | | June 6, 2004 | Major changes including: neck, torso, ribs, battery assembly, pelvis and instrumentation | Yes | | May 15, 2005 | Changes to: lower neck bracket and spacer, pelvis instrumentation, shoulder clevis, spine box plates | No | | August 2005 | ISO 15830 First Edition | | | November 1, 2008 | Changes to: battery container/cover, IR-TRACC system, torso, ribs, shoulder clevis, shoes | No | | April 2013 | Changes to: jacket, ankle, lift bracket and 2D IR-TRACC is made standard | No | | May 2013 | ISO 15830 Second Edition | | | May 2015 | Changes to: the neck ring/shroud, removal of jacket arm sleeves, modification of arm detents and arm bone, cable channel in pelvis, provision in head core for ARS mounting | No | Table 13 — New/revised parts incorporated June 6, 2004 | Item | Part number | Qty | Description | |------|-------------|-----|---| | 1 | W50-20009 | 1 | Lower neck bracket | | 2 | W50-30000 | 1 | Torso-shoulder/thorax/abdomen, WorldSID | | 3 | W50-31010 | 1 | Upper bracket weldment spin box, WorldSID | | 4 | W50-32000 | 2 | Rib, shoulder | | 5 | W50-32010 | 2 | Rib, doubler, shoulder | | 6 | W50-32161 | 2 | Rib, damping | | 7 | W50-32162 | 2 | Shoulder rib bent, WorldSID | | 8 | W50-32171 | 2 | Shoulder rib mounting bracket, WorldSID | | 9 | W50-32172 | 10 | Thorax and abdominal rib accelerometer mounting bracket, WorldSID | | 10 | W50-32179 | 6 | Screw, rib, IR-TRACC mount | | 11 | W50-32180 | 4 | Clamp, damping | | 12 | W50-35023-1 | 1 | Shoulder pad, left, WorldSID | | 13 | W50-35023-2 | 1 | Shoulder pad, right, WorldSID | | 14 | W50-37012 | 1 | Battery structural replacement | | 15 | W50-38000 | 1 | Battery assembly | | 16 | W50-41018 | 1 | Lumbar spine, rubber | | 17 | W50-41020 | 4 | Bushing lumbar spine, top | | 18 | W50-42010 | 1 | Pelvis bone, left | | 19 | W50-42011 | 1 | Pelvis bone, right | | 20 | W50-42016 | 1 | SI LC interface, left | | 21 | W50-42017 | 1 | SI LC interface, right | Table 13 (continued) | Item | Part number | Qty | Description | |------|-------------|-----|---| | 22 | W50-42510 | 2 | Pubic buffer, moulded | | 23 | W50-74307 | 6 | G5 structural replacement | | 24 | W50-75801 | 1 | Ground cable, head to thorax | | 25 | W50-75802 | 1 | Ground cable, torso to sacrum | | 26 | W50-75803 | 1 | Ground cable, sacrum to pubic | | 27 | W50-75804 | 1 | Ground cable, sacrum to upper leg | | 28 | W50-75805 | 1 | Ground cable, upper leg to lower leg | | 29 | W50-75806 | 1 | Ground cable, torso to external ground | | 30 | IF-363 | 6 | IR-TRACC specification sheet | | 31 | 6002055 | 8 | Cable tie, hook and loop, 11 inch | | 32 | W50-31010 | 1 | Upper bracket weldment spin box, WorldSID | | 33 | W50-31011 | 1 | Shoulder mounting plate | | 34 | W50-42030 | 1 | Instrumentation bracket pelvis | ## Table 14 — New/revised parts incorporated May 15, 2005 | Item | Part number | Qty | Description | Rev | Replaces | |------|-------------|-----|--------------------------------|-----|-----------| | 1 | W50-20101 | 1 | Lower neck bracket | Α | W50-20009 | | 2 | W50-20102 | 1 | Upper neck bracket | A | W50-20010 | | 3 | W50-20103 | 2 | Neck spacer | Α | New | | 4 | W50-42040 | 1 | Pelvis instrumentation bracket | Α | W50-42030 | | 5 | W50-41042 | 1 | Pelvis docking station | D | NA | | 6 | W50-41043 | 1 | Docking station cover | Α | New | | 7 | W50-31020 | 1 | Left side plate | F | NA | | 8 | W50-31030 | 1 | Right side plate | D | NA | | 9 | W50-61117 | 2 | Shoulder clevis assembly | A | New | Table 15- New/revised parts incorporated November 1, 2008 | Item | Part number | Qty | Description | | Replaces | |------|-------------|-----|----------------------------------|---------------|-----------| | 1 | W50-37013 | 1 | Mounting bracket, battery | A | W50-37011 | | 2 | W50-37014 | 2 | Spine ballast stand off | Α | W50-37012 | | 3 | W50-37015 | 1 | Mounting bracket, G5-WSID thorax | Α | New | | 4 | W50-43001 | 1 | Battery container | Α | W50-33101 | | 5 | W50-43002 | 1 | Battery cover | Α | W5-3323 | | 6 | 556-5125-2 | 1 | Structural replacement, cover | A | New | | 7 | Remove | NA | DAS cover | \rightarrow | W50-41041 | | 8 | Remove | NA | Pelvis docking station | \rightarrow | W50-41042 | | 9 | Remove | NA | Docking station cover | \rightarrow | W50-41043 | | 10 | W50-31050 | 6 | Ball joint assembly IR-TRACC | В | Rev A | | 11 | W50-31051 | 1 | Ball shaft assembly | В | Rev A | | 12 | W50-31055 | 1 | Ball shaft IR-TRACC | С | Rev B | | 13 | W50-30000 | 1 | Ball retainer IR-TRACC | D | Rev C | | 14 | W50-40000 | 1 | Torso assembly | L | Rev K | | 15 | W50-32150-2 | 6 | Pelvis assembly | J | Rev H | Table 15 (continued) | Item | Part number | Qty | Description | Rev | Replaces | |------|-------------|-----|-------------------------------|-----|-------------| | 16 | W50-321552 | 4 | Thorax rib assy, inner band | A | W50-32150-1 | | 17 | W50-32160-2 | 2 | Abdomen rib assy, inner band | A | W50-32155-1 | | 18 | W50-61125 | 2 | Shoulder rib assy, inner band | A | W50-32160-1 | | 19 | W50-61130 | 2 | Shoulder clevis | С | W50-61125 | | 20 | W50-61130 | 2 | Shoulder clevis assy | С | W50-61117 | | 21 | W50-61135 | 2 | Clevis insert | A | New | | 3 | W50-55003 | 2 | Sole plate | F | Rev C | | 4 | W50-55004 | 1 | Shoe, left | С | В | | 5 | W50-55005 | 1 | Shoe, right | С | В | | 9 | 84895A32 | 2 | Ball-spring plunger, arm | | | | 10 | W50-71130S | 1 | Sacro-iliac load cell | | W50-71130 | Table 16 — New/revised parts incorporated April 2014 | Item | Part number | Qty | Description | Rev | Replaces | Date | |------|---------------------------|-----|------------------------------------|-----|-----------|-----------| | 1 | W50-00000 | 2 | Final assembly WorldSID | Н | Rev G | 3/26/2013 | | 2 | W50-30000 SH 1
and 2 1 | 1 | Torso-shoulder/thorax/abdomen, T/C | N | Rev M | 3/26/2013 | | 3 | IF-367-R2 | 5 | IR-TRACC assy, 2D rib (REF)* | В | IF-363 | 3/26/2013 | | 4 | F-368-R2 | 1 | IR-TRACC assy, 2D shoulder (REF)* | В | IF-363 | 3/26/2013 | | 5 | W50-42005 | 2 | Hip joint socket | С | | 3/26/2013 | | 6 | W50-50000-DN | 1 | Leg assembly, right | A | Rev N/C | 3/26/2013 | | 7 | W50-50001-DN | 1 | Leg assembly, left | A | Rev N/C | 3/26/2013 | | 8 | W50-54055-DN | 1 | Lower leg, right WorldSID | С | Rev B | 3/26/2013 | | 9 | W50-54056-DN | 1 | Lower leg, left WorldSID | С | Rev B | 3/26/2013 | | 10 | W50-57000 | 2 | Ankle assembly harmonized | В | W50-54054 | 3/26/2013 | | 11 | W50-62000 | 2 | 2 Half arm assembly | Е | Rev D | 3/26/2013 | | 12 | W50-80100 | 1 | WorldSID suit, 50th | D | Rev C | 3/26/2013 | | 13 | W50-84100 | 1 | Lifting bracket assy | В | Rev A | 3/26/2013 | | 14 | 71130S4-XXX | 1 | Sacro-iliac load cell | D | W50-71130 | 3/26/2013 | Table 17 — New/revised parts incorporated May 2015 | Item | Part number | Qty | Description | Rev | Replaces | Date | |------|-------------|-----|--------------------------------|-----|-----------|------| | 1 | W50-80101 | 1 | WorldSID suit, sleeveless 50th | Α | W50-80100 | 2015 | | 2 | W50-24017 | 1 | Neck shroud asm | Α | W50-24013 | 2015 | | 3 | W50-42019-1 | 1 | Pelvis flesh, WSID 50th | В | W50-42019 | 2014 | | 4 | W50-63111 | 1 | Shoulder clevis assy, right | A | W50-61130 | 2015 | | 5 | W50-63112 | 1 | Shoulder clevis assy, left | Α | W50-61130 | 2015 | | 6 | W50-63100 | 2 | Half arm, moulded assy | A | W50-62000 | 2015 | ## 10 Temperature measurement WorldSID temperature measurements shall be made per procedures specified in ISO/TR 27957. ## **Bibliography** - [1] ISO 15830-1, Road vehicles Design and performance specifications for the WorldSID 50th percentile male side-impact dummy Part 1: Terminology and rationale - [2] ISO 15830-4, Road vehicles Design and performance specifications for the WorldSID 50th percentile male side impact dummy Part 4: User's manual - ISO 15830-2:2013, Road vehicles Design and performance specifications for the WorldSID 50th percentile male side-impact dummy Part 2: Mechanical subsystems - ISO 15830-3, Road vehicles Design and performance specifications for the WorldSID 50th percentile male side-impact dummy Part 3: Electronic subsystems - ISO 17949, Impact test procedures for road vehicles Seating and positioning procedures for anthropomorphic test devices Procedure for the WorldSID 50th percentile male side-impact dummy in front outboard seating positions - SAE [211-1, Instrumentation for impact test Part 1: Electronic instrumentation