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Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International
Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies
casting a vote.

In exceptional circumstances, when a technical committee has collected data of a different kind from
that which is normally published as an International Standard (“state of the art”, for example), it may
decide by a simple majority vote of its participating members to publish a Technical Report. A Technical
Report is entirely informative in nature and does not have to be reviewed until the data it provides are
considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO/TR 19319 was prepared by Technical Committee ISO/TC 201, Surface chemical analysis, Subcommittee
SC 2, General procedures.

This second edition cancels and replaces the first edition (ISO/TR 19319:2003), which has been
technically revised.
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Introduction

Surface-analytical techniques such as SIMS, AES and XPS enable imaging of surfaces. The most relevant
parameter of element or chemical maps and line scans is the lateral resolution, also called image
resolution.!) Therefore well defined and accurate procedures for the determination of lateral resolution
are required. Those procedures together with appropriate test specimen are basic preconditions for
comparability of results obtained by imaging surface-analytical methods and performance tests
of instruments as well. This Technical Report is intended to serve as a basis for the development of
International Standards.

Nowadays there is some confusion in the community in the understanding of the term “lateral resolution”.
Definitions originating from different fields of application and different communities of users can be
found in the literature. Unfortunately they are inconsistent in many cases. As a result, values of “lateral
resolution” published by manufacturers and users having been derived by using different definitions
and/or determined by different procedures cannot be compared to each other. It is the intention of this
Technical Report to basically describe different approaches for the characterization of lateral resolution
including their interrelations.

The term resolution was introduced with respect to the performance of microscopes by Ernst Abbe.[1]
Later on it was applied to spectroscopy by Lord Rayleigh.[2] It is based on the diffraction theory of light
and the original definition of lateral resolution as “the minimum spacing at which two features of the
image can be recognised as distinct and separate” is in common use in the light and electron microscopy
communities as documented in the standard ISO 22493:2008.[3]

However, in the surface analysis community a very different approach, the “knife edge method”, is the
most popular one for the determination of lateral resolution. This method is based on evaluation of
an image or of a line scan over a straight edge. Here lateral resolution is characterized by parameters
describingthe steepness ofthe edge spread function ESF. The standard “ISO 18516:2006 Surface Chemical
Analysis - Auger electron spectroscopy and X-ray photoelectron spectroscopy - Determination of lateral
resolution”[4] is limited to this approach. But the ESF and corresponding rise parameters Dy (1.x) are
more related to image sharpness than to lateral resolution which refers to two separated features.

The reason why the original meaning of resolution is not commonly implemented in the common
practice in surface analysis is the lack of suitable test specimens having the required features in the
sub-um range. However, recently a new type of test specimen was developed featuring a series of flat
square-wave gratings characterized by chemical contrast and different periods.[56] Such test specimens
may enable an implementation of the original definition of lateral resolution into practical approaches
in surface chemical analysis.

Having solved the problem of availability of appropriate test specimens another problem has to be
solved: The establishment of a criterion for whether two features are separated or not. The Rayleigh
criterionl2] was developed for diffraction optics and its application in imaging surface analysis is not
straightforward. The Sparrow criterionlZ] defines a resolution threshold exclusively by the existence of
a minimum between two maxima. Actually, for practical imaging in surface analysis, noise is a relevant
feature especially at the limit of resolution. Therefore the Sparrow criterion will fail to solve the problem.
The solution is to develop a resolution criterion relying on the detection of a minimum between two
features but additionally considering noise effects.

The lateral resolution of imaging systems is strongly related to a number of functions describing the
formation of images:

— the modulation transfer function,
— the contrast transfer function,

— the point spread function,

1) The term “image resolution” is used in the microscopy community whereas in the surface analysis community
the term “lateral resolution” is common practice to distinguish it from “depth resolution”.
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— the line spread function and
— and the edge spread function.

Those functions may be utilized to describe the performance of optical instruments and instruments used
forimagingin surface analysis as well. In particular the contrast transfer function has been used successfully
for the benefit of the determination of lateral resolution of imaging instruments in surface analysis.

Section 4 of this report describes the basics of procedures for the analysis of images of stripe patterns,
narrow stripes and step transitions. A comparison of all procedures related to lateral resolution and
sharpness is given in 4.1.7.

Section 5 of the report describes physical factors affecting lateral resolution, analysis area and sample
area viewed by the analyser in Auger electron spectroscopy and X-ray photoelectron spectroscopy.
Section 6 of the report gives guidance on the determination of sample area viewed by the analyser in
applications of Auger electron spectroscopy and X-ray photoelectron spectroscopy.

“““ ©'1S0 2013 ~'All rights reserved
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Surface chemical analysis — Fundamental approaches
to determination of lateral resolution and sharpness in
beam-based methods

1 Scope

This Technical Report describes:

a) Functions and their relevance to lateral resolution:
1) Point spread function (PSF) — see 4.1.1
2) Line spread function (LSF) — see 4.1.2
3) Edge spread function (ESF) — see 4.1.3
4) Modulation transfer function (MTF) — see 4.1.4
5) Contrast transfer function (CTF) — see 4.1.5.

b) Experimental methods for the determination of lateral resolution and parameters related to
lateral resolution:

1) Imaging of a narrow stripe — see 4.2
2) Imaging of a sharp edge — see 4.3
3) Imaging of square-wave gratings — see 4.4.

c) Physical factors affecting lateral resolution, analysis area and sample area viewed by the analyser
in Auger electron spectroscopy and X-ray photoelectron spectroscopy — see Clauses 5 and 6.

2 Terms and definitions
For the purposes of this document, the following terms and definitions apply.

21

analysis area

<sample> two-dimensional region of a sample surface measured in the plane of that surface from which
the entire analytical signal or a specified percentage of that signal is detected

[SOURCE: ISO 18115:2010, definition 5.8]

2.2

contrast transfer function

CTF

ratio ofthe image contrastto the object contrastofasquare-wave patternas a function of spatial frequency

Note 1 to entry: In this document the contrast transfer function CTF has been used also with an abscissa expressed
in terms of wi,sg/P and is called the generalized contrast transfer function in those cases (cf. 4.4.3.2). wisF is the
full width at half maximum of the line spread function LSF

Note 2 to entry: In transmission electron microscopy and other phase sensitive methods the term contrast
transfer function is used with a different meaning considering amplitude as well as phase information.
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Copyright International Organization for Standardization TlghtS reserved 1

Provided by IHS under license with ISO Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs
No reproduction or networking permitted without license from IHS Not for Resale, 11/30/2013 22:34:21 MST



ISO/TR 19319:2013(E)

2.3
cut-off frequency of the contrast transfer function
lowest spatial frequency at which the contrast transfer function CTF equals to zero

Note 1 to entry: In this document the spatial frequency at which the contrast transfer function CTF equals the
threshold of resolution under consideration of noise (cf. 4.4.3.3) is called effective cut-off frequency of the contrast
transfer function.

2.4

edge spread function

ESF

normalized spatial signal distribution in the linearized output of an imaging system resulting from
imaging a theoretical infinitely sharp edge

[SOURCE: ISO 12231:2012, definition 3.43]

2.5
effective cut-off frequency
see cut-off frequency of the contrast transfer function, Note 1 to entry

2.6

effective lateral resolution

minimum spacing of two stripes of a square-wave grating at which the dip of signal intensity between
two maxima of the image is at least 4 times the reduced noise oNr

2.7
generalized contrast transfer function
see contrast transfer function, Note 1 to entry

2.8

image contrast

Ci

¢i = (Imax—Imin)/(Imax*Imin) = AI/2 Imean (Michelson contrast), where Inax, Imin and Imean are signal
intensities in the image

Note 1 to entry: Other definitions (not used in this document) include: difference in signal between two arbitrarily
chosen points of interest (P1, P2) in the image field, normalized by the maximum possible signal available under
the particular operating conditions, ¢, = |52 _51|/Smax (ISO 22493:2008, definition 5.3).

Note 2 to entry: With respect to aperiodic patterns the Weber contrast ¢ = (I - Ip)/Ip is used to quantify the
contrast between a feature with the signal intensity / and the background signal intensity Ij.

Note 3 to entry: With respect to periodic object patterns, the terms contrast and modulation often are used
synonymously.

29
image resolution
minimum spacing at which two features of the image can be recognised as distinct and separate

[SOURCE: ISO 22493:2008, definition 7.2]

2.10
lateral resolution
minimum distance between two features (in this document the period of a square wave grating) which

can be imaged in that way, that the dip between two maxima is at least 4 times the reduced noiseongr
(cf.4.4.2.3)

Note 1 to entry: This definition is in accordance with the definition of image resolution given in ISO 22493:2008.

Note 2 to entry: This definition is different from the definition of lateral resolution given in ISO 18115:2010.
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2.11
linear system
system whose response is proportional to the level of input signals

[SOURCE: ISO 9334:1995, definition 3.1]

2.12

line spread function

LSF

normalized spatial signal distribution in the linearized output of an imaging system resulting from
imaging a theoretical infinitely thin line

[SOURCE: ISO 12231:2012, definition 3.94]

2.13

modulation

m

measure of degree of variation in a sinusoidal signal

m:(Imax_Imin)/(lmax+1min)

[SOURCE: ISO 9334:1995, definition 3.17]

2.14
modulation transfer function MTF
ratio of the image modulation to the object modulation as a function of spatial frequency

[SOURCE: ISO/IEC 19794-6:2011, definition 4.7]

2.15

noise

time-varying disturbances superimposed on the analytical signal with fluctuations leading to
uncertainty in the signal intensity

Note 1 to entry: An accurate measure of noise can be determined from the standard deviation of the fluctuations.
Visual orotherestimates,suchaspeaktopeaknoiseinaspectrumorinaline scan, maybeusefulassemiquantitative
measures of noise.

[SOURCE: ISO 18115:2010, definition 5.315]

Note 2 to entry: By averaging over Spp/4 data points of the line scan over a square-wave grating the standard
deviation of noise oy can be reduced by a factor of (Spp/4)1/2. ongr = (4/Spp)1/20Y is called reduced noise in this
document (cf. 4.4.2.3). Spp means number of sampling points per period.

2.16
object pattern
spatial distribution of a sample property seen by the imaging instrument

[SOURCE: ISO 9334:1995, definition 4.1]

2.17

optical transfer function

OTF

frequency response, in terms of spatial frequency, of an imaging system to a sinusoidal object pattern
and Fourier transform of the imaging system’s point spread function

[SOURCE: ISO 9334:1995, definition 3.8]
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2.18

point spread function

PSF

normalized distribution of signal intensity in the image of an infinitely small point

[SOURCE: ISO 9334:1995, definition 3.5]

2.19
reduced noise
see noise, Note 2 to entry

2.20

Rose criterion

condition for an average observer to be able to distinguish small features in the presence of noise, which
requires that the change in signal for the feature exceeds the noise by a factor of at least three

[SOURCE: ISO 22493:2008, definition 5.3.7]

2.21

sample area viewed by the analyser

two-dimensional region of a sample surface measured in the plane of that surface from which the
analyser can collect an analytical signal from the sample or a specified percentage of that signal

2.22

sampling points per period

Spp

grating period divided by sampling step width

Note 1 to entry: For the case of 3-stripe gratings the image of the grating may have a smaller period than the
object grating (cf. 4.4.1.1). In this case it must be explained whether the grating period of the object or the image
is considered.

2.23
signal-to-noise ratio

Rs/N
ratio of the signal intensity to a measure of the total noise in determining that signal

[SOURCE: ISO 18115:2010, definition 5.427]

2.24
spatial frequency
reciprocal of the period of a periodic object pattern (grating)

3 Symbols and abbreviated terms

AES Auger electron spectroscopy
G image contrast
Co object contrast

(ci /co)ThR Ci/co at the threshold of resolution

CTF contrast transfer function

d distance between two narrow stripes

D dip between two maxima

dgr distance between two consecutive gratings
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Dysk
DThR

Dx-(100-x)

DNR
erf
ESF

Fy
FWHM

G(x)
ixy)
Ii
Imax
Imax1
Imaxr
Imin
Ipn
Iplu
Ja(r)
Jab(r)
Jai(r)

mj
mo

Misk

A ICN IN12
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data distance of the MTF calculated by Fourier transform
dip at the threshold of resolution

ESF steepness parameter giving the distance between points of well-defined intensities x
and 100-x (e.g. 20 % to 80 %) of the profile over a straight edge

dip-to-noise ratio

error function

edge spread function

fit range

full width at half maximum

gap between two stripes

Gaussian function

normalized intensity distribution of measured signals in the image

incident beam current (in AES)

maximum value of signal intensity in the image of a 3-stripe-grating (A-B-A)
signal intensity of the left maximum in the image of a 3-stripe-grating (A-B-A)
signal intensity of the right maximum in the image of a 3-stripe-grating (A-B-A)
signal intensity of the minimum in the image of a 3-stripe-grating (A-B-A)
intensity of the lower plateau of constant concentration

intensity of the upper plateau of constant concentration

intensity distribution of detected Auger electrons as a function of the radius r
intensity distribution of detected Auger electrons that were created by backscattered
intensity distribution of detected Auger electrons that were created by the incident beam
spatial frequency

steepness parameter of the logistic function

length

Lorentzian function

Length of a plateau of constant concentration

line spread function

modulation

image modulation

object modulation

length range of measured LSF values
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MTF

o(xy)
OTF

P1

P
Pint
Pext
PSF
PSV1
PSV2

re
Rp/rRN
RLsF
Rs/N

'max

spp
SIMS

Ue

WG

Wim

Copyright International Organization for Standardization

modulation transfer function

object pattern

optical transfer function

grating period

period of the largest non-resolved grating

period of the first (finest) resolved grating

period of the second resolved grating

period at Rp/rN = 4 determined by interpolation between P and Py
period at Rp/rN = 4 determined by extrapolation with P1 and P
point spread function

type 1 Pseudo-Voigt function

type 2 Pseudo-Voigt function

grading factor of consecutive grating periods q = Pp+1/Pn
backscattering factor (in AES)

radius from the centre of the incident electron beam on the sample surface (in AES)
effective lateral resolution

ratio of dip-to-reduced-noise

length range where LSF data are used for Fourier transform
signal-to-noise ratio

upper limit of integration in Formula (65)

mean deviation of wysg determined by a fitting procedure
sampling step width

sampling points per period as a variable

dimension unit of the variable Spp

Secondary lon Mass Spectrometry

uncertainty of a quantity

expanded uncertainty of a quantity

combined expanded uncertainty of a quantity

full width at half maximum of a peak function

full width at half maximum of the Gaussian part of a type 2 Pseudo-Voigt function

full width at half maximum of the upper plateau of constant concentration in an image of
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wL full width at half maximum of the Lorentzian part of a type 2 Pseudo-Voigt function
WLSF full width at half maximum of the line spread function

Ws width of a stripe in the object pattern

x x length variable

XPS X-ray photoelectron spectroscopy

wy length variable

Ar lateral resolution

Ar (50) lateral resolution determined from a 25% to 75% intensity change in a line profile over a

straight edge
n Lorentzian fraction of a Pseudo-Voigt function
Ob Gaussian parameter describing the radial distribution of backscattered electrons (in AES)
o Gaussian parameter describing the radial distribution of the incident electron beam (in
AES)
ON standard deviation of noise
ONR standard deviation of reduced noise

4 Determination of lateral resolution and sharpness by imaging of stripe patterns
4.1 Theoretical background

4.1.1 Image formation and the point spread function (PSF)

The imaging process describes the formation of an image as a result of the interaction between an object
and an imaging system. The object may be characterized by the object pattern o(x,y). This is determined
by a distribution of a certain parameter, for instance a concentration of an element, in the object plane (x,
y) and the relation of this parameter to the respective signal intensity seen by the imaging instrument.
Theimaging system is represented by its point spread function (PSF). The PSF(x-x",y-y") is the normalized
intensity distribution of measured signals in the image i(x",y") related to a point at position (x,y) in the
object pattern o(x,y).

For linear systems (cf. terms and definitions) the image is formed by the superposition of all intensity
distributions produced in the image plane by each individual point of the object pattern o(x,y).[8] This is
mathematically described by the convolution integral

i(x,y)= | Jolx, y)PSF(x'~x, y'~y)dxdy (1)

This convolution integral can be written as

i(x,y)=o(x y)®PSF(x y) (2)

where @ denotes the convolution operation. Formulae (1) and (2) reveal that the image is a weighted
sum of point spread functions emerging from every point of the object. Figure 1 illustrates the image
formation and the influence of the PSF on the image quality in terms of sharpness.
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object pattern Gaussian type PSF image
o(xy) (X y)

® W

0 (x) i (X)

I LA

Figure 1 — Top: Imaging of a square simulated by the convolution of the square with a Gaussian PSF
where @ denotes the convolution operation. Bottom: X-cuts of object, PSF and image, respectively

Intheexamplegivenin Figure 1 the dimension ofthe objectand the PSF are of the same order of magnitude.
However, for practical applications, two borderline cases of imaging are of particular interest:

1. If the FWHM of the PSF is small compared to the smallest details of the imaged object, then the
convolution yields an image that is very similar to the original object. In that case the imaging
process (Figure 2a) delivers sharp images of the object.

2. If the FWHM of the PSF is large compared to the imaged object, then the convolution yields the PSF
(Figure 2b). The latter case can be exploited to determine the PSF without a deconvolution procedure.

The PSF describes the performance of an imaging instrument with respect to lateral resolution and
t;he sharpness ofimages obtained. The smaller the FWHM of the PSF the betteris the lateral resolution.

object pattern Gaussian type PSF image
o(x,y) i(x,y)

b n R W = e

Figure 2 — Two borderline cases of imaging: a) The object is large compared to the FWHM of
the PSF. This case is ideal for imaging. b) The object is small compared to the FWHM of the PSF.
This case is ideal for the determination of the PSF
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4.1.2 The line spread function (LSF)

The LSFisthe normalized intensity distributionin theimage ofanarrowlineand yields a one-dimensional
description of image quality. According to the model of image formation described above (Figure 1) the
LSF corresponds to the convolution of the PSF with an infinitely narrow line, mathematically described
by the Dirac delta function §(x):

LSF(x)= j J' PSF(x’, y)3(x —x")dx’dy (3)

—00 —00

= [ PSF(x, y)dy (4)

—oo

The LSF is generally different from a cross section through the two-dimensional PSF. In Figure 3 this is
demonstrated for the top hat distribution. Only in the case of a PSF represented by a two-dimensional
Gaussian distribution the LSF is identical to the corresponding one-dimensional distribution:

lo

G(X):G 21

exp(—(X—XO)2 /20‘2) (5)

The LSF approach is more often used for the determination of lateral resolution than the PSF approach
and the full width at half maximum (FWHM) of the LSF is often used as a measure of lateral resolution.
However, with the availability of well-defined nanoscaled pointlike objects, the PSF approach may
become relevant in the future, too. When a narrow line is imaged, a considerable number of line scans
can usually be added by appropriate software tools and the LSF information is obtained at reasonable
signal-to-noise ratios.

Finally it should be mentioned that the LSF is not necessarily a Gaussian shaped function. Other shapes
as Lorentzian, Voigt function, etc., are possible (cf. 4.2.1). Therefore two imaging instruments having
LSFs with the same FWHM but with different shapes will differ in the lateral resolution which can be
achieved (this effect will be demonstrated in 4.4.3.1).

4.1.3 The edge spread function (ESF)

The ESF is the intensity distribution in the image of an edge (step transition) measured in the direction
perpendicular to that of the edge. The ESF is the integral of the LSF

ESF(x)= j LSF(x")dx’ (6)

—oo

The ESF may be determined by a convolution of the PSF with a step function.

The distance between points of well defined relative intensity (e.g. 12 %-88 %, 16 %-84 %, 20 %-80 %
or 25 %-75 %) in an ESF is often taken as a measure of lateral resolution. For a Gaussian LSF the distance
between the 12 % and 88 % intensity points (indicated in Figure 4) corresponds to its FWHM.
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PSF narrow line image of narrow line
top hat
distribution .
r4 lZ
" JH L,
-r rox - ' rox
X-cut of PSF LSF (x)
y
: & =
Gaussian
distribution t
z z
X-cut of PSF LSF () *

Figure 3 — Determination of the LSF by imaging of a narrow line. Different types of PSF were
convoluted with a narrow line. The z-axis denotes the signal intensity within the images (from [9])
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Figure 4 — Determination of the ESF by imaging of an edge. The value D1;.gg is used as a
measure of lateral resolution

4.1.4 The modulation transfer function (MTF)

The concept of the optical transfer function (OTF) was developed to characterize the performance of
imaging systems.[8.10] [t was adapted from electronic and communication engineering to optical imaging
and is based on the transfer of sinusoidal signals. “The optical transfer function (OTF) is the frequency
response, in terms of spatial frequency (cf. terms and definitions), of an optical system to sinusoidal
distributions of light intensity in the object plane”[10]. “The part of OTF describing the reproduction
of contrast is called the modulation transfer function (MTF), while the phase component is called the
phase transfer function (PTF)”[8l. Both parts of the OTF may be determined by imaging a sine wave
grating. With respect to surface analytical methods, only the MTF is of interest.

The modulation of periodic patterns in objects and images is defined as
m:(lmax_Imin)/(lmax+1min) (7)

where Ijhay is the maximum value of a periodic structure and I, is the minimum value between two
maxima (cf. Figure 5).
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intensity

Figure 5 — Definition of modulation m

The MTF describes the transfer of the object modulation m, to the image modulation m;j as a function of
spatial frequency k

MTF (k) = mi/mq 8)
where k is the reciprocal of the period of a sine wave grating. The object modulation my is based, for

instance, on differences in sample composition and it can be determined from the respective image
profile as outlined in 4.4.1.3.

An ideal imaging instrument is characterized by m;j = my and correspondingly MTF = 1 for all k values.
In reality imaging is always characterized by a decreasing image modulation m; vs. increasing spatial
frequency (Figure 6). Therefore the MTF can be used to describe the performance of an imaging
instrument. The MTF is directly related to its lateral resolution.
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period (nm) 400 200 100 60 40
spatial  k (1/um) 25 5 10 16.7 25
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object modulation m.=1

sine-wave
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50 nm FWHM Gaussian
image modulation m;=0.946 m;=0.800 m;=0.410 m;=0.003

m,=0.084

image of
sine-wave
grating

Figure 6 — Imaging of sine wave gratings with different periods and the transfer of modulation
from object to image

Another definition of the optical transfer function OTF is based on the fact, that the OTF is the Fourier
transform (FT) of the point spread function P

OTF(k,I)=FT[PSF(x, y)]= j JPSF(X, y)exp[—i2n(xk + yl)]dxdy 9)

—oo

where k and | are spatial frequency variables associated with the space coordinates (x,y), respectively.
The OTFisacomplex functionand the MTF is the normalized modulus of the OTF. For the one-dimensional
case (and only this will be treated below) the MTF is given by the Fourier transform of the line spread
function (LSF)

MTF(k) =|OTF(k)|= j LSF(x)exp(—i2mxk)dx / j LSF(x)dx (10)

00 00

A narrow LSF in position space yields a wide MTF in spatial frequency space, and vice versa. The Fourier
transform of a Gaussian distribution is again Gaussian and therefore a Gaussian LSF yields a Gaussian
MTEF. Figure 7 demonstrates that both methods of calculating the MTF, Fourier transformation of the LSF
and determination of m; from the image of a sine wave grating, yield exactly the same values of the MTF.
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Figure 7 — Calculation of the modulation transfer function (MTF) by Fourier transform of the
line spread function (LSF). The black dots are m; /m, values taken from Figure 6

4.1.5 The contrast transfer function (CTF)

Optimal samples for a determination of the lateral resolution of beam-based imaging methods of surface
analysis have a flat surface and a high material contrast. In the sub-100 nm range, this requirement is
fulfilled by square-wave gratings, whereas flat sine-wave gratings are not available. Furthermore, the
sharp contrast at the edges of a square-wave grating enables the determination of the LSF and ESF. For
this reason we describe the determination of lateral resolution (cf. 4.4) using this kind of grating.

In analogy to the modulation m of sine-wave gratings the contrast of square-wave gratings is defined
by ¢ = (Imax - Imin)/(Imax* Imin)- The variation of contrast with spatial frequency is described by the
contrast transfer function

CTF (k) = ci/co (11)

where cj and ¢, are the contrast of image and object pattern, respectively (cf. terms and definitions). In
Figure 8 simulation results of the imaging of square-wave gratings and sine-wave gratings are displayed
for high and medium resolution and at the limit of resolution as well. The imaging system is represented
here by a Gaussian LSF with 50 nm FWHM. In all cases the contrast cj in the image of a square-wave
grating is higher than the modulation m; in the image of the sine-wave grating. If the grating period
is large compared to the FWHM of the imaging system’s LSF (300 nm period grating), the intensity in
the image of the square-wave grating drops to zero between the strips of the grating providing c; = 1,
whereas this is principally not the case for the sine-wave grating. A plateau of the CTF (cj/co = 1) at low
spatial frequencies for square-wave gratings appears accordingly. Imaging of sine-wave gratings yields
for a Gaussian LSF a Gaussian MTF (cf. Figures 7 and 9).
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Figure 8 — Imaging of square-wave gratings (black lines) and sine-wave gratings (grey lines) of
different periods. ci and m; are contrast and modulation in the image of a square-wave and sine-
wave grating, respectively. Note the different length scales
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Figure 9 — CTF and MTF determined from images of square-wave gratings and sine-wave
gratings, respectively. The imaging system is characterized by a 50 nm FWHM Gaussian LSF.
The black symbols correspond to values taken from images displayed in Figure 8

4.1.6 Classical resolution criteria

The most commonly used resolution criterion in microscopy is the Rayleigh criterion: “Two point sources
are just resolved if the central maximum of the intensity diffraction pattern produced by one point
source coincides with the first zero of the intensity diffraction pattern produced by the other”[2]. Itis an
empirical estimate of resolution and corresponds to a decrease of intensity (dip) of 19 % (rectangular
aperture) or 26.4 % (radial aperture) from the intensity of the two maxima. The threshold of resolution
defined by the Rayleigh criterion reflects rather the performance of visual inspection than the sensitivity
of modern instruments with sophisticated detectors. Because the Rayleigh criterion needs a rather
clear separation of features (expressed by the depth of the dip), it leads to a resolution which is worse in
comparison to resolutions obtained by more appropriate criteria.

The Sparrow criterionlZ] defines the lowest resolution threshold that is possible in principle: the
appearance of a dip between two maxima of signal intensity. In practical imaging noise prevents
the detection of a very small dip between two maxima. As a consequence the resolution determined
according to the Sparrow criterion is unrealistically high. Three grating profiles are resolved in
Figure 10 according to the Sparrow criterion and only one grating profile is resolved according to the
Rayleigh criterion.

The Rayleigh criterion, the Sparrow criterion and other so-called classical resolution criterialll] are
related to the pointspread function of the imaging instrument and do not take into account measurement
conditions such as noise and sampling step width. All classical criteria do not cover object contrast
issues. Therefore they give rather a theoretical limit of resolution and their application in imaging surface
analysis is not straightforward. The application of the Rayleigh criterion and the Sparrow criterion in
surface analysis has been discussed in Ref. [12] but they do not play a role in practical surface analysis.
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Figure 10 — Application of the Rayleigh criterion and the Sparrow criterion to simulated i 1mage
profiles over square-wave gratings with different periods

4.1.7 Comparison of functions, parameters and methods related to effective lateral resolution

and sharpness

See Tables 1, 2 and 3.
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4.2 Determination of the line spread function and the modulation transfer function by
imaging of a narrow stripe

Theline spread function (LSF) (cf. 4.1.2) determined by imaging a narrow stripe (defined in 4.2.2) may be
used to characterize the quality of an image and the performance of an imaging instrument[13] because
its width w,sp and shape substantially determine the lateral resolution of the image (cf. 4.4.3.1). wisF is
related to lateral resolution butin general itis not the lateral resolution. Its value may differ substantially
from the lateral resolution (cf. 4.4.3.3). The LSF may be obtained directly from the measured profile over
a narrow stripe or by fitting the measured profile with a model function as outlined in 4.2.3.

4.2.1 Model functions for the LSF

The transverse intensity distribution in light and particle beams can be described by different model
functions.[14] The most frequently used function is the two-dimensional Gaussian function. According
to Formula (4) and Figure 3 (cf. 4.1.2) the LSF is also a Gaussian function (normal distribution) for
these probe beams

_ 10 2 2
G(x)—y0+o_\/ﬁexp(—(x—x0) /20 ) (12)

where o is the standard deviation of the normal distribution, x¢ is the centre position, yg is the
background intensity and I is the total intensity expressed as the area under the curve. The full width
at half maximum (FWHM) of G(x) is

=[21In(2)]*%2x 20=1.1774 x 20 (13)

The Gaussian function describes the intensity distribution within a beam which is formed by an ideal
lens system. However, in reality the LSF may deviate from Gaussian shape. Therefore other model
functions are considered, too. One option is a combination of Gaussian functions with different w1dths
(cf. 5.2.2 and[14-16]) as shown in Figure 11. ‘

L (nm)

Figure 11 — Two Gaussian functions G with different widths and the sum of these functions.
The functions are normalized to the same height. FWHM values in nm are given as indices

The Lorentzian function L(x) is well known in spectroscopy, because it is the resonance function of the
harmonic oscillator and fits the shape of spectral lines of atoms. It can be used also for fitting LSFs with
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extended tails (Figure 12), which may occur due to lens aberration[1Z] and/or particle scattering within
the sample. It is defined by

2x Iy xw
L(x)= 14
=0t i mxo P rw (9

where w is the FWHM of the function, xg is the centre position, yq is the background intensity and I is
the total intensity (area under the curve).

The Pseudo-Voigt function is a weighted sum of Gaussian and Lorentzian functions. The type 1 Pseudo-
Voigt function (cf. Figure 12) is a linear combination of a Lorentzian function and a Gaussian function
with the same FWHM denoted by w and weighted by a factor n:

PSV1=yo+Io[nL (x,x9,w) + (1 -1) G (x,x0,w)] (15)

—— Lorentzian
Pseudo-Voigt 1 (n=0.5)

---- Gaussian

e i : ' : ' : : -
0 100 200 300 400 500 600

Figure 12 — Gaussian function, Lorentzian function and type 1 Pseudo-Voigt function having
the same FWHM of 100 nm. The functions are normalized to the same height

The type 2 Pseudo-Voigt function is alinear combination of a Lorentzian function and a Gaussian function
with different widths wy, and wg:

A great variety of LSF shapes (Figure 13) can be simulated by a type 2 Pseudo-Voigt function.
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Pseudo-Voigt 2
---- w =200 nm, wg=50 nm, n=0.5
—— w =50 nm, wg=200nm,n=0.5

Figure 13 — Type 2 Pseudo-Voigt functions with different combinations of w;, and wg. The
functions are normalized to the same height

4.2.2 Whatis a narrow stripe?

A stripe may be called narrow if its width wg is small compared to the full width at half maximum of the
LSF wisr characterizing the imaging system used. In this case a profile across the image of the stripe
reveals that LSF. If wg is not small compared to wysg, then the FWHM of the image profile increases with
increasing width of the stripe. This effect is demonstrated by a simulation displayed in Figure 14, where
stripe images are simulated by convolution with a Gaussian LSF.

image
profile

o e fles e O

Figure 14 — Imaging of a series of stripes simulated by convolution with a Gaussian LSF with
wisF = 100 nm. The values given in the image profiles are the FWHM in nm
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The deviation of wysr taken from the image profile from the true value of FWHM|sF is displayed as a
function of ws/wisF in Figure 15.
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Figure 15 — Deviation of the FWHM of the profile of an imaged stripe from wsr as function of
the ratio ws/wisp. Black dots: Gaussian LSF; Open circles: Lorentzian LSF

The shape of the image profile is also influenced by the stripe width ws. For small values of the ratio
ws/wisr, e.g. 0.2 as displayed by the left image profile in Figure 14, the image profile may be fitted by
the LSF shape function with a slightly increased FWHM. For ws/wy s = 1 as displayed by the right image
profile in Figure 14, the shape of the image profiles differs from that of the LSF. Figure 16 shows the
best fits of image profiles for the ws/wysF = 1 case. The image profile created with a Gaussian LSF shows
only a small deviation from Gaussian shape, whereas the profile created with a Lorentzian LSF deviates
considerably from Lorentzian shape.
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Figure 16 — Image profiles (black dots) over a 100 nm wide rectangular stripe simulated by
convolution with 100 nm wide Gaussian and Lorentzian LSFs revealing the deviations from the
principal shape of the LSF. Lines show the best fit with a Gaussian and Lorentzian, respectively

4.2.3 The effect of signal-to-noise ratio and sampling step width on LSF determination

For sufficiently high signal-to-noise ratios Rs/n the LSF and its full width at half maximum wysg can be
obtained directly from the measured profile over a narrow stripe. This simple situation is displayed in
Figure 17, left panel, top. However, experimental data can be also analysed by fitting with more or less
appropriate LSF model functions (Figure 17, left panel, middle and bottom).

The low Rs/N case is given in Figure 17, right panel. Here shape and wi sr have to be determined by fitting
experimental data with a peak shape model function. Depending on the model function, the wy,sr can
be taken either directly from the respective fit parameter results (Figure 17, middle row) or from the
fitted curve (Figure 17, lower row). In any case the background signal yp must be determined carefully
outside the stripe profile.

The profiles given in Figure 17 were created by the convolution of a narrow stripe with a type 2 Pseudo-
Voigt function. Indeed, for the high Rs/n case a fit with that type of function yields a better result (smaller
x#) than a fit with a Lorentzian. In the low Rg/n case the values of x2 are very similar for both functions
but a fit with a Lorentzian yields a smaller deviation of wisr from the value of the implemented type 2
Pseudo-Voigt model function. The latter result is accidental and caused by noise which has broadened
the stripe profile.
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Figure 17 — Determination of wi,sr from a simulated image profile of a narrow stripe at
different Rs/N levels (Rs/N = Imax /oN , where oy is the standard deviation of noise). Data points
(black dots) represent a measured profile simulated by convolution of a 20 nm wide stripe with
a type 2 Pseudo-Voigt function (PSV2, wg = 100 nm, wi, = 200 nm, n = 0.6, cf. 4.2.1) and subsequent
addition of two different noise levels. The FWHM of the PSV2 function is 118.4 nm, the FWHM of
the convolution without noise is 119.7 nm. Upper row: raw data; Middle row: Profiles fitted with
a Lorentzian; Lower row: Profiles fitted with a PSV2 function. y( is the background signal and y2
is a measure of the quality of the fit

The quality of the determination of the LSF and its width wysr depends on the sampling step width
used for the measurement of the profile. Especially but not only at low signal-to-noise ratios Rs/n, the
uncertainty of wysp increases with decreasing number of sampling points, i.e. increasing sampling step
width. This effectis demonstrated by fitting LSFs for simulated image profile data at different Rs/n levels.
The random nature of noise was taken into account in this simulation by adding different sets of Gaussian
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noise to a Gaussian profile with wy,sp = 30 nm representing the image profile. To establish data sets with
different sampling step widths the number of data points was reduced simply by removing data points.

All wisp values obtained by fitting Gaussian profiles with different sets of Gaussian noise (Rs/nN = 10) and a
variation of sampling step widths are summarized in Figure 18. Step width and number of sampling points,
both normalized to wisr = 30 nm of the original noise-free Gaussian profile are given at the abscissa.
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Figure 18 — Dispersion of wisr data determined for simulated Gaussian profiles at Ry = 10 and

different sampling step widths. The noise-free Gaussian profile has a FWHM of 30 nm. The bars

denote the standard deviations. Both black dots at 3 samples/FWHM denote extreme values of
wisr obtained from profiles which are displayed in the upper row of Figure 19

Figure 19 (top line) shows the largest positive and negative deviations, respectively, of fitted wysg data
from the original FWHM = 30 nm noise-free Gaussian profile. Strong noise (Rs/n = 10) and large step width
(10 nm corresponding to only three data points per wysg) cause deviations up to 38 % in those cases.
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Figure 19 — Fits of Gaussian profiles (30 nm FWHM) superimposed by different sets of
Gaussian noise providing Rs/N = 10. Those profiles simulate an image profile across a narrow
stripe at different step widths of sampling. Dots are data points (connected by a fine line).
Fitted profiles are displayed by bold lines. wy sr results are given in the boxes. Top: Narrowest
and widest profile from 36 profiles at a sampling step width of 10 nm. Bottom: Profiles with a
sampling step width of 1 nm which were created with the same sets of Gaussian noise as the
profiles given in the upper row. The black dots denote the data points of the reduced data sets

in the upper row

Figure 20 shows the largest deviations of wisp obtained from fitting of different profiles with different
levels of noise and two sampling step widths. The variability of wysg data vs. sampling step width is
much stronger for noisy profiles (Rs/n = 10) than for those with medium (Rs/n = 30) or low (Rs/n = 100)

levels of noise.
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Figure 20 — Largest positive or negative deviations of fitted wy sr from the FWHM of the
original noise-free profile (30 nm) for different sampling step widths and Rs/y levels

The accuracy of wi,sr determined by fitting of noisy stripe profiles depends on Rs/N as well as sampling
step width. As a measure of accuracy of the fitting procedure a mean deviation

§= (n—il)il:(WLSF)i_(WLSF)t:lz (17)

i=1

was calculated, where (wysp); is one of n results of the fitting procedure and (wsf)t is the true FWHM
of the noise-free Gaussian profile. The deviation s is a little different from the standard deviation given
by bars in Figure 18 because the fitting results were related to the true value of (wysr)t and not to the
arithmetic mean of wisr. As a result s includes, besides the statistical error, also possible systematic
deviations of the fitting procedure. Therefore it is a measure of precision and trueness of the fitting
procedure. Figure 21 shows the relative deviation s/(wsF)t.
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Figure 21 — Relative deviation s ¢ 100/(wsF): of fitted wisr data as a function of sampling step
width for different values of Rs/n. The values for Rs/n = 10 are calculated from the values shown

in Figure 18

4.2.4. The effect of smoothing on LSF determination from a noisy image profile

For low Rg/n levels, the LSF and its width wisr cannot be taken directly from the measured profile
over a narrow stripe (cf. 4.2.3). In many cases smoothing may be attractive to enable the simple direct
approach of LSF and wysr determination. When the measured profile over the narrow stripe is formed
by a sufficient number of sampling points different kinds of smoothing procedures may be applied. The

application of such smoothing procedures has been discussed in detail with respect to spectroscopic
datal18]-[20].

Figure 22 displays a noisy profile and its smoothing by three different methods which are implemented
in the ORIGIN™ software.[21] An important smoothing parameter is the smoothing interval which
determines the number of data points considered at one step of the smoothing routine. With increasing
smoothing intervals noise will be reduced more efficiently, but the profile becomes flattened and
broadened. Therefore, it is necessary to find the optimum smoothing interval. Figure 22 shows, that
adjacent averaging has the lowest suitability for smoothing noisy profiles of imaged narrow stripes,
because it broadens the profile more than the other methods. Better results can be obtained by using
Savitzky-Golay smoothing and fast Fourier transform (FFT) filter smoothing. Results optimized in terms
of smoothing intervals are displayed in Figure 23. wy sg values obtained directly from the smoothed data
points and those determined from a fit of the smoothed profile differ by less than 5 % from the value
determined from a fit of the unsmoothed profile.
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Figure 22 — Application of different smoothing procedures to a noisy (Rs/N = 5) profile. The
profile was created by adding Gaussian noise to a Gaussian profile with FWHM = 30 nm and
1 nm sampling step width. *The number of points n in FFT filter smoothing is not comparable
with the number of points for the other methods.
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Figure 23 — Best smoothing results for a noisy (Rs/N = 5) profile created by adding Gaussian
noise to a Gaussian profile with FWHM = 30 nm and 1 nm sampling step width (cf. also
Figure 22). Upper row: wisr directly taken from the smoothed profile. Lower row: Smoothed
profile fitted with a Gaussian, with the wisr taken from the fit. A fit of the unsmoothed profile
(not shown) gives a wi sy of 26.4 nm. *The given number of points n in FFT filter smoothing is not
comparable with the number of points for Savitzky-Golay smoothing

After smoothing with larger intervals of data the profiles become broadened and wysr data deviate
too much from the wisr of the original profile to be acceptable. Figure 24 shows this effect for all three
smoothing routines demonstrated in Figure 22 for one selected noise level (Rs/N = 5). Here data are
plotted vs. smoothing intervals normalized to the wysp of the original profile. Of course, the deviation of

wisr depends also on Rs)N.
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Figure 24 — Increase of wi sr in dependence on the length of the smoothing interval. The values
are taken from the example given in Figure 22 with Rs/N = 5 and the black symbols denotes the
two examples presented in Figure 23. The smoothing interval used in FFT filter smoothing is
not comparable to the smoothing interval data for the other methods

Comparison of results of different smoothing routines reveals that, for 2nd order polynomial Savitzky-
Golay smoothing, longer smoothing intervals can be used. The increase of obtained wysf values'is
smaller than for the other methods. For the given example, the increase of wysp in comparison to the
FWHM of the original profile is about 2 % if the smoothing interval is equal to the FWHM of the original

profile. This value and the particular suitability of Savitzky-Golay smoothing are in agreement with the
results of Seah et al.[19][20]

4.2.5 Calculation of the MTF by Fourier transform of the LSF

Thereare principally two options for determining the MTF. One is based onimaging of sine-wave gratings.
However, nanometre-scaled sine-wave gratings are not available. The alternative is the determination
of the MTF by Fourier transform of the LSF (cf. 4.1.4). The LSF may be determined either by imaging a
narrow stripe (cf. 4.2) or by differentiation of the edge spread function (ESF). The MTF is determined by
the width (cf. Figure 7) and shape (cf. Figure 25) of the LSF.
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Figure 25 — Calculation of the MTF by Fourier transform (FT) of two LSF models. m; and m, are
image and object modulations, respectively and k is the spatial frequency. The value of w sy is
100 nm both for the Gaussian and the Lorentzian LSF

The MTF is influenced by principal properties of the Fourier transform. The calculated MTF depends
on the length range Ri,sr where LSF data are used for the Fourier transform (shown in Figure 26). A
short Ry sF cuts off the wings of the LSF [Figure 26 a)] and, as a consequence, the Fourier transform of
the LSF deviates from the MTF calculated for a sufficiently long Ry sr [Figure 26 d)]. Furthermore, Rsp
determines the data distance Dyr of the calculated MTF

Dmtr = 1/RLsF (18)

If the measured length range M sF is limited by experimental conditions such as a noisy background
signal or a superposition of signals from neighbouring patterns, the data distance Dyr might be rather
large [cf. Figure 26 a and d)]. To overcome this problem numerical extension of the length range Ry sF is
helpful. The addition of “0”-values to the measured values expands Ry sf as shown in Figure 26 b) and
reduces the data distance Dytr [Figure 26 e)]. However, there will then be periodic structures in the
MTF. The cut-off of the LSF wings corresponds to the application of a narrow slit and causes the well-
known diffraction pattern. All of these problems are avoided when M s does not fall below a certain
minimum value. This minimum value depends on the width wy,sr and the shape of the LSF. Simulations
revealed that, for a Gaussian LSF, My, should be

;MLSF >2.5wg (19)

and for the long-tailed Lorentzian LSF
Misp=5wy, (20)

where wg and wy, are the FWHMs of the Gaussian and Lorentzian LSFs, respectively.
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Figure 26 — The effect of length range R sr and measured length range My sr on the shape
and data distance Dy Tr of the MTF. The Gaussian LSF has a wi sy value of 10 nm and a)

RisF = Mysr = 19 nm, b) Ry sr = 60 nm, My,sr = 19 nm, and c) RysF = My sr = 60 nm. The MTF was
calculated by Fourier transform (FT) of the LSF. The MTF calculated from case a) is given by
black dots in d) and the MTF calculated from case b) is given by black dots in e). For comparison
in d) and e) the MTF calculated from c) is given by open squares connected by a dashed line

Figure 27 shows that there is only a small difference in the high frequency range of the MTF between
the case described by Formula (20) and the ideal case. The m;j /m, value at k = 0 can be corrected to 1
because k = 0 corresponds to an infinite period of the sine-wave grating and therefore the complete
object modulation is transferred to image modulation.

The maximum spatial frequency kmax of the MTF calculated by Fourier transform of the LSF is determined
by the sampling step width S,y at which the LSF has been measured

kmax = 1/(2 SW) (21)

where knyax is the upper interval limit of the highest calculated k value of the MTF (cf. Figure 27). A
satisfying characterization of an imaging process requires a minimum range of spatial frequencies k for
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which the MTF is calculated. With Formula (21), a condition for the related sampling step width S,y is
established which depends on the shape and width of the LSF. A Gaussian LSF requires

Sw=0.4wg (22)
For a Lorentzian LSF, higher k-values of the MTF are of interest (cf. Figure 25) and correspondingly a
smaller sampling step width S, of the LSF is needed

Sw<0.3wy, (23)
The calculation of the MTF for a Lorentzian LSF with a sampling step width of 0.3wy, is shown in

Figure 27. The range of the MTF down to a value mj/m, = 0.011 is sufficient and confirms the limit given
in Formula (23).
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Figure 27 — Demonstration of the limits in M sr and S, for the calculation of an MTF of
sufficient accuracy and range from a Lorentzian LSF. The MTF denoted by black dots is
calculated from the LSF given on the left side characterized by the following parameters:
Mysr = 5wisr corresponds to the limit given in Formula (20) and Sy, = 0.3w s corresponds to the
limit given in Formula (23). The MTF denoted by the dashed line represents the ideal case and
was calculated from a Lorentzian LSF with M sr = 100wy sF and Sy, = 0.1wy,sF

It has been demonstrated that the MTF can be calculated by Fourier transform of the LSF. The accuracy
and k range of the MTF depend on the length range over which the LSF is measured and the sampling
step width, respectively. In particular, the measurement range must be large enough because a cut-off of
the tails of the LSF causes deviations from the true shape of the MTF. The sampling step width does not
limit the accuracy of the MTF in most cases because 2.5 to 3.5 measured values per FWHM of the LSF are
enough for a sufficient k range of the calculated MTF.

4.2.6 Requirements for test samples and accuracy of measurement

Accuracy (trueness and precision) of measurements, depends on sample properties and measurement
conditions. Therefore the requirements for test samples were derived from the needed accuracy.

Stripe width

Itisadvantageousto useatestsample which enables the determination of the LSF withouta deconvolution
procedure. For that reason the sample must have a narrow stripe whose width wg is at most the half of
the expected width wysr of the LSF. Then wysr can be taken from the measured profile over a narrow
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stripe and its deviation from the true value is below 6 % for a Gaussian profile and below 12 % for a
Lorentzian profile, respectively (cf. Figure 15). This deviation can be reduced by the use of a narrower
stripe, but also signal intensity and signal-to-noise ratio will be reduced by doing this. For that reason
the recommended stripe width is 0.2 wisp < ws < 0.5 wisF.

Stripe distance

A sufficient distance d between the narrow stripe and neighboured features in the samples surface is an
essential condition for the accurate measurement of the LSF. For a Gaussian LSF a distance of d = 3 wisg
enables the determination of the LSF down to 0.5 % of its maximum intensity. For long tailed LSFs the
distance between neighboured stripes must be larger. For a Lorentzian LSF a distance of d = 10 wysF is
needed to measure the 3 % level of the LSF (cf. Figure 28).

The determination of wisrfrom the measured stripe profileisinfluenced by superposition of neighboured
stripe profiles. The superposition has two effects on wy,sg:

1. The stripe profile is broadened and wysF is enlarged compared to its true value (WisF)t.

2. The background and therewith the 50 % level of intensity are shifted upwards and wysF is taken at
a higher intensity level where the stripe profile is narrower (cf. Figure 29).

Both effects together result in a distance dependent reduction (Awysr)q of wisr compared to its true
value (wrsr)t without superposition. The determination of wisr directly from the measured stripe
profile results in a larger deviation (Awysr)q than the determination of wysr by fitting the measured
profile with a model function. The higher accuracy of the fitting procedure is based on the variation
of the baseline offset yg whose value determined by the fitting procedure is always smaller than the
minimum intensity between two stripe profiles (cf. Figure 29).The deviation (Awysr)q as a function of
stripe distance d is given in Figure 30.

As a consequence of the results presented above the following stripe distances d of the test sample are
recommended for the determination of the width wysF:

Gaussian LSF: d = 2.5 wi s (24)
Lorentzian LSF: d = 5 wysF (25)
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Figure 28 — The effect of stripe distance d on measurement of LSF tails. The image profile
was simulated by convolution of narrow stripes (ws = 10 nm) with a Gaussian LSF (top,
wisr = 100 nm) and a Lorentzian LSF (bottom, wi s = 100 nm), respectively. Note the different
length scales expressed in wisp units
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Figure 29 — The effect of superposition on the determination of w,sr by measurement of profile
width (left) and fitting (dots, right). The image profile was simulated by convolution of narrow
stripes (ws = 10 nm, d = 600 nm) with a Lorentzian LSF (wsr = 100 nm). (wisr): is the true value of
wisr without superposition, b is the value of wi sr - broadening by superposition, (Awysr)q is the
reduction of wi,sr measured at 50 % from the background, y is the baseline offset determined
by the fitting procedure
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Figure 30 — The relative deviation (Awysr)q /(WLsF)t in dependence on the normalized stripe
distance d/wysr for Gaussian LSFs (closed symbols) and Lorentzian LSFs (open symbols). The
triangles refer to the direct determination of wy s from profile width and the circles refer to the
determination of wi sy by fitting. The fitting interval was (x - d/2, x + d/2) as shown in Figure 29.
The deviation of wi sr due to the finite width of the stripes (cf. Figure 15) is not included in (Awysr)q

All given values are related to the case that the neighboured features give the same signal intensity as
the narrow stripe under consideration. The neighboured features may show higher signal intensities
than the narrow stripe because their width and/or analyte concentration may be higher than that of the
narrow stripe (cf. Figure 71). In this case the distance between the narrow stripe and the neighboured
features must be greater than the values given above.

Object contrast

The object contrast between the narrow stripe and the surrounding area influences the signal-to-noise
ratio, which is an essential factor for the precision of the determination of the LSF. Therefore the object
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contrast must be as high as possible because it enables a high precision of measurement and/or short
measuring times.

Measurement uncertainty of wysr

The measurement uncertainty is a measure of the accuracy of a measurement method. It combines
systematicdeviations (trueness) and random deviations (precision).Ifasystematic deviation of wisrfrom
its true value is known (e.g. from Figure 15), then the resulting value of wisfr can be corrected. Without
such a correction the systematic deviation is a part of measurement uncertainty as demonstrated below.

The combined relative measurement uncertainty of wisr is calculated for two examples:

Ex1: Gaussian LSF, stripe width wg = 0.5w,sF, stripe distance d = 3wysf, Rs/n = 30, (samples/wsF) = 6.
Ex2: Lorentzian LSF, stripe width wg = 0.25 wi s, stripe distance d = 6w sg, Rs/n = 10, (samples/wysF) = 10.
Systematic deviation

Systematic deviations of wy,sp from its true value (wisr)t are caused by the finite width wy of the stripes
of the test sample (cf. Figures 14 and 15) and by superposition of neighbouring stripe profiles which
depends on stripe distance d (cf. Figures 28, 29, 30). The deviations by the latter effect were taken for
the determination of wysf by fitting because the random deviations (see below) were also determined
for the fitting procedure.

Ex1: Broadening of wy,sr by finite stripe width wg: (Awpsr)ws/(WLsF)t = + 5.9 % (from Figure 15).
Reduction of wy,sp by superposition: (Awysr)a/(WiLsr)t = — 0.12 % (from Figure 30).

Because the deviations have definitively opposite signs they have to be subtracted.

— Systematic deviation: Awysr /(WLsF)t = (AWLsF)ws /(WLsF) e+ (AwLsF)d /(WLsF)t=5.9 % - 0.1 % = 5.8 %.
Ex2: Broadening of wysp by finite stripe width wg: (Awpsr)ws/(WLsF)t = + 3.1 % (from Figure 15)
Reduction of wy,sg by superposition: (Awpsr)d/(WLsr)t = — 1.8 % (from Figure 30)

— Systematic deviation: Awysr /(WLsF)t = (AWLsF)ws /(WLsF)t+ (AwLsr)d /(WLsF)e=3.1 % - 1.8 % = 1.3 %.
Random deviation

The precision of wysp, determined by fitting of a noisy stripe profile, depends on the measuring
conditions, in particular signal-to-noise ratio Rs/N and sampling step width. Deviations of wisr from
the true value (wsF) of the noise-free profile were determined by fitting a great number of synthetic
profiles with different Rs/N and different sampling step widths (cf. 4.2.3). The deviation s, calculated
according to Formula (17) and displayed in Figure 21, corresponds to the accuracy of wy,sr determined
by a fitting procedure applied to one measured profile over a narrow stripe. It includes statistical errors
as well as possible systematic errors?) of the fitting procedure.

Ex1: Gaussian, Rs/N = 30, samples/(wisF) =6 — s/(wrsp)t = 2.5 % (from Figure 21).

Ex2: Lorentzian, Rs/n = 10, samples/(wysr) = 10 - s/(WLsF)t = 5.6 %3).

2) Other systematic deviations than those related to stripe width and stripe distance (treated above).

3) The effect of noise and sampling step width on the accuracy of the determination of wisr was analyzed for
a Gaussian LSF only (cf. 4.2.3). The resulting values for the deviation s will be similar for other model functions.
Therefore the value s /(wrsp)t = 5.6 %, calculated for a Gaussian LSF (cf. Figure 21), was taken for the Lorentzian
LSF of example 2 too.
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The deviation s (cf. Formula 17) is a measure of the dispersion of wi,sg and corresponds to the uncertainty
ur which is caused mainly® by random deviations. It is usual to give the expanded uncertainty

Ur=kuy (26)

where Kk is the coverage factor.[22] With k = 2 (level of confidence = 95 %) we get
Ex1: Uy/(wLsr)t= 5.0 %.

Ex2: Ur/(wrsF)t = 11.2 %.

Combined uncertainty

According to the GUM approachl22] the quadratic addition of different components, here the systematic
deviation and the random deviation, gives the combined uncertainty>)

Uc = [Ur2 + (Awrsr)2] (27)

Then the relative combined uncertainties of wysf are:
Ex1: Gaussian LSF, wg = 0.5wysF, d = 3wsk, Rs/n = 30, samples/(wsf) = 6

Ue/wLsF)e = [(5.0 %)2 + (5.8 %)2]> = 7.7 %

Ex2: Lorentzian LSF, wg = 0.25wsf, d = 6 wi sk, Rs/N = 10, samples/(wisfr) = 10

Ue/Wisk)e = [(11.2 %)2 + (1.3 %)2]% = 11.3 %

An uncertainty of 7.7 %, as calculated for example 1, seems to be sufficient in most cases. It includes a
systematic deviation of +5.8 % which can be reduced by the use of a narrower stripe.

The uncertainty of 11.3 %, calculated for example 2, is nearly completely caused by the low signal-to-
noise ratio Rs/N = 10. It can be improved by increasing the measurement time and/or the number of
samples per wi,sr. Another possibility is to use a wider stripe of the test sample which increases signal
(cf. Figure 14) and Rs/N, but the decrease in random deviation may be partly or completely compensated
by an increased systematic deviation due to a stronger broadening of the measured stripe profile (cf.

Figure 15).

If the measured LSF corresponds not to one of the known model functions the accuracy of the fit may
be lower and the uncertainty U, of wi,sp may be larger than in the given examples. For low noise levels
(i.e. high Rs/N) wisk can be determined directly from the measured profile without a fitting procedure.
Then its uncertainty is similar or slightly increased (by superposition of neighboured stripe profiles, cf.
Figure 30) compared to that wisr determined by fitting the same profile.

4.3 Determination of the edge spread function (ESF) by imaging a straight edge

Imaging of a straight edge is the method most often used in nanoscale surface analysis to determine the
lateral resolution of an imaging instrument. A line profile perpendicular to the edge gives the ESF, which
is the integral of the line spread function LSF (cf. 4.1.3). The steepness of a line profile through the image
of a straight edge or the steepness of a line scan over a straight edge corresponds to image sharpness.
Distances Dx-(100-x) between points of well-defined intensities xand 100-x (e.g. 20 % to 80 %) of the profile
over a straight edge quantify the steepness (Figure 31) and can be taken as measures of sharpness.

4) The difference in Formula (17) is calculated with the true value (wysr); in stead of the arithmetic mean and
therefore s includes, besides the statistical error, also possible systematic deviations of the fitting procedure.

5) The coverage factor has to be applied only to the random components of uncertainty and therefore Awysris not
expanded.
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The ideal straight edge in chemical surface analysis is a sharp chemical gradient (“step transition”)
between two constant levels of concentration of a chemical constituent without height differences in
the related topography. In practical analysis such a straight edge is called a “chemical edge”. The regions
of constant concentration on both sides of the edge must be wide enough to reach 0 % and 100 % levels

of intensity, respectively (cf. 4.3.3 and 4.3.5). However, it can be difficult to establish and control that
prerequisite for real test samples.

100 %1 object
pattern measured
(100-%) % profile
=
‘n
o
2
=
X %
0% >
Dx-a00-x)_ length

Figure 31 — Definition of parameters characterizing the steepness of a profile measured over a
straight edge

4.3.1 Model functions for the ESF

The ESF is the integral of the LSF and correspondingly the ESF can be described by the integral of model
functions for the LSF,[14] so called peak functions, as, e.g. a Gaussian function, a Lorentzian function
and a combination of these functions (Pseudo-Voigt functions, cf. 4.2.1). The integration of those peak
functions corresponds to a convolution of the peak function with a step function (cf. 4.1.3) and can be
done by numerical integration. The integrated Gaussian function is also known as the error function

V4
_ 2 2
erf(z) —ﬁb[exp( t )dt (28)
With the parameters used in Formula (12) it has the form

X 2

2 (x1—x0)
erf(x/\/ia) = exp| ———=— (dx (29)

\/Eﬂ:O'E.)‘ 20‘2 1

Figure 32 shows different kinds of ESFs calculated by numerical integration of model peak functions
having the same FWHM. Figure 33 shows integrated type 2 Pseudo-Voigt functions (cf. 4.2.1). This figure
demonstrates the high versatility of this type of function.
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Figure 32 — ESFs calculated by integration of peak functions shown in Figure 11. All peak
functions have the same wisp =100 nm
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Figure 33 — ESFs calculated by integration of Pseudo-Voigt functions of type 2 shown in Figure 13

The ESF may also be described by different types of sigmoidal functions. The logistic sigmoid function

I (x) =a/{1 +exp [-ks (x - x0)]} (30)

where a is the upper limit, ks determines the steepness and xg is the position of the inflection point,
has a very similar shape in comparison to the integrated Gaussian function (cf. Figure 34). An extended
version of the logistic functionl23] enables the description of asymmetric profiles with a drift induced
variation of the lower and upper level. This type of function was used to fit line scans across a chemical
edge recently.[24] The software “Logistic Function Profile Fit” (LFPF) for conveniently fitting such
profiles is available from the National Institute of Standards and Technology [25].
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Figure 34 — Integrated Gaussian function (wysr = 100 nm) fitted by the logistic sigmoid function

If the ESF deviates considerably from an integrated Gaussian, a sum of logistic functions can be used for
fitting. Figure 35 shows fits of an integrated Lorentzian. The sum of two logistic functions with different
parameters fits better than the extended logistic function with additional drift parameters related to

the lower and upper level of intensity. As a consequence the sum of two logistic functions is the most
general method for the fit of an unknown ESF.

1007
* integrated Lorentzian
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---------- Fit: Expanded Logistic Function (LFPF)
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Figure 35 — Fits of an integrated Lorentzian function (wysr = 100 nm) with different sigmoid
functions (fit range 5 000 nm). The insert shows the region of largest deviation of the fits with
an expanded intensity scale. ORIGIN ™ and LFPF [25] are the programs used for fitting with the

given functions

4.3.2 The relation of the ESF distance Dy - (100-x) to LSF models

ESF-parameters such as the distance Dy - (100-x) (Figure 31) depend both on the width and shape of
the LSF which characterizes the quality of an image and the performance of an imaging instrument.
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Figure 36 shows three ESFs simulated with LSFs of different wisr but the same shape, a Gaussian peak
function. Figure 37 shows two ESFs simulated with Gaussian and Lorentzian LSFs having the same wy sF.
Obviously the steepness of the ESFs is very different for these cases. The ESF simulated with a Gaussian
LSF is much steeper in comparison to that simulated with a Lorentzian LSF. Correspondingly the ESF
Dx - (100-x) data resulting for the Lorentzian LSF model are much larger than for the Gaussian LSF. The
linear relation between the ESF parameters Dy - (100-x) and the wisF is given in Table 4 (cf.[14]),

100

intensity

W gp=200nm
0on 20 nm

0 T i T T T
0 100 200 300 400
L {(nm)

Figure 36 — ESFs simulated by convolution of a step transition with Gaussian LSFs of different wy,sr

Gaussian
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80 80 % :
2 601 I
£ :
S 1 :
% !
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20 20 % .
12 % i
0 T T T I T 1
0 100 200 300 400 500 600
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Figure 37 — ESFs simulated by convolution of a step transition by using Gaussian and
Lorentzian LSFs with equal wisr of 100 nm
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Table 4 — Relation of ESF-parameters to wisr (FWHM) for Gaussian and Lorentzian LSFs

ESF Gaussian LSF Lorentzian LSF
o Wisrk Wi sr
Diy.gs 235x0 1 xwisr 254 x w g
Dig. 34 2xQ0 0.849 x w of 1.83 x W or
D30-80 168 xa| 0.715xw.sr 1.38 x W, gr

4.3.3 Size of plateau regions and its effect on the ESF distance Dy - (100x)

As mentioned already, the widths of the two plateaus of constant concentration on both sides of the
chemical edge mustbe large enough to avoid erroneous determination of the ESF distances Dx- (100-
x)- Particularly for the case of long-tailed LSFs, this condition may be not fulfilled and in that case the
ESF distances Dx - (100-x) cannot be correctly determined. Consequently lateral-resolution data deduced
from these erroneously small Dy - (100-x) values will be systematically underestimated. This erroneous
underestimation is illustrated by simulations in Figure 38. This figure shows the effect of the length Ly
of the upper plateau of constant concentration on the shape of the ESF measured across the edge(s). In
the case of a Gaussian LSF characterizing the performance of the imaging instrument the resulting ESF
reaches the 100 % level if the length of the upper plateau is at least three times the wysr. In the case of
the long-tailed Lorentzian LSF very long plateaus are needed to reach a level close to 100 % for the ESF.

A correct determination of ESF distances Dy - (100-x) is based on the existence of flat 0 % and 100 %
intensity levels in the image or line scan of a step transition. For very noisy profiles, it may be difficult
to verify the 0 % and 100 % intensity levels. Therefore, the accuracy of a determination of ESF distances
Dx - (100-x) has to be analysed for noisy profiles. Unfortunately, the parameter Lp|/wsF that was used
to characterize the simulations in Figure 38 is not available in measurements across a step transition.
However, the steepness of the profile expressed as the distance Dq-gg (cf. Figure 31) and the width of
the image profile wiy (cf. Figure 38) are available from a measured profile across two step transitions.
Therefore the parameter win/D20-80 may be used to estimate whether the length of a plateau of constant
concentration is wide enough for a correct determination of ESF distances Dx - (100-x) or not. A relation
between the wiy/D20-g0 parameter and the accuracy of ESF parameters is valid only for defined shapes
of the LSF and ESF, respectively.
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Figure 38 — Effect of the length of the upper plateau L, represented by a black rectangle on
the shape of the resulting ESF. The ESF was simulated by convolution of rectangle profiles with
Gaussian and Lorentzian LSFs with w,sr = 100 nm. The width of the image profile wiy, (top left)
and the parameter D;(.g¢ (for definition cf. Figure 31) were taken from the simulated profile

In practice, this situation is a strong limitation of the applicability of the straight-edge method for the
characterization of the lateral resolution. Imaging a step transition with a probe characterized by a
Gaussian LSF gives the correct ESF distances Dx - (100-x) for wim/D20-80 = 4 whereas for a Lorentzian LSF
much higher values are needed (cf. Figure 38).

Therelative underestimation of the ESF distances D12-ggand Dy¢-gg expressed as the deviation from their
true value as function of the plateau length is given in Figure 39. It enables an estimation of accuracy of
the ESF distances D12-gg and D3g-go for Gaussian and Lorentzian LSFs. For imaging with a Gaussian LSF
the relative deviation of D17-gg and D¢-go from true values is nearly the same, whereas for long tailed
LSFs (e.g. a Lorentzian) the deviation of D13-gg is much higher than that of Dy¢-gp.
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Figure 39 — Relative deviations of D1;.gg and Dy¢.go from their true values as function of
the length of the upper plateau of a step transition. The measured length of the plateau wj,,
(cf. Figure 38) is normalized to the measured steepness D(.go. Note the rather different scales
of normalized plateau length win,/D¢-g0 for both kinds of LSF

4.3.4 The relation of the ESF distance Dy - (100-x) to effective lateral resolution

In principle lateral resolution is defined as the minimum spacing at which two features of the image can
be recognized as distinct and separate. Therefore it can be determined only by the imaging of at least
two features. In real imaging of those features effective lateral resolution depends on the width and
shape of the LSF, the signal-to-noise ratio Rs/N and the number of sampling points per grating period
as outlined later in 4.4.2. Correspondingly, the relation between effective lateral resolution and the ESF
distances Dx - (1-x) can be found by the calculation of these values for different types of LSF with different
wi,sF and different levels of noise.

Figure 40 shows four different ESFs which all correspond to an effective lateral resolution of 100 nm.
They were calculated by convolution of different LSFs with a step function and subsequent addition of
noise. The values of w,sg were determined in such a way (cf. Figure 62), that the corresponding CTFs and
the noise-dependent functions (c;j /co)ThR [cf. Formula (49)] yield an effective cut-off frequency of 10 um-1.

Figure 40 demonstrates that the values of ESF distances Dx-(100-x) deviate considerably from the
effective lateral resolution re. The often-used parameter Dyg-gg is much smaller than re for Gaussian
LSFs and much larger than re for a long-tailed Lorentzian LSF measured with a high signal-to-noise ratio
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(e.g. Rs/n = 100). ESF distances Dx - (100-x) are rather a measure of sharpness than a measure of effective
lateral resolution.

effective lateral resolution r.=100 nm
calculated with Gaussian LSF calculated with Lorentzian LSF
o0 ——— —T" - —— — — —
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Figure 40 — ESFs calculated with different LSFs and different values of Rs/n. The values of
wisr were chosen in such a way, that all ESFs correspond to a lateral resolution of 100 nm. The
details of calculation are given in the text. The ESF-parameters D13.gg and Dy.go are calculated

from wisF with the factors given in Table 4, and these values agree within the limits of accuracy
with values determined from the curves

4.3.5 Requirements for test samples and accuracy of measurement

Accuracy (trueness and precision) of measurements, depends on sample properties and measurement
conditions. Therefore the requirements for test samples were derived from the needed accuracy. The
accuracy of the ESF and steepness parameters Dx - (100-x) taken from the ESF (cf. 4.3.2) sensitively
depends on sample properties as the steepness of the edge and the length of the plateau regions. Here
the estimation of accuracy is demonstrated for Dj3.gg because for a Gaussian LSF this parameter
corresponds to the full width at half maximum wysr.

Steepness of the edge

The ESF is the convolution of the point spread function of an imaging system with a step transition
(cf. Figure 4). It can be determined experimentally by imaging a sharp edge, but in contrast to the step
transition model, real edges have a finite steepness which flattens the measured profile. This finite
steepness may be due to the 3D-topography of the sample (edge of a slot, mesh bar of a grid, edge of a
gold-island) or to a transition zone between areas of different chemical composition. Unfortunately in
most cases the steepness of the edge is not known. As a result, the deviation of the measured profile
from the exact ESF cannot be estimated. This is a fundamental disadvantage of the “edge method”
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compared to the “narrow stripe method”, where certified stripe widths enable an estimation of the
deviation between measured stripe profile and exact LSF (cf. 4.2.6). Because of the lack of information
on edge steepness its contribution to the uncertainty Dy - (100-x) parameters is not taken into account.

Length of plateau regions

The lengths of the two plateaus of constant concentration on both sides of the chemical edge must be
large enough to avoid erroneous determination of the ESF distances Dy - (100-x). Particularly for the
case of a long-tailed LSF, this condition may be not fulfilled and as a consequence Dx - (100x) Will be
underestimated. This effect is demonstrated in Figure 41 for a Lorentzian LSF. An increased level of
minimum intensity and a decreased level of maximum intensity is clearly visible in the image profile of
a square-wave grating with a plateau length Lp; = 10 wisp. As aresult also the 12 % and 88 % levels are
shifted and the steepness parameter D17-gg is reduced compared to that determined from a plateau of
appropriate length Lp = 40 wisk.
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Figure 41 — The effect of plateau length Ly, on the ESF parameter D12.gg. The image profile was
simulated by convolution of two square-wave gratings of different periods with a Lorentzian
LSF (wpsr = 100 nm)
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The deviation of D13.gg from its true value (D12-gg)t as a function of the normalized plateau length
Lp1/wisk is given in Figure 426). Plateau lengths of Ly = 2 wisp (for a Gaussian LSF) and Lp| = 40 wysF (for
a Lorentzian LSF), respectively, are recommended because in these cases the deviation of D17-gg from
its true value is smaller than 10 %.

The parameters Dy - (100-x) can be determined either directly from the measured ESF or by fitting the
measured ESF with a logistic function. In the latter case the parameter Dy - (100-x) is explicitly given by
the software (e.g. Logistic Function Profile Fit [23]) or it can be calculated from the exponent of a logistic
function (D12-g88 = 1.73 p, where p is the exponent of the ORIGIN™ Dose Response Function). Figure 42 a)
shows that D17.gg deviates not more than +6 % from the true value if the edge is imaged with a Gaussian
LSF and the fit is done with a logistic function. The systematic overestimation of D1;-gg -values taken
from the fit is due to the facts that the minimum intensity of the fit curve is always smaller and the
maximum intensity is always greater than the corresponding intensities of the measured edge profile
for the case of a Gaussian LSF.

Figure 42 b) shows that for non-Gaussian LSFs the logistic function gives a poor fit of the ESF and therefore
the calculated values of D12_gg deviate more from the true value than values which were determined
from the measured profile directly. Figure 35 (in 4.3.1) shows that ESFs resulting from a non-Gaussian
LSF can be better fitted by a sum of two logistic functions (e.g. the Biphasic Dose Response Function).
In this case no simple relation between Dy - (100-x) and the parameters of the Biphasic Dose Response
Function exists and therefore Dx - (100-x) must be determined graphically from the fit curve. Fitting with
a Biphasic Dose Response Function is useful only in the case of a noisy profile, which does not allow the
determination of Dy - (100-x) directly from the measured curve without a fit.

6) The results shown in Figures 41 and 42 are calculated by the variation of length of both plateaus related to a
step transition whereas the results shown in Figures 38 and 39 are calculated by variation of the length of the upper
plateau only.
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Figure 42 — The relative deviation (AD12-gg) /(D12-88)t from the true value (D12-gg)¢ as a function
of the normalized plateau length Lp)/wysr. Black dots: AD1,.gg determined directly from the
simulated profile; open circles: AD1;.ggdetermined by fitting the simulated profile with the

Logistic Function Profile Fit [25]. Note the different length scales for profiles simulated by
convolution with a) Gaussian and b) Lorentzian LSFs, respectively

The effect of noise on the accuracy of Dy (1x)

A noisy profile over a chemical edge must be fitted or smoothed because it is not possible to determine
Dx-(1x) directly from a noisy profile. Fitting procedures give better results than smoothing procedures
because smoothing flattens the profile and as a result Dy.(1.x) will be increased. Another advantage of a
fitting procedure is the possibility to get Dx-(1-x) directly from the fitting program (e.g. Logistic Function
Profile Fit [23]) or it can be calculated from the exponent of a logistic function (e.g. D12-8g = 1.73/p, where
p is the exponent of the ORIGIN™ Dose Response Function). For that reason the accuracy of D17.gg was
determined by fitting simulated profiles with different sets of Gaussian noise. The accuracy of D12-gg
depends on signal-to-noise ratio Rs/N as well as on the fit range on length scale and sampling step width.
Here the effect of noise is only analysed for additive noise (cf. Figure 52). In this case, the signal-to-noise
ratio Rs/N is the ratio of the difference between the intensity plateaus to the standard deviation of noise.
For shot noise (cf. Figure 52) the lower level of intensity may be zero without any noise. Therefore the
accuracy of D17.gg determined from an image profile with shot noise is higher than that determined
from image profiles with additive noise at the same value of Rs/n. For three values of Rs/N and different
measurement conditions (cf. Figure 43) the accuracy of D13.gg is given in Table 5.
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Figure 43 — Simulated determination of D1;-gg from a noisy profile over a chemical edge under
different measurement conditions. The simulated profiles (black dots) were calculated by
convolution of a step function (L = 15 um, cf. Figure 41, top) with a Gaussian LSF (wisf = 100 nm
— D13-g3 = 100 nm) and the subsequent addition of Gaussian noise. D17-gg was determined by a
fit (bold line) with a logistic function. The measurement conditions written in thin letters are
related to the given example (wysr = 100 nm) whereas the conditions and results written in bold
letters are normalized to wisr and therefore valid for Gaussian LSFs of each width wysr. The
values of D17.gg/wLsr are means and standard deviations of 20 values determined by fitting
simulated profiles with different sets of noise (cf. Table 5)
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Table 5 — Means and standard deviations of D12.gg normalized to the halfwidth wisr of a
Gaussian LSF. Each value has been calculated from 20 fits of simulated profiles which differ
in the added Gaussian noise. The profiles were simulated by convolution of a step function
(Lp1 = 15 pm, cf. Figure 41, top) with a Gaussian LSF (wisp = 100 nm — D12-gg = 100 nm) and the
subsequent addition of different sets of Gaussian noise. The fits were done with the Logistic
Function Profile Fit [25] which calculates the value D1,.gg automatically. Different measurement
conditions with respect to samples per length (reciprocal of sampling step width S,,) and range
of fitted samples F; are shown in Figure 43

noise |samples Diz.gs/ Wi sF
per wisr fit range fit range
Rs/n Wisp/Sw| Fr/Wisp=35 Fr/ wisg = 20
mean st. dev. mean st. dev.
100 5 1.016 0.012 1.001 0.010
30 5 1.031 0.041 1.012 0.036
10 5 1.056 0.151 1.040 0.142
10 20 1.057 0.081 1.028 0.066

Table 5 shows that the mean value of Di2-gg increases with decreasing Rs/n. This systematic
overestimation of D12-gg between 1.6 % (Rs/N = 100) and 5.7 % (Rs/n = 10) can be reduced by increasing
the fit range from 5 wisp to 20 wisy, whereas a reduction of sampling step width has no significant
effect. The standard deviation of D13-gg can be halved by a reduction of the sampling step width whereas
an increase of the fit range has no significant effect.

Measurement uncertainty of Dy-(1.x)

The measurement uncertainty is a measure of the accuracy of a measurement method. It combines
systematic deviations (trueness) and random deviations (precision). If a systematic deviation of Dx-(1x)

from its true value is known (e.g. from Figure 42), then the resulting value of Dx.(1x) can be corrected.
Without such a correction the systematic deviation is part of measurement uncertainty as demonstrated
below. Here D12-gg is an example for all parameters Dx.(1x) taken from the ESF.

The combined relative measurement uncertainty of D12-gg is calculated for two examples:

Ex1: Gaussian LSF, plateau length (Lp1/wisr) =3, Rs/n = 10, (samples per wisg) = 20, fitrange (Fr/wLsp) = 5.
This example is shown in Figure 43b.

Ex2: Lorentzian LSF, plateau length (Lp1/wisk) = 30, Rs/n = 100, (samples per wisg) = 5.
D17-g8 has been determined directly from the profile as shown in Figure 41.
Systematic deviation

Systematic deviations of D13-gg from its true value (D12-gg)t are caused by the finite length of the plateaus
Lp1 on both sides of the step transition (cf. Figures 41 and 42) and by the determination of D12-gg from
the fit (cf. Table 5).

Ex1: Deviation of D12-gg by finite plateau length Ly): (AD12-88)/(D12-88)t = + 3.7 % (from Figure 42a)
Deviation of D12-gg by the fitting procedure: (AD12-88)/(D12-88)t = + 5.7 % (from Table 5)

Because both deviations are positive they have to be added linearly

— Systematic deviation: (AD12-88)/(D12-88)t = 3.7 % + 5.7 % = 9.4 %.

Ex2: Deviation of D12-gg by finite plateau length Lpj: (AD12-88)/(D12-88)t = —11 % (from Figure 42a).
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Random deviation u;

The uncertainty of D12-gg depends on the measuring conditions, particularly on signal-to-noise ratio Rg/n,
sampling step width and, if a fit has been performed, fit range. The uncertainty can be characterized by
the standard deviation of D1,-gg determined by fitting a set of simulated profiles (Ex1, cf. Table 5) or at
high Rg/n by the estimated uncertainty of D12.gg directly determined from the measured profile (Ex2).

Ex1: ur/(D12-88)t = 8.1 % (from Table 5).
Ex2: uy/(D12-88)t = 5 % (estimated maximum error)

For standard deviations it is used to give the expanded uncertainty, U, = k uy, given in Formula (26),
where k is the coverage factor.[22] With k = 2 (level of confidence = 95 %) we get

Ex1: Uy/(D12-88)t=16.2 %.
Ex2: Uy/(D12-88)t = ur/(D12-88)t = 5 %7).
Combined uncertainty

According to the GUM approachl22] the quadratic addition of different components, here the systematic
deviation and the random deviation, gives the combined uncertainty®)

Uc = [Uy? + (AD12-88)%] " (31)

Then the relative combined uncertainties of wy,sf are:
Ex1: Gaussian LSF, (Lp1/wisF) = 3, Rs/N = 10, (samples per wisg) = 20, (Fr/wLsf) = 5,
Uc/(D12-88)t = [(16.2 %)2 + (9.4 %)2]*2=18.7 %

Ex2: Lorentzian LSF, (Lpl/wisF) = 30, Rs/n = 100, (samples per wisg) =5,
Uc/(D12-88)t = [(5 %)2 + (11 %)?2]”2 = 12.1 %

The uncertainty of 18.7 % for example 1 is mainly due to the uncertainty of fitting a noisy profile. It can
be reduced by a longer acquisition time which improves signal-to-noise ratio.

The uncertainty of 12.1 % for example 1 seems to be sufficient in most cases. It is mainly due to the
limited length of the plateaus on both sides of the step transition which is the dominating source of
deviation for long-tailed LSFs like the Lorentzian.

Dx-(1-x) values of edge profiles measured with a short-tailed LSF (e.g. Gaussian) and a high signal-to-
noise ratio have a lower uncertainty, whereas Dy (1.x) values of edge profiles measured with a long-tailed
LSF (e.g. Lorentzian) and a low signal-to-noise ratio have a higher uncertainty than the given examples.

4.4 Determination of lateral resolution by imaging of square-wave gratings

Imaging of square-wave gratings is a method which enables a “real time” estimation of lateral resolution
in the nanometre range without any numerical treatment of data as well as an accurate determination
of lateral resolution by numerical methods (cf. 4.4.2.4 and 4.4.3.3). It is directly related to the primary
definition of resolution, which refers to the “minimum spacing at which two features of the image can
be recognised as distinct and separate”[3]. The stripes of a chemical square-wave grating are optimal for
the determination of this minimum spacing.

7) Thé estimated uncertainty uy / (D12-88)t = 5% for Ex2 is a maximum error and therefore it is not expanded.

8) The coverage factor has to be applied only to the random components of uncertainty and therefore AD1;.gg is
not expanded.
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4.4.1 Properties of square-wave gratings and their importance for the determination of lat-
eral resolution

4.4.1.1 Number of stripes

In the mathematic theory, periodic functions are commonly thought to be infinitely extended. However
a physical representation of periodic functions can be only given by gratings with a finite number of
periods. Practically relevant gratings as a part of a test pattern for the determination of lateral resolution
must be restricted to a small number of periods because it is rather useful to image simultaneously
gratings with different periods. For square-wave gratings the effect of the number of stripes on lateral
resolution by model calculations has been analysed. Figure 44 shows the simulated imaging of a 3-stripe
grating (A-B-A), a 5-stripe grating and a 7-stripe grating all with a period of 200 nm and after convolution
with Gaussian LSFs of different FWHM. For medium resolution (wsf = 100 nm) the image contrast c; (cf.
4.1.5) does not depend on the number of stripes. Near the limit of resolution (wisF = 200 nm and 220 nm)
the image contrast between the inner stripes of the 7-stripe grating is greater than the image contrast
between the outer stripes.

520 5 ¢;=0.017
) W
500 4 LSF
] c;= 0.0006
480 /‘\ 220 nm
520 ¢i=0.036
500 ¢;=0.016
> 480 M 200 nm
2 ]
g 8004  ¢=0523 ¢i=0.523 ci=0.523

600 -
1 100 nm
400
200 -
0 T .—. [ T
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Figure 44 — Imaging of gratings (period 200 nm) with 3, 5 and 7 stripes, respectively. Imaging
is simulated by convolution with Gaussian LSFs of different FWHM. The values of image contrast
ci (for definition, see Figure 46) are determined for the inner stripes. Note the 6 times expanded

intensity scale for both image profiles in the upper part of the figure

This effect is due to the fact that the images of outer stripes are superimposed at the inner side only. In
images of 3-stripe gratings, this superposition shifts the maxima of intensity together (Figure 44, left,
middle and top and Annex A) and, as a consequence, the image contrast is smaller than that of gratings
with at least 7 stripes. The image contrast of a 5-stripe grating is a special case because, near the limit
of resolution, it cannot be determined (cf. situation given in Figure 44, middle, top).

From the practical point of view, 3-stripe gratings as given on the left in Figure 44 are the most suitable
stripe patterns for the determination of lateral resolution, because they enable the simultaneous imaging
of a maximum number of gratings within the field of view of the imaging instrument. Furthermore only
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3-stripe gratings represent the “two features” said in the definition of image resolution. For that reason,
all further evaluations are limited to 3-stripe gratings.

4.4.1.2 Stripe distance and grating period

In almost all definitions, the lateral resolution is defined as the “minimum spacing at which two features
of the image can be recognised as distinct and separate”[3]. But the question arises as to what is meant
by “spacing” in relation to square-wave gratings? In general, there are two possibilities to describe that
spacing for a 3-stripe square-wave grating by using (i) the distance G (gap) between the inner edges
of the outer stripes or (ii) the centre-to-centre distance between the outer stripes which is the grating
period P. Figure 45 shows the effect of variations of G and P on the image of the respective grating. It is
obvious that the variation of the grating period P at a fixed gap G strongly influences the lateral resolution
of the grating image. The effect is visualized in Figure 45 by variations of the image contrast at medium
resolution (wrsg = 15 nm) and at the limit of resolution (wysr = 20 nm). On the other hand variation of the
gap G at a fixed grating period P has only a small influence on resolution. Therefore, the grating period P
expressed as the centre-to-centre distance between neighbouring stripes is the appropriate parameter
of spacing to be used for the definition of the lateral resolution. All further simulations are made using
square-wave gratings with a fixed ratio P/G = 2, i.e. black and white (gap) stripes are of the same width.

]
variation of gap G e == variation of grating perod P

+20% -20% -20% + 20%
P=20nm P=20nm P =20 nm P=16 nm P=24 nm
G=12nm G=8nm G=10 nm G=10 nm G=10 nm

20 nm
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I ! | ! |
200 300 400
length (nm)

T
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Figure 45 — The effect of gap G and grating period P on the lateral resolution of images of square-
wave gratings. Imaging is simulated by convolution with Gaussian LSFs of different width wysp
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4.4.1.3 Object contrast

The object contrast c, of the imaged sample is determined both by the spatial variation of composition
and/or other material properties of the sample (object pattern) and the imaging method applied. For
instance the object contrast between Alp7Gagp.3As and GaAs is 100 % (¢, = 1) for Al mapping, or 70 %

(co = 0.412) for Ga mapping by using SIMS and it is much smaller for mapping with a scanning electron
microscope using secondary electrons.

Figure 46 demonstrates the effect of the object contrast c, on the image contrast c; and the contrast
transfer function CTF = ¢j /c, as well. The image contrastis defined as ¢j = (Imax — Imin)/(Imax* Imin)- Object
contrast and image contrast are proportionally correlated. Correspondingly the CTF is not affected
by object contrast variations. If noise is taken into consideration lateral resolution is determined by
image contrast and noise (cf. 4.4.2.). Therefore object contrast also influences lateral resolution as is
demonstrated in Figures 46 and 49. It can be shown that the object contrast relates to lateral resolution,
represented by the effective cut-off frequency of the CTF (cf. 4.4.3.3).
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Figure 46 — The effect of object contrast c, on image contrast c; and contrast transfer function
CTF. Imaging of square-wave gratings with a period of 200 nm is simulated by convolution with
a Gaussian LSF (wpsr = 100 nm)

The object contrast ¢, between two regions of the test sample may be determined from the image.
For sufficiently wide patterns c, is identical to c¢; and correspondingly ¢, can be determined from two
plateaus in the image as shown in Figure 47a.

If there is no upper plateau available, then the CTF can be determined from the relative image contrast
Cirel as shown in Figure 47b. In this case the lower plateau Iy is taken as baseline for the determination
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of Imin rel and Imax rel- The shift of baseline increases the image contrast by a factor which corresponds
to the reciprocal object contrast

C] rel = CI/CO = CTF

(32)
100%7 :
image object

5 contrast contrast
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Figure 47 — Two possibilities for the determination of the CTF: a) Determination of object
contrast ¢, from the intensities of the upper plateau I,), and the lower plateau I, and
subsequent calculation of CTF = cj/c,. b) Determination of the relative image contrast c; ¢ with
respect to the lower plateau Iy ¢j re] is equal to the CTF

4.4.2 The effect of noise on lateral resolution: The effective lateral resolution

Figure 48 shows an image of a series of six 3-stripe gratings taken by a Secondary lon Mass Spectrometer
(SIMS). Obviously, four gratings are resolved. The resolution criterion is the appearance of a dark stripe
between two bright stripes. The resolution of the fifth grating may be prevented by noise but without a
quantitative criterion it is difficult to decide whether the grating is resolved or not. For that reason it is
necessary to consider the effect of noise quantitatively.
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Figure 48 — The limit of resolution in a TOF-SIMS image of a series of square-wave gratings
with different periods

The SIMS image in Figure 48 shows a high contrast between regions of the test sample’s surface with
and without aluminium. However there may be cases (other test samples, other imaging methods) where
object and image contrast are not so high. For these cases contrast enhancement by image processing
might be useful. Effects of contrast enhancement are demonstrated by simulations of imaging displayed
in Figure 49. The image of the low contrast object in the second row of Figure 49 shows a very small
contrast and correspondingly it is very difficult to decide whether or not individual stripes are resolved.
The image contrast varies by 2 units of the 8-bit greyscale (0-255) for the narrow stripes and by 8 units
for the wide stripes, respectively. After contrast enhancement these contrasts vary by 39 units for the
narrow stripes and by 157 units for the wide stripes, respectively and all stripes are obviously resolved.
This situation substantially changes if noise is added to the image. With increasing noise it is more and
more difficult to resolve the stripes in the image. This holds true also for contrast enhanced images
because noise is enhanced, too. The fact that at first the narrow stripes disappear in the noisy images
clearly supports the assumption, that lateral resolution of an image is principally limited by the ratio of
the intensity variation in the image and the level of noise. For that reason the lateral resolution which .
includes the effect of noise is called “effective lateral resolution” further on. The concept of effective -
lateral resolution is quite different from the traditional concept of image resolution, which is restricted -
to the properties of the imaging system and does not include effects of noise and object contrast. ‘
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Figure 49 — The effect of noise and contrast on effective lateral resolution in images

Near the limit of resolution it is not always clear whether an image of a grating is resolved or not. In this
case it is convenient to improve the signal to noise ratio. This may be done by increasing the recording
time, but this is time consuming and possibly limited by the stability of the instrument parameters
(drift). An improved signal to noise ratio makes it more easy to decide whether an image of a grating is
resolved or not, but nevertheless an objective and quantitative resolution criterion is needed.

In the following paragraphs an option for a quantitative analysis of the image of a square-wave grating
is undertaken. It is based on numerical simulations of linescans over 3-strip gratings (A-B-A, cf. 4.4.1.1)
with a fixed ratio P/G = 2 (cf. 4.4.1.2).
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Figure 50 shows image profiles (line scans) which are simulated by the convolution of a square-wave
grating with a Gaussian line spread function (LSF). Figure 50a represents a case without noise where
a very small dip appears between the two maxima. This small dip may be successfully increased by
contrast enhancement leading to clearly resolved peaks. However, for a more realistic case with some
noise on the profile (Figure 50b) contrast enhancement fails because the dip between the peaks and the
amplitude of noise increase by the same factor. The conclusion is that the Dip-to-Noise Ratio (DNR) has
to be considered as an issue limiting the lateral resolution.
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Figure 50 — Image profiles calculated by the convolution of a square-wave grating (period
48 nm) and a Gaussian (wisr = 50 nm): a) without noise; b) noise added to the calculated
profile. A section of the profile is additionally shown on a stretched intensity scale. Contrast
enhancement corresponds to a multiplication of intensity data by 10
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4.4.2.1 Quantification of the dip

The dip D is the difference between the intensity of the maxima and the intensity of the minimum in
between in a line scan across the image of the grating. In the presence of noise the dip D is defined as

D = [(Imax1 * Imaxr)/2] = Imin (33)

where Imax 1, Imax r and Imin are the signal intensities of the left maximum, the right maximum and the
minimum in between, respectively. For a small number of sampling points per period Spp, for instance
only four, these values are to be taken directly from the measured line scan (Figure 51a).

Imax1, Imax r and Inin may be obtained by averaging over a selected range of the length scale (Figure 51b).
At first the regions for averaging must be defined. Because all stripes of the imaged grating have the
same width it makes sense to set up both maximum regions symmetrically to the minimum region. The
width of the three regions must be appropriately selected with careful consideration of the period of
the image profile and the strength of the noise. It must be wide enough to reduce the effect of noise by
averaging and it must be narrow enough that averaging does not reduce the dip artificially. Therefore
it must be assumed that the widths of the maximum and minimum regions should not exceed one-third
of the period in the image. In a second step the median values Iimax 1, Imax r and Inin will be determined
for each of the three intervals. The median is less sensitive to outliers than the arithmetic mean and
therefore the effect of noise on the values Imax 1, Imax r and Inin is handled more appropriately.

Another possibility to determine Imax 1, Imax r and Inmin and subsequently D is to smooth the whole
line scan (Figure 51c). Different smoothing procedures may be applied. Savitzky-Golay smoothing is
favourable for smoothing of noisy profiles, because it conserves the shape of the profile, characterized
by the dip D, better than adjacent averaging smoothing and FFT filter smoothing. To prevent a flattening
of the profile and a reduction of DNR an upper limit of smoothing points ny,x = Spp is recommended.

D= Imax\ + Imaxr _ Irnin
4 spp 44 spp 44 spp + smoothing
region of region of
left maximum right maximum

| S
region of
minimum

a b c

Figure 51 — Different methods for the determination of dip D. All examples were calculated by
the convolution of a square-wave grating (period 48 nm) and a Gaussian (wisr = 40 nm) with
subsequent addition of noise (Rs/n = 25). a) Direct determination of Iax 1, Imax r and Inin for small
values of sampling points per period Spp (here 4 spp)?). b) Iimax1, Imax r and Injn calculated as
medians (large black dots) from regions with 9 data points represented by black dots each. c)
Noise of b) was reduced by Savitzky-Golay smoothing over 21 points. Subsequently the values
Imax b Imax r and Ihin have been determined.

9) spp is the dimension unit of the variable Spp,
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4.4.2.2 Quantification of noise and noise reduction

We have stated before (cf. 4.4.2), that the dip-to-noise ratio is limiting the lateral resolution. Therefore a
quantitative measure of noise is needed. According to the definition of noise (cf. terms and definitions)
noise can be quantified by its standard deviation oy (N for noise).

The noise in a line scan across the image of a grating is composed of components with different
characteristics:

— Additive noise, often called dark noise, is independent from signal intensity (Figure 52, top).

— The stochastic nature of particle counting causes so called shot noise (Figure 52, middle). This
scatter of values can be described by the Poisson distribution and the corresponding standard
deviation is equal to the square root of signal intensity.

— Fluctuations of the primary beam and mechanical instabilities of parts of the instrument cause
noise which is proportional to signal intensity.

Often signals are superimposed by different types of noise (Figure 52, bottom). If the appearance of
intensity dependent noise cannot be excluded it is necessary to determine the standard deviation of
noise at a level of intensity which corresponds to the peak intensity of the two stripes.
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Figure 52 — Dark noise and shot noise on a simulated image profile over a square wave grating
(left) and at different levels of mean signal intensity /, (right). The noise was generated with
random numbers from a normal (Gaussian) distribution. The standard deviations of noise oy

are calculated for intervals with 100 values

Total noise may be quantified in a region of the image without any image structures where the standard
deviation of signal intensity is determined by noise only. If noise is normally distributed (Gaussian
noise), then about 68 % of the intensity values in the selected region are within the 2oy interval. This is
true only for an infinite number of measured values. In practice the standard deviation of noise must be
determined from a finite number n of values. Figure 53 shows the statistical spread of ony for intervals
with n = 30 samples. It reflects the uncertainty of on, which may be characterized by the standard
deviation oy, of onp. This standard deviation decreases with an increasing number of samples n within
the analysed interval. Figure 54 shows, that the standard deviation o, of ony, is inversely proportional to
n1/2, where n is the number of values per interval. The scatter of values around the straight line reflects
the limited number of intervals for which o, of onp was calculated. From Figure 54 the minimum number
n of samples within the analysed interval can be determined if a certain accuracy for onp is required. For
a standard deviation < 10 %, the value of oy must be determined from at least 40 samples.
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Figure 53 — The variation of oy for intervals with n = 30 samples
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Figure 54 — The relative standard deviation o, of on;, as a function of the number of samples n
per interval. o, (%) = (0n/0Nw) x 100

Using the quantitative definition of the dip D in a line scan across the image of a grating [Formula (33)],
the dip to noise ratio is defined as

D/oN = [(Imax1 + Imaxr)/2 - Imin]/ON (34)

where oy is the standard deviation of noise. However this definition suffers from the fact that the
number of sampling points per period has to be considered, too. A large number of sampling points per
period Spp allows the summation over neighbouring sampling points (channel pooling) and therewith
a reduction of noise. The summation over n sampling points, which corresponds to an n-fold increase
of the width of the measuring channel, leads to an increase of Rs/N and D/oy by a factor of nl/2. This
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possibility for improving D/on can be taken into account by replacing oy by the standard deviation of
the reduced noisel26]

oNRr= (4/Spp)1/20N (35)

The number 4 is an estimate of the minimum Spp for a reasonable determination of D as demonstrated in
4.4.3.4. At 4 spp the deviation of D due to the phase mismatch between sampling points and a noise-free
imaged grating profile is smaller than 30 % (cf. Figure 66).

The reduction of noise by the summation over sampling points is demonstrated in Figure 55. Summation
over 11 sampling points and subsequent division by 11 reduces oy by a factor of 3.67 which is close to the
predicted value 111/2 = 3.32, whereas D is only slightly changed. As a result D/oy increases considerably
and the resolution is improved. For comparison the same profile sampled with 4 spp is shown (Figure 55,
right). The profile is strongly influenced by noise and therefore the values of D vary over a wide range. In
the given example both values of D/oy are greater than the corresponding values in the 44 spp profile.
Nevertheless the visual impression of resolution is better in the 44 spp profile, where the two stripes
of the grating are clearly separated whereas in the 4 spp profile the dip between the stripes could be
caused by noise. This result confirms that the ratio of dip to reduced noise, given by

RD/RN=D/0NR=D/(0N(4/5PP)1/2) (36)

is the right value for the decision whether the stripes of a square-wave grating are separated and
therewith resolved or not. Calculation of reduced noise by taking into account the number of sampling
points per period reflects the potential of noise reduction. As a consequence it is not necessary to carry
out an averaging procedure, because numerical treatment does not increase the information content of
a measured grating profile.
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Figure 55 — The effect of the number of sampling points per period Spp on the dip to noise
ratios D/on and D/ongr. The profiles were simulated by convolution of two square-wave gratings
(period 48 nm) with a Gaussian LSF (wsr = 40 nm) and subsequent addition of Gaussian noise
(Rs/N = 17). on was calculated from 300 values (44 spp) and 28 values (4 spp), respectively. D
was calculated from medians over 11 values (44 spp), according to Figure 51 b), and single
values (4 spp), according to Figure 51 a), respectively. The values in parenthesis are mean
values and standard deviations calculated from 6 grating profiles with different sets of noise

4.4.2.3 Definition of a dip-to-noise ratio based resolution criterion

The definition of a resolution criterion using line scans across the image of square-wave gratings utilizing
the ratio of the dip to the reduced noise is somewhat arbitrary because it depends on the required
statistical significance. Nevertheless the criterion must set a threshold high enough to separate noise-
induced intensity variations from those which are related to the square-wave grating of the object pattern.
Therefore a new resolution criterionl26] based on the ratio of dip D to reduced noise ongR is proposed

Rp/rn=D/0Ng 2 4 (37)

The value 4 was chosen because pure Gaussian noise sometimes shows “dips” which exceed 3onr.
The given criterion is close to the Rose criterion which states that an object is readily detectable if
the corresponding signal difference is at least 5 times the noise.[2Z] In electron microscopy the Rose
criterion was defined as “condition for an average observer to be able to distinguish small features in
the presence of noise, which requires that the change in signal for the feature should exceeds the noise
by a factor of at least three”[3]. Threshold values of 4 on[28] and 5 oyn[29] were used in transmission
electron microscopy and 3 oy in light microscopy,[30] respectively.
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The utility of the resolution criterion was tested with simulated line scans of square-wave gratings of
different periods. The resulting line scans were superimposed with different levels of additive noise.
Furthermore the sampling step width and therefore the number of sampling points per period was
varied (cf. Figure 56). Using the criterion Rp/rN = 4, 13 from a total of 18 grating images displayed in
Figure 56 can be considered to resolve the grating.

Spp=5

Op=5 /\/\
Rsm—100

i
\//m {m\v Sl\h [284\/576\/986L

cN=2ofﬂﬁr¥JEk /\;K
Rsn=25 x { /

\j ol f

grating period (nm) 44 48
step width (nm) 7 1

Figure 56 — Line scans calculated by the convolution of square-wave gratings with periods of
44 nm, 48 nm and 52 nm, respectively and a Gaussian with a FWHM of 40 nm. The sampling
step width is 7 nm (left) and 1 nm (right), respectively. The number of sampling points per
period Spp given on top is related to the image period which is somewhat smaller than the
original grating period for 3-stripe gratings (cf. 4.4.1.1 and Annex A). The added noise was
generated with random numbers from a normal (Gaussian) distribution. Its standard deviation
on and the corresponding signal-to-noise ratio Rs/n are given at the left. For each imaged
grating Rp/rn according to Formula (36) is given. For the upper left line scan and for the values
given in brackets (middle left) the dip D was determined according to Figure 51 a). For the
middle and bottom line scans on the left side D was determined from medians over 2 points
according to Figure 51 b). For the right set of line scans the dip was determined from medians
over 7 points (top), 9 points (middle) and 11 points (bottom), respectively [cf. Figure 51 b)]. The
framed values of Rp/rN are above the resolution threshold Rp/rN = 4
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4.4.2.4 Determination of effective lateral resolution by a combination of interpolation and
extrapolation

The simplest method for the determination of effective lateral resolution re from an image or an image
profile is to take the period P of the finest resolved grating as the value of effective lateral resolution

re=P1 (38)

The accuracy of this method may be sufficient if the test sample has a series of very fine graded gratings.
For grading factors q = Pn+1/Pn > 1.2 the accuracy of this method is not sufficient for most purposes (cf.

Figure 67).

According to the criterion (Formula 37) the effective lateral resolution is equal to the grating period
P which corresponds to Rp/rn = 4. Therefore the intersection of the curves Rp/rn (P) and Rp/rN = 4
correspond to the value of effective lateral resolution re. The curve Rp/rn (P) has a sigmoid shape (cf.
Figure 57 b) and therefore linear interpolation between the period of the finest resolved grating P
and the period of the first non-resolved grating Pp may give no satisfying result. In most cases the
interpolated value Pjy¢ is smaller than rg, in particular if Pg is much smaller than re (cf. Table 6).

Linear extrapolation of the straight line between the periods P; of the first resolved grating and P, of
the second resolved grating to the line Rp/rN = 4 gives an intersection at Pext. In most cases the value
of Pext is larger than the effective lateral resolution re (cf. Table 6), because the slope of the straight line
P1-P7 is larger than that of Py-P1 (cf. Figure 57 b).
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Figure 57 — a) Simulated line scans over a series of gratings with different periods. Py is the
period of the largest non-resolved grating. P1 and P; are the periods of the first and second
resolved grating, respectively. The line scan was simulated by convolution of 3 square-wave
gratings with a Gaussian LSF (wisr = 40 nm) and the subsequent addition of Gaussian noise
(Rs/N = 25). The sampling step width is 4 nm. The dip-to-reduced-noise ratios Rp/rn have been
calculated according to Formula (36). b) Determination of lateral resolution r. by interpolation
(Pint) and extrapolation (dashed line to Pext) to Rp/rN = 4. The small dots connected by a thin line
correspond to the ideal values of Rp/rn(P) without the effect of noise on the determination of
the dip D. The open circles are data points (P, Rp/rN) corresponding to the three gratings shown
in Figure 57 a). The deviations of Rp/rn (P1) and Rp/rn (P2) from the ideal curve are due to a
slight reduction of the dip D by the calculation of medians according to Figure 51 b).

The tendencies of underestimation of re by interpolation and overestimation of re. by extrapolation
partly compensate each other if re is calculated from the arithmetic mean

re= (Ping +Pext)/2 =Py~ ¥ (R~ 4) [(PL=Py)/(Ry ~Rg) + (P,~P1)/(Ry~Ry)] (39)

For the sake of simplicity Rp/rN is represented by R in Formula (39). It is an important criterion for
the usefulness of a calculation method that the calculated value of effective lateral resolution is to a
large extent independent from the grating periods Py, P1 and P; of the test sample. Table 6 shows the
effective lateral resolutions calculated from simulated linescans over six series of gratings with very
different periods. For series 1 to 4 the calculated values of re differ less than 5 % from the true value.
This shows that the results of Formula (39) are nearly independent on a shift of grating periods and a
slight increase of the grading factor. The strong deviations of re calculated from series 5 and 6 are due to
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- Py which lead to strong deviations of Pjyt (series 5) and Pext (series

6) from re, respectively. The effect of the small slopes at both sides of the sigmoid function Rp/rn (P)
can be avoided if Py is not too small and P; is not to large. Therefore the application of Formula (39) is
recommended for test samples with a grading factor

q< 1.8

(40)

Table 6 — Calculation of effective lateral resolution r. from simulated linescans. r. has been
calculated according to Formula (39) from series of gratings which differ in their periods Py, P1,
and P;. Series 3 corresponds to the line scan shown in Figure 57a. The simulated measurement

conditions for all linescans are the same: Gaussian LSF with wisr = 40 nm, Rs/n = 25 and

sampling step width S,y = 4 nm. Ar; is the deviation of r from its true value 44.2 nm which was
calculated from Table 8. Ar. does not include the uncertainties caused by the uncertainties of
grating periods P and dip-to-reduced-noise ratios Rp/rn (cf. 4.4.4).

series |grad. factor| grating periods calculated values true value deviation

of q= Pnd-‘lfpn PD P1 P2 Pint Pext Fe = (Pint + Pext) 12 le Are Are

|gratings nm | nm | nm| nm | nm nm nm nm %
ser. 1 1.5 32 48 72 | 41.1 | 46.0 43.6 44.2 -0.7 -1.47
ser. 2 =14 40 56 78 | 42.7 | 46.9 44.8 44.2 0.6 1.32
ser. 3 =1.7 32 56 96 | 37.6 | 47.2 42.4 44.2 -1.8 -4.07
ser. 4 =1.8 40 72 | 128 | 42.4 | 44.3 43.4 44.2 -0.9 -1.92
ser. 5 2 32 64 | 128 | 36.1 | 44.7 40.4 44.2 -3.8 -8.60
ser. 6 2 40 80 | 160 | 42.2 | 33.1 37.7 44.2 -6.6 | -14.82

™ ICN T7N12 ATl
Copyright International Organization for Standardization
Provided by IHS under license with ISO
No reproduction or networking permitted without license

rights reserved

from IHS

Licensee=University of Alberta/5966844001, User=sharabiani, shahramfs

Not for Resale, 11/30/2013 22:34:21 MST

73



ISO/TR 19319:2013(E)

Rom=311.2

Rom=17.3 Rom=77.8

R=32nm PB=56nm B,=96 nm

Figure 58 — Simulated line scans over the same series of gratings with different signal-to-noise
ratios Rs/N. Py is the period of the largest non-resolved grating and P; and P; are the periods
of the first and second resolved grating, respectively. The line scans have been simulated by
convolution of a series of square-wave grating with a Gaussian LSF with wi s = 40 nm and the

subsequent addition of Gaussian noise. The sampling step width is 4 nm. Dip-to-reduced-noise

ratios Rp/rN and effective lateral resolutions re have been calculated according to Formulae (36)

3 and (39), respectively.

The calculation of lateral resolution re according to Formula (39) is demonstrated for three simulated
linescans over the same gratings with different signal-to-noise ratios Rs/n (cf. Figure 58). Without
interpolation and extrapolation the value of effective lateral resolution corresponds in all three linescans
to the period P; = 56 nm of the finest resolved grating. The calculated values of re are considerably
smaller than that value and confirm the usefulness of the calculation method.

4.4.3 Determination of the contrast transfer function CTF

The contrast transfer function CTF characterizes the frequency response of an imaging system to a
square-wave grating by the correlation of the image contrast c;j to the object contrast c, measured as a
function of spatial frequency k:

CTF (k) = ci/co (41)

kis the reciprocal of the period P of the imaged square-wave grating (cf. 4.1.5).

For imaging by scanning instruments CTF, LSF and ESF are determined by the width and shape of the
probing beam and by beam-sample interaction, e.g. electron scattering in the sample, as well. This
physical meaning is rather obvious for LSF and ESF (cf. 5.2.2) whereas the advantage of the CTF is
to straightforwardly reveal the limit of lateral resolution (cf. Figure 62) and to give a more complete
description of the imaging process. Therefore the CTF and, in the macroscopic range, the MTF (cf. 4.1.4
and 4.2.6), were used to characterize the performance of imaging instruments.[8.10]
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In the high frequency range near the cut-off frequency at c¢; = 0 the image contrast and therewith the
CTF of 3-stripe gratings is somewhat smaller than those of gratings with 7 or more stripes (cf. 4.4.1.1).
However 3-stripe gratings are a favoured layout because they need a minimum of space on the test
sample’s surface and enable a maximum number of different gratings in the field of view of the imaging
instrument. Because this is rather an important advantage for the determination of the CTF, only this
type of grating is considered here. All simulations have been done for 3-stripe gratings with three
stripes of the same width and a period/gap ratio of Pgy/G = 2 (cf. 4.4.1.2).

4.4.3.1 The effect of the line spread function on image contrast

The line spread function LSF (cf. 4.1.2) and the contrast transfer function CTF reflect the same aspects of
imaging performance. The LSF does that as its spatial representation and the CTF is its representation in
the spatial frequency domain. There is a unique relation between both functions. However, for square-
wave gratings this relation is not as simple as for sine-wave gratings, where one function is the Fourier
transform of the other (cf. Figure 7).

Figure 59 shows the effect of width and shape of the LSF on the CTF. Values of image contrast c; were
determined from the images of 9 gratings of different periods.

Two types of LSF were used for the simulation of imaging. The Gaussian function may be used to describe
the intensity distribution within a beam of light or particles. The Lorentzian function has long tails and
is particularly suitable for the simulation of imaging of strongly scattering materials. The comparison of
imaging with Gaussian and Lorentzian LSFs shows that the quality ofimagesin terms of resolution depends
not only on the halfwidth of the LSF but also on its shape. It is not easy to decide whether a Gaussian
or a Lorentzian LSF result in a better image quality. At large periods (small frequencies), the Gaussian
LSF gives a higher image contrast, but at small periods (high frequencies) the Lorentzian LSF gives a
higher image contrast and therefore better lateral resolutions. Hence it follows that the performance of an
imaging instrument cannot be described completely by a single parameter like the wy,sF.

Nevertheless lateral resolution is the most important parameter and can be determined as the reciprocal
of the cut-off frequency in the CTF. The cut-off frequency is the smallest spatial frequency where c;j = 0.
Moreover it corresponds to the information limit, which is the highest spatial frequency at which
information is transferred from object to image. The term information limit was introduced previously
in transmission electron microscopy.[31-34]

4.4.3.2 The generalized CTF

Foragivenshape ofthe LSF the image contrastcjinaline scan across asquare-wave gratingis determined
unequivocally by the ratio of the wisr to the grating period Pgr. This is clearly visible in Figure 59. For
instance ¢; = 0.52 was found for Pgr = 400 nm imaged with a Gaussian of wisg = 200 nm but the same
image contrastis obtained with Pgr = 100 nm imaged with a Gaussian of wisr = 50 nm. As a consequence
it is possible to establish a generalized CTF where the wsg/Pgr ratio constitutes the abscissa. Figure 60
shows generalized CTFs for three types of LSF (cf. 4.2.1). The cut-off of the generalized CTF gives the
dimensionless quantity wysp/Pgr at which the image contrast drops to zero (cf. Figure 60). It may be
converted to a spatial frequency by division by wysr.

Table 7 gives the corresponding values of the generalized CTF.
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Figure 59 — Simulation of imaging by convolution of a square-wave grating with different line
spread functions (LSF) and calculation of the CTFs.[26] ¢, - object contrast; c; - image contrast;
wisr - full width at half maximum of the LSF
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Figure 60 — Generalized CTFs for three types of LSF (cf. 4.2.1)
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Table 7 — Values of the generalized CTF for three types of LSF (cf. 4.2.1)

w LSFI Pgr Ci I Co
Gaussian | Lorentzian | Ps-Voigt (0.5)
0 1 1 1
0.0333 1 0.946 0.973
0.0833 1 0.856 0.929
0.125 1 0.785 0.895
0.179 0.998 0.696 0.852
0.217 0.987 0.633 0.817
0.250 0.963 0.585 0.782
0.275 0.936 0.545 0.752
0.333 0.845 0.465 0.667
0.357 0.802 0.441 0.633
0.393 0.732 0.400 0.578
0.464 0.591 0.326 0.469
0.500 0.523 0.293 0.418
0.550 0.434 0.252 0.352
0.600 0.353 0.216 0.292
0.650 0.281 0.184 0.238
0.714 0.202 0.149 0.179
0.786 0.132 0.117 0.125
0.857 0.079 0.090 0.084
0.929 0.041 0.068 0.052
1.000 0.016 0.050 0.030
1.100 0.0005 0.031 0.010
1.250 0 0.013 0.00004
1.300 0 0.0089 0
1.429 0 0.0023 0
1.571 0 1.60E-06 0
2.000 0 0 0

wisk/Pgr is a dimensionless quantity. The division of this quantity by wisr convert it back to spatial
frequency again and enable the calculation of families of CTF curves on different scales of spatial
frequency as shown in Figure 61 for a Gaussian LSF. These families of CTF curves may be used to fit
experimental data and therewith to characterize type and width of the LSF. The value of wisr must
be selected in such a way that a CTF in the interesting region of spatial frequency will be created. One
possibility is to use an estimated wysr. Another possibility is to use the reciprocal of the period of a
square-wave grating of the test sample.
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Figure 61 — CTFs for Gaussian LSFs of different wy sr. The c; /c, values were taken from Table 7
and the corresponding k values were calculated by division of the wi sr/P values from Table 7 by
different values of wy sp

4.4.3.3 CTF and the effective cut-off frequency

Figure 60 shows the cut-off of the generalized CTF. After conversion of the generalized CTF to a CTF for
a defined wp,sF this cut-off is converted into a cut-off frequency which corresponds to the reciprocal of
the threshold of resolution in the absence of noise. In practice, noise is a limiting factor of resolution
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and, therefore, in the following we introduce an effective cut-off frequency covering the effect of noise.
According to Formula (41) the CTF is defined by

Co Co Imax+1min

CTF:ﬁ:i[lmaX_Imin ] (42)

With the dip D = I;max - Imin and the mean intensity Iy = (Imax + Imin)/2 it follows from Formula (42)

a_ D (43)

Co 2Colm

The definition of D/onR in Formula (36) and the resolution criterion (37) lead to the dip at the threshold
of resolution DThR

Dew = 8oy
ThR =
\VSpp

When Dthpr is inserted into Formula (43) it follows

Ci 4'0-N
Ci _ (45)
[CO lhR Colm/Spp
which gives the CTF at the threshold of resolution. With the signal-to-noise ratio Rs/N = Im /oN,
Formula (45) may be written as

(44)

Ci _ 4
€o hnr  CoRs/N+/Spp

The number of samples per period may be expressed by the sampling step width S,y and the period P of
the imaged grating

(46)

P
Sop =—— 47
PP S (47)

Then Formula (46) takes the form

. 4,S, /P
G| MSW/P (48)
Co hrhr CORS/N

Formula (48) can be displayed as a function of spatial frequency k=1/ P

. 4.8k
S (k)=——— (49)
Co hR CoRS/N

The intersection of (cj /co)Thr (k) and CTF (k) gives the effective cut-off frequency (cf. Figure 62), which
depends on the shape and width of the LSF, signal-to-noise ratio, and the ratio of sampling step width to
grating period. This cut-off frequency is called effective because it corresponds to an effective limit of
resolution which takes into account the experimental conditions, in particular noise. Spatial frequencies
above the effective cut-offfrequency were not transferred from object toimage and therefore the effective
cut-off frequency corresponds to an effective information limit. The effect of noise on the information
limit has been discussed with respect to transmission electron microscopyl2835] and piezoresponse
force microscopy.[36]
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Figure 62 — Determination of effective cut-off frequencies for three sets of experimental
conditions according to line scans given in Figure 56 (bottom left and middle left and right).
(A): Rs/N = 10, Sw = 7 nm; (B): Rs/n = 25, Sw = 7 nm; (C): Rs/N = 25, Sw = 1 nm. The CTF was calculated
for a Gaussian with wysp = 40 nm. Different curves (cj/co)Thr(k) were calculated according to
Formula (49). k = 1/P is the spatial frequency. Rs/\ - signal-to-noise ratio, S, - sampling step
width, P - grating period; c; and ¢, - image and object contrast, respectively

Effective lateral resolution re is the reciprocal of the effective cut-off frequency. This definition enables
a more accurate determination of lateral resolution than the application of the criterion D/ongr 2 4 to
images of distinct gratings (cf. Figure 56), because the determination of the effective cut-off frequency
takes into account interpolated values of the CTF between spatial frequencies of different gratings.

In Figure 62 we demonstrate the determination of the effective cut-off frequency for three line scans
taken from Figure 56 (bottom left and middle left and right). They differ in signal-to-noise ratio Rs/N and
sampling step width Syy. At first the generalized CTF (taken from Table 7) is transformed to a CTF for a
Gaussian LSF with a wi,sg = 40 nm. Then the threshold of resolution (cj /co)ThR (k) is calculated according
to Formula (49). At high spatial frequencies (ci/co)ThR is progressively increased by multiplication with a
correction factor which takes into account the reduction of the period in the image of a 3-stripe-grating
near the limit of resolution (cf. Annex A). The effective cut-off frequencies of 19.2 ym-1, 22.0 pm-1 and
24.1 pym-1 correspond to effective lateral resolutions of 52.1nm, 45.5 and 41.5 nm, respectively. These
results are in good agreement with the estimation of lateral resolution based on Figure 56. '

An analytical solution for the calculation of the intersection between (c;j /co)Thr (k) and CTF (k) does not
exist. Therefore we presentin 4.4.3.4 a graph and a table for the effective lateral resolution r normalized
to wisr and its relation to the normalized effective signal-to-noise ratio (Rs/n/Swl/2) wispl/2, where
Rg/N is the signal-to-noise ratio and S,y is the sampling step width. For the case that noise is pure shot
noise caused by counting statistics, for instance SIMS (cf. the application example in 4.4.5), then noise is
determined by Rs/n = I/I1/2 = [1/2 and the resolution is determined by (I/Sw)1/2 wysgl/2.
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4.4.3.4 Relation between effective lateral resolution and signal-to-noise ratio

Lateral resolution r¢ is the reciprocal of the effective cut-off frequency. The latter is the intercept of
(ci /co)ThR (k) and CTF (k) and depends on shape and width of the LSF as well as on signal-to-noise ratio
and sampling step width (cf. 4.4.3.3). The intercept of the curves and therewith the effective lateral
resolution cannot be calculated analytically. Therefore the relation between the normalized effective
lateral resolution re/wysr and the normalized effective signal-to-noise ratio (RS/N/Swl/Z) wispl/2 is
presented. wisr is the full width at half maximum of the LSF, Rs/n is the signal-to-noise ratio and Sy
is the sampling step width. Figure 63 and Table 8 give this relation for Gaussian and Lorentzian model
functions for the LSF.

The intervals between the values have been chosen in such a way that linear interpolation in the intervals
provides values of sufficient accuracy. At small values of the normalized effective resolution the curves
are asymptotic to the value of resolution in the absence of noise which is determined by the Sparrow
criterion (cj > 0). The Lorentzian LSF has a much better resolution (smaller values of re/wy,sg) under good
experimental conditions (large values of (Rs/N /Swl/2)wysFl/2) than the Gaussian LSF. This difference
reflects the fact, that a Lorentzian peak is narrower at the top than a Gaussian peak with the same wisr.

The normalized values in Table 8 and Figure 63 enable the calculation of the effective lateral resolution
re from the experimental parameters wysg, Rs/N and Sy and vice versa the determination of experimental
parameters which are necessary to obtain a required value of re. The latter case will be demonstrated
for a Gaussian LSF with wisp = 40 nm. A required resolution re = 48 nm corresponds to a value re /
wisF = 1.2. The corresponding value from Table 8 is

(Ro/n /S "/ Jwise /% = 397 (50)

Inserting wi,sg = 40 nm it follows

Rs/N/(Sw)1/2 =39.7/401/2 = 6.28 nm"1/2 (51)

For sampling step widths of Sy, = 7 nm (Figure 56, left part) and Sy = 1 nm (Figure 56, right part)
the experimental parameters given in Table 9 fulfil Formula (51). These values are in agreement with
the results shown in Figure 56, where a grating with a period of 48 nm is well resolved at Rs/n = 10
and Sy = 1 nm whereas at Sy, = 7 nm the threshold of resolution requires a signal-to-noise ratio of
10 < Rg/n < 25.
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Table 8 — Normalized effective lateral resolution ro/w sr and the corresponding values of
normalized effective signal-to-noise ratio (Rs/n/Sw1/2)wisr1/2 for Gaussian and Lorentzian LSFs.
(I/Sw)1/2 wi sp1/2 is the parameter for pure shot noise

relwise (Rsm ! Swm) W'l_SF”2
for pure shot noise: (I / Sy,)"* w g~
Gaussian LSF Lorentzian LSF
0.68 5848
0.70 2801
0.72 1684
0.74 1109
0.76 741
0.78 538
0.80 408
0.82 326
0.84 262
0.86 217
0.88 184
0.90 159
0.92 5000 138
0.94 1563 120
0.96 714 107
0.98 435 952
1.00 294 858
1.02 206 8.7
1.04 156 71.4
1.06 123 65.0
1.08 99 59.7
1.10 82.3 55.0
1.12 68.3 511
1.16 51.3 44 3
1.20 39.7 39.1
1.24 31.9 34.7
1.28 26.5 31.2
1.32 222 28.0
1.36 19.0 255
1.40 16.6 23.3
1.50 12.5 19.2
1.60 10.0 16.2
1.70 8.25 13.9
1.80 7.03 12.2

Table 9 — Experimental parameters for an effective lateral resolution of 48 nm calculated
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Figure 63 — Relation between normalized effective lateral resolution r./w|sr and normalized
effective signal-to-noise ratio (Rs/n /Sw!/2)wysp1/2 for two types of LSF.[26] Open symbols -
Lorentzian LSF; closed symbols - Gaussian LSF

In the case of pure shot noise the required signal intensity for a given resolution can be calculated from
Table 8 also. For the same parameters used above it follows

(I/Sw)1/2 = 39.7/401/2 = 6.28 nm1/2 (52)
The iijtensities given in Table 10 yields a resolution of 48 nm for the step widths Sy, used.

Tabife 10 — Required intensities for an effective lateral resolution of 48 nm in the case of pure
: shot noise calculated from Table 8

W g (nm) Sy (nm) | (counts)
40 1 39
40 7 276

4.4.3.5 The effect of scanning step width on image contrast

Mostimaging methods in surface chemical analysis are based on scanning procedures. For these methods
the quality of resulting images is substantially determined by the scanning step width used. Scanning
step width issues in relation to signal-to-noise ratio were considered with respect to their relevance to
image contrast and lateral resolution in 4.4.2.3 and 4.4.3.3. In the following the effect of scanning step
width on image contrast is analysed neglecting noise. For imaging of gratings it is useful to express
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the scanning step width as the number of sampling points per period Spp. Figure 64 demonstrates the
effect of the scanning step width for the imaging of a square wave grating. Imaging was simulated by
convolution of a 7-strip grating with a Gaussian LSF. The quality of imaging is characterized in terms of
the related image contrast c;j (for definition, cf. Figure 46). This analysis reveals the following:

1. By increasing the number of sampling points per period Spp the image quality is improved and the
image contrast cj can be determined more correctly.

2. For small numbers of sampling points per period, e.g. 4 as displayed in Figure 64, the image contrast
strongly depends on the phase relation between sampling and image profile. A phase shift of a half
scanning step width may vary the value of the image contrast from a maximum (cj = 0.523) down to
a minimum (c; = 0.370), which is in that case an underestimation of 30 %.

3. If the ratio of the grating period to the scanning step width is an integer (e.g. 4 spp and 20 spp,
respectively, in Figure 64), then sampling is in a fixed phase relationship with the image profile. In
that case the measured image contrast yields the same value for all imaged periods of the grating.
If this ratio is not an integer (e.g. 5.88 spp and 7.69 spp, respectively, in Figure 64), the measured
image contrast varies from period to period. This variation decreases with increasing Spp.

¢,=0.523

c;=0. 476 =0.518 c;=0.505
—qu—shlft c =0. 370
1
4spp ;|_L e
c;= 0507 c 0.521 c¢;=0.521

7.69spp 20 spp

Figure 64 — Effect of scanning step width, expressed as Spp (sample per period), on image
contrast c;. Imaging of a square-wave grating with a period of 100 nm was simulated by
convolution with a Gaussian LSF (wisr = 50 nm). The black circles are the calculated image
points. The phase shift between the values in the two images with 4 spp is 1/2 scanning step
width (1/8 period)

The effects described by 1. to 3. can be minimized by choosing Spp as large as possible in an experiment.
However, for a determination of the CTF it is necessary to simultaneously image a complete set of
gratings which may give only a small value of Spp for the grating with the smallest period. To quantify
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the effect of Spp on c; the imaging of a 3-stripe grating by convolution with a Gaussian LSF was simulated
in Figure 65. For given Spp the worst case with respect to the resulting c; is given at the top, the best case
on the bottom. All possible values of c; are found in between those extreme values. For even numbers
of Spp the deviation of a measured c; from its value measured at a large value of Spp may be zero. In this
case sampling points hit the maxima as well as the minimum (Figure 65 for 4 spp and 6 spp). For odd and
fractional numbers for Spp, there is always an underestimation of c;. Figure 66 enables the determination
of the minimum number of sampling points per period for a required accuracy of image contrast. For
instance, maximum deviations of 10 % and 5 % require at least 6.5 spp and 9 spp, respectively.

3spp 4spp 5spp 6spp
c;=0.354 c;=0.380 c;=0.456 c;=0.456

minimum
contrast
Cj

maximum ||
contrast |
Ci

Figure 65 — The effect of phase shift between grating and sampling points on image contrast
ci for different scanning step widths (Spp: samples per period). The upper row shows the worst
case (minimum contrast) and the lower row shows the best case (maximum contrast) imaging.

Imaging of the grating with a period of 120 nm was simulated by convolution with a Gaussian
LSF (wLsr = 60 nm). The calculated image points (black circles) are connected by step functions

(thick lines). The thin lines are image profiles with 120 spp
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Figure 66 — Maximum (circle) and minimum (square) deviation of image contrast c; from
the value measured at large values of Spp. White symbols were calculated for the case given
in Figure 65 (ci max = 0.523). The black circles were calculated for a low resolution case with a
grating period of 120 nm and a 100 nm FWHM Gaussian LSF giving a maximum image contrast
of ¢j max = 0.095

4.4.4 Requirements for test samples and accuracy of measurement
The accuracy of the effective lateral resolution r,

The value of effective lateral resolution re as well as its accuracy, expressed as the expanded uncertainty
U(re), depend on measurement conditions like noise and sampling step width. The accuracy for the
determination of effective lateral resolution will be discussed for two methods: 1) Visual inspection of
an image of a series of gratings and 2) determination by interpolation/extrapolation from a line scan
over atleast three imaged gratings (cf. 4.4.2.4). The determination of effective lateral resolution from the
effective cut-off frequency (cf. 4.4.3.3) will not be discussed here, because this method is time-consuming
and its accuracy is comparable to that of the less time-consuming interpolation/extrapolation method.

Determination of effective lateral resolution by visual inspection of the image

The simplest method for the determination of effective lateral resolution is the visual identification
of the finest resolved grating from of a series of gratings (cf. 4.4.2.). Effective lateral resolution can be
determined directly during measurement and corresponds to the period of the finest resolved grating,
see Formula (38).

This method is easy and quick to perform and therefore it is a favoured approach in practical surface
analysis. Nevertheless this method has two drawbacks:

1. The decision whether a grating is resolved or not is subjective.

2. The accuracy of effective lateral resolution is limited by the difference between the period of the
finest resolved grating P1 and the period of the first non-resolved grating Py.

The value re = P1 is an upper estimate of effective lateral resolution. The true effective lateral resolution
may be better (i.e. the true value of r may be smaller than P1), but this deviation Are cannot be quantified
with this method. From a statistical point of view the deviation Are is an uncertainty of re, but the
asymmetric interval Are extends only to smaller values of re (better resolutions) and therefore it is not
an uncertainty of re in its usual meaning.
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The maximum deviation of effective lateral resolution0) Are max can be used to characterize the accuracy
of the determination of effective lateral resolution by visual inspection:

e

Ar," ¥ = —(P—Py) (53)

A more general measure of accuracy is the relative maximum deviation

which depends only on the grading factor g = P1/Po of the test sample (cf. Figure 67).

Correspondingly the accuracy of effective lateral resolution can be improved by decreasing the grading
factor q of grating periods of the test sample. This approach has three limitations:

1. A decrease of the grading factor reduces the range of grating periods within the field of view of the
instrument and therewith the covered range of effective lateral resolution.

2. Finely graded grating periods must have a high accuracy.

3. At high levels of noise and finely graded grating periods (small values of q) it may be difficult to
decide whether a grating is resolved or not.

The optimum range of the grading factor for visual inspection of effective lateral resolution is
1.2 <q< 15 (55)

The estimation of effective lateral resolution re and its maximum deviation Aremax is demonstrated for
two examples given in Figures 72a and 72b, respectively:

from Figure 71a: re = 193 nm, 4.emax = =57 nm
from Figure 71b: re = 136 nm, Are¢max = -39 nm

The relative maximum deviations Aremax/re of =29.5 % [from Figure 72 a)] and -28.7 % (from Figure 72b),
respectively, are within the 23 % to 33 % interval (grey shaded area in Figure 67) which is determined
by the range of grading factors q of the used certified reference material BAM-L200.

The uncertainty, in its usual meaning, of lateral resolution established by visual inspection of the grating
images is determined by the uncertainty of the period of the finest resolved grating

U(re) =U(Py) (56)
and depends on the quality of the test sample and its certification. The uncertainty of a grating period
should be smaller than the distance between consecutive gratings

U(Py) < (Pr=Pp) (57)

10) The deviation due to the uncertainty of certified grating periods of the test sample (see below) is not included.

11) The general definition of the grading factor is q = Pp+1/Pn, where Py.1 > Py are periods of consecutive gratings in
a series. The grading factor may vary within a series of gratings and then re and Are must be calculated with P1 and
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Figure 67 — The relative maximum deviation Ar.max/r, of effective lateral resolution r. as a
function of grading factor g calculated from Formula (54). The uncertainty of grating periods
is not included. The grey area marks the region of g-values of the certified reference material

BAM-L200 which was used for the experimental examples given below

Determination of effective lateral resolution by a combination of interpolation and extrapolation

This method (cf. 4.4.2.4) is based on the analysis of a linescan over a series of gratings and enables
a more accurate determination of effective lateral resolution re than the visual inspection of imaged
gratings. The interpolation-extrapolation procedure (cf. Figure 57) is based on three points of the
curve Rp/rN (P), where Rp/rN is the dip-to-reduced-noise ratio obtained from a linescan and P is the
corresponding grating period.

Four sources of uncertainty must be considered with respect to the uncertainty of re:

1. The uncertainties of the dips D, depending on the signal-to-noise ratio Rs,N of the line scan and the
number of samples per grating period.

2. The uncertainty of noise o, depending on the number of points from which oy has been determined
(cf. Figure 54).

3. The uncertainty of grating periods P of the test sample.

4. The uncertainty of the interpolation-extrapolation procedure itself, depending on the grading factor
q and the relation between grating periods and the width of the line spread function wisr.

Propagation of uncertainties into the final uncertainty of r has been studied by Monte Carlo simulation.
The simultaneous variation of the variables Rp/rN (Ro, R1 and Rz in Formula (39)) and P (Po, P1, and P2
in Formula (39)) yields a more realistic value of the uncertainty of re than the separated analysis of the
influence of variables with the subsequent combination of uncertainties. The values of Rp/rn and P have
been varied randomly (Gaussian distribution) and re has been calculated according to Formula (39) for
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different sets of gratings, different signal-to-noise ratios Rs/N and different uncertainties of the grating
periods P. For the variation of the variables Rp/rN and P realistic standard deviations have been used.

The standard deviations (D) for different gratings and 3 values of Rs/n have been determined from
simulated linescans with different sets of added noise. The relative standard deviation O'(D)/D varies

between 0.5 % (at Rs/n = 100, large value of D) and 160 % (at Rs/n = 10, small value of D).

The relative standard deviation of noise G(GN)/ﬁN has been chosen as 10 % for all linescans. This
value corresponds to the determination of oy from 40 measured values (cf. Figure 54).

The relative standard deviation of grating periods O'(P)/I_’ has been taken from the certificate of the

test sample BAM-L200.[6] 2.5 % corresponds to the relative standard deviation of P in the 100 nm region
and 5 % corresponds to the relative standard deviation of P in the 10 nm region, respectively.

The Monte Carlo simulation yields the standard deviation of effective lateral resolution o(re) and the
systematic deviation Are = re — retrue, where retrue has been taken by interpolation from Table 8. The
systematic deviation Are originates from the determination of re by the interpolation-extrapolation
method (cf. Table 6).

According to the GUM approachl22] the quadratic addition of different components, here the random
deviation and the systematic deviation, gives the combined expanded uncertainty.

Uc(re) = {[20(re)]? + (Are)?} %2 (58)

The coverage factor k = 2, which corresponds to a coverage probability of approximately 95 % for a
normal distribution, has to be applied only to the random components of uncertainty and therefore Are
is not expanded. Table 11 shows 9 examples for the calculation of U¢(re¢) from the results of the Monte
Carlo'simulation.

The calculated values of Uc(re) for an example with a Gaussian line spread function with wysg =40 nm (cf.
Figures 56-58) are shown in Figure 68. The selected signal-to-noise ratios of 100, 25 and 10 correspond
to very good, mean and poor experimental conditions as shown in Figure 58. For every value of the
grading factor q different series of gratings were used for the calculation of the uncertainty U¢(re). In
accordance with the interpolation-extrapolation method described in 4.4.2.4 the grating periods must
be chosen in such a way, that at the given signal-to-noise ratio Rs/N the smallest grating with the period
Po is not resolved and the gratings with the periods P1 and P; are resolved, respectively.

Table 11 — Examples for the calculation of U.(r¢) according to Formula (58)

measurement test sample results of Monte expanded
conditions uncertainty of P grating series Carlo simulation uncertainty
Rs/n c(P)/P [%] q P (nm) o(re) [%] | Are [%] U(re) [%]
25 [ 2.5 1.2 | 38-46-56 3.91 0.16 7.8
25 2.5 1.2 | 42-50-60 4.22 -0.27 8.4
25 2.5 1.2 | 44-52-62 4.26 0.41 8.5
25 [ 25 14 | 36-50-70 3.90 -1.34 7.9
25 2.5 14 | 40-56-78 4.01 0.45 8.0
25 2.5 14 | 44 -62 - 86 592 2.15 12.0
25 [ 2.5 1.7 | 32-54-92 3.48 -5.07 8.6
25 2.5 1.7 | 36 -60 - 104 476 -2.47 9.8
25 2.5 1.7 |40-68-116 8.08 -1.99 16.3
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Figure 68 — The relative combined expanded (k = 2) uncertainty U.(r.) of effective lateral
resolution determined by Monte Carlo simulation and subsequent calculation according to
Formula (58) for different measurement conditions and different test samples. The imaging of
different series of gratings have been simulated by convolution with a Gaussian LSF with
wisk = 40 nm. Rs/N means the signal-to-noise ratio, G(P) / P means the relative standard

deviation of grating periods

At a low signal-to-noise ratio (Rs/N = 10) the Monte Carlo simulation has been shown that outliers of
Rp/rN must be removed to obtain reasonable values of re, (re) and Are.

Figure 68 shows that the grading factor q has only a small effect on the expanded uncertainty of effective
lateral resolution. This is due to the fact that U¢(re) is mainly determined by the random variation
o(re) which is, in contrast to the systematic deviation Are, only slightly increasing with q (cf. Table 11).
For g < 1.7 the expanded uncertainty of effective lateral resolution Uc(re) is below 10 % at very good
experimental conditions and below 25 % at poor experimental conditions.
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Requirements for test samples

The definition of lateral resolution refers to the “minimum spacing at which two features of the image
can be recognised as distinct and separate”[3]. This minimum spacing of separated features depends
on the performance of the instrument as well as on properties of the features of the test sample. For
that reason a series of gratings with different known periods is needed on an appropriate test sample.
3-stripe gratings need a minimum of required space on the test sample and, therefore, they may provide a
maximum number of different gratingsin the field of view of the instrument used for imaging. Simulations
(cf. 4.4.1.1 and 4.4.1.2) and experiments with a semiconductor stripe pattern (cf. 4.4.5) document the
suitability of chemical square-wave gratings A-B-A, where the stripes A and B are of the same width.

Grading factor

The most important parameter of a series of 3-stripe gratings with respect to the accuracy of effective
lateral resolution re is the grading factor q = Py4+1/Pp, where P11 and Py, are the periods of consecutive
gratings. The suitable range for the interpolation/extrapolation method (cf. Table 6 and Figure 68) is

12 <q< 1.7 (59)

Distance between consecutive gratings of the test sample

On the one hand the distance between consecutive gratings of the test sample must be large enough
to avoid the distortion of lateral resolution by superposition of grating profiles. Figure 69 shows two
effects of grating distance on the profile of the grating image.

1. The separation of individual gratings may be difficult if the distance between the gratings is too small.

2. Differentdistancestotherightadjacentgratingand theleftadjacentgratingmay causeanasymmetric
shape of a grating profile if these distances are not large enough. This effect of superposition is to a
large extent compensated by different signal intensities superimposed on both sides of a grating in
a series of graded gratings.

Figure 70 shows this compensation for an example with a Lorentzian LSF, a grading factor q = 21/2 and
a minimum grating distance of dgr = 1.5 P. In this case a slight asymmetry of grating profiles is visible
only at the outside gratings with only one neighbour.

On the other hand large distances between consecutive gratings reduce the number of gratings in the
field of view. As a result the range of grating periods and/or the accuracy of lateral resolution (by a
larger grading factor) is reduced.

From these two limitations follows a general optimum value of grating distances

1.5P<dg <3P (60)

For imaging with a Gaussian LSF a grating distance dgr = P is sufficiently large.
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dg/P= 075 1 1.5 2 2.5 3 5
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imaged with
Gaussian LSF

imaged with
Lorentzian LSF

Figure 69 — The effect of grating distance dg; on lateral resolution. Imaging of gratings with a
period of P = 200 nm was simulated by convolution of these gratings with a Gaussian LSF and a
Lorentzian LSF with w sr = 200 nm both
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dg=15F  dg=15R

grating
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Figure 70 — The effect of neighboured gratings on the image profile in a series of gratings
with a grading factor g = 21/2 = 1.41. Imaging of gratings with periods P of 142 nm, 200 nm,
284 nm and 400 was simulated by convolution of these gratings with a Lorentzian LSF with
wisF =200 nm

4.4.5 Application example: Element mapping by SIMS

The certified reference material BAM-L200l6] enables the determination of lateral resolution by imaging
square-wave gratings with different periods. It has been applied to different nanoscale imaging methods
such as Auger electron spectroscopy, energy-filtered core-level photoelectron emission microscopy,[3Z]
X-ray microscopy,[38] and Kelvin probe force microscopy.[39] Here we demonstrate the determination of
lateral resolution of imaging SIMS.

BAM-L200 is a cross-section of an AlxGajxAs - InxGajxAs - GaAs multilayer stack grown by Metal
Organic Vapour Phase Epitaxy (MOVPE). The layers form a complex stripe pattern at the surface of a
carefully polished cross section.[6]

The stripe pattern was imaged with a ION-TOF [V instrument (ION-TOF GmbH, Miinster, Germany) with
25 keV Ga* ions. In order to obtain high lateral resolution the extreme crossover mode at a small beam
current of 1.36 pA was used. In combination with only a total acquisition time of 47 s the measurement
conditions result in a somewhat noisy image, as shown in Figure 71.
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Figure 71 — Al+* mapping of a section of the BAM-L200 surface including 6 square-wave gratings

with periods ranging from 587 nm (left) to 97 nm (right). 256 x 256 pixels were measured with

1 scan, 5 pulses per pixel and a scanning step width of 22.7 nm. The white lines indicate an area
comprising 10 scanned lines which were summed to create the linescan shown in Figure 72 a)

Visual inspection of Figure 71 shows that 5 gratings are resolved. The criterion for resolution is the
appearance of a dark stripe between two bright stripes. The period of the finest resolved grating (second
from right) is 136 nm.

Data from Figure 71 are condensed into two different linescans displayed in Figure 72. They are created
by summing acquired counts over 10 lines [(Figure 72 a)] and all 256 lines [Figure 72 b)] with signal-
to-noise ratios of 5.4 and 28, respectively. These linescans enable an objective determination of the
effective lateral resolution. According to the resolution criterion D/onRr 2 4 [Formula (37)], four gratings
are resolved in the line scan in Figure 71a and five gratings are resolved in that of Figure 71 b). The
lateral resolution can be estimated to be between 136 nm and 193 nm [Figure 71 a)] and between 97 nm
and 136 nm [Figure 71 b)].

The effective lateral resolution can be calculated from a linescan across three gratings by a combination
of interpolation and extrapolation (cf. 4.4.2.4). For that reason the dips D have been determined
according to the procedure displayed in Figure 51 b). The noise of SIMS signals is pure shot noise and
can be described by the Poisson distribution. Therefore the noise oy at the level of the mean intensity
Im = (Imax+Imin)/2 of the grating images has been calculated by on(I) = Im1/2.

Application of Formula (39) yields effective lateral resolutions re = 173 nm for the linescan shown in
Figure 71 a) and re = 122 nm for the linescan shown in Figure 71 b), respectively. This considerable
difference for linescans measured with the same primary ion beam profile verifies the strong effect of
noise on the effective lateral resolution.
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Figure 72 — Linescans created from sums of (a) 10 scanned lines (between the white lines
in Figure 71) and b) all 256 lines of the 256 x 256 pixel2 Al* map in Figure 71, respectively.
For each linescan, values of D/onR calculated according to Formula (36) are given. Py, P; and
P; designate the periods of the first non-resolved grating and the first and second resolved
gratings, respectively. Grating periods P are given in the shaded bar between the linescans. The
effective lateral resolution re has been calculated according to Formula (39)

5 Physical factors affecting lateral resolution, analysis area and sample area

viewed by the analyser in AES and XPS

5.1 General information

A common need in AES and XPS is the measurement of composition as a function of position on the
sample surface. Typically, an analyst wishes to determine the local surface composition of some
identified region of interest. This region of interest could be a feature on a semiconductor wafer (such as
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an unwanted defect particle or contamination stain), a corrosion pit, a fibre, or an exposed surface of a
composite material. With growing industrial fabrication of devices with dimensions on the micrometre
and nanometre scales, particularly in the semiconductor industry[40] and for emerging nanotechnology
applications, there is an increasing need to characterize materials using tools with lateral resolutions
and dimensions of analysis areas that are smaller than those of the features of interest. It is generally
necessary in these applications to be able to determine that devices have been fabricated as intended
(quality control), to evaluate new or current fabrication methods (process development and process
control), and to identify failure mechanisms (failure analysis) of a device during its service life or after
exposure to different ambient conditions. The lateral resolution and the analysis area are important and
related parameters in the application of characterization techniques such as AES and XPS for the surface
characterization of materials containing features with micrometre and nanometre dimensions. Another
parameter that is important in some measurements is the sample area viewed by the electron energy
analyser. The needs for measurements of lateral resolution, analysis area, and sample area viewed by
the analyser are described in the following sections.

As in opticall10][41]-[43] and various forms of electron microscopy,[12][44][45] the achievable lateral
resolution is related to the contrast found in a measured image. It is pointed out, however, that the
contrast transfer function is a useful means for describing the contrast in an image as a function of
spatial frequency (cf. 4.1.5, 4.4.3[10][12][41]-[45]). At the highest detectable spatial frequency, the contrast
approaches zero. The achievable lateral resolution in a particular AES or XPS measurement will therefore
.depend not only on the instrumental characteristics but on the available contrast (e.g. from the signals
associated with two neighbouring chemical phases for a particular measurement time).

‘An overview is given in this chapter of certain instrumental and measured properties that are described
in terms of Gaussian functions. This approach is believed to be a useful guide but it should be emphasized
that the properties of real instruments and of real measurements can depart from the Gaussian model
considered here (cf. 4.2.1). In addition, the detectability of a feature in AES and XPS measurements
depends in part on the measure of lateral resolution of the instrument and in part on the difference
in signal intensities for measurements made on and off the possible feature and the observation time
(through the statistical variations in the signal intensities). The detectability of a feature thus depends
on the contrast transfer function for the measurement and the measurement time. The specific results
will thus be a function of both instrumental and sample properties. Reliable detection of a feature will
also depend on instrumental stability (particularly the stability of the incident electron beam current
in AES and the X-ray flux in XPS, and the positional stability of the sample stage with respect to the
electron or X-ray beam) and the chemical stability of the sample during the time needed for acquisition
of AES or XPS data.

5.2 Lateral resolution of AES and XPS

5.2.1 Introduction

It is clearly desirable that the lateral resolution of the technique be smaller than the lateral dimensions
of the feature of interest in order that the feature can be reliably analysed. The feature of interest in an
AES instrument might typically be initially detected in a scanning electron micrograph. The primary
electron beam could then be positioned on the feature, and an Auger electron spectrum recorded. In XPS
instruments, the feature of interest must generally be detected from an image or a line scan in which
a particular signal (often the intensity of a selected photoelectron peak) is displayed as a function of
position on the sample surface.

Many authors have described and discussed the lateral resolution (often referred to as spatial resolution)
of AES and XPS instruments. Useful information can be found in a review by Cazaux[12] for AES and in a
review by Escher et al.[46] for XPS.

Figures 73 to 75 show schematic diagrams of typical experimental configurations for AES and XPS.
These Figures show the exciting radiation incident on the sample surface. For AES (Figure 73), an
electron beam with an energy between 3 keV and 25 keV is focused to a “spot” on the sample surface.
With a field-emission electron source, the full width at half maximum (FWHM) intensity of the focused
spot may be between 5 nm (or even lower) and 50 nm depending on the beam energy and the beam
current. The beam is scanned across a region of interest on the sample surface, and various signals
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collected (such as secondary-electron and Auger electron signals). The Auger electron signal arises from
inner-shell ionisations caused in part by the incident beam and in part by backscattered electrons.[12]
The lateral resolution in AES is mainly determined by the FWHM of the focused spot[12]; further details
are given in 5.2.2.

Focused electron beam for AES
Focused X-ray beam for XPS

To Analyser

Sample

Figure 73 — Schematic outlines of experimental configurations for AES and XPS with a focused
incident beam

Figure 73 also indicates an XPS configuration in which the incident X-ray beam is focused to a spot on the
sample surface. With a conventional X-ray source and a bent-crystal focusing X-ray monochromator, the
FWHM of the focused spot can be less than 10 um. With a synchrotron source of X-rays and a zone-plate,
the FWHM of the focused spot can be about 50 nm.[4Z] The experimental configurations for AES and XPS
in Figure 73 are thus similar in that an incident beam is focused to a small area on the sample surface.
Lateral variations of surface composition can thus be detected as the beam is positioned on different
regions of interest, is linearly scanned across a selected region, or is rastered to obtain information from
aselected area. If the incident beam in Figure 73 is not normally incident on the sample surface, the beam
profile will be elliptical instead of circular. In such cases, the lateral resolution depends on the FHWM
of the beam profile in two orthogonal directions (parallel and perpendicular to the plane of incidence).

Figure 74 a) illustrates an XPS configuration in which the electron energy analyser is part of an electron-
optical configuration that views a selected single small area on the sample surface. The lateral resolution
for this configuration depends on the electron-optical design and can be less than 10 um. Figure 74 b)
shows an XPS configuration in which the electron-optical system produces an image of a selected region
of the surface. In this mode, different pixels of the image correspond to particular regions of the surface;
information from multiple points on the surface can be recorded in parallel. Figures 74 a) and 74 b) are
similar in that the regions of interest are selected by the electron-optical system. Lateral variations of
surface composition can be detected, in principle, by mechanically moving the sample with respect to
the analyser or, usually, by adjustment of the electron-optical system to select the particular regions of
interest on the sample surface from which photoelectrons are detected. As for Figure 73, photoelectron
signals can be obtained from a selected region, from multiple regions along a line, or from multiple
regions within a selected area.
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(a) XPS with single-point analysis (b) XPS with multi-point analysis

X-ray Beam X-ray Beam
To Analyser To Analyser

\
X

Sample Sample

Figure 74 — Schematic outlines of XPS configurations in which (a) the analyser accepts
photoelectrons from a selected area on the sample surface (single-point analysis) or (b) the
analyser accepts photoelectrons from multiple regions on the sample surface to create an
image of the surface (multi-point analysis)

Figure 75 shows a simpler XPS configuration in which the sample is irradiated by X-rays from a nearby
X-ray source and photoelectrons are detected as in Figure 74 from an area defined by the electron-
optical properties of the analyser. Unlike the configurations of Figure 74, however, the instruments
represented by Figure 75 were not designed to detect lateral variations of surface composition except
by movement of the sample with respect to the analyser. In this way, a lateral resolution of about 0,1 mm
to 1 mm could be achieved.

X-ray Beam
\ To Analyser

Sample

Figure 75 — Schematic XPS configuration in which the sample is irradiated by a broad X-ray
beam and in which photoelectrons are accepted by the analyser from a larger area of the
sample surface than for Figure 74

+5.2.2 Lateral resolution for AES

- For simplicity in the following discussion, it will be assumed that the sample has a plane surface and that
“the primary electron beam is normally incident on the sample. It is also assumed that the analysis area
~is smaller than the sample area viewed by the analyser and that the detection efficiency of the analyser
- is uniform within the analysis area.

- Although the incident electron beam in AES can be focused to a spot with FWHM less than 50 nm,
detected Auger electrons originate from ionisations caused by the incident beam and by backscattered
electrons.[12,48] Due to multiple elastic- and inelastic-electron scattering, the backscattered electrons
can cause inner-shell ionisations that lead to detected Auger electrons from sample regions of up to
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about 1 pm from the incident-beam spot. The intensity distribution J,(r) of detected Auger electrons
as a function of radius r can be described by the sum of two Gaussian functions (cf. 4.2.1 and[12,14,16,48]):

Ja(r)=(; /276 2)exp(-r?® /20 2)+[(R-1)I; / 270 L lexp(-r / 20 ) (61)

or

Ja(r)=J ai(r)+J ap(r) (62)

where /;is the incident beam current, o; is the Gaussian parameter describing the radial distribution
of the incident electron beam, o)}, is the Gaussian parameter describing the radial distribution of
backscattered electrons, R is the backscattering factor, and J,;(r) and J,,(r) are the radial intensity

distributions for Auger electrons created by the incident beam and by backscattered electrons,
respectively. The FWHM values for these two Gaussian functions are 2,350; and 2,350, respectively.

Seahl49] has shown that, with 20 keV incident electrons, the FWHM values for backscattered electrons
vary between about 0,2 pm and 3,0 um for different elements; values of o} thus range from about

0,085 pm to about 1,3 pm. As an illustrative example, Figure 76 shows a plot of ], (r) with o; =10 nm,
O =200 nm, and R = 1,5; for simplicity, J,(r) has been normalized to unity at r = 0. Because o}, > >
0i, Jai(r=0) is about three orders of magnitude greater than J,,(r=0) in this example. It is thus
possible for the lateral resolution to be determined mainly by the value of &; although, as will be shown,
the magnitude of ], (r) in the vicinity of r=0 also affects the lateral resolution.
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Figure 76 — Plot of the total Auger electron intensity distribution /5(r) (normalized to unity at
r = 0) from Formula (61) as a function of r with ¢; = 10 nm, op = 200 nm, and R = 1,5

The lateral resolution in AES has often been determined by scanning the primary electron beam across
a sufficiently sharp chemical gradient (a chemical edge) in the plane of the sample; the scan direction
is normal to the chemical edge in such measurements. The Auger electron intensity, I, for one of the
materials is then measured as a function of beam position on the sample. In common practice lateral
resolution, Ar, has been variously defined as the distance Dx-(100-x) over which the intensity I changes
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from 25 % to 75 % of its maximum value, /iy, the distance over which I changes from 20 % to 80 % of
Imax, the distance over which I changes from 16 % to 84 % of I;hax, the distance over which I changes
from 12 % to 88 % of Imax, and the distance over which I changes from 10 % to 90 % of Iihax (cf. 4.3.2
and[4.48]).

The intensity distribution of detected Auger electrons shown in Formula (61) can also be written in
Cartesian coordinates.[14:48] It is then possible to calculate the change in detected Auger intensity as the
primary beam is scanned across an abrupt chemical interface as in the experiments. Figure 77 shows a
plot of I/I;max as a function of scan distance for the same parameters used in Figure 76. While there is a
steep increase in the value of I/Inhax in the vicinity of the origin in Figure 77 (corresponding to the
primary-beam component J »;(r) in Figure 76), there are significant tails in the plotted I/Imax due to the

backscattered-electron component J 5, (r)in Figure 76.

In the example of Figure 77, the measures of the lateral resolution are about 15 nm, 22 nm, 32 nm,
102 nm, and 150 nm for the 25 % to 75 %, 20 % to 80 %, 16 % to 84 %, 12 % to 88 %, and 10 % to 90 %
Auger intensity changes, respectively. It is clear that this measure of lateral resolution is mainly
determined by the FWHM of the primary beam [that is, the parameter o; in Formula (61)] if, in this

example, the measure of lateral resolution is found from the distances corresponding to the 25 % to
75 %, 20 % to 80 %, and 16 % to 84 % Auger electron intensity changes (although, as will be shown
shortly, these measures of lateral resolution also depend weakly on o}, and R). In contrast, the measure
of lateral resolution is a strong function of all three parameters in Formula (61) (o;, o}, and R) if the

measure of lateral resolution is found from the distances corresponding to the 12 % to 88 % and 10 %
to 90 % Auger electron intensity changes. Since the values of o, and R depend on the sample and the
primary electron energy,[441[50] it is desirable for a measure of lateral resolution in AES to be determined
:in a way that is least dependent on the sample properties. It is therefore recommended that the lateral
‘resolution be obtained from the distances corresponding to the 25 % to 75 % Auger electron intensity
-changes in a scan such as that shown in Figure 77.
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Figure 77 — Plot of the ratio of the calculated Auger electron intensity, /, to the maximum Auger
electron intensity, Iih,x, as a function of scan distance as the primary beam is scanned across a
sharp chemical boundary located at the origin (with the beam and backscattering parameters

used in Figure 76. (In this example, I/I,x is plotted for the material on the right-hand side of

the edge. The horizontal dashed lines show [/Inax = 0,25 and [/Imax = 0,75. A measure of lateral

resolutlon can be determined from the difference between the scan distances for these values
: of I/Imax; in this example, it is about 15 nm)

Seahl4] has shown that the measure of the lateral resolution, 6r(50), corresponding to the 25 % to 75 %
change in Auger electron intensity across an abrupt chemical edge can be determined from the relation:

0,5R =erf[z(o;)]+(R-1)erf[z(c})] (63)
where erf(z) is the error function defined by:
erf(2)=(2/vm)] exp(-t7)at (64)

and where t=5r(50)/\/50'1- and t=5r(50)/\/50'b for the first and second terms in Formula (63),

respectively. Figure 78 shows plots of 6r(50)/0; versus op/oj for four values of the backscattering factor
R. These plots show that the value of 6r(50)/0; does not vary appreciably with oy/o; when the latter ratio
is greater than about 20. The value of 6r(50)/0; does, however, depends on R although 8r(50) /0 is between
1,35 (when R = 1) and about 3,1 (when R=1,8). If, however, the measure of the lateral resolution was
determined from the 10 % to 90 % changes in Auger electron intensity across an edge, Cazaux has shown
that this measure changes almost linearly with o1,/0; and with a slope that depends on the value of R.[48]

Besides scattering also aberration of the incident electron beam caused by the focusing electron optics
is a factor affecting lateral resolution. Aberration phenomena influence the radial distribution of the
incident electrons described by oj. The radial distribution depends on beam energy and beam current
used for imaging.[51]
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The results shown in Figures 76 to 78 were for normal incidence of the primary electron beam. Cazaux[48]
has made similar analyses for primary beams at non-normal incidence. The results of these model
calculations agree well with experimental measurements and with Monte Carlo simulations of Auger
electron production by backscattered electrons.[48][52] Cazaux[12] has also considered the detectability
of features in the form of stripes in the plane of the surface and has examined Auger electron intensity
profiles for chemically non-abrupt edges. El Gomati et al.[53] have shown the importance of edge effects
in Auger electron line profiles when the primary electron beam was scanned across metal lines with
sharp rectangular cross sections; good agreement was found between the experimental profiles and
those obtained from Monte Carlo simulations.

3 5 T T T T T T T T T T T T T T | T T T T I T T T T T
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Figure 78 — Plot of 6r(50)/0; versus op,/0; for the indicated values of the backscattering factor R

5.2.3 Lateral resolution for XPS

The lateral resolution for XPS can be described in a similar way as for AES, except there is no backscattering
effect. A single Gaussian function can be used to describe the intensity-position distribution of a focused
X-ray beam on the sample surface for an XPS instrument of the type illustrated in Figure 73 or the intensity-
position response of the electron-optical system for an XPS instrument of the types shown in Figure 74.

Baer and Engelhard[54] reported measurements of analysis areas (discussed in 5.3.3) for two XPS
instruments, one having a focused X-ray beam incident on the sample surface as in Figure 73 and the
other having an electron-optical system to select a small area of interest on the sample surface as in
Figure 74 a). They measured the lateral resolution 6r of their instruments to be between 9 pm and
200 pm for different instrumental settings from the distances between the 16 % and 84 % intensity
points across an edge between two materials of different compositions. For these instruments, the
lateral resolution could be described by a Gaussian function although other functions (a Lorentzian

function, a function with a constant central intensity and sharp edges, a function with a 1/ (1+|r| )

intensity distribution, and a function with a constant intensity for small radiiand 1 /(1 +|r|3) tails] gave
essentially similar results.
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5.3 Analysis area

5.3.1 Introduction

After detection of a feature of interest in an AES or XPS instrument, it is often desired to analyse the
AES or XPS data in order to obtain elemental and chemical information on the feature. For such data,
it is important to know the analysis area so that the AES or XPS data can be reliably analysed. We now
describe the factors that affect the analysis area for the AES and XPS configurations shown in Figures 73
and 74. It will again be assumed that the sample has a plane surface and that the analysis area is smaller
than the sample area viewed by the analyser.

5.3.2 Analysis area for AES

Consideration is again given to the Auger electron intensity distribution of Formula (61) and the
illustrative example in Figure 73 showing J,(r) versusr for o; =10 nm, 6}, =200 nm,and R=1,5. The

ratio of the total Auger electron intensity, I, from a circular area of radius rpyax to the total Auger electron
intensity, Imax, from a circular area of infinite radius can be found by integrations of Formula (61):

fmax r] o (r)dr
: J‘)w (- exp(12uy / 2021+ (R- D1 - exp(~rZay /262)} /R (65)
I“??X IO rf a(r)dr

1 LI IS B I B B B R N BN N B B NN B B =TT

max

7
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Figure 79 — Plot of I/l ;3% versus ryax from Formulae (61) and (65) with the same parameter
values as for Figure 76 (The horizontal dashed line shows I/I;;;x = 0,95, for which the
corresponding value of rp;x is 390 nm)

Figure 79 shows a plot of I/Ijax from Formula (65) as a function of ryax for the same parameter values
selected for Figure 76. As expected, the intensity distribution in Figure 79 consists of two regions. Two-
thirds of the total intensity is due to Auger electrons created by the primary beam while the remaining
one-third is due to backscattered electrons. Approximately 28 % of the total intensity comes from an
area of radius 10 nm (the value of oj in this example), about 59 % from an area of radius 20 nm, and about
66 % from an area of radius 30 nm. The remaining intensity comes from a much larger area, with 90 %
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from an area of radius about 310 nm, 95 % from an area of radius about 390 nm, and 99 % from an area
of radius about 530 nm. Thus, while the lateral resolution 6r(50) is about 15 nm for this example, about
two-thirds of the total Auger intensity comes from an area of radius 30 nm (double the lateral resolution)
while 95 % of the total intensity comes from an area of radius 390 nm (26 times the lateral resolution).
The intensity from this larger area needs to be considered in interpretations of line scans and of “point”
analyses (with the incident beam at a fixed location on the sample surface). In general, the analysis area
will depend on the relevant material parameters (o}, and R) and on the particular percentage chosen in

the operational definition for the analysis area (percentages of 90 %, 95 % and 99 % of the total Auger
intensity were used as examples here). It should also be emphasized that Formula (61) is only expected
to be a useful guide when the primary beam is normally incident on the sample surface. For other angles
of incidence, analytical expressions[48] can be utilized or Monte Carlo simulations[50.52,53] can be
performed to determine the analysis area. Monte Carlo calculations would be required if the sample of
interest consisted of materials with significantly different values of o}, and R.[3] Finally, the Gaussian

expression for the incident-beam profile in Formula (61) may not be realistic for some instruments.[40]

5.3.3 Analysis area for XPS

Baer and Engelhard[54] described measurements made with a test sample that had a series of circular
spots with diameters between 2 pm and 100 pm. The spots consisted of an indium-tin-oxide coating
while the surrounding material was a chromium-containing compound. If the XPS instruments were
adjusted to obtain data from the centre of a spot, Baer and Engelhard found that the spot radius had to
be about four times 6r to obtain 80 % of the maximum signal for the spot material that could be measured
for much larger spot radii. These results were interpreted in terms of a function describing the spatial
distribution of X-ray intensity on the sample surface (for the instrument represented by Figure 73) and
a similar function describing the spatial selectivity for the detection of photoelectrons emitted from the
sample surface [for the instrument represented by Figure 74 a)]. While a Gaussian function has been
conventionally used to describe the intensity-position functions for these two types of XPS instruments,
Baer and Engelhard found that such a function was inadequate for their instruments. Instead, they were

able to describe their spot-intensity measurements with either an 1/(1+|r| ) intensity-position

function or a function consisting of a constant intensity for small radii and 1/(1+|r| ) tails. These

functions had higher intensities in the tail regions (that is, for r > > Ar) than a Gaussian function
representing the same value of Ar. It is thus clear that the analysis area for these instruments would be

about 107r(5r)2 if the analysis area was defined to include 94 % of the total photoelectron signal. Baer

and Engelhard pointed out that the extent of non-Gaussian behaviour (that is, the intensity of the tails in
the intensity-position function for an XPS instrument) could be highly dependent upon lens operation
and set-up parameters.[54]

Scheithauerl53] reported an alternative kind of procedure and test sample for the determination of
the analysis area of an XPS instrument represented by Figure 73. The approach is also useful for the
characterization of XPS instruments represented by Figure 74. The test samples are called “inverse dots”
and are actually platinum apertures known from electron microscopy with different diameters between
50 pm and 600 pm. When the axis of the X-ray beam is centred within the Pt aperture, the measured Pt
photoelectron intensity represents the total photoemission excited at areas outside the hole. Variation of
the diameter of the aperture and one measurement of the respective maximum photoelectron intensity
remote from the hole enable a quantitative characterization of the real X-ray beam shape including long-
tail signal contributions in all directions in terms of Pt count rates normalized to the maximum count
rate. As a result, the size of a sample feature necessary to reduce the signal contribution from outside
the feature below a selected percentage (e.g. 1 %) can be determined for selected X-ray beam settings
This knowledge is essential to ensure a reliable detection of minor components on small sample features
such as bond pads, etc. The use of apertures has some advantages over micro-structured circular
patterns and “chemical edges”. First, no assumption about the primary X-ray beam profile is necessary.
Second, independent from the exact in-plane X-ray beam profile, the long-tail signal contributions in
all directions are measured when the primary X-ray beam is centred in the aperture. And third, if the
apertures are cleaned by sputtering, redeposited material is not detected by the energy analyser.
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5.4 Sample area viewed by the analyser

For the instruments represented by Figure 73, the analysis area is defined by the incident electron beam
or the incident X-ray beam and, for AES, by sample properties as described in 5.3.1. The electron energy
analyser in these instruments is designed to view a larger area of the sample surface so that particular
regions of interest of different areas, up to some maximum area given by the analyser design and
settings, can be viewed in the imaging or line-scan modes of the instruments. It may be necessary for
some applications to measure the sample area viewed by the analyser that can depend on experimental
conditions such as electron energy, analyser pass energy, choice of apertures, and sample alignment in
the instrument.

The sample area viewed by the analyser is particularly important for XPS instruments represented by
Figure 75. The sample surface here is irradiated by a broad X-ray beam (often of about 1 cm diameter),
and photoelectrons are detected from a sample area defined by the analyser design, the analyser
settings, and the extent of any sample misalignment. For such instruments, the analysis area is the
sample area viewed by the analyser.

Three groups have reported measurements of the sample area viewed by the analyser for XPS
instruments.[56-60] A focused electron beam from an available electron gun was rastered across the
sample surface and measurements were concurrently made of a selected analyser signal, generally the
intensity of elastically scattered electrons, as a function of the position of the electron beam on the
surface. Measurements of this type have been reported for different types of electron energy analysers,
for various analyser settings, and for particular sample misalignments.[56-60] As an example, Figure 80
showsillustrative elastic-peak images for a double-pass cylindrical-mirror analyser operated at electron
energies of 100 eV, 500 eV, and 1000 eV.[58] The sample area viewed by the analyser can be determined
from these images for a specified percentage of the total analytical signal.
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NOTE Elastic-peak images were recorded for an analyser pass energy of 50 eV and for electron energies of
100 eV (top), 500 eV (centre), and 1000 eV (bottom). The horizontal distance scanned by the electron beam on
the sample surface (corresponding to the bottom left to right line scan in each image) was 13 mm and the vertical
distance was 15 mm.

Figure 80 — Examples of electron elastic-peak images obtained with a double-pass cylindrical-
mirror electron energy analyser in an XPS instrument[58]

The importance of adequate alignment of the sample surface with respect to the X-ray source and
electron energy analyser of an XPS instrument has been pointed out by Seah et al.[61] For some XPS
instruments, the sample area viewed by the analyser is independent of the electron energy while for
other instruments this area depends on electron energy. In the latter class of instruments, it is important .
that the sample be aligned correctly at the smallest sample area viewed by the analyser. This condition -
generally corresponds to the highest electron energy that is to be measured. ;

6 Measurements of analysis area and sample area viewed by the analyser in AES
and XPS

6.1 General information

Information onmeasurementsoflateralresolutionin AESisgivenin References[12],[38],[46],[49],[50],[59]
and[60] together with references therein. For test samples consisting of steps, Monte Carlo calculations
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may need to be performed to separate chemical and topographic effects.[53] Reimer[44] has discussed
aspects of resolution tests in scanning electron microscopy and Cazaux[124862] has described
corresponding tests in scanning Auger-electron microscopy. Cazaux[12] also points out that fluctuations in
Auger-electron intensity due to variations in sample topography can complicate determinations of lateral
resolution. Postek et al.[64.65] have developed an objective procedure for determining the “sharpness” of
images obtained by scanning electron microscopy. Briefly, a two-dimensional Fourier transform is made
of an image, and an evaluation is made of the resulting frequency components. This approach can also be
used to check and optimize the focus and astigmatism of the incident electron beam.

Information on measurements of lateral resolution in XPS is given in reference [54]. Seah and Smithl[6€]
have described a means for optimising the lateral resolution on XPS instruments not equipped with an
imaging system but which have an auxiliary electron gun to produce a focused electron beam on the
sample. Briefly, a line profile of a suitable feature can be observed with the electron beam (for example,
an Auger electron profile). By adjusting the analyser optics and reducing the lens aperture, one can
optimize the lateral resolution. These settings can then be used for XPS measurements.

Measurements of lateral resolution on AES and XPS instruments represented by Figures 73 and 74 can
be made with test samples having known lateral dimensions such as electron microscope grids or cross-
sectioned layer stacks ([6Z] and cf. Figure 48). Other suitable test samples are gold islands on a carbon
substrate or distinct edges or steps between two different materials. The gold islands/carbon substrate
test sample is attractive for AES because the effects of backscattered electrons on the lateral resolution
should be negligible with a substrate of low atomic number. Compositional gradients (in the plane of the
sample surface) of the test samples should occur over lateral distances much smaller than the expected
lateral resolution.

6.2 Analysis area

Measurements of analysis area on AES and XPS instruments represented by Figures 73 and 74 can be
made with test samples in the form of circular spots of known diameters, as used by Baer and Engelhard
for XPS instruments[34] or with a selection of platinum apertures as used by Scheithauer.[35] The
minimum spot diameter should be 26r. For AES, the maximum spot diameter should be selected based
on estimated or calculated values of o and R; it is recommended that the maximum spot diameter be

atleast 40, . For XPS, the results of Baer and Engelhard indicate that the maximum spot diameter should
be approximately 200r .

The incident electron or X-ray beam should be centred in turn on spots of different diameters (for
instruments represented by Figure 73) or the electron-optical system should be adjusted to select
photoelectrons from the centres of spots of different diameters (for instruments represented by
Figure 74). Measurements should be made of selected Auger electron or photoelectron intensities as
a function of spot diameter.[54] A plot should then be made of the selected intensity as a function of
spot diameter in order to determine the analysis area corresponding to a particular percentage in the
definition of analysis area. Information on measurements of this type for XPS instruments is given in
reference [52].

Measurements using “inverse dot” test samples (commercial platinum apertures) should be made with
the axis of the X-ray beam centred within each hole of a series of apertures with selected diameters. The
measured Pt 4f photoelectron intensity originating from the aperture represents the photoemission
excited at areas outside the aperture. A plot should then be made of those intensities normalized to
the respective maximum photoelectron intensity measured remote from the hole as a function of
hole diameter in order to determine the analysis area corresponding to a particular percentage in the
definition of analysis area. Information on measurements of this type for an XPS instrument represented
by Figure 73 is given in reference [55].

Similar procedures should be applicable to AES.

Measurements of analysis area should be made at different electron energies to determine whether the
analysis area for one energy was the same as for another energy and whether these areas coincided.
These tests should be made for the analyser conditions (that is, pass energy or retardation ratio and
aperture sizes) in common use.
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6.3 Sample area viewed by the analyser

Measurements of the sample area viewed by the analyser are most conveniently performed on
instruments equipped with an electron gun that can be operated to produce a focused electron beam
on the sample surface that can be rastered across the expected sample area viewed by the analyser.[26-
60] On such instruments, measurements are made of the intensity of elastically scattered electrons of
different selected energies as a function of electron-beam position on the surface. Procedures for such
measurements are described in an ASTM standard practice.[68]

Measurements of sample area viewed by the analyser can be readily made with the ASTM standard
practice on AES instruments. Similar measurements can be made on XPS instruments in which a suitable
auxiliary electron gun is available or can be mounted, in which the sample area irradiated by X-rays is
larger than the specimen area viewed by the analyser (as represented by Figure 75), and in which the
photoelectrons travel in a field-free region from the sample to the analyser entrance apertures.

For XPS instruments represented by Figures 73 and 74, it may be possible to make measurements of
the sample area viewed by the analyser by following a procedure analogous to the ASTM standard
practice.l68] It is suggested that test samples of copper, silver, and gold be positioned in turn in the
XPS instrument, and that measurements be made of the Cu 2p3/2, Ag 3ds/2, and Au 4f7/, photoelectron
intensities, respectively, as the X-ray beam is rastered across the sample surface (for instruments
represented by Figure 73) or as the electron-optical system is adjusted to produce similar scans (for
instruments represented by Figure 74). The scan range for such measurements clearly has to be large
enough to allow photoelectron intensities to be measured from the entire sample area viewed by the
analyser, and preferably larger than this area so that images similar to Figure 80 can be produced.

Another possible approach for measuring the sample area viewed by the analyser at relatively low
electron energies for XPS instruments represented by Figure 73 is to mount a test sample of aluminium
or silicon and to bombard this test sample with a focused beam of argon ions (for example, from the ion
gun that may be used for sputter cleaning or sputter-depth profiling). lon bombardment of this type
produces relatively intense Auger electron features with energies less than 100 eV.[69] The ion beam
should be rastered across the sample surface and measurements made of the intensity of a selected low-
energy Auger-electron peak as a function of ion-beam position on the surface in a manner similar to that
described inthe ASTM standard practice.[68] This approach may, however, give misleading results because
of the presence of stray magnetic fields. The area of analysis will then shift as the electron kinetic energy
is reduced, particularly for energies less than about 200 eV. In such situations, it will not be possible to
optimize the analysis position and to adjust the lens settings of the analyser for optimum focus.
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Annex A
(informative)

Reduction of image period for 3-stripe gratings

For 3-stripe gratings (A-B-A) the image period may be smaller than the period of the object grating (cf.
4.4.1.1 and Figure A.1). This effect depends on the ratio of LSF width wy,sr to the object grating period
P. Table A.1 and Figure A.2 show the systematic relation between the ratio wisr/P and the normalized
reduction of image period for Gaussian and Lorentzian LSFs. Due to the long tails of the Lorentzian LSF
the reduction of image period begins far from the limit of lateral resolution.

Prn=93.5 nm

™
<+

Figure A.1 — Reduction of image period P;;,, compared to the period of the object grating P.
Imaging of a 3-stripe square-wave grating with a period of 100 nm is simulated by convolution
with Gaussian LSFs of different widths: a - wisp =80 nm; b - wisg = 100 nm; ¢ - wisg = 110 nm.
Image profile c is shown additionally on an elongated intensity scale
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Figure A.2 — Relation between the normalized width of the LSF wy,sr/P and the reduction of the
normalized image period Pj,/P for Gaussian and Lorentzian model functions for the LSF. Open
symbols - Lorentzian LSF; closed symbols - Gaussian LSF
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Table A.1 — Relation between the normalized width of the LSF wi sr/P and the reduction of the
normalized image period for Gaussian and Lorentzian model functions for the LSF
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w LSFI P Pim IP
Gaussian | Lorentzian
0.2 0.988
0.300 0.984
0.400 0.978
0.500 0.967
0.600 0.996 0.953
0.650 0.989 0.945
0.700 0.977 0.935
0.750 0.958 0.923
0.800 0.935 0.91
0.850 0.903 0.895
0.900 0.853 0.876
0.950 0.786 0.855
1.000 0.695 0.835
1.025 0.635
1.050 0.560 0.81
1.075 0.467
1.100 0.331 0.781
1.120 0.1350
1.150 0.753
1.200 0.72
1.250 0.68
1.300 0.63
1.350 0.579
1.400 0.516
1.450 0.445
1.500 0.357
1.525 0.289
1.55 0.207
1.56 0.153
1.57 0.092
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