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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

In exceptional circumstances, when a technical committee has collected data of a different kind from that 
which is normally published as an International Standard (“state of the art”, for example), it may decide by a 
simple majority vote of its participating members to publish a Technical Report. A Technical Report is entirely 
informative in nature and does not have to be reviewed until the data it provides are considered to be no 
longer valid or useful. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO/TR 18532 was prepared by Technical Committee ISO/TC 69, Applications of statistical methods. 
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Introduction 

This Technical Report demonstrates the advantages in the application of statistical methods in as simple and 
efficient a manner as possible so that they become accessible to the many rather than to the few. 

As an introduction to the subject, three examples are given in Clause 4 to focus attention on some of the wider 
questions at issue. These examples suggest how statistical thinking coupled with the use of simple statistical 
tools and technical and operational knowledge of the process can help in improving designs, process 
efficiency and performance and product conformity to specification. 

⎯ Example 1, relating to the strength of wire, illustrates the role and value of division of data into so-called 
rational subgroups coupled with the use of cause and effect diagrams and line plots. It also shows how to 
exploit interrelationships between process parameters to achieve robust designs. The need is 
emphasized to treat numerical data not just as a set of figures but as potentially meaningful information 
on a process. It demonstrates clearly that an enquiring mind and sound judgement, coupled with an 
understanding of the actual process producing the numerical data, are required as distinct from a mere 
knowledge of statistical method. This indicates the need for non-statisticians to become more aware of 
the role of statistical method and to become more involved in their actual application to secure the 
maximum possible benefits to any organization. 

⎯ Example 2, on fabric mass, illustrates key aspects that need to be considered when sampling to establish 
conformance of an entity to specification. In this example, general conclusions are established by 
statistical theory and are turned to practical use. 

⎯ Example 3 concerns the mass fraction of ash (in %) in coal. Specifically, it demonstrates four principal 
concepts: how to handle apparent fluctuation of quality within a quantity of material; the need to 
determine, on a sound basis, the amount of sampling necessary to estimate the quality of a commodity; 
the necessity to establish, in advance, a well designed sampling procedure; and the value of progressive 
analysis of results, in a simple graphical manner, as they become available. 

More generally, example 3 illustrates the importance of the application of statistical thinking and design 
method to a numerical study prior to it being undertaken. It also indicates that, to gain full benefit from such a 
study, persons familiar with the activity under scrutiny should be involved throughout. 

Clause 5 introduces basic statistical terms and measures, and a wide range of simpler statistical tools used to 
present and analyse data. Emphasis has been placed on a pictorial approach that can most readily be 
communicated to, and understood by, the many. 

Clause 6 describes the fundamentals of sampling on a statistical basis and distinguishes between statistical 
uniformity (stability of a process) and quality level (process capability). Clause 7 introduces sampling with 
reference to a product requirement. It draws out the two principal methods, viz. that of after the event 
acceptance sampling and that of the ongoing control of inherently capable processes. Clause 8 provides a 
detailed treatment of the statistical relationship between sample and batch. Clause 9 describes the 
methodology, terminology and rationale of acceptance sampling. Single, double, multiple, sequential, 
continuous, skip-lot, audit, parts per million, isolated lot and accept-zero plans for acceptance sampling by 
attributes are dealt with. Acceptance sampling by variables covers the following plans for individual quality 
characteristics: single sampling plans for known and for unknown standard deviation; double sampling plans; 
sequential sampling plans for known standard deviation and accept-zero plans. Multiple-quality characteristic 
plans are also described. 

Clause 10 covers the fundamentals of statistical process control. It distinguishes between statistical process 
control and the use of statistical process control techniques for statistical product control. Over-control, under-
control and control are discussed. The key steps in establishing and interpreting performance-based control 
charts that are intended primarily to differentiate between special and common causes of variation and 
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provide a basis for capability and performance assessment are covered. The principal types of Shewhart-type 
control charts and the role and application of cumulative sum (CUSUM) charts are dealt with. 

Clause 11 deals with performance benchmarking of stable processes under the heading of process capability 
assessment. Three very pertinent business questions are answered by a control chart: 1) is the process in 
control?; 2) what is the performance of the process?; and 3) is there evidence of significant improvement in 
process performance? Clause 11 focuses on answering the second question regarding process 
capability/performance of both measured data and attribute processes. It introduces the use of the 
internationally standardized capability indices, Cp, CpkL and CpkU. It also discusses the business implications, 
in terms of aiming at preferred value and minimizing variation, with the quotation of minimum Cpm values, 
rather than the convention of tolerating maximum use of specified tolerances in determining whether or not an 
entity conforms to requirements. 

Clause 12 begins by illustrating the role and value of simple economic experimental designs where the 
mathematical content is such that all the necessary calculations can readily be done manually. It then 
continues to exploit the development of computer software programs in the design and analysis of 
experiments. Nowadays the need for computational skills has become so minimal that the practitioner can 
concentrate his attention on choosing the right kind of design for a particular application, how to perform the 
experiment and how to interpret the computer outputs. In both cases, pictorial outputs are encouraged to 
facilitate understanding.  

Clause 13 deals with the capability of measuring systems. Following a resumé of the basic statistical 
requisites of a measuring system that ensures the integrity of the data output, examples are given of the 
application of statistical method to the evaluation of resolution, bias and precision, uncertainty, repeatability 
and reproducibility. 
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Guidance on the application of statistical methods to quality 
and to industrial standardization 

1 Scope 

This Technical Report describes a broad range of statistical methods applicable to the management, control 
and improvement of processes. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO 3534-1, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in 
probability 

ISO 3534-2, Statistics — Vocabulary and symbols — Part 2: Applied statistics 

ISO 3534-3, Statistics — Vocabulary and symbols — Part 3: Design of experiments 

3 Terms and definitions 

For the purposes of this document, the terms and definitions given in ISO 3534-1, ISO 3534-2 and ISO 3534-3 
apply. 

4 Illustration of value and role of statistical method through examples 

4.1 Statistical method 

The term “statistics” is commonly associated with an idea of lists of numbers, whether relating to output, costs, 
sales, prices or wages. It is thus advisable to make clear at the outset what in fact this statistical method is 
that may gainfully be applied in the field of quality and standardization. It is important to give some preliminary 
answers to certain questions. Why is statistical method needed at all? What does it consist of? 

What kind of assistance can it give? Where can, when can, and should, it be applied? For this purpose, it has 
seemed best to deal first with the particular rather than the general, using specific examples to focus attention 
on the wider issues involved. 
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4.2 Example 1: Strength of wire 

4.2.1 General 

This example illustrates the role and value of the division of data into so-called rational subgroups coupled 
with the use of cause and effect diagrams and dot plots. It shows their applicability to both problem solving 
and process and product enhancement. It also indicates the need to treat numerical data, not just as a set of 
figures, but as potentially meaningful information on a process. It demonstrates clearly that an enquiring mind 
and sound judgement, coupled with an understanding of the actual process producing the numerical data, are 
required, as distinct from a mere knowledge of statistical method. Hence, there is a need for technologists, 
technicians, and operational, administrative, marketing and management personnel to become more aware of 
the role of statistical method and become more involved in their actual application to secure the many benefits 
possible to any organization. 

4.2.2 Overall test results and lower specification limit 

Suppose 64 test results were obtained on the breaking strength of wire where the lower specification limit is 
set as 420 units. The results are shown in ascending order reading down the columns in Table 1 and as a dot 
plot in Figure 1. 

Table 1 — 64 test results of wire breaking strength arranged in order from minimum to maximum 
(measurements were made to the nearest 5 units) 

390 415 435 450 460 470 480 490 500 510 515 520 540 550 560 575 

400 415 440 450 460 470 480 490 500 510 520 530 540 550 565 580 

405 420 440 450 460 475 480 495 500 515 520 530 545 550 570 585 

410 430 445 455 465 475 485 495 505 515 520 535 545 560 575 590 

Mean = 495; median = 497,5; minimum = 390; maximum = 590. 

 

 

Key 

X strength 
Y number of observations 

The dashed line at 497,5 represents the sample median and the full line at 420 represents the lower specification limit. 

Figure 1 — Dot plot of breaking strength of 64 test specimens 
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4.2.3 Initial analysis 

It can be seen that 6 of the 64 test specimens have failed to achieve the 420 lower limit, although the mean is 
well above this at nearly 500; that is because there is a large amount of variation about the average. This is 
best indicated graphically in the form of the dot plot of Figure 1. (For the corresponding line plot, see 
Figure 12.) 

It is obviously necessary to improve the quality of the wire, of which these are sample pieces, if the breaking 
strength is to be depended upon to always satisfy the minimum requirements of the specification. The pattern 
of variation is fairly symmetrical with a relatively large scatter. Whilst it may be possible to increase the mean 
strength, it is impossible to reduce excessive variation without some clue as to its main causes. If, on the other 
hand, some assignable (special) cause of variation can be located, it may be possible to take specific action 
both to increase the mean strength and reduce the overall variability. This will call for preliminary 
investigations into the causes to which the extreme variations may be assigned. 

4.2.4 Preliminary investigation 

This investigation would first require a consideration of such questions as the possible causes of variation in 
the wire strength. The outcome from a multi-disciplined team was the simple cause and effect diagram 
(see 5.3.13) as shown in Figure 2, which suggests a dependence of the wire strength on material composition 
and levels of steel and oil quench temperatures. 

 

Key 

1 steel temperature 
2 oil quench temperature 
3 high 

4 low 
5 strength 
6 carbon content 

Figure 2 — Basic cause and effect diagram for variation in wire strength 
(due to possible changes of material and process parameters within specified tolerances) 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TR 18532:2009(E) 

4  © ISO 2009 – All rights reserved
 

The next stage involves the division of the test records into a number of groups, within each of which all or 
some of these possible factors are roughly constant. This grouping, which is essential in any process of 
analysis, is described as division into rational subgroups (see 10.5.2). Suppose now that the 64 tests in the 
present example fall naturally into 4 subgroups, which is thought might be differentiated owing to changes in 
one or other of the factors suggested in Figure 2. The result is shown in the dot plots of Figure 3. 

 

Key 

X strength Y number of observations in group 1 
a) Group 1: Low oil quench temperature — High steel temperature 

 

Key 

X strength Y number of observations in group 2 
b) Group 2: High oil quench temperature — High steel temperature 

 

Key 

X strength Y number of observations in group 3 
c) Group 3: Low oil quench temperature — Low steel temperature 

 

Key 

X strength Y number of observations in group 4 
d) Group 4: High oil quench temperature — Low steel temperature 

The dotted line in each subfigure at 497,5 represents the sample median of all 64 test results and the full line at 420 
represents the lower specification limit. 

Figure 3 — Line plots showing patterns of results after division into rational groups 
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A study of Figure 3 indicates the following. 

a) Group 1 results are similar to those of group 3. This suggests that strength does not appear to vary a lot 
at low oil quench temperatures even if the steel temperature varies. The technical expression for this is 
that the process is robust to steel temperature variation at low oil quench temperatures. The means are of 
the order of 500, or greater, and the minimum sample values about 460, compared with the minimum 
specification value of 420. 

b) A study of group 2 and group 4 results appear to indicate a very different situation. Group 4 results are 
consistently low at, or around, the minimum specification limit. Group 2 results, on the other hand, are in 
two sets: one low set, with a mean below the specification limit, comparable with those of Group 4 and 
another contrasting set with an extremely high mean at about 570 with a relatively low variation. 

A comparison of the records of these two sets indicated that the low set corresponded with operating 
conditions where the preset high steel temperature had inadvertently dropped to a low value for a short 
period. At a high quench temperature, the wire strength is extremely sensitive to variation in steel temperature 
and extremely low results, with a high proportion below the specification limit, may be expected at low steel 
temperatures, whereas at high steel temperatures the high quench temperature appears to yield a far superior 
strength performance with a mean of the order of 570 with relatively low scatter. The relationship (which was 
later confirmed by statistical experimentation, but is not reported in this Technical Report) is shown 
diagrammatically in Figure 4. Note that Figure 4 is not exclusively a summary of Figure 3 a) to d) but also 
draws on the results of extra experimentation. 

 

Key 

1 high steel temperature 
2 low steel temperature 
3 low 
4 high 

X oil quench temperature 
Y strength 
 

Figure 4 — Diagram indicating the effect of the interrelationship between oil quench temperature 
and steel temperature on wire strength 

Now is decision time. How should this process be run to be likely to ensure uniform strengths of wire which do 
not contravene the lower specification limit? The choice depends on operational, economic, marketing and 
statistical considerations. 
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Option 1 is to run at low quench temperatures, which would be expected to give results similar to those of 
groups 1 and 3. Due to the predicted value of the mean and the pattern of variation, there would be some 
chance that occasionally the minimum specified strength may not be achieved. Variation in steel temperature 
between high and low would then be anticipated to have little impact on wire strength. Certain economies 
might be achieved using this option, by running with a lower steel temperature or a lower level of control of 
steel temperature. 

Option 2 is to grasp the opportunity to achieve a relatively high mean wire strength with low variability by 
running the process with both a high steel and oil quench temperature. This may increase the process cost 
but it would ensure wire strength conformance to specification. It would also, perhaps, be appropriate to seek 
marketing advantage by improving the grade and increasing the price of the wire. However, the wire strength 
is seen to be particularly vulnerable to drops in steel temperature at high settings of oil quench temperatures. 
It is vitally important if this option is chosen to place strict controls on steel temperature. 

4.2.5 General discussion on findings 

This example has been used to suggest how simple statistical tools, coupled with technical and operational 
knowledge of the process, may help in improving process efficiency and performance and product conformity 
to specification. They provide powerful analytical and communicating tools and, at the same time, assist in 
determining, on a sound basis, simple routine checks on the efficiency of technical control. 

Certain questions are posed. Should material of such great variation in strength be sold under the same 
specification? What is the relative cost to produce wire under some process parameter settings rather than 
others? Supposing that such variety is not desirable, what should be the best standard to aim at, having 
regard to the needs of the user and the obstacles to be overcome by the producer? Should the strength 
specification be modified, either downwards to encourage the attainment of the standard, or upwards following 
improvement in process settings and control, to increase the grade and price? To what extent are other 
product characteristics, such as hardness and brittleness, related to strength? Are trade-offs between one and 
the other involved? 

In addition to these points, there is one more closely connected with statistical theory. The mere statement of 
means and minimum and maximum sample test strengths and the graphical display of the results, in the form 
of a dot or line plot, do not really provide measures of variation adequate for numerical prediction of the ability 
of the process to produce wire strengths conforming to standard. A number of other statistical aspects need to 
be considered, such as the stability of the process in relation to wire strength and the fitting of a probability 
distribution to the pattern of variation of the results (such as is shown later for a different example in 
Figure 26). 

4.2.6 Explanation of statistical terms and tools used in this example 

Rational subgroup: a group in which data is so organized through classifying, grouping or stratifying as to 
ensure the greatest similarity among the data within each subgroup and the largest difference between 
subgroups. The aim of rational subgroups is to include only common causes of variation within a subgroup 
with all special causes of variation occurring between subgroups. The object is to discriminate more readily 
between common and special cause variation in sets of data. 

Knowledge and information, obtained through theory, experimentation or experience of the process, typically 
form the basis of the selection of rational subgroups. For example, in the administrative area, historical data 
on late payments could be grouped by account, account supervisor, product or by intervals of time. In a 
production process, the maximum homogeneity within a subgroup is frequently obtained by making up rational 
subgroups from consecutively produced parts taken from the same location or machine. For example, five 
consecutively produced parts from one machine may be taken every hour. It is then possible to segregate 
special causes of hour to hour variation, identified from subgroup to subgroup variation, from the inherent 
sources of common cause variation within a subgroup. 

Common causes of variation: source of variation that is inherent in a process. It relates to those sources of 
natural variation in a particular process. For example, a turret capstan may produce to 0,25 mm, a grinder to 
0,025 mm and a hand lapper to 0,002 5 mm; an investment casting may produce to 0,2 mm per metre and a 
sand casting to 0,8 mm per metre. Hence, only people responsible for the system can often reduce common 
cause variation. The variation is predictable in a process subject only to common cause variation. 
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Special causes of variation: source of intermittent variation in a process. A special cause arises because of 
specific circumstances that are not always present. For instance, it could be irregular (e.g. power surge), 
progressive (e.g. tool wear) or stepwise (e.g. change in datum of a gauge, or change in setting). As such, in a 
process subject to special causes, the magnitude of the variation from time to time is unpredictable. The 
presence of special cause variation is found using a statistical process control (SPC) chart by operational 
people, those who work in the system. 

Dot/line plot: the frequency of readings at each measurement is shown by dots/lines built up vertically on a 
horizontal axis representing the scale of measurement. It can be used to compare or contrast, graphically, the 
pattern of variation of data both within a rational subgroup and between subgroups. It is particularly useful 
when working with limited sets of data. 

Mean (arithmetic mean): sum of the values of the observations divided by the number of observations. 

Median: value of a variable characteristic, which is greater than one half of the observations and less than the 
other half (the middle, or mid-value). In the case of an even number of observations, it is usual practice to set 
the sample median equal to the arithmetic mean of the central two observations after arranging the 
observations in ascending order. 

Cause and effect diagram: frequently called a fishbone diagram (because of its shape) or an Ishikawa 
diagram (named after its creator, see Reference [101]). It applies where it is required to explore and display 
causes of a specific concern, problem or condition. The concern (effect) is shown on the right of a main 
horizontal spine. Possible categories of causes of the concern are shown on main branches from the spine. 
Subcategories are indicated on subbranches. 

4.3 Example 2: Mass of fabric 

4.3.1 General 

This example illustrates a form of problem that arises in sampling anything, for example, a product or material, 
to determine whether or not it conforms to specification. It suggests the importance of establishing the 
relationship between size of sample and the precise rules to be laid down for acceptance or rejection, based 
on the resulting tests or measurements. 

Specifications may be one-sided, with either a minimum (e.g. strength) or maximum value (e.g. eccentricity) 
quoted, or two-sided, with both a minimum and maximum given (e.g. assembly component dimension). When 
measurements are taken of successive results from however stable and precise a process, it cannot be 
supposed that the results will be identical. Some variation will be evident if the resolution of the measuring 
device is appropriate. Consequently, to obtain any adequate appreciation of the quality of the particular 
characteristic in question, a number of results need to be obtained. Furthermore, it is not only the resulting 
average that is of importance, but also the uniformity as measured by the variation about that average. 

It follows that, in using a series of sets of measurements to check for conformity to a specification, it is helpful 
to take into account the following: 

a) the relationship between average values, minimum values, range of variation, etc.; together with 

b) the manner in which these are dependent upon the actual number of measured values taken. 

4.3.2 Test results and specification limits 

It is possible to illustrate the nature of the problem using the data given in Table 2. The figures represent the 
masses of specimens taken from a roll of fabric. They have been grouped for purposes of illustration into 32 
samples of 4 specimens each. 
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Table 2 — Masses of 128 specimens from a roll of fabric — 
Minimum specification limit = 98 dg = 9,8 g 

Mass of specimens (1 dg) Mass of specimens (1 dg) Sample 
number 1 2 3 4 

Sample
number 1 2 3 4 

1 101 99 100 102 17 100 97 91 92 

2 106 98 101 99 18 106 100 102 100 

3 98 101 102 100 19 97 97 94 99 

4 103 104 95 96 20 99 101 100 101 

5 96 97 100 96 21 100 101 95 103 

6 101 96 97 97 22 101 99 99 99 

7 109 100 106 101 23 94 96 94 98 

8 92 97 100 95 24 99 100 104 108 

9 104 102 95 100 25 102 100 105 98 

10 98 101 99 107 26 99 98 103 97 

11 99 98 99 99 27 97 98 106 104 

12 109 101 105 102 28 97 101 108 99 

13 95 94 97 100 29 100 97 100 98 

14 102 100 100 95 30 104 103 104 100 

15 97 101 102 98 31 105 99 103 103 

16 103 101 99 100 32 98 104 102 103 

Figure 5 illustrates the data of Table 2 in 3 ways, in relation to sample means: 

a) the first 32 samples each have 4 masses (as shown in Table 2); 

b) samples 33 to 48 relate to the same data in Table 2, which has now been combined into 16 samples each 
of 8 masses with sample 33 being the union of samples 1 and 2, etc.; and 

c) samples 49 to 56 relate to the same data in Table 2, which has now been combined into 8 samples each 
of 16 masses with sample 49 being the union of samples 1 to 4, etc. 

Figure 6 illustrates the data of Table 2 in 3 ways, in relation to sample ranges (see 5.2 for definition of range) 
rather than sample means. As in Figure 5: 

1) the first 32 samples each have 4 masses (as shown in Table 2); 

2) samples 33 to 48 relate to the same data in Table 2, which has now been divided into 16 samples each of 
8 masses with sample 33 being the union of samples 1 and 2, etc.; and 

3) samples 49 to 56 relate to the same data in Table 2, which has now been divided into 8 samples each of 
16 masses with sample 49 being the union of samples 1 to 4, etc. 
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Key 

X sample number 
Y mass in units of 1 dg 

NOTE 1 Bold horizontal lines indicate maximum ranges of means for sample sizes of 4, 8 and 16. 

NOTE 2 L = lower specification limits 

NOTE 3 CL = centreline 

Figure 5 — Means of masses plotted against sample number 
(illustrating decreasing variation in the mean with the sample size increase) 

 

Key 

X sample number 
Y range in units of 1 dg 

NOTE Dotted lines show increase with sample size in mean range within a sample. 

Figure 6 — Ranges of masses within each sample vs sample number 
[illustrating increasing (range) variation within a sample with sample size increase] 
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4.3.3 Discussion of specific results 

Attention is drawn to the following points, brought out by examination of Figure 5. 

a) The mean (Figure 5). 

Sample size Range of means 
(in units of 1 decigram) 

4 95 to 104 = 9 

8 97 to 102 = 7 

16 99 to 101 = 2 
 

The conclusion is that as the number of values upon which the mean is based becomes larger, the variation in 
the mean becomes smaller. 

b) The range (Figure 6). 

Sample size Average range 
(in units of 1 decigram) 

4 6 

8 10 

16 12 

The conclusion is that the range of variation within a sample increases with the number of values in the 
sample. 

c) Conformance to specification. 

Suppose that the minimum mass, the lower specification limit (LSL), were to be set at 98. 

1) If this criterion is applied to the mean value in a sample, then: 

i) 7 of 32 samples of 4; 

ii) 1 of 16 samples of 8; 

iii) 0 of 8 samples of 16 

would fail to meet the criterion. 

2) On the other hand, if this criterion is applied to the smallest value in the sample, then: 

i) 15 of 32 samples of 4; 

ii) 12 of 16 samples of 8; 

iii) 8 of 8 samples of 16 

would fail to meet the criterion. 

This example is discussed further in 8.3. 
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4.3.4 Discussion on general findings 

Without placing undue emphasis on figures that are based on a single sample, the following general 
conclusions can be established by statistical theory and turned to practical account. 

a) As the number of values or tests becomes larger, the (absolute value of the) expected difference between 
the mean of one set of tests and that of another becomes smaller. 

b) As the number of values or tests becomes larger, their expected range of variation also becomes larger. 

c) A statement by way of specification that the lower specification limit = 9,8 g, say, is inadequate unless 
supplemented by 

1) information concerning the number of specimens to be tested, 

2) whether or not something conforms to specification. 

Without this information, it would not be possible to know whether something conforms or does not conform to 
specification. 

4.4 Example 3: Mass fraction of ash (in %) in a cargo of coal 

4.4.1 General 

This example illustrates four principal concepts: 

⎯ the handling of apparent fluctuation of a quality characteristic within a quantity of material (or alternatively 
with time); 

⎯ the need to determine, on a sound basis, the extent of sampling necessary to estimate the quality 
characteristic of a commodity; 

⎯ the necessity to establish, in advance, a well designed sampling procedure based on sound, but basic, 
statistical principles; 

⎯ the value of progressive analysis of results, in a simple graphical manner, as they become available. 

These concepts are explained by reference to bulk sampling. However, they are applicable generally to all 
kinds of sampling. 

Sampling of bulk commodities, for example, particulates, liquids and gases, can be classified into two types: 

a) sampling to make a decision on lot acceptance/rejection (see ISO 10725 [39]); 

b) sampling to make an estimation of the average quality of a particular characteristic of the bulk commodity. 
(See ISO 11648[43].) 

Illustrations of the application of b) include sampling of chemical products such as those in liquid state, cokes, 
ferroalloys and cements; agricultural products such as grains and flours; minerals and liquid state petroleum 
products. Sampling may take place on moving streams or in stationary situations such as stockpiles, silos, 
wagons and holds of ships and barges. 

For this particular example, the quality characteristic chosen is the mass fraction of ash (in %) in a ship's 
cargo of coal. The aim is to estimate the average (arithmetic mean) value. The prime purpose of such 
sampling is, typically, to obtain an appreciation of the quality characteristic of the bulk of the fuel as a basis for 
determining the price to pay for the consignment. 
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4.4.2 Test results (reference ISO 11648-1: Statistical aspects of sampling from bulk materials) 

Table 3 shows the test results from a series of 20 lots of coal being unloaded from a ship. For each lot, eight 
samples of coal were drawn and the mass fraction of ash (in %) measured. 

Table 3 — Mass fraction of ash (in %) measurement results by lot from ship's cargo on unloading 

Lot no. Result 1 Result 2 Result 3 Result 4 Result 5 Result 6 Result 7 Result 8 

1 9,38 9,24 9,02 8,98 9,22 9,32 8,40 8,38 

2 9,76 9,80 9,92 9,92 9,36 9,36 9,72 9,54 

3 7,40 7,26 7,32 7,40 7,55 7,61 7,57 7,49 

4 8,62 8,76 8,82 8,84 9,20 9,34 10,00 10,00 

5 9,16 9,18 8,72 8,68 8,89 8,75 9,51 9,47 

6 9,08 9,08 9,06 8,86 8,80 8,84 8,76 8,60 

7 8,77 8,69 8,77 8,75 9,16 8,92 9,06 8,94 

8 8,62 8,68 8,80 8,42 8,78 9,02 8,62 8,94 

9 8,60 8,74 7,10 7,22 8,88 9,10 9,08 9,00 

10 6,96 7,20 7,32 7,40 8,59 8,89 7,55 7,43 

11 8,44 8,26 7,92 7,70 8,65 8,45 8,37 8,15 

12 8,24 8,00 8,38 8,12 8,42 8,26 8,78 8,72 

13 7,21 7,25 6,85 7,03 7,21 7,31 7,31 7,39 

14 8,84 9,00 8,96 8,90 9,24 9,16 9,20 9,38 

15 8,45 8,51 8,91 8,79 9,00 9,06 8,86 8,96 

16 9,02 9,08 9,16 9,08 8,75 8,83 8,65 8,75 

17 8,71 8,77 8,75 8,75 8,98 8,96 9,00 9,18 

18 8,77 8,92 9,24 9,32 8,82 8,64 8,32 8,42 

19 7,37 7,39 7,13 7,25 7,10 6,92 6,64 6,74 

20 10,12 10,02 9,96 9,94 10,72 10,78 10,30 10,30 

4.4.3 Initial graphical analysis of specific results 

A plot of the averages of mass fraction of ash (in %) of the coal by lot is shown in Figure 7. The points have 
been joined by straight lines to aid visualization of the variation. 

Fluctuation is observed about the overall average of 8,63 % ash content. Suppose 8,6 % is taken to represent 
the ash content in the whole consignment. A practical question would then be how many sets of tests need to 
be made before it would be reasonable to estimate this measure within, say, ± 1 % of its value (i.e. 
approximately 8,5 to 8,7). This question can be answered by reference to the progressive average plot in 
Figure 8. 
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NOTE The value of mass fraction of ash (in %) in the figure for each lot represents the average of 8 results for the lot. 
Namely, from Table 3, the value for lot 1 = (9,38 + 9,24 + 9,02 + 8,98 + 9,22 + 9,32 + 8,40 + 8,38) /8 = 8,99, and so on. 

Key 

X lot number 
Y average of mass fraction of ash (in %) 

Figure 7 — Averages of mass fraction of ash (in %) of coal by lot from cargo 

 

NOTE The value of mass fraction of ash (in %) plotted by lot number represent progressive, or cumulative, averages 
of all measured values up to that lot. For example, the averages of the first three lots are: 8,99, 9,67 and 7,45. The 
corresponding progressive means are 8,99, (8,99 + 9,67)/2 = 9,33 and (8,99 + 9,67 + 7,45)/3 = 8,70. 

Key 

1 ± 1 % band 

X lot number  
Y progressive average of mass fraction of ash (in %) 

Figure 8 — Progressive averages of mass fraction of ash (in %) in terms of lot 
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Figure 8 shows that, as the number of sampling lots increases, the progressive average appears to approach 
a limiting value of approximately 8,6. From the 10th sampling lot, the fluctuation of the progressive average 
has stabilized to fall within the ± 1 % bounds. That is to say, in this particular case, some 10 sampling lots 
would be required before a stable estimate lying within ± 1 % of 8,6 % could have been made of the ash 
content. However, it is important that this is not taken as a general rule. Much will depend upon the 
homogeneity of the consignment, the mass of the sample, the sampling and sample preparation procedures, 
sampling plan design, instrument resolution, etc. It is in the determination of the relationships between these 
factors that the methods of statistical analysis are useful. 

4.4.4 Benefits of a statistically sound sampling plan 

The benefits of a statistically sound sampling design become evident on analysis and attempting to draw 
conclusions from the results. For example, it is noted from purely cursory observation of Table 3 that: 

a) there is noticeable variation within each column of results; 

b) the rows of results (i.e. within lots) for the main peaks and troughs of Figure 7, lots 2 (high), 3, 13 and 19 
(low), and 20 (high), have similar patterns of variation; 

c) there are adjacent column pairs of very low values in lot 9 (7,10 and 7,22 for results 3 and 4, respectively) 
compared with the six other values ranging from 8,6 to 9,1; 

d) there are adjacent column pairs of very high values in lot 10 (8,59 and 8,89 for results 5 and 6 
respectively). 

What do these results indicate? To answer this question, it is necessary to refer to the plan for sampling 
percentage ash from the ship's cargo. This is shown in Figure 9. 

 

Figure 9 — Schematic diagram showing plan for sampling percentage ash from cargo of ship 

This statistical design permits the isolation of lot to lot, composite sample to composite sample, test sample to 
test sample and measurement variation. This type of design is recommended (see ISO 11648-1) when there 
is no, or little, prior knowledge about the sampling situation. 

In this particular case, the conveyor belt unloading coal from the ship was stopped at uniform time intervals. 
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A prespecified mass increment of coal was shovelled from the conveyor belt. Individual consecutive 
increments were placed alternately into two containers, A and B. Each of the two containers ultimately 
contains 30 such increments, which make up so-called composite samples. Two test samples are then 
prepared from each composite sample. Ash content is then analysed in duplicate on each test sample. 

 

NOTE Circle: lot 19; Diamond: lot 20. 

Key 

X test number 
Y mass fraction of ash (in %) 

Figure 10 — Mass fraction of ash (in %) plotted against test number for lots 19 and 20 
(illustrating relative consistency of percentage ash within each of these lots) 

 

NOTE Circle: lot 9; Square: lot 10. 

Key 

X test number 
Y mass fraction of ash (in %) 

Figure 11 — Mass fraction of ash (in %) plotted against test number for lots 9 and 10 
(illustrating rogue pairs in both lots) 
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Because of the design of the statistical sampling plan, certain conclusions may now be drawn, for example: 

i) in general, there is more lot to lot variation (row to row variation in Table 3) than within lot variation (within 
row variation); 

ii) Figure 10 confirms, with respect to lots 19 and 20, the relative consistency of test results within these lots;  

iii) Figure 11 indicates two pairs of rogue values in lots 9 and 10. Reference to the sampling plan indicates 
that these pairs are associated with test sample 2A  in lot 9 and 1B  in lot 10. The latter phenomenon 
could be due to problems in sample preparation or, perhaps, an abrupt change in calibration level of the 
measurement system. In retrospect, it is not possible to assign this special cause specifically. However, if 
simple graphical analysis such as this is ongoing, as results become available, and is not left to be done 
retrospectively, it is more likely that the specific cause of events such as these could be identified, at the 
time and place of the sampling activity. Operational or technical personnel could then take action, to 
remove the cause and its effect by eliminating the rogue values or substituting more representative ones. 

4.4.5 General conclusions 

This example illustrates: 

a) the importance of the deployment of statistical thinking and design method to a numerical study prior to its 
being undertaken; 

b) the value of the progressive application of simple, mainly graphical, statistical tools to any numerical study 
at the time and place of the particular activity rather than just applying more sophisticated statistical 
methods retrospectively; 

c) that to gain full benefit from b) it is essential that personnel who are technically and operationally familiar 
with the activity under scrutiny are involved in the progressive statistical analysis because it will facilitate 
the early identification and removal of any special cause variation that may be found to be present. 

A more sophisticated retrospective statistical study of the results in this example included the use of analysis 
of variance (ANOVA). This confirmed that most of the overall variation in mass fraction of ash (in %) (84 %) 
was attributable to lot to lot variation, indicating variability in the ash content of the cargo. About 7 % to 8 % 
was attributed to each of composite and test sample variation and less than 1 % to measurement variation. 

5 Introduction to basic statistical tools 

5.1 General 

The examples in Clause 4 give a general idea of the function of statistical methods in the analysis, control and 
reduction of variation and the usefulness of simple graphical presentation of data. Before developing in 
greater detail the application of these methods to quality, specification and standardization, it is necessary to 
describe more fully some of the basic tools. 

Suppose that a single quality characteristic has been measured and recorded for each of a number of objects. 
The objects/characteristics of interest may be teeming temperature or vacuuming time in a steel mill; lateness 
of trains; time to pay invoices; length, diameter, surface finish or eccentricity of a component; hardness or 
silicon content of a material; time to answer a telephone; time to failure; noise level; emission level of engines. 
This partial listing gives some impression of the broad applicability of these tools. The measured values of 
characteristics will be termed values or observations. 

5.2 Basic statistical terms and measures 

If a group of units or quantities have been selected from a larger whole, it is defined in statistical terminology 
as a sample. It is also common to speak of the individual observations themselves as forming a sample. Thus, 
a sample may consist of 1, 2, 3,…, n units or observations. 
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A sample that is drawn without bias is termed a random sample. The larger whole of units, which is to be the 
subject of sampling (e.g. all students at a college at the time of a survey), is called a population. (Further 
discussion of this concept is provided in 7.1 and 8.1.1.) A sampling frame, on the other hand, is a list of 
sampling units from which the sample is taken (e.g. college register). In the subclauses that follow, it will be 
necessary to discuss various aspects of the relationship between the sample and the population. But it is first 
necessary to introduce certain statistical measures which, from the descriptive viewpoint, may be equally 
applied whether the group of units under consideration forms the sample or the population. 

With a group of observations, three aspects are of prime importance. These are: 

a) a measure of central tendency; 

b) a measure of the magnitude of the variation; 

c) the pattern of variation. 

There are various methods for measuring the central tendency and the magnitude of the variation within a 
group of observations. An important feature that is, unfortunately, frequently not taken into consideration in the 
application of these measures is the pattern of variation. For example, too often normality (symmetrical bell-
shaped distributions) is assumed in process capability studies, and constant failure rates in the specification 
of, and performance claims for, equipment reliability. 

Central tendency is most commonly expressed in terms of: 

1) arithmetic mean (or just mean or average): the total of the values divided by the number of values; 

2) median: the central value when the data are ranked in order of size and when the number of 
observations is odd; if the number of observations is even, then the median is usually taken to be the 
average of the two central values;  

3) mode: the most frequently occurring value. 

The two most frequently used measures of variability are: 

i) range: the difference between the smallest and largest values in the data; 

ii) standard deviation: measures the variation of the data around the mean. The less the variation, 
the smaller the value. When derived from a sample, the value is given by the expressions: 

2 2 2( ) ( )
1 ( 1)

x x n x x
s

n n n
− −

= =
− −

∑ ∑ ∑  

where 

∑ is the sum of; 

x is the individual value; 

x  is the arithmetic mean of the individual values; 

n is the number of values; 

s is the sample standard deviation. 

A summary of the relative advantages and disadvantages of these measures is given in Table 4. 
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Table 4 — Advantages and disadvantages of various statistical measures 

Measure Advantages Disadvantages 

Mean Easy to understand Affected by very high or low values 

 Commonly used Need all the data to calculate 

Median Unchanged by very high or very low values Slow and tedious to calculate for large 
sample sizes unless a suitable calculator 
or computer facility is available 

Mode Unchanged by very high or low values May be multi-modal 

Range Easy to calculate Uses extreme values only 

Standard deviation More efficient than range Less easy to calculate manually 

 

To illustrate these terms, a set of five values is used: 7, 5, 10, 7 and 6. Using these values, the various 
statistical measures are as follows. 

Arithmetic mean  = (7 + 5 + 10 + 7 + 6)/5  = 7 

Median  = central value of ordered set, 5, 6, 7, 7, 10  = 7 

Mode  = most frequent value  = 7 

Range  = maximum value − minimum value = 10 − 5  = 5 

Standard deviation (manual method is shown below) = 1,87 

Sample 
value 

( )x x−  2( )x x−

7 0 0 

5 −2 4 

10 3 9 

7 0 0 

6 −1 1 

 

2( ) 14x x− =∑   

and thus 

2( ) 14 1,87
1 5 1

x x
s

n

−
= = =

− −
∑  

Alternatively, the standard deviation may be obtained much more quickly and directly using a scientific 
calculator. 
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5.3 Presentation of data 

5.3.1 Dot or line plot 

Particularly when only a few observations are available, dot or line plots, such as those shown in Figure 1 and 
Figure 3, will often give a useful preliminary picture of the situation. Indeed for certain purposes, the 
consideration of such a diagram may be all that is needed. The corresponding line plot for the dot plot of 
Figure 1 is shown in Figure 12. 

 

Key 

X strength 
Y number of observations 

Figure 12 — Line plot of breaking strength of wire (Table 1 data) 

5.3.2 Tally chart 

A tally chart may be applied to both measured and classified data. It is used to visually represent the 
frequency of a particular value, or a specific type of event, in a series. The five-bar gate notation is used. 
Examples are shown in Figure 13 for both measured data and classified events. 

  

a) Tally chart for measurements b) Tally charts for events/counts 

Figure 13 — Typical tally charts 

5.3.3 Stem and leaf plot 

The stem and leaf plot displays the pattern of variation of measured data. It is an enhanced form of histogram 
or tally chart. In addition to showing the distribution of a set of data, it also shows individual values. Each value 
is split into two parts, the first part consisting of the leading digits, which are written downwards along the stem 
in ascending order, while the second part of the values, the remaining digits, are written in ascending order 
horizontally along the leaf on the line with their leading digits. 
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An example is shown for the following data in Figure 14. 

Data: 29, 28, 41, 36, 36, 59, 50, 61, 44, 48, 35, 42, 53, 33, 31. 

 

Figure 14 — Stem and leaf plot for data 

5.3.4 Box plot 

The box plot is a very useful tool in exploratory data analysis. It is simple to construct and easy to interpret. 
Like the dot or line plot, it is used to depict the similarities within, or the differences between, different 
groupings of data. Tukey [130] defines 

Lower limit (LL) = Q − ×1 1,5 IQR  

and 

Upper limit (UL) = Q + ×1 1,5 IQR,  

where IQR is the inter-quartile range defined, i.e. 3 1IQR .Q Q= −  Observations outside these limits may be 
outliers, and should be checked. If the data are from a normal distribution, the area outside these limits is 
approximately 0,7 %. 

The box plot represents a five-number summary of a data distribution consisting of 

x�  median (mid) value; 

1Q  first quartile (value below which ¼ of values lie); 

3Q  third quartile (value above which ¼ of values lie); 

1A  lower adjacent value = smallest data value W LL; 

2A  upper adjacent value = largest data value u UL. 

A basic box plot consists of a box, the length indicating the region where 50 % of the readings lie, a median 
line, and whiskers extending from the box to the lower and upper adjacent values. Each data value outside the 
whiskers is drawn as a point alongside the axis defined by the whiskers. A box plot is shown pictorially in 
Figure 15. 

The box plot may be extended, for example, to include a display of statistical confidence limits around the 
median. An absence of overlap of these statistical bounds between groups would indicate statistically 
significant differences between the medians of these groups. Also, the width of the box may be varied to 
indicate changes in relative size of different groups. Outliers (apparent rogue values) may be shown by an 
asterisk. 
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Key 

1 1A   lower adjacent value 

2 1Q   first quartile 

3 x�  median, 

4 3Q   third quartile 

5 2A   upper adjacent value 

 

Figure 15 — Box plot 

The box plot may be augmented by more formal statistical methods such as analysis of variance (ANOVA). 

An example of the applicability and value of a box plot is shown in Figure 16. The shade variation of fabric of a 
particular colour was compared between adjacent panels on typical items of clothing sourced from three 
different suppliers. The results are shown in box plot form in Figure 16. 

 

Key 

1 two extreme values at 1,0 out of 30 

X supplier 
Y delta E value 

NOTE 30 samples tested from each supplier. 

Figure 16 — Box plot for Delta E panel shade variation between supply sources 
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The box plot indicates considerable variation in standards of performance between suppliers both in terms of 
process targeting (indicated by the relative positions of the median) and consistency about that target 
(indicated by the differences in lengths of the whiskers). The asterisk indicates two outlying values indicating 
lack of control of the dyeing process. 

The box plot indicates that: 

a) supplier 1 has approximately the same median Delta E value as supplier 2; 

b) supplier 2 has a dyeing process with essentially the same variation as supplier 1; two very high values 
are also present (in a limited test sample of 30), which is likely to give rise to extreme customer 
dissatisfaction and a loss of quality reputation by the retailer; if typical of production, major recalls may be 
expected; 

c) supplier 3 has a dyeing process distributed around a low (good) Delta E value with much smaller variation 
about that value than the other two suppliers. 

The Delta E results on supplier 3 merchandise indicate what can be, and is being, achieved in terms of 
shading performance. This “current state of the art” or “best practice” result then becomes the benchmark or 
reference standard for all supply sources. 

5.3.5 Multi-vari chart 

The multi-vari chart is a simple pictorial method of indicating and comparing the magnitude of different 
sources of variation. As such, it is very useful for diagnostic and investigation purposes rather than, and as a 
precursor to, ongoing process control. It consists essentially of vertical lines joining maximum and minimum 
values for a particular characteristic against a measurement scale: a max.-min. plot. A dot on nominal size 
represents an ideal value. The longer the line, the greater the variation. 

Take a turned diameter where three consecutive components are taken from production and measured each 
hour. A clock gauge is used which records maximum and minimum values of the diameter of each component 
as it is rotated. The multi-vari chart in Figure 17 shows, for three quite different process performance 
scenarios, the dominant sources of variation prevailing, namely: 

a) within part (geometric form) variation; 

b) part to part variation; 

c) time to time variation. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TR 18532:2009(E) 

© ISO 2009 – All rights reserved  23
 

 

Key 

1 scenario 1: Large within part variation 
2 scenario 2: Large part to part variation 
3 scenario 3: Large time to time variation 

X time 
Y value 
 

NOTE Maximum and minimum of three consecutive parts every hour for three hours showing three quite different 
process performance scenarios. 

Figure 17 — Multi-vari chart as a tool for process variation analysis 

5.3.6 Position-Dimension (P-D) diagram 

A P-D diagram can be looked upon as an extension to the multi-vari chart to handle more than one feature. A 
P-D diagram representing ideal values in relation to, say, ovality and taper of a cylinder, is a horizontal straight 
line on a vertical dimension scale. If this line is coincident with the nominal or targeted value of the overall 
mean of the diameter, then this represents the ideal situation. 

An example illustrates its usefulness. The variation in the outside diameter of a cylinder is being investigated 
for nominal size, ovality and taper. Measurements are taken at right angles to one another at each end of the 
cylinder as shown in Figure 18. A, B, C and D, as shown in Figure 18, identified these positional measurement 
values. One cylinder from production was measured every shift for 4 shifts. The machine tool was then 
overhauled and another set of readings taken. 

 

Figure 18 — Measurements on cylinder to determine nominal size, ovality and taper 
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Figure 19 provides the reference standard for this diameter and is used for judging the degree to which the 
diameter meets the preferred nominal value and the extent of geometric form variation present. 

 

Key 

1 ideal 2 pure taper 3 pure ovality 4 nominal value Y diameter 

NOTE AB indicates A is coincident with B dimensionally and CD indicates C is coincident with D dimensionally. 

Figure 19 — Measurement on cylinder — P-D diagrams showing ideal diameter values, 
pure taper and pure ovality 

Regarding Figure 20 and the factors under investigation: 

a) ovality: 

⎯ A > B indicates ovality at the AB end and C > D indicates ovality at the CD end; 

⎯ this progressively increases with time until overhaul; 

b) taper: 

⎯ the mean of A and B exceeding the mean of C and D indicates taper along the length of the cylinder; 

⎯ this, too, progressively increases with time until overhaul; 

c) overall diameter size: 

⎯ the mean of A, B, C and D gives an estimate of the overall average diameter; 

⎯ this progressively decreases away from its nominal value until overhaul; 

d) overhaul: 

⎯ improvements in overall diameter aim, and geometric form variation, with some ovality remaining at 
the AB end. 
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Key 

1 before overhaul 2 after overhaul  X time Y diameter 

NOTE  The dashed, vertical line indicates the time of the overhaul; on the left-hand side of the line, the situation before 
the overhaul is presented, and on the right-hand side, the situation after the overhaul. The dashed horizontal line 
represents the nominal value.  

Figure 20 — Measurement on cylinder — P-D diagrams indicating progressive decrease of mean 
and increase in geometric form variation and the beneficial effects of overhaul 

5.3.7 Graphical portrayal of frequency distributions 

When only a few observations are available, dot or line plots as shown in Figures 3 and 12 or stem and leaf 
plots as in Figure 14 will often suffice. However, with a larger number of observations, and once the possibility 
of dependency has been discounted, it is generally found convenient firstly to arrange the data in numerical 
value order, the total observed range of variation in the measured characteristic is then divided into 
convenient equal intervals, and the number of observations falling into each interval is counted. This number 
is termed the frequency for that interval and the resulting tabulated series of numbers shows the frequency 
distribution. A simple method called Sturge's rule, i.e. 

10Number of classes = 1 3,3 log (number of observations)+ ×  

provides guidance on the number of class intervals to select in terms of the total number of observations. This 
is shown, both in tabular and equation form, in Table 5. Sturge's rule should be taken purely as a starting point 
for experimenting with the number of classes to get the most informative view of the data. The number of 
class intervals actually chosen in a particular case should ultimately be chosen on the grounds of simplicity, 
clarity and ready understanding. This is illustrated in the example that follows. 

Table 5 — Guidance on number of classes to select in terms of number of observations 

Number of 
observations 

20 

to 

45 

46 

to 

90 

91 

to 

190 

191 

to 

370 

371 

to 

750 

751 

to 

1 500 

1 501 

to 

3 000 

3 001 

to 

6 000 

6 001 

to 

12 000

Number of classes 6 7 8 9 10 11 12 13 14 
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A grouped frequency distribution may be represented in a number of ways. Typical ones are: 

a) frequency table; 

b) frequency tally chart; 

c) histogram; 

d) cumulative frequency table; 

e) cumulative frequency plot. 

The application of each of these methods is illustrated by example. 

EXAMPLE Quality of zinc-coated item after galvanizing: 

Selected test specimens typical of production are required to withstand a standard 4 min acid bath immersion test 
following galvanizing. Some 200 results that have accumulated over a period of time are used as the basis for this study. 
Measurements were taken to the nearest 0,1 min. 

The results extended from 4,3 to 9,4. Sturge's rule suggests 9 class intervals for 200 results. This would give class 
intervals of (9,4 min − 4,3 min)/9 = 0,57 min. The results were arranged in ascending order and the actual class interval 
chosen was 0,5 min for greater simplicity and clarity. The resulting frequency and percentage frequency tabulation are 
shown in Table 6. 

Table 6 — Frequency and percentage frequency table for immersion times withstood by test specimen 

Immersion 

min 

No. of observations 

(Frequency) 

Frequency 

% 

4,1 to 4,5 

4,6 to 5,0 

5,1 to 5,5 

5,6 to 6,0 

6,1 to 6,5 

6,6 to 7,0 

7,1 to 7,5 

7,6 to 8,0 

8,1 to 8,5 

8,6 to 9,0 

9,1 to 9,5 

2 

5 

18 

27 

26 

39 

29 

25 

19 

6 

4 

1 

2,5 

9 

13,5 

13 

19,5 

14,5 

12,5 

9,5 

3 

2 

Table 6 illustrates that a frequency table summarizes a set of data by showing how often values within each 
class interval occur and that it may be enhanced by tabling the percentages that fall within each category. 

This permits some feel for how the data, as a whole, are distributed. 

Various pictorial representations of the test data of Table 6 are shown in Figure 21 to Figure 26. They further 
enhance perception of the shape and pattern of the distribution of the data and its relation to the lower 
specification limit of 4 min. 

The horizontal axis of the histogram corresponds with the variable characteristic and the frequency of 
observations in a given interval is represented by a rectangle of height proportional to this frequency, standing 
on the appropriate base element. Using this method, frequency in the table corresponds with area in the 
histogram. 
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Key 

1 lower specification limit 

X time, in min 
Y number of observations (frequency) 

Figure 21 — Frequency histogram for immersion times in Table 6 

 

Key 

1 lower specification limit 

X time, in min  
Y frequency, in percent 

Figure 22 — Percentage frequency histogram for immersion times in Table 6 
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Sometimes, it adds to understanding if relative (percentage) frequencies rather than actual counts of 
frequencies are used to construct the histogram. It also demonstrates the intermediate step to be taken in 
constructing a cumulative percentage frequency diagram. 

The cumulative relative frequency diagram shows the percentage of observations falling below (or above) 
particular values. By way of illustration, in Figure 23 it is seen that 58,5 % fall below 7,0 min. Hence, this is a 
very useful diagram for determining the situation in relation to specification limits (lower and upper). 

It should be borne in mind that the cumulative percentage values relate to the upper limit of the class interval 
and not to the mid-value. 

 

Key 

1 lower specification limit 
2 58,5 % below 7,0 min 

X time, in min 
Y cumulative frequency, in percent 

Figure 23 — Cumulative percentage frequency histogram for immersion times in Table 6 
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Key 

1 lower specification limit 
2 58,5 % below 7,0 min 

X time, in min 
Y cumulative frequency, in percent 

Figure 24 — Cumulative percentage frequency diagram for immersion times in Table 6 

The cumulative histogram can alternatively be expressed in the form of a smooth curve as shown in 
Figure 24, or preferably as a straight line by transformation of the vertical scale. This latter concept will be 
developed later in this clause. 

The diagrams of Figure 21 to Figure 26 portray the actual situation for a sample size of 200. What can be 
predicted about the galvanizing quality of production as a whole from this sample, assuming that the process 
is, and continues to be, stable about the present mean? This is where statistical modelling using the 
appropriate probability distribution can provide worthwhile quantitative information. A best fit probability 
distribution to match the actual frequency distribution is sought. 

In the zinc plating case, the frequency histogram for immersion time (Figure 21) indicates a bell-shaped 
symmetrical pattern of variation about the mean. This is typical of the normal or Gaussian distribution. The 
normal curve has a definite mathematical equation that depends only on the values of the mean and standard 
deviation. Care should be taken not to interpret the word normal to mean that anything non-normal should be 
looked upon as being peculiar. Any characteristic that has a natural zero, for instance, such as taper, 
eccentricity and parallelism will naturally be skewed. Constant failure rates, looked upon as ideal in the 
reliability field, will naturally have a non-normal (negative exponential) frequency distribution. In fact, the 
existence of a normal failure frequency would indicate an undesirable increasing failure rate or wear-out 
regime. 
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However, a large number of the symmetrical frequency distributions met with in practice in the quality domain 
may be adequately represented by the normal curve. Does the normal distribution provide a reasonable fit to 
the immersion time data? The answer is given visually in Figure 25. 

 

Key 

X time, in min 
Y number of observations (frequency) 

Figure 25 — Normal curve overlaid on the immersion time histogram 
(mean = 6,79; standard deviation = 1,08) 

Based on a calculated mean and standard deviation of the 200 results, the normal curve has been fitted to the 
data in histogram form as shown in Figure 25. These show, by eye, a good correspondence between the two 
indicating that a normal distribution with a mean of 6,79 min and standard deviation of 1,08 min is a 
reasonable representation, or model, of the actual data. There are a number of formal statistical tests for 
departure from normality. These include the Shapiro-Wilk and Epps-Pulley tests (for more information on 
these tests see ISO 5479 [18]). 

A simple, practical, effective and graphical method involves the plotting of cumulative percentage frequencies 
on normal probability paper. If such a plot follows a straight line, then the sample can reasonably be regarded 
as having come from a normal distribution. If the plot indicates a systematic departure from a straight line, 
then the shape of the plot often suggests the type of distribution it represents. For example, a plot that forms a 
concave curve (curving downwards in the middle) would result from a log-normal distribution, whereas a plot 
curving upwards at its centre would result from an exponential or a gamma distribution. The plot on normal 
probability paper is often called a quantile-quantile diagram or a Q-Q plot and is done automatically as a part 
of the analysis in many statistical software packages. 

In addition to checking for normality, this method is used extensively in statistical process control for capability 
and performance measurement (see 6.1.7). 

An example of this test applied to the galvanized item immersion data is shown in Figure 26. It is seen that the 
normal cumulative probability scale shown on the vertical axis of Figure 26 transforms the bell-shaped normal 
distribution into a straight line when plotted against immersion times. 
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Key 

X time, in min 
Y probability 

NOTE Average: 6,778 5; standard deviation: 1,056 31; number of data points: 200. 

Figure 26 — Straight line plot on normal probability paper indicating normality of data in Table 6 

Whatever the distribution, it is desirable to work in terms of a straight line reference standard for a number of 
reasons: 

1) it permits a simple immediate visual test of fit against the underlying distribution (normal here); 

2) it makes for ease of extrapolation and so facilitates numerical prediction of the likelihood of having values 
in a larger lot or consignment outside of those experienced in the sample; 

3) it facilitates the correction of individual measurements and other errors; 

4) it gives an immediate visual appraisal of the relationship of the data to any specification limits or reference 
standards in terms of both targeting and variability; 

5) for an incapable process, it immediately provides an estimate of the proportion of values likely to be 
above and/or below specification limits; 

6) it serves as a diagnostic tool to detect divergences from the model; for instance, a smooth concave or 
convex plot on a normal probability plot indicates skewness of the data. 

Using probability paper based on the normal or other standard statistical distributions to represent data thus 
offers many practical advantages in the interpretation of results from samples. These other standard 
distributions include the fixed shape log-normal and extreme value distributions for moderately skewed data 
and the versatile multi-shaped Weibull distribution. The Weibull distribution is used extensively in the reliability 
field to model the various regimes of failure: infant mortality (decreasing failure rate), prime of life (constant 
failure rate) and wear-out (increasing failure rate). Confidence bands may readily be plotted around the best 
estimate straight line plots. These would be represented by curves. 

5.3.8 The normal distribution 

The previous example suggests the important descriptive part that the normal curve can play, always provided 
that its suitability to represent the type of variation in question has first been established. It would seem 
appropriate to take this opportunity to discourage a common belief. There is no magic about the normal curve 
that if a distribution follows this law then that is proof that the process giving rise to the product or service is, in 
fact, in control (i.e. stable). To arrive at reasonable judgements on past performance and to make rational 
predictions of future performance based on accumulated data, it is necessary to have prior knowledge that no 
special causes of variation were present over the period in which the data were gathered. 
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The name normal distribution originates from its use in pioneering statistical studies of human populations. 

For a process not in control, the variation in its output is unpredictable. A primary role of statistical process 
control is to ensure, and assure, process stability. However, the normal distribution is the one most frequently 
encountered in many processes. 

Moreover, the distribution of means of samples, or subgroups, will be very close to normal, even when the 
sample size is as low as 4 or 5, in cases where the distribution of individuals is distinctly non-normal. 

The normal distribution is a two-parameter distribution uniquely described by its mean and standard deviation. 
Consequently, its characteristics can be made available in a convenient, practical format for users. This will 
initially be illustrated generally in a graphical manner and, secondly, in the form of a table (Table 7). Figure 27 
shows a standardized symmetrical bell-shaped curve that characterizes this distribution. Additionally, some 
key percentages are included in relation to distances from the mean in terms of standard deviations. Whilst, in 
Figure 27 and Figure 28, the normal curve appears to end at some finite value about ± 3 to 4 standard 
deviations from the mean, mathematically it extends to infinity in both directions. 

 

Figure 27 — Percentages of normal distribution in relation to distances 
from the mean in terms of standard deviations 

Figure 27 illustrates that for a normal distribution 

a) 99,73 % of values lie within the limits: mean ± 3 standard deviations; 

b) of the remaining 0,27 %, 0,135 % lie below the mean −3 standard deviations and 0,135 % above the 
mean +3 standard deviations; 

c) 95,45 % of the values lie within the limits: mean ± 2 standard deviations; 

d) just over two thirds (68,27 %) of the values lie within the limits: mean ± 1 standard deviation. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TR 18532:2009(E) 

© ISO 2009 – All rights reserved  33
 

This demonstrates a simple but useful property of the mean and standard deviation. Such a diagram shows 
the effectiveness of the normal distribution in predicting, from a sample, the proportion of the population lying 
within a specified range or above, or below particular limits. Whilst it is helpful in conveying certain principles, 
it is, however, not of sufficient resolution to be of real value in practice. Table 7 provides this by giving the 
probabilities of exceeding z in a standard normal distribution, i.e. a normal distribution with mean 0 and 
standard deviation 1. Because of the symmetry of the normal distribution, Table 7 also provides the 
probabilities of falling below −z in a standard normal distribution. The probability of exceeding z in a standard 
normal distribution is the same as exceeding a point U that is z standard deviations above the mean in any 
normal distribution. Similarly the probability of falling below  −z  in a standard normal distribution is the same 
as falling below a point L that is z standard deviations below the mean in any normal distribution. Those 
probabilities are illustrated in Figure 28 and they are also covered by Table 7.     

NOTE 1 Example 2 following Table 7 shows how the percentage above or below a selected value can be determined 
when the mean and standard deviation are known. An alternative to the use of Table 7 is the application of the straight line 
probability plot shown in Figure 26 for making similar predictions. 

EXAMPLE 1 Clothing size survey: 

A size survey conducted on a random sample of a prospective customer base indicated that one particular characteristic, 
height, was normal with a mean equal to 175 cm, and a standard deviation equal to 7,5 cm. 

By using the results of the survey, it was predicted, for instance, that: 

⎯ 16 % (15,87 %) of the target customer population are taller than 182,5 cm (mean + 1 standard deviation); 

⎯ 25 % (25,14 %) of the target customer population are shorter than 170 cm (mean − b × standard 
deviation); 

NOTE The b arises as 175 minus 170 expressed as a fraction of the standard deviation. 

⎯ 59 % (58,99 %) of the target customer population are between 170 cm and 182,5 cm. 

Such estimates enable appropriate size ratios of garments to be ordered. 

NOTE 2 Figure 27 and Figure 28 and Table 7 relate to a theoretical distribution representing a whole population. By 
convention, population parameters are symbolized by lower case italic Greek letters (e.g. population mean = µ  and 
population standard deviation = σ). 

 
Key 

1 mean 2 percent below L 3 percent above U 

Figure 28 — Standard normal probability density with indications of percentage expected 
beyond a value, U or L, that is z standard deviation units from the mean 
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In the real life examples shown, sample statistics are used to provide estimates. By convention, sample 
statistics are distinguished from population parameters by italic Roman letters (e.g. sample mean = x or 
X and sample standard deviation = s or S). Sometimes such sample statistics are limited to upper case to 
distinguish from their actual realization, which are then shown in lower case. In this standard, this latter 
distinction is not used because of common usage considerations in the application areas concerned. 

Clause 8 deals with the statistical relationship between sample and population. 

Table 7 — Probabilities (in percent for z < 4 and in parts per million for z W 4,0) 
of exceeding z in a standard normal distribution   

z 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 
6,0 0,001 0,000 9 0,000 9 0,000 8 0,000 8 0,000 7 0,000 7 0,000 6 0,000 6 0,000 6 
5,0 0,286 7 0,272 2 0,258 4 0,245 2 0,232 8 0,220 9 0,209 6 0,198 9 0,188 7 0,179 
4,0 31,67 30,36 29,10 27,89 26,73 25,61 24,54 23,51 22,52 21,57 

NOTE For z W 4,0, values are given in parts per million. 

z 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 
3,5 0,023 3 0,022 4 0,021 6 0,020 8 0,020 0 0,019 3 0,018 5 0,017 8 0,017 2 0,016 5 
3,4 0,033 7 0,032 5 0,031 3 0,030 2 0,029 1 0,028 0 0,027 0 0,026 0 0,025 1 0,024 2 
3,3 0,048 3 0,046 6 0,045 0 0,043 4 0,041 9 0,040 4 0,039 0 0,037 6 0,036 2 0,034 9 
3,2 0,068 7 0,066 4 0,064 1 0,061 9 0,059 8 0,057 7 0,055 7 0,053 8 0,051 9 0,050 1 
3,1 0,096 8 0,093 5 0,090 4 0,087 4 0,084 5 0,081 6 0,078 9 0,076 2 0,073 6 0,071 1 
3,0 0,135 0 0,130 6 0,126 4 0,122 3 0,118 3 0,114 4 0,110 7 0,107 0 0,103 5 0,100 1 
2,9 0,186 6 0,180 7 0,175 0 0,169 5 0,164 1 0,158 9 0,153 8 0,148 9 0,144 1 0,139 5 
2,8 0,255 5 0,247 7 0,240 1 0,232 7 0,225 6 0,218 6 0,211 8 0,205 2 0,198 8 0,192 6 
2,7 0,346 7 0,336 4 0,326 4 0,316 7 0,307 2 0,298 0 0,289 0 0,280 3 0,271 8 0,263 5 
2,6 0,466 1 0,452 7 0,439 6 0,426 9 0,414 5 0,402 5 0,390 7 0,379 3 0,368 1 0,357 3 
2,5 0,621 0 0,603 7 0,586 8 0,570 3 0,554 3 0,538 6 0,523 4 0,508 5 0,494 0 0,479 9 
2,4 0,819 8 0,797 6 0,776 0 0,754 9 0,734 4 0,714 3 0,694 7 0,675 6 0,656 9 0,638 7 
2,3 1,072 1,044 1,017 0,990 3 0,964 2 0,938 7 0,913 7 0,889 4 0,865 6 0,842 4 
2,2 1,390 1,355 1,321 1,287 1,255 1,222 1,191 1,160 1,130 1,101 
2,1 1,786 1,743 1,700 1,659 1,618 1,578 1,539 1,500 1,463 1,426 
2,0 2,275 2,222 2,169 2,118 2,068 2,018 1,970 1,923 1,876 1,831 
1,9 2,872 2,807 2,743 2,680 2,619 2,559 2,500 2,442 2,385 2,330 
1,8 3,593 3,515 3,438 3,363 3,288 3,216 3,144 3,074 3,005 2,938 
1,7 4,457 4,363 4,272 4,182 4,093 4,006 3,920 3,836 3,754 3,673 
1,6 5,480 5,370 5,262 5,155 5,050 4,947 4,846 4,746 4,648 4,551 
1,5 6,681 6,552 6,426 6,301 6,178 6,057 5,938 5,821 5,705 5,592 
1,4 8,076 7,927 7,780 7,636 7,493 7,353 7,215 7,078 6,944 6,811 
1,3 9,680 9,510 9,342 9,176 9,012 8,851 8,692 8,534 8,379 8,226 
1,2 11,51 11,31 11,12 10,93 10,75 10,57 10,38 10,20 10,03 9,853 
1,1 13,57 13,35 13,14 12,92 12,71 12,51 12,30 12,10 11,90 11,70 
1,0 15,87 15,62 15,39 15,15 14,92 14,69 14,46 14,23 14,01 13,79 
0,9 18,41 18,14 17,88 17,62 17,36 17,11 16,85 16,60 16,35 16,11 
0,8 21,19 20,90 20,61 20,33 20,05 19,77 19,49 19,22 18,94 18,67 
0,7 24,20 23,89 23,58 23,27 22,97 22,66 22,36 22,07 21,77 21,48 
0,6 27,43 27,09 26,76 26,43 26,11 25,78 25,46 25,14 24,83 24,51 
0,5 30,85 30,50 30,15 29,81 29,46 29,12 28,77 28,43 28,10 27,76 
0,4 34,46 34,09 33,72 33,36 33,00 32,64 32,28 31,92 31,56 31,21 
0,3 38,21 37,83 37,45 37,07 36,69 36,32 35,94 35,57 35,20 34,83 
0,2 42,07 41,68 41,29 40,90 40,52 40,13 39,74 39,36 38,97 38,59 
0,1 46,02 45,62 45,22 44,83 44,43 44,04 43,64 43,25 42,86 42,47 
0,0 50,00 49,60 49,20 48,80 48,40 48,01 47,61 47,21 46,81 46,41 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TR 18532:2009(E) 

© ISO 2009 – All rights reserved  35
 

EXAMPLE 2 Use of Table 7: 

Specified tolerance = 42 4±  

Mean = 40 

Standard deviation = 2,2 

Process is in statistical control with an output that is normal. 

What percentage is expected outside the specification limits? 

To find the percentage above the upper specification limit: 

upper
upper specification limit ( ) mean 46 40 2,73

standard deviation 2,2
UZ − −

= = =  

Enter Table 7 at 2,73 (2,7 from the left and 0,03 from the top as indicated by the arrows) to give 0,32 % above the upper 
specification limit. 

To find the percentage below the lower specification limit: 

lower
mean lower specification limit ( ) 40 38 0,91

standard deviation 2,2
LZ − −

= = =  

Enter Table 7 at 0,91 (0,9 from left and 0,01 from the top) to give 18,41 % below the lower specification limit. 

Hence, the expected total fraction nonconforming is 0,32 % + 18,41 % = 18,73 %. 

5.3.9 The Weibull distribution 

5.3.9.1 General 

Most of the earlier discussion has been based on the assumption that the population or populations under 
consideration are normally distributed, at least approximately. This assumption is found in practice to be valid 
for a very wide range of situations. However, it is not appropriate for distributions that are typically skewed, 
and the Weibull distribution provides a better approximation to the kind of skewed distributions often arising in 
time-to-failure or breaking-strength data. For the purposes of discussion, we shall suppose that the 
characteristic in question is a failure time, and denote it by t. Here we shall briefly consider the simplest form 
of the Weibull distribution, with two parameters α and β where α controls the scale and β the shape. In the 
three-parameter Weibull distribution, the third parameter is the threshold which is the smallest observation 
possible. The smallest observation possible is 0 for the two-parameter Weibull distribution. The three-
parameter Weibull distribution is briefly mentioned in 5.3.9.5. 

The probability density of the two-parameter Weibull distribution is as follows: 

1
( ) e , for 0

t
tf t t

β
β

αβ
α α

⎛ ⎞− −⎜ ⎟
⎝ ⎠⎛ ⎞= >⎜ ⎟

⎝ ⎠
 (1) 

For β = 1, the expression [Equation (1)] simplifies to  

1( ) e  for 0
t

f t tα
α

−
= >  (2) 
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which is the density of the exponential distribution with mean equal to α. Figure 29 shows the way the Weibull 
density function changes shape for the case 1α =  as β increases from ½ to 4. Four different situations can be 
distinguished and they are described as follows: 

1) β < 1 represents a range of hyper-exponential distributions; 

2) β = 1 represents an exponential distribution; 

3) 1 < β < 3,5 represents a range of skew distributions with the skewness decreasing as beta increases until 
at about 3,5 the distribution looks roughly symmetrically normal; 

4) β > 3,5 represents a distribution that stays largely symmetrical (slight skewness) and becomes 
progressively more peaky as beta increases. 

Increasing or decreasing α has the effect of simply stretching or compressing the horizontal scale.  

The probability that the failure time is less than t is given by Equation (3): 

( ) 1 e  for 0
t

F t t

β

α
⎛ ⎞−⎜ ⎟
⎝ ⎠= − >  (3) 

The reliability function, sometimes called the survival function, R(t), is the probability that an item is still 
functioning at time t, so it is the complement of F(t), i.e.: 

( ) 1 ( ) e  for 0
t

R t F t t

β

α
⎛ ⎞−⎜ ⎟
⎝ ⎠= − = >  (4) 

It is often impracticable to continue a trial until all the members of the sample reach the end of their lives. For 
example, twenty light bulbs may be switched on and left burning in order to provide information about their 
lifetime distribution. To prevent the trial going on indefinitely, a time limit may be set, say at 1 500 h, at which 
time the trial will be stopped. Alternatively, it may be decided in advance that the trial will be stopped when a 
specified number, say 15, of the light bulbs have burnt out. Both lead to what is called censored data, the 
former with respect to time and the latter with respect to numbers of failures. For small samples, it can be 
important when estimating parameters and calculating confidence intervals to take account of which type of 
censoring was used. 

5.3.9.2 The failure rates of the Weibull distributions 

Because of the application of the Weibull distribution to reliability or survival data, it is convenient to consider 
the (instantaneous) failure rate (also known as the hazard rate) of the Weibull distribution. It is the ratio of the 
density function [Equation (1)] to the reliability function [Equation (4)], so it is 

1
( )  for 0tr t t

ββ
α α

−
⎛ ⎞= >⎜ ⎟
⎝ ⎠

 (5) 

The probability that an item will fail in the small interval between time t and t + dt given that it has been 
functioning up to time t is given as r(t)dt, where dt is the length of the short interval. 

The three possible failure regimes are often represented by the generic bathtub curve, that of infant mortality 
(decreasing failure rate), prime of life (constant failure rate) and wear-out (increasing failure rate). 

The Weibull β parameter distinguishes between these regimes, thus: 

a) β < 1 represents a decreasing failure rate regime (colloquially called infant mortality); 

b) β = 1 represents a constant failure rate regime (often called prime of life); 

c) β > 1 represents an increasing failure rate regime (frequently termed wear-out). 
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So the failure rate of a Weibull distribution does not look like a bathtub curve. It is either decreasing, constant, 
or increasing. 

 
Key 

X t 
Y probability density 

Figure 29 — Comparison with Weibull distributions, all with α = 1 

5.3.9.3 Does the Weibull distribution fit the data? 

Although it is somewhat subjective, the easiest way to check if the two-parameter Weibull distribution will 
provide a reasonable fit to a given set of data is to use a graphical method. It is based on the fact, which 
follows from the expression for the reliability function [Equation (4)], that: 

[ ] tF t t
β

β β α
α

⎡ ⎤⎛ ⎞⎢ ⎥− − = = −⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

ln ln(1 ( )) ln ln( ) ln( )  (6) 

which is a straight line relationship between ln[−ln(1 − F(t))] and ln( ).t   

The plotting procedure is as follows. The n sample values are first arranged in ascending order to give the 
order statistics [1] [2] [ ],  ,  ...,  ,nt t t  i.e. such that [1] [2] [ ]. .. .nt t tu u  u  For each [ ],it  the value of F( [ ]it ) is estimated 
by (i − 0,5)/n, and the point with co-ordinates (ln(t[i]), ln{−ln[1−(i − 0,5)/n]} is plotted. If the data is a sample 
from a Weibull distribution, the plotted points will lie approximately on a straight line. The reason that the 
plotted points will only approximately lie on a straight line even if the data is a sample from the Weibull 
distribution is that (i − 0,5)/n is just an estimate of F( [ ]it ), and all estimates are subject to random variation. So 
this graphical method consists of making the plot as described and deciding whether or not the points lie 
approximately on a straight line. It is the last part that is described as somewhat subjective in the beginning of 
this clause. 

The graphical method is illustrated with the data in the example in 5.3.9.4, and the plot is shown in Figure 30. 
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5.3.9.4 Example: Days between accidents in a company 

The following data are the times in days between accidents in a large industrial plant. The data are recorded 
in days except for one case, where two accidents occurred within a few hours on the same day. The data are 
given ascending order in column 1 of Table 8. The calculations needed to make the plot to check if the data 
can be described by a Weibull distribution are given in columns 2 to 5. Column 2 contains the natural 
logarithm of the observations, which will be plotted along the first axis. The remaining three columns go 
through the calculations needed to find the quantity that will be plotted along the second axis. First, the 
observations are numbered from 1 to n in column 3. This number is used to calculate (i − 0,5)/n which is 
shown in column 4. Finally, the logarithm of minus the logarithm of the values of column 4 is shown in the fifth 
column. The Weibull plot of Figure 30 is obtained by plotting the second column against the fifth column. 

The points lie sufficiently close to a straight line, so the plot confirms that the data can be described by a 
Weibull distribution. The full line on the plot is a line fitted by eye, or rather by least squares. The dashed line 
corresponds to the Weibull distribution fitted by the maximum likelihood method. 

Table 8 — Days between accidents in the first column sorted in ascending order 

Days between 
accidents in 

ascending order 

Logarithm (ln) 
of days 
between 

accidents 

Number 
of observation 
after ordering 

i 

(i − 0,5)/n ln{−ln[1−(i−0,5)/n]} 

0,2 −1,61 1 0,022 −3,81 

1 0,00 2 0,065 −2,70 

2 0,69 3 0,109 −2,16 

4 1,39 4 0,152 −1,80 

5 1,61 5 0,196 −1,52 

5 1,61 6 0,239 −1,30 

9 2,20 7 0,283 −1,10 

10 2,30 8 0,326 −0,93 

10 2,30 9 0,370 −0,77 

10 2,30 10 0,413 −0,63 

16 2,77 11 0,457 −0,49 

22 3,09 12 0,500 −0,37 

24 3,18 13 0,543 −0,24 

26 3,26 14 0,587 −0,12 

26 3,26 15 0,630 −0,01 

28 3,22 16 0,674 0,11 

30 3,40 17 0,717 0,23 

32 3,47 18 0,761 0,36 

50 3,91 19 0,804 0,49 

64 4,16 20 0,848 0,63 

91 4,51 21 0,891 0,80 

94 4,54 22 0,935 1,01 

150 5,01 23 0,978 1,34 

NOTE The second column is plotted against the fifth column to produce the Weibull plot of Figure 30. 
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Before the pocket calculators and computers became common, it was customary to use Weibull plotting 
paper, where the transformations given in Table 8 have been applied to the axes, so the ordered observations 
can be plotted directly against the estimates of the distribution function (i − 0,5)/n expressed in percent, i.e. 
against 100(i − 0,5)/n percent. This tradition is carried forward in today's statistical software where a Weibull 
probability plot is exactly as described. An example is shown in Figure 31, where the original observations 
(column 1 of Table 8) are plotted against the estimates of the distribution function (column 4 of Table 8), 
expressed in percent. 

 

Key 

X logarithm of ordered observations, ( )ln it  
Y ln{−ln[1 − (i − 0,5)/n]} 
 
The full line on the plot is a line fitted by eye, or rather by least squares. The dashed line corresponds to the Weibull 
distribution fitted by the maximum likelihood method. The plot is equivalent to the probability plot of Figure 31. 

Figure 30 — Q-Q plot to assess the fit of days between accidents (data in column one of Table 8) 
to a Weibull distribution 
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Key 

X ordered observations 
Y estimated distribution function in percent: 100(i − 0,5)/n % 

Figure 31 — Weibull probability plot of days between accidents (data in column one of Table 8) 

5.3.9.5 The three-parameter Weibull distributions 

On those occasions when the possibility of failure (or the origin of the distribution) does not start at time zero, 
the third Weibull parameter, γ, comes into play as the point in time where the possibility of failure begins. The 
formulas for the density function, the reliability function, and the instantaneous failure rate are easily obtained 
by substituting t − γ for t everywhere in the formulas. 

The formula for the instantaneous failure rate for the three-parameter Weibull distribution, for example, is 

1
( ) ,  for 0tr t t

ββ γ γ
α α

−−⎛ ⎞= − >⎜ ⎟
⎝ ⎠

 (7) 
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Reliability illustrations are when it is feasible for an entity to fail before operation. For example, it fails on the 
shelf or is found dead on delivery. When γ is not zero, such a situation is recognized in a Weibull probability 
plot by the data points lying on a smooth curve rather than on a straight line. In such a case, the estimated 
value of γ is subtracted from each of the plotted points and the new values re-plotted. It may take a few 
iterations to arrive at a best estimate straight line and hence at a reliable value for γ. 

5.3.10 Graphs 

A graph is essentially a representation of data by a continuous curve (a line on a graph may be referred to as 
a curve even though it may be straight). Graphs are constructed to provide visual communication of 
information with clarity and precision. There are various forms of graphs, such as the following: 

a) arithmetic (linear): these are the most familiar and are easily identified by the fact that both horizontal and 
vertical scales are arithmetic (linear) (see Figure 32); 

b) log-linear: semi-logarithmic graphs have a linear horizontal scale and a logarithmic vertical scale and are 
used to display rates of change; a constant rate of change will appear as a straight line; 

c) log-log: these have both scales logarithmic and are used to express learning curves in straight line form; 

d) Q-Q plot or probability plot: these transform a regular pattern of variation into a straight line (see 
examples in Figure 26, Figure 30 and Figure 31); 

e) nomograph: these provide graphical solutions to formulae. 

5.3.11 Scatter diagram and regression 

A scatter diagram or scatter plot is used to display possible relationships between one variable and another. 
Often a sample correlation coefficient is calculated when the covariance of two variables is of interest. The 
expression for the sample correlation is 

( )( )

( ) ( )2 2

x x y y
r

x x y y

− −
=

− −

∑
∑ ∑

 

The data in the table below is plotted as data set A in Figure 32. 

Observation  

1 2 3 4 5 6 7 8 9 10 11 

X 10 8 13 9 11 14 6 4 12 7 5 

Y 8,04 6,96 7,58 8,81 8,33 9,96 7,24 4,26 10,84 4,82 5,68 

Taking this data set as an example, we calculate the numerator as 

( )( ) ( )( ) 797,600 0 99 82,51/11 55,01x x y y xy x y n− − = − = − ⋅ =∑ ∑ ∑ ∑  

and the two sums of squares in the denominator as 

( ) ( )22 2 1001 99 99 /11 110x x x x n− = − = − ⋅ =∑ ∑ ∑  

and 

( ) ( )22 2 660,172 7 82,51 82,51/11 46,6616y y y y n− = − = − ⋅ =∑ ∑ ∑  
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Finally, the sample correlation coefficient is calculated as 

55,01 0,816
110 46,6616

r = =
⋅

 

The sample correlation coefficient is always between −1 and 1, and it is 1 if the data points is on a straight line 
with a positive slope. Similarly, the sample correlation is −1 if the data points lie on straight line with a negative 
slope. This occasionally leads to the misconception that the sample correlation coefficient measures the 
degree of linearity of two variables in a sample. This is not the cases as is illustrated by the four samples in 
Figure 32. 

Anscombe [65] has given four data sets of observations on pairs of variables. The scatter plots are given in 
Figure 32. All four cases give rise to the same fitted regression line and the same sample correlation 
coefficient, but it is only data set A for which it might make sense to fit a regression line or to report a sample 
correlation coefficient. 

This emphasizes that when the relationship between two variables is of interest, it is very important to make 
the scatter diagram before any assumptions are made about the nature of the relationship. Indeed, 
Figure 32 B indicates a possible quadratic relationship between Y and X, Figure 32 C indicates a possible 
linear relationship together with a single outlier, while Figure 32 D simply shows variation in Y at X = 8 
together with a single value of Y at X = 19, which is insufficient to indicate the form of any underlying 
relationship between Y and X. 
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Figure 32 — Scatter diagrams of four data sets that all have the same correlation coefficients (r) 
and fitted regression lines 

5.3.12 Pareto (or Lorenz) diagram 

A Pareto diagram is a simple graphical technique for displaying the relative importance of features, problems 
or causes of problems as a basis for establishing priorities. It distinguishes between the vital few and the trivial 
many and hence focuses attention on issues where maximum quality improvement may be secured most 
quickly. 

It displays, in decreasing order, the relative contribution of each element (or cause) to the total situation 
(problem). Relative contribution may be based on relative frequency, relative cost or some other measure of 
impact. Contributions are shown in bar chart form. Sometimes a cumulative line may be added to show the 
accumulated contribution. An example is shown in Figure 33, which shows that orange peel and sags and 
runs make up some 65 % of total paint faults in a particular paint shop. These were selected for priority 
attention in a quality improvement drive. 
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Count 24 17 8 5 5 2 2 

Per cent 38,1 27,0 12,7 7,9 7,9 3,2 3,2 

Cum. % 38,1 65,1 77,8 85,7 93,7 96,8 100,0 
 

Key 

X type of in-process fault 
Y1 percent 
Y2 number of occurrences 
 
NOTE Pareto chart for defects — Relative contribution of different types of in-process faults with specified action 
priorities in process paint faults. 

Figure 33 — Relative contribution of different types of in-process paint faults 

5.3.13 Cause and effect diagram 

A cause and effect diagram is frequently referred to as a fishbone diagram (because of its shape) or an 
Ishikawa diagram (after its creator). It applies where it is required to show, pictorially, cause and effect 
relationships. There are several types, based on the formation of the main branches (categories), including: 

a) general 4M (manpower, machines, materials, methods); 

b) general 4P (people, procedures, plant, process); 

c) process (by process steps and sequence); 

d) assembly (by subassemblies); 

e) specific (by technical consideration). 

A process cause and effect diagram for a foundry process is shown in Figure 34. An earlier example is given 
in Figure 2. 
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NOTE w/s identifies the origin of the bentonite, namely western/southern. 

Figure 34 — Process cause and effect diagram for cracks in a casting 

6 Variation and sampling considerations 

6.1 Statistical control and process capability 

6.1.1 Statistical control 

Post-process 100 % inspection is often neither practicable, relevant nor timely enough to meet today's needs. 
Monitoring in real time is required to enable processes to be steered and managed in an effective manner. 

From economic considerations, amongst others, monitoring usually involves the assessment of process 
parameters and resulting product characteristics from a limited number of observations or items, which are 
defined in statistical terms as a sample. 

It is essential to take the variation between similar items or observations into account when considering the 
relation of the sample to the totality of objects under consideration. This is true whether the object is a process 
parameter such as teeming temperature, a constituent of a material such as fraction silicon (in %), or a 
characteristic of a product such as a the diameter of a rod. In all cases where sampling is undertaken, 
estimates for the totality of objects under consideration can only be answered satisfactorily with the aid of 
statistical treatment. 

Two statistical definitions, relating to population and lot, are relevant to an understanding of the following text. 
A population is defined as the totality of objects under consideration. A lot is defined as a definite part of a 
population constituted under essentially the same conditions as the population with respect to the sampling 
purpose. 

The relationship between sample and lot is the kernel of the problem. In discussing it, it is necessary to 
introduce certain ideas that may appear difficult because they are unfamiliar. The following paragraphs, if 
studied in conjunction with Figure 35, should convey the essential features of the statistician's method of 
approach. 
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Suppose that Figure 35 represents the results of tests made at a supplier on similar articles or component 
parts sampled five at a time, at regular intervals during production. For example, the data may relate to the 
number of millilitres of battery acid per bottle, or to the minimum temperature of operation of a certain device, 
etc. The results of each sample of five tests are shown in the figure as dots, with the measurements displayed 
on a horizontal scale. Six cases are presented, numbered 1 to 6, in each of which the results of 12 samples 
from consecutive lots are shown. 

Beneath the dots for each case, curves have been drawn. These represent the hypothetical distribution of the 
measured characteristic that would be found were it possible to test all the items in the 12 lots that have been 
sampled. 

Consider case 1. There are, of course, considerable differences between the dot patterns of the 12 samples. 
Yet a certain stability or uniformity in the variation from sample to sample is evident, which is clearly not so in 
case 5. In case 1, there is no indication that the production process is anything but stable through time, as the 
samples could quite easily be imagined to have been drawn from the same lot. 

If the pattern of variation is stable, then: 

a) when all that are available are the measurements of the characteristic in a random sample, it is possible 
to use these measurements to estimate the distribution curve of the characteristic for the process; 

b) when the distribution curve is known from experience, it is possible to predict the nature of the variation to 
be expected from one random sample to another. 

Notice that situations a) and b) are the inverse of one another. 

In forming the estimate described in a), the larger the size of the sample, the more reliable the estimate. For 
example, consider the distribution curve shown for case 1. Its mean and standard deviation would be 
estimated more reliably from 12 samples of size 5 than from a single sample of size 5. This is simply common 
sense but, when it is required to draw inferences about the distribution curve that depend on the extent of this 
reliability, the assistance of statistical theory is necessary. Much of what follows in this Technical Report is 
concerned, directly or indirectly, with the problems of drawing inferences and making decisions related to the 
process distribution curves, based on limited information. The construction of confidence intervals, prediction 
intervals and statistical tolerance intervals, addressed in Clause 8, are but three examples of these problems. 

The following example illustrates situation b).  

EXAMPLE For safety and ease of transportation, car batteries are supplied dry, together with plastic bottles of acid. 
With too little acid per bottle, the battery electrodes will not be fully covered, while if there is too much, the cell of the 
battery could overflow or present the user with the problem of disposing of the surplus acid. Suppose it is known, based on 
extensive experience, that the extent to which the bottles are filled varies according to the normal distribution curve. 
Suppose also that the mean and standard deviation of this normal curve are known to be 729,0 ml and 2,0 ml respectively. 
Then statistical theory enables such statements as the following to be made. 

1) The chance that the mean contents in a random sample of six bottles will fall below 726,5 ml is 0,001 1, or such 
a result may be expected only once in about 900 samples. 

2) The chance that at least one bottle in a sample of six bottles will contain less than 726,5 ml is 0,488 3, i.e. this 
result is over 400 times as likely as the previous result. 

Statistical theory leads one to expect these two chances to be entirely different; moreover, statistical theory is able to give 
precision to the expected. 

When this characteristic of stability of distribution is obtained, as represented by case 1 of Figure 35, the 
process will be described as stable, or under statistical control. It is then possible to make use of the methods 
of statistical theory described in the following clauses for such purposes of inference or prediction as were 
referred to under a) and b) above. 
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Although it is not easy to give a precise non-mathematical definition of what is meant by saying that a process 
is under statistical control, the concept is not difficult to grasp. It will be illustrated below using Figure 35, by 
contrasting it with some cases where the pattern of variation from lot to lot is not in statistical control. 

 

Figure 35 — Diagram indicating types of variation in samples 

6.1.2 Erratic variation 

While the variation in case 1 appears to be in statistical control, the variation for case 5 most certainly does 
not. A production process that leads without assignable cause to both sample No. 4 and sample No. 11 in 
case 5 can hardly be considered to be in statistical control. Indeed, the dot patterns suggest that there may be 
factors at work leading to two centres of variation with sometimes one operating, sometimes the other and 
sometimes both at the same time. This lack of homogeneity is suggested by the distribution curve for the 
12 lots combined, shown beneath the dot patterns. The variation in case 5 may best be described as out of 
statistical control. Without any further understanding of the factors affecting the lot to lot variation, any attempt 
to predict the variation in subsequent products from the process is futile. 

6.1.3 Systematic variation 

Another situation is presented by case 3, where samples 3, 7 and 11 appear different from the others. 

However, here there is a systematic repetition in the irregularities, which was not evident in case 5, and it may 
be the case that it is possible to determine a cause for these differences. If this were so, then the preferred 
procedure would be to eliminate the cause. However, if this were not possible, the series of lots could be 
divided into two homogeneous subseries, within each of which there is statistical control, and to each of which 
statistical methods could usefully be applied. 

Suppose, in case 3, that samples 1, 5, 9, etc. were from sublots of material from one machine, samples 2, 6, 
10, etc. from sublots from a second machine, 3, 7, 11, etc. from a third and 4, 8, 12, etc. from a fourth. If lots 
were formed by combining one sublot from each machine, then the samples of size 20 shown as case 4 could 
be described as a representative stratified sample of the total output, where each stratum (plural: strata) is the 
output from one machine. This illustrates the difference between simple random sampling and representative 
stratified random sampling. Under representative stratified random sampling, the output is divided into 
homogeneous parts (strata) from each of which a random subsample is drawn of size proportional to the part, 
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and the subsamples are then combined into a representative stratified random sample. Thus, in the example 
just described, a quarter of each sample of size 20, i.e. five items, are selected from a sublot from each 
machine. Contrast this with a simple random sampling of the same size from the lot, under which every 
possible sample of the same size from the lot would have exactly the same chance of being selected. Thus, 
for example, under simple random sampling it would be possible for the sample of 20 items to contain no 
items at all from the third machine. Conversely, it would be possible for half or more of the items in the sample 
to come from the third machine. Clearly, such events would be undesirable in the present example. The aim of 
such stratified sampling is to secure as far as possible that the sample is a miniature of the whole lot, with 
similar distributions. 

The samples taken from the sublots of material from the different machines all had the same size. Assuming 
that the sublots of material from each of the four machines also had the same size, the stratified random 
sampling we have undertaken, is a proportional stratified random sampling or, briefly, proportional sampling, 
in which the sizes of subsamples are proportionate to the sizes of the strata. This is the most common type of 
stratified random sampling. 

To illustrate the advantage of representative stratified random sampling, consider the manufacture of sheet 
brass, the thickness of which at the edges is less than at the centre owing to the nature of the rolling process. 
If sheets are cut into narrower widths, the thickness will vary according to the position from which the strip has 
been cut. If this variation is recognized, the product will be divided accordingly into parts that will be 
homogeneous for sampling purposes. However, if it is not recognized, it is then possible that samples would 
sometimes consist of test pieces all taken from the edges, sometimes all from the centre, and sometimes from 
both in various proportions. The situation will then be as case 5, with no reliable inference possible from the 
sample measurements. 

The distinction typified by the differences between case 1 and case 3 is an important one. In the former case, 
any one of the samples may be used to give information regarding the total output from the manufacturing 
process; in the latter, care needs to be exercised in choosing representative samples in the construction of the 
different strata. In the one, the variation within and between the samples from individual lots is no different 
from what might have been expected if a series of random samples had been selected from a consignment 
formed by first combining and mixing the items from the separate lots. In the other, when constructing the 
homogeneous strata, we have to identify the different sources and combine the material from the same source 
into a single stratum before we select any sample. In our example, we assume that the proportion taken from 
each source was proportional to the total quantity from that source, and that the drawing from within the 
source was at random. 

Proportional stratified sampling is the special case of stratified sampling for which the sample sizes from each 
stratum are in proportion to the stratum size. Another special case is optimal stratified sampling, where the 
choice of sample size from each stratum under optimal stratified sampling takes into account the cost of 
sampling an item from each of the strata and prior estimates of the variability within each stratum. The choice 
is made with the objective of minimizing the cost of achieving a given precision in estimating the average 
value of the characteristic of interest, or maximizing the precision for a given cost. 

Representative proportional stratified sampling is, therefore, a special case of optimal stratified sampling in 
which the strata have known and equal variability, and the cost of sampling an item from each stratum is the 
same. 

Further discussion of stratified sampling is provided in 8.2.1. 

6.1.4 Systematic changes with time 

Case 6 represents another situation, where there is a systematic change with time taking place in the quality 
of material produced. If causes can be found for these fluctuations then, if these causes cannot be eliminated, 
it may alternatively be possible to divide the process output into streams that may separately be considered to 
be under statistical control. Examples are fluctuations due to known changes in temperature or humidity 
(perhaps in some textile process) or to differences between operators or shifts. However, if there are irregular 
fluctuations in time without known cause, prediction of characteristics of the process based on sample 
measurements from a few lots will be impossible. Thus, samples numbers 1 and 2, or again numbers 8 or 9, 
would not be representative of the typical process distribution shown below the dot patterns. 
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6.1.5 Statistical indeterminacy 

If the total output of a particular article is made up from a number of sources, where each source is under 
statistical control and the proportion of the total coming from each is known, we have seen that statistical 
methods can be used to estimate the quality of the total from properly drawn samples. If, on the other hand, 
there is insufficient information to enable properly representative samples to be drawn in such a way, the 
variation is statistically indeterminate. This indeterminacy may be due to changes in space, e.g. from one 
machine or supplier to another; or it may be due to changes in quality with time, e.g. changes in the product 
from one supplier due to seasonal influences or changes in raw material. 

6.1.6 Non-normal variation 

It is important to realize that variation that is under statistical control is not necessarily represented by the 
normal distribution curve. It is true that the underlying distribution is approximately normal in a very large 
proportion of cases met with in industrial experience. Indeed, most of the methods described in Clauses 8 
and 9 rely on the variation being approximately of the normal form. Nevertheless, it should be recognized that 
examples also abound for which the distribution curve of the measured characteristic is far from being 
symmetrical, e.g. the distributions of lifetimes and breaking loads, which typically have a long tail to the right. 
Yet provided the distribution remains stable from lot to lot, the concept of a process being in statistical control 
remains appropriate. 

Distribution-free methods are discussed in 8.8.2 and 8.10. 

6.1.7 Quality level and process capability 

There is one further important concept, process capability, that needs to be introduced before dealing with the 
significance of these ideas to the supplier and the customer. Consider case 2, which has not yet been 
discussed. As in case 1, the variation in case 2 appears to be statistically uniform from lot to lot, i.e. under 
statistical control. In practice, evidence of stability is not enough. Statistical uniformity does not of itself 
indicate whether a process is operating at a high or at a low quality level. In order to be able to assess the 
quality level, information is also required concerning the process mean and the process variation. This 
information is provided by the sample mean and the sample standard deviation. (Incidentally, with this 
information, it will also be possible to detect a departure from uniformity during production, which will often 
enable adjustments to the process to be made to maintain a good quality level. Control chart methods that 
may be used for this purpose are discussed in Clause 10.) See also comments in 5.3.7. 

The process variation for both case 1 and case 2 has been represented by normal distribution curves beneath 
their respective dot patterns in Figure 35. However, the cases differ in that case 2 has greater variation of 
individual items within samples than case 1. It has been previously pointed out that a normal distribution curve 
is completely defined by its mean, ,µ and its standard deviation, .σ  Denoting the process mean and process 
standard deviation for case 1 by 1µ  and 1,σ  and for case 2 by 2µ  and 2,σ  it is evident that the difference 
between case 2 and case 1 is that 2σ  is greater than 1.σ  

Suppose that case 1 and case 2 represent the variation in the amount of car battery acid per bottle from two 
different filling machines with 1σ = 1,0 ml and 2σ = 1,3 ml. Suppose also that the mean contents also differ, 
say 1µ = 729,0 ml and 2µ = 728,6 ml, although this is not possible to see from Figure 35 as no scale is given. 
In both cases, statistical theory could be used to predict the proportion of bottles whose contents lie within any 
given limits. Suppose the specification is for a minimum of L = 726,5 ml and a maximum of U = 731,5 ml. The 
situation is shown in Figure 36. 

Then, evidently, the capabilities of the filling machines to satisfy the requirements are different, with the first 
machine turning out a more homogeneous and more acceptable product. Indeed, it can be seen that the 
fraction of bottles that violate the lower limit for case 2 is many times that for case 1. Case 1 is therefore said 
to have greater process capability, i.e. the quality level of its output will be better than that of case 2. This 
distinction between the concepts of the statistical uniformity and the capability of a process is important. 
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One final remark about statistical uniformity, or statistical control, may be appropriate. They are terms used to 
describe the variation when the distribution curve appears to be stable from sample to sample. This stability is 
relative to the sampling technique employed, and is sometimes more apparent than real. For example, in a 
product that is being continuously produced, sampling at short intervals may identify a lack of statistical 
uniformity, e.g. a high-frequency cyclical effect, which sampling at longer intervals could fail to detect. 

 

Key 

1 case 1 X bottle contents, in millilitres 
2 case 2 Y probability density 

NOTE Comparison of capabilities of a normal distribution having 1µ = 729,0 and 1σ = 1,0 with a normal distribution 
having 2µ = 728,6 and 2σ = 1,3 when the specification limits are L = 726,5 and U = 731,5. 

Figure 36 — Contrast of the capabilities of two filling machines 

6.2 Sampling considerations 

Consider now the way in which the principles discussed above bear upon the problems of sampling in 
practice. In general, to what extent are samples drawn to enable statistical theory to be profitably applied? 

The question is too wide to give a single answer, as the methods of sampling that are practicable can vary 
enormously from one type of product to another. This notwithstanding, certain illustrations may profitably be 
presented to show some of the inherent difficulties and to indicate how they may be overcome. 

Consider first the situation where the material sampled consists of a number of similar units, either component 
parts or finished articles. In some instances, it will be relatively straightforward to secure a random sample 
from a single well-mixed source of supply, for example in sampling small engineering parts such as ball 
bearings, bolts, screws, etc. A supplier who is confident that his process is in statistical control can adopt a 
simple procedure such as setting aside every 500th or 1 000th item (or whatever the need may be) to form 
samples for inspection purposes. The danger in such a procedure is of the time interval between the selection 
of sample items for inspection being in step with any periodic fluctuation in quality that may exist. 

Were this to occur, the sample may well be biased, in which case the conclusions drawn from it would be 
misleading. Examples of possible reasons for such fluctuations are diurnal changes in temperature, increasing 
fatigue or inattention of operators during the course of shifts, or periodic replenishment of the raw material 
from which the product is made. 
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More often, however, the problem is not so simple. This is usually the case when sampling needs to be 
carried out not just to determine the acceptability of a lot but also to determine the grade, and therefore the 
price, of the product before acceptance by the user. As there is often no evidence available that the supplier's 
quality level has remained constant, it is important to plan a sampling procedure that will provide a reliable 
estimate of the quality of each lot, even if each lot is inhomogeneous.  

In order to make valid, non-trivial generalizations from samples about characteristics of the populations from 
which they came, the samples must have been obtained by a sampling scheme which satisfies two conditions: 

i) there must be a known relation between relevant characteristics in the population from which the 
samples are drawn and corresponding characteristics in the samples obtained by the sampling 
scheme; 

ii) generalizations may be drawn from such samples in accordance with rules based on probability 
theory. 

In order to satisfy these demands on the sampling scheme, the selection of the samples has to be done by 
some sort of random selection, which means that each possible sample has a fixed and determinable 
probability of being selected. 

The most widely used type of random selection is simple random sampling. By this type of sampling, each unit 
in the population has the same probability of being the first unit to be selected for the sample; after the first 
member of the sample has been selected, each of the remaining units in the population has the same 
probability of being selected as a member of the sample and so on. The sampling scheme, simple random 
sampling, does not only demand that each item in the population has the same probability of being selected, 
but also that all possible samples of the same size have the same probability of being selected. 

It is important to state that the randomness of a sample is inherent in the sample scheme used to obtain the 
sample and not an intrinsic property of the sample itself. Experience shows that it is not safe to assume that a 
sample selected haphazardly, without any conscious plan, can be regarded as if it had been selected by 
simple random sampling. Nor does it seem to be possible to consciously draw a sample at random. 

If someone just “grabs a handful”, the items in the handful almost always resemble one another (on average) 
more than do the members of a simple random sample. Even if the “grabs” are randomly spread around so 
that every individual has an equal chance of entering the sample, there are difficulties. Since the individuals of 
grab samples resemble one another more than do individuals of random samples, it follows (by a simple 
mathematical argument) that the means of grab samples resemble one another less than the means of 
random samples of the same size. From a grab sample, therefore, we tend to underestimate the variability in 
the population, although we should overestimate it, in order to obtain valid estimates of grab sample means, 
by substituting such an estimate into the formula for the variability of means of simple random samples. Thus, 
using simple random sample formulae for grab sample means introduces a double bias, both parts of which 
lead to an unwarranted appearance of higher stability. 

In order to make a random sample, we have to define a target population from which the sample is to be 
drawn, e.g. the units produced within the last hour, a sampling frame, which is a list of the items in the 
population, e.g. each unit has a different number, a sampling design, which is a pattern, arrangement or 
method for selecting a sample or sampling units from the target population, and a sampling plan, which is an 
operational plan, including the sampling design, for actually obtaining the sampling units for the sample. 

Drawing a simple random sample may be done as follows:  

a) assign to each unit in the target population a different number; 

b) put each number on an individual slip of paper and put all the slips in a hat; 

c) draw one slip at a time until there are as many slips drawn as units required in the sample. 

The simple random sample consists of those units in the population corresponding to the drawn numbers. 
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In practice, sample selection is rarely done by means of slips and a hat. Instead, the units may be selected by 
means of a table of random digits or by means of a computer.  

A table of random digits can be a table consisting of numbers with, for example, 6 digits. The table is 
constructed in such a way that all of the possible 6 digits have the same probability of occurring at a given 
entry in the table. If the target population consists of, for example, more than 100 and less than 1 000 units 
and one wants to select a sample of say n = 10, one starts at a random place in the table, e.g. at the top of the 
third column and considers the following numbers in a chosen direction from this one, e.g. downwards in the 
column. The first sampling unit to be selected from the target population is that one having as its population 
number the three first digits in the number chosen in the table, if such an item exists in the population, 
otherwise this number in the table is skipped. Then one considers the next number in the table in the chosen 
direction and selects as the next (or first) item that one having the three first digits as its number. Otherwise, 
this number is skipped. If the same population number comes up twice, it is skipped the second time. One 
continues in this way until the determined number n members of the sample have been selected. 

By the way the table of random digits has been constructed, the procedure above will ensure that the sample 
is a simple random sample. 

By computer, a simple random sample of size n from a target population of size N is drawn as follows. 

1) Assign each sampling unit in the target population a number from 1 to N. 

2) Generate N random numbers using a random-number generator. Assign the first random number to 
sampling unit number 1, the second to sampling unit number 2, and so on. 

3) Sort the random numbers from smallest to largest (or vice versa). 

4) Take as the sample the sampling units associated with the first n sorted random numbers. 

Different computer packages give detailed instructions about how to do this. 

The following illustration of random selection comes from the sampling subclause of EN 12326-1 [63]: 

Sampling shall be carried out by selecting slates from each lot separately in a random way so that every 
slate has an equal chance of being selected. Selected slates shall be marked so as to identify which lot 
they came from. 

When there is a possibility that the slates being tested may contain localized harmful inclusions such as 
calcite veins or oxidizable pyrite, the preparation of the test pieces shall be modified to ensure sufficient 
inclusions are contained in the specimen to provide a representative result. 

The acceptance procedure itself is not simple: 

Where one or more of the tests do not satisfy the requirements of this standard, the unsatisfactory 
tests are repeated. If the results of the unsatisfactory test are confirmed, the lot is rejected or re-
designated depending on the results. 

If the repeated test is satisfactory, a second check is carried out and if the result is satisfactory, the 
lot is accepted. If the repeated test is unsatisfactory, the lot shall be rejected or re-designated. 

Different problems arise in sampling where material does not consist of discrete items, but is delivered in bulk, 
which for one reason or another may not be homogeneous. It is then necessary to withdraw small equal 
portions of material from a number of different parts of the whole mass. Alternatively, if the material is in 
movement on conveyors or in barrows, similar portions may be taken at regular intervals during the whole 
period of movement. The usual practice is then to combine these portions to form initial samples, which are 
then reduced after thorough mixing to form small quantities of material suitable for analysis in the laboratory. 
The object of these activities is to obtain final samples that mirror the distributions in the material as well as 
possible. ISO 3082 [9] illustrates the precautions that are necessary when sampling from bulk materials such 
as iron ore. 
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ISO 3082 contains diagrams of many types of sampling and dividing devices, illustrating the difficulties of 
obtaining samples from which sound inferences about the lot or consignment may be made. The following 
extracts from ISO 3082:2000 indicate the general considerations for sampling and sample preparation. 

The basic requirement for a correct sampling scheme is that all parts of the ore in the lot have an equal 
opportunity of being selected and becoming part of the partial sample or gross sample for analysis. Any 
deviation from this basic requirement can result in an unacceptable loss of accuracy and precision. 
Incorrect sampling schemes cannot be relied upon to provide samples that have similar distributions to 
those present in the whole material. 

The best sampling location to satisfy the above requirement depends on the type of sampling machine. 
Falling stream samplers require a transfer point between conveyor belts where the full cross-section of 
the ore stream can be conveniently intercepted at regular intervals. Sweep arm samplers that remove a 
cross-section of the ore stream directly off the conveyor belt are rapidly becoming the choice of 
preference because they offer a wide choice of sampling locations imposing minimal restrictions in regard 
to space and support. Here, the full cross-section of the ore stream can be conveniently intercepted at 
regular intervals, enabling samples to be drawn that reflect the variation in the material. However, 
precautions have to be taken to ensure that the regular intervals do not coincide with any regular 
fluctuations in the material. 

In situ sampling of ships, stockpiles, containers and bunkers is not permitted, because it is impossible to 
drive the sampling device down to the bottom and extract the full column of ore. Consequently, all parts of 
the lot do not have an equal opportunity of being sampled. The only effective procedure is sampling from 
a conveyor belt when ore is being conveyed to or from the ship, stockpile, container or bunker. 

In situ sampling from stationary situations such as wagons is permitted only for fine ore concentrates, 
provided the sampling device, e.g. a spear or auger, penetrates to the full depth of the concentrate at the 
point selected for sampling and the full column of concentrate is extracted. 

Moisture samples shall be processed as soon as possible, and test portions weighed immediately. If this 
is not possible, samples shall be stored in impervious airtight containers with a minimum of free air space 
to minimize any change in moisture content, but should be prepared without delay. 

Minimization of bias in sampling and sample preparation is vitally important. Unlike precision, which can 
be improved by collecting more increments or repeating measurements, bias cannot be reduced by 
replicating measurements. Consequently, the minimization or preferably elimination of possible biases 
should be regarded as more important than improvement of precision. Sources of bias that can be 
completely eliminated at the outset by correct design of the sampling and sample preparation system 
include sample spillage, sample contamination and incorrect extraction of increments, while sources that 
can be minimized but not completely eliminated include change in moisture content, loss of dust and 
particle degradation (for particle size determination). 

In this example, there is no question of lots of ore being rejected; the sampling is solely to determine the grade 
and price. 

If, from each lot, only one final sample were produced for laboratory analysis, there would be no way of 
assessing the reliability of the estimates of the lot characteristics. ISO 3084 [10] provides details of how this 
problem may be handled by the use of interleaved samples. These are "samples constituted by placing 
consecutive primary increments alternately into two sample containers” where the primary increments are the 
quantities of ore collected in a single operation of the sampling device. ISO 3084 provides for four scenarios. 

I) When lots are frequently delivered, the quality variation may be determined from a large number of lots of 
almost equal mass by treating each lot separately and making up a pair of interleaved samples for each 
lot. 

II) When large lots are infrequently delivered, the quality variation may be determined from a single lot by 
splitting the lot into at least 10 parts of almost equal mass and making up a pair of interleaved samples for 
each part. 
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III) When small lots are frequently delivered, the quality variation may be determined from several lots of 
almost equal mass by splitting all the lots involved into a total of at least 10 parts of almost equal mass 
and making up a pair of interleaved samples for each part. 

IV) When sampling a wagon-borne lot where increments are taken from all wagons comprising the lot, the 
quality variation may be determined by treating each lot separately and making up a pair of interleaved 
samples for each lot. 

Instructions are given in ISO 3084 for utilizing the information thus obtained under each scenario. 

7 Methods of conformity assessment 

7.1 The statistical concept of a population 

To some extent, the customer and supplier have different viewpoints when it comes to the question of setting 
specifications. Broadly speaking, the customer is interested in the whole range of quality of individual items on 
the market from which he can purchase. The supplier has one eye on the competition, but is also concerned 
with the statistical control and capability of the production process, which can or needs to be maintained in a 
particular organization or organizations, having regard to technical and economic constraints. In both cases, 
however, the form of variation in the characteristics of a large collection of individual items is a matter of 
concern. 

In discussing the concept of statistical uniformity, frequent reference has been made to the distribution curves 
shown at the bottom of the charts in Figure 35. These curves were drawn to represent the frequency 
distribution of a characteristic that would be obtained if measurements were made on a large collection or 
aggregation of items. In statistical terminology, the word population has been used to describe such a large 
collection of individual items, each possessing perhaps a number of different variable characteristics. 

The use of this term arose because the early development of statistical method was associated with the study 
of human populations, formed of individuals, which were variable and many-charactered. In such a case, it is 
easy to grasp the concept of populations that are homogeneous or heterogeneous, stable or changing, the 
necessity of sampling, and different ways that this can be done by probability sampling or by purposely 
constructing a sample, and different types of samples: a simple random sample or a stratified random sample, 
a sample that properly reflects the variation in the data, or a biased sample, which does not, and so forth. 

Deriving their origin from this special field of application, the terms sample and population have had 
associated with them very definite meanings in statistical theory. In the field of industrial production, the 
meaning of a sample is clear, but the concept of a population will perhaps be more readily understood if a 
different terminology is employed. It is sensible for the larger collection of items from which the sample is 
drawn (the statistician's population) to be described differently according to the particular situation under 
consideration. The terms output, consignment, batch or lot may each be used in their respective places, and 
no confusion would appear likely to arise since each of the terms will be found to be self-explanatory in its 
use. 

The parallel with the human case can still be drawn. The different suppliers are the sources from which the 
output or consignments of manufactured items (corresponding to some extent to the different ethnic groups) 
are supplied. 

The customer's interest in the populations, i.e. the outputs of the various suppliers who provide products of the 
type they desire to purchase, will depend on a number of considerations. 

a) In certain cases, it will be essential for the variation in a characteristic to lie within narrowly defined limits. 
This will be so for the dimensions of component parts that need to be fitted together, for the analytical 
properties of certain chemical products, etc. The ideal, from the user's point of view, would probably be 
attained if the variation in items from all sources could be described by a normal curve with its mean on 
target and its standard deviation no greater than a certain value. 
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b) In other cases, wider latitude is permissible, so long as a minimum level is reached by virtually all the 
items; this is true, for example, when the qualities tested relate to strength or durability. For example, the 
average and standard deviation of the breaking strength of wire may differ considerably between 
suppliers, yet still meet the user's requirement. 

c) Sometimes what is important to the user is not a particular mean value of a quality in a product, but a limit 
to the amount of variation about some mean that remains constant from one consignment to another. An 
example is products requiring craftsmanship in the finishing process, such as plasters or paints. The total 
material on the market may well be heterogeneous, consisting of several suppliers' outputs, all of which 
are of differing quality. However, the customer needs to be able to draw continually from one stable 
source of supply, i.e. to use material for which particular characteristics have a constant mean and low 
variation. 

In all of the above cases, a statistical methodology is required that will indicate how best to determine from 
samples, whether the output or consignment does in fact conform to the desired standard. 

The value of the guarantee that the specifications defined are satisfied depends on the statistical test for 
conformity applied. When the statement of conformity with the specifications shall be true beyond any 
reasonable doubt, the test for conformity shall be performed according to the principles given in 
ISO 10576-1 [38]. 

7.2 The basis of securing conformity to specification 

7.2.1 The two principal methods 

The provisions of a specification, the limits for the various quality characteristics, and the sampling technique 
to be adopted should be designed so as to provide assurance to the customer that each consignment or batch 
of material that he purchases is up to the stipulated standard. At the same time, the supplier will be required to 
know that the standard prescribed is one that is consistent with the capability of their production processes, 
and which is economically feasible for them to maintain. There are two principal methods of securing 
conformity to a specification: 

a) by a system of tests of samples taken from batches of finished material. In certain cases, these samples 
may be drawn at random from the whole bulk of material; in other cases, it may be necessary to take 
special precautions to ensure that representative samples are obtained. In either event, this method is 
called acceptance sampling; 

b) by requiring that records be kept that will provide statistical evidence of both the control and the capability 
of the manufacturing processes. Such a procedure could form the basis of a guarantee system of 
specification, so long as occasional audits, independent of the supplier, are made in order to satisfy the 
certifying authority that the routine tests are actually being carried out in the production facility. 

Both these methods can form the basis of a system of quality marking or guarantee to show conformance with 
a specification. Statistical theory can assist by providing the user with assurance as to the adequacy of the 
sampling, and the supplier with confidence that no unsuspected variations in his processes are affecting the 
quality of the product. In many cases, however, it will be found on statistical analysis that acceptance 
sampling on an adequate scale will be too cumbersome or expensive, or even quite impracticable, while the 
second method would appear likely to provide effectively for a guarantee system. 

It is not appropriate to make too sharp a distinction between supplier and customer, as the supplier will not 
only be a user of raw materials but will also be interested in the range of quality on the market of the 
commodities that the supplier is providing. Nevertheless, in making comparison of the two methods, it will be 
convenient to distinguish between questions of special importance to the customer and to the supplier. 
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7.2.2 Considerations of importance to the customer 

The following considerations are of importance to the customer. 

a) It has already been pointed out that in some cases it may be extremely difficult to obtain a sample that 
properly reflects the distributions within a consignment. This is well illustrated by the following example 
taken from Shewhart [123]. 

Given a consignment consisting of 10 truckloads of boxed material, there being 12 items in a box and 
roughly 1 000 boxes in a truck, how would it be possible to obtain a sample that mirrors the variation 
among these 120 000 items? Clearly, if the output were not homogeneous, certain boxes may contain 
articles of significantly different quality from others. According to the method of packing, these differences 
may be associated with certain trucks, or parts of a truck, or they may be scattered at random in the 
process of loading. Again, it may be the case that the articles at the bottom of each box are different from 
those at the top. 

b) Statistical theory may show that the number of items that need to be tested to give the desired degree of 
information about the lot is prohibitive from an economic standpoint. This is particularly likely to be true 
where the test required is destructive and where, at the same time, there is considerable variation in the 
quality characteristic from item to item. For example, to burn out sufficient electric light bulbs to obtain a 
valid test of the difference in quality between the products of two manufacturers may not be beneficially 
viable in some cases. 

c) For many processes, the process variation can be controlled successfully and the problem then becomes 
one of providing assurance that the process mean has not moved too far from the target value. 

For a continuing series of lots from the same source, the amount of random sampling necessary can be 
very much reduced if the process variation remains demonstrably constant over time (i.e. from hour to 
hour and day to day). As soon as it is established that the process standard deviation is constant at a 
given value, smaller sample sizes can be used on subsequent lots. The process variation would still need 
to be checked and more intensive sampling resumed if evidence emerges that the process variation is no 
longer stable. 

To reduce their intensity of sampling inspection with safety, it is necessary for the user to know that 
effective quality control procedures are in place. If the supplier maintains quality control records, what is 
required is an agreed means of making this information available to the customer. If access to such 
records is available, the question then naturally arises whether the guarantee system of securing 
conformity to specification would not be far more satisfactory than the method of testing samples from 
consignments. This is especially true for those materials for which inspection of the final product entails 
elaborate and costly procedures. 

7.2.3 Considerations of importance to the supplier 

The supplier is concerned with the day-to-day routine problem of turning out goods that will satisfy the 
requirements of a specification. As a more distant objective, probably involving research and experimentation, 
the supplier aims to reduce variation and increase the efficiency of the production process. Points they will 
consider are as follows. 

a) If acceptance sampling is specified, the supplier who does not realise the waywardness of chance when 
dealing with variable material may find a sample from his product unexpectedly failing to pass 
specification. If, however, the supplier has studied and measured this variability, he may judge at what 
level quality should be maintained in order to reduce the risk of rejection to an acceptable level. Without 
this knowledge, the quality level he is maintaining for safety may in fact be uneconomically high. 

b) The form of routine control required under a guarantee system of specification, depending on tests 
analysed on a statistical basis, is no different from that which is necessary to assure the same level of 
safety under an acceptance sampling system. 
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c) Stability in the quality of a manufactured product has a number of advantages to the supplier. Besides its 
relation to sales owing to user confidence, it may have an important bearing on the economy of 
management. The following example of a problem that might arise in the production of high-grade cotton 
fabric illustrates this point. 

Owing to uncontrollable faults, a certain percentage of the lengths turned out by looms always needs to 
be put into a lower quality grade. If this percentage reaches a high figure, the manufacturer is faced with 
the necessity of disposing of this unwanted burden of low quality material, which is attached to his high-
grade produce as an awkward but unavoidable shadow. Clearly, fluctuations in the magnitude of this 
percentage figure will upset his costing forecasts. 

d) The concept of statistical uniformity has so far in this publication mainly been associated with the stability 
of variation in time. But the methods of statistical analysis that need to be used to decide whether 
variation is statistically uniform will also be invaluable to the supplier in research and development when 
he is attempting to reduce variability and to detect and eliminate sources of trouble. 

For these aspects of the problem, reference should be made to textbooks, journal articles and standards 
on statistical process control, a brief selection of which may be found in the Bibliography. This is not 
strictly a problem of securing conformity with a specification, but some indication of its treatment is given 
in Clause 10. 

From these considerations, it will be seen that there are clear advantages in the second method of securing 
conformity to a specification, namely by requiring that definite evidence be furnished of effective process 
control during manufacture. For this purpose, statistical theory can suggest systems for routine tests in the 
workplace. These will go far to arm a certifying authority with competence to assess the quality level of a 
product that is sold under a quality mark or guarantee. 

In conclusion, the advantages of this method may be summarized as follows. 

⎯ It avoids the difficulty that often arises of determining how to draw a representative sample from a lot or 
consignment. 

⎯ It saves the cost of sampling on the large scale often necessary to give adequate assurance. 

⎯ The amount of sampling necessary will be far less than that required to provide definite protection in the 
face of erratic quality levels. This is generally true even where it is desirable to carry out occasional tests 
on samples from lots to gain assurance that the process control remains effective. 

⎯ The form of routine statistical analysis necessary to provide the basis of a system of quality certification is 
that which a supplier would employ anyway in attempting to increase the efficiency of his production 
process. 

8 The statistical relationship between sample and population 

8.1 The variation of the mean and the standard deviation in samples 

8.1.1 General 

In the preceding clauses, it has been explained why many of the problems that arise in attempting to achieve 
effective standardization of production and conformity to specification are essentially statistical in nature. A 
detailed development here of the relevant statistical theory would be inappropriate, but it is necessary to 
outline sufficient elements of this theory to clarify the treatment of some typical problems. 

Suppose that the variation in initial efficiency of a specified type of electric light bulb is under consideration. If 
all the light bulbs in a lot of several thousand were tested, it would be possible to calculate the mean efficiency 
and the standard deviation of efficiency, measured in lumens per watt, for the whole lot. If, however, tests 
were only made on several samples each consisting of 10 lamps, then a different mean and a different 
standard deviation would be obtained for each sample. Not only would these means and standard deviations 
differ among themselves from sample to sample, but also they would not correspond exactly to the values that 
could, in theory, be determined from the whole lot. It is clearly important to have some means of defining the 
extent of the differences that can arise through the chance fluctuations of sampling. 
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Some further mathematical results need to be introduced in order to be able to do this in a precise manner. To 
avoid ambiguity, it is essential to make a clear distinction in the notation used for the characteristics of the 
population (lot, consignment) and that used for the characteristics of a sample drawn from this population. The 
most common notation for this is as follows. For the population, containing N items, the mean is denoted by µ  
and the standard deviation by .σ  For a sample, containing n items, the sample mean is denoted by x  and the 
sample standard deviation by s. Values of the sample characteristics for different samples are identified by the 
use of subscripts, for example: 

⎯ 1st sample,  size 1n , sample mean = 1x , sample standard deviation = 1;s  

⎯ 2nd sample,  size 2,n  sample mean = 2,x  sample standard deviation = 2;s  

⎯ 3rd sample,  size 3,n  sample mean = 3,x  sample standard deviation = 3;s  

⎯ 4th sample,  size 4,n  sample mean = 4,x  sample standard deviation = 4.s  

If a number of random samples of the same size n were drawn from the population, the standard deviation of 
the resulting values of x  would be a measure of the magnitude of the error likely to be involved in using the 
mean of just one sample of n items as an estimate of the population mean .µ  This standard deviation of the 
sample means 1,x 2,x …, etc. is often called the standard error of the mean. Similarly, the standard deviation 
of the sample standard deviations 1 2, , ,s s … etc. is often called the standard error of the standard deviation, 
since it measures the error involved in using s as an estimate of .σ  

NOTE The standard deviation of an estimator is called the standard error. In order to avoid confusing the reader with 
terminology, the words “standard deviation” will be used instead of “standard error” throughout this Technical Report. 

In general, it will not be practicable to take more than one random sample from the population. Fortunately, 
statistical theory comes to our aid by providing a means of estimating both of these standard deviations from 
the results of one sample. It will be assumed in 8.1.2 and 8.1.3 that the sample size n is small compared to the 
population size N, say less than one twentieth of N. 

8.1.2 Variation of means 

The average of the sample means from all possible samples of size n from the population equals the 
population mean, i.e. 

Mean of  x = µ  (8) 

In fact, to make it clear that the left-hand side of this equation is a population mean rather than a sample 
mean, a better notation is: 

x =µ µ  (9) 

The variability of the sample mean varies directly as the standard deviation of the characteristic, x, in the 
population and inversely as the square root of the sample size, i.e. 

Standard deviation of /x nσ=  (10) 

Again, to make it clear that the left-hand side represents a population standard deviation rather than one 
based on a sample, a better notation is: 

/x n=σ σ  (11) 

The variation in the sample means will approximate to a normal distribution except in cases of extremely 
asymmetrical variation in x in the population. 
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In simple terms, the standard deviation may therefore be interpreted as follows, provided that the sample 
contains some 20 or more items. Since x  varies approximately in accordance with a normal distribution about 
µ  with a standard deviation of / ,nσ  it follows that it is rather unlikely that, in any particular random sample, 
the magnitude of the difference ( )x µ−  will be greater than 2 / ,nσ  and very unlikely that it will be greater 
than 3 / .nσ  Consequently, when only the data obtained from a sample are available, there is reasonable 
assurance that the population, lot or consignment mean will not differ from the sample mean x  by more than 
± 2 to ± 3 times / .nσ  If the standard deviation, ,σ  is not known from past experience, an estimate of 
σ obtained from the sample needs to be used. More precisely, tables of multipliers can be derived from 
statistical theory, such as Table 9 and Table 10, whose uses are described in 8.1.3. 

Table 9 — Factors for confidence limits for the population mean and population standard deviation 

Mean Standard deviation 

Limits 

1 2,  x as x asµ µ= − = +  

Limits 

1 1 2 2,  b s b sσ σ= =  

Chance of error Chance of error 

10 % 5 % 2 % 1 % 10 % 5 % 2 % 1 % 

Sample 
size 

n 

a a a a 1b  2b  1b  2b  1b  2b  1b  2b  

5 

6 

7 

8 

9 

10 

0,954 

0,823 

0,735 

0,670 

0,620 

0,580 

1,242 

1,050 

0,925 

0,837 

0,769 

0,716 

1,676 

1,374 

1,188 

1,060 

0,966 

0,893 

2,060

1,647

1,402

1,238

1,119

1,028

0,649 

0,672 

0,690 

0,705 

0,718 

0,729 

2,373

2,090

1,916

1,798

1,712

1,646

0,599 

0,624 

0,644 

0,661 

0,675 

0,687 

2,874

2,453

2,203

2,036

1,916

1,826

0,548 

0,575 

0,597 

0,615 

0,631 

0,644 

3,670 

3,004 

2,623 

2,377 

2,205 

2,077 

0,518 

0,546 

0,568 

0,587 

0,603 

0,617 

4,396

3,485

2,980

2,661

2,440

2,278

11 

12 

13 

14 

15 

0,547 

0,519 

0,495 

0,474 

0,455 

0,672 

0,636 

0,605 

0,578 

0,554 

0,834 

0,785 

0,744 

0,709 

0,678 

0,956

0,897

0,848

0,806

0,769

0,739 

0,747 

0,755 

0,762 

0,768 

1,594

1,551

1,516

1,486

1,460

0,698 

0,708 

0,717 

0,724 

0,732 

1,755

1,698

1,651

1,612

1,578

0,656 

0,667 

0,676 

0,685 

0,693 

1,978 

1,899 

1,834 

1,780 

1,734 

0,630 

0,641 

0,651 

0,660 

0,668 

2,154

2,056

1,976

1,910

1,854

16 

17 

18 

19 

20 

0,439 

0,424 

0,411 

0,398 

0,387 

0,533 

0,515 

0,498 

0,482 

0,469 

0,651 

0,627 

0,606 

0,586 

0,568 

0,737

0,709

0,684

0,661

0,640

0,774 

0,780 

0,785 

0,789 

0,793 

1,438

1,418

1,401

1,385

1,371

0,738 

0,744 

0,750 

0,755 

0,760 

1,548

1,522

1,500

1,479

1,461

0,700 

0,707 

0,713 

0,719 

0,724 

1,694 

1,660 

1,629 

1,602 

1,578 

0,676 

0,683 

0,689 

0,696 

0,701 

1,806

1,764

1,728

1,696

1,667

21 

22 

23 

24 

25 

0,377 

0,367 

0,359 

0,350 

0,343 

0,456 

0,444 

0,433 

0,423 

0,413 

0,552 

0,537 

0,524 

0,511 

0,499 

0,621

0,604

0,588

0,574

0,560

0,797 

0,801 

0,805 

0,808 

0,811 

1,358

1,346

1,336

1,326

1,317

0,765 

0,769 

0,773 

0,777 

0,780 

1,445

1,430

1,416

1,403

1,392

0,729 

0,734 

0,738 

0,743 

0,747 

1,557 

1,537 

1,519 

1,502 

1,487 

0,707 

0,712 

0,716 

0,721 

0,725 

1,641

1,617

1,596

1,576

1,559

26 

27 

28 

29 

30 

0,335 

0,329 

0,322 

0,316 

0,311 

0,404 

0,396 

0,388 

0,381 

0,374 

0,488 

0,478 

0,468 

0,459 

0,450 

0,547

0,535

0,524

0,514

0,504

0,814 

0,817 

0,820 

0,823 

0,825 

1,309

1,301

1,293

1,287

1,280

0,784 

0,787 

0,790 

0,793 

0,796 

1,381

1,371

1,362

1,353

1,345

0,751 

0,754 

0,758 

0,761 

0,764 

1,473 

1,460 

1,448 

1,437 

1,427 

0,729 

0,733 

0,737 

0,741 

0,744 

1,542

1,527

1,513

1,499

1,487
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8.1.3 Variation of standard deviations 

The square of a standard deviation is called a variance, i.e. 2s  is the sample variance and 2σ  is the 
population (lot or consignment) variance. The average of the sample variances over all possible samples of 
size n from the population equals the population variance, i.e.  

2
2

sµ σ=  (12) 

Unfortunately, there is no such simple result for the average of all possible sample standard deviations for 
samples of size n. In fact, the average value of s is less than .σ  This effect is described as a bias, a negative 
bias in this case. The bias depends on the sample size, and gets smaller as the sample size increases. 

NOTE The fact that s is a biased estimator of σ  although 2s  is an unbiased estimator of 2σ  may seem puzzling at 
first, but it should be remembered that the mean value of a set of numbers is not the same as the square root of the mean 
of their squares. For example: 

1
5 (1 3 3 5 6) 3,6+ + + + = whereas 1

5 (1 9 9 25 36) 4,0+ + + + =  

The average of the sample standard deviations over all possible samples of size n from the population is given 
by the following equation: 

4s cµ σ=  (13) 

where 4c is the bias factor and depends on the value of n. 

NOTE This relation [Equation (13)] is only true if the variation among the observations is of the normal form. 

Values of 4c  are given for sample sizes from 2 to 30 in Table 10; note that 4c  is approximately equal to 
4( 1) /(4 3).n n− −  

Table 10 — Factors for removing bias from sample standard deviations 

Sample 
size 

n 

 

 
c4 

 

 
1/c4 

Sample 
size 

n 

 

 
c4 

 

 
1/c4 

Sample 
size 

n 

 

 
c4 

 

 
1/c4 

— — — 11 0,975 4 1,025 3 21 0,987 6 1,012 6 

2 0,797 9 1,253 3 12 0,977 6 1,023 0 22 0,988 2 1,012 0 

3 0,886 2 1,128 4 13 0,979 4 1,021 0 23 0,988 7 1,011 4 

4 0,921 3 1,085 4 14 0,981 0 1,019 4 24 0,989 2 1,010 9 

5 0,940 0 1,063 8 15 0,982 3 1,018 0 25 0,989 6 1,010 5 

6 0,951 5 1,050 9 16 0,983 5 1,016 8 26 0,910 1 1,010 0 

7 0,959 4 1,042 4 17 0,984 5 1,015 7 27 0,990 4 1,009 7 

8 0,965 0 1,036 2 18 0,985 4 1,014 8 28 0,990 8 1,009 3 

9 0,969 3 1,031 7 19 0,986 2 1,014 0 29 0,991 1 1,009 0 

10 0,972 7 1,028 1 20 0,986 9 1,013 2 30 0,991 4 1,008 7 

 
If the sample standard deviation is to be used as an estimate of the population value, for some applications it 
is desirable or customary to eliminate the bias. Following Shewhart [124], this is done by taking 4/s c  as the 
estimate of .σ  
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With regard to these corrections, the following points should be noted. 

a) Unless the sample contains very few items (i.e. unless n is very small), the bias is inconsequential. 

b) If n is small, no single estimate of σ  can be regarded as satisfactory; what is required is a pair of lower 
and upper limits 1σ  and 2σ  within which we may feel confident that σ  lies. These are so-called 
“confidence limits” (see 8.4.1), for the calculation of which Table 9 has been given. This table shows very 
clearly the extent of the uncertainty that remains when σ  is estimated from a few observations only. 

c) Corrections in the case where σ  is estimated from a number of small samples are, however, important, 
for in this case a really reliable unbiased estimate is possible. These corrections are discussed further in 
10.7. 

Corresponding to Equation (10), there is an approximate theoretical expression for the standard deviation of a 
standard deviation, namely: 

standard deviation of / 2( 1)s nσ= −  (14) 

i.e. 

2( 1)s n
σ

σ =
−

 (15) 

The accuracy of this approximation is subject to several limitations: 

1) the variation among the observations, x, has to approximately follow the normal distribution; 

2) as σ will generally not be known, it will be necessary to substitute s in the right-hand side of Equation (15), 
so the sample should consist of at least 30 observations. 

Subject to these restrictions, the result is nevertheless helpful in giving some idea of the reliability of s as an 
estimate of σ . 

The data in Table 11 illustrates the variation in x  and s among samples from the same population. A can of 
tomatoes is taken from a production line once every two hours, and its contents weighed. Four observations 
therefore become available every 8-hour shift. Observations over a period of 40 shifts are given in this table. 

Statistical analysis of the type described in 4.4 shows that the variation from item to item is under statistical 
control during the period covered by the first 40 shifts. 
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Table 11 — Mass of tomato can contents 

Shift Mass of can contents 

g 

 Shift Mass of can contents 

g 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

401,5 

404,4 

405,7 

405,0 

402,6 

404,2 

404,4 

407,7 

409,7 

405,7 

402,8 

400,8 

401,0 

402,3 

403,7 

403,9 

404,2 

403,6 

405,9 

401,5 

401,5 

403,4 

405,5 

402,6 

404,0 

403,6 

405,2 

403,9 

400,7 

400,4 

403,2 

406,3 

403,9 

405,6 

404,7 

402,2 

404,9 

404,0 

403,8 

401,7 

404,8 

406,3 

406,1 

406,6 

404,4 

403,7 

402,5 

403,8 

405,0 

402,3 

402,3 

403,6 

403,0 

402,5 

405,8 

403,7 

406,3 

401,0 

405,6 

404,0 

402,8 

403,1 

404,8 

402,9 

404,0 

407,9 

403,5 

407,1 

405,5 

405,4 

402,0 

402,6 

403,4 

404,8 

403,9 

402,7 

401,4 

400,9 

398,4 

403,8 

 21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

405,0 

403,8 

401,8 

402,4 

407,3 

401,4 

402,8 

401,6 

407,3 

401,2 

408,4 

404,8 

403,2 

404,9 

405,0 

402,1 

405,3 

404,5 

405,2 

402,0 

405,7 

405,4 

404,4 

401,8 

404,1 

407,4 

403,7 

406,5 

401,3 

405,3 

403,3 

404,9 

402,0 

400,9 

402,1 

403,1 

403,9 

401,5 

399,7 

400,7 

404,1 

406,5 

407,6 

403,8 

406,3 

402,1 

405,5 

400,8 

406,1 

405,2 

404,1 

406,0 

403,4 

400,9 

405,6 

403,8 

404,7 

404,7 

405,1 

402,6 

404,4 

401,3 

405,6 

401,6 

403,1 

404,4 

402,4 

404,1 

405,9 

403,2 

402,9 

404,5 

404,0 

400,4 

402,0 

404,2 

404,3 

402,7 

406,2 

404,9 

Table 12 — Canned tomatoes data — Mean and standard deviation of four masses per shift 

Shift Mean Standard 
deviation 

 Shift Mean Standard 
deviation

 Shift Mean Standard 
deviation

 Shift Mean Standard 
deviation

1 

2 

3 

4 

5 

402,65 

404,30 

405,52 

404,28 

403,75 

1,559 

1,445 

0,544 

1,882 

0,790 

 11 

12 

13 

14 

15 

402,58 

403,32 

402,82 

403,80 

404,52 

0,532 

2,297 

1,271 

1,651 

0,954 

 21 

22 

23 

24 

25 

404,80

404,25

404,85

402,40

405,20

0,707 

2,258 

2,424 

0,993 

1,936 

 31 

32 

33 

34 

35 

404,68 

405,05 

403,15 

401,78 

403,68 

2,533 

0,656 

0,839 

2,097 

1,893 

6 

7 

8 

9 

404,85 

403,90 

405,62 

405,22 

2,050 

1,163 

2,065 

3,680 

 16 

17 

18 

19 

403,12 

404,20 

402,38 

403,42 

0,810 

2,061 

1,654 

3,476 

 26 

27 

28 

29 

403,82

403,60

403,25

405,15

2,706 

1,378 

2,583 

2,640 

 36 

37 

38 

39 

403,30 

404,55 

403,35 

404,05 

0,920 

0,597 

1,526 

2,942 

10 403,45 2,549  20 402,75 1,333  30 403,72 1,941  40 402,55 1,756 
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Table 13 — Canned tomatoes data — Frequency distribution of individual observations and of means 
and standard deviations of 4 tests 

Mass 

g 

Frequency Mean, x  

g 

Frequency Standard 
deviation, s 

g 

Frequency 

398,00 to 398,99 

399,00 to 399,99 

400,00 to 400,99 

401,00 to 401,99 

402,00 to 402,99 

403,00 to 403,99 

404,00 to 404,99 

405,00 to 405,99 

406,00 to 406,99 

407,00 to 407,99 

408,00 to 408,99 

409,00 to 409,99 

1 

1 

9 

16 

26 

30 

32 

25 

11 

7 

1 

1 

400,50 to 400,99 

401,00 to 401,49 

401,50 to 401,99 

402,00 to 402,49 

402,50 to 402,99 

403,00 to 403,49 

403,50 to 403,99 

404,00 to 404,49 

404,50 to 404,99 

1 

2 

5 

8 

7 

5 

6 

4 

2 

0,500 to 0,999 

1,000 to 1,499 

1,500 to 1,999 

2,000 to 2,499 

2,500 to 2,999 

3,000 to 3,499 

3,500 to 3,999 

11 

5 

9 

7 

6 

1 

1 

Total 160 Total 40 Total 40 

 

The mean and standard deviation for the whole population of 160 masses are 403,84 gµ = and 1,909 g.σ =  

The means and standard deviations, x and s, of the 40 samples each consisting of 4 test results, are shown in 
Table 12. They have been grouped together in Table 13 where they form frequency distributions analogous to 
that in Table 6. 

If the mean and the standard deviation of these distributions are calculated, they may be compared with the 
theoretical values obtained by inserting the values of n and s in Equations (9), (11), (13) and (14), as shown in 
Table 14. 

Table 14 — Canned tomatoes data — Comparison of the sample mean and sample standard 
deviations of the means and standard deviations in groups of 4 tests with theoretical results 

Measure Results from Table 12 Results from theoretical formulae 

Mean of ,x  i.e. xµ  403,84 g a 403,84 g a 

Standard deviation of ,x  i.e. xσ  0,965 g  

Mean of s, i.e. sµ  1,727 g 4( 1) /(4 3) 12 1,909 /13 1,762 gn nσ− − = × =  

Standard deviation of s, i.e. sσ  0,808 g / 2( 1) 1,909 / 6 0,779 gnσ − = =  

a Note that these two values necessarily agree, as the mean of the 40 sample means has to equal the mean of the population 
of 160 tests. 

 

Corresponding figures are seen to be in quite close agreement. 
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8.2 The reliability of a mean estimated from stratified and duplicate sampling 

8.2.1 Stratified sampling 

An important extension to some of the previous results is necessary when the items on which the 
observations or tests have been made are drawn from a number of sources, within each of which there is 
statistical control, but between which there may be differences in the process averages and variances. 

Suppose a population (batch, consignment) consists of a large number of items, of which a proportion 1p  has 
come from one source, 2p from a second, etc., and finally kp  from a kth source. Suppose that the mean and 
standard deviation of the quality characteristic under consideration in material from the first source are 1µ  and 

1,σ  for the second source 2µ  and 2,σ  etc. The mean for the whole population will then be: 

1 1 2 2 k kp p pµ µ µ µ= + + +"  (16) 

The different sources can be considered as strata. And if the means within the different strata vary from 
stratum to stratum, we will get a more accurate estimate of the mean of the whole population if we select 
independent random samples from each separate stratum or source and combine the results from the 
different strata in an appropriate way. The simplest situation will be that a sample of n items is drawn by taking 
n1 items at random from the material coming from source 1, n2 items from the material from source 2, and so 
on, where: 

1 1 2 2,  , ,  k kn np n np n np= = =…  (17) 

and 1 2 kn n n n+ + + =" since the proportions sum to unity, i.e. 1 2 1.kp p p+ + + ="  This is an example of a 
proportional stratified sample, or simply a proportional sample, where the number of items taken from each 
stratum is proportional to the size of each stratum or, in other words, that the sampling fraction from each 
stratum is equal to its relative size. (Stratified sampling has also been discussed in 6.1.3 to 6.1.5 and 6.2.) 

If x  is the mean value of the characteristic for the n items of this proportional sample, then it may be used as 
an estimate of the true population mean .µ  For a proportional sample we simply pool the subsamples for all 
the strata and take the mean of this sample. It is known that the standard deviation (i.e. the standard deviation 
in repeated samples) of x  is given by the relation: 

2 2 2
1 1 2 2

1standard deviation of k kx n n n
n

σ σ σ= + + +"  (18) 

In practice, it will commonly happen that the standard deviations within the different sources of supply will be 
approximately the same, i.e. 1 2 .kσ σ σ σ= = = ="  This relation [Equation (18)] then simplifies to: 

standard deviation of x
n
σ

=  (19) 

Results [Equations (18) and (19), like Equations (8) to (12)] are independent of any assumption of normality in 
the variation. A number of points of practical importance may be deduced. 

a) Provided that the sample can be made properly proportionate by drawing subsamples that satisfy the 
condition [Equation (10)], the reliability of the estimate x  depends only on the variation within each 
source of supply, and not upon the differences between the mean values 1,µ 2, ,µ … .kµ  

b) If the values of 1 2, , , kσ σ σ… are not known from previous experience, they may be estimated from the 
standard deviations of the subsamples and by replacing the 'siσ  in Equation (18) by the 
corresponding 's.is  An estimate of the standard deviation calculated from the whole sample, disregarding 
the fact that the subsamples originate from different strata (as we did above by estimating the mean), 
might be quite misleading. [See comments to Equation (22) below.] 
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c) If the samples from the different strata are not proportional to the relative sizes of the strata, then the 
estimate of the mean of the whole population will be a weighted sum of the sample means from the 
different strata with weights equal to the pi's, the relative sizes of the strata. For stratified but not 
proportional samples, the standard deviation and the variance of the estimate of that estimate will also be 
more complicated because the variance has to be calculated for each subsample separately, even if the 
population variances within the strata are equal. The variance of the estimate of the total mean will be a 
weighted sum of the variances for the different strata and with weights equal to the squares of the pi's.” 

d) If no attempt is made to take into consideration the differences between the mean values of the different 
strata, and a simple random sample is drawn instead of a stratified random sample, then the mean µ  of 
the population will be estimated with less precision. The whole population of items then needs to be 
regarded as a single group having a standard deviation σ '.  The mean x  of the n observations in the 
sample drawn at random from the whole population will have a standard deviation given by Equation (10) 
in 8.1.2, i.e.: 

'standard deviation of x
n

σ
=  (20) 

In the case of proportional stratified sampling, in which the conditions [Equation (17)] are satisfied, it can 
be shown that: 

2 2 2 2 2 2
1 1 2 2 1 1 2 2' ( ) ( ) ( )k k k kp p p p p pσ σ σ σ µ µ µ µ µ µ= + + + + − + − + + −" "  (21) 

which, when 1 2 ,kσ σ σ σ= = = ="  simplifies to: 

2 2 2 2
1 1 2 2' ( ) ( ) ( )k kp p pσ σ µ µ µ µ µ µ= + − + − + + −"  (22) 

a quantity clearly at least equal to .σ  Hence, if 1 2,  , , kµ µ µ…  are not all equal to ,µ  i.e. the process 
average changes from one source of supply to another, the mean of the batch will be estimated with less 
precision. 

e) The results discussed above hold only when the sample fractions are small. If the sizes of the 
subsamples are larger than 0,1 of the stratum sizes, it is necessary to make so-called finite population 
corrections in the calculations of the variances and the standard deviations. This will cause a reduction in 
the variance. The larger the sample fractions are, the smaller the variance will be. However, the estimate 
of the overall mean is not affected by the finite population corrections. 

f) Even when no exact attempt is made to estimate the values of 1 2, , , ,kσ σ σ…  stratified sampling is often 
employed to ensure that the resulting estimate of the population mean is as reliable as possible. In other 
words, although no calculations of reliability are made, sampling is in fact planned so that the standard 
deviation is given by Equations (18) or (19) rather than Equations (20) with (21) or (22).These points may 
be illustrated by the following numerical example. The strength and other properties of bricks depend to 
some extent on the position of the bricks during firing in the kiln. An investigation has shown that in a 
particular case the standard deviation of dry strength for the whole batch of bricks from a single firing of a 
kiln was given by: 

' 8 846 kPaσ =  

If, however, the cross section of the kiln was divided into nine areas, the averaged standard deviation of 
brick strengths in a single area was the following: 

5 081 kPaσ =  
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It follows that the producer, taking say four bricks at random from each of the areas, could obtain from the 
mean of the 36 test results an estimate of the mean brick strength of the kiln, having a standard deviation 
of the following: 

847 kPa
36
σ

=  

NOTE It may be helpful to see this result obtained in two steps, as follows. The standard deviation for the mean 
result of tests made on four bricks from any one position in the kiln is =5 081/ 4 2 540 kPa.  As nine averages of 
similar tests are then themselves averaged, the standard deviation for the mean of the 36 tests will be 

=2 540 / 9 847 kPa.  

The user, on the other hand, does not have the opportunity to obtain in this way a sample that reflects the 
variations in the data. It is likely, but by no means certain, that neighbouring bricks in the consignment he 
receives will have come from the same parts of the kiln. The user therefore needs to take a sample from the 
whole consignment and associate a standard deviation of '/ nσ  with the resulting estimate of the mean 
strength. To obtain an estimate about as reliable as that of the producer, which was based on 36 bricks, the 
user needs to test about n = 110 bricks because, approximately: 

' 843 kPa
110
σ

=  

It needs to be understood that the above argument holds only when principally it is the mean value of a 
characteristic that it is desired to control. In the example taken for illustration, the mean strength of a 
consignment of bricks is not in fact the best criterion for assessing quality. Both the mean strength and the 
standard deviation of strength require control, as they both relate to the proportion of bricks that are below a 
given strength (see 8.5 and 9.5.2). The question of how to plan sampling appropriate to the simultaneous 
estimation of the mean and the standard deviation involves other considerations, which cannot be entered into 
here. The comparison given, however, expresses in numerical form the advantage that follows if process data 
is obtained at the time of production rather than by the sampling of consignments. 

8.2.2 Duplicate sampling 

For certain products, it is the practice not to measure the characteristics of each individual item in the sample 
but to record a single value that is the grand total of the individual values. For example, the total mass of a 
sample of n articles may be taken, but not the n separate masses. For sampling bulked materials such as coal, 
cement and oil, the sampling methods may aim only at obtaining a single total measure as an estimate of 
quality. However, without additional information, it is impossible to determine the reliability of this single 
measure. This is because even if results from a number of consignments are collected and compared, the 
variation between them may be due to changes in the process mean value and not to sampling error. 

The only satisfactory method of determining the reliability of a sampling procedure is for the same sampling 
procedure to be carried out independently several times on the same consignment or batch, and for the 
standard deviation of these independent results to be obtained. If the process variation remains approximately 
stable, then the reliability of the sampling procedure may be examined initially and rechecked only 
occasionally. An economic method of maintaining assurance of the continued reliability is to arrange that 
independent duplicate samples be taken. For example, as described in 6.2 for iron ore, for some products a 
number of small portions may be taken at regular intervals from a conveyor, alternate portions put into two 
separate receptacles, and the process of mixing, quartering, etc. and final analysis performed independently 
in duplicate. 

Suppose that 1x  and 2x  are the two test results that are to be used as an estimate of the real quality of the 
consignment. Their difference may be expressed as 1 2.d x x= −  From statistical theory, it is known that the 
standard deviation of d in the consignment may be expressed in terms of the standard deviation of x in the 
consignment by the formula: 

2d xσ σ=  (23) 
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This result remains true even if the process mean value changes from one consignment to another, provided 

a) that the variation about the mean in the parts of the sampled bulk is approximately the same in all 
consignments, and 

b) that the duplicate samples are independent, e.g. if 1x  is above the real consignment value, then 2x  is as 
likely to be below as to be above. 

It follows from Equation (23) that, if these conditions are satisfied, / 2dσ may be used as a measure of ,xσ  
the standard deviation of either of the estimates 1x  and 2x . As it is known that the standard deviation of the 
mean of 1x  and 2x  is / 2,xσ  it follows that / 2dσ  may be used for the standard deviation of 

1 2( ) / 2.x x x= +  In order to keep a check on the continued reliability of the sampling and analytical processes, 
the successive values of 1 2d x x= −  may be plotted on a control chart (see 10.7). 

8.3 Illustration of the use of the mean mass, and the lowest mass, in a sample of prescribed 
size of specimens of fabric 

The principles considered in 8.1 and 8.2 are of equal importance whether the assistance of statistical theory 
be required in connection with the method of consignment sampling or in assessing how well the process 
mean and variation are being controlled. 

The following is an illustration of the use of the standard deviation of the mean, i.e. / ,nσ  in consignment 
sampling. Example 2 in 4.3 gave some figures for the masses of 128 specimens from a roll of fabric. A 
potentially large-scale user first investigates the quality of such fabrics in the marketplace. He then decides 
that the specification and method of sampling should be as follows: while it will penalize occasionally the 
producer whose fabric has an average mass of µ  = 100 dg and a standard deviation of individual test 
specimens of σ  = 3,5 dg, it will penalize less and less frequently as quality improves above this level. He 
intends to do this by introducing a test clause into the specification such that if the tests on the sample 
material fail to pass the standard, the whole roll of fabric from which the sample has been taken is to be 
rejected. 

Suppose that it is under discussion whether the tests on each roll should be made on n = 4, 8 or 16 
specimens, and that it is proposed that the clause should specify a minimum mass that the mean of n tested 
specimens has to exceed. The problem is how to determine what this minimum average mass should be in 
each case. 

If the production process is under statistical control, we know that the means of samples of n pieces will be 
closely represented by a normal curve with mean µ  and standard deviation / .nσ  

Table 15 — Fractiles of the normal distribution corresponding to selected confidence levels 

Confidence Chance of error  One-sided interval  Two-sided interval 

% % α  1u α−  2
α  1

2

u α
−

 

90 10 0,10 1,281 6 0,05 1,644 9 

95 5 0,05 1,644 9 0,025 1,960 0 

98 2 0,02 2,053 7 0,01 2,326 3 

99 1 0,01 2,326 3 0,005 2,575 8 

 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TR 18532:2009(E) 

68  © ISO 2009 – All rights reserved
 

From Table 15, which gives details of the fractiles of the standard normal probability curve, it may be expected 
in the long run that, for example: 

10 percent of means (i.e. 1 in 10) will fall below 1,281 6 / ;nµ σ−  

5 percent of means (i.e. 1 in 20) will fall below 1,644 9 / ;nµ σ−  

1 percent of means (i.e. 1 in 100) will fall below 2,326 3 / ;nµ σ−  

0,5 percent of means (i.e. 1 in 200) will fall below 2,575 8 / .nµ σ−  

He decides to fix the minimum so that a producer whose standard of quality is represented by µ  = 100 dg, 
σ  = 3,5 dg will be liable to have only one sample in 20 rejected. The limits were therefore set as follows. 

For samples of size 4, 4 100 1,644 9 3,5 / 4 97,12.L = − × =  

For samples of size 8, 8 100 1,644 9 3,5 / 8 97,96.L = − × =  

For samples of size 16, 4 100 1,644 9 3,5 / 16 98,56.L = − × =  

These limits are shown in the left hand side of Table 16 together with the number of samples, represented in 
Figure 5 in 4.3.2, which would be rejected if these specification limits were imposed. 

Suppose that it was decided to demand a higher quality of material having a mean mass per specimen of at 
least 103 dg, and as before a standard deviation not greater than σ  = 3,5 dg. The specification limits, which 
are now 3 higher than before, are shown on the right-hand side of Table 16, together with the number of 
samples (from Figure 5) that would now be accepted. 

Table 16 — Fabric specimens — Testing rule based on sample mean 

Case µ = 100 dg Case µ = 103 dg 
Size of 
Sample Limit 

in dg 
Number of samples in Figure 5

rejected 
Limit 

in dg 
Number of samples in Figure 5 

accepted 

4 

8 

16 

97,12 

97,96 

98,56 

5 out of 32 

2 out of 16 

1 out of 8 

100,12

100,96

101,56

17 out of 32 

3 out of 16 

0 out of 8 

The advantages of adjusting the limits to suit the sample size are now evident. Note that the mean and 
standard deviation of the 128 test results are 99,91 dg and 3,49 dg respectively. The first case, with 
µ  = 100 dg, illustrates the way in which a producer whose material lies on the borderline will receive broadly 
similar treatment whatever the sample size. The second case vividly demonstrates how the user may protect 
himself against receiving material of quality inferior to the standard at which he aims by increasing the number 
of specimens to be subjected to the test. 

In the earlier use of these data in 4.3, it was suggested that the minimum criterion might be applied to the 
lowest mass in a sample of n test specimens instead of to the mean. If the masses vary according to a normal 
distribution with a mean µ  and a standard deviation ,σ  then such limits can be determined; the limits are of 
the following form: 

L kµ σ= −  

where the value of k depends upon the number, n, of items in the sample and the chance, α, of rejection or of 
acceptance that it is decided to adopt. In fact, k is the (1 − α)1/n fractile of the standard normal distribution 
which can be obtained using a scientific calculator. 
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Suppose, for example, that it were again decided to fix a minimum limit such that a producer conforming to a 
standard of quality represented by µ  = 100 dg, σ  = 3,5 dg will tend to have one sample in 20 rejected. Then 
the appropriate factors, k, are shown in Table 17, together with the resulting critical limits and the number of 
rejections among the same series of samples, i.e. those of Figure 5 in 4.3.2. The results of choosing a higher 
standard of quality, µ  = 103 dg, are shown in the right-hand side of the same table. 

Table 17 — Fabric specimens — Testing rule based on smallest mass in sample 

Case µ = 100 dg Case µ = 103 dg 
Size of 
sample Factor k Limit 

in dg 
Number of samples in 

Figure 5 rejected 
Limit 

in dg 
Number of samples in 

Figure 5 accepted 

4 2,234 92,18 2 out of 32 95,18 23 out of 32 

8 2,490 91,28 1 out of 16 94,28 11 out of 16 

16 2,726 90,46 0 out of 8 93,46 6 out of 8 

 

It is instructive to compare Table 16 and Table 17. As in the case of basing the test on the sample mean, the 
left-hand side of Table 17 shows that, even when basing the test on the smallest mass in the sample, a 
producer whose material lies on the borderline will receive broadly similar treatment whatever the sample size.  

The most noticeable difference between the tables is how much better the user safeguards himself against 
receiving material of inferior quality by using the sample mean mass rather than the smallest of the masses in 
the sample. 

It would not be justifiable to draw general conclusions from a single practical example. This is particularly true 
with this example as the test specimens were cut from the same roll, so the variation from specimen to 
specimen would not have been entirely random. However, the general conclusions that this example suggests 
are in accordance with what would have been predicted by statistical theory. 

The focus of this example has been on protecting the user against receiving material of low mass. Uniformity 
of mass may, however, be an important characteristic, that is to say it may also be desirable to protect against 
the acceptance of fabric with a large variation in mass from specimen to specimen. For this purpose, it would 
be possible to specify some upper limit either to the standard deviation, s, or to the range (i.e. the difference 
between the heaviest and lightest specimens) in a sample. The question of control of variation is discussed 
later in connection with control charts (see Clause 10). 

8.4 Tests and confidence intervals for means and standard deviations 

8.4.1 Confidence intervals for means and standard deviations 

A sample provides an estimate of the mean and the standard deviation of a variable x in the population from 
which the sample is drawn, that is to say x  and s provide estimates of µ  and .σ  It has been indicated that if 
the sample does not contain many items, then these estimates may not be very accurate; the inaccuracy is 
measured by the standard deviations, expressions for which have been given in 8.1. For some practical 
purposes, a rather more precise method of expressing the uncertainty of estimation may be desirable. This 
can be provided by statistical theory, but only on certain assumptions, which are summarized below, and 
which must not be overlooked in using Table 9. The problem and its solution may be put in the following form. 

Given a sample of size n having, for a certain measured variable, a mean x  and a standard deviation s, to 
determine 

a) the limits 1µ  and 2µ  between which the population mean µ  is likely to lie, and 

b) the limits 1σ  and 2σ  between which the population standard deviation σ  is likely to lie. 
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The expression “is likely” needs to be defined in terms of probability. For example, the limits may be chosen in 
such a way that, using limits derived in the same way on repeated occasions, we would be wrong only one 
time in 50 (i.e. 2 % of the time) in the long run. Such limits may be calculated as follows: 

1 2for the population mean,  ,    x as x asµ µ= − = +  (24) 

1 1 2 2for the population standard deviation,  ,   b s b sσ σ= =  (25) 

where the factors a, b1 and b2 are given in Table 9 for four levels of probability and for sample sizes n from 5 
to 30. 

For larger values of n, the following approximations to a, b1 and b2 are reasonably accurate: 

1 2
1 1,  and  

3 1 1
2 2( 2)

ua b b
u un

n n

= = =
− + −

−

 

where the values of u are related to the chance of error for two-sided intervals for a standard normal 
distribution as shown in Table 15. 

For example, the value of u for a 10 % chance of error with a two-sided confidence interval is 1,644 9. For a 
sample of size 30, the values of a, 1 2 and b b  for a 10 % chance of error are calculated from these 
approximations as 0,317, 0,825 and 1,282, which are reasonably close to the correct values 0,311, 0,825 and 
1,280. 

These limits on the population mean and population standard deviation are called confidence limits, because 
they are associated with a stated measure of confidence. If, for instance, we have a sample of 10 items, and 
assert that in the sampled population the mean lies in the range: 

0,580  to 0,580x s x s− +  

then it can be seen from Table 9 that we should expect such predictions to be correct about 90 % of the time 
in the long run, and in error 10 % of the time. About half of the 10 % of erroneous assertions would be 
because 0,580x s−  exceeds the population mean µ  and the other half because 0,580x s+ was less than .µ  
On the other hand, if we take the wider range: 

0,893  to 0,893x s x s− +  

we shall be 98 % confident that we are correct, knowing that there is only a 1 % chance that 0,893x s− will 
exceed µ  and a 1 % chance that 0,893x s+ will be less than .µ  The interpretation will be similar for the case 
of .σ  

One-sided confidence intervals may be appropriate if either an upper or a lower limit may be fixed by definition 
and observed values are close to such a limit. This can be, for example, the case for the standard deviation, 
which has to be positive. In other situations, one may be interested in only the high or small values of a 
parameter, e.g. possible high values of the mean value of a normal distribution. 

Two-sided confidence intervals are appropriate when all possible values of a parameter are of interest. 
Table 9 was designed for two-sided intervals, but can be used for one-sided intervals simply by doubling the 
chance of error. For example, if an upper confidence limit on σ  was required at 99 % confidence when the 
sample size is 15, the chance of error of 1 % is doubled to 2 % to locate the appropriate value of 2,b  which is 
1,734. Thus, we would have 99 % confidence that σ  is less than 1,734s. 

The validity of such confidence limits depends upon certain assumptions, viz.: 

1) that the variation is under statistical control. For instance, whilst the sample might be any one of 
those in case 1 or case 2 of Figure 35 in 6.1.1, we clearly could not expect to derive meaningful limits 
from any one of the samples in cases 3, 5 or 6; 
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2) that the form of variation among the items is represented approximately by the normal curve (see 
5.3.8); 

3) that the sample has been drawn at random from a much larger population. This condition is generally 
satisfied if the sample size is no more than 5 % of the population size. If, for example, a sample of 10 
items were to be drawn at random from a lot containing only 20 items, then it would be possible to 
estimate the µ  and σ  of this lot from the x  and s of the sample within considerably narrower limits. 

The first assumption is of particular importance. It cannot be emphasized too strongly that if the variation is not 
under statistical control, then it is foolhardy to attempt to predict the characteristics of the population from a 
sample chosen at random. 

In practice, statistical control will rarely be perfect, so it is advisable not to pay too much attention to the 
precise risks associated with the limits. It is better to regard the constants in Table 9 as part of a useful 
working tool, whose value will be tested by experience. For the same reason, although the constants are 
given to three decimal places of accuracy, some common sense is necessary in determining how many 
figures are worth retaining in the calculated confidence limits. 

The following illustration is based on the canned tomatoes data given in Table 11. The unit of measurement 
throughout is the mass in grams. 

The first group of three shifts provide a total of 12 observations, with x  = 404,16 and s = 1,681. If we assume 
that the process is in statistical control, we may use these values to define limits within which we would feel 
confident that the mean and standard deviation of production lies. Choosing a 98 % confidence level (i.e. a 
2 % chance of error), we find from Table 9 that a = 0,785, 1b  = 0,667 and 2b  = 1,899, giving the following 
values: 

i) for the mean of production, 404,16 ± 0,785 ×  1,681, i.e. 402,8 to 405,5; 

ii) for the standard deviation of production, 0,667 ×  1,681 to 1,899× 1,681, i.e. 1,12 to 3,19. 

The range of uncertainty is clearly very large. Adding further observations to the group can narrow this range. 
Suppose that we base the confidence limits on the first six shifts, doubling the number of observations to 24. 
Calculating from the original data in Table 11, it is found that x  = 404,22 and s = 1,598. The constants for 
98 % confidence limits are found from Table 9 to be a = 0,511, 1b  = 0,743 and 2b  = 1,502, giving limits as 
follows: 

I) for the mean, 404,22 ± 0,511× 1,598, i.e. 403,4 to 405,0; 

II) for the standard deviation, 0,743× 1,598 to 1,502× 1,598, i.e. 1,19 to 2,40. 

The extra information has narrowed the limits, as expected. In both cases, the limits include the values 
µ  = 403,8 and σ  = 1,91 calculated from the first 160 test records. 

8.4.2 Tests for means and standard deviations 

8.4.2.1 Terminology 

In constructing statistical tests, it is important to be precise about the hypotheses under consideration. Some 
terminology is helpful here. Generally speaking, the hypothesis of “no difference” or equality of population 
values is called the null hypothesis, and is usually denoted by 0.H  The hypothesis against which this 
hypothesis is to be compared is called the alternative hypothesis, and is usually denoted by 1.H  The test is 
performed on the value of a test statistic that is calculated from the sample data. The region of variation of the 
test statistic that leads to rejection of the null hypothesis is called the critical region. The probability that the 
test statistic falls in the critical region when the null hypothesis is true (thereby leading to the erroneous 
decision to reject the null hypothesis in favour of the alternative hypothesis) is called the size or significance 
level of the test, usually denoted by .α  Finally, the probability that the test statistic falls in the critical region 
when the alternative hypothesis is true (thereby leading to the correct decision to reject the null hypothesis in 
favour of the alternative hypothesis) is called the power of the test. The power is usually denoted by 1 .β−  A 
good test will have high power and a low value for the significance level. 
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A rejection of the null hypothesis when the null hypothesis is true is called a Type I error, or an error of the first 
kind. A rejection of the alternative hypothesis when the alternative hypothesis is true is called a Type II error, 
or error of the second kind. It follows that the probabilities of Type I and Type II errors are α  and β  
respectively. 

8.4.2.2 Test of a population mean against a given value 

A simple example will illustrate these concepts. Suppose that the standard deviation of a normal population, 
,σ is known but that the mean, ,µ is unknown. We wish to test the null hypothesis: 

0 :H  the mean of the normal population is 0;µ  

against the alternative hypothesis: 

1 :H  the mean of the normal population is greater than 0;µ  

The significance level of the test is to be 5 %. A random sample of size n is drawn from the population, and its 
mean x  calculated. 

It is intuitively obvious for this example that the critical region should lie entirely to the right of 0 ,cµ +  where c 
is some constant that is greater than zero. For a 5 % significance level, we require 0 cµ +  to be the upper 
confidence limit on µ  with a 95 % confidence level. The appropriate standard normal fractile for a one-sided 
confidence interval at confidence level 95 % is found from Table 15 to be 1,644 9. As x  is normally distributed 
with a mean 0µ  and a standard deviation / nσ  under hypothesis 0,H  it follows that c = 1,644 9  / .nσ×  

Figure 37 shows the critical region. The area A + C represents the significance level, in this case 5 % or 0,05. 
The area A + D (= 1 − B) represents the power of the test when 1.µ µ=  To calculate the power of the test, we 
first calculate the standardized difference between 0 cµ +  and 1,µ  i.e. [ ]0 1( ) /( / ).z c nµ µ σ= + − The power 
of the test is then the area to the right of z under the standard normal curve, which may be found from Table 7, 
for example. 

A more common situation would be where the population mean and standard deviation are both unknown. In 
this case, the multiplier 1,644 9 / n  in the above (one-sided) example would be replaced by the value of a 
given in Table 9 corresponding to the sample size and a 2× 5 % = 10 % chance of error. Thus, for sample size 
9, the multiplier 1,644 9 / n  = 0,548 3 would be replaced by 0,620. The increase in the value of the multiplier 
reflects the increased uncertainty due to not knowing the value of .σ  
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Key 

1 distribution of x  when H0 is true 2 distribution of x  when H1 is true 3 critical region 

X x  Y probability density of x   

Figure 37 — Illustration of one-sided test 

8.4.2.3 Test of the difference between two population means; degrees of freedom 

A few remarks are in order at this point about the concept of degrees of freedom. Degrees of freedom are 
parameters of a number of important statistical distributions, and therefore form a natural quantity by which to 
tabulate them. For the straightforward case of a standard deviation in a single sample, it makes very little 
difference whether the tabulation is in terms of sample size n or degrees of freedom ,ν  for in that case 

1.nν = −  But tabulating the distribution of the appropriate statistic in terms of degrees of freedom can 
facilitate the use of the tables for other cases, for example: 

a) for a single sample where the number, say k, of independent constraints is greater than 1; the table could 
be used in such a case with ;n kν = −  

b) for k samples of sizes 1 2, ,  ...,  ,kn n n  with different means but equal standard deviations that are to be 
combined for the purposes of estimating their common standard deviation; the table could be used in 
such a case with kn n n n kν = − + − + + − = −1 2( 1) ( 1) ( 1)"  where kn n n n= + + +1 2 ."  

The appropriate statistic to use in such problems when σ is unknown is the t-statistic, a tabulation of which is 
provided in Table A.6. 

Consider case b) with k = 2, the comparison of the means of two populations when neither the population 
means nor the population standard deviations are known. Suppose the hypotheses are as follows: 

0 1 2 1 1 2:  against :H Hµ µ µ µ= ≠  
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The sample data are a random sample of size 1n  from the first population and an independent random sample 
of size 2n  from the second population. The sample means are 1x  and 2,x and the sample variances (i.e. 
squares of the sample standard deviations) are 2

1s  and 2
2,s  given by: 

2 2
1 1 2 22 2

1 2
1 2

( ) ( )
 and 

1 1
x x x x

s s
n n

− −
= =

− −
∑ ∑

 

Consider the statistic 1 2.d x x= −  Assuming that the sample sizes are small by comparison with their 
respective population sizes, we know from statistical theory that the population mean of d is as follows: 

1 2dµ µ µ= −  

and that the population standard deviation of d is as follows: 

2 2
1 2

1 2
d n n

σ σ
σ = +  

where 1µ  and 2µ  are the population means and 1σ  and 2σ  are their standard deviations. The hypotheses 
can be restated as 0 1: 0 and : 0.d dH Hµ µ= ≠  The test is two-tailed, as the critical region of the test (where 
the truth of 0H  would be in doubt) will clearly consist of the large positive and negative values of d. 

We shall consider only the case where the two population dispersions are the same, i.e. 1σ = 2 .σ σ=  The 
formula for dσ  then simplifies slightly to the following: 

1 2

1 1
d n n

σ σ= +  

An estimate of σ is s obtained by adding the numerators of the expressions given above for 2
1s  and 2

2,s  
dividing by the sum of the denominators, and then taking the square root, i.e.: 

2 2
1 1 2 2

1 2

( ) ( )
( 1) ( 1)

x x x x
s

n n

− + −
=

− + −
∑ ∑  

with degrees of freedom 1 2( 1) ( 1).n nν = − + −  Substituting for σ in the previous formula, the following estimate 
is obtained: 

1 2

1 1
ds s

n n
= +  

of .dσ  The upper fractile ,1 / 2tν α− corresponding to a two-tailed test with the required significance level α  is 
read from the t-table (Table A.6). The null hypothesis is rejected in favour of the alternative hypothesis if the 
confidence interval for ,dµ  with limits ,1 / 2 dd t sν α−±  does not include the value zero. 

8.4.2.4 Power of the test 

As with all statistical tests, the power of the test as defined in 8.4.2.1 should be assessed in advance of 
collection of the data. Too often, in practice, the power is wholly disregarded in planning a trial and the results 
turn out to be inconclusive. In this example, the power would have to be assessed rather than determined, as 
the value of σ is unknown. If the assessed power turned out to be lower than required for detecting a 
difference of a given magnitude between the population means, consideration should be given to increasing 
one or both sample sizes. If this is not possible, it may be decided not to waste resources in carrying out the 
trial or experiment, as the outcome is so unlikely to tell us anything we did not know (or thought we knew) 
already. 
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There is always the possibility that the power will be found to be higher than required in which case the size of 
the proposed trial could be reduced. 

In many cases, and this example is no exception, the calculation of the power involves relatively advanced 
statistics, which may explain why considerations of power are often avoided. However, the speed of modern 
desk-top computers now enables the power of any proposed test to be assessed by means of simulation 
using simple statistical concepts. 

The following formula combines all the quantities that are important for the power of the two sample t-test: 

( )21 22
1 / 2 1

2

1 2

( )
1 1

t t

n n

α β
µ µ

σ
− −

−
+ =

⎛ ⎞
+⎜ ⎟

⎝ ⎠

 (26) 

The quantities are the level α of the test, the power 1 − β, the unknown variance of the populations, the 
sample sizes, and, finally, the differences between the means of the populations. If the sample sizes are 
identical, Equation (26) can be converted into a useful formula that can give the common size of each sample 
n that is needed to obtain a specified power: 

( )

2
2

1 / 2 1 2
1 2

2( )n t tα β
σ

µ µ
− −= +

−
 (27) 

The formula is used as follows. First, the smallest difference in means 1 2µ µ−  that it is important to verify is 
chosen. This quantity is called the minimum relevant difference in some disciplines. Then the level α of the 
test and the desired power 1 − β, and finally an informed guess of the unknown variance is made. Guessing 
the variance is often the difficult part and may require some experimentation. There is a slight complication in 
applying Equation (27) because the degrees of freedom of the t fractiles on the right-hand side depend on the 
sample size that we want to determine. But it only means that one may have to make a couple of iterations in 
the formula, as the following example shows. 

Suppose the minimum relevant difference is 1 2 25µ µ− = and the population standard deviation is 20σ = . 
Suppose further that the level of the test is α = 0,05 and the power 1 − β  is 0,9. We then start by pretending 
that we have an infinite number of degrees of freedom and find the fractiles in the bottom row of Table A.6. 
We find 1 / 2 0,975 1,960t t− = =α and 1 0,9 1,2816t t− = =β . Using Equation (27) gives  

( ) ( )

2 2
2 2

1 / 2 1 2 2
1 2

202( ) 2(1,96 1,2816) 13,45
25

n t t− −= + = + =
−

α β
σ

µ µ
 (28) 

Applying the formula again with degrees of freedom 26 corresponding to a total sample size of 28 gives 

( ) ( )

2 2
2 2

1 / 2 1 2 2
1 2

202( ) 2(2,055 5 1,315) 14,54
25

n t t− −= + = + =
−

α β
σ

µ µ
 (29) 

Using the formula again, with a total sample size of 30 and 28 degrees of freedom, changes the sample size 
very little (n = 14,46), so the conclusion is that a total sample size of 30, with 15 observations in each sample, 
will give a power of 0,90. 
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8.4.2.5 Comparison of two means in the case of paired observations 

Increasing the sample sizes is not the only way to increase the power. Another is to improve the precision of 
the comparisons by eliminating or reducing the effects due to differences between the samples of raw material 
on which measurements or treatments are carried out. For example, suppose we wish to compare the effect 
of two fertilizers, A and B, on a certain crop. One approach would be to apply fertilizer A to one random 
sample of n test plots and fertilizer B to a second random sample of n test plots, the 2n plots all coming from 
the same fairly homogeneous field, and then to compare the two yields. But plots will inevitably differ with 
regard to drainage, levels of nutrients, etc. and by pure bad luck we could select two samples such that most 
of the plots in one sample were inferior to most of the plots in the other. This could compromise the 
conclusions from the trial. Even if both samples were similar, the plot to plot variation may be enough to 
reduce the power of the test to an unacceptable level, with commercially significant differences between 
fertilizers having too high a chance of not being detected. 

A simple way of reducing the effect of plot to plot variation from such a test would be to select adjacent pairs 
of plots, applying fertilizer A to one of each pair chosen at random, and fertilizer B to the other. 

Suppose the yield from the ith pair of plots is ix  for fertilizer A and iy  for fertilizer B. Then the difference 
i i id x y= −  would be affected hardly at all by plot to plot differences, assuming that adjacent plots are nearly 

identical. This is called the method of paired comparisons (see ISO 3301 [11]). Provided x and y are 
independent and have approximately normal distributions, the differences d will be approximately normally 
distributed about the population mean difference dµ  with a population standard deviation .dσ  The sample 
mean d  and sample standard deviation ds  provide estimates of these parameters. 

The precise nature of the test will depend on the null and alternative hypotheses and the significance level of 
the test. If the two fertilizers are new and untried, we may simply wish to determine if one is superior. This 
could be done using a two-tailed test of 0 : 0dH µ =  against 1 : 0;dH µ ≠  alternatively, and equivalently, a 
two-sided confidence interval for d could be calculated, to see whether or not it included the value zero. On the 
other hand, fertilizer B may be the standard against which a more expensive new fertilizer A is being tested; in 
this case, the new fertilizer may need to improve yield by more than an amount c to justify its extra cost. This 
could be done by means of a one-tailed test of 0 : dH cµ =  against 1 : .dH cµ >  Or fertilizer B may be a null 
treatment, i.e. no treatment at all, in which case we would use a one-tailed test of 0 : 0dH µ =  against 

1 : 0dH µ > to determine if fertilizer A is effective. In all of these cases, Table 9 could be used. 

The method of paired comparisons can be even more effective when the same item of raw material can be 
used for both treatments, e.g. in comparing the results of two test methods or two measuring instruments or 
two laboratories on the same product. The test or measurement process would clearly have to be non-
destructive, e.g. measuring the strand widths of samples of tobacco for the purpose of classifying a 
consignment as pipe or cigarette tobacco, to determine the rate of duty payable. The method of paired 
comparisons is particularly suitable for comparing the responses before and after a certain type of treatment. 

Any information from previous trials of the likely size of dσ  should be utilized to determine the sample size n 
that will provide sufficient power. 

8.4.2.6 Comparisons of standard deviations 

We have already seen in 8.4.1 how to set confidence limits for a population standard deviation .σ  Testing 
whether σ  is equal to a given value 0σ  can be effected by calculating a confidence interval 1 2( ,  )σ σ  and 
seeing if 0σ  lies inside the interval. A problem we have not yet addressed is testing for differences between 
two population standard deviations xσ  and .yσ  The problem is tackled by determining if /x ys s  differs 
significantly from unity. 

Suppose we have a sample of size 1n  from the first population and one of size 2n  from the second 
population. The respective sample standard deviations are sx and sy. Then a 100(1 )α−  % two-sided 
confidence interval on /x yσ σ  is: 

1 2 1 21, 1, 1 / 2 1, 1, / 2

/ /
 to x y x y

n n n n

s s s s

F Fα α− − − − −
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where 
1 21, 1, 1 / 2n nF α− − −  and 

1 21, 1, / 2n nF α− −  are the upper and lower ( / 2)-fractilesα of the F-distribution, with 

1 1n −  and 2 1n −  degrees of freedom. 

Tables of the F-distribution are three-way and therefore too extensive to reproduce here, so to illustrate the 
method we will simply quote the appropriate fractiles from published tables. Suppose a sample of size 10 from 
the first population yields sx = 10,5 and a sample of size 16 from the second population yields sy = 6,8. Is this 
evidence sufficient to conclude with 95 % confidence that there is a difference between xσ  and yσ ? 

The significance level of the test is 5 %, or 0,05. From tables of the F-distribution, it is found that 

9, 15, 0,975 3,12F =  and 9, 15, 0,025 0,265.F =  The ratio /x ys s = 10,5/6,8 = 1,544. A 95 % confidence interval on 
/x yσ σ  is therefore 1,544 / 3,12  to 1,544 / 0,265 , i.e. 0,874 to 3,00.  

Since this range encloses the value 1, we cannot conclude that there is a difference between xσ  and yσ . 

One-sided tests can be treated in a similar way by calculating either of the one-sided confidence intervals: 

1 21, 1, 

/
0, x y

n n

s s

F α− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

or 
1 21, 1, 1-

/
,0x y

n n

s s

F α− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and determining whether or not the value 1 lies in the interval. 

ISO 2854 [3] and ISO 3494 [12] deal with estimation and tests for means and variances with power functions for 
tests. 

8.4.3 Equivalence of methods of testing hypotheses 

It should be noted that there are three strategies for testing a null hypothesis, all of which are equivalent. All 
reject 0H  in favour of 1H  

⎯ if the value of the test statistic falls in the critical region, 

⎯ if the p-value for the test statistic (i.e. the probability that the test statistic takes the observed value or a 
more extreme value given that 0H  is true) is equal to or smaller than the chosen significance level α, and 

⎯ if the appropriate type of confidence interval (one-sided or two-sided depending on whether the 
alternative hypothesis is one-sided or two-sided) with confidence coefficient (1 )α−  does not include the 
value of the parameter specified under H0. 

The appropriate strategy to choose from among these depends on the actual situation. 

8.5 Simultaneous variation in the sample mean and in the sample standard deviation 

Until now, we have considered the variation in sample means and standard deviations separately, but for 
problems of the type to be discussed later, the two need to be treated together. The nature of their relationship 
can be illustrated most clearly by plotting a point ( ,x s) to represent each sample on a diagram having x  and s 
as co-ordinate axes. Such a diagram for the canned tomatoes data is shown in Figure 38, where each of the 
40 dots represents a set of four test results. In the centre of the field, shown by a triangle, lies the point ( , )µ σ  
representing the whole aggregate of items sampled; the values used are for all 160 original observations, 
namely µ = 403,8 g and σ = 1,91 g. 
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Suppose now that an increasingly large number of shifts were sampled, the can contents weighed, the mean 
and standard deviation for sets of 4 results calculated and the points ( ,  )x s  plotted on the diagram. An 
increasing swarm of points would surround the central spot ( ,  ).µ σ  Assuming production to be under 
statistical control, theory would allow the prediction, at least approximately, of what may be called the density 
of this swarm of points at different distances and in different directions from ( ,  ).µ σ  In other words, we could 
express the chance that a sample point ( ,  )x s  would fall in any prescribed region of the diagram. 

An illustration of where most of the sample points ( ,  )x s  would be expected to fall is given by the standardized 
( ,  )x s  control charts of Kanagawa, Arizono and Ohta [103]. These charts, which are based on information 
theory, are useful for determining the type of departure from control by considering x  and s simultaneously. A 
standardized ( ,  )x s control chart for sample size 4, with limits for which there is only a 27 in 10 000 risk per 
observation of a false out-of-control signal, is shown in Figure 39 for the canned tomatoes data; the 40 sample 
points 0 0 0[( ) / , / ]x sµ σ σ−  have been plotted on the chart for target values of 0µ = 404,0 g and 0σ = 1,90 g. 
(The reason for the strange choice of probability, 27 in 10 000, or 2 in 741, will become evident in 10.5 and 
10.6.) 

 

Key 

X sample mean, x  
Y standard deviation, s 

Figure 38 — Scatter chart for sample means and standard deviations in canned tomatoes data 
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Key 

X ( ) 0x µ σ−  Y s/σ0 

Figure 39 — Standardized control chart for mean and standard deviation 

The regions on the chart are identified as follows. 

A. The process is in control. 

B. The process is out of control because of a change in the process mean. 

C. The process is out of control because of a change in the process standard deviation. 

D. The process is out of control because of a slight change to both the process mean and the process 
standard deviation. 

E. The process is out of control in both the process mean and the process standard deviation. 

All of the 40 plotted points lie in region A, indicating that the tomato canning process is in control with respect 
to net mass. 

The chart is standardized so that the same chart can be used regardless of the values of 0µ  and 0.σ  The 
chart would only need to be changed if the sample size or false signal rate were changed. Increases in either 
of these quantities shrink the boundary lines and curves closer to the point with co-ordinates 

0 0 0( ) / 0, / /( 1).x s n nµ σ σ− = = −  

What is particularly interesting about this type of chart is the shape of the region A in which most of the 
standardized sample points 0 0 0[( ) / ,  / ]x sµ σ σ− are expected to lie when a process is under control. Note that 
the closer s is to the target value 0,σ  the more latitude is allowed in ;x  similarly, the closer x  is to the target 
value 0,µ  the more latitude is allowed in s. In other words, there is, in a sense, a natural trade-off between 
estimated departures of µ  from 0µ  and estimated departures of σ  from 0.σ  Traditional control charts, by 
contrast, treat x  and s separately (see Clause 10). Superficially, the latter approach may seem logical from 
the point of view that x  and s are known from statistical theory to be independent in samples from a normal 
distribution. But it allows no trade-off between the estimated departures from the target values 0µ  and 0σ  and 
is equivalent to having a rectangular in-control region on an ( x , s) chart. 
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The joint consideration of x  and s will be a recurring theme later in this clause and also in discussing methods 
of determining conformity to specification in Clause 9. 

8.6 Tests and confidence intervals for proportions 

8.6.1 Attributes 

For many quality characteristics, it is either impossible or impracticable to obtain a measure of the 
characteristic on a continuous scale. For example, consider office cleaning services. A random sample of 
rooms could be inspected after cleaning to check that waste bins had been emptied, filing cabinets and desks 
had been dusted, and carpets had been vacuum-cleaned. For each of these three characteristics an 
experienced inspector would have little difficulty determining if the operation had been carried out to a 
satisfactory standard, and deciding that a room had been satisfactorily cleaned if it passed on all three checks. 
He would have rather more difficulty in grading the extent to which these tasks had been done on a 
meaningful continuous scale from, say, zero to one, and combining the grades in a coherent way to come to a 
decision on whether the cleanliness of the room was satisfactory. 

Characteristics such as these, the realizations of which can most naturally be considered to fall into one of two 
states (pass/fail, go/no-go, ignites/fails to ignite), are called “attributes”. 

For critical characteristics, e.g. those that may affect the safety of personnel, every effort should have been 
made to ensure that the proportion of nonconforming items in the population is as near zero as possible. 
100 % inspection would be used where practicable, and the critical items removed, in which case the 
proportion of critical items remaining in the population would be known to be zero. This assumes, of course, 
that the inspection is 100 % effective. 

For non-critical characteristics, there may be a need to estimate the proportion of nonconforming items in the 
population, to calculate confidence limits on the proportion in the population, to test the proportion against a 
given value, or to compare two or more proportions. 

8.6.2 Estimating a proportion 

To continue the office cleaning example, suppose that a contractor is responsible for cleaning N rooms, i.e. 
the size of the population is N. On a particular day, suppose that R of the rooms would fail inspection, i.e. they 
have not been cleaned to a satisfactory standard. The proportion of the population that would fail inspection is 
therefore: 

/P R N=  

R is unknown, so n rooms are chosen at random and inspected, with r failing inspection. The question is how 
best to estimate P. 

A close analogy between the treatment of attributes and variables is possible here. Suppose the state of a 
room is characterized by a variable X taking the value 0 if a room is satisfactorily cleaned and 1 otherwise. 

The population of values of X then consists of R ones and ( )N R−  zeros, while the sample consists of r ones 
and ( )n r−  zeros. Denote the sample values of X by x. Then the sum of the sample values of X is equal to r, 
i.e.: 

Σx = r 

The sample mean, ,x  is therefore given by the following: 

/ /x x n r n p= = =∑  (30) 

The sum of X in the population is equal to R, i.e.: 

ΣX = R 
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The population mean, ,X  is therefore given by the following: 

/ /X X N R N P= = =∑  (31) 

It was stated in 8.1.1 that the sample mean is an unbiased estimator of the population mean. Here, we use x  
from Equation (30) as an unbiased estimator of X  from Equation (31), which translates into using the sample 
proportion p as an unbiased estimator of the population proportion P. The lack of bias holds good even when 
the sample size is a large proportion of the population size. For our example, if a sample of 50 rooms reveals 
that 2 were inadequately cleaned, it would be estimated that 2 out of 50, i.e. 4 % of the rooms in the 
population of rooms under consideration were unsatisfactory. 

8.6.3 Confidence intervals for a proportion 

Given that a random sample of size n contains r nonconforming items, it may be required to provide an 
interval, say 1 2 to ,P P  within which we may have a given confidence that the true proportion, P, of 
nonconforming items from the production process lies. Suppose that the confidence is denoted by 
100(1 )α−  %, with the chance of error of 100α % being equally divided between the case 1P P<  and the case 

2.P P>  These limits can be interpreted as follows. 

i) If P were as low as 1,P  there would be a probability of only / 2α  of finding r or more 
unsatisfactory items in a sample of size n. 

ii) If P were as high as 2,P  there would be a probability of only / 2α  of finding r or fewer 
unsatisfactory items in a sample of size n. 

The probabilities in i) and ii) are calculated from a distribution called the binomial distribution. For small 
sample sizes, the values of 1P  and 2P  satisfying i) and ii) may be found in published tables. For larger sample 
sizes, approximate values may be read from published charts. 

It is instructive to see how far the analogy between the treatment of attributes and variables can be extended 
to provide approximate confidence limits. To emulate the procedure in 8.4, we require an estimate of the 
standard deviation of p, the estimated proportion. As the values of x are all zero or one and the square of zero 
is zero and the square of 1 is 1, we have the following situation: 

2x x r= =∑ ∑  

The sample standard deviation of x (see 5.2) is therefore given by the following expression: 

2 2 2 / (1 / )
1 1 1

x nx r r n r r ns
n n n

− − −
= = =

− − −
∑  

so an estimator of the standard deviation of x  (or p) is as follows: 

1 (1 )/
1 1

r r
p pn ns n

n n

⎛ ⎞−⎜ ⎟ −⎝ ⎠= =
− −

 

This is the point from which the analogy becomes rather stretched. Confidence limits on P can be obtained by 
assuming the distribution of p is approximately normal. A two-sided confidence interval for P would then be of 
the form 1 2( ,  )P P  where: 

1
(1 )

1
p pP p u

n
−

= −
−

and 2
(1 )

1
p pP p u

n
−

= +
−
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where u is the upper ( / 2)α -fractile of the standard normal distribution. If a one-sided confidence interval were 
required, then only 1P  or 2P  would be required; the chance of error would then only apply at one end of the 
interval, so the appropriate value of u would be the upper α-fractile of the standard normal distribution (see 
Table 15). Unfortunately, the normal approximation to the distribution of p is poor unless either P is close to 
one half or the sample size is quite large. In cases where this is not true, the use of this approximation should 
be confined to cases where only rough approximations to 1P  and 2P will suffice. 

Much effort has been devoted in the past to obtaining accurate approximations for 1P  and 2,P  generally 
involving methods of improving the closeness of the normal approximation. See, for example, Molenaar [113] 
and Blyth [76]. 

8.6.4 Comparison of a proportion with a given value 

Another common problem is how to determine whether a sample proportion differs from a given population 
value by more than can be attributable to chance. For example, would three substandard items in a sample of 
size 30 be sufficient to provide 95 % confidence that the percentage of substandard items in the population 
under consideration exceeded 3 %? 

There are two ways of answering this question. The first is to determine from the sample results the lower 
one-sided 95 % confidence limit on the percentage in the population, answering “yes” if 3 % was below this 
value and “no” otherwise. The second, a kind of inversion of the first, is to determine the probability of finding 
three or more substandard items in a sample of 30 when the percentage in the population is 3 %, answering 
“yes” if this probability is below 0,05 and “no” otherwise. The methods are essentially equivalent, but the latter 
has the advantage that it provides an actual measure of the confidence, rather than the result that it exceeded 
or did not exceed 95 %. 

To answer the question in this specific case, the first method produces a lower confidence limit at 95 % 
confidence of 2,7 % substandard items in the population. (This can be found from published tables, e.g. 
ISO 11453 [41].) As 3 % lies within the confidence interval, we would conclude that the sample result is 
compatible with a population percentage of 3 %. Alternatively, the probability of a random sample of 30 items 
containing three or more substandard items when the percentage in the population is 3 % can be shown to be 
0,06. As this is greater than 0,05, the sample result does not provide sufficient evidence to conclude with 95 % 
confidence that the percentage of substandard items in the population exceeds 3 %. In fact, we would only 
have confidence 100(1 0,06) 94 %− =  that such a conclusion was correct. 

It may seem somewhat surprising that a sample result of 3 in 30, i.e. 10 %, is insufficient to provide very high 
confidence that a population percentage exceeds 3 %. This goes to show how important it is to take into 
account the sample size when assessing a sample result. 

8.6.5 Comparison of two proportions 

Another related group of questions that can be answered by the use of appropriate statistical methods 
concerns whether the difference between two sample proportions is more than can be attributable to chance. 
Suppose that a random sample of size 1n  is taken from one population and a random sample of size 2n  from 
another population. (Usually 1n  and 2n  will be chosen to be equal.) Suppose further that the numbers of items 
with a given characteristic in the samples are determined to be 1r  and 2.r  The two sample proportions are 
therefore 1p = 1 1/r n and 2 2 2/ .p r n=  If 1P  and 2P  denote the unknown population proportions, the various 
questions that may be asked on the basis of the sample evidence are: 

a) what confidence may we have that 1P  is different from 2 ?P  

b) what confidence may we have that 1P  exceeds 2 ?P  or 

c) what confidence may we have that 1P  is less than 2P ? 
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If 1p  is less than 2p  in case b), or 1p  is greater than 2p  in case c), then we could answer “not very much” 
without having to carry out any statistical calculations at all. The same would be true if 1p  and 2p  are 
approximately equal. In all other cases the answer may be determined by the use of tables of a distribution 
called the hypergeometric distribution. Special tables have been developed for directly determining the 
significance of any differences between 1p  and 2p  when 1n  and 2n  are small. For larger values of 1n  and 

2,n  a number of approximate methods have been devised. 

8.6.6 Sample size determination 

For tests on proportions, as with tests on means and variances, it is important to keep in mind the probability 
of detecting a difference of a size that would be considered important in practice, i.e. the power of the test. 
There may be technical or economic reasons why the sample or samples have to be limited in size, in which 
case it is useful to know to what extent this limits the power. If not, joint consideration of the required power 
and significance level of a test will enable an appropriate sample size (or sizes) to be determined, either from 
published tables or from approximate formulae. The formulae can look somewhat daunting at first, but most 
are straightforward to use, albeit requiring a little care. 

For example, suppose we wish to test the hypothesis that two population proportions, 1P  and 2,P  are equal 
against the hypothesis that 1P  is greater than 2,P  assuming that the sample size is to be the same from both 
populations. The common sample size is required that will provide a confidence 100(1 ) %α−  of accepting the 
equality hypothesis when it is true, and provide a power 100(1 ) %β− of concluding that there is a difference 
when 1P  and 2P  take certain different values (with 1P  greater than 2P ). Walters [135] has shown that the 
approximate sample size can be found as the solution in n to Equation (32): 

2
1 1

1 1
1 2

1
2 sin 1/(2 ) sin 1/(2 )

u u
n

P n P n
α β− −

− −

+⎛ ⎞
= ⎜ ⎟⎜ ⎟− − +⎝ ⎠

 (32) 

where 1u α−  and 1u β−  are respectively the upper α  and β  fractiles of the standard normal distribution. 

Consider the case of a significance level of 5 % and a power of 90 % to detect a difference if 1P  = 0,8 and 
2P  = 0,6. Setting α = 0,05 and β  = 0,10 and inserting the values of u from the left-hand side of Table 15, then 

Equation (32) becomes: 

( )

2

1 1

2-1 1

1,644 9 1,281 61
2 sin 0,8 1/(2 ) sin 0,6 1/(2 )

4,282 2  
sin 0,8 1/(2 ) sin 0,6 1/(2 )

n
n n

n n

− −

−

+⎛ ⎞
= ⎜ ⎟− − +⎝ ⎠

=
− − +

 (33) 

Equation (33) can be solved iteratively by first guessing a value of n, then evaluating the right-hand side to 
give a new value of n, and repeating until the values of n converge. Suppose that we start with an initial guess 
of n = 50. It can be verified that successive iterations of Equation (33) give n = 109, 96, 98, 98. Further 
iterations are pointless, as they will evidently all produce n = 98. Thus, 98 is the appropriate size of random 
sample from each population. 

Not only does this approximate method provide a solution in a matter of only a few iterations, but it is also very 
accurate. Equation (32) can also be used for two-sided alternative hypotheses by replacing α  by α / 2. 

ISO 11453 [41] provides methods of estimation, testing, setting of confidence limits and sample size 
determination for problems relating to proportions. 
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8.7 Prediction intervals 

8.7.1 One-sided prediction interval for the next m observations 

We may sometimes wish to determine the value of an upper limit, ,UT  based on the results of a random 
sample of size n from a normal population, in such a way that we would have a given level of confidence that 
none of the next m random observations from the same normal population will exceed .UT  In general, this 
upper limit is given by the formula: 

UT x qs= +  

where x  and s are respectively the sample mean and the sample standard deviation and q is a factor that 
depends on the sample size n, on the number m of future observations and on the level of confidence 
required. 

Table 18 shows the values of this factor for a range of values of n and m for a confidence level of 95 %. 

Note the way in which the factor inflates as n decreases (due to having less information on which to base the 
prediction) or as m increases (due to being more ambitious in what the interval is to include). 

Table 18 — Factors, q, for calculating one-sided prediction intervals — Confidence level 95 % 

Number of future observations, m Sample 
size 

n 5 10 20 50 100 200 500 1 000 

  5 

 10 

 20 

 50 

100 

200 

3,787 9 

2,886 8 

2,574 4 

2,415 3 

2,366 1 

2,342 2 

4,417 8 

3,284 1 

2,890 7 

2,689 8 

2,627 7 

2,597 6 

5,028 8 

3,669 9 

3,194 0 

2,948 8 

2,872 7 

2,835 7 

5,793 8 

4,159 3 

3,577 7 

3,272 0 

3,175 9 

3,129 0 

6,337 5 

4,512 5 

3,855 7 

3,504 4 

3,392 5 

3,337 6 

6,852 5 

4,851 0 

4,123 7 

3,727 8 

3,599 8 

3,536 5 

7,493 4 

5,276 9 

4,463 2 

4,011 2 

3,861 6 

3,786 9 

7,951 5 

5,583 8 

4,709 7 

4,217 5 

4,051 7 

3,968 0 

 

From the symmetry of the normal distribution, it will be evident that a value of q that provides a given 
confidence that none of the next m observations exceed the upper limit UT  provides the same confidence that 
none of the next m observations are less than a lower limit, ,LT given by: 

LT x qs= −  

To illustrate the use of one-sided prediction intervals, suppose that a retailer has complained to its supplier 
that several size 12 ladies' jumpers of a particular style had bust sizes above the nominal maximum of 
92 ½ cm. The supplier has 1 100 jumpers remaining out of a batch of this size and style, all of which were 
made under the same conditions, and decides to check the bust sizes of a random sample of 100 of them. 

None of the 100 measurements was found to exceed 92½ cm. Past supplier data suggests that the bust sizes 
tend to be approximately normally distributed, and a normal plot of the 100 measurements gives no grounds 
to doubt the assumption of normality. The sample mean and standard deviation turn out to be x = 90,1 cm 
and s = 0,4 cm respectively. The factor for a one-sided prediction interval with n = 100 and m = 1 000 is seen 
from Table 18 to be 4,051 7. The supplier can therefore be roughly 95 % confident that none of the remaining 
1 000 garments have bust measurements in excess of 90,1 + 4,051 7 ×  0,4 = 91,7 cm. 

As 91,7 cm is well below the nominal maximum of 92 ½ cm, the supplier continues to supply the retail trade 
with jumpers from this batch. 
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8.7.2 Two-sided prediction interval for the next m observations 

Alternatively, it may be required to determine both a lower limit LT  and an upper limit UT  from our initial 
sample of size n, such that we have a given confidence that none of the next m observations will lie outside 
the interval ( ,  )L UT T . These limits are given by the following: 

 and L UT x rs T x rs= − = +  

where r, like q, is a factor depending on n, m and the required level of confidence. Table 19 shows the values 
of r for two-sided prediction intervals with confidence 95 % for some values of n and m. 

Table 19 — Factors, r, for calculating two-sided prediction intervals — Confidence level 95 % 

Number of future observations, m Sample size 

n 5 10 20 50 100 200 500 1 000 

  5 

 10 

 20 

 50 

100 

200 

4,577 3 

3,321 0 

2,902 1 

2,693 4 

2,629 8 

2,599 0 

5,228 6 

3,717 3 

3,207 6 

2,952 3 

2,874 3 

2,836 6 

5,851 7 

4,102 5 

3,502 9 

3,198 9 

3,105 5 

3,060 3 

6,624 0 

4,590 5 

3,878 4 

3,509 0 

3,394 1 

3,338 3 

7,169 8 

4,942 4 

4,151 4 

3,733 5 

3,601 6 

3,537 2 

7,685 4 

5,279 3 

4,415 1 

3,950 2 

3,801 2 

3,727 9 

8,326 1 

5,702 9 

4,749 8 

4,226 0 

4,054 3 

3,968 9 

8,783 7 

6,008 2 

4,992 9 

4,427 3 

4,238 6 

4,144 0 

 

As an example of two-sided prediction intervals, suppose that it is required to verify on a sample basis that a 
batch of 250 pairs of size L men's trousers have waistbands all in the range 86 cm to 92 cm. A random 
sample of 50 pairs yields x = 88,8 cm and s = 0,78 cm, with none of the individual measurements outside the 
specified range. The appropriate factor from Table 19 with n = 50 and m = 200 is 3,950 2. Assuming a normal 
distribution of waistband measurements, a two-sided prediction interval is found to be 88,8 ± 3,950 2 ×  0,78, 
i.e. 85,7 cm to 91,9 cm. Since the lower limit of this prediction interval violates the lower specification limit of 
86 cm, the supplier decides it is in his best interests to check the other 200 pairs individually before shipping 
them. 

For both one-sided and two-sided prediction intervals, it is also possible to provide factors that assure with a 
given confidence that no more than 1, or no more than 2, etc. of the next m observations will fall outside the 
limits. However, the case of zero out of m is generally of the most interest. It is also possible to provide factors 
for the case where the process standard deviation s is known, or at least presumed to be so, which will tend to 
lead to smaller prediction intervals. See ISO 16269-8 [49] or Hahn [93], [94], Hahn and Nelson [96] and Hahn and 
Meeker [95] for further details. 

8.7.3 One and two-sided prediction intervals for the mean of the next m observations 

It may on the other hand be required to provide a prediction interval for the mean of the next m observations. 
Prediction intervals for the mean can be determined more readily from standard tables, being based upon the 
t-distribution. (Percentage points of the t-distribution are provided in Table A.6.) A one-sided upper limit for the 
mean at confidence 100(1 )α−  % is given by: 

1,1
1 1

U nT x t s
n mα− −= + × +  

where 1,1nt α− −  is the upper α-fractile of the t-distribution with 1n −  degrees of freedom. 
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A corresponding one-sided lower limit for the mean of the next m observations is given by: 

1,1
1 1

L nT x t s
n mα− −= − × +  

Note that 1,1nt α− − only depends on two quantities, namely the sample size and the required confidence level, 
as a result of which tables of t are rather more compact than the three-way tables needed for q and r. 

Two-sided prediction intervals on the mean are given by ( ),  L UT T  where: 

1,1 / 2
1 1

L nT x t s
n mα− −= − × +  

and 

1,1 / 2
1 1

U nT x t s
n mα− −= + × +  

It should always be borne in mind that departures from normality could cause considerable errors in the 
prediction intervals, particularly when these intervals extend far outside the range of the sample values. 

8.8 Statistical tolerance intervals 

8.8.1 Statistical tolerance intervals for normal populations 

We have seen in 8.7 that a prediction interval is an interval, derived from a sample, within which a specified 
finite number of future observations may be asserted to lie with a given confidence. A statistical tolerance 
interval is also derived from a sample, but is an interval within which a specified proportion of the population 
values may be asserted to lie with a given confidence. 

The name of these intervals is unfortunate, as it can be misconstrued to mean the interval between the 
tolerance limits specified by the user. In fact, the limits of a statistical tolerance interval, like those of a 
prediction interval, will vary from sample to sample. As a statistical tolerance interval is asserted to include, or 
cover, a proportion of the population, an alternative name that is sometimes used is statistical coverage 
interval. 

For populations that are normally distributed, the intervals are constructed in much the same way as 
prediction intervals, but with different values for the factors by which the standard deviation is multiplied. 

Published tables address four cases: 

a) one-sided limits when the process standard deviation is known, of the form 1x b σ− or 1 ;x b σ+  

b) two-sided intervals when the process standard deviation is known, of the form 2 2( , );x b x bσ σ− +  

c) one-sided limits when the process standard deviation is unknown, of the form 3x b s− or 3 ;x b s+  

d) two-sided intervals when the process standard deviation is unknown, of the form 4 4( ,  )x b s x b s− +  

where the constants 1 2 3 4, ,   and b b b b  depend on the sample size, the coverage and the required level of 
confidence. 

A simple example will illustrate this type of interval. A customer who has received a batch of 12 000 bobbins of 
cotton yarn decides to check on its breaking load distribution. He takes a random sample of 24 bobbins, and 
cuts from each a test piece of length 50 cm at about 5 m distance from the free end. The central part of each 
test piece is tested for breaking load. The unit of measurement is the centinewton. The sample mean and 
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standard deviation turn out to be x  = 249,8 and s = 31,4. From previous experience, it is known that the 
distribution of breaking loads closely approximates a normal distribution. From tables, it is found that the 
constant for a one-sided statistical tolerance interval for sample size 24 for coverage 95 % and confidence 
level 95 % is 3b  = 2,310. The lower statistical tolerance limit is therefore 249,8 2,310 31,4 177,3.− × =  The 
customer can therefore be 95 % confident that at least 95 % of the breaking loads are in excess of 177,3 
centinewtons. 

Suppose that the customer felt confident enough from previous batches from the same supplier to assume 
that it was only the mean that varied from batch to batch, and that the cotton yarn coming from the production 
process had a breaking load with a constant standard deviation. Then the appropriate constant would be 

1b  = 1,981. Note that this is considerably smaller than the corresponding value 2,310 of 3b  for the case of 
unknown process variability. This is because the extra information leads to a smaller safety margin being 
required. Suppose that σ  is known to be 33,2. This produces a statistical tolerance limit of 
249,8 − 1,981 × 33,2 = 184,0. The customer could now be 95 % confident that at least 95 % of the breaking 
loads are in excess of 184,0 centinewtons. 

If there is any doubt about the constancy of ,σ  it should be assumed to be unknown and case c) or d) used as 
appropriate. 

8.8.2 Statistical tolerance intervals for populations of an unknown distributional type 

Even if the form of the distribution of values of the characteristic in the population is in doubt, it is still possible 
to construct one- and two-sided statistical tolerance intervals. Instead of being based on statistics such as x  
and s, they are based on what are known as the order statistics, that is to say individual sample values after 
they have been sorted and numbered in ascending order. Any single or pair of order statistics can be used to 
provide a statistical tolerance interval but, of course, the largest and/or the smallest provide the greatest 
coverage. The penalty in not knowing the distributional form is that the statistical tolerance intervals will be 
rather wider than they would otherwise have been, or require larger sample sizes. To give some idea of the 
numbers involved, a sample of size 93 is required in order to have 95 % confidence that the interval formed by 
the largest and smallest observations covers 95 % of the population values. This rises to a sample of size 473 
when the coverage increases to 99 %, and to a sample of size 4 742 for coverage of 99,9 %. 

8.8.3 Tables for statistical tolerance intervals 

Tables of factors for statistical tolerance limits for the normal distribution may be found in ISO 16269-6 [47], 
Odeh and Owen [117] and Hahn and Meeker [95]. ISO 16269-6 also provides tables of minimum sample sizes 
required for a selection of coverages and confidence levels, for both the one- and two-sided cases, when the 
population distribution is of unknown form.  

8.9 Estimation and confidence intervals for the Weibull distribution 

8.9.1 The Weibull distribution 

8.9.1.1 Parameter estimation 

The best estimate of the parameters of the two-parameter Weibull distribution is obtained using the method of 
maximum likelihood. There is no closed form expression for these estimates which require an iterative 
procedure. It is recommended to use a statistical package. 

Many numerical procedures have been proposed for the estimation of the parameters of the two-parameter 
Weibull distribution. Some involve iterative solution, others involve the use of special tables. A rough graphical 
approach is as follows. 

a) Plot the data on Weibull probability paper and, if appropriate, fit a straight line to the points by eye.  

b) Read off from this line the value of t at which the cumulative probability is 1,0 %. Denote this by 0,010.t  
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c) Read off the value of t at which the cumulative probability is 63,2 %. Denote this by 0,632.t  

d) Estimate α as 0,632.t  

e) Estimate β as 0,632 0,0104,6 / ln( / ).t t  

8.9.1.2 Confidence intervals 

Detailed discussion of point estimation and confidence interval determination for quantities related to the 
Weibull distribution is beyond the scope of this Technical Report. We content ourselves with merely listing the 
most important ones. A variety of methods and computer packages for the calculation of point estimates and 
confidence intervals exist for: 

a) the parameters α and β; 

b) the mean time to failure; 

c) fractiles of the time to failure; 

d) the reliability at time t. 

IEC 61649 [1] and EN 12603 [64] provide procedures for the calculation of point estimates and confidence 
intervals for the Weibull distribution. IEC 61649 also contains a valuable annex explaining the reasons for the 
particular choice of methods. Two well-known books on the subject are Mann et al [111] and Lawless [106]. See 
5.3.9 for further discussion of the Weibull distribution. 

8.10 Distribution-free methods: estimation and confidence intervals for a median 

So far, we have considered inference from a sample about characteristics of a population when the population 
distribution is known to belong to a particular family of distributions, e.g. the normal or Weibull families. 
However, if the form of the population distribution is unknown, statistical methods can still be brought to bear 
in drawing inferences about a population distribution. Such methods, because they do not depend on the form 
of population distribution, are called distribution-free methods. The advantage of distribution-free methods is 
that they have greater integrity when there is any doubt at all about the form of the population distribution. The 
disadvantage is that confidence intervals for probabilities and fractiles are wider than would be the case using 
methods specially tailored to the specific family of distributions. 

An example of the use of a distribution-free method is the determination of confidence limits for the population 
median (i.e. the value of the characteristic under consideration that divides the total frequency into two halves) 
when the distributional form is unknown. The median of a population may be of more interest than the mean 
when the distribution is highly skewed, which can cause the mean to be unduly affected by a small number of 
extreme values as is the case, for example, for income distributions. To obtain a distribution-free confidence 
interval, the values of the characteristic in a random sample of size n are first ranked in ascending order of 
magnitude to give the order statistics [1] [2] [ ],  ,  ...,  .nx x x A symmetrically positioned pair of order statistics 

[ ] [ 1 ]( ,  )k n kx x + −  is then used as the pair of confidence limits. 

The smaller the value of k, the larger the confidence that the population median will be included in the interval. 
For example, consider the case with k = 1, providing confidence limits [1]x  and [ ].nx  These limits will only fail 
to include the population median if all n sample values lie above the median or all lie below. As the chance of 
each original observation lying below the population median is one half and the chance of lying above it is one 
half, the chance of the population median not being included in the interval is 11 1 1

2 2 2( ) ( ) ( ) .n n n−+ =  
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Our confidence on any one occasion that the population median is included between [1]x  and [ ]nx  is therefore 
11

21 ( ) ,n−−  which as n takes the values 2, 3, 4, 5, ..., etc. gives confidence levels (in percentage terms) of 
50 %, 75 %, 87,5 %, 93,75 %, ..., etc. One-sided distribution-free confidence intervals can be constructed, of 
the form (a, [ ]nx ) or ( [1]x , b) where a and b are the smallest and largest possible values of the characteristic in 
the population. These confidence levels represent the largest confidence levels for the given sample sizes; in 
other words, the confidence that distribution-free confidence intervals can provide is limited by the sample 
size. 

Note that these confidence levels are entirely independent of the distributional form of the population. The only 
assumption made in the above argument is that the probability of a sample value lying on either side of the 
population median is one half, which requires the distribution to be continuous at that point. Note also that the 
effect of increasing k is to decrease the width of the confidence interval at the cost of decreasing the 
confidence level. Published tables provide, for moderate sample sizes and popular confidence levels, the 
largest value of k that will provide at least the required confidence. For large sample sizes, a number of 
approximations have been developed. ISO 16269-7 [48] gives tables for k for sample sizes up to 100 and, for 
use with larger samples, approximations for confidence level 1 α−  of the following form: 

( )1
2 1 1 0,4 /k n u n cn⎡ ⎤= + − −+⎣ ⎦  

where 

k is to be rounded down to the next whole number; 

u is the standard normal deviate corresponding to an upper tail area of α  for a one-sided confidence 
interval and / 2α  for a two-sided interval; 

c is a constant depending on u. 

The values of u and c are provided for eight different confidence levels and for one- and two-sided intervals. It 
is claimed in ISO 16269-7 that in all these cases the formula yields the correct value of k for sample sizes up 
to at least 280 000, enough for most practical purposes! For illustration, for a two-sided confidence interval 
with confidence level 99 %, the values of u and c are given as 2,575 829 30 and 1,74. Thus, for a sample size 
of 200, the appropriate value of k is: 

( )1 1
2 2200 1 2,575 829 30 200 1,74 (201 36,341 5) 82,331 0,4 / 200⎡ ⎤+ − × − = − =+⎣ ⎦  

rounded down, i.e. k = 82. It can therefore be asserted in general with at least 99 % confidence that the 
confidence interval [82] [119]( , )x x  from a sample of size 200 includes the population median. 

The eight decimal places for u are only necessary when obtaining k with high accuracy for very large sample 
sizes, and may be reduced to two or three decimal places if an approximate value for k is adequate. 

Similar methods can be used to determine confidence intervals on other fractiles of the population. 

9 Acceptance sampling 

9.1 Methodology 

In Clause 8, a variety of statistical tests and intervals have been described. In the example in 8.3, it was 
shown how easy it can be to select an inferior criterion for assessing the quality of a lot, even in the simplest 
case where there is a single-sided requirement on a single quality characteristic. The difficulties in selecting a 
sound criterion are compounded if there are multiple quality characteristics, perhaps some with single and the 
others with double specification limits, particularly if not all of these characteristics are independent. In the 
face of the multiplicity of potential applications and the many techniques from which to choose, a general 
approach to the problem of assessing quality is desirable. 
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The supplier will naturally concentrate his attention on keeping the mean of each quality characteristic as 
close as possible to a target value, and the standard deviation as small as possible (see Clause 10). The 
customer, on the other hand, will be principally concerned with the quality level of submitted product, i.e. the 
fraction of nonconforming items or the number of nonconformities per 100 items. Nonconformity is defined as 
departure of a characteristic from specification, and the probability of such a departure will generally depend 
on the mean, ,µ and standard deviation, ,σ of the characteristic in the population. For example, it can be seen 
from Table 15 that if a lower specification limit, L, has been set then, provided 2,053 7 ,Lµ σ− W  no more 
than about 2 % of product will be outside specification if the distribution of the characteristic is normal. If L was 
equal to 100, say, then a combination such as 1,  102,6σ µ= =  would provide a similar quality level to the 
customer as the combination 1,2, 103,1.σ µ= =  

This suggests the following general approach to the assessment of product acceptability: use the sample 
information to estimate the proportion of product that is outside specification, and accept the batch only if the 
estimate is below a given maximum value. A judicious choice of this maximum value will provide a given level 
of assurance that not more than a given proportion of product is outside specification. It turns out that this 
approach does indeed lead to efficient use of the sample information and to intuitively sensible sampling 
procedures. 

Sometimes the testing of the estimated quality level against a maximum value is done implicitly. For example, 
for sampling by attributes, the unbiased estimate of the fraction nonconforming is: 

ˆ rp
n

=  

where r is the number of nonconforming items in a sample of size n from the lot.  

Suppose that the maximum value of p̂  for which lot acceptance takes place is denoted by p*. Then a lot is 
only accepted if ˆ *,  i.e. / *, i.e. *,  i.e. p p r n p r np r cu u u u where c is the largest whole number less than or 
equal to np*. In practice, the acceptance criterion in this situation is always expressed as r cu  (or Ac,r u  
where Ac is the acceptance number, see 9.4.1), so it is not immediately obvious that it conforms to the 
suggested general approach. 

Because these sampling methods are used to determine whether or not a population (lot, batch, consignment) 
of product should be accepted, they are referred to as acceptance sampling methods. The methods described 
in Clause 9 are primarily for application to a continuing series of lots from the same supplier, although the 
case of isolated lots or short series is also considered. 

9.2 Rationale 

In the 1930s and 1940s, the theoretical foundations of acceptance sampling were originally laid. The outbreak 
of World War II in 1939 created an almost immediate need to put these acceptance sampling methods into 
practice due to the following circumstances. Many of the skilled workforces of the countries involved in the war 
were recruited into military service, leaving less skilled people to fill the void in factories for the production of 
materials needed for the war effort. The demand for these materials was both large and urgent, and the 
situation inevitably led to degradation in product quality. To address this problem, acceptance sampling 
standards were created and implemented with the dual objective of protecting the customers (i.e. the troops) 
from receiving materials of inferior quality while ensuring that they had sufficient material for their missions. 

In the years following the war, these military standards found their way into general use in industry and were 
further developed with the philosophy of motivating suppliers, through lot rejection, tightened inspection, and 
discontinuation of sampling inspection, to improve their production processes if inferior quality was being 
provided. In addition, industry began to direct its attention to more general quality management improvement 
strategies to prevent rather than detect and correct the occurrence of nonconformance. The emphasis moved 
from inspection of final product towards improving the manufacturing processes and controls and producing 
more robust product designs. 
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When the supplier's quality control system can provide assurance that a process is in statistical control with 
sufficiently low variability in the quality characteristic or characteristics, acceptance sampling of the final output 
from the process is redundant, merely confirming what was already known. Indeed, modern quality 
management standards focus on achieving this goal through ongoing activities of continuing process 
improvement and have achieved great success in many areas. In such an environment, a company that relies 
on acceptance sampling to assure the customer that he is getting what he wants is nowadays rightly seen as 
operating in an inferior state, being akin to an admission of failure to get the production processes into shape. 

So under what scenarios should acceptance sampling be used? There are several. The first is when the 
process may be immature, with unexpected teething troubles arising from time to time that would not 
necessarily be picked up in production under the existing process controls. Furthermore, for quality 
characteristics of a qualitative type, the application of statistical-process-control (SPC) procedures like 
Shewhart control charts may be either unfeasible or unprofitable. Another is when some of the processes 
involved may be state-of-the-art, perhaps using materials whose properties are not yet fully understood. (This 
is sometimes the case in defence industries, due to the constant push at the limits of technology and changes 
to the specification in order to produce devices that are superior to those of the perceived adversary.) Another 
reason is that it may be necessary to guard against human fallibility and unpredictability, for example where 
the production item is a complex and delicate assembly of components and where a warranty system is 
inappropriate. Some products may be affected by handling and shipping activities, making acceptance 
sampling at the point of receipt necessary. Other products such as in-service utility meters must be tested 
periodically to determine whether quality has degraded to an unacceptable state and acceptance sampling is 
an efficient means of doing this. There are also many products of a non-industrial nature where the room for 
process improvement is limited such as harvested quantities of fish or produce that must be inspected for 
acceptance or grading on a sampling basis. 

9.3 Some terminology of acceptance sampling 

9.3.1 Acceptance quality limit (AQL) 

The acronym AQL was originally an abbreviation of “acceptable quality level”, and most international 
standards on acceptance sampling are being indexed by the AQL. In 1998, in order to emphasize that the 
AQL should not be interpreted as a desirable quality level, the meaning of the acronym was revised by 
ISO/TC 69/SC 5, the ISO subcommittee responsible for developing and maintaining International Standards 
on acceptance sampling. It now stands for “acceptance quality limit” defined as the “quality level that is the 
worst tolerable process average when a continuing series of lots is submitted for acceptance sampling”. 

There are two main objections to the continued usage of AQL as an abbreviation of acceptable quality level. 
One was the name itself; the idea that any quality level other than perfection should be considered acceptable 
or satisfactory in the modern era became outmoded, as one of the basic tenets for surviving in a global 
economy is the need to strive for continuous quality improvement. The other was the definition of an AQL as 
“when a continuing series of lots is considered, a quality level which for the purposes of acceptance sampling 
is the limit of a satisfactory process average”. This definition had been deliberately worded to indicate that the 
acceptability was to be construed as only for the purpose of identifying a suitable sampling plan, not in any 
absolute sense. But for the most part the words “for the purposes of acceptance sampling” have been either 
ignored or misunderstood by commentators.  

9.3.2 Limiting quality (LQ) 

When acceptance sampling is applied to a single lot, or to a short series of lots, the concept of an AQL is 
inappropriate as there is no longer a continuing series. The principal index to classical sampling plans for 
isolated lots is the limiting quality (LQ), which is the quality level for which the probability of acceptance is a 
specified low value, usually 10 %. [This is the same thing as the lot tolerance percent defective (LTPD), a term 
that is now rarely used.] The LQ is chosen by the customer to be an unsatisfactory lot quality level at which 
lots would be expected to have a high probability of failing the acceptance criterion. For a continuing series of 
lots, the corresponding unsatisfactory process quality level is called the limiting quality level (LQL). 

More generally, for both lots and processes, this quality level is referred to as the consumer's risk quality 
(CRQ). 
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9.3.3 Classical versus economic methods 

Classical acceptance sampling methods are typically selected with little attempt to balance the costs of 
sampling and inspection against the savings due to more reliably accepting good products and rejecting bad. 

The reasons for this are fourfold. Firstly, experience has indicated that the classical methods provide sampling 
procedures that are not that far from the economic optimum over a wide range of scenarios. Secondly, in 
order to be able to determine the optimal level of inspection for an economic plan, the cost of non-acceptance 
of good lots and the cost of acceptance of bad lots need to be known. The latter cost is typically particularly 
difficult to ascertain in most cases, partly because it depends on the extent to which the nonconforming items 
are out of specification. Thirdly, a presumption has to be made about the distribution of incoming quality. 
Fourthly, even when an assessment can be made of all these quantities, the economic sampling procedure 
generally depends on finding the minimum of a complicated formula, requiring too high a level of mathematical 
sophistication for the typical user. 

For the above reasons, we shall only consider classical types of acceptance sampling scheme below. 
Readers interested in further details of the economic approach are referred to Wetherill and Chiu [138] and von 
Collani [131]. Some flexibility to lower or raise the amount of inspection on economic or other grounds is 
provided by the choice of inspection level, which is described next. 

9.3.4 Inspection levels 

The two best-known acceptance sampling systems (ISO 2859-1 [4] for sampling by attributes and 
ISO 3951 [13] for sampling by variables) provide three general inspection levels (I, II and III), and four special 
inspection levels (S-1 to S-4). If the inspection level is not specified, it is assumed that general inspection level 
II is to be used. If better discrimination between good and bad quality is required, perhaps because the 
supplier has a history of erratic quality, inspection level III may be chosen. Conversely, if a lower level of 
discrimination is adequate, inspection level I may suffice. Sometimes even the lower sample sizes required by 
inspection level I are uneconomic when the inspection is expensive or involves destructive testing, or 
unnecessarily costly in view of the excellent quality history of similar products, the reputation of the supplier or 
the low importance of the characteristics under consideration. In such cases, one of the levels S-1 to S-4 may 
be selected, as long as it is understood that the discriminatory ability (i.e. the power) of the sampling scheme 
tends to diminish as one moves from S-4 to S-1. 

The inspection level in combination with the lot size determines a sample size code letter, which is then used 
in conjunction with the AQL to look up the parameters of the sampling plans of an acceptance sampling 
scheme. 

9.3.5 Inspection severity and switching rules 

At the start of sampling inspection, when it is believed that the quality level of a process is satisfactory, so-
called normal inspection is used in ISO 2859-1 [4] and in ISO 3951 [13]. If the results from a predetermined 
number of lots under normal inspection indicate that the quality level of the process is less than satisfactory, 
then the severity of the inspection is increased to tightened inspection. A tightened inspection plan will usually 
have the same sample size as the corresponding normal inspection plan, but with a stricter acceptability 
criterion. 

If the results from a predetermined number of lots under normal inspection indicate that the quality level of the 
process is very good, then the severity of the inspection may be decreased to reduced inspection. Thus, each 
normal inspection plan has a corresponding tightened and reduced inspection plan. Each group of three such 
plans is called a sampling scheme. The International Standards ISO 2859-1 [4] and ISO 3951-1 [13] are 
collections of sampling schemes of a particular type, and are called sampling systems. The rules for moving 
between the plans that make up a scheme are called the switching rules. Whereas the normal inspection and 
tightened inspection plans are mandatory parts of a ISO 2859-1 or ISO 3951 scheme, the reduced inspection 
plan is discretionary. 
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Thus, a sampling scheme from these standards consists of at least two plans. (It is sometimes overlooked that 
the plans were not designed to be used in isolation.) 

A switch is also made from tightened inspection to discontinuation of inspection if the sample quality levels fail 
to improve sufficiently quickly. The supplier then needs to act to resolve any problems with the process before 
acceptance sampling may be resumed. Tightened inspection is then applied with the switching rules reset in 
the same way as if there had just been a switch from normal inspection. 

9.3.6 Use of “non-accepted” versus “rejected” 

New users of acceptance sampling standards may be bemused to find the word “non-accepted” used where 
the word “rejected” may seem more appropriate. There is a good reason for distinguishing these terms. The 
term “rejected” implies that the user is not prepared to accept the lot under any circumstances. However, 
when a lot is non-accepted, this only means that it has failed the acceptance criterion of the sampling 
inspection plan. It does not preclude the customer and the supplier from coming to some arrangement to 
accept the lot on concession, e.g. at a reduced price, or for a different use such as training, or after some 
remedial action. 

9.4 Acceptance sampling by attributes 

9.4.1 General 

The concept of an attribute has already been discussed in 8.6.1. For the moment, suppose that items have a 
single quality characteristic that is an attribute; multi-attribute cases are discussed in 9.6.3 and 9.6.4. For the 
purposes of discussion, suppose also that quality is measured in terms of percent nonconforming rather than 
nonconformities per 100 items. (The methods for nonconformities per 100 items for a single attribute are very 
similar.) 

It is important to distinguish the case of an isolated lot from that of a continuing series of lots. For an isolated 
lot, the primary purpose of acceptance sampling will be to provide assurance that the lot percentage 
nonconforming is no worse than the limiting quality (LQ). Tabulated plans for isolated lots or short series of 
lots are therefore indexed by LQ and lot size. For a continuing series of lots, AQL-indexed plans, which are 
also indexed by lot size, are designed to provide protection against lots being accepted when the process 
quality level is worse than the AQL. 

The performance of a sampling plan can be assessed in both cases by considering its operating characteristic 
(OC) curve. This is a graph of probability of acceptance against quality level. Note that if the lot is of size N, 
there are only a finite number of possible values of the lot percent nonconforming, namely 0, 1/N, 2/N,…, 
(N − 1)/N, 1. Strictly speaking, the operating characteristic curve for isolated lots is therefore not really a curve, 
for it will only exist at these values, i.e. it will appear as a series of dots. This type of OC curve is said to be of 
Type A. By comparison, the process quality level could be any value in the range from 0 % to 100 %, so the 
operating characteristic appears as a curve, called Type B. Figure 40 shows both types of OC curve for plans 
with a sample of size n = 32 drawn from a lot of size N = 100, where the lot is accepted when there are no 
more than Ac = 2 nonconforming items in the sample. Ac is called the acceptance number of the plan. 

 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TR 18532:2009(E) 

94  © ISO 2009 – All rights reserved
 

 
Key 

1 type B 
2 type A 

X percent nonconforming 
Y probability of acceptance 

Figure 40 — Type A and B OC curves for n = 32, Ac = 2, N = 100 

9.4.2 Single sampling 

The plans in 9.4.1 are both called single sampling plans, as the decision whether to accept or not to accept 
the lot depends on the results of a single sample. ISO 2859-1 provides master tables of single sampling plans 
indexed by AQL for a continuing series of lots. (See 9.4.10 for LQ-indexed plans.) To find the appropriate 
plan, first the lot size and inspection level are used to determine the appropriate sample size code letter from 
Table 1 of ISO 2859-1:1999. Then this code letter together with the AQL are used to determine the sample 
size and acceptance number from Table 2-A for normal inspection, Table 2-B for tightened inspection or 
Table 2-C for reduced inspection. 

These master tables have a very simple structure. The sample sizes are restricted to the set of 17 preferred 
sample sizes 2, 3, 5, 8, 13, 20, 32, 50, 80, 125, 200, 315, 500, 800, 1 250,  2 000, 3 150. These roughly form 
a geometric series with common ratio 1/ 510 = 1,585. The AQLs run from 0,01 % to 1 000 % also roughly as a 
geometric series with the same common ratio. (Above the AQL of 10 %, the plans are for use only for 
nonconformities per 100 items.) The result of this is that the acceptance numbers, which are also restricted to 
a series of preferred values, are the same along diagonals of the tables. 

ISO 2859-1 underwent substantial revision between the first and second editions. One of the changes is the 
introduction of optional fractional acceptance number plans between the diagonals for acceptance numbers 
zero and one, where in the previous edition there were arrows pointing upwards or downwards. They operate 
as follows. An acceptance number of 1/ k  when the sample size remains constant from lot to lot means that 
the present lot can be accepted if: 

a) the sample from the present lot contains no nonconforming items; or 

b) the sample from the present lot contains one nonconforming item, and the samples from the immediately 
preceding ( 1)k −  lots contain no nonconforming items between them. 
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The fractional acceptance number plans are given in Tables 11-A, 11-B and 11-C of ISO 2859-1:1999 for 
normal, tightened and reduced inspection. The fractions used are 1

3  and 1
2  for normal and for tightened 

inspection; for reduced inspection, where there are three diagonals between the acceptance numbers zero 
and one, the fractions used are 1

5,  1
3  and 1

2.  

The reason for introducing fractional acceptance number plans is that there is such a big difference between 
the OC curves for acceptance numbers zero and one, and often the desired OC curve is somewhere in 
between. Figure 41 illustrates how rapidly OC curves change shape in this range by showing the Type B OC 
curves for the plans with sample size 32 and acceptance numbers 1 1

3 20,  ,   and 1.  

 

Key 

X percent nonconforming 
Y probability of acceptance 

Figure 41 — Type B OC curves for Ac = 0, 1/3,1/2 and 1 

If the lot sizes change sufficiently to cause the sample sizes to vary from lot to lot, then the determination of 
whether the acceptance number for the present lot should be zero or one becomes rather more complicated. 

It is based on a cumulative acceptance score. This score is reset to zero whenever there is a switch to a 
different severity of inspection or whenever a nonconforming item is found. For the current lot, it increases by 
2, 3, 5 or 7 whenever the tabulated acceptance number is 1 1

5 3,  ,  1
2  or at least 1 respectively, but remains 

unchanged if the tabulated acceptance number is 0. If the tabulated acceptance number is a whole number, it 
is used irrespective of the acceptance score, but if the tabulated acceptance number is a fraction, the 
acceptance number is taken to be zero if the score is 8 or below, and one otherwise. An added complication 
when the sample size changes is that the switching rules also become more complicated, requiring the 
maintenance of a switching score. 
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9.4.3 Double sampling 

Double sampling plans provide one means by which the average amount of sampling may be reduced. Note 
that it is only the average that is reduced; for some lots the amount of sampling will be greater than for single 
sampling. A double sampling plan by attributes works as follows. In general it has five parameters, which may 
be denoted 1 2 1 2 3, ,  ,   and .n n c c c  A random sample of size 1n  is taken from the lot and the number of 
nonconforming items 1d  is counted. There are three possible outcomes at this stage. 

a) If 1 1d cu , then the lot can be accepted without further sampling. 

b) If 1 2d cW , then the lot can be non-accepted without further sampling. 

c) If 1 1 2c d c< < , then no immediate decision can be taken on lot acceptability. 

In case c), another random sample, this time of size 2,n  is selected and the number of nonconforming items, 
2,d  in the sample is counted. The total number of nonconforming items found in the two samples is 
3 1 2.d d d= +  If 3 3d cu , then the lot is accepted, otherwise it is non-accepted.  

In summary, if the evidence from the first sample is very good or very bad, then an immediate decision can be 
taken. When the evidence is inconclusive, then a further sample is necessary to resolve the matter. 

The integers 1c  and 3c  are the acceptance numbers of the plan. The integers 2c  and 3 1c +  are the rejection 
numbers. Note that 2 1c c−  has to be at least equal to 2, otherwise a decision on lot disposition will always be 
reached from the results of the first sample. 

The procedure for nonconformities is the same as this except that “nonconforming items” is replaced 
throughout by “nonconformities”. 

In standards on sampling by attributes, the five parameters of each double sampling plan are chosen so that 
the OC curve of the double sampling plan roughly matches the OC curve of the corresponding single sampling 
plan. For simplicity and ease of operation, this matching is generally constrained so that the sample sizes 1n  
and 2n  are equal to one another and so that the acceptance and rejection numbers are identical along 
diagonals of the master tables. Denoting the corresponding single sample size by 0,n  it turns out that the 
double sample sizes are typically given by 1 2 00,63 .n n n= ≅  It follows that average savings in inspection effort 
of up to about 37 % of the single sample size may be achieved by using double sampling instead of single 
sampling, depending on the submitted quality. 

The disadvantages of double sampling are their increased administrative and logistical requirements, which 
often lead to double sampling being impracticable. For example, suppose the acceptance test is to determine 
whether a device can survive 1 000 h at 200 C.°  It may be possible to test the devices simultaneously, so the 
test of a single sample would take 1 000 h. However, if double sampling were used and the result from the 
first sample was inconclusive, then a second sample would be necessary. Testing of the second sample may 
not even be able to start at once if the test facility needs to be booked in advance. Coupling this with the time 
that the second sample requires to be tested, a decision on lot disposition will be substantially delayed. 
Meanwhile the lot will need to be stored somewhere, awaiting shipment. 

Double sampling plans for sampling by attributes may be found for normal, tightened and reduced inspection 
in Tables 3-A, 3-B and 3-C of ISO 2859-1:1999 respectively, and in equivalent standards. 

9.4.4 Multiple sampling 

Multiple sampling takes the idea of double sampling a stage further. A k-stage multiple sampling plan has 
sample size in  and acceptance and rejection numbers Ac , Rei i  at the ith stage, for i = 1, 2, ..., k.  
ISO 2859-1:1999 has five-stage multiple plans with the sample sizes the same at each stage, and each equal 
to about one quarter of the corresponding single sample size. These five-stage plans represent an 
improvement over the seven-stage plans of the previous edition of ISO 2859-1, in terms of both practicality 
and match with the OC curves of the corresponding single sampling plans. Again, the sets of acceptance and 
rejection numbers are kept the same along diagonals of the master tables, which are given as Tables 4-A, 4-B 
and 4-C in ISO 2859-1:1999. 
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As may be expected, multiple sampling plans provide a further reduction in average inspection requirements 
compared to double sampling plans. They are worthwhile provided the gains are not outweighed by logistical 
and administrative difficulties. At perfect quality, there may be as much as a 75 % saving in inspection costs 
when compared with single sampling plans with acceptance number greater than 5. For multiple sampling 
plans matching single sampling plans with acceptance numbers of 5 or lower, the maximum saving will be 
nearer to 50 % as a decision to accept will not be possible after the first multiple sample. 

It is instructive to compare the properties of single, double and multiple sampling plans at different quality 
levels. Consider, for example, sample size code letter L in combination with an AQL of 2,5 %. The plans to be 
compared in Figure 42 are: 

⎯ Single sampling:   n = 200; Ac = 10, Re = 11; 

⎯ Double sampling:  1 2 125;n n= = 2 2Ac 5, Re 9;= = 2 2Ac 12, Re 13;= =  

⎯ Multiple sampling: 1 2 3 4 5 50;n n n n n= = = = = 1 1Ac 0, Re 5;= = 2 2Ac 3, Re 8;= = 3Ac = 36, Re 10;=  

4 4Ac 9,  Re 12;= =  5 5Ac 12, Re 13.= =  

Figure 42 shows the OC curves of the three plans. It can be seen that there is a very good match between all 
three. 

 

 

Key 

1 single sampling 
2 double sampling 
3 multiple sampling 

X percent nonconforming 
Y probability of acceptance 

Figure 42 — OC curves for single, double and multiple sampling size code letter L and AQL 2,5 % 
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Figure 43 shows the average number of items that will be inspected at different quality levels, the so-called 
average sample size (ASSI) curves, for the three types of plan. 

 

Key 

1 single sampling 
2 double sampling 
3 multiple sampling 

X percent nonconforming 
Y average sample size 

Figure 43 — Average sample size (ASSI) curves for single, 
double and multiple sampling plans for sample size code letter L and AQL 2,5 % 
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Sometimes, particularly with destructive inspection, the main disincentive to using double and multiple 
sampling plans is the possibility that more items will need to be inspected than would be the case with single 
sampling. Figure 44 shows the probability that the corresponding single sample size is exceeded for the 
double and multiple sampling plans. In the case of double sampling plans in general, this is the probability of 
needing a second sample to come to a decision. In the case of this multiple sampling plan, it is the probability 
of needing all five samples to come to a decision. (Note that for multiple sampling plans where the single 
sample size is not divisible by four, needing the fourth sample from the ISO 2859-1 multiple sampling plans 
may lead to the single sample size being exceeded, but not significantly.) 

Figure 44 shows clearly that another advantage that multiple sampling has over double sampling is a very 
substantial reduction in the chance of needing to inspect significantly more items than under single sampling. 

 

 

Key 

1 double sampling 
2 multiple sampling 

X percent nonconforming 
Y probability of exceeding the single sample size 

Figure 44 — Curves for the double and multiple sampling plans for sample size code letter L 
and AQL 2,5 % showing the probability of needing to inspect significantly more sample items 

than under single sampling 

9.4.5 Sequential sampling 

The ultimate multi-stage procedure is to inspect items one at a time, making a decision after each inspection 
either to accept the lot, not to accept the lot or to continue sampling. This is called sequential sampling. 

Wald [134] devised an approximate method of determining the acceptance and rejection numbers at each 
cumulative sample size that provide specified values of the overall supplier's and customer's risks. It turns out 
that, on a graph of cumulative number of nonconforming items against cumulative sample size, the 
boundaries of the “continue sampling” region are parallel straight lines, as shown in Figure 45. 
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Key 

1 reject lot 
2 reject zone 
3 continue sampling 
4 accept zone 

X cumulative sample size 
Y cumulative number of nonconforming items 

Figure 45 — Example of sequential sampling by attributes for percent nonconforming 

The diagram for nonconformities looks similar, except that jumps of more than one nonconformity on the 
vertical axis are possible for an increase of one in the cumulative sample size. 

The first edition of ISO 8422 [30] was based upon the Wald approximation. Baillie [68],[71] demonstrated that, 
although Wald's method works well when the supplier's and customer's risks are no more than about 1 % or 
2 %, the method can be very inaccurate when these risks are 5 % and 10 % respectively, as they were 
designed to be in ISO 8422. In fact, the resulting plans often have a supplier's risk much less than 5 %, while 
the customer's risk sometimes exceeds 10 %, the net effect being to require more inspection than necessary 
on average, i.e. a higher average sample size (ASSI). 

Another complication is that the plans in ISO 8422 are curtailed at 1½ times the corresponding single 
sampling size, further distorting the risks from the design values. 

For example, the Wald approximation to the plan for nonconforming items for a nominal 5 % supplier's risk at 
a quality level of 0,1 % nonconforming and a nominal 10 % customer's risk at 1,0 % nonconforming turns out 
to have a 2,92 % customer's risk and an 11,13 % supplier's risk. However, by suitable choice of the plan 
parameters (to three decimal places of accuracy), it is possible to achieve risks of 4,99 % and 10,00 % 
respectively and consequentially lower values of the ASSI. 

By taking the approximate values of the parameters from the Wald approximation and iteratively adjusting the 
gradient and position of the parallel lines, plans in the second edition of ISO 8422 (i.e. ISO 8422:2006 [30]) 
have been obtained that have supplier's and customer's risks much closer to the nominal values.  

9.4.6 Continuous sampling 

When items are produced in a continuous stream, there may be no natural way of dividing production into lots 
for the purposes of acceptance sampling. It is for such cases that continuous sampling plans were devised. 
The first of these, and the best known, is the Dodge [84] CSP-1 plan. This works as follows. First, a sampling 
frequency, f, and a clearance number, i, are specified. Then 100 % inspection begins. Once i successive 
conforming items have been inspected, 100 % inspection ceases and sampling inspection begins, with items 
being selected for inspection with probability f. As soon as a nonconforming item is found, inspection reverts 
to the 100 % level. 
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Many variations on this theme have been developed subsequently, with extra sampling frequencies and 
different rules for returning to 100 % inspection. The US Military Standard MIL-STD 1235A [139] contained five 
types of continuous sampling plan, indexed by the average outgoing quality limit (AOQL), i.e. the worst 
possible average outgoing quality over all values of incoming quality p. These plans were designed to have 
AOQLs that matched the AOQLs of the standard single sampling attributes schemes such as those in 
ISO 2859-1. All suffer from the same disadvantages: phases of 100 % inspection, which may be impracticable 
or uneconomic, and rapidly changing requirements for inspection personnel. 

Beattie [73] proposed a different type of continuous sampling plan based on cumulative sums (cusums, see 
10.7.3) on the number of nonconforming items. A cumulative sum is begun at a specified sampling frequency 
of one item in f. At the conclusion of accumulating and inspecting each sample of given size, n, the cumulative 
sum is increased by an amount ( ),d k−  where d is the number of nonconforming items in the sample and k is 
a specified target reference value. Until the cusum reaches or exceeds a specified upper limit, h, product is 
accepted. When h is reached or exceeded, a new cumulative sum is started at a specified value, ;h h′+ this 
could be at a different sampling frequency, but inspection requirements can be kept constant by keeping to 
the same frequency. Product is non-accepted until the second cusum reaches as low as, or goes below, h. 
Then a new cusum is started at zero, and the process starts all over again. 

The problem with designing a Beattie-type system of acceptance sampling plans is determining how to index 
them, i.e. determining which performance requirements should be mapped into values of n, f, h and .h′  The 
probability of acceptance at a given quality level does not mean quite the same as for lot-by-lot inspection, as 
it is the probability of acceptance of an item, rather than a lot. Read and Beattie [120] introduced this probability 
of acceptance as the Type C OC curve. They defined it, for any quality level p, as the ratio of the average run 
length (ARL) for the cusum in the acceptance zone to the sum of the ARLs in the acceptance and rejection 
zones, i.e.: 

ARL ( )( )
ARL ( ) ARL ( )

A
a

A R

pP p
p p

=
+

 

Points on this OC curve could be specified as a way of identifying performance requirements. A related 
requirement, assuming rectification of nonconforming items found in samples in the acceptance zone and all 
product in the rejection zone, would be a specified AOQL. 

Wadsworth and Wasserman [132], based on the work of Wasserman [136], devised design guidelines for 
Beattie-type cusum procedures for normally distributed variables and for variables with the Poisson 
distribution. They proposed these as the basis of a national or international standard.  

9.4.7 Skip-lot sampling 

It has already been mentioned that inspection severity can be optionally switched to reduced inspection when 
the quality of successive lots remains consistently at a high level. For some types of product, the savings in 
switching to reduced inspection may not be very great. For example, the lot may still be delayed while 
inspection takes place. Moreover, the inspectors may still need to travel to the place of manufacture; or 
alternatively the sample, however much smaller than under normal inspection, may still need to be transported 
to a test facility. In short, many of the fixed costs may still have to be borne. 

In response to these concerns, Dodge [85] developed the first skip-lot plan. In essence, it was a CSP-1 plan 
applied to lots instead of items; it was intended for use on homogeneous bulk materials from a reliable source 
where a single test result from each lot would determine its acceptability. Dodge and Perry [86] extended the 
idea as an overlay to a reference plan for lots consisting of discrete items. It operates as follows. The 
reference plan is used on successive lots until i successive lots have been accepted, at which point skip-lot 
sampling is introduced with a fraction f of lots, which are chosen at random, undergoing inspection still in 
accordance with the reference plan. As soon as a lot is non-accepted, application of the reference plan to 
every lot is resumed, and the process is repeated. By this means, some of the fixed costs may be avoided. 
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Liebesman and Saperstein [109] and Liebesman [110] developed a more sophisticated three-state procedure, 
which has been implemented as ISO 2859-3 [6]. To quote from Liebesman [110]: 

“Three states are defined as part of the skip-lot standard: (1) state 1, lot-by-lot sampling, (2) state 2, skip-lot 
sampling, and (3) skip-lot interrupt. Qualification takes place during state 1 and requires acceptance of 10 lots 
in a row, the last two satisfying an individual lot criterion and the cumulative number of defects in the 10 lots 
satisfying a limit number criterion. When the program for a product is in state 2, interrupt occurs when a lot 
fails to satisfy the individual lot criterion. The program then transfers to state 3. During state 3, the product 
either re-qualifies for skip-lot having 4 lots in a row accepted with the last two satisfying the individual criterion; 
or the product becomes disqualified if a lot is rejected or the product is in state 3 for 10 lots.” 

Within the skip-lot state, there are four levels for the sampling frequency f, namely 1 1 1
2 3 4, ,   and 1

5.  The 
procedure is designed to encourage the supplier to maintain a quality level at half the AQL or better. 

9.4.8 Audit sampling 

There is a need for sampling procedures suited to formal, systematic inspections such as reviews or audits, to 
relieve the user from the problem of determining the appropriate sample size from formulae. ISO 2859-4 [7] 

has been developed in response to this need. The plans are designed to provide a risk of less than 5 % of 
wrongly contradicting a correctly declared quality level. In order to keep the sample sizes to reasonable levels, 
a relatively large risk is allowed of failing to contradict an erroneously declared quality level. Three levels of 
discrimination are provided, and the plans are recognizable as a subset of the familiar single sampling plans 
of ISO 2859-1 [4]. ISO 2859-4 is couched in terms of percent nonconforming items, but by a simple change of 
wording throughout, it can also be applied to nonconformities per 100 items. 

Note that, strictly speaking, audit sampling is hypothesis testing rather than acceptance sampling despite the 
fact that the plans have been drawn from ISO 2859-1, which is an acceptance sampling standard. 

9.4.9 Sampling for parts per million 

For very good quality levels, typically measured in nonconforming items per million items, there are two 
difficulties with sampling inspection by attributes. One is the very large sample sizes that would be required to 
have supplier's and customer's risks as small as is generally the case with acceptance sampling plans. The 
second is that, quite often, no nonconforming items will be found; the result of this is that the unbiased 
estimator of the process fraction nonconforming, formed by dividing the number of nonconforming items in the 
sample by the sample size, will often take the unrealistic value zero. 

ISO 14560 [46] presents plans for this situation for lot-by-lot sampling. The first problem is overcome by 
allowing larger supplier's and customer's risks. Instead of the usual values for these risks of around 5 % and 
10 % respectively, they are increased to as much as 10 % and 20 %. The second problem is overcome by 
using an estimator that will overestimate p, the process fraction nonconforming, about half the time and 
underestimate it about half the time. The approximate formula for this estimator given in ISO 14560 is:  

60,7 10
0,4

dp
n
+

= ×
+

items per million items  

where d is the number of nonconforming items found in a sample of size n. 

The plans are indexed by limiting quality level. Smaller sample sizes are required at better quality levels, 
thereby providing an incentive to the supplier to improve quality. 
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9.4.10 Isolated lots 

When only one lot is being supplied, or a short series of lots, the protection afforded to the customer by the 
switching rules no longer applies. Attention then focuses on ensuring that any individual lot of a quality worse 
than a specified value has a low probability of acceptance. ISO 2859-2 [5] is a sampling system indexed by the 
limiting quality. The probability of acceptance at the LQ is usually no greater than 10 %, but in some cases, it 
is as high as 13 %. Two procedures are given. Procedure A is intended for use when the supplier and the 
customer both wish to regard the lot in isolation. Procedure B is for use when the supplier considers the lot to 
be one of a continuing series while the customer regards the lot to be received in isolation. In such a case, 
both the consumer (for the purpose of the acceptance sampling of one particular lot) and the producer (for the 
purpose of the acceptance sampling of the process) may use the same sampling plan. 

The first edition of ISO 2859-2 was designed for inspection for percent nonconforming. The second edition is 
planned to also include inspection procedures for nonconformities per 100 items. 

9.4.11 Accept-zero plans 

Two of the quality world's buzz-phrases that originated in the late 20th century are “get it right first time” and 
the “zero defects philosophy”. In conjunction with the need to strive for ever-higher levels of quality, these 
words have often been taken to imply that if one or more nonconforming items are found in a sample, then the 
lot should not be accepted. In other words, the implication for sampling by attributes was interpreted to be that 
only plans with acceptance number zero should be admissible. Such plans are commonly referred to as 
accept-zero plans. 

A system of accept-zero sampling plans should consist of rules for switching from one sample size to another 
in response to quality history, if necessary supported by master tables of sample sizes. Ideally, the switching 
rules would guarantee some property of the outgoing product. Squeglia [126] roughly matches accept-zero 
plans to the normal inspection single sampling plans of ISO 2859-1 [4] at the LQ, but provides no switching 
rules whatsoever. ISO 21247 [51] provides accept-zero plans for normal, tightened and reduced inspection 
with similar switching rules to those of ISO 2859-1. The ISO 21247 plans provide seven “verification” levels 
(rather than AQLs) and five sample size code letters. Unfortunately, the guidance as to choice of verification 
level is merely that higher numbered levels require more inspection and should be applied to more important 
characteristics; it is not clear precisely what each verification level is designed to achieve. 

Klaassen [105] derived a remarkably simple formula for determining the accept-zero sample sizes from 
successive lots that would be needed to guarantee an average outgoing quality limit (AOQL). Defining K, the 
“credit”, as the total number of items accepted since the last lot non-acceptance, he showed that the sample 
size required to guarantee an AOQL of a is given by the smallest integer, n, such that: 

( ) 1
Nn

K N a+ +
W  

where N is the next lot size. This assumes that lots that are non-accepted when K = 0 are 100 % inspected 
and that all conforming items found in such lots are accepted. The advantages of this method are threefold: 

a) no tables are required for its implementation; 

b) a single quantity, K, is sufficient to summarize the quality history; and 

c) the AOQL guarantee is valid regardless of the sizes of successive lots or the sequence of lot qualities, 
rendering the method virtually abuse-proof. 
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To illustrate this method, suppose for a certain item that it is required that the average quality reaching the 
market place does not exceed 1,5 % nonconforming in the long term, i.e. a = 0,015. Suppose that a supplier 
always submits lots of the same size, N. K is initialized to zero. Suppose first that N = 200. If no 
nonconforming items are found in each sample, the sample sizes found by using the Klaassen formula are: 

50, 29, 20, 16, 13, 11, 10, 8, … 

Even if the lot sizes are huge, the sample sizes for this AOQL for successive lots never increase above: 

67, 34, 23, 17, 14, 12, 10, 9, … 

However, whenever a nonconforming item is found in a sample, the lot has to be screened and conforming 
items accepted, K has to be reset to zero and the sample size for the next lot needs to immediately return to 
the one at the beginning of the sequence. 

Note that the method does not guarantee that the outgoing quality will not exceed the AOQL over any 
particular sequence of lots. The guarantee applies to the long-term average, or expected, outgoing quality 
over the whole sequence. Over a short series of lots there will be an appreciable probability that the AOQL will 
be exceeded, but this probability will tend to zero as the length of the series increases. 

The method is embodied in ISO 18414 [50].  

9.5 Acceptance sampling by variables — Single quality characteristic 

9.5.1 General 

For quality characteristics that are variables distributed according to a known family of probability distributions, 
it is possible to utilize this extra information to produce sampling plans that are more efficient. Most 
procedures for acceptance sampling by variables are for data from normal distributions, and discussion in this 
clause will be confined to the normal distribution case. Where possible, the procedures will be explained with 
reference to ISO 3951-1 [13]. 

In ISO 3951-1, as in ISO 2859-1, the choice of inspection level and lot size determines a sample size code 
letter which, in conjunction with an AQL and an inspection severity, determines the sampling plan. 

The procedures are classified as Form k or Form p*, depending on whether the process fraction 
nonconforming is estimated implicitly or explicitly. In all cases, it is assumed that there is a continuing series of 
lots and that the process fraction nonconforming is the subject of assessment. Consequently, the methods 
have much in common with statistical tolerance intervals (see 8.8.1). Type A OC curves are not relevant to 
acceptance sampling by variables, as the presumption that the sampled population is normal cannot be true if 
the population is a finite lot. 

The control of double specification limits on a variable is treated in one of three ways: 

a) combined control is when a single AQL is applied to the sum of the process fractions nonconforming 
below the lower specification limit or above the upper specification limit; 

b) separate control is when one AQL is applied to the lower specification limit and another AQL is applied at 
the upper specification limit; 

c) complex control is when the one AQL is applied at either the lower or upper specification limit and a larger 
AQL is applied to the sum of the process fractions nonconforming beyond both of the specification limits. 

The 1989 edition of ISO 3951 only contained Form k procedures for a single variable. ISO 3951 is being 
developed as a multi-part standard. ISO 3951-1 [13] is concerned with Form k procedures for a single variable 
and a single AQL. ISO 3951-2 [14] provides a more comprehensive coverage, using Form p*.  

The symbols L and U are used to denote the lower and upper specification limits. 
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Finally, a distinction is made between the “s” method and the “σ” method. The expression “s” method indicates 
that neither the process mean nor the process standard deviation is known. The expression “σ” method 
indicates that the process mean is unknown but the process standard deviation may be presumed to be 
known; in practice, this will mean that σ has been estimated from a large data set, and therefore is known 
within a small margin of error.  

9.5.2 Single sampling plans by variables for known process standard deviation — The “σ” method 

For a single, normally distributed quality characteristic with known σ, the acceptability of a lot may be 
determined as follows. Suppose that the Form k acceptance sampling plan has been determined, say by 
reference to ISO 3951-1. The plan will consist of a sample size, n, and an acceptability constant, k. A random 
sample of size n is drawn from the lot, and the sample mean, ,x is calculated.  

The quality statistic, Q, is calculated for a lower specification limit: 

L
x LQ
σ
−

=  

and/or for an upper specification limit: 

U
U xQ
σ
−

=  

For a single specification limit, the lot is acceptable only if the quality statistic exceeds k. For double 
specification limits, and before inspection begins, it first needs to be checked that σ is not so big that the AQL 
requirements are impossible to meet under tightened inspection. This is done by comparing σ with ( )U L−  
times the tabulated value of the standardized maximum (allowable) process standard deviation (MPSD). The 
reason for this is that it is pointless to begin sampling inspection if the process variation is too large for the 
switching rules to function. For separate control of double specification limits, there will be two acceptability 
constants, say Lk  and ,Uk  corresponding to the AQLs at each limit; in this case, the lot is acceptable only if 
both quality statistics exceed their respective acceptability constants. For combined control, both quality 
statistics have to exceed k. For complex control involving a separate AQL requirement on, say, the lower 
specification limit, the acceptance criterion would be similar to that for separate control except that Uk  would 
correspond to the combined part of the requirement. Similar remarks apply to complex control involving a 
separate AQL requirement on the upper specification limit. 

For the σ known case, the calculation of the quality statistics for each sample may be avoided. For example, 
the acceptability criterion L LQ kW  may be converted into Lx L kσ+W  = ,Lx  which can be calculated in 
advance. Similarly, U UQ kW may be converted into x u .Ux  

For Form p*, the acceptability constants p* are maximum acceptable values of the estimated process quality 
level. The quality statistics are calculated in the same way as for Form k. Denoting a quality statistic in general 
by Q, the process fraction beyond a single specification limit is estimated by the area under the standard 
normal curve above the value /( 1).Q n n −  Denoting these estimates at the lower and upper specification 
limits by ˆLp  and ˆ ,Up  the lot acceptance criteria become: 

a) for a single lower specification limit, ˆ *;Lp pu  

b) for a single upper specification limit, ˆ *;Up pu  

c) for combined control of double specification limits, ˆ ˆ *;L Up p p+ u  

d) for separate control of double specification limits, *ˆL Lp pu  and *ˆ ;U Up pu  

e) for complex control of double specification limits, either *ˆL Lp pu  and ˆ ˆ *L Up p p+ u  or *ˆU Up pu  and 
ˆ ˆ * .L Up p p+ u  
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9.5.3 Single sampling plans by variables for unknown process standard deviation — The “s” method 

When the process standard deviation cannot be presumed to be known, it is estimated by the sample 
standard deviation, s. The quality statistics become the following: 

  and  L U
x L U xQ Q

s s
− −

= =  

The Form k acceptability constants become larger than for the “σ” method and the Form p* acceptability 
constants become smaller, to allow for the increased uncertainty in the estimation of the process quality. 

Consider first Form k. For a single specification limit, the acceptance criterion is similar to those for the “σ” 
method, i.e. the lot is acceptable if .Q kW  Figure 46 shows an acceptance chart for a lower specification limit 
on a graph of x  against s, for sample size code letter G on normal inspection (giving sample size 18) with an 
AQL of 1 % (giving k = 1,77). The accept zone is bounded by the line x  = L + ks, where the lower specification 
limit L has been taken to be 30 units. 

 

Key 

1 accept zone 
2 reject zone 

X standard deviation s 
Y sample mean x  

Figure 46 — Acceptance chart for a lower specification limit 

For double specification limits, no check on σ  can be carried out before inspection begins because σ  is 
unknown. Nevertheless, an initial test may still be carried out on the process potential by comparing s with a 
maximum (allowable) sample standard deviation (MSSD). The MSSD is found by multiplying ( )U L−  by a 
tabulated standardized value. For separate control of double specification limits, the lot is acceptable only if 

L LQ kW  and .U UQ kW  An acceptance chart for separate control is shown in Figure 47; it can be seen in this 
case that the accept zone is bounded by two straight lines. 
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Key 

1 accept zone 
2 reject zone 

X s 
Y x  

Figure 47 — Acceptance charts for double specification limits with separate control 

For combined control, the acceptability of the lot is determined by plotting the point with standardized 
co-ordinates [ /( ),  ( ) /( )]s U L x L U L− − −  on a standardized chart for the given sample size and AQL. The lot is 
accepted if the point lies within the acceptance region. Figure 48 shows such a chart for sample size 18 with 
an AQL of 4 %. 

 

Key 

1 accept zone 
2 reject zone 

X s/(U − L) 
Y ( x − L)/(U − L) 

Figure 48 — Standardized acceptance chart for sample size 18 for double specification limits 
with combined control at an AQL of 4 % under normal inspection 
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For complex control, lot acceptability is determined in the same way as for combined control except that part 
of the acceptance region is eliminated in accordance with the requirement on the single specification limit. 
Figure 49 shows the acceptance region for sample size code letter G on normal inspection for a 1 % AQL at 
the upper specification limit and a 4 % AQL overall. 

 

Key 

1 accept zone 
2 reject zone 

X s/(U − L) 
Y ( x − L)/(U − L) 

Figure 49 — Standardized acceptance chart for sample size 18 for double specification limits 
with combined control at an AQL of 1 % for the upper limit 

and an AQL of 4 % overall under normal inspection 

For Form p*, the procedures are identical to a) through e) of 9.5.2 except in one respect. For the “s” method, 
the process fraction nonconforming beyond a single specification limit is estimated by the area to the left of 
the value 1 1

2 2 /( 1)Q n n− −  under a symmetrical beta distribution that has both parameters equal to 1
2 ( 2).n −  

In order to avoid the need to use tables of the beta distribution to implement Form p* plans, Baillie [66] has 
developed a normal approximation for use when n > 4, which works as follows. 

a) Set 1 1
2 2 /( 1).x Q n n= − −  If 0,x u  then ˆ 0,p = or if 1,x W  then ˆ 1;p =  in both cases, no further steps are 

necessary. Otherwise, continue to step b). 

b) Set [ ]ln /(1 )ny d x x= −  where 1
2 2

1( 3) 1
3 ( 3) 1

nd n
n

⎧ ⎫
⎪ ⎪= − +⎨ ⎬

⎡ ⎤− +⎪ ⎪⎣ ⎦⎩ ⎭

 

c) Set 2 3w y= −  

d) If w > 0, set 
[ ]

,
1 / 12( 1)

yt
w n

=
+ −

 otherwise 
[ ]1 / 12( 2)

yt
w n

=
+ −

 

e) Then p̂  is approximated by the area to the left of t under the standard normal curve [usually denoted 
( )tΦ ]. 

NOTE “ln” means natural logarithm (i.e. logarithm to base e). 
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This approximation is quite accurate, guaranteeing a maximum absolute error of not more than 0,000 4 for 
sample size 5, 0,000 2 for sample size 6 and 0,000 1 for sample sizes of 8 or more. Values of nd  for selected 
values of n are given in Table 20. 

To illustrate, suppose that there is a single, lower specification limit L = 32 and a sample of size 18 has a 
mean x  = 34,1 and a standard deviation s = 0,93. Then Q = ( ) /x L s−  = (34,1 − 32)/0,93 = 2,258. The value of 

1 1
2 2 /( 1)x Q n n= − −  is found to be 0,218. From tables or a computer program, it may be found that the area 

to the left of 0,218 under a symmetric beta distribution with both parameters equal to 1
2 ( 2) 8n − =  is 0,007 4. 

Table 20 — Values of dn for estimating the process fraction nonconforming 

Sample size nd   Sample size nd   Sample size nd  

3 0,318 310  15 1,734 040  70 4,092 828 

4 0,551 329  18 1,937 919  75 4,242 777 

5 0,731 350  20 2,062 737  95 4,795 926 

6 0,880 496  25 2,346 014  100 4,924 516 

7 1,009 784  30 2,598 669  125 5,522 742 

8 1,125 182  35 2,828 887  150 6,062 225 

9 1,230 248  40 3,041 751  160 6,265 024 

10 1,327 276  45 3,240 676  200 7,017 865 

13 1,583 745  50 3,428 086  250 7,858 138 

 

If neither the appropriate tables nor software are available, the normal approximation is found as follows, 
starting at step b). 18d is found from Table 20 to be 1,937 919. Then y is calculated as  

0,2181,937 919 4ln( ) 2,475 4
0,782

y = = −  

Then 2 3 3,128.w y= − =  As w > 0, we set  

[ ]{ }/ 1 / 12( 1) 2,475 4 /(1 3,128 / 204) 2,438t y w n= + − = + = −  

From normal tables, it is found that the area under the normal curve to the left of 2,438−  is 0,007 4. Thus, 
ˆ 0,007 4,p =  which is in complete agreement with the exact method. 

9.5.4 Double sampling plans by variables 

A double sampling plan by variables can be formulated in either Form k or Form p*. Consider for illustration 
the case of σ unknown for a single lower specification limit L. Form k will be described here. A double 
sampling plan by variables has five parameters, namely the two sample sizes 1n  and 2n  and the three 
acceptability constants 1 2 3, ,  and .k k k  A sample of size 1n  is drawn, and the quality statistic 1 1 1( ) /Q x L s= −  
is calculated. If 1 1,Q kW  the lot is accepted. If 1 2,Q ku  the lot is non-accepted. If 2 1 1,k Q k< <  another 
sample, this time of size 2,n  is drawn and its mean 2x  and standard deviation 2s  are calculated. The 
combined mean is calculated as: 

1 1 2 2
c

1 2

n x n xx
n n
+

=
+
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and the combined standard deviation as: 

2 2
1 1 2 2

c
1 2

( 1) ( 1)
2

n s n ss
n n

− + −
=

+ −
 

The combined quality statistic is calculated as: 

c c c( ) /Q x L s= −  

If c c,Q kW  the lot is accepted; otherwise, it is non-accepted. 

The procedure for the “σ” method is similar except that 1 1( ) /Q x L σ= − and c c( ) / .Q x L σ= −  

Hamaker [99] investigated the matching of -knownσ  double sampling plans by variables to -σ known single 
sampling plans. He observed that there were three requirements that are partly contradictory: 

a) a reasonably close match between the OC curves; 

b) a worthwhile reduction in the average sample number; 

c) a low frequency of second sample (FSS); 

and developed rules that provided a sensible balance between them. Baillie [69] extended Hamaker's results 
for 1 2n n=  to the case of unknown σ. ISO 3951-3 [15] provides double sampling plans by variables. 

9.5.5 Sequential sampling plans by variables for known process standard deviation 

ISO 8423 [31] provides curtailed sequential sampling plans for inspection by variables when the process 
standard deviation is known, for single and for double specification limits. The acceptance chart for a single 
specification limit is similar in appearance to the attributes sequential chart (see Figure 45), the difference 
being that the cumulative sum of the leeway is plotted on the vertical scale. (The leeway is defined as U x−  
for an upper specification limit and x L−  for a lower specification limit, where x is the measured value of the 
variable.) Thus, the increments on the vertical scale are not constrained to be integers, and can even be 
negative if x lies outside specification. 

It was observed in 9.4.5 that the Wald approximation has been found to be poor for sampling by attributes 
when the supplier's and customer's risks are of the order of 5 % and 10 %. The same has been found to be 
true for sampling by variables so, like ISO 8422, ISO 8423 was revised to provide a better match with the 
corresponding single sampling plans. 

9.5.6 Accept-zero plans by variables 

Accept-zero plans provide for lot acceptance if there are no nonconforming items in the sample. Denoting the 
smallest and largest observations in a sample by [1]x  and [ ],nx  this requires [1]x LW  for a lower specification 
limit, [ ]nx Uu for an upper specification limit, and both inequalities are to be satisfied in the case of double 
specification limits. 
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Klaassen's [105] credit-based method of guaranteeing an AOQL for accept-zero plans for sampling by 
attributes was described in 9.4.11. Effectively, it provides a switching rule between sample sizes in response 
to perceived quality history. Baillie and Klaassen [72] have generalized this result to the case of guaranteeing 
an AOQL for any acceptance sampling plan that includes an accept-zero requirement, and applied the general 
method to the following three cases, with c any positive constant: 

a) [1]x LW (for sampling by attributes); 

b) [1]x LW + cσ (for sampling by variables with known σ); and 

c) [1]x LW + cs (for sampling by variables with unknown σ). 

Again, as with sampling by attributes, the AOQL guarantee requires lots that are rejected when the credit is 
zero to be 100 % inspected, with acceptance of all conforming items found in such lots. As expected, 
sampling by variables when the value of σ is presumed known requires smaller sample sizes than sampling 
by variables when the value of σ is unknown, which in turn requires smaller sample sizes than sampling by 
attributes. 

9.6 Multiple quality characteristics 

9.6.1 Classification of quality characteristics 

Most products have more than one quality characteristic, all of which need to conform to specification if an 
item is to be classed as conforming. Some of these characteristics may be of greater importance, and may 
therefore need to be controlled more tightly. This is achieved by classifying the quality characteristics into 
class A for those of the highest level of importance, class B for the next level of importance, etc., and applying 
a low AQL to class A, a larger AQL to class B, etc. Sampling inspection schemes are then applied to the 
classes independently; for example, it would be possible for classes A and C to be on normal inspection while 
class B is on tightened inspection. The acceptance criteria for all classes have to be satisfied for a lot to be 
classified as acceptable. The following discussion of multiple quality characteristics is on the treatment of a 
single class of quality characteristics, where by definition all the quality characteristics in the class are of 
approximately equal importance to the integrity of the product. 

9.6.2 Unifying theme 

As before, the unifying theme of the discussion for nonconforming items will be the comparison of ˆ,p  the 
estimated process fraction nonconforming from the sample, with *,p  a specified maximum value. As a rough 
rule, we can set: 

1
2* ( ) /p a n= +  (34) 

where the reference single sampling plan by attributes has sample size n and acceptance number Ac .a=  

9.6.3 Inspection by attributes for nonconforming items 

9.6.3.1 Independent attributes 

Consider first the simplest case where there are k quality characteristics, all of which are attributes. First 
suppose that the attributes are independent, i.e. the probability of any one of the attributes in the class being 
out of specification is constant, regardless of the state of any of the other attributes in the class. Suppose also 
that in a sample of size n it is found that there are 1r  items that are nonconforming on attribute 1, 2r items that 
are nonconforming on attribute 2,…, kr items that are nonconforming on attribute k. The estimate of the 
probability of conformance on the ith attribute is estimated by (1 / ).ir n−  As the attributes are independent, the 
estimated overall probability of an item conforming to all the specifications is the product of such estimated 
probabilities, viz. 1 2(1 / )(1 / ) (1 / ).kr n r n r n− − −" Subtracting this from 1, it is seen that the overall probability of 
an item not conforming to at least one of the specifications is estimated by: 
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1 2ˆ 1 (1 / )(1 / ) (1 / )kp r n r n r n= − − − −"  

The acceptance criterion ˆ *p pu  therefore becomes: 

1 21 (1 / )(1 / ) (1 / ) *kr n r n r n p− − − − u"  

Provided all the fractions /ir n  are small, it can be shown by expanding the product term that this inequality is 
approximately the same as: 

1 2( ) *kr r r np+ + + u" i.e. r cu  

where r is the total number of items that are out of specification with respect to each attribute, summed over 
attributes, and c is the largest whole number less than or equal to * .np  

9.6.3.2 Dependent attributes 

Now suppose that the attributes are dependent. The estimate of the process fraction nonconforming is 
ˆ / ,p d n=  where d is the number of nonconforming items in the sample. The acceptance criterion ˆ *p pu  then 

becomes *d npu  i.e. d cu . 

9.6.3.3 Example 

To illustrate the difference between the independent and dependent cases, suppose that a single sampling 
plan under normal inspection is to be used, with a sample size code letter F and an AQL of 4 %. From 
Table 2-A of ISO 2859-1:1999, it is found that the sampling plan is n = 20, Ac = 2. From Equation (34): 

1
2* (2 ) / 20 0,125p = + =  

Suppose that an item has two quality characteristics that are both attributes. A sample of size 20 yields one 
item that is nonconforming on both attributes and one item that is nonconforming on one attribute. Assuming 
independence between the attributes, the estimate of the process fraction nonconforming would be: 

ˆ 1 (1 2 / 20)(1 1/ 20) 0,145p = − − − =  

On the other hand, assuming dependence, there are only two nonconforming items in the sample of size 20, 
so the estimate of the process fraction nonconforming would be: 

ˆ 2 / 20 0,100p = =  

As p* = 0,125, we see that the lot would be non-accepted if the attributes were considered to be independent, 
but accepted if they were considered to be dependent. On reflection, this is not a surprising result. On the 
evidence from the example, when the two attributes are dependent there seems to be a tendency for both 
attributes to be out of specification at the same time. Treating the nonconformities as independent in such a 
situation leads to some double counting. 

9.6.4 Inspection by attributes for nonconformities 

Suppose that the sample contains a total of 1r  nonconformities on attribute 1, 2r nonconformities on attribute 
2,…, kr nonconformities on attribute k. The rate of nonconformity on the ith attribute is estimated by / .ir n  If the 
attributes are independent, these estimated rates are added to give an estimated overall rate of nonconformity 
per item of / ,r n  where r = 1 2 kr r r+ + +"  is the total number of nonconformities in the sample. 

On the other hand, if the attributes are dependent, the estimated rate is simply the total number of 
nonconformities divided by the sample size, i.e. /r n again. It follows that the multi-attribute acceptance 
criterion is Ac;r u  this is regardless of the number of attributes and whether or not they are independent. 
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9.6.5 Independent variables 

The principle for k independent variables is the same as for k independent attributes inspected for 
nonconforming items. The process fraction nonconforming is estimated as: 

1 21 (1 )(1 ) (1 )ˆ ˆ ˆ ˆkp p p p= − − − −"  

where ˆip  is calculated as explained in 9.5.2 for σ  known and in 9.5.3 for σ  unknown. 

Form p* plans by variables are presented in ISO 3951-2 [14]. 

9.6.6 Dependent variables 

For dependent variables, it is theoretically possible to carry out acceptance sampling, but impracticable 
without the use of suitable software, as the formula for p̂  is a multidimensional integral over a complicated 
region. For further information, the reader is referred to Baillie [70]. If the correlation between the variables is 
not strong, the variables may be treated as independent without much danger of reaching the wrong decision 
on lot acceptability if the decision is not marginal. If the correlation between the variables is strong, then the 
variables can be converted to dependent attributes, and treated as described in 9.6.3.2, although this is an 
inefficient use of the data. 

9.6.7 Attributes and variables 

Baillie [67] presented master tables of “attriables” plans and procedures for use when the quality 
characteristics in a class consist of at least one attribute and at least one variable. The plans are only suitable 
when it is practicable to have a larger sample size for the attributes than for the variables. The implementation 
of the plans is necessarily complicated, and would need to be supported by suitable software, particularly if 
there are two or more dependent variables. 

10 Statistical process control (SPC) 

10.1 Process focus 

The question to what extent it is possible to obtain from a sample a reliable estimate of the quality 
characteristics of product lots has been discussed from various points of view in the preceding clauses. It has 
been shown that if the variation among individual units is considerable, it may not be an economic proposition 
for the customer to sample and test sufficient items to provide the desired degree of assurance regarding the 
consignment. 

Furthermore, what if the correct technical decision, on the basis of an “after the event” sample, is to “reject” 
the consignment? All too often, the correct business decision has to be “accept” because of logistics, time and 
other constraints. It is therefore inevitable that attention should be focused on ways of securing and 
demonstrating conformity to specification that involve the requirement that statistical methods be deployed at 
the place and time of the process activity giving rise to the product or service. This is recognized in the 
following circumstances. 

a) Generic quality management system requirements such as ISO 9001:2008: 

This International Standard recognizes that any activity that receives inputs and converts them to outputs 
can be considered as a process. For organizations to function effectively, they have to identify and 
manage numerous linked processes. Often the output from one process will directly form the input of the 
next process. ISO 9001:2008 is based on the “process approach” to management, which involves the 
systematic identification and management of the processes employed within an organization, and the 
interactions between such processes. The model shown in Figure 50 covers the requirements of 
ISO 9001:2008, but does not show the process at a detailed level. 
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NOTE The term product in the ISO 9000 family has four generic categories: hardware, software, services and 
processed materials. 

More specifically, ISO 9001:2008, 8.1, states the following. 

ISO 9001:2008, Quality management systems — Requirements 

8 Measurement, analysis and improvement

8.1 General

The organization shall plan and implement the monitoring, measurement, analysis and improvement processes
needed

a) to demonstrate conformity to product requirements,

b) to ensure conformity of the quality management system, and

c) to continually improve the effectiveness of the quality management system.

This shall include determination of applicable methods, including statistical techniques, and the extent of their
use.

 

Figure 50 — ISO 9001:2008 — Model of a process-based quality management system 
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For example, ISO 9001:2008, 4.1, states the following. 

ISO 9001:2008, Quality management systems — Requirements 

4 Quality management system

4.1 General requirements

The organization shall establish, document, implement and maintain a quality management system and
continually improve its effectiveness in accordance with the requirements of this International Standard.

The organization shall

a) determine the processes needed for the quality management system and their application throughout the
organization (see 1.2),

b) determine the sequence and interaction of these processes,

c) determine criteria and methods needed to ensure that both the operation and control of these processes
are effective,

d) ensure the availability of resources and information necessary to support the operation and monitoring of
these processes,

e) monitor, measure where applicable, and analyse these processes, and

f) implement actions necessary to achieve planned results and continual improvement of these processes.

These processes shall be managed by the organization in accordance with the requirements of this
International Standard.

Where an organization chooses to outsource any process that affects product conformity to requirements, the
organization shall ensure control over such processes. The type and extent of control to be applied to these
outsourced processes shall be defined within the quality management system.

Explanatory notes are provided in ISO 9001:2008. 

b) Numerous sectors, such as medical devices, aerospace and automotive have prescriptive quality 
system requirements. 

Taking the automotive sector as an example, three major USA-based suppliers have jointly produced 
quality systems requirements, together with supporting documentation that includes manuals on: 
statistical process control (SPC) [79] and measurement system analysis (MSA) [89] that provide a unified 
formal approach to both SPC and MSA in the automotive industry. 

Regardless of whether or not the application of statistical process control is explicitly stated in system or 
product requirements, the organization dedicated to “never ending improvement” or aiming for “world class” 
will recognize its key role in improving business performance. This is illustrated by an example from the 
aircraft supply industry. 

EXAMPLE Steel tube dimensions: 

A steel tube supplier to the aircraft industry buys steel strip from the steel-maker by the kilogram and converts strip into 
tube to sell by the metre. This organization recognized that, by managing variation better, more metres could be produced 
per kilogram of strip. It aimed for preferred minimal values for outside diameter and wall thickness commensurate with the 
need to maintain dimensional specification requirements. This aim decreased as they identified and progressively reduced 
variation using statistical process control methodology. Controlling the new minimum size and its variation using statistical 
process control, it was then able to produce a lighter, more consistent product with a saving of some $ 400 000 per year. 

This example demonstrates the ability of statistical process control to both increase profits for the user 
organization and value to its customers. 
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These considerations, amongst others, have given rise to a growth in the development and widespread 
application of statistical process control methods. 

10.2 Essence of SPC 

The primary operational tool of SPC is the control chart. The first question to be answered is: what is to be its 
basic purpose? The reason for this is that there are two fundamentally different approaches to control 
charting. One approach aims at directly controlling to specification using control limits based upon, and set 
inwards from, specified tolerance limits. Such an approach is described in ISO 7966:1993 [28]. The other 
approach uses control limits based entirely on process performance. These control limits are set outwards 
from the mean value of the characteristic plotted to an extent based on the inherent variability of the process 
with no regard to specified tolerance limits. Such an approach is described in ISO 8258:1991[29]. 

Many organizations using tolerance-based control charts have had to abandon their use in favour of 
performance-based statistical process control, for contractual reasons, to meet customer requirements 
expressed in current quality systems standards. Others have chosen to adopt performance-based control 
charts, for a number of reasons, such as the following. 

a) The recognition that first class quality for a characteristic is achieved only by realizing a preferred value 
and that there is a progressive deterioration in quality as one moves away from this value towards a 
specification limit, even though one may, technically, still be “in tolerance”. Meeting tolerance then 
becomes a “minimum” standard that may just be tolerated. It is not a standard of excellence. In a 
competitive climate, there can be considerable advantage in aiming for a preferred value with minimum 
variation. 

b) The acknowledgement that a tolerance-based control chart does not provide information on the sources 
of variation in the process essential for control and improvement purposes. The focus on the classification 
of the process output purely in terms of specification is in direct contrast to the focus of the performance-
based control chart, which is on the discrimination between common and special cause variation in the 
process. 

c) An appreciation that there are two kinds of people and two types of variation: 

1) technical and managerial people who are responsible for the process and for the presence of 
inherent/common cause variation and its reduction; 

2) operational people who work in the process who can best observe and report on special cause 
variation through the use of performance-based control charts. 

Point b) recognizes that the primary operational role of a control chart is to discriminate between special and 
common cause variation. Common cause variation is generally outside the remit of people who work in the 
process. Suppose that operational people have established, using a performance-based control chart, that a 
process is in statistical control, namely, that no special causes of variation are present. Then, and only then, 
technical and managerial people can use the control chart data to compare the magnitude of the residual 
common cause variation present with specified limits, using capability analyses as described in Clause 11. 
Standardized quality capability indices for the characteristic may then be generated and any necessary 
improvement actions initiated. 

Such process capability analysis brings out another very important aspect of the overall role of SPC. A 
primary role of a control chart, in an operational sense, by its very name, is to control; namely to inhibit 
change. The removal of special cause variation to bring a process back into control does not actually improve 
the process, it only returns it to its original state. This, however should not blind one to the fact that often the 
objective of SPC, in an overall sense, is to improve process performance by inducing change. 

Such betterment, through common cause reduction does not have to await special cause removal. A 
significant improvement in process performance is evidenced in a control chart by an “out of control” situation, 
as is a significant deterioration. Hence, the control chart has a built-in statistical test of significance. 

These features are demonstrated in Figure 51 for an underwear making-up process. 
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Key 

1 crotch stitch (broken needle) 
2 shop reorganization 
3 oil leak 

X production sequence of men's briefs 
Y fault rate percent 

Figure 51 — Control chart for nonconforming underwear 

Figure 51 shows: 

⎯ undesirable “out-of-control” situations (points above the UCLs ± upper control limits) due to special 
causes: a broken needle, a sewing shop reorganization and oil leak; 

⎯ a desirable “out-of-control” situation (more than 9 consecutive points below the original centre line) due to 
a management-led major training and personal development initiative that gave rise to a reduction in 
common cause variation from a nearly 10 % fault rate to less than 1 %. 

This example brings out why it is important to differentiate between special and common cause variation. The 
sporadic special cause variation is due to specific assignable activities attributable to a machinist and direct 
support personnel. The overall performance of nearly 10 % fault rate, however, is a result of common causes 
endemic in the system, which is a management responsibility. Without this perspective, using a control chart, 
it is usual, in such a situation, not to consider the impact of common causes on the performance of individuals. 

10.3 Statistical process control or statistical product control? 

At this stage it is necessary, too, to distinguish between statistical process control and statistical product 
control. Much so-called statistical process control is, strictly speaking, after the event statistical product 
control. Figure 52 illustrates this point. 

In such a process, SPC is quite frequently applied to the product characteristics such as, image density and 
curl. Superficially, from the standpoint of the customer, this may appear quite acceptable. However, it is 
clearly not nearly as effective as control of the process parameters and process inputs that affect these 
product characteristics. After the event, detection of unsatisfactory product may give rise to delays in shipment 
and increased production cost which, in turn, results in a decreased profit margin for the supplier and/or 
increased price to the customer. 

Why then is true process control not practiced more often? The primary reason is that for a large proportion of 
processes the technical relationship between process parameters/process inputs and product characteristics 
is not known. This is why the prior application of statistical experimental designs (commonly termed DoE: 
design of experiments) often leads to a more purposeful and effective application of SPC. This aspect is dealt 
with in Clause 12. 
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Process Inputs Process Product
Characteristics

Apply Topcoat

Process Parameters

tack
material condition
solvent holdout
resin content
moisture
coating sequence

image density
curl

line speed
dryer temperature
air flow rate
relative humidity
wind tension

 

Figure 52 — Outline of process of applying a topcoat to a photographic film 

This shows that it is necessary to realize that: 

a) every process generates information that can be used to control and improve its performance; 

b) there is a need to develop informed, perceptive observers using appropriate statistical methodology; 

c) there are two sources of information and two primary statistical tools for dealing with them: 

1) natural variation: use SPC, a listening tool; 

2) induced variation: use DoE, a conversational tool. 

10.4 Over-control, under-control and control of processes 

10.4.1 General 

A process monitoring system may give rise to the following situations: 

a) over-control: action is taken when it should not be; 

b) under-control: action is not taken when it should be; 

c) control: action is taken when it should be and not taken when it should not be. A process is said to be 
under a state of (statistical) control when no special causes of variation are present. Variation can then be 
attributed purely to “common causes”. Control is not a natural state but it is an achievement, arrived at by 
elimination, one by one, by determined effort, of special cause variation. To achieve that, it is essential to 
use SPC charts that set out to provide a signal when a special cause of variation is present, and to avoid 
giving false signals when a special cause is not present. 

Sometimes “assignable cause” is taken to be synonymous with “special cause”. However, a distinction 
should be recognized. In practice, not all special causes are assignable. A state of control does not imply 
that the common cause variation is large or small, within or outside of specification, but rather that it is 
predictable using statistical techniques. 
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10.4.2 Scenario 1: Operator reacts to each individual sample giving rise to process over-control 

Suppose a particular preform extrusion process has a stable variation about the target mass value of 45 as 
shown in Figure 53. 

The operator takes one measurement at intervals and decides, from each particular observation, whether or 
not to adjust. 

 

Key 

X value  
Y odds 

NOTE Pattern of process variation around stable mean of 45 shows chance of obtaining a particular value with a 
single sample. 

Figure 53 — Probability of setter/operator observing a single mass value when mean = 45 

The setter/operator takes one mass measurement at 20-minute intervals and compares the result with the 
preferred, target or reference value of 45. Mass is controlled by adjustment of the speed feed. Adjustment is in 
steps of 1 so an appropriate adjustment is made if the result differs from 45 by 1 or more. Table 21 shows 
what may be expected in a process whose actual level is initially at the preferred level and which is also stable 
throughout with respect to variation about the various actual process levels experienced. A typical result from 
this monitoring plan is shown in Table 21. 
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Table 21 — Control plan (take one measurement at intervals and adjust or do not adjust) 

Time Measurement 
value 

Subsequent adjustment 
made Actual process level 

08:00 46 –1 45 

08:20 42 +3 44 

08:40 46 –1 47 

09:00 48 –3 46 

09:20 44 +1 43 

09:40 43 +2 44 

10:00 47 –2 46 

10:20 44 +1 44 

10:40 47 –2 45 

11:00 etc. 44 +1 43 

NOTE Measured values were obtained by taking values at random from a process with constant variation 
about actual process levels. This simulates a real-life situation. 

 

At 08:00, the setter/operator sees 46 and increases feed speed to decrease mass, thus over-controlling and 
bringing the actual mean mass down to 44. At 08:20, the setter/operator measures 42 and decreases feed 
speed to increase mass by 3 units. The mass then overshoots to a mean of 47; again over-control. And so on. 

The consequence of this monitoring plan is to increase overall variation from 10 units of mass (45 ± 5, see 
Figure 54) to 17 units of mass [(43 − 5) to (47 + 5)] in Table 21. 

This is an example of process over-control. Here, the penalty of over-adjustment is some 40 % increase in 
variation over the short time period considered. The general conclusion is that continual adjustment of a stable 
process will increase variation. 

10.4.3 Scenario 2: Operator monitors a process using a run chart giving rise to haphazard control 

Suppose a process is being monitored using a run chart as shown in Figure 54. A run chart is a graph that 
displays observed data in a time sequence. Whether or not reaction is made to changes in the results 
monitored will depend solely on the operators. Control is thus not likely to be effective. Under-control and/or 
over-control could thus be expected to arise. Control here is likely to be inconsistent and capricious as no 
guidance is given on how to interpret the variability. 
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Key 

X run number 
Y length 

Figure 54 — Example of process run chart with variation, 
but with no guidance on how to interpret and deal with variation 

10.4.4 Scenario 3: Monitoring using SPC chart with a potential for effective control 

Here, under-control is the result if improper use is made of the control chart such as: 

⎯ “out-of-control” signals are not reacted to, as they arise, and a completed SPC chart is analysed purely on 
a retrospective basis; 

⎯ the data used for plotting do not represent process reality; for example, data is selected to make the 
process “look good”. 

Figure 55 shows an example of the use of an SPC chart with the data of Figure 54. Four “out-of-control” 
situations are flagged on the chart. If these are reacted to positively at the time they are signalled, then the 
process will be effectively controlled. 

Typical criteria for “out-of-control” include the following: 

1) any point outside of the control limits (upper and lower: UCL and LCL); 

2) any run of 9 consecutive points above or below the centre-line (CL); 

3) any run of 7 consecutive points up or down; 

4) any obvious non-random patterns (based on technical and operational knowledge of the process). 
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Key 

X sample number 
Y length 

Figure 55 — Example of process control chart with criteria for “out-of-control” signals 

10.5 Key statistical steps in establishing a standard performance-based control chart 

10.5.1 General 

Having identified the process parameter or product characteristic to be observed, it is first necessary to decide 
on a monitoring strategy, (such as how to constitute a sample or subgroup, how many observations to take, 
and how frequently) followed by the setting up and interpreting of the control chart (such as how to set control 
limits and establish out-of-control criteria). These are now discussed. 

10.5.2 Monitoring strategy 

10.5.2.1 Subgroup constitution 

In constituting a subgroup (see 4.2.4 and 4.2.6), a number of factors need consideration. 

The concept of subgrouping is that the variation within a subgroup is made up only of common causes, with all 
special causes of variation occurring between subgroups. As the primary role of a control chart is to 
distinguish between common and special cause variation, the choice of rational subgroup has a considerable 
bearing on the usefulness of a control chart for a given purpose. For instance, if a subgroup is made up of, 
say, the diameter of three consecutive parts on a high-precision honing operation, the common cause 
variation within the subgroup may be miniscule. However, if the subgroup is made up of three parts, each of 
which is selected from consecutive wheel dressings, the common cause variation will be much greater. There 
will be far less homogeneity in the subgroup. This will have considerable impact on control limits. Hence the 
constitution of a subgroup will depend on the primary purpose of the control chart and a thorough knowledge 
of the process. 

Frequently, the term rational subgroup is used. This highlights the need for further care in subgroup 
constitution. Consider a multi-headed machine that is to be sampled at the rate of 1 per 15 min to make up a 
subgroup of four. It would not be rational to take one measurement on head 1 at 08:00, one from head 2 at 
08:15, one from head 1 at 08:30 and one from head 3 at 08:45 as it would be difficult to separate out within-
head, between-heads and between-times variation. 
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Summarizing, the basic mean ( X ) and range (R) control chart can be looked upon as a two-factor nested 
experimental design that separates out within-subgroup (common cause) variation from between-subgroup 
(special cause) variation. This is shown diagrammatically in Figure 56. 

 

Figure 56 — A two-factor nested design is the basis of an X R chart 
(illustrated with a subgroup size of 3) 

The mean and range for each subgroup are calculated. These are then plotted in time sequence. The R chart 
evaluates the variation within a subgroup. The X  chart assesses the variation between subgroups. 

It is often said that the measurements in a subgroup should be independent of one another. However, in 
practice, this is frequently not achieved in a real-life process. A measurement in a subgroup is often influenced 
by another to some degree. Hence data for control charts often exhibit serial correlation (autocorrelation). 
What impact does this have? A consensus view is that: 

a) for most situations “significant” autocorrelation will have minimal impact upon control chart limits; 

b) whilst severe autocorrelation may contaminate the control limits, the control chart may usually be safely 
interpreted at face value. 

This indicates that one need not be overly concerned about the effects of autocorrelation on control chart 
interpretation in most situations. Hence, recourse to complex techniques, such as the use of variograms and 
correlograms, to distinguish between random, cyclic, trend and correlated variations, as expounded in 
ISO 11648 is usually not required. 

10.5.2.2 Subgroup size 

Sometimes the sample or subgroup size may be dictated by circumstances. If the measurement or test is 
destructive or expensive, or on a process parameter, such as curing time or flow rate, the subgroup size may 
be necessarily small, for example, 1n =  or 2.n =  However, larger subgroups have certain technical 
advantages: 

a) even if the individual measurements are not normally distributed, the distribution of the mean of the 
subgroups tends to normality as the subgroup size increases (central limit theorem); a sample size of 5 is 
generally adequate to achieve this; 

b) the larger the subgroup size, the greater the ability of the control chart to detect changes in the mean.  

This is depicted graphically in Figure 57. 
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a) Control limits for individuals (n = 1) (setting = +0,01 on nominal) 

 

Key 

1 2 % above UCL 
2 set at 5,01 
3 nominal value 
4 16 % above UCL 

X probability density 
Y measurement 

b) Control limits for averages (n = 4) (setting = +0,01 on nominal) 

Figure 57 — Effect of subgroup size on ability to detect changes in process mean 
(process nominal = 5,00, process standard deviation = 0,01) 
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Figure 57a) shows that with a subgroup size of n = 1, a shift in mean of 0,01 will only be expected to be 
detected some 2 % of the time if the control limits are the only criteria for control. By contrast, Figure 57b) 
shows that if the subgroup size is increased to n = 4, the same shift in mean is expected to be detected almost 
16 % of the time. 

This is because the variation of means is less than the variation of individuals according to the following 
relationship: 

Standard deviation of mean = Standard deviation of individual
Subgroup size

 

10.5.2.3 Frequency of sampling 

The frequency of sampling is a compromise between sampling cost and value of the timely detection of 
process changes. A useful guide is to consider taking about six subgroups between anticipated changes in a 
process. 

10.5.3 Construction of a standard control chart 

10.5.3.1 Common features 

The generic control chart for both measured data and attributes (count and classified data) shares similar 
features. Typically it consists essentially of five lines and a series of plotted points: 

a) a vertical scale of values of a chosen statistic, X, say (e.g. mean, range, standard deviation, number of 
nonconformities) of the subject characteristic; 

b) a horizontal scale depicting subgroup sequence numbers; 

c) a centre-line (CL) , where CL = mean of X = ;X  

d) an upper control limit: s sUCL 3X s= + (where ss = standard deviation of the statistic plotted); 

e) a lower control limit: s sLCL 3 ;X s= −  

f) plotted points representing the calculated values of the statistic, X, of rational subgroups sequentially 
formed from measurements of the chosen characteristic. 

Standard formulae and tabled constants are available for the calculation of standard limits. These are given in 
Annex A. 

10.5.3.2 Example of typical mean and range control chart for measured data 

Unlike attribute charts that are formed from a single statistic (see Figure 51), standard control charts for 
measured data are made up of two statistics; the mean or median, to monitor changes in the level of a 
characteristic between subgroups; and the standard deviation or range, to monitor variability within a 
subgroup. 

An example of a mean and range ( X and R) control chart for measured data is shown in Figure 58 for the 
masses of specimens of fabric given in Table 2. 
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Key 

X sample number 
Y1 sample mean, x  
Y2 range, R 
 

Figure 58 — Mean and range chart for masses of standard specimens of fabric 

The calculations required for such a chart are as follows: 

⎯ first plotting point of Xbar chart is given by: 1
(101 99 100 102) 100,5

4
x + + +
= =  

⎯ first plotting point of R chart is given by: 1R = 102 − 99 = 3 

⎯ average range = Rbar = R  = (3 8 4 ) 6,112
32

+ + +
=

"  

⎯ average of Xbars = x  = (100,5 101 100,25 ) 99,92
32

+ + +
=

"  

⎯ UCLrange = 4D R×  = 2,282 × 6,112 = 13,95 (where 4D = constant for n = 4, see Table A.1) 

⎯ LCLrange = 3D R× = 0 

⎯ UCLmean = x + 2A R× = 99,92 + 0,729 ×  6,112 = 104,4 (where 2A = constant for n = 4, see Table A.1) 

⎯ LCLmean = x − 2A R× = 99,92 − 0,729 ×  6,112 = 95,5 
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10.5.3.3 Rationale for control limits 

Traditionally, there are two distinct approaches to the setting of control limits for performance-based control 
charts. One approach was developed by Walter Shewhart, who chose control limits formed by adding to and 
subtracting from the “expected” value, 3 (2 for warning limits) times the standard deviation. This was based on 
his experience that this was an “acceptable economic value”. At about the same time, control limits were 
formed by adding to, and subtracting from, the “expected” value, 3,09 (1,96 for warning limits) times the 
standard deviation. The reason for this difference is brought out in Table 22. One approach focused on 
rounded probabilities and the other on rounded multiples of standard deviations. 

Table 22 shows that the difference is trivial. The International Organization for Standardization (ISO) has 
adopted the Shewhart system as the world standard (ISO 8258:1991). 

From a rational viewpoint, the use of ± 3 standard deviations for action control limits can be argued, for a 
normal distribution, as striking a reasonable balance between: 

⎯ looking for trouble when it does not exist; and 

⎯ not looking for trouble when it does exist. 

A normal distribution can usually be expected for a means chart based on subgroups of 5 or more, even if the 
distribution of individual values is non-normal. However, for smaller subgroup sizes in a means chart, and also 
for charts of individuals, ranges, standard deviations and attributes, the distribution of the plotted statistic can 
be decidedly non-normal. In such cases, limits based on probabilities for the representative distribution (e.g. 
skew) are sometimes used. 

Table 22 — The two traditional systems for calculating control limits 

Control limits (action) Warning limits (sometimes used) 

Formula a Probability of being above 
the upper control limit b,c Formula a 

Probability of being 
above the upper 
warning limit b,c 

mean ± 3 standard errors 0,135 % mean ± 2 standard errors 2,28 % 

mean ± 3,09 standard errors 0,1 % (1/1 000) mean ± 1,96 standard errors 2,5 % (1/40) 

a The mean and standard error used for control limits are derived from prior process knowledge or a trial run of sufficient duration for 
the major sources of variation to manifest themselves. As the control chart is a model, or exemplar, of common cause variation, data 
arising from special cause variation should not be used in the calculation of control limits. Once calculated, there is no logic in routinely 
recalculating centre-lines and control limits as is sometimes common practice. Recalculation is only required when there has been a 
significant change in nominal value or common cause variation. 

b Probabilities were obtained from the standard normal distribution (see Table 7). 

c The probability of being below the lower control limit is equal to the probability of being above the upper control limit. Similarly, the 
probability of being below the lower warning limit is equal to the probability of being above the upper warning limit. 

 

10.6 Interpretation of standard Shewhart-type control charts 

The lines in a control chart reflect common cause variation of the statistic. If the plotted points do not adhere 
to that model, the presence of special causes is indicated. To test for an out-of-control situation, certain 
guidelines are provided. Typical such guidelines for a normal distribution of the statistic plotted are shown in 
Table 23. 
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Table 23 — Probabilities associated with different decision criteria 

Rule Description Probability 

1 Point outside of upper or lower control limit (action) 0,002 70 

2 Nine consecutive points on the same side of the centre-line 2/512 = 0,003 91 

3 Six consecutive points increasing or decreasing (including the 
first and last) 

2/720 = 0,002 78 

4 Any obvious non-random variation a  

a Based on process technical or operational knowledge rather than probability considerations.  

NOTE By way of illustration, take rule 1. If a value exceeds the upper control limit, say, either the 
process is: 
⎯ in control; in which case one has witnessed an extremely unusual phenomena, an event that has a 

very remote chance of occurrence, namely, 1 chance in 741, 0,001 35 being approximately 1/741; or 
it is 

⎯ out of control because of the presence of a special cause that needs investigation with a view to 
elimination. 

Using rules 1, 2 and 3 for the example shown in Figure 58, an out-of-control situation is indicated for the mean 
at subgroup 17. The cause should be sought and eliminated as soon as such an indication is seen on the 
control chart. The control limits should be recalculated, after discarding the data from this subgroup, to form 
the basis for ongoing control. 

10.7 Selection of an appropriate control chart for a particular use 

10.7.1 Overview 

There are many classes and types of Shewhart-type control charts available. In addition, the cumulative sum 
(CUSUM) chart is becoming more widely recognized as a very useful diagnostic and control tool. 

Standard Shewhart-type SPC control charts normally require a different chart for each process parameter or 
product characteristic. This was recognized by Bothe [77] who has developed universal charts to apply to 
situations where continuity of charting is required in short run situations and across parameters and 
characteristics having different nominal or target and/or average range values. 

The cumulative sum chart is, in many ways, superior to conventional Shewhart methods. It is appropriate for 
examining all forms of numerical data relative to a reference value, on a retrospective or current basis. It has 
three main uses: control, diagnosis and prediction. 
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10.7.2 Shewhart-type control charts 

Principal kinds of Shewhart-type measured data (i.e. variables) charts are shown in Table 24 and attribute 
data charts in Table 25. 

Table 24 — Principal Shewhart-type measured data control charts 

Subgroup size (n) 
 

n = 1 1 < n u 10 n > 10 

Chart X chart MR chart X chart R chart X chart s chart 

Plot point X Moving R X  R X  s 

Centre-line X  R  X  R  X  s  

UCL 2X E R+  4D R  2X A R+  4D R  3X A s+  4B s  

LCL 2X E R−  3D R  2X A R−  3D R  3X A s−  3B s  

NOTE 1 The standard individual and moving range (X and MR) chart would be suitable in those situations where it is only practicable, 
or desirable, to take a single measurement at a time. Examples are process parameters such as temperature or pressure and where 
destructive testing is involved. Moving ranges are constructed from progressive sets of individuals, for example, of size two or greater. 
The constants E2, D3 and D4 are based on the size of the set that constitutes the range. An alternative is to use a moving average and 
moving range chart. Prior to calculating the control limits, the resulting distribution should be checked for normality. The lesser sensitivity 
of the individuals chart, compared with the average chart, for detecting shifts in the level of the process should be noted (see Figure 57). 
An example of a standard individuals chart is shown for fraction silicon in % in Figure 64. 

NOTE 2 The standard average and range chart is recommended for its simplicity, where manual charting is concerned, for subgroup 
sizes up to about 10. However, it should be borne in mind that the range is based only on the two extreme values in a subgroup and its 
efficiency falls off, in comparison with the standard deviation, as the subgroup size increases. An example of a standard average and 
range chart is shown for fabric mass specimens in Figure 58. 

NOTE 3 The standard average and standard deviation chart can be used instead of the average and range for all subgroup sizes 
greater than 1. 

The A, B and D constants depend on the subgroup size. They are tabulated in Annex A. In the case of the moving range chart, the 
equivalent subgroup size is the number of individuals making up each successively plotted range. 

10.7.3 Cumulative sum (cusum) charts 

A cusum is essentially a running summation of deviations from some preselected reference value. The mean 
of any group of consecutive values is represented visually by the current slope. Its principal features are: 

a) its greater sensitivity than the Shewhart-type chart in detecting small changes in the mean; 

b) any changes in the mean, and the extent of the change, are indicated visually by a change in slope of the 
graph: 

⎯ horizontal graph, i.e. zero slope: process is on target or reference value; 

⎯ downwards slope: process mean is less than the reference or target value; the greater the slope the 
bigger the difference; 

⎯ upwards slope: process mean is more than the reference or target value; the greater the slope the 
bigger the difference; 

c) it can be used retrospectively for investigative purposes, on a running basis for process control, and for 
prediction of process performance in the immediate future. 
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Table 25 — Principal Shewhart-type attribute data control charts 

 Events: nonconformities Nonconforming units 

Chart Constant sample 
size: “c” chart 

Variable sample 
size: “u” chart 

Constant sample 
size: “np” chart 

Constant sample 
size: “p” chart 

Plot point C U n⋅p p 

Centre-line c  u  n p⋅  p  

UCL 3c c+  
3 uu

n
+  3 (1 )n p n p p⋅ + ⋅ −  (1 )3 p pp

n
−

+  

LCL 3c c−  
3 uu

n
−  3 (1 )n p n p p⋅ − ⋅ −  (1 )3 p pp

n
−

−  

NOTE 1 There are four types of standard attribute charts:  

⎯ c: number of incidences, events or nonconformities in a sample that is of constant size; 

⎯ u: number of incidences, events or nonconformities per unit in a sample that is of variable size; 

⎯ np: number of nonconforming units in a sample that is of constant size; 

⎯ p: proportion of nonconforming units in a sample that is of variable size. 

The choice of which to use depends on whether the sample size (n) is constant or variable and whether incidences/nonconformities or 
nonconforming units are involved. It is advisable, from the point of view of simplicity, to keep sample sizes constant if possible. 
Incidences/nonconformities charts frequently provide more technical information than nonconforming units ones; however, certain 
logistics information may be lost. For example, if one has 14 nonconformities in a sample of 50 units, it would not be known, from the 
chart, how many units were affected. On the other hand, if 8 units were involved, some with multiple nonconformities, diagnostic 
information would be lost on some nonconformities. 

NOTE 2 The measured data chart is preferred whenever possible. An example would be a diameter, say, which could be checked 
with either a go/no-go gauge or measured with a micrometer. Another illustration is where subjective judgements made on a particular 
characteristic are converted into a rating scale of, say, 1 to 10. This permits the use of a measured data chart rather than an attribute 
one. An example is a scale of 1 to 5 for degree of fabric pilling. 

NOTE 3 This preference is for two principal reasons: one, the measured data chart provides more information, and two, in the quality 
field the attribute chart often requires nonconformities or nonconforming units to occur before plotting can take place. 

NOTE 4 Having made the decision of which type of attribute chart to use, a second choice is either to use a single characteristic chart 
(see Figure 51) or a multiple characteristic chart. The multiple characteristic chart facilitates prioritizing the sources of variation and 
diagnosis with a view to improving process capability. 

NOTE 5 The capability of a standard attribute chart is given by the overall average (centre-line) value; nearly 10 % initially in 
Figure 51, and ultimately improves to less than 1 %. 

NOTE 6 A much larger sample size is needed with attributes charting compared with variables control charting to determine 
significant change in the process. 

NOTE 7 If the LCL calculates to be 0 or negative, there is no lower control limit. 

11 Process capability 

11.1 Overview 

In Clause 10, the performance-based control chart was discussed purely in terms of process control. No 
regard was given to the acceptability, or otherwise, of the characteristic in respect to an imposed standard of 
performance. A further important technical role of the performance-based control chart is the provision of the 
basis for the assessment of process capability against the requirements of a specification and for the 
formulation of standardized benchmarks of performance. The four states of any process are shown in 
Table 26. 
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Table 26 — The four possible states of any process 

Control (stability)  

Not ok Ok 

Not ok 
eliminate special causes 

reduce common causes 
reduce common causes Capability 

(performance) 

Ok eliminate special causes ideal situation: monitor at low level 

 

The performance-based control chart provides answers to the following three significant business questions. 

⎯ Question 1: Is the process in control? This is directed, primarily, at operational people working in the 
process. If not in control, there is a need to seek out and eliminate detrimental special cause variation. 

⎯ Question 2: What is the process capability in relation to the specified requirement or customer 
expectation? This is directed, primarily, at technical people responsible for the process. If this is not at an 
acceptable level, there is a need to make fundamental changes to the process to reduce common cause 
variation, to use a more capable process or to relax the specification. 

⎯ Question 3: Is there evidence of improvement? This will be signalled as follows: 

⎯ in a measured data chart, by an “out-of-control” movement in the mean towards the preferred value 
and/or an “out-of-control” reduction in the within-subgroup variation indicated by the range or 
standard deviation chart; 

⎯ in an attribute chart by an “out-of-control” change in the mean towards the preferred value: seven 
consecutive points below the centre-line (rule 2) in the case of the plot of nonconformities in 
Figure 51. 

This is directed, primarily, at management who, in a best practice organization, are responsible for the 
continual improvement of processes. 

11.2 Process performance versus process capability 

ISO 3534-2 distinguishes between process performance and process capability as follows: 

a) process performance and its related Pp (Performanceprocess) indices relate to the statistical estimate of 
the outcome of a characteristic from a process that may not have been demonstrated to be in a state of 
statistical control in relation to that characteristic; whereas 

b) process capability and its related Cp (Capabilityprocess) indices have an identical definition, with the 
exception that here the process has been demonstrated to be in a state of statistical control. 

Arising from these international definitions, process performance measures are preliminary indicators confined 
to early development activities in developing the potential of new processes or more mature processes that 
are not in a state of statistical control. They are thus unrelated to the quality of product, process or service 
offered to the ultimate customer. Concentration here is therefore focused on process capability measures that 
are based on prior demonstration of process stability. Having stated that the calculations associated with 
process capability are identical to those of process performance, the significant difference is the stability of the 
data used in the calculations and the reliability of subsequent predictions. 
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11.3 Process capability for measured (i.e. variables) data 

11.3.1 General 

Process capability is calculated for a particular process parameter or product characteristic only after process 
stability has been confirmed and the distribution pattern of individual values has been determined. 

The confirmation of process stability is first established from a control chart. Only then may reliable predictions 
be made and the distribution pattern be determined by recourse to tally charts, histograms, probability papers 
or computer-based distribution techniques. 

11.3.2 Estimation of process capability (normally distributed data) 

For normally distributed data from a stable process, an estimate of the capability of a particular characteristic 
is given by the formula: 

X ± (z ⋅ s) 

where 

X  is the overall mean; 

z is the chosen constant, often equal to 4; 

s is the estimated standard deviation of individuals. 

EXAMPLE  If data taken from a stable process exhibits a normal pattern of variation and X  = 10,01, z = 4 and 
s = 0,01, then the estimated capability is quoted as:  

10,01 ± 0,04  

EXAMPLE within which (from Table 7) nearly 99,994 % of values are predicted to lie (as 2 × 32 parts per million are 
expected outside of this range of values). 

If, on the other hand, the capability standard is less stringent and z is taken to be 3, then the estimated capability is quoted 
as: 

10,01 ± 0,03  

within which 99,73 % of values are expected to lie. 

Capability can then be referenced to any imposed specification limits and the proportion expected outside of 
these limits estimated using Table 7. For instance, if the specification is 10,00 ± 0,04: 

⎯ enter Table 7 at z = ( )U X
s
− = (10,04 − 10,01)/0,01 = 3, to give 0,135 % above the upper specification limit; 

⎯ enter Table 7 at z = ( )X L
s
− = (10,01 − 9,96)/0,01 = 5, to give 0,3 parts per million below the lower 

specification limit. The pictorial expression of this is shown in Figure 59. 
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Key 

1 mean 
2 CL 

X data 
Y function value of probability density 

NOTE 1 Mean = 10,01; s = 0,01; Specification = 10 ± 0,04 

NOTE 2 CL = centre-line = mid-distance between upper specification limit (U) and lower specification limit (L) 

Figure 59 — Graphical comparison of process capability with specified tolerance 

It can be seen that the choice of z does not affect the proportion of values predicted to lie outside of the 
specified tolerance. However, if z = 3, rather than z = 4, is mandated as a minimum standard, the implication is 
that, provided the capability expressed by 10,01 ± 0,03 lies within the specified tolerance band, the process 
capability is acceptable. For z = 4, this becomes 10,01 ± 0,04. In other words, with z = 3, up to 0,135 % is 
tolerated outside each specification limit as opposed to 32 parts-per-million with z = 4. Thence in the example: 

⎯ if z = 3 is the minimum reference standard, the process is deemed capable; 

⎯ if z = 4 is the minimum reference standard, the process is deemed incapable. It can be made capable by 
either reducing the standard deviation from 0,01 to 0,007 5, by adjusting the mean from 10,01 to 10,00 or 
by changing the specification. 

11.3.3 Estimation of process capability (non-normally distributed data) 

11.3.3.1 General 

From the central limit theorem, it is known that averages of subgroups tend to normality as the subgroup size 
increases. However, many processes quite naturally produce patterns of variation for individuals that are non-
normal. For example, dimensions with a natural zero such as eccentricity, parallelism and taper are likely to 
be skewed. So are such things as times to pay, arrival times and length of time to resolve a query. Similarly, 
there may be patterns that have natural upper bounds and thus produce a negatively skewed distribution. It is 
essential that any statistical statement of capability be based upon the pattern of variation exhibited by the 
process. 

Statistical expressions for capability of non-normal distributions are best expressed in probability terms rather 
than in terms of standard deviations. 
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A typical expression of capability for a skew distribution, equivalent to the ± 3 standard deviations for the 
normal distribution, would be: 

mean 
 range of values between the mean and upper 0,135 distribution percentile
 range of values between the mean and lower 0,135 distribution percentile

+
−

 

This is indicated graphically in Figure 60. 

 

Key 

1 mean 
2 0,135 % below the lower specification limit 
3 0,135 % above upper specification limit 

X data 
Y function value of probability density 

Figure 60 — Illustration of the estimation of capability with a skew distribution 
(equivalent to a range of ± 3σ in a normal distribution) 

A simple graphical procedure is the use of an appropriate probability paper. See 5.3.7 and 5.3.9.4. 
Alternatively, good SPC computer programs use distribution-fitting routines. 

11.3.3.2 Example of assessing process capability of a skew distribution using probability paper 

An example will best illustrate the procedure. The data of Table 27, relating to the measurement of silicon 
through the tap hole of a blast furnace, are to be used. 
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Table 27 — Values of fraction silicon in % taken in sequence from a blast furnace 

0,13 0,15 0,19 0,22 0,20 0,20 0,18 0,26 0,40 

0,10 0,22 0,29 0,18 0,13 0,16 0,28 0,34 0,20 

0,19 0,21 0,28 0,25 0,15 0,22 0,23 0,32 0,20 

0,22 0,24 0,21 0,19 0,12 0,31 0,24 0,30 0,42 

0,45 0,19 0,29 0,22 0,21 0,18 0,18 0,31 0,31 

0,25 0,22 0,15 0,17 0,22 0,16 0,22 0,31 0,36 

0,13 0,15 0,32 0,15 0,23 0,14 0,31 0,27 0,27 

0,14 0,17 0,20 0,18 0,34 0,16 0,25 0,12 0,36 

0,25 0,22 0,30 0,15 0,32 0,19 0,31 0,24 0,27 

0,23 0,25 0,19 0,11 0,18 0,34 0,45 0,40 0,21 

NOTE Sequence of readings: first read downwards in column 1, then downwards in column 2, etc. 

 

The tap hole of a blast furnace is opened at 3-hour intervals and the fraction silicon in % is measured and 
recorded. Ninety of these values, taken in sequence, are shown in the table. (Data reference: ISO 11648-1 
[43].) 

Before carrying out any detailed calculations, it is always advisable to do some plotting of the data. A simple 
dot plot is shown in Figure 61 and there appears to be a longer positive tail or positive skewness. A normal 
probability plot follows in Figure 62, which casts severe doubt that the distribution is normal. 

 

Key 

X fraction silicon, in % 
Y number of observations 

Figure 61 — Dot plot for percent of silicon data showing overall pattern of variation 

A simple transformation is to make a log transform of the data. The probability plot of the log transform in 
Figure 63 shows essentially a straight line of the data. 

Although other transformations may be applicable, the log transform is easily understood. Thus, further 
analysis of the data will be on the log transform. An individual’s control chart in Figure 64 is shown next.  

A detailed analysis will not be made of the control chart other than to state that there probably are more trends 
seen than would be expected if the process were in perfect control. An EWMA (exponentially weighted moving 
average) chart and a CUSUM chart confirm this. 
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Further examination of the original data and of the log transformed data: The mean of the original data is 
0,234 and its median is 0,220. If the log transform is an appropriate transform, then the mean of the log 
transformed data, when converted back to original units, should be essentially the same as the median of the 
original data. The mean of the log data is −1,5083 and 1,5083e− = 0,221! Very good. 

Working with the log-transformed data, the approximate Cp limits can be calculated and then converted back 
to the original units. The results are: 0,08 and 0,60. However, since these are based on only 90 data points, 
they should be used with great caution. 

When the data are non-normal, it is always a challenge to find an appropriate transformation to ease many of 
the necessary calculations. The challenge of finding that transformation is beyond the scope of this Technical 
Report, but there are excellent textbooks available to help. Likewise, some of the modern statistical software 
packages can be of great aid. 

 

Key 

X fraction silicon, in percent 
Y percent 

Figure 62 — Probability plot for percent of silicon data showing overall pattern of variation 
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Key 
X logarithm of fraction silicon, in percent 
Y percent 

Figure 63 — Probability plot for the logarithm of percent of silicon data 
showing overall pattern of variation 

 
Key 
X observation number 
Y logarithm of fraction silicon, in percent 

Figure 64 — Individuals control chart of ln percent of silicon with limits 
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11.4 Process capability indices 

11.4.1 General 

Process capability indices provide simple standardized metrics, in worldwide use, which assess the capability 
of measured characteristics in relation to specified requirements. The application of these indices is growing 
rapidly with an increasing number of customers requiring documented proof of first time quality through: 

⎯ the achievement and demonstration of appropriate control chart stability, together with; 

⎯ the realization and confirmation of minimum value capability indices for significant process parameters 
and product characteristics. 

Of equal consequence is the use of SPC and capability indices to provide suppliers themselves with the 
means to use “first time quality health profiling” as a business tool within their organization and those of their 
subsuppliers. 

Originally, capability indices were intended for use with normally distributed data. Unfortunately, there are 
those who still calculate and declare indices based on normality even when the distribution is patently non-
normal. This has arisen, to a large degree, by the equations for the indices often appearing to be generic 
when indeed they are specific to the normal distribution. 

Discussion of specific capability indices is confined to standardized ones that are in general use. 

11.4.2 The Cp index 

The Cp process capability index relates a standardized process spread to the specified tolerance interval. It 
does not take the location (e.g. mean) of the distribution into account. Generically, for a process in control, it is 
given by: 

p
Permissible range of values Specified tolerance =   

Actual standardized range of values (99,865 percentile 0,135 percentile)
C =

−
 

NOTE The Cp index is referenced worldwide, quite arbitrarily, against the probability equivalent to 6 standard 
deviations for the normal distribution. Figure 60 indicates the significance of the 99,865 and 0,135 percentiles. 

For a normal distribution, this expression reduces to: 

p
Specified tolerance

6 standard deviations 6 standard deviations
U LC −

= =  

As Cp does not take the location of the distribution into account, it provides a value for the relative capability of 
a centred process. For a non-centred process, it represents the potential capability of the process parameter 
or product characteristic. Hence Cp should always be used in conjunction with other indices that do take 
location into account. 

The minimum acceptable value of Cp will depend on the appropriate customer contractual requirement or 
benchmark set internally by the supplier for a given application. In some business sectors Cp W 1,33. For a 
centred process having a normal distribution, a Cp of 1,33 can be expected to give rise to 32 parts per million 
above and 32 parts per million below specification limits. Substitution in the equation: 

p
Specified tolerance

6 standard deviations 6 standard deviations
U LC −

= =  
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indicates that: 

⎯ a Cp of 1,33 equates to: U − L = 8 standard deviations. If centred and normal, from Table 7, this can be 
expected to give rise to 32 parts per million above and 32 parts per million below specification limits; 
namely, nearly 99,994 % conforming to specification; 

⎯ a Cp of 1,00 equates to: U − L = 6 standard deviations. If centred and normal, this will give rise to 0,135 % 
above and 0,135 % below specification limits; namely 99,73 % conforming to specification. 

Table 28 — Factors for calculation of the 95 % lower confidence limit, Cp min, of Cp 
for various numbers of subgroups and subgroup sizes 

Number of subgroups Subgroup 
size 1 5 10 20 30 

3 0,255 0,631 0,735 0,811 0,845 

4 0,369 0,697 0,783 0,845 0,873 

5 0,443 0,735 0,811 0,865 0,890 

6 0,494 0,760 0,829 0,879 0,901 

7 0,533 0,779 0,843 0,888 0,908 

8 0,562 0,793 0,853 0,895 0,914 

9 0,586 0,804 0,861 0,901 0,919 

10 0,605 0,813 0,867 0,906 0,923 

Cp is an estimate. It is thus subject to sampling variation. Strictly speaking, confidence intervals should be 
computed to provide a range of Cps that include the true Cp with a given probability. A centred process is then 
deemed capable if the minimum acceptable Cp W lower confidence limit. In practice, it is the exception rather 
than the rule to use such confidence limits. Table 28 (from Li, Owen and Borrego) [107] provides values with 
which to factor the estimated Cp to obtain the 95 % lower confidence limit, Cp min, of Cp for a range of 
subgroup sizes in terms of number of subgroups. 

Multiply the tabulated value by the Cp estimate to obtain the 95 % lower confidence limit, Cp min, of Cp. 

EXAMPLE Cp has been calculated as 1,60, based on the average subgroup range of 20 subgroups of 5, for a stable 
process having a normal distribution. 

From Table 28, Cp min (at the 95 % confidence level) = 0,865 × 1,60 = 1,38 

11.4.3 The Cpk family of indices 

There are three indices from the Cpk family in general use. These are: 

pk
mean

Range between mean and upper 0,135 distribution percentileU
UC −

=  

pk
Mean

Range between mean and lower 0,135 distribution percentileL
LC −

=  

Cpk = Minimum of pkUC  and pkLC  
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For a normal distribution, pkUC  and pkLC  reduce to: 

pk
mean

3 standard deviationsU
UC −

=  

pk
Mean

3 standard deviationsL
LC −

=  

The Cpk family of indices relates both the process variability and the location (setting) of the process to 
specification limits. 

CpkU is an index that relates process variability and location to the upper specification limit, whereas pkLC  
relates process variability and location to the lower specification limit. This is shown graphically in Figure 65. 

For a single-sided specification limit, only one of these indices can be calculated. Knowing CpkU and/or CpkL, 
the proportion lying outside a specification limit can be determined using Table 28. 

Cpk, the lowest of CpkU and/or CpkL, is sometimes quoted alone as a minimum standard in contractual 
requirements. Typical such values are: 

Cpk W 1,33 

However, it should be borne in mind that Cpk, on its own, gives no indication of the direction in which the 
process is biased, if at all; the location of the distribution; or the extent of the variation. It thus degrades the 
information conveyed. This is particularly relevant to a supplier if the penalty of transgressing one limit is 
different from transgressing the other. Such a situation could arise, for example, with a characteristic such as 
a length; too short could give rise to scrap and too long to less expensive reworking. Neither is the preferred 
value always on nominal: for example, if minimum is best then one would aim for the minimum acceptable 
CpkL whilst, at the same time, maximizing Cp and CpkU. 

In practice, the minimum standard for CpkU and CpkL is often taken to be 1,33. However, this will depend on 
contractual requirements or self-imposed benchmarks currently in place in a given sector or organization. 

These indices are becoming more widely used: 

⎯ by customers for supplier process certification/accreditation in certain industrial sectors (for example, 
automotive and aerospace sector technical requirements); 

⎯ by suppliers to provide quality health profiles for their organizations. A typical example of such a profile is 
shown in Table 29. 
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Key 

X standard deviations 
Y probability density 

Figure 65 — Relationship between Cp and CpkU and CpkL for two sets of process variability 
and locations of specification limits 

To avoid confusion, or worse, it is recommended that any statement of capability using these indices should 
contain at least five items of information, viz. Cp, CpkU, CpkL distribution shape and an indication of the 
preferred value, namely maximum, minimum or nominal is best. Table 29 provides such information. 

As Cpk is an estimate, from a statistical viewpoint, it should be qualified by confidence bounds between which 
the true value is expected to lie. In such cases, frequently the lower confidence limit only is quoted. Table 30, 
from Chou, Owen and Borrego [80], provides such limits for a range of sample sizes and values of Cpk. 
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Table 29 — Steel works quality health profile for selected process characteristics 

Capability Characteristic Aim In control Distribution

pkLC  Cp pkUC  

Silicon nominal yes skew 1,3 1,0 0,9 

Aluminium nominal yes normal 1,4 1,5 1,6 

Teeming temperature nominal yes normal 1,3 1,3 1,3 

Teeming time nominal yes normal 1,6 1,7 1,8 

Injuries per workforce 
per week minimum yes attribute 0,73 %   

Cobbles minimum yes attribute 0,14 %   

Billet rhomboidity minimum yes normal 2,4 — — 

Time to charge minimum no bi-modal disparity between steelmen a 

a Subject of investigation. 

 

Table 30 — Approximate 95 % lower confidence limits for Cpk 

Estimated Cpk Sample size, n 

 20 30 40 50 100 200 300 

1,0 0,66 0,72 0,76 0,79 0,85 0,89 0,91 

1,2 0,81 0,88 0,93 0,95 1,03 1,08 1,10 

1,4 0,95 1,04 1,09 1,12 1,20 1,26 1,29 

1,6 1,10 1,20 1,25 1,29 1,38 1,45 1,47 

1,8 1,25 1,35 1,41 1,46 1,56 1,63 1,66 

2,0 1,39 1,51 1,58 1,62 1,74 1,81 1,85 

 

The confidence limits are given for a normal distribution in terms of estimated Cpk and sample size. 

11.4.4 The Cpm index 

11.4.4.1 Current specification practice versus optimal design values 

The point value of a measured characteristic expressed in a design specification is intended to reflect 
preferred value. This focus has been diffused by two practices: 

⎯ the setting of acceptable tolerances around the preferred value to reflect the presence of some variation 
in the realization process, for example, 20,0 mm ± 0,1 mm; 

⎯ the quoting of the range of permissible values, for example, 20 Nm to 80 Nm, without any reference to a 
preferred value. This leaves it open as to whether nominal, minimum or maximum is best. 

These practices can give rise to two types of response: 

⎯ no emphasis or regard is placed on achieving preferred value: the “goal post mentality” prevails; namely, 
anything within the specified tolerance represents acceptable, or even premium quality; 
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⎯ aiming at a value that is most cost effective from the supplier's point of view, often to the detriment of the 
customer. If this is coupled with a drive to minimize variation in the process to maximize the gain to the 
supplier, then this can be even more detrimental to the customer. An example would be to offset the aim 
of the process towards the specification limit that provides the greatest saving in material. As an 
illustration, a garment manufacturer who buys wool by the kilogram could knit more jumpers or cardigans 
per kilogram if the wool is on the thinner side (higher “count” wool) of the specified tolerance. Whilst this 
would be cost advantageous to the manufacturer, it would be to the detriment of the retailer and of the 
ultimate wearer. 

11.4.4.2 Expression for Cpm index 

An index, Cpm, has been devised to provide a single quantitative measure of diminished utility that can arise in 
terms of process offset from preferred value and the extent of process variability. 

pm 2 26 ( )

U LC
s X T

−
=

+ −
 

where 

s  is the sample standard deviation; 

X  is the process mean; 

T  is the target value. 

When , .pm p X T C C= =  As the mean drifts from the target and/or the standard deviation increases, the Cpm 
value declines. 

Thus Cpm is a measure of both process spread and level in relation to the target value. The use of Cpm 
refocuses on the targeting of optimal values rather than a degraded minimum requirement of conformance to 
specified tolerances. The Cpm index is based on some fundamental loss concepts as illustrated in Figure 66. 

11.4.4.3 Basis of Cpm index 

Quality is frequently defined as “conformance to specification”. Traditionally, such specifications for measured 
characteristics embrace an allowable tolerance band. This widely practiced approach is based on the “goal 
post” mentality, as indicated in Figure 66. 

In terms of loss function it assumes, in the model of Figure 66 a), that there is no loss for values of a 
characteristic anywhere within a specified tolerance band, but there is an incremental loss for those beyond 
the specification limits. 

The implications of this mind set are the following. 

a) All characteristic values within the specified tolerance range are equally acceptable so there is no or little 
incentive to aim at an optimal design value; namely, it produces a mindset that inhibits quality 
improvement. However, it does enable clear-cut decisions to be made about conformity. 

b) Exploitation of a) is acceptable to the detriment of the customer. One example of deliberately offsetting 
the process to achieve gain to the supplier at the expense of the customer has already been given in 
11.4.4.1 for the wool garment manufacturer. Another illustration of this exploitation of relatively low 
process variation relative to specified tolerance is the practice of permitting the process mean to drift 
across the specified range. This can arise fortuitously due to lack of statistical control of a process or 
deliberately in situations, for instance, involving physical tool wear or progressive diminishing in the 
strength of a solution. In such cases, this will result in marginally acceptable characteristics at the start 
and end of each cycle of tool replacement or topping up. Such practices frequently give rise to a decrease 
in utility to the customer. 
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This goal post mentality model is contrasted with the Taguchi [127] economic loss model shown in 
Figure 66 b). To obviate the need for extensive calculations for each and every design characteristic, Taguchi 
advocates the use of a generic quadratic loss function. The resulting parabola has its minimum point at zero at 
the optimal design value and rises on either side in proportion to the square of the distance from the preferred 
or target value. This quadratic loss function can be conveniently split into two elements: 

⎯ the process variance, σ 2 ; 

⎯ the square of the offset of the process mean from the target, Tµ − 2( ) .  

 

a) “Goal post” loss function model 

 

Key 
X value 
Y loss 

b) Taguchi generic loss function model 

Figure 66 — Comparison of conformance to toleranced specification with optimal value approach 
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Thence, the loss is equal to k k Tσ µ+ −2 2( ) , where k is the loss parameter. This gives rise to the function for 
Cpm. 

Complications arise in the use of Cpm if the optimal value is not the mid-point between specification limits, if 
the distribution is non-normal or if the process is not under statistical control. 

Although the generic quadratic loss function may be difficult to quantify in specific instances, one should not 
lose sight of the very important message it conveys. That is that: 

Quality as perceived by a customer is not a go/no-go situation. There is an optimum or target value. As a 
characteristic varies from this point, the perception of quality progressively deteriorates until at some point, 
possibly a specification limit, the condition becomes untenable. 

A simple example of this is ambient temperature. Although in an industrial situation there may be statutory 
maximum and minimum values laid down, any deviation from the perceived ideal value may cause a degree 
of discomfort depending on the extent of that deviation. 

11.5 Process capability for attribute data 

The capability of an attribute process is obtained simply from the centre-line of the attribute control chart of a 
stable process. It is typically expressed as: 

a) average nonconformities or faults per unit for c and u charts; 

b) average proportion of units nonconforming for p and np charts. 

Removing special causes of variation from an attribute process, through elimination of sporadic causes of 
variation, restores the status quo. It does not improve it. 

A process in statistical control reflects systemic causes of variation, the extent of which is indicated by the 
status quo or on-going level of performance, namely the capability of the process. Reduction of systemic 
causes demands fundamental changes in approach to that adopted for the removal of sporadic causes. An 
example of this is shown in Figure 51. Changing the capability to a more favourable value improves attribute 
process performance. This is seen to be achieved when the level of performance moves significantly (shown 
by an “out-of-control” control chart) towards the preferred or targeted value of capability. This preferred value 
is frequently zero where nonconformities or nonconforming items are concerned. However, the targeted value 
should be realistic and reflect the specific diagnostic and improvement programme established to achieve it. 

EXAMPLE Printed circuit boards of a particular type are assembled in batches of 25 units. These are 100 % 
inspected in assembly sequence and the number of nonconformities/faults per batch recorded. The results of 60 such 
batches are shown in Table 31. Determine the capability of the printed circuit board assembly process. 
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Table 31 — Faults per batch on printed circuit boards (60 batches of 25) 

Batch no. Faults Batch no. Faults Batch no. Faults 

1 3 21 0 41 1 

2 2 22 3 42 0 

3 1 23 3 43 2 

4 3 24 3 44 4 

5 1 25 0 45 7 

6 2 26 2 46 4 

7 5 27 3 47 4 

8 3 28 3 48 3 

9 0 29 4 49 0 

10 4 30 2 50 2 

11 2 31 3 51 1 

12 6 32 1 52 3 

13 4 33 1 53 1 

14 0 34 2 54 3 

15 4 35 0 55 3 

16 5 36 3 56 4 

17 5 37 4 57 0 

18 1 38 2 58 1 

19 3 39 4 59 2 

20 5 40 3 60 3 

The attributes control chart for this data shown in Figure 67 is seen to be in statistical control. Hence, 
capability may be calculated from the control chart mean. This is given as 0,102 faults per unit. 

A plot is also shown in Figure 67 of cumulative faults per unit. In practice, it is recommended that this figure be 
plotted as well as the control chart to determine whether or not the capability value has stabilized. It is seen 
that it starts to stabilize at about the 35th batch in this particular case. Any prediction of capability prior to this 
could be unreliable. 
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a) SPC chart — Faults per unit (FPU) 

 

b) Cumulative FPU 
Key 

1 overall average FPU, 0,102p =  

2 PCB capability = 0,102 

X batch number 

Y FPU 

NOTE 1  The SPC chart is a plot of number of faults per batch divided by batch size, namely faults per unit or faults per 
printed circuit board. Hence the first point plotted is 3/25 = 0,12, the second point plotted is 2/25 = 0,08 and so on. 
Denoting the overall average FPU by p , the upper control limit is given by: 

UCL = (1 ) 0,102 0,8983 0,102 3 0,283 6
25 25

p pp − ×
+ = + =  

NOTE 2  The faults per unit (FPU) chart is a plot of the cumulative faults per unit. Hence the first point plotted is 
3/25 = 0,12, the second one is (3 + 2) / (25 + 25) = 0,10, the third one is (3 + 2 + 1)/(25 + 25 + 25) = 6/75 = 0,08, and so 
on. 

Figure 67 — Printed circuit board faults SPC chart and cumulative faults per unit (FPU) chart 
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In summary: 

1) the control chart confirms that the process is in a state of statistical control and provides a value of 
the overall mean; 

2) the cumulative chart indicates when enough data has been collected to provide a stable estimate of 
the process capability. 

12 Statistical experimentation and standards 

12.1 Basic concepts 

12.1.1 What is involved in experimentation? 

An experiment involves changing things that are believed to have an effect on the performance of the process, 
product or service. By changing from one set of conditions to another, to a predetermined pattern, the actual 
effect can be estimated. In an experiment: 

a) the things that are changed are called factors; 

b) the conditions to which the factors are changed/set are known as levels; 

NOTE The term “level” is normally associated with a quantitative characteristic such as temperature, in which case 
differing experimental levels could be 200 C°  and 220 C,°  say. In experimentation, it also serves as the term describing 
the setting of a qualitative characteristic, for example, the absence or presence of a catalyst, compound A or compound B 
and matt or gloss ink base. 

c) the value of the performance characteristic outcome is called the response; 

d) the change in the response as a result of a change in factor level is termed an effect. 

12.1.2 Why experiment? 

Experimentation has many practical uses. It enables one to determine how standards of performance, 
dependability, acceptability and affordability of products and services, processes, materials and mixtures are 
influenced by: 

a) features of products and services (e.g. tolerances, nominal values); 

b) parameters of processes (e.g. temperature, pressure); 

c) properties of materials (e.g. hardness, machinability); 

d) formulations of mixtures (e.g. of alloys, fuels, concrete, cloth). 

Whilst experimentation plays a major role in problem solving, there is a need to progressively shift the 
emphasis to its integration in the mainstream activities of design and development. Genichi Taguchi [128] has 
proposed a two-step approach, which uses experimentation to “tune in” a basic prototype design, which he 
terms “parameter” design and “tolerance” design. 

Parameter design is concerned with the identification and exploitation of three types of design factor: 

⎯ control factors: those that affect the variability of the response; 

⎯ signal factors: those that affect only the level of the response; 

⎯ null factors: those that do not materially affect either the variability or level of response. 
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Firstly, control factors are identified and adjusted to achieve design “robustness”. A robust design is one that 
is insensitive to so-called noise factors that are impossible, inconvenient or impractical to manage. 

Examples of noise factors are: environmental, ambient temperature, humidity, vibration, supply tension and 
dust; deterioration, wear, drift and fatigue; and imperfections in manufacture, delivery or use, deviations from 
nominal. 

Secondly, signal factors are adjusted to bring the response on target. 

Thirdly, the null factors are adjusted to the most economic level. 

The overall effect in identifying and setting nominal values of design factors in this way is to achieve optimal 
performance over a wide range of conditions with economy. 

Tolerance design is concerned with specifying the most liberal tolerances and controls to meet a given 
performance. This is achieved by experimentation that seeks to take advantage of any non-linear relationship 
between factors and responses. 

12.1.3 Where does statistics come in? 

Today's statistical experimental designs emanate from R.A. Fisher's [90] work in England in the 1920s. Prior to 
this, it was deemed scientifically sound to conduct a multi-factor experiment by varying the level of one factor 
at a time, keeping the levels of all other factors constant. Fisher introduced the concept of a factorial 
experimental design in which all factors are varied simultaneously. The principal motivators for using such 
statistically designed experiments include: 

a) increase in information for a given number of experimental runs, including the separation of main effects, 
interactions and experimental “noise”; 

b) potential for cost and time savings through the reduction in the number of experimental runs required for 
a given effectiveness and the ability to plan and execute tests more efficiently; 

c) ability to predict optimal combinations of factor levels even when they do not form part of the actual 
experimental plan; 

d) ability to adopt a sequential rather than a one-shot approach; 

e) relative ease of analysis and interpretation of the results. 

12.1.4 What types of standard experimental designs are there and how does one make a choice of 
which to use? 

12.1.4.1 Full factorial experiments 

Full factorial experiments in the form of orthogonal (balanced) arrays are well suited for determining the extent 
to which the effect on the response of a change in level of a factor differs at different levels of other factors. 

However, when the number of factors and/or their levels become large, the size of a full factorial experiment 
can become prohibitively large. For example, to test all combinations of 6 factors each at 4 levels would 
require a minimum of 46 = 4 096 experimental runs. Additional runs would still be required to investigate 
variation in the response at each combination and to estimate experimental noise. In such an event, fractional 
factorial designs often provide an economic solution that is technically adequate, particularly in situations 
where higher order interactions or non-linearity can be safely ignored. 
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12.1.4.2 Fractional factorial experiments 

12.1.4.2.1 General 

Fractional factorial designs stem from the work of Tippett, Finney and Rao in the 1930s and 1940s. More 
recently, they have been popularized by Taguchi [128]. A number of orthogonal arrays are available together 
with simple, mainly pictorial, instructions for selection, application and analysis. The versatility of the most 
popular basic two-level orthogonal array is shown in Table 32. It is seen that if technical considerations 
indicate that some interactions are not likely to be important, then considerable economy in experimental effort 
is possible. At least a three-level design is required to investigate non-linearity. 

The L8 design of Table 32 is a standard orthogonal (balanced) array with seven columns and eight rows. 
Factors A, B, C, etc. can be assigned to the columns. Factor levels are indicated by a 1 or a 2. In some texts, 
minus and plus signs are used instead. Each row indicates a combination of factor levels to run in the 
experiment. The design is such that four independent estimates can be made of the effect of each factor on 
the response, at each level, under different operating conditions of other factors. These four estimates can 
then be averaged for each factor level. This is illustrated in the design validation and development example 
given later within this subclause. 

In using these factorial designs, a number of features need to be considered. 

a) The statistical desirability of randomizing the run sequence to protect against bias due to factors not 
included in the experiment. For example, without randomization, take the situation if the first two runs of 
L8 were performed on Saturday morning, the next two on Saturday afternoon with the further four runs 
done similarly on Sunday. It would not be possible to separate out the day-to-day effect present in 
column 1 from the factor A effect. Statisticians would say the effects are confounded. Neither would it be 
possible to separate out the morning to afternoon effect in column 2 from the factor B effect. On the other 
hand, operational interests would prefer to retain the order given in Table 32 if some factor levels are 
more difficult to change than others. The most difficult factor to change would be put into column 1, which 
has the minimum number of changes and the easiest factor to change in column 4, which has the 
maximum number of changes. Hence the actual run order will often be based on a trade-off between 
statistical and operational considerations. 

b) Replication/repetition of the experiment for each specified combination of factor levels. This is desirable 
for two principal reasons: one, to estimate the value of any noise or error and; two, to provide a measure 
of the variability of the response at each combination. The latter is required if the aim of the experiment is 
to optimize the response with minimum variation. 

c) Sequential experimentation, as opposed to one-shot experiments. This is possible with the L8 design. 
This flexibility facilitates the building of knowledge as the experiment progresses in order to meet the 
experimental objectives with the minimum of effort and cost. For instance, if the L8 does not yield the 
information required, say, with four or seven factors, it may be extended into an L16, which has 15 factor 
columns and 16 runs. 

12.1.4.2.2 Design validation and development example 

This example shows an application of experimental design 2 of Table 32. It has two roles; one, as a design 
validation tool to determine the suitability of a sintered part for a particular application and two, as a 
development tool in the sense of searching for preferred operating conditions. Four design factors were 
investigated each at two levels as indicated in Table 33. 

The experimental layout chosen uses columns 1, 2, 4 and 7 of a standard L8 array. Strength of fit, in kN, at 
minimum interference conditions was recorded for each part subjected to each experimental combination. 

Three parts were used for each run in order to separate out means from variation in order to permit a search 
for design factors that would enhance mean strength (signal factors) and those that would reduce variation 
(control factors). Variation is expressed in terms of standard deviation. The results are shown in Table 34. 
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Table 32 — Alternative useful designs with the “Taguchi” (Lattice) L8 two-level array 

L8 lattice Column for factors 

 1 2 3 4 5 6 7 

                  1 1 1 1 1 1 1 1 

                  2 1 1 1 2 2 2 2 

                  3 1 2 2 1 1 2 2 

 Run no.    4 1 2 2 2 2 1 1 

                  5 2 1 2 1 2 1 2 

                  6 2 1 2 2 1 2 1 

                  7 2 2 1 1 2 2 1 

                  8 2 2 1 2 1 1 2 

Design 1:        
full factorial 3-factor        
design with all  A B  C    
interactions isolated    AB  AC BC ABC 
Design 2:        
4-factor design with A B  C   D 
main effects clear of        
all 2-factor   AB  AC BC  
interactions   CD  BD AD  
Design 3:        
7-factor design with A B C D E F G 
each factor   AC AB AE AD AG AF 
confoundeda with BC   BF BG BD BE 
2-factor    CG CF CE CD 
interactions (only 2 DE DF DG     
factors shown)   EG EF     
 FG       
a A factor is said to be confounded with another factor, or factors, when their separate effects 
cannot be isolated. 

 

Table 33 — Sintered part design factors and their levels 

Design factor Level 1 Level 2 

A. Surface finish Fine turned Microlled 

B. Lubrication Yes — number 2 oil No 

C. Speed Low High 

D. Density 6,5 6,8 
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Analysis is carried out as follows. An effect on the mean is given by: 

1 2A A− = (9,90 + 8,41 + 13,97 + 9,91)/4 − (9,95 + 8,79 + 15,16 + 10,33)/4  

 = 10,55 − 11,06 = − 0,51 

This indicates that the estimated effect of surface finish change from microlled to fine turned is to reduce the 
mean push-off strength by 0,51 kN. 

Such analysis continues for the other effects in terms of both the mean and standard deviation. Conclusions 
are shown graphically in Figure 68. 

Table 34 — Results from the runs on sintered part experiment 

Run A B C D Result 1 Result 2 Result 3 Mean Standard deviation 

1 1 1 1 1 12,70 7,27 9,74 9,90 2,72 

2 1 1 2 2 9,41 8,52 7,29 8,41 1,06 

3 1 2 1 2 12,61 15,19 14,11 13,97 1,30 

4 1 2 2 1 13,99 7,65 8,10 9,91 3,54 

5 2 1 1 2 10,36 10,45 9,05 9,95 0,78 

6 2 1 2 1 7,45 8,90 10,02 8,79 1,29 

7 2 2 1 1 16,80 14,76 13,92 15,16 1,48 

8 2 2 2 2 11,52 13,92 10,33 10,33 0,74 

 

Subfigures a) and b) of Figure 68 illustrate that: 

a) mean push-off strengths are influenced primarily by lubrication and speed: no lubrication and low speed 
producing the highest mean results; 

b) variation is influenced primarily by surface finish and density: microlled and high density giving the lowest 
standard deviation. 

The preferred conditions are seen, relative to average experimental results, to increase the mean strength by 
34 % and reduce the variation by 53 %. 
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Key 

1 fine turned 
2 microlled 
3 yes – number 2 oil 
4 no 
5 low 

6 high 
7 surface finish 
8 lubrication 
9 speed 
10 density 

X design factor Y mean push-off strength, in kN 

a) Effect of lubrication and speed on mean push-off strength 

Figure 68 (continued) 
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Key 

1 fine turned 
2 microlled 
3 yes – number 2 oil 
4 no 
5 low 

6 high 
7 surface finish 
8 lubrication 
9 speed 
10 density 
 

X design factor Y standard deviation of push-off strength, in kN 
 

b) Effect of surface finish and density on standard deviation of push-off strength 

Figure 68 — Effect of lubrication, speed, surface finish and density on push-off strength 

12.1.4.2.3 Problem-solving example 

This example illustrates the application of experimentation to problem solving where it is not possible to 
measure results, but simply to make a count of good/bad or record the yield or fraction nonconforming. It also 
illustrates how interaction effects can be assessed and presented and indicates how a process may be made 
more “robust”. 

On silk screen printing, visual blemishes, termed “trail-marks”, are being experienced. Squeegee speed, ink 
viscosity and dwell time were investigated. Factors and levels are shown in Table 35. 

Table 35 — Silk screen printing design factors and levels 

Design factor Level 1 Level 2 

Squeegee speed 45 80 

Ink viscosity 700 mPa⋅s 2 200 mPa⋅s 

Dwell time Auto 4,5 

Ten blank sheets of polyester material were taken from each run of a standard L8 array (design 1 of Table 32) 
and a defect count was taken with the aid of a 200 square matrix. The total number of squares affected by 
trail-marks was counted for each run. This response was then recorded as a percentage. Results are shown 
in Table 36. 
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Table 36 — Results from the runs on the silk screen printing experiment 

Run Squeegee speed Ink viscosity Dwell time % Trail marks 

1 1 1 1 0,00 

2 1 1 2 0,20 

3 1 2 1 5,40 

4 1 2 2 5,85 

5 2 1 1 1,05 

6 2 1 2 0,05 

7 2 2 1 0,05 

8 2 2 2 0,00 

 

The significant interaction between squeegee speed and ink viscosity can be assessed and is shown visually 
in Table 37. 

Figure 69 shows that at low ink viscosity the process is robust to changes in squeegee speed whereas at high 
ink viscosity it is not. This information enabled the screen printer to adjust process parameters and run with a 
consistently higher yield process having enhanced productivity. 

Table 37 — Interaction matrix of squeegee speed and ink viscosity 

Ink viscosity 
 

1 2 

1 0/0,2 5,4/5,8 
Squeegee speed 

2 1,05/0,05 0,05/0 

 

Key 

1 high ink viscosity 
2 low ink viscosity 
3 squeegee speed low 
4 squeegee speed high 

X squeegee speed 
Y percentage trail marks 
 

Figure 69 — Interaction between squeegee speed and ink viscosity 
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12.1.4.3 Nested or hierarchical design 

Another common experimental design is the nested or hierarchical design. In such a design, each level of a 
given factor appears in only a single level of any other factor. An example is shown in Figure 56. 

12.1.4.4 Response surface designs and models 

Another important class of experiment is the central composite design. This is used in the development of 
response surfaces to find optimal factor-level combinations in the presence of interactions and non-linearity, 
where only first-order non-linearity and two-factor interactions are considered. One such design consists of 
three types of points: 2k factorial points, 2k axial points and n centre points, where k is the number of factors. 
The number of tests required for a complete central composite design is thus 2 2 .k k n+ +  

A complete central composite face-centred cube (FCD) design for three factors is shown pictorially in 
Figure 70. The corresponding tabular arrangement is shown in the example. The axial points equate to the 
varying of one factor only to a level usually denoted by the letter α with other factors kept constant at their 
nominal levels. The factorial points allow two factor interactions to be estimated. The axial and centre points 
together allow linear and quadratic (curvature) terms to be assessed. Although there are variations on the 
central composite design, it provides a fairly even coverage of the design space with economy. 

 

Key 

1 factor A 
2 centre point 
3 factorial points 

4 axial points 
5 factor B 
6 factor C 

Figure 70 — Central composite design of the face-centred cube variety for 3 factors 

A central composite design, with the axial distance α set to 1, is known as a face-centred cube design and, for 
three factors each at three levels, is shown pictorially in Figure 70. With σ = k , all points are on a common 
sphere and this class of central composite design has theoretically desirable features that are described as 
rotatable designs. 

EXAMPLE The application of a central composite design to an etching process is now shown. Technical and 
operational considerations indicate that three factors, gas ratio, power and pulse may influence oxide uniformity. Non-
linearity and interactions are expected so each factor was investigated at three levels using an 18 run central composite 
(face-centred cube) design as shown figuratively in Figure 70. The three levels of each factor were coded −1, 0 and 1 for 
convenience. Results were as shown in Table 38. 
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Table 38 — Results from experiment runs on etching process 

Gas ratio Pulse Power Oxide 
Uniformity 

0 0 0 29,4 

0 0 0 32,1 

0 0 0 31,5 

0 0 0 30,9 

−1 −1 −1 16,9 

−1 1 −1 17,2 

−1 1 1 22,7 

−1 −1 1 52,4 

1 −1 −1 10,7 

1 1 −1 22,6 

1 1 1 23,8 

1 −1 1 43,5 

0 −1 0 32,7 

0 0 −1 16,4 

0 1 0 24,1 

0 0 1 37,5 

1 0 0 27,6 

−1 0 0 31,8 

 

Using a standard computer-based technique, the full Taylor Series polynomial model is initially analysed and then the 
non-significant terms eliminated. The estimated response of Oxide Uniformity in the final model became: 

Oxide Uniformity =  

30,0 − 1,3 Gas Ratio + 9,6 Power − 4,6 Pulse + 2,7 Gas Ratio × Pulse − 7,7 Pulse × Power − 3,6 × Power2 

The expression for the predicted response surface depends on all three factors and is fairly complicated. Fixing one of the 
three variables it is possible to study the function of the other two using a computer-generated contour plot. Since power 
and pulse have the largest influence on the response, we have chosen to show the contour plot for those variables and 
gas ratio fixed at 0 in Figure 71.  

It is easy to study the influence of the factors and find desirable settings using the contour plot. If large values of the oxide 
uniformity are desirable, one should set pulse close to the coded level of −1 and power close to the coded level 1. If, on 
the other hand, a low value of oxide uniformity is desired, power should be near −1 and then the setting of pulse has little 
impact on the response. Considering contour plots for different values of gas ratio does not change the conclusions for 
optimal settings of power and pulse. 
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Key 

X power 
Y pulse 

Figure 71 — Computer-generated contour plot for oxide uniformity in terms of power 
and pulse of the etching process for gas ratio fixed at its coded level 0 

12.1.4.5 Mixture designs 

12.1.4.5.1 General 

A mixture design is a special class of experiment in which the response depends only on the relative 
proportions of the factors (ingredients) and not on their absolute amounts. They are applied to products 
comprising a blend of two or more ingredients in order to optimize the performance of various blends and 
mixtures. Such experimental designs are Simplex in form.  

For a two-component blend, the mixture space is a straight line; for a three-component blend, the mixture 
space is an equilateral triangle; for a four-component blend, the mixture space is a regular tetrahedron. This 
arises because of the “constrained mixture design region” compared with the “unconstrained factor design 
region” of the central composite design of Figure 72. Figure 73 and Figure 74 illustrate this feature. 

Various mixture designs are available. A comprehensive treatment of mixture designs was developed by 
Cornell [81]. A typical design for a three-component blend, the augmented simplex centroid, is shown 
pictorially in Figure 74. The corresponding tabular arrangement is shown in the example. The augmented 
simplex centroid design is a popular mixture design with 6 points spaced on the perimeter, a further 3 interior 
axial points located midway between the centroid and the vertices and 1 point at the centroid. 
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12.1.4.5.2 Example (from Montgomery and Voth [115]) 

The utility of mixture, or blending, designs in product development is now illustrated. Suppose a blend of three 
components, fuel, oxidizer and binder, make up a propellant used in aircrew escape systems. Mixture 
constraints are: 

⎯ 0,30 u fuel u 0,50; 

⎯ 0,20 u oxidizer u 0,40; 

⎯ 0,20 u binder u 0,40; 

⎯ fuel + oxidizer + binder = 0,9. 

A response of particular interest is level and variation in burn rate. The design specification calls for a 
formulation that satisfies the following: 

⎯ mean burning rate > 95 cm/sec; 

⎯ burning rate standard deviation < 4,5 cm/sec. 

(Four extreme experimental levels are 
possible 0,0:0,1:1,0: 1,1) 

(Two extreme experimental levels 
only are possible1,0: 0,1: as A+B=1) a 

  

a) Factor design region b) Mixture design region 

Key 

X levels of factor A 
Y levels of factor B 

a See footnote a in Figure 73. 

Figure 72 — Illustration of the fundamental difference in designs for two independent factors 
as compared with a two-component mixture 
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(Eight extreme experimental levels are possible) (Only three extreme experimental levels are possible 
1,0,0:0,1,0:0,0,1 as A+B+C=1) a 

  

a) Factor design region 
 

b) Mixture design region 
 

Key 

X levels of factor A 
Y levels of factor B 
a  Figure 72 and Figure 73 As with factor designs, mixture design levels are expressed in standardized format. For 
example, 1,0,0 does not indicate that the mixture is pure A with no B or C content. To determine the actual mix 
proportions, it is necessary to refer to the lower proportion constraints together with either the corresponding upper 
proportion constraints or the total proportion of the mixture made up by the sum of the experimental components. For 
example, suppose the fuel in a propellant mix has the following constraints: 0,2 u proportion of fuel u 0,4, then 
standardized 1 = actual 0,4, standardized 0 = actual 0,2 and standardized 0,5 = actual 0,3. 

Figure 73 — Illustration of the fundamental difference in designs for three independent factors 
as compared with a three-component mixture 

 

Figure 74 — Ten-point augmented simplex centroid three-component design 
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Figure 75 — Response surface contours for mean burn rate in terms of fuel (X1), oxidizer (X2) 
and binder (X3) blend components 

 

Figure 76 — Response surface contours for standard deviation of burn rate in terms of fuel (X1), 
oxidizer (X2) and binder (X3) blend components 

In order to establish a statistical model relating fuel, oxidizer and binder concentrations to burn rate, a 
standard ten-point augmented simplex centroid experimental design was chosen as shown in Figure 74. 

Computer-generated propellant response contours are given in Figure 75 for mean burn rate and in Figure 76 
for burn rate standard deviation. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TR 18532:2009(E) 

162  © ISO 2009 – All rights reserved
 

These figures indicate technically feasible blends that satisfy the product formulation performance constraints 
of more than a 95 cm/s mean burn rate and less than a 4,5 cm/s burn rate standard deviation. This is 
achieved, most simply, by superposition of one figure on the other. 

The actual choice of formulation of fuel, oxidizer and binder can now be made, within the technical feasible 
zones, based on other appropriate criteria such as material cost and process productivity. 

12.1.4.6 Evolutionary operation (EVOP) designs 

Evolutionary operation (EVOP) comes into the experimentation scenario in two specific ways; one, as an 
extremely simple experimental design; and, two, as a very complex computer intensive numerical search 
technique, typically using genetic algorithms, to determine optimum solutions. The first is described here. 

George Box [78] has compared the development of a process, product or service to evolution in nature. Living 
things advance by means of three mechanisms, major changes in genetic material, mutations and natural or 
artificial selection. New species are usually produced by major restructuring in genetic material. Similarly, a 
major change in product design (e.g. reciprocating engine to gas turbine) or fundamental transformation in a 
manufacturing process (e.g. from manual to robots) constitutes a mutation. Whereas in nature variants occur 
spontaneously, in industry, variants need to be introduced through changes in level of factors. The 
consequence is a process of natural selection in that unpromising combinations of factor levels are neglected 
in favour of promising ones. This is the essence of EVOP. 

Basically, the EVOP type experiment calls for replacing the conventional in-line operation of a process, 
namely setting predetermined values for operation of significant process parameters and keeping the process 
in statistical control. It requires the making of small changes (nudges or perturbations) in factor levels, noting 
the effect and then progressively making adjustments to improve performance. EVOP is an optimizing 
technique for routine use on industrial processes. One popular type of EVOP design, Box EVOP (developed 
by Box) [78] is shown in Figure 77 to Figure 79. The basic design combinations of the two factors, A and B, for 
the maximization experiment shown in Figure 78, are the corners of a square with the addition of a centre 
point representing their nominal values. 

Suppose it is wished to improve the yield of a batch-related process. There are two process parameters, A 
and B, that are thought to have a major influence on the yield. Currently, the process is run under fixed 
operating conditions that are considered standard. Both process parameters are currently set at their nominal 
values to give a process yield of 68 % as shown in Figure 77. 

 

Key 

1 nominal value 

X factor B 
Y factor A 

Figure 77 — Factors A and B set at nominal to give a process yield of 68 % 
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Figure 78 shows the first stage of a Box EVOP optimization process. Factors A and B are nudged or tweaked 
simultaneously to a simple predetermined factorial experimental design. 

 

Key 

1 nominal value 
2 best direction to probe further 

X factor B 
Y factor A 

Figure 78 — First stage optimisation using Box EVOP 

 

Key 

1 initial process nominal for A and B 
2 best direction for next set of runs 

X factor B 
Y factor A 

Figure 79 — First stage Box EVOP as local optimum has been found 

In this case, it is seen that the improvement in process yield is substantial, rising from 68 % to 79 %. 

However, the consequences of possible temporary degradation of the process during such experimentation 
need prior consideration. Such risks can usually be contained within EVOP by nudging the process, in small 
steps, towards an optimum operating level. 
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Alternative designs to Box EVOP are available, such as Simplex EVOP (developed by Spendley) [125]. A 
simplex is the most elemental geometric figure. The Simplex EVOP experimental configuration for: 

a) two-factor designs is an equilateral triangle; 

b) three-factor designs is a regular tetrahedron. 

Thus, with Simplex EVOP, after the first iteration with three experimental points, only one further experimental 
point is required for each subsequent run. It is thus more responsive and simpler to apply than Box EVOP. 
This has considerable merit in a production situation. 

After each run (with repeats as necessary), the point in the simplex that exhibits the poorest response is 
replaced by its reflection. This forms a new simplex. 

EXAMPLE A Simplex EVOP maximization example with two factors is shown in Figure 80. 

 

Key 

1 experimental point to be added next  

X factor B 
Y factor A 

Figure 80 — Incomplete 5 stage simplex maximization experiment for two factors in terms of yield 

13 Measuring systems 

13.1 Measurements and standards 

Meaningful measurement involves traceability to an accepted standard. From time immemorial such 
standards have existed. The standard for length in England, the inch, was once the “width of a man's thumb” 
and later “three barley corns, dry and round, laid end to end”. More recently, there was a prototype metre, a 
platinum iridium alloy bar with lines inscribed one metre apart. Accurate replicas were distributed as traceable 
reference standards. However, all these were subject to deterioration. This led to the present day definition of 
a metre in fundamental terms, rather than artefacts, as “the length of the path travelled by light in a vacuum 
during the time interval of 1/299 792 458 of a second”. Today, measurements are largely conducted within the 
framework of the International System of Units (SI) adopted and recommended by the General Conference on 
Weights and Measures.  
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In order to achieve and maintain measurement integrity, it is standard practice today that measuring 
equipment be calibrated through a hierarchy of intermediate measurement standards traceable to the 
accepted primary standard. Where such a standard does not exist, traceability is established to other 
measurement standards, such as to reference materials. An example is sapphire as a heat capacity calibrant 
in calorimetry.  

The overall traceability process typically requires a calibration hierarchy in several stages, descending from 
the international standard firstly through a national standard to a reference standard and then to a working 
standard. At each of these stages of measurement transfer, it is recommended that at least a 4:1 uncertainty 
ratio and preferably a 10:1 uncertainty ratio be maintained. This means, for example, that the dimension of a 
plastic part having a tolerance (or process spread) of ± 0,019 9 mm would need to be measured by calipers 
calibrated to ± 0,001 99 mm, which, in turn, would be calibrated against gauge blocks calibrated to 
± 0,000 199 mm, and so on.  

13.2 Measurements, result quality and statistics 

Measurement results aim at accurately representing the value of the measurand. This aim however can be 
achieved only approximately. Actual measuring systems exhibit less desirable statistical properties.  

The properties of a measuring system determine the “quality” of the result and metrological confirmation is 
needed (i.e. a set of operations required to ensure that an item of measuring equipment is in a state of 
compliance with the requirements for its intended use (ISO 10012:2003, 3.5) [35].  

This process includes the understanding and use of several concepts. Many words are used in everyday 
language to describe the quality of a measurement. The most important sources of definitions are the 
ISO/IEC Guide 99 (VIM) [62], ISO 3534-2, ISO 5725-1 [19] and, in some respect, the GUM [61] (being reissued 
as ISO/IEC Guide 98-3). A few important terms are given below and commented on later in this section. There 
is some variation in the formulation of the definitions between the sources mentioned above. 

a) accuracy: closeness of agreement between a test result or measurement result and the true value 
(ISO 3534-2:2006, 3.3.1). In practice, the accepted reference value is substituted for the true value 
because the true value is a theoretical concept and, in general, it cannot be known exactly. Accuracy 
involves a combination of random components and systematic components of the error;  

b) resolution: smallest difference between indications of a displaying device that can be meaningfully 
distinguished (ISO/IEC Guide 99:2007, 4.14, referred to “measuring instrument or measuring 
system”) [62]; 

c) precision: closeness of agreement between independent test/measurement results obtained under 
stipulated conditions (ISO 3534-2:2006, 3.3.4). Precision depends only on random errors and does not 
relate to the true value or the specified value; 

d) stability: property of a measuring instrument, whereby its metrological properties remain constant in time 
(ISO/IEC Guide 99:2007, 4.19); 

e) uncertainty: non-negative parameter characterizing the dispersion of the quantity values being attributed 
to a measurand, based on the information used (ISO/IEC Guide 99:2007, 2.26). Uncertainty includes all 
components of dispersion of the quantity values obtained with the measuring system, including that due 
to sampling and those associated with corrections for systematic effects; 

f) repeatability limit: value less than or equal to which the absolute difference between two final values, 
each of them representing a series of test results or measurement results obtained under repeatability 
conditions, is expected to be with a specified probability of 95 % (ISO 3534-2:2006, 3.3.9); 

g) reproducibility limit: value less than or equal to which the absolute difference between two final values, 
each of them representing a series of test results or measurement results obtained under reproducibility 
conditions, is expected to be with a specified probability of 95 % (ISO 3534-2:2006, 3.3.14). 
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Having established what basic properties a measuring system should have, it is now necessary to clarify what 
is meant by intended use in order to establish acceptable numerical values for these properties for specific 
uses.  

The measurement management systems supporting ISO 10012 [35] state that it is applicable “only to 
measuring equipment used as part of a measurement process used to demonstrate compliance with specified 
requirements”.  

ISO/TS 16949 [57], automotive sector ISO/TR 9007 [34] supporting standard “Measurement systems analysis”, 
on the other hand, makes the valid point that “intended use” includes that of quality monitoring and statistical 
process control and improvement. This application can put much more onerous demands on the measuring 
system, particularly where process capabilities are high relative to the specified tolerances for process 
parameters and product characteristics monitored. It brings out the need for measuring systems to be shown 
to: 

1) be in a state of statistical control (so that no special cause variation is present and hence measuring 
system variation is due to common causes alone); 

2) have a measuring system variability which is small compared with process variability (to enable the 
process to be controlled); 

3) have a measuring system variability which is small compared with specification limits (to enable the 
correct decision to be made on acceptance for conformity or not); 

4) possess small increments of measure (one-tenth or better) relative to the lesser of the process 
variability or the specified tolerance. 

Subsequent analyses of measuring system properties are based on the more comprehensive intended use 
outlined, which includes the requirements for in-line quality monitoring and statistical process control. These 
are dealt with using simple graphical statistical methods as far as possible and are intended for practical 
application at working levels to meet the requirements of prescriptive quality and process performance-based 
standards. 

13.3 Examples of statistical methods to ensure quality of measured data 

13.3.1 Example 1: Resolution 

For a measuring system whose sole purpose is to demonstrate compliance with specified requirements, it is 
recommended that resolution be of the order of one-tenth of specified tolerance. However, if it is used to 
improve understanding of process variation and for process control, and needs to detect the presence of 
special causes, then resolution should preferably be of the order of one-tenth of process spread (based on 
6 standard deviations). See Figure 81. 
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Key 

1 resolution interval 
2 process 6s or specification tolerance 

X measurement value 
Y probability density 

Figure 81 — Recommended resolution for process control 
and determination of compliance with specified tolerance 

The “range” process control chart is a very good and simple indicator of the degree of resolution of a 
measuring system. Inadequate resolution is shown by a range chart with: 

a) only 1, 2 or 3 possible values for the range within the control limits; 

b) 4 possible values within the control limits with more than 25 % of the ranges showing zero. 

This is illustrated in Figure 82. 
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Key 

X test number 
Y range 

a) Range chart for 0,001 resolution 

 

Key 

X test number 
Y range 

b) Range chart for 0,01 resolution 

Figure 82 — Range charts showing adequate and inadequate resolutions 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TR 18532:2009(E) 

© ISO 2009 – All rights reserved  169
 

13.3.2 Example 2: Bias and precision 

Aspects that need consideration in the assessment of bias and precision are now discussed. 

a) Random and systematic errors 

A measuring instrument may have one of two reasons for giving a dispersion of readings: 

1) The instrument is out of calibration. Namely, a series of readings made on a single unit gives an 
average that differs from an accepted reference value by an amount greater than that specified. This 
is a measure of the systematic error, often termed bias. Note that the accepted reference value has 
been substituted for the true value because the true value is a theoretical concept and, in general, it 
cannot be known exactly. 

2) Irrespective of the state of calibration, the instrument will not give identical values when making a 
series of readings on a single unit. This is a measure of the random error, termed precision. 

The difference between bias and precision is illustrated in Figure 83. 

 
Key 
1 bias 
2 accepted reference value 
3 precision 
4 observed mean of results 

Figure 83 — Bias and precision 

b) Bias 

Bias is the difference between the expectation of a test result and the accepted reference value. 
(ISO 3524-2:2006, 3.3.2) 

c) Precision 

Precision is the closeness of agreement between independent test results obtained under stipulated 
conditions. (ISO 3524-2:2006, 3.3.4) 

d) Uncertainty 

All measurements are affected by uncertainty to some degree. 

The status of a measurement is quantified and qualified by its uncertainty. There is a need to distinguish 
between precision and uncertainty. Uncertainty is the non-negative parameter characterizing the 
dispersion of the quantity values being attributed to a measurand, based on the information used 
(ISO/IEC Guide 99:2007, 2.26) [62]. Precision, on the other hand, is determined only by the random errors 
and does not relate to the true value or any specified value or systematic errors.  
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The effect of uncertainty on a product compliance decision is illustrated in Figure 84. 

Figure 84 illustrates that if the difference between a test result and a specification limit lies within the zone 
of measurement system uncertainty, the consequence is that nonconforming product might be accepted 
and conforming product rejected. 

 

Figure 84 — Effect of measuring systems uncertainty on compliance decision 

EXAMPLE 1 A statutory requirement for a foodstuff is that it shall not contain more than 20 micrograms per gram 
(µg/g) of a particular constituent.  

Suppose one manufacturer analyses a batch and obtains a numerical result of 19 µg/g for that constituent. Their 
expanded measurement system uncertainty is U = 0,5 µg/g. A large fraction of the distribution of values, that could 
reasonably be attributed to the measurand, can be expected within the range 18,5 µg/g to 19,5 µg/g. Then it can be 
said that there is “compliance with the specification”, the legal limit is not exceeded.  

However, if another manufacturer achieves an identical result but their measurement system uncertainty is 
U = 1,5 µg/g. Then there is no such assurance of legal conformance, as a large fraction of the distribution of values, 
that could reasonably be attributed to the measurand, can be expected within the range 17,5 µg/g to 20,5 µg/g. 

This shows the need for understanding of the contribution of uncertainty to product (and/or process) variation in 
relation to both compliance decision-making and in the setting of test specification limits in terms of customer or 
statutory requirements. 

e) Simple graphical determination of bias and precision 

If a measurement process is repeated under ostensibly constant conditions, a number of different 
readings may be obtained. If one wishes to avoid extensive calculations and, at the same time, do both a 
visual check for normality and for any peculiarities in the readings, graphical analysis using normal 
probability paper is recommended. (For more information on probability paper, see 5.3.7, 5.3.9 and 
5.3.10). The method is illustrated by the following example. 
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EXAMPLE 2 A pressure gauge is subject to an input pressure of 20,000 ± 0,001 in a constant environment. 
Repeated observations of the measuring instrument yielded the following indicated pressures (in pascal): 

20,30; 19,96; 20,14; 19,99; 20,24; 20,18; 20,20; 20,04; 20,11; 20,07 

Determine the status of the measuring instrument in terms of bias and 6 repeatability standard deviations. 

The outline solution is shown in Figure 85. In practice, one would need to similarly check at other key points of the 
operating range of the measuring instrument. 

Bias, once determined, typically is corrected either by modifications to the measuring instrument itself or by making 
appropriate adjustment to each measuring instrument reading. Precision usually is expressed in terms of imprecision 
and computed as a multiple (often 6) of the standard deviation of the results. Less precision is reflected by a larger 
standard deviation. When such a measuring instrument is used for product acceptance purposes, the value of the six 
standard deviations of the measuring instrument needs to be small in relation to the specified tolerance of the product 
characteristic that is subject to measurement. Where an instrument is used for process monitoring, the value of the 
six standard deviations of the instrument needs to be small in relation to the six standard deviations of the process 
characteristic subject to measurement. 

 

Key 

X pressure in pascal 
Y probability 

NOTE Input pressure = 20,000; average = 20,123; bias = + 0,123; standard deviation = 0,109 865; number of 
observations = 10; W-test for normality: R = 0,9958 (p-value approximately 0,100 0) 

Figure 85 — Establishing bias and precision for a pressure gauge 

13.3.3 Precision — Repeatability 

Repeatability is defined as “precision under repeatability conditions” (ISO 3534-2:2006, 3.3.5). Repeatability 
conditions are “observation conditions where independent test/measurement results are obtained with the 
same method on identical test/measurement items in the same test or measuring facility by the same operator 
using the same equipment within short intervals of time” (ISO 3534-2:2006, 3.3.6). 

The previous pressure gauge study would be looked upon as an analysis of repeatability. Of course, one 
should always check for data stability, for example, using an individuals and moving range chart as shown in 
Figure 86. 
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The moving range chart in Figure 86 indicates a progressive downwards trend, which shows the possibility of 
weaknesses in experimental protocol in estimating repeatability. 

 

Key 

X observation number 
Y1 individuals 
Y2 moving range 

Figure 86 — Individuals and moving range chart for pressure to check for stability of results prior 
to performing a bias and precision test 

13.3.4 Precision — Reproducibility 

13.3.4.1 General 

Reproducibility is defined as “precision under reproducibility conditions” (ISO 3534-2:2006, 3.3.10). 
Reproducibility conditions are “observation conditions where independent test/measurement results are 
obtained with the same method, on identical test/measurement items in different test or measurement facilities 
with different operators using different equipment” (ISO 3534-2). 

Often, precision is established under intermediate precision conditions, namely “a condition where 
independent test/measurement results are obtained with the same method, on identical test/measurement 
items in the same test or measurement facility, under some different operating conditions”. The different 
operating condition may take the form of time, calibration, operator and equipment.  

Precision, so determined, is called “intermediate precision measure”. 

13.3.4.2 Example of repeatability and reproducibility study 

There are standard forms available for facilitating repeatability and reproducibility analysis at shop-floor level. 
One such type is now illustrated. They are so simple to use that one has to be careful not to switch off 
mentally when applying the various criteria to arrive at repeatability and reproducibility estimates. This is 
particularly important as there is usually a wealth of interesting information on variations in measuring systems 
that has not hitherto been revealed. This can provide a basis for significant improvements in measuring 
system precision, which will also be considered. 
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Three appraisers are involved, each performing three measurements on each of ten specimens. The 
experimental protocol was as follows. 

a) Identify ten specimens for measurement representing the range of process variation. Number the parts 1 
to 10, the markings not being visible to the appraisers. 

b) Appraiser A measures each part (A1) and records the results, followed by appraiser B (B1) and then 
appraiser C (C1) using the same calibrated instrument. 

c) Repeat the cycle of measurements twice more until each appraiser has measured each part three times. 

The values given in Table 39 are measured values, in micrometres from nominal. The specification is 
(56,388 ± 0,038) mm. 

Table 39 — Values obtained on repeatability and reproducibility study 

           Values in micrometres (µm) 

Part A1 A2 A3 B1 B2 B3 C1 C2 C3 

1 18 12 8 18 10 6 12 8 8 

2 18 14 10 18 8 8 12 8 10 

3 16 12 10 16 8 8 14 8 10 

4 12 8 10 16 8 8 12 8 10 

5 16 8 10 14 8 8 10 8 10 

6 12 10 10 16 6 8 10 8 10 

7 16 10 8 12 8 6 12 8 8 

8 18 10 8 16 8 6 12 8 10 

9 12 12 10 14 8 6 8 8 10 

10 14 12 10 14 6 8 8 8 10 

Totals 152 108 94 154 78 72 110 80 96 

Means #
A 11,8X =  B 10,13X =  C 9,53X =  

A1 = appraiser A trial 1;  A2 = appraiser A trial 2;  A3 = appraiser A trial 3;  etc. 

#
A average of all A readings.X =  

 

This example is treated according to the method provided in the standard ISO 5725-2 [20] which is frequently 
used in the test and calibration laboratories. 

Another method exists which corresponds to the Gauge Repeatability and Reproducibility (Gauge R & R) 
study presented in the MSA [89]. This method is frequently used in the industry, but it is not yet normalized. 

1) Scrutiny for consistency and outliers 

The empirical variance on the three replications for each part and appraiser is presented in Table 40. The 
largest empirical variance for each part is indicated in bold face. The sum of the empirical variances over 
appraisers for each part is given in column 5. The ratio of the bold-faced empirical variance to the sum of 
empirical variances in column 5 is Cochran's statistic, which is given in column 6. Cochran's statistic is 
compared to the 5 % and the 1 % critical values which are 0,871 and 0,942, respectively, in this case 
where n = 3 appraisers each make p = 3 measurements. The value of Cochran's test for part 6 lies 
between the two critical values. For the remaining parts, the value of Cochran's test lies below the 5 % 
critical value. 
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This indicates that the part 6 may be regarded as a straggler, and there are no outliers. The straggler is 
retained in subsequent calculations. 

Table 40 — Values of Cochran's test 

Part Var(A) Var(B) Var(C) Var Cochran 

1 25,333 3 37,333 3 5,333 33 68 0,5490 2 

2 16 33,333 3 4 53,333 3 0,625 

3 9,333 3 21,333 3 9,333 33 40 0,5333 3 

4 4 21,333 3 4 29,333 3 0,727 27 

5 17,333 3 12 1,333 33 30,666 7 0,565 22 

6 1,333 3 28 1,333 33 30,666 7 0,913 04* 

7 17,333 3 9,333 3 5,333 33 32 0,541 67 

8 28 28 4 60 0,466 67 

9 1,333 3 17,333 3 1,333 33 20 0,866 67 

10 4 17,333 3 1,333 33 22,666 7 0,764 71 

Average 12,400 0 22,533 3 3,733 33 38,666 7 — 

 

Grubbs’ tests were applied to the cell means, giving the values shown in Table 41. There are no single 
stragglers or outliers. 

Table 41 — Application of Grubbs' test to cell means 

Part Single low Single high Type of test 

1 1,059 63 0,927 17 

2 0,872 87 1,091 09 

3 0,577 35 1,154 70 

4 0,577 35 1,154 70 

5 0,872 87 1,091 09 

6 1,000 00 1,000 00 

7 0,800 64 1,120 90 

8 0,577 35 1,154 70 

9 0,800 64 1,120 90 

10 0,755 93 1,133 89 

Grubbs' test 
statistics 

Stragglers 1,155 1,155 

Outliers 1,155 1,155 
Grubbs' test 

critical values 
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2) Computation of rjs and Rjs  

The model of variance analysis with the random factor “appraiser” is written: 

ij i ijy Aµ ε= + +   

where 

ijy  represents the value of the studied characteristic of the jth repetition of the ith appraiser; 

µ  is the general level;  

Ai is the effect due to the ith appraiser, presumed distributed according to a normal distribution with 
mean 0 and variance 2

Aσ ; 

εij is the residue of the jth repetition of the ith appraiser, presumed distributed according to a 
normal distribution with mean 0 and variance 2

εσ . 

Standard deviations of the measurement method precision (standard deviation of repeatability rs  and 
standard deviation of reproducibility Rs ) are estimated from this model, according to ISO 5725-2 [20]. 

Using the data for part 1 in Table 39 as an example, we obtain for the studied characteristic the following 
table (Table 42) of variance analysis. 

Table 42 — Variance analysis 

              Values in micrometres (µm) 

Source DF Type I SS Mean square Expected value of the mean square 

Appraiser 2 17 8 2 2
A en +σ σ  

Error 6 136 23 2
eσ  

 
with n being the number of repetitions within appraiser. 
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Table 43 presents the results. These results are deduced from the variance of repeatability and the 
variance of reproducibility. 

Table 43 — Results 

Values in micrometres (µm) 

Studied characteristics Part 1 Part 2 Part 3 Part 4 Part 5 

Standard deviation (standard uncertainty) of 
repeatability, with given appraiser 4 4 3 3 3 

Limit of repeatability, with given appraiser 12 11 9 8 8 

Standard deviation (standard uncertainty) of 
reproducibility, with different appraisers 4 4 3 3 3 

Limit of reproducibility, with different appraisers 12 11 9 8 8 

 
Studied characteristics Part 6 Part 7 Part 8 Part 9 Part 10 

Standard deviation (standard uncertainty) of 
repeatability, with given appraiser 3 3 4 3 3 

Limit of repeatability, with given appraiser 8 9 11 7 8 

Standard deviation (standard uncertainty) of 
reproducibility, with different appraisers 3 3 4 3 3 

Limit of reproducibility, with different appraisers 8 9 11 7 8 

3) Analysis  

The precision of the measurement method should be quoted, using part 1 in Table 43 as an example, as 

repeatability standard deviation, rs = 4 µm 

reproducibility standard deviation, Rs = 4 µm 

Then, there is no appraiser effect. 

These values may be applied within a range of 6 µm to 18 µm. They were determined from a uniform-
level experiment involving 3 appraisers covering that range of values, in which one straggler was 
detected and retained. 
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Annex A 
(informative) 

 
Measured data control charts: Formulae and constants 

See Tables A.1 to A.6. 

Table A.1 — Control limits constants in terms of subgroup size (n) 
for mean, median and individual control charts based on range 

Subgroup size Mean Median Individual 

 X  X�  X 
Range 

N 2A  2A�  2E  3D  4D  

2 1,88 — 2,66 0 3,27 

3 1,02 1,19 1,77 0 2,57 

4 0,73 — 1,46 0 2,28 

5 0,58 0,69 1,29 0 2,11 

6 0,48 — 1,18 0 2,00 

7 0,42 0,51 1,11 0,08 1,92 

8 0,37 — 1,05 0,14 1,86 

9 0,34 0,41 1,01 0,18 1,82 

10 0,31 — 0,98 0,22 1,78 

NOTE 1 Subgroup sizes greater than 10 are not recommended for range-based control charts due to the 
loss of information with using just the maximum and minimum in a subgroup. 

NOTE 2 For individual and moving range control charts, where only one sample is taken at a time, the 
subgroup size is based on the number of ranges taken to constitute the moving range chart. This is often 
2 or 3. 

NOTE 3 Constants are not given for even numbers for the median chart due to the additional operational
complexity for calculation. 

With odd numbers the mid value is chosen. 

NOTE 4 The appropriate formulae to use with these constants are given in Table A.2. 

 

Table A.2 — Formulae for constructing control limits for mean, 
median and individual control charts based on range 

Mean chart 2CL,XL X A R= −  CL 2XU X A R= +  

Median chart CL 2XL X A R= −� ��  CL 2XU X A R= +� ��  

Individual chart CL 2XL X E R= −  CL 2XU X E R= +  

Range chart CL 3RL D R=  CL 4RU D R=  
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Table A.3 — Control limit constants in terms of subgroup size (n) 
for mean charts based on standard deviations 

Subgroup size Mean, X  Standard deviation, s 

N 3A  3B  4B  

2 2,66 0 3,27 

3 1,95 0 2,57 

4 1,63 0 2,27 

5 1,43 0 2,09 

6 1,29 0,03 1,97 

7 1,18 0,12 1,88 

8 1,10 0,19 1,82 

9 1,03 0,24 1,76 

10 0,98 0,28 1,72 

11 0,93 0,32 1,68 

12 0,89 0,35 1,65 

13 0,85 0,38 1,62 

14 0,82 0,41 1,59 

15 0,79 0,43 1,57 

16 0,76 0,45 1,55 

17 0,74 0,47 1,53 

18 0,72 0,48 1,52 

19 0,70 0,50 1,50 

20 0,68 0,51 1,49 

21 0,66 0,52 1,48 

22 0,65 0,53 1,47 

23 0,63 0,55 1,46 

24 0,62 0,56 1,45 

25 0,61 0,57 1,44 

NOTE The appropriate formulae to use with these constants are given in Table A.4. 

 

Table A.4 — Formulae for constructing control limits for mean control charts 
based on the standard deviation 

Mean chart CL 3XL X A s= −  CL 3XU X A s= +  

Standard deviation chart CL 3sL B s=  CL 4sU B s=  

NOTE s  is the average of the individual subgroup sample standard deviations. 
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Table A.5 — Formulae for centre-lines for standard measured data control charts 

Mean 1 2 3( ) /kX X X X X k= + + + +"  

Median 1 2 3( ) /kX X X X X k= + + + +� � � � �"  

Individual 1 2 3( ) /mX X X X X m= + + + +"  

Range 1 2 3( ) /kR R R R R k= + + + +"  

Standard deviation 1 2 3( ) /ks s s s s k= + + + +"  

NOTE 1 k is the number of subgroups. 

NOTE 2 m is the number of individual values in an individuals chart. 

 

Table A.6 — Upper α fractiles of the t-distribution 

Q = 0,25 Q = 0,1 Q = 0,05 Q = 0,025 Q = 0,010 Q = 0,005 Q = 0,0025 Q = 0,001 Q = 0,000 5
ν  

2 Q = 0,5 2 Q = 0,2 2 Q = 0,1 2 Q = 0,05 2 Q = 0,02 2 Q = 0,01 2 Q = 0,005 2 Q = 0,002 2 Q = 0,001

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

1,000 0 

0,816 5 

0,764 9 

0,740 7 

0,726 7 

0,717 6 

0,711 1 

0,706 4 

0,702 7 

0,699 8 

0,697 4 

0,695 5 

0,693 8 

0,692 4 

0,691 2 

0,690 1 

0,689 2 

0,688 4 

0,687 6 

0,687 0 

0,686 4 

0,685 8 

0,685 3 

0,684 8 

0,684 4 

0,684 0 

3,077 7 

1,885 6 

1,637 7 

1,533 2 

1,475 9 

1,439 8 

1,414 9 

1,396 8 

1,383 0 

1,372 2 

1,363 4 

1,356 2 

1,350 2 

1,345 0 

1,340 6 

1,336 8 

1,333 4 

1,330 4 

1,327 7 

1,325 3 

1,323 2 

1,321 2 

1,319 5 

1,317 8 

1,316 3 

1,315 0 

6,313 8 

2,920 0 

2,353 4 

2,131 8 

2,015 0 

1,943 2 

1,894 6 

1,859 5 

1,833 1 

1,812 5 

1,795 9 

1,782 3 

1,770 9 

1,761 3 

1,753 1 

1,745 9 

1,739 6 

1,734 1 

1,729 1 

1,724 7 

1,720 7 

1,717 1 

1,713 9 

1,710 9 

1,708 1 

1,705 6 

12,706 2 

4,302 7 

3,182 4 

2,776 4 

2,570 6 

2,446 9 

2,364 6 

2,306 0 

2,262 2 

2,228 1 

2,201 0 

2,178 8 

2,160 4 

2,144 8 

2,131 4 

2,119 9 

2,109 8 

2,100 9 

2,093 0 

2,086 0 

2,079 6 

2,073 9 

2,068 7 

2,063 9 

2,059 5 

2,055 5 

31,820 5 

6,964 6 

4,540 7 

3,746 9 

3,364 9 

3,142 7 

2,998 0 

2,896 5 

2,821 4 

2,763 8 

2,718 1 

2,681 0 

2,650 3 

2,624 5 

2,602 5 

2,583 5 

2,566 9 

2,552 4 

2,539 5 

2,528 0 

2,517 6 

2,508 3 

2,499 9 

2,492 2 

2,485 1 

2,478 6 

63,656 7 

9,924 8 

5,840 9 

4,604 1 

4,032 1 

3,707 4 

3,499 5 

3,355 4 

3,249 8 

3,169 3 

3,105 8 

3,054 5 

3,012 3 

2,976 8 

2,946 7 

2,920 8 

2,898 2 

2,878 4 

2,860 9 

2,845 3 

2,831 4 

2,818 8 

2,807 3 

2,796 9 

2,787 4 

2,778 7 

127,321 3 

14,089 0 

7,453 3 

5,597 6 

4,773 3 

4,316 8 

4,029 3 

3,832 5 

3,689 7 

3,581 4 

3,496 6 

3,428 4 

3,372 5 

3,325 7 

3,286 0 

3,252 0 

3,222 4 

3,196 6 

3,173 7 

3,153 4 

3,135 2 

3,118 8 

3,104 0 

3,090 5 

3,078 2 

3,066 9 

318,308 8 

22,327 1 

10,214 5 

7,173 2 

5,893 4 

5,207 6 

4,785 3 

4,500 8 

4,296 8 

4,143 7 

4,024 7 

3,929 6 

3,852 0 

3,787 4 

3,732 8 

3,686 2 

3,645 8 

3,610 5 

3,579 4 

3,551 8 

3,527 2 

3,505 0 

3,485 0 

3,466 8 

3,450 2 

3,435 0 

636,619 2 

31,599 1 

12,924 0 

8,610 3 

6,868 8 

5,958 8 

5,407 9 

5,041 3 

4,780 9 

4,586 9 

4,437 0 

4,317 8 

4,220 8 

4,140 5 

4,072 8 

4,015 0 

3,965 1 

3,921 6 

3,883 4 

3,849 5 

3,819 3 

3,792 1 

3,767 6 

3,745 4 

3,725 1 

3,706 6 
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Table A.6 (continued) 

Q = 0,25 Q = 0,1 Q = 0,05 Q = 0,025 Q = 0,010 Q = 0,005 Q = 0,0025 Q = 0,001 Q = 0,000 5
ν  

2 Q = 0,5 2 Q = 0,2 2 Q = 0,1 2 Q = 0,05 2 Q = 0,02 2 Q = 0,01 2 Q = 0,005 2 Q = 0,002 2 Q = 0,001

27 

28 

29 

30 

40 

60 

120 

∞  

0,683 7 

0,683 4 

0,683 0 

0,682 8 

0,680 7 

0,678 6 

0,676 5 

0,674 5 

1,313 7 

1,312 5 

1,311 4 

1,310 4 

1,303 1 

1,295 8 

1,288 6 

1,281 6 

1,703 3 

1,701 1 

1,699 1 

1,697 3 

1,683 9 

1,670 6 

1,657 7 

1,644 9 

2,051 8 

2,048 4 

2,045 2 

2,042 3 

2,021 1 

2,000 3 

1,979 9 

1,960 0 

2,472 7 

2,467 1 

2,462 0 

2,457 3 

2,423 3 

2,390 1 

2,357 8 

2,326 3 

2,770 7 

2,763 3 

2,756 4 

2,750 0 

2,704 5 

2,660 3 

2,617 4 

2,575 8 

3,056 5 

3,046 9 

3,038 0 

3,029 8 

2,971 2 

2,914 6 

2,859 9 

2,807 0 

3,421 0 

3,408 2 

3,396 2 

3,385 2 

3,306 9 

3,231 7 

3,159 5 

3,090 2 

3,689 6 

3,673 9 

3,659 4 

3,646 0 

3,551 0 

3,460 2 

3,373 5 

3,290 5 

NOTE Q is the upper tail area of the distribution for ν degrees of freedom, for use in a single-tailed test. For a two-tailed test, use 
2Q. 
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