
© ISO 2015

Automation systems and integration —
Object-Process Methodology

Systèmes d’automatisation et intégration — Object-Process
Methodology

PUBLICLY
AVAILABLE
SPECIFICATION

ISO/PAS
19450

First edition
2015-12-15

Reference number
ISO/PAS 19450:2015(E)

International Organization for Standardization

ISO/PAS 19450:2015(E)

ii © ISO 2015 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

International Organization for Standardization

ISO/PAS 19450:2015(E)

Foreword .vi

Introduction .vii

1 Scope . 1

2 Normative references . 1

3	 Terms	and	definitions . 1

4 Symbols .8

5 Conformance .10

6 OPM principles and concepts .10
6.1 OPM modelling principles . 10

6.1.1 Modelling as a purpose-serving activity. 10
6.1.2 Unification of function, structure, and behaviour . 11
6.1.3 Identifying functional value . 11
6.1.4 Function versus behaviour. 11
6.1.5 System boundary setting . 12
6.1.6 Clarity and completeness trade-off . 12

6.2 OPM Fundamental concepts . 12
6.2.1 Bimodal representation . 12
6.2.2 OPM modelling elements . 12
6.2.3 OPM things: objects and processes . 13
6.2.4 OPM links: procedural and structural . 13
6.2.5 OPM context management . 14
6.2.6 OPM model implementation . 14

7 OPM thing syntax and semantics .15
7.1 Objects . 15

7.1.1 Description . 15
7.1.2 Representation . 15

7.2 Processes . 15
7.2.1 Description . 15
7.2.2 Representation . 16

7.3 OPM things . 16
7.3.1 OPM thing defined . 16
7.3.2 Object-process test . 16
7.3.3 OPM thing generic properties . 17
7.3.4 Default values of thing generic properties . 18
7.3.5 Object states . 18

8 OPM link syntax and semantics overview .20
8.1 Procedural link overview . 20

8.1.1 Kinds of procedural links . 20
8.1.2 Procedural link uniqueness OPM principle . 20
8.1.3 State-specified procedural links . 20

8.2 Operational semantics and flow of execution control . 20
8.2.1 The Event-Condition-Action control mechanism . 20
8.2.2 Preprocess object set and postprocess object set . 21
8.2.3 Skip semantics of condition versus wait semantics of non-condition links 21

9 Procedural links .22
9.1 Transforming links . 22

9.1.1 Kinds of transforming links . 22
9.1.2 Consumption link . 22
9.1.3 Result link . 23
9.1.4 Effect link . 23
9.1.5 Basic transforming links summary . 23

© ISO 2015 – All rights reserved iii

Contents Page

International Organization for Standardization

ISO/PAS 19450:2015(E)

9.2 Enabling links . 24
9.2.1 Kinds of enabling links . 24
9.2.2 Agent and Agent Link . 24
9.2.3 Instrument and Instrument Link . 25
9.2.4 Basic enabling links summary. 26

9.3 State-specified transforming links . 26
9.3.1 State-specified consumption link . 26
9.3.2 State-specified result link . 27
9.3.3 State-specified effect links . 28
9.3.4 State-specified transforming links summary . 30

9.4 State-specified enabling links . 31
9.4.1 State-specified agent link . 31
9.4.2 State-specified instrument link . 32
9.4.3 State-specified enabling links summary . 32

9.5 Control links . 33
9.5.1 Kinds of control links . 33
9.5.2 Event links . 34
9.5.3 Condition links . 40
9.5.4 Exception links . 47

10 Structural links .48
10.1 Kinds of structural links . 48
10.2 Tagged structural link . 48

10.2.1 Unidirectional tagged structural link . 48
10.2.2 Unidirectional null-tagged structural link . 49
10.2.3 Bidirectional tagged structural link . 49
10.2.4 Reciprocal tagged structural link. 49

10.3 Fundamental structural relations . 50
10.3.1 Kinds of fundamental structural relations . 50
10.3.2 Aggregation-participation relation link . 51
10.3.3 Exhibition-characterization link . 52
10.3.4 Generalization-specialization and inheritance . 55
10.3.5 Classification-instantiation link . 58
10.3.6 Fundamental structural relation link and tagged structural link summary. 61

10.4 State-specified structural relations and links . 62
10.4.1 State-specified characterization relation link . 62
10.4.2 State-specified tagged structural relations . 63

11 Relationship cardinalities .67
11.1 Object multiplicity in structural and procedural links . 67
11.2 Object multiplicity expressions and constraints . 69
11.3 Attribute value and multiplicity constraints . 71

12 Logical operators: AND, XOR, and OR .71
12.1 Logical AND procedural links . 71
12.2 Logical XOR and OR procedural links . 73
12.3 Diverging and converging XOR and OR links . 74
12.4 State-specified XOR and OR link fans . 76
12.5 Control-modified link fans . 77
12.6 State-specified control-modified link fans . 77
12.7 Link probabilities and probabilistic link fans . 79

13 Execution path and path labels .81

14 Context management with OPM .83
14.1 Completing the SD . 83
14.2 Achieving model comprehension. 83

14.2.1 OPM refinement-abstraction mechanisms . 83
14.2.2 Control (operational) semantics within an in-zoomed process context . 87
14.2.3 OPM fact consistency principle . 98
14.2.4 Abstraction ambiguity resolution for procedural links . 99

iv © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Annex A (normative) OPL formal syntax in EBNF .102

Annex B (informative) Guidance for OPM .121

Annex C (informative) Modelling OPM using OPM .124

Annex D (informative) OPM dynamics and simulation .157

Bibliography .163

© ISO 2015 – All rights reserved vInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies) . The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1 . In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives) .

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents) .

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is Technical Committee ISO/TC 184, Automation systems
and integration , Subcommittee SC 5 , Interoperability, integration, and architectures for enterprise systems
and automation applications.

vi © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Introduction

Object-Process Methodology (OPM) is a compact conceptual approach, language, and methodology for
modelling and knowledge representation of automation systems. The application of OPM ranges from
simple assemblies of elemental components to complex, multidisciplinary, dynamic systems. OPM is
suitable for implementation and support by tools using information and computer technology. This
Publicly Available Specification specifies both the language and methodology aspects of OPM in order
to establish a common basis for system architects, designers, and OPM-compliant tool developers to
model all kinds of systems.

OPM provides two semantically equivalent modalities of representation for the same model: graphical
and textual. A set of hierarchically structured, interrelated Object-Process Diagrams (OPDs) constitutes
the graphical model, and a set of automatically generated sentences in a subset of the English language
constitutes the textual model expressed in the Object-Process Language (OPL) . In a graphical-visual
model, each OPD consists of OPM elements, depicted as graphic symbols, sometimes with label
annotation. The OPD syntax specifies the consistent and correct ways to manage the arrangement of
those graphically elements. Using OPL, OPM generates the corresponding textual model for each OPD in
a manner that retains the constraints of the graphical model. Since the syntax and semantics of OPL are
a subset of English natural language, domain experts easily understand the textual model.

OPM notation supports the conceptual modelling of systems with formal syntax and semantics.
This formality serves as the basis for model-based systems engineering in general, including
systems architecting, engineering, development, life cycle support, communication, and evolution.
Furthermore, the domain-independent nature of OPM opens system modelling to the entire scientific,
commercial and industrial community for developing, investigating and analysing manufacturing
and other industrial and business systems inside their specific application domains; thereby enabling
companies to merge and provide for interoperability of different skills and competencies into a
common intuitive yet formal framework.

OPM facilitates a common view of the system under construction, test, integration, and daily maintenance,
providing for working in a multidisciplinary environment. Moreover, using OPM, companies can improve
their overall, big-picture view of the system’s functionality, flexibility in assignment of personnel to
tasks, and managing exceptions and error recovery. System specification is extensible for any necessary
detail, encompassing the functional, structural and behavioural aspects of a system.

One particular application of OPM is in the drafting and authoring of technical standards. OPM helps
sketch the implementation of a standard and identify weaknesses in the standard to reduce, thereby
significantly improving the quality of successive drafts. With OPM, even as the model-based text of a
system expands to include more details, the underlying model keeps maintaining its high degree of
formality and consistency.

This Publicly Available Specification provides a baseline for system architects and designers, who
can use it to model systems concisely and effectively. OPM tool vendors can utilise the PAS as a formal
standard specification for creating software tools to enhance conceptual modelling.

This Publicly Available Specification provides a presentation of the normative text that follows the
Extended Backus-Naur Form (EBNF) specification of the language syntax. All elements are presented in
Clauses 6 to 13 with only minimal reference to methodological aspects, Clause 14 presents the context
management mechanisms related to in-zooming and unfolding.

This specification utilizes several conventions for the presentation of OPM. Specifically, Arial bold font
in text and Arial bold italic font in figure captions, table captions and headings distinguish label names
for OPM objects, processes, states, and link tags. OPL reserved words are in Arial regular font with
commas and periods in Arial bold font. Most figures contain both a graphic image, the OPD portion, and
a textual equivalent, the OPL portion. Because this is a language specification, the precise use of term
definitions is essential and several terms in common use have particular meaning when using OPM.
Clause B.6 explains other conventions for the use of OPM.

Annex A presents the formal syntax for OPL, in EBNF form.

© ISO 2015 – All rights reserved viiInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Annex B presents conventions and patterns commonly used in OPM applications.

Annex C presents aspects of OPM as OPM models.

Annex D summarizes the dynamic and simulation capabilities of OPM.

The International Organization for Standardization (ISO) draws attention to the fact that it is claimed
that compliance with this document may involve the use of a patent concerning OPM as a modelling
system given in Clauses 6 to 14.

ISO takes no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the ISO that he/she is willing to negotiate licences either
free of charge or under reasonable and non-discriminatory terms and conditions with applicants
throughout the world. In this respect, the statement of the holder of this patent right is registered with
ISO. Information may be obtained from:

Prof. Dov Dori

Technion Israel Institute of Technology

Technion City

Haifa 32000, Israel

dori@ie.technion.ac.il

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights other than those identified above. ISO shall not be held responsible for identifying any or
all such patent rights.

ISO (www.iso.org/patents) and IEC (http://patents.iec.ch) maintain on-line databases of patents
relevant to their standards. Users are encouraged to consult the databases for the most up to date
information concerning patents.

viii © ISO 2015 – All rights reservedInternational Organization for Standardization

PUBLICLY AVAILABLE SPECIFICATION ISO/PAS 19450:2015(E)

Automation systems and integration — Object-Process
Methodology

1 Scope

This Publicly Available Specification specifies Object-Process Methodology (OPM) with detail sufficient
for enabling practitioners to utilise the concepts, semantics, and syntax of Object-Process Methodology
as a modelling paradigm and language for producing conceptual models at various extents of detail,
and for enabling tool vendors to provide application modelling products to aid those practitioners.

While this Publicly Available Specification presents some examples for the use of Object-Process
Methodology to improve clarity, it does not attempt to provide a complete reference for all the possible
applications of Object-Process Methodology.

2 Normative references

There are no normative references.

3	Terms	and	definitions

For the purposes of this document, the following terms and definitions apply.

3.1
abstraction
decreasing the extent of detail and system model completeness (3 .8) in order to achieve better
comprehension

3.2
affectee
transformee (3 .78) that is affected by a process (3 .58) occurrence, i .e. its state (3 .69) changes

Note 1 to entry: An affectee can only be a stateful object (3 .66) . A stateless object (3 .67) can only be created or
consumed, but not affected.

3.3
agent
enabler (3 .17) that is a human or a group of humans

3.4
attribute
object (3 .39) that characterizes a thing (3 .76) other than itself

3.5
behaviour
transformation (3 .77) of objects (3 .39) resulting from the execution of an Object-Process Methodology
(3 .43) model comprising a collection of things (3 .76) and links (3 .36) to objects in the model

3.6
beneficiary
<system> stakeholder (3 .65) who gains functional value (3 .82) from the system’s operation (3 .46)

© ISO 2015 – All rights reserved 1International Organization for Standardization

ISO/PAS 19450:2015(E)

3.7
class
collection of things (3 .76) with the same perseverance (3 .50) , essence, and affiliation values, and the
same feature (3 .21) and state (3 .69) set

3.8
completeness
<system model> extent to which all the details of a system are specified in a model

3.9
condition link
procedural link (3 .56) from an object (3 .39) or object state (3 .69) to a process (3 .58) , denoting a
procedural constraint

3.10
consumee
transformee (3 .78) that a process (3 .58) occurrence consumes or eliminates

3.11
context
<model> portion of an Object-Process Methodology (3 .43) model represented by an Object-Process
Diagram (3 .41) and corresponding Object-Process Language (3 .42) text

3.12
control link
procedural link (3 .56) with additional control semantics

3.13
control	modifier
symbol embellishing a link (3 .36) to add control semantics to it, making it a control link (3 .12)

Note 1 to entry: The control modifiers are the symbols ‘e’ for event (3 .18) and ‘c’ for condition.

3.14
discriminating attribute
attribute (3 .4) whose different values (3 .81) identify corresponding specialization relations

3.15
effect
change in the state (3 .69) of an object (3 .39) or an attribute (3 .4) value (3 .81)

Note 1 to entry: An effect only applies to a stateful object (3 .66) .

3.16
element
thing (3 .76) or link (3 .36)

3.17
enabler
<process> object (3 .39) that enables a process (3 .58) but which the process does not transform

3.18
event
<OPM> point in time of creation (or appearance) of an object, or entrance of an object (3.39) to a
particular state (3 .69) , either of which may initiate an evaluation of the process (3 .58) precondition
(3 .53)

3.19
event link
control link (3 .12) denoting an event (3 .18) originating from an object (3 .39) or object state (3 .69) to a
process (3 .58)

2 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

3.20
exhibitor
thing (3 .76) that exhibits (is characterized by) a feature (3 .21) by means of the exhibition-
characterization relation

3.21
feature
attribute (3 .4) or operation (3 .46)

3.22
folding
mechanism of abstraction (3 .1) achieved by hiding the refineables (3 .61) of an unfolded refinee (3 .62)

Note 1 to entry: The four kinds of folded refineables are parts (part folding) , features (3 .21) (feature folding) ,
specializations (specialization folding) , and instances (3 .28) (instance folding) .

Note 2 to entry: Folding is primarily applied to objects (3 .39) . When applied to a process, its subprocesses are
unordered, which is adequate for modelling asynchronous systems, in which processes’ temporal order is undefined.

Note 3 to entry: The opposite of folding is unfolding (3 .80) .

3.23
function
process (3 .58) that provides functional value (3 .82) to a beneficiary (3 .6)

3.24
general
<OPM> refineable (3 .61) with specializations

3.25
informatical
of, or pertaining to informatics, e.g. data, information, knowledge

3.26
inheritance
assignment of Object-Process Methodology (3 .43) elements (3 .16) of a general (3 .24) to its specializations

3.27
input link
link (3 .36) from object (3 .39) source (input) state (3 .69) to the transforming process (3 .58)

3.28
instance
<model> object (3 .39) instance or process (3 .58) instance that is a refinee (3 .62) in a classification-
instantiation relation

3.29
instance
<operational> object (3 .39) instance or process (3 .58) instance that is an actual, uniquely identifiable
thing (3 .76) that exists during model operation (3 .46) , e.g. during simulation or runtime implementation

Note 1 to entry: A process instance is identifiable by the operational instances of the involved object set (3 .32)
during process occurrence and the process start and end time stamps of the occurrence.

3.30
instrument
non-human enabler (3 .17)

3.31
invocation
<process> initiating of a process (3 .58) by a process

© ISO 2015 – All rights reserved 3International Organization for Standardization

ISO/PAS 19450:2015(E)

3.32
involved object set
union of preprocess object set (3 .54) and postprocess object set (3 .52)

3.33
in-zoom context
things (3 .76) and links (3 .36) within the boundary of the thing being in-zoomed

3.34
in-zooming
<object> object (3 .39) part unfolding (3 .80) that indicates spatial ordering of the constituent objects

3.35
in-zooming
<process> process (3 .58) part unfolding (3 .80) that indicates temporal partial ordering of the
constituent processes

3.36
link
graphical expression of a structural relation (3 .73) or a procedural relation (3 .57) between two Object-
Process Methodology (3 .43) things (3 .76)

3.37
metamodel
model of a modelling language or part of a modelling language

3.38
model fact
relation between two Object-Process Methodology (3 .43) things (3 .76) or states (3 .69) in the Object-
Process Methodology model

3.39
object
<OPM> model element (3 .16) representing a thing (3 .76) that does or might exist physically or
informatically (3 .25)

3.40
object class
pattern for objects (3 .39) that have the same structure (3 .74) and pattern of transformation (3 .77)

3.41
Object-Process Diagram
OPD
Object-Process Methodology (3 .43) graphic representation of an Object-Process Methodology model or
part of a model, in which objects (3 .39) and processes (3 .58) in the universe of interest appear together
with the structural links (3 .72) and procedural links (3 .56) among them

3.42
Object-Process Language
OPL
subset of English natural language that represents textually the Object-Process Methodology (3 .43)
model that the Object-Process Diagram (3 .42) represents graphically

3.43
Object-Process Methodology
OPM
formal language and method for specifying complex, multidisciplinary systems in a single function-
structure-behaviour unifying model that uses a bimodal graphic-text representation of objects (3 .39) in
the system and their transformation (3 .77) or use by processes (3 .58)

4 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

3.44
OPD object tree
tree graph, whose root is an object (3 .39) , depicting elaboration of the object through refinement (3 .63)

3.45
OPD process tree
tree graph whose root is the System Diagram (3 .75) and each node is an Object-Process Diagram (3 .42)
obtained by in-zooming (3 .35) of a process (3 .58) in its ancestor Object-Process Diagram (or the System
Diagram) and each directed edge points from the refined process at the parent Object-Process Diagram
to the same process in the child Object-Process Diagram

Note 1 to entry: Object-Process Methodology (3 .43) model elaboration usually occurs by process decomposition
through in-zooming, therefore the OPD process tree is the primary way to navigate an Object-Process
Methodology model.

3.46
operation
process (3 .58) that a thing (3 .76) performs, which characterizes the thing other than itself

3.47
output link
link (3 .36) from the transforming process (3 .58) to the output (destination) state (3 .69) of an object (3 .39)

3.48
out-zooming
<object> inverse of object (3 .39) in-zooming (3 .34)

3.49
out-zooming
<process> inverse of process (3 .58) in-zooming (3 .35)

3.50
perseverance
property (3 .60) of thing (3 .76) which can be static, defining an object (3 .39) , or dynamic, defining a
process (3 .58)

3.51
postcondition
<process> condition that is the outcome of successful process (3 .58) completion

3.52
postprocess object set
collection of objects (3 .39) remaining or resulting from process (3 .58) completion

Note 1 to entry: The postprocess object set may include stateful objects (3 .66) , for which specific states (3 .69)
result from process performance.

3.53
precondition
<process> condition for starting a process (3 .58)

3.54
preprocess object set
collection of objects (3 .39) to evaluate prior to starting a process (3 .58)

Note 1 to entry: The collection of the objects may include stateful objects (3 .66) for which specific states (3 .69)
are necessary for process performance.

3.55
primary essence
<system> essence of the majority of things (3 .76) in a system, which can be either informatical (3 .25) or
physical

© ISO 2015 – All rights reserved 5International Organization for Standardization

ISO/PAS 19450:2015(E)

3.56
procedural link
graphical notation of procedural relation (3 .57) in Object-Process Methodology (3 .43)

3.57
procedural relation
connection or association between an object (3 .39) or object state (3 .69) and a process (3 .58)

Note 1 to entry: Procedural relations specify how the system operates to attain its function (3 .23) , designating
time-dependent or conditional initiating of processes that transform objects.

Note 2 to entry: An invocation (3 .31) or exception link (3 .36) signifies a transient object in the flow of execution
control between two processes.

3.58
process
transformation (3 .77) of one or more objects (3 .39) in the system

3.59
process class
pattern for processes (3 .58) that perform the same object (3 .39) transformation (3 .77) pattern

3.60
property
modelling annotation common to all elements (3 .16) of a specific kind that serve to distinguish that element

Note 1 to entry: Cardinality constraints, path labels, and structural link (3 .72) tags are frequent property
annotations.

Note 2 to entry: Unlike an attribute (3 .4) , the value of a property may not change during model simulation or
operational implementation. Each kind of element has its own set of properties.

Note 3 to entry: Property is an attribute of an element in the Object-Process Methodology (3 .43) metamodel (3 .37) .

3.61
refineable
<OPM> thing (3 .76) amenable to refinement (3 .63) , which can be a whole (3 .83) , an exhibitor (3 .20) , a
general (3 .24) , or a class (3 .7)

3.62
refinee
thing (3 .76) that refines a refineable (3 .61) , which can be a part, a feature (3 .21) , a specialization, or an
instance (3 .29)

Note 1 to entry: Each of the four kinds of refinees has a corresponding refineable (part-whole, feature-exhibitor,
specialization-generalization, instance-class) .

3.63
refinement
<model> elaboration that increases the extent of detail and the consequent model completeness (3 .8)

3.64
resultee
transformee (3 .78) that a process (3 .58) occurrence creates

3.65
stakeholder
<OPM> individual, organization, or group of people that has an interest in, or might be affected by the
system being contemplated, developed, or deployed

6 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

3.66
stateful object
object (3 .39) with specified states (3 .69)

3.67
stateless object
object (3 .39) lacking specified states (3 .69)

3.68
state
<object> possible situation or position of an object (3 .39)

Note 1 to entry: In Object-Process Methodology (3 .43) there is no concept of process (3 .58) state, such as
“started”, “in process”, or “finished” within a model. Instead, Object-Process Methodology represents and models
subprocesses, such as starting, processing, or finishing . See also discussion of Object-Process Methodology
process metamodel in Annex C .

3.69
state
<system> snapshot of the system model taken at a certain point in time, which shows all the existing
object (3 .39) instances, current states of each stateful object (3 .66) instance, and the process (3 .58)
instances, with their elapsed times, executing at the time the snapshot occurs

3.70
state expression
refinement (3 .63) involving the revealing of any proper subset of an object’s (3 .39) set of states (3 .69)

3.71
state suppression
abstraction (3 .1) involving the hiding of any proper subset of an object’s (3 .39) set of states (3 .69)

3.72
structural link
graphic notation of structural relation (3 .73) in Object-Process Methodology (3 .43)

3.73
structural relation
operationally invariant connection or association between things

Note 1 to entry: Structural relations persist in the system for at least some interval of time. They provide the
structural aspect of the system, and are not contingent upon conditions that are time-dependent.

3.74
structure
<OPM> collection of objects (3 .39) in an Object-Process Methodology (3 .43) model and the non-transient
relations or associations among them

3.75
System Diagram
SD
Object-Process Diagram (3 .41) with one systemic process (3 .58) indicating the system function (3 .23)
and the objects (3 .39) connecting with that function to depict the overall context (3 .11) for and top-level
view of the system

Note 1 to entry: System Diagram is the root of the OPD process tree (3 .45) and has no extent of detail beyond
the overall context depicted, i .e. no in-zoomed refinee (3 .62) is present. Any Object-Process Diagram other than
System Diagram is a node in the OPD process tree resulting from refinement (3 .63) .

3.76
thing
<OPM> object (3 .39) or process (3 .58)

© ISO 2015 – All rights reserved 7International Organization for Standardization

ISO/PAS 19450:2015(E)

3.77
transformation
creation (generation, construction) or consumption (elimination, destruction) of an object (3 .39) or a
change in the state (3 .69) of an object

Note 1 to entry: Only a process (3 .58) can perform transformation.

3.78
transformee
object (3 .39) that a process (3 .58) transforms (creates, consumes, or affects)

3.79
transforming link
consumption link, effect link, or result link

3.80
unfolding
refinement (3 .63) that elaborates a refinee (3 .62) with additional detail comprising other things (3 .76)
and the links (3 .36) between them.

Note 1 to entry: The four kinds of unfolding are part unfolding, feature unfolding, specialization unfolding, and
instance unfolding.

Note 2 to entry: Unfolding is primarily applied to objects (3 .39) for exposing details about the unfolded object.

3.81
value
<attribute> state (3 .69) of an attribute (3 .4)

3.82
value
<functional> benefit at cost that the system’s function (3 .23) delivers

3.83
whole
aggregate thing (3 .76) comprised of two or more parts, each having the same perseverance (3 .50) as
the aggregate

4 Symbols

object

physical object

environmental object

process

physical process

environmental process

8 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

state

aggregation-participation

exhibition-characterization

generalization-specialization

classification-instantiation

unidirectional tagged structural link

bidirectional tagged structural link

agent link

instrument link

effect link

consumption link

result link

input-output link pair

instrument event link

consumption event link

instrumental condition link

consumption condition link

invocation link

© ISO 2015 – All rights reserved 9International Organization for Standardization

ISO/PAS 19450:2015(E)

self-invocation link

over-time exception link

under-time exception link

5 Conformance

Anticipating that the implementation of this Publicly Available Specification by toolmakers and
utilization by end-users is likely to occur in increments over time, several kinds of conformance criteria
are appropriate.

a) Partial (symbolic) conformance with OPM shall use the language part of OPM, namely OPM
Semantics and Syntax, by:

1) using only OPM symbols defined in Clause 4 with the meaning assigned to them in this Publicly
Available Specification; and,

2) using only OPM elements defined in Clauses 7 to 12 with the meaning assigned to them in this
Publicly Available Specification.

b) Full conformance with OPM shall require:

1) conformance with a); and,

2) conformance with the approach and scheme of modelling systems with OPM, as defined in
Clauses 6 and 14.

c) Conformance by toolmakers shall require:

1) conformance with a);

2) provision for b) – users are guided and helped to adhere to b) on the basis of the formalism of
a); and,

3) support for OPL according to the EBNF definition specified in Annex A.

6 OPM principles and concepts

6.1 OPM modelling principles

6.1.1 Modelling as a purpose-serving activity

System function and modelling purpose shall guide the scope and extent of detail of an OPM model. A
complex or complicated system may involve many stakeholders, including the beneficiary, owner, users,
and regulators, as well as many hardware and software components, exposing different aspects relevant
to each stakeholder. The function or benefit expectations of stakeholders in general and beneficiaries in

10 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

particular shall identify and prescribe the modelling purpose. This, in turn, shall determine the scope
of the system model.

EXAMPLE For a manufacturing plant that produces widgets, the viewpoint of the marketing manager, who
cares about supply rates and dates, does not include the machines in the plant that are used as instruments
for making widgets, which are not affected by the marketing process. However, from the viewpoint of the
maintenance manager, the machines definitely are affected as they become worn during operation and need to
be maintained, both to prevent them from breaking and to fix them when they do break. Therefore, the OPM
manufacturing plant model for the marketing manager will differ substantially from that constructed for the
maintenance manager.

6.1.2	 Unification	of	function,	structure,	and	behaviour

The OPM structure model of a system shall be an assembly of the physical and informatical (logical)
objects connected by structural relations. During the lifetime of a system, creation and destruction of
those structural relations may occur.

The OPM behaviour model of a system, referred to as its dynamics, shall reflect the mechanisms that
act on the system over time to transform systemic objects, i .e. objects that are internal to the system,
and/or environmental objects, i .e. objects that are external to the system.

The combination of system structure and behaviour enables the system to perform a function, which
shall deliver the (functional) value of the system to at least one stakeholder, who is the system’s
beneficiary. An OPM model integrates the functional (utilitarian) , structural (static) , and behavioural
(dynamic) aspects of a system into a single, unified model. Maintaining focus from the viewpoint of
overall system function, this structure-behaviour unification provides a coherent single frame of
reference for understanding the system of interest, enhancing its intuitive comprehension while
adhering to formal syntax.

6.1.3 Identifying functional value

The functional value providing process of a modelled system shall express the function of the system
as perceived by the system’s main beneficiary or beneficiaries group. Identifying and labelling this
primary process, the system’s function, is a critical first step in constructing an OPM model according
to the methodology prescription of the OPM approach. An appropriate function label or name should
clarify and emphasize the central goal of the modelled system and the functional value that the system
should provide for its main beneficiary. Modelling with OPM should begin by defining, naming, and
depicting the function of the system as its primary process.

NOTE Such a deliberation, which often provokes a debate between the system architecture team members
at this early stage, is extremely useful, as it exposes differences and often even misconceptions among the
participants regarding the system which they set out to architect, model, and design.

After the function of the system aligns with the functional value expectation of its main beneficiary, the
modeller shall identify and add other principal stakeholders to the OPM model.

6.1.4 Function versus behaviour

The value of the function to the beneficiary is often implied and expressed in process terms, which
emphasize what happens, the behaviour, rather than the purpose, the functional value, for which the
primary process happens. The modeller should distinguish between function and behaviour to create
a clear and unambiguous system model. This distinction is essential because in many situations
a system’s function is achievable by different concepts, each implementing a different design and
behaving differently.

EXAMPLE Consider a system for enabling humans to cross a river with their vehicles. Two obvious concepts
are a static structure to enable car crossing and a dynamic moving element carrying cars. The corresponding
system designs are a bridge and a ferry. While the function and the primary process – River Crossing – are
identical for both designs, they differ dramatically in their structure and behaviour.

© ISO 2015 – All rights reserved 11International Organization for Standardization

ISO/PAS 19450:2015(E)

Failure to recognize the difference between function and behaviour may lead to a premature choice
of a sub-optimal design. In the example above, this could result in making a decision to build a bridge
without considering the possibly superior ferry option at all.

6.1.5 System boundary setting

The system’s environment shall be a collection of things, which are outside of the system but which
may interact with the system, possibly changing the system and its environment. The modeller shall
distinguish these environmental things, which are not part of the system, from systemic things, which
are part of the system. The modeller is not able to architect, design or manipulate the structure and
behaviour of environmental things even though those environmental things may influence or be
influenced by the system.

6.1.6 Clarity and completeness trade-off

Overwhelming detail and complicatedness are inherent in real-life systems. Making such systems
understandable entails a trade-off that should balance between two conflicting criteria: clarity and
completeness. Clarity shall be the extent of unambiguous comprehension that the system’s structure
and behaviour models convey. Completeness shall be the extent of specification for all the system’s
details. These two model attributes conflict with each other. On the one hand, completeness requires
the full stipulation of system details. On the other hand, the need for clarity imposes an upper limit
on the extent of detail within an individual model diagram, after which comprehension deteriorates
because of clutter and overloading.

Establishing an appropriate balance requires careful management of context during model development.
The increase in the expression of completeness in a given model diagram often results in the reduction
of clarity. However, the modeller may take advantage of the union of information provided by the
entire OPM system model and have one diagram which is clear and unambiguous but not complete, and
another that focuses on completeness for some portion of the system with more detail.

6.2 OPM Fundamental concepts

6.2.1 Bimodal representation

An OPM model shall be bimodal with expression in semantically equivalent graphics and text
representations. Each OPM model graphical diagram, i .e. an OPD, shall have an equivalent OPM textual
paragraph comprised of one or more OPM language sentences using the OPL.

NOTE 1 The bimodal graphics-text representation of the OPM model helps to involve non-technical
stakeholders in the requirements elicitation and initial conceptual modelling of the system under development.
This involvement engages those stakeholders as active participants and helps detect errors soon after their
inadvertent introduction. The bimodal representation also helps novice OPM users quickly gain familiarity with
the semantics of the OPM graphic modality when inspecting the text and corresponding graphic in tandem.

NOTE 2 Annex A specifies the OPL syntax using the conventions of ISO/IEC 14977:1996.

NOTE 3 For most of the OPD figures in this Publicly Available Specification, the corresponding paragraph of
OPL sentences accompanies the graphical OPD.

6.2.2 OPM modelling elements

Elements, the basic building blocks of any system modelled in the OPM, shall be of two kinds: things
and links. The modelling elements of object and process shall designate things in the model context.
The modelling element of link shall designate associations between things in the model context. Objects
shall be stateless or have object states. Links shall be either procedural or structural. Figure 1 provides
an OPM metamodel overview.

12 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Figure 1 — OPM metamodel overview

Within an OPM model, modelling elements shall have unique symbols, textual expression, syntactic
constraints and semantic interpretation. Within an OPM model, each modelled thing shall have a unique
identifying name of relevance to model stakeholders and unique source and destination things shall
distinguish each link or tagged link. A modelled link, together with its source and destination things
shall be an OPM construct that has a corresponding OPL sentence.

Once identified, a modelled thing may appear in any relevant context for that thing and may appear
more than once in a context to enhance understanding.

6.2.3 OPM things: objects and processes

An object shall be a thing, which, once constructed, exists or can exist physically or informatically.
Associations among objects shall constitute the object structure of the system being modelled, i .e. the
static, structural aspect of the system. An object state shall be a particular situational classification
of an object at some point during its lifetime. At every point in time, an object with an object state is
in one of its states or in transition between two of its states as a consequence of a process currently
affecting that object.

A process shall be a thing that expresses the transformation of objects in the system. A process is
always associated with and occurs or happens to one or more objects; it does not exist in isolation. A
process transforms objects by creating them, consuming them, or changing their state. Thus, processes
complement objects by providing the dynamic, behavioural aspect of the system.

NOTE Inspecting processes to determine which subprocess is performing at the point in time of inspection
reveals the status of a process. OPM does not specify explicitly the model state of a process. See process
metamodel in Annex C .

6.2.4 OPM links: procedural and structural

Procedural links shall denote procedural relations. A procedural relation shall specify how the system
operates to attain its function, designating time-dependent or conditional initiating of processes, which
transform objects.

© ISO 2015 – All rights reserved 13International Organization for Standardization

ISO/PAS 19450:2015(E)

Structural links shall denote structural relations. A structural relation shall specify an association that
persists in the system for at least some interval of time, i.e. a static aspect of the system, and shall not
be contingent upon conditions that are time-dependent.

6.2.5 OPM context management

OPM shall provide mechanisms for managing the contextual scope of model detail to promote both
comprehension and clarity. From the initial functional model context, the modeller shall use refinement
of object structure and process decomposition to extend model detail with each incremental extent of
detail comprising a contextual focus.

To achieve the system function, a set of non-trivial processes shall comprise a hierarchical network of
sub-processes. The process hierarchy shall induce a partial order on the processes, i .e. some processes
end before others can start, while other processes may occur in parallel or as alternatives. At any extent
of detail in the process hierarchy, a process in a system should provide or contribute functional value as
part of its ancestor process.

The fundamental unit of context management is the OPD that depicts the modelling elements of that
particular context. New diagram unfolding and new diagram in-zooming provide structural and
procedural connections between contexts. Although any OPD may include any number of elements,
only those elements pertinent to the particular context should appear in the OPD.

The management context for names and labels of things and links shall be the entire OPM model for
which separate model fragments contextualize the relationships and interactions among model
elements that produce behaviour. Thing names shall be unique within that management context.

6.2.6 OPM model implementation

6.2.6.1 Conceptual models versus runtime models

When constructing models with OPM, modellers need to understand the distinction between the
conceptual model they are creating and an operational occurrence of that model that they may use
to assess system behaviour. Practicing modellers have an intuitive sense for this distinction, readily
thinking of modelling element operational instance occurrences when creating a model, even when
those elements are very abstract. However, those not familiar with modelling of the kind OPM supports
may find the specification of this Publicly Available Specification somewhat confusing.

An OPM model is a formal framework within which object and process occurrences interact by means
of links. Because an OPM model has this kind of framework, akin to the system’s structure, and model
elements interact using links, the modeller may simulate system behaviour by creating object and
process operational instance occurrences, and then follow the flow of execution control embodied in
the connections and OPM semantic rules. The presence of thing occurrences translates the abstract
conceptual model into a more concrete runtime form.

Annex D presents OPM facilities to support simulation activities. However, as the users of this Publicly
Available Specification construct OPM models, they need to keep in mind that the behaviour of the
modelled system occurs only when operational instance occurrences of things exist. The appearance
of a link between two things does not imply behaviour until operational instance occurrences of those
things exist. The word ‘runtime’, i .e. when operational instance occurrences do exist, is implicit in every
specification statement provided herein.

NOTE The word ‘instance’ also occurs with a different meaning in the presentation of the classification-
instantiation relation. In that usage, an instance is a refinee typical of the class.

6.2.6.2 OPM model realization

The conceptual framework for OPM includes the capability for model simulation. To use this capability
successfully, a modeller needs to understand the distinction between a model as a representation of a
pattern of structure and behaviour and an instance of the model operating to perform the function for

14 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

which the model is a pattern. The model has an architectural form, based in part on the arrangement of
structure and procedure, which the modeller extends with detail as the model design evolves. A model
expressing consistent detail is implementable as a simulation, i.e. capable of realizing resources, using
processes to transform objects, and producing functional value to a beneficiary.

6.2.6.3 OPD Navigation and OPL composition

This Publicly Available Specification expresses the means for creating OPM model diagrams and
corresponding OPL texts. The in-zooming and unfolding mechanisms of Clause 14 provide ways to link
OPD diagrams with corresponding OPL to express the linkage as text. However, because there are many
ways to label these links, some of which may be specific to a tool implementation, Clause 14 does not
specify the labels to assign for identifying successive hierarchic levels, linkage between related OPD
diagrams, or corresponding OPL segments.

7 OPM thing syntax and semantics

7.1 Objects

7.1.1 Description

An object shall be a thing that exists or has the potential of physical or informatical existence. From
the temporal viewpoint, the existence of an object shall be persistent. As long as no process acts on the
object, it shall remain in its current implicit or explicit state.

An OPM object is an abstract category identifier for a pattern of structure, properties and features, i .e.
attributes and operations, that are applicable to operational instance objects of that category. Within
constraints of the model, any non-negative number of object operational instances may exist.

7.1.2 Representation

A rectangular box containing a label, the object name, shall signify graphically the presence of a model
object. Figure 2 graphically illustrates the object Vehicle Occupant Group . In OPL text, the object name
shall appear in bold face with capitalization of each word.

Figure 2 — Object graphic notation

NOTE Conventions for naming objects are discussed in B.6.2 .

7.2 Processes

7.2.1 Description

A process shall be a thing that transforms one or more objects. Transformation may be generation
(construction, creation) , effect, or consumption (destruction, elimination) . A process shall have positive
performance time duration.

© ISO 2015 – All rights reserved 15International Organization for Standardization

ISO/PAS 19450:2015(E)

An OPM process is an abstract category identifier for a pattern of transformation. For the concrete,
operational instance realization, a process instance is a specific occurrence of the process pattern that the
category specifies. The process operational instance transforms one or more object operational instances.

NOTE 1 A process can directly invoke another process, by means of the invocation link (see 9.5 .2 .5 .2) , which
results in the invoking process creating a transient object that the invoked process immediately consumes.

NOTE 2 The effect of a process on an object is usually a change in that object’s state. However, there are
persistent processes whose effect is state maintenance. Rather than inducing a change, the semantics of a
persistent process is to maintain the object in its current state.

EXAMPLE The process Existing is the most prominent persistent process; it describes a static (implicit)
state of existence. Examples of other persistent processes are Holding , Maintaining , Keeping , Staying , Waiting ,
Prolonging , Extending , Delaying , Occupying , Persisting , Continuing , Supporting , Withholding , and
Remaining. For biological objects, Existing entails Living – actively maintaining the necessary life processes.

7.2.2 Representation

An ellipse containing a label, the process name, shall signify graphically the presence of the abstract
process category. Figure 3 graphically illustrates the process Automatic Crash Responding. In OPL
text, the process name shall appear in bold face with capitalization of each word.

Figure 3 — Process graphic notation

NOTE Conventions for naming processes are discussed in B .6.3 .

7.3 OPM things

7.3.1	 OPM	thing	defined

An OPM thing shall be an object or a process. Objects and processes are symmetric in many regards and
have much in common in terms of relations, such as aggregation, generalization and characterization.
An object exists while a process happens to one or more objects. OPM objects and OPM processes
depend on each other in the sense that a process is necessary to transform an object, while at least one
object to transform is necessary for a process to occur or happen.

7.3.2 Object-process test

To apply OPM in a useful manner, the modeller needs to make the essential distinction between objects
and processes, as a prerequisite for successful system analysis and design. By default, a noun shall
identify an object. The object-process test provides modellers with criteria to distinguish nouns used
for processes from nouns used for objects. Providing a correct answer to the question about whether a
given noun is an object or a process is crucial and fundamental to OPM.

To be a process, a noun or noun phrase shall satisfy each of the following three process criteria:

— time association, the noun in question associates with the passage of time;

— verb association, the noun in question derives from, or has a common root with a verb, or has a
synonym that associates with a verb; and

16 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

— object transformation, the noun in question occurs, happens, performs, executes, transforms,
changes, or alters at least one object, or maintains it in its current state.

EXAMPLE Flight is a noun that is a process because it passes all three object-process test criteria:

a) it has a time association;

b) it associates with the verb to fly; and

c) it transforms Airplane by changing the value of its location attribute from source to destination.

7.3.3 OPM thing generic properties

All OPM things shall have the following three generic properties:

— Perseverance, which pertains to the thing’s persistence and denotes whether the thing is static,
i.e. an object, or dynamic, i .e. a process. Accordingly, the permissible value for the Perseverance
property is static or dynamic.

— Essence, which pertains to the thing’s nature and denotes whether the thing is physical or
informatical. Accordingly, the permissible value of the generic attribute Essence is physical or
informatical.

— Affiliation, which pertains to the thing’s scope and denotes whether the thing is systemic, i .e. part
of the system, or environmental, i .e. part of the system’s environment. Accordingly, the value of the
property Affiliation is systemic or environmental.

NOTE While objects are persistent, i .e. they have static perseverance, and processes are transient, i .e. they
have dynamic perseverance, boundary examples of persistent processes (see 7.2 .1) , as well as of transient objects
(see 9.5 .2 .5 .1) , can exist.

Graphically, as shown in Figure 4, shading effects shall denote physical OPM things and dashed lines
shall denote environmental OPM things. All eight Perseverance-Essence-Affiliation generic property
combinations of an OPM thing shown in Figure 4 may occur. The lower portion of Figure 4 expresses,
from left to right and top to bottom, the OPL sentences corresponding to the graphical elements.

Informatical Systemic Process is an informatical and systemic process.
Physical Systemic Process is a physical and systemic process .
Informatical Systemic Object is an informatical and systemic object.
Physical Systemic Object is a physical and systemic object.
Informatical Environmental Process is an informatical and environmental process.
Physical Environmental Process is a physical and environmental process.
Informatical Environmental Object is an informatical and environmental object.
Physical Environmental Object is a physical and environmental object.

Figure 4 — OPM thing generic attribute combinations

© ISO 2015 – All rights reserved 17International Organization for Standardization

ISO/PAS 19450:2015(E)

7.3.4 Default values of thing generic properties

The default value of the Affiliation generic property of a thing shall be systemic.

Any non-trivial system tends to have a majority of objects and processes with the same thing generic
property values for Essence.

EXAMPLE Data processing systems are informatical, although they have physical components. A
transportation system, such as a railway system or an aviation system, is physical, although they have
informatical components.

A system’s Primary Essence shall be the same as that of the majority thing Essence values within the
system boundary.

The default value of the Essence generic property of a thing within the boundary of a system shall be
the Primary Essence of the system.

NOTE A supporting tool can provide an option for the modeller to specify a system’s Primary Essence as a
means to establish the default thing generic attribute value for Essence.

The OPL corresponding to a diagram shall not reflect the default values of thing generic properties
unless the thing does not yet connect to another thing, e.g. during the course of the modelling process.
As soon as links to other things appear, thing generic properties shall merge as appropriate into OPL
phrases describing these links.

7.3.5 Object states

7.3.5.1 Stateful and stateless objects

Object state shall be a possible situation in which an object may exist. An object state has meaning only
in the context of the object to which it belongs, i .e. the object that has the state.

A stateless object shall be an object that has no specification of states.

A stateful object shall be an object with a specified set of permissible states. In a runtime model, at any
point in time, any stateful object operational instance is at a particular permissible state or exists in
transition between two permissible states as a consequence of a process currently affecting that object.

NOTE 1 Depending upon model behaviour, operational instances of an object can be at different states.

NOTE 2 Conventions for naming object states are discussed in B.6.4.

7.3.5.2 Object state representation

Graphically, a labelled, rounded-corner rectangle (a ‘rountangle’) placed inside the object to which it
belongs shall denote an object state. In OPL text, the object state label shall appear in bold face without
capitalization.

EXAMPLE Figure 5 depicts the object Museum Visitor with two states labelled inside the museum and out
of the museum . Below the graphical representation is the corresponding OPL sentence.

18 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Museum Visitor can be inside the museum or out of the museum .

Figure 5 — A stateful object with two states

7.3.5.3	 Initial,	default,	and	final	states

The initial state of an object shall be its state as the system begins operating or its state upon generation
by the system during operation. The final state of an object shall be its state as the system completes
operation or its state upon consumption by the system during operation. The default state of an object
shall be the state in which the object is most likely to be upon random inspection.

NOTE 1 An object can have zero or more initial states, zero or more final states, and zero or one default state.
The same state can be any combination of initial, final and/or default.

NOTE 2 The initial and final states are especially useful for objects that exhibit a lifecycle pattern, such as a
product or an organism or a system.

NOTE 3 If an object has more than one initial state, then it is possible to assign to each initial state a probability
of the object being created in that state (see 12 .7) .

7.3.5.4	 Initial,	default,	and	final	state	representation

Graphically, a thick contour border shall denote an initial state, a double contour border shall denote
a final state, and an open arrow pointing diagonally from the left shall denote a default state. The
corresponding OPL sentences make the state specification explicit.

EXAMPLE Figure 6 depicts the object Specification with initial, default and final states. Below the graphical
representation are the corresponding OPL sentences.

State preliminary of Specification is initial.
State approved of Specification is default.
State cancelled of Specification is final.

Figure	6	—	A	stateful	object	with	initial,	default,	and	final	states

7.3.5.5 Attribute values

Since an attribute is an object, an attribute value shall correspond to a state in the sense that a value is
a state of an attribute. An object may have an attribute, which is a different object, and for some time

© ISO 2015 – All rights reserved 19International Organization for Standardization

ISO/PAS 19450:2015(E)

interval during the existence of the object exhibiting that attribute, the value of that attribute is the
state of the different object.

EXAMPLE Considering Temperature in degrees Celsius as an attribute of Engine, 75 is a value of that
attribute.

NOTE 1 Since an attribute is a stateful object, a permissible attribute value is a member of the set of permissible
states of that stateful object. An enumerated list or a set of one or more ranges of numbers can define the set of
permissible values for the attribute.

NOTE 2 In contrast, a property value is fixed and does not change during model operation.

Attributes with values expressed in measurement units shall express the measurement unit graphically
in an OPD within brackets below the attribute object name and express the measurement unit in text
after the attribute object name in corresponding OPL sentences, e.g. Temperature in degrees Celsius .

8 OPM link syntax and semantics overview

8.1 Procedural link overview

8.1.1 Kinds of procedural links

A procedural link shall be one of three kinds:

— Transforming link, which connects a transformee (an object that the process transforms) or one of
its states, with a process to model object transformation, namely generation, consumption, or state
change of that object as a result of the process performance;

— Enabling link, which connects an enabler (an object that enables the process occurrence but is not
transformed by that process) , i .e. an agent or an instrument, or its state, with a process to model an
enabling presence for that process; or

— Control link, which is a transforming or an enabling link with the added semantics of an execution
control mechanism to model an event that initiates a linked process, to model a condition for process
performance, or to model a connection of two processes denoting invocation, or exception.

NOTE Transformee and enabler are roles an object can have with respect to the process to which they link.
Hence, an object can have the role of an enabler for one process and a transformee for another process.

8.1.2 Procedural link uniqueness OPM principle

A process shall connect with a transforming link to at least one object or object state. At any particular
extent of abstraction, an object or any one of its states shall have exactly one role as a model element
with respect to a process to which it links: the object may be a transformee, an enabler, an initiator, or a
conditional object. At a given extent of abstraction, an object or an object state shall link to a process by
only one procedural link.

8.1.3	 State-specified	procedural	links

Each procedural link may be qualified as a state-specified procedural link. A state-specified procedural
link shall be a procedural link that connects a process to a specified state of an object.

8.2	Operational	semantics	and	flow	of	execution	control

8.2.1 The Event-Condition-Action control mechanism

The Event-Condition-Action paradigm shall provide the OPM operational semantics and flow of
execution control. At the point in time of object creation, or appearance of the object from the system’s
perspective, or entrance of an object to a particular state, an event shall occur. At runtime, for objects

20 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

that are the source of a link with a process, e.g. enabler of a process, the occurrence of an event shall
initiate evaluation of the precondition for every process to which the object links as a link source.

When the precondition evaluation for a process begins, the event shall cease to exist for that process. If
and only if the evaluation reveals satisfaction of the precondition shall the process start performance
and action occurs.

Starting performance of a process has two prerequisites:

a) an initiating event, and

b) satisfaction of a precondition.

Thus, events and preconditions in concert specify OPM flow of execution control for process performance.

NOTE Invocation and exception are event-condition-actions that occur only between processes.

The flow of execution control shall be the consequence of successive Event-Condition-Action sequences
that begin with initiation of the system function by an external event and end when the system
function is complete.

8.2.2 Preprocess object set and postprocess object set

The preprocess object set of a process shall determine the precondition to satisfy before performance
of that process starts. The preprocess object set may be complex and include compound logical
expressions, or may simply include the existence of one or more objects, possibly in specified states.
Typical objects in a preprocess object set are consumees, i .e. objects the process consumes, affectees, i .e.
objects the process affects, and process enablers. Some of these objects may have a further stipulation
regarding flow of execution control, i .e. a condition link. Every process shall have a preprocess object
set with at least one object, possibly in a specified state.

The postprocess object set shall determine the postcondition that process completion satisfies. The
postprocess object set may be complex and include compound logical expressions, or may simply include
the existence of one of more objects, possibly in specified states. Typical objects in a postprocess object
set are resultees, i .e. objects the process generates and affectees, i .e. objects the process affects. Every
process shall have a postprocess object set with at least one object, possibly in a specified state.

NOTE 1 The intersection of the preprocess object set and the postprocess object set of the same process
includes the process enablers and affectees. Consumees are only members of the preprocess object set, while
resultees are only members of the postprocess object set.

NOTE 2 The operational instance semantics for objects in the involved object set are presented in 14.2 .2 .4.4.

8.2.3 Skip semantics of condition versus wait semantics of non-condition links

A process preprocess object set may include both condition links (see 9.5.3) and non-condition links, i .e.
procedural links without the condition control modifier. The distinguishing aspect of condition links is
their ‘skip semantics’, which provide for skipping or bypassing a process if the source object operational
instance of the condition link does not exist. Without the condition link qualification, the non-existence
of a source object operational instance causes the process to wait for another event and operational
instances of all source objects to exist, possibly in a specified state, thus satisfying the precondition.

If there are one or more non-condition links and one or more condition links, the existence of all of
them shall be necessary to satisfy the precondition and start the process. However, if there are one
or more unsatisfied non-condition links and one or more unsatisfied condition links, a conflict arises
between the wait semantics of the former and the skip semantics of the latter. To resolve the conflict,
the skip semantics of the condition links shall be stronger than the wait semantics of their non-
condition counterparts and the flow of execution control bypasses the process, which does not start its
performance or generate an exception.

© ISO 2015 – All rights reserved 21International Organization for Standardization

ISO/PAS 19450:2015(E)

Even if just one of the conditions attendant to the condition links connecting with the process does
not exist, the precondition satisfaction evaluation shall fail, execution control skips the process, and
an event occurs for the next sequential process(es) by means of an invocation link of some kind, see
9.5 .2 .5 and 14.2 .2 .

NOTE 1 There is no result event link or result condition link, because these are outgoing procedural links
relating to the postprocess object set. When a process completes, it creates the postprocess object set without
further condition, so there is no condition on the creation of resultees or change of affectees. Creation of an
object, possibly at a specified state, in the postprocess object set can serve as an event or condition for the next
sequential process(es) .

NOTE 2 To achieve robust flow of execution control under all circumstances, the modeller can model
premature process ending without completion as exception handling (see 9.5 .4) .

9 Procedural links

9.1 Transforming links

9.1.1 Kinds of transforming links

A transforming link shall specify a connection between a process and its transformee (the object it
consumes, creates, or that changes state) . The three kinds of transforming links shall be consumption
link, result link, and effect link. Figure 7 illustrates the three kinds of transforming connections with
the corresponding OPL sentences below the graphical representation.

Deleting consumes File. Creating yields File. Editing affects File.

Figure 7 — Transforming links: left – consumption, middle – result, right – effect

A transformee shall be a role that an object has with respect to a given process. The same object may
have a different role for another process.

9.1.2 Consumption link

A consumption link shall be a transforming link specifying that the linked process consumes (destroys,
eliminates) the linked object, the consumee.

Graphically, an arrow with a closed arrowhead, as shown in Figure 7, pointing from the consumee to
the consuming process shall denote the consumption link.

The syntax of a consumption link OPL sentence shall be: Processing consumes Consumee.

22 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Existence of the consumee shall be a precondition, or part of the precondition, for process activation. If
the consumee does not exist, i .e. no operational instance of the consumee exists, then process activation
shall wait for the consumee to exist.

The consumption shall be immediate upon process activation, unless the modeller needs to model
consumption of the object over time. In this case, the consumption link shall have a property that
indicates the rate of consumption of the consumee and the consumee shall have an attribute that
indicates the available quantity.

NOTE 1 The modeller can create an exception if the object quantity is less than the rate times the expected
process duration.

NOTE 2 See 11.1 for the denotation of link properties.

EXAMPLE 1 Steel Rod is a consumee for the process Machining , which generates the resultee Shaft. Once
Machining has started, it consumes Steel Rod .

EXAMPLE 2 Water is a consumee for the process Irrigating. The consumee has an attribute Quantity in litres
with value 1000 and the consumption link has a property Flow Rate in litres per second with value 50 . In this
case, if Irrigating is uninterrupted, it will last 20 s, and it will consume Water at the specified Flow Rate value.

9.1.3 Result link

A result link shall be a transforming link specifying that the linked process creates (generates, yields)
the linked object, which is the resultee.

Graphically, an arrow with a closed arrowhead, as shown in Figure 7, pointing from the creating process
to the resultee shall denote a result link.

The syntax of a result link OPL sentence shall be: Processing yields Resultee.

The generation of the resultee shall be immediate upon process completion, unless the modeller needs
to model the generation of the object over time. In this case, the result link shall have a property that
indicates its rate of resultee generation and the resultee shall have an attribute that indicates the
available quantity.

NOTE See 11.1 for the denotation of link properties.

EXAMPLE 1 Steel Rod is a consumee for the process Machining , which generates the resultee Shaft. When
Machining completes, it generates Shaft.

EXAMPLE 2 Gasoline and Diesel Oil are resultees of the process Refining , which consumes Crude Oil . The
resultees Gasoline and Diesel Oil each have an attribute Quantity (m3) . The Refining to Gasoline result link
has the property Gasoline Yield Rate (m3/h) with value 1000 and the Refining to Diesel Oil result link has
the property Diesel Oil Yield Rate (m3/h) with value 800 . Assuming there is enough Crude Oil, if Refining
activates and performs for 10 h, it will yield 10 000 m3 of Gasoline and 8 000 m3 of Crude Oil .

9.1.4 Effect link

An effect link shall be a transforming link specifying that the linked process affects the linked object,
which is the affectee, i .e. the process causes some unspecified change in the state of the affectee.

Graphically, a bidirectional arrow with two closed arrowheads, as shown in Figure 7, one pointing in
each direction between the affecting process and the affected object shall denote the effect link.

The syntax of an effect link OPL sentence shall be: Processing affects Affectee.

9.1.5 Basic transforming links summary

Table 1 summarizes the basic transforming links.

© ISO 2015 – All rights reserved 23International Organization for Standardization

ISO/PAS 19450:2015(E)

Table 1 — Basic transforming links summary

Name Semantics Sample OPD & OPL Source Destination

Consumption

link

The process con-
sumes the object.

Eating consumes Food.

c o n s u me d
object

c o n s u m i n g
process

Result

link

The process gener-
ates the object.

Mining yields Copper.

creating pro-
cess

created object

Effect

link

The process affects
the object by chang-
ing it from one state
to another state. Purifying affects Copper.

affected object and affecting
process are both source and
destination

9.2 Enabling links

9.2.1 Kinds of enabling links

An enabling link shall be a procedural link specifying an enabler for a process. An enabler for a process
shall be an object that is necessary for that process to occur. The existence and state of an enabler after
the process is complete shall be the same as just before the process began its performance.

The two kinds of enabling links shall be agent link and instrument link.

The enabler shall be present throughout the performance of the process that it enables. If, from the
system’s viewpoint, the enabler ceases to exist during the performance of the process it enables, that
process shall immediately end.

NOTE 1 An enabler is a role an object has with respect to a given process. The same object can be an enabler
for one process and a transformee for another process.

NOTE 2 To achieve robust flow of execution control under all circumstances, the modeller can model
premature process ending without completion as exception handling (see 9.5 .4) .

9.2.2 Agent and Agent Link

An agent shall be a human or a group of humans capable of intelligent decision-making, who interact
with the system to enable or control the process throughout performance of the process.

An agent link shall be an enabling link from the agent object to the process it enables, specifying that
the agent object is necessary for linked process activation and performance.

Graphically, a line with a filled circle resembling a black lollipop at the terminal end extending from the
agent object to the process it enables shall denote an agent link.

The syntax of an agent link OPL sentence shall be: Agent handles Processing.

EXAMPLE 1 In the OPD in Figure 8, Welder is the agent for Welding. Performing the process of Welding the
object Steel Part A with the object Steel Part B to create Steel Part AB , requires a human Welder. Welder
is the agent of Welding. However, Welding does not transform the Welder, but Welding cannot take place
without the Welder.

24 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Welder handles Welding.
Welding consumes Steel Part A and Steel Part B .
Welding yields Steel Part AB .

Figure 8 — Agent link example

EXAMPLE 2 In the OPD in Figure 8, if, for whatever reason, Welder goes away before Welding completes,
then Welding stops prematurely and the creation of Steel Part AB does not occur, although Welding already
consumed Steel Part A and Steel Part B .

9.2.3 Instrument and Instrument Link

An instrument shall be an inanimate or otherwise non-decision-making enabler of a process that is not
able to start or take place without the existence and availability of the instrument.

An instrument link shall be an enabling link from the instrument object to the process it enables,
specifying that the instrument object is necessary for linked process activation and performance.

Graphically, a line with an open circle resembling a white lollipop at the terminal end extending from
the instrument object to the process it enables shall denote an instrument link.

The syntax of an instrument link OPL sentence shall be: Processing requires Instrument.

EXAMPLE 1 A Manufacturing process might not consume or (disregarding wear and tear) change the state
of a Machine that enables the transformation of Bar Stock to Machined Part. In this context, the Machine is an
instrument of the Manufacturing process.

EXAMPLE 2 In the Figure 9 OPD, Sintering Oven is the instrument for Insert Set, because without it
Sintering cannot happen. However, while the Insert Set object is transformed (its state changes from pre-
sintered to sintered) , disregarding wear and tear, Sintering Oven remains unaffected as a result of preforming
the Sintering process.

© ISO 2015 – All rights reserved 25International Organization for Standardization

ISO/PAS 19450:2015(E)

Insert Set can be pre-sintered or sintered .
Sintering requires Sintering Oven .
Sintering changes Insert Set from pre-sintered to sintered .

Figure 9 — Instrument link example

EXAMPLE 3 In the Figure 9 OPD, if during the Sintering process Sintering Oven ceases to exist, e.g. due to
severe cracking, Sintering will stop and Insert Set will not be in its sintered state, although it already left its
pre-sintered state.

9.2.4 Basic enabling links summary

Table 2 summarizes the basic enabling links.

Table 2 — Basic enabling links summary

Name Semantics Sample OPD & OPL Source Destination

Agent

Link

Agent is a human or a
group of humans who
enables the occur-
rence of the process
to which it is linked
but is not transformed
by that process.

Welder handles Welding.

agent – the
enabling ob-
ject

enabled pro-
cess

Instrument

Link

Instrument is an inan-
imate object that ena-
bles the occurrence of
the process to which
it is linked but is not
transformed by that
process.

Manufacturing requires Machine.

instrument
– the ena-
bling object

enabled pro-
cess

9.3	State-specified	transforming	links

9.3.1	 State-specified	consumption	link

A state-specified consumption link shall be a consumption link from a specified state of the consumee
to the linked process that consumes (destroys, eliminates) the object. Existence of the consumee in
the specified state shall be a precondition, or part of the precondition, for process activation. If the
consumee is not in that specified state, then process activation shall wait for the consumee to exist at
that specified state.

Graphically, an arrow with a closed arrowhead pointing from the specified state of the object to the
process, which consumes the object, shall denote the state-specified consumption link.

26 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

The syntax of a state-specified consumption link OPL sentence shall be: Process consumes specified-
state Object.

The consumption shall be immediate upon process activation, unless the modeller needs to model
consumption of the object over time. In this case, the consumption link shall have a property that
indicates the rate of consumption of the consumee and the consumee shall have an attribute that
indicates the available quantity.

NOTE 1 The modeller can create an exception if the object quantity is less than the rate times the expected
process duration.

NOTE 2 See 11.1 for the denotation of link properties.

EXAMPLE 1 Steel Rod at state pre-heat-treated is a consumee for the process Machining , which generates
the resultee Shaft. When Machining activates, it consumes pre-heat-treated Steel Rod , because this pre-heat-
treated Steel Rod is not available for any purpose other than becoming a Shaft resultee of this process. If Steel
Rod previously went through a Heat Treating process, it is at state heat-treated , and therefore not available to
undergo Machining.

EXAMPLE 2 Continuing with Example 1, Steel Rod is at state pre-heat-treated and has an attribute Quantity
[units] with value 600. The state-specified consumption link has a property Rate [units/hour] with value 60 .
When Machining performs, it consumes the 600 Steel Rods after 10 working hours.

9.3.2	 State-specified	result	link

A state-specified result link shall be a result link from a process to a specified state of the resultee
that the process creates (generates, yields) . Existence of the resultee at the specified state shall be a
postcondition, or part of the postcondition, upon completion of the generating process.

Graphically, an arrow with a closed arrowhead pointing from the process to the specified state of the
object shall denote the state-specified result link.

The syntax of a state-specified result link OPL sentence shall be: Process yields specified-state Object.

The generation of the resultee at the particular state shall be immediate upon process completion,
unless the modeller needs to model the generation of the object over time. In this case, the result
link shall have a property that indicates its rate of resultee generation and the resultee shall have an
attribute that indicates the available quantity at that specified state.

NOTE 1 See 11.1 for the denotation of link properties.

NOTE 2 At runtime, an operating model can consist of multiple operational instances of an object with each
operational instance at a different state.

EXAMPLE 1 Steel Rod at state pre-heat-treated is a consumee for the process Machining , which generates
the resultee Shaft at state pre-heat-treated . A state-specified result link from Machining to the pre-heat-
treated state of Shaft denotes this model specification.

A result link yielding a stateful object with an initial state should attach at that object rectangle or one
of its states other than the initial state.

NOTE 3 The modeller might want the OPL on the right in Figure 10 , but the OPL on the left reduces ambiguity.

EXAMPLE 2

© ISO 2015 – All rights reserved 27International Organization for Standardization

ISO/PAS 19450:2015(E)

A can be s1, s2 , or s3 .
S2 is initial.
P yields A .

A can be s1, s2 , or s3 .
S2 is initial.
P yields s2 A .

Figure 10 — Correct (left) and incorrect (right) result link to an object with an initial state

9.3.3	 State-specified	effect	links

9.3.3.1 Input and output effect links

An input source link shall be the link from a specified state of an object, an input source, to the
transforming process, while the output destination link shall be the link from the transforming process
to a specified state of an object, an output destination. These links provide three possible modelling
situations in the context of a single object linking to a single process:

a) input-output-specified effect link specifying both input source and output destination states;

b) input-specified effect link specifying only the input source state; and

c) output-specified effect link specifying only the output destination state.

9.3.3.2	 Input-output-specified	effect	link

An input-output-specified effect link shall be a pair of effect links, where the input source link connects
to an affecting process from a specified state of an affectee, and the output destination link connects
from that same process to a different output destination state of the same affectee. Existence of the
affectee at the input source state shall be a precondition, or part of the precondition, for affecting
process activation. Existence of the affectee at the output destination state shall be a postcondition, or
part of the postcondition, upon affecting process completion.

Graphically, a pair of arrows consisting of an arrow with a closed arrowhead from the input source state
of the affectee to the affecting process, the input source link, and a similar arrow from that process to
the output destination state of the affectee at process completion, the output destination link, shall
denote the input-output-specified effect link.

The syntax of an input-output-specified effect link OPL sentence shall be: Process changes Object from
input-state to output-state.

EXAMPLE 1 The OPD in Figure 11 depicts state-specified consumption and result links. Machining can
only consume Raw Metal Bar in state cut and generate Part in state pre-tested . Cutting and Testing are
environmental processes. Cutting needs to precede Machining in order to change Raw Metal Bar from its pre-
cut to its cut state, while Testing changes Part from pre-tested to tested .

NOTE 1 In the case of an input-output-specified effect link, once an affecting process starts, it causes the
object to exit out of its input source state. However, the object reaches its output destination state only when the
process completes. Between process start and process completion, the affectee object is in transition between
the two states.

28 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

EXAMPLE 2 In the OPD in Figure 11, Cutting takes Raw Metal Bar from its pre-cut to its cut state. As long as
Cutting is active, the state of Raw Metal Bar is in transition and bound to the Cutting process: Cutting takes it
out of its pre-cut state but has not yet brought it to its cut state with process completion. While Cutting the state
of Raw Metal Bar is indeterminate: it could be partly cut and reusable or mostly cut and unusable. In either case,
it is not available for Machining , since it is not in its cut state.

Raw Metal Bar is physical .
Raw Metal Bar can be pre-cut or cut.
Machine Operator is physical .
Coolant is physical .
Machining is physical .
Machining requires Coolant.
Machine Operator handles Machining.
Part is physical .
Part can be pre-tested or tested .
Testing is environmental and physical .
Cutting is environmental and physical .
Cutting changes Raw Metal Bar from pre-cut to cut.
Machining consumes cut Raw Metal Bar.
Machining yields pre-tested Part.
Testing changes Part from pre-tested to tested .

Figure	11	—	State-specified	consumption	and	results	links

NOTE 2 If an active affecting process stops prematurely, i .e. it does not complete, the state of any affectee
remains indeterminate unless exception handling resolves the object to one of its permissible states.

9.3.3.3	 Input-specified	effect	link

An input-specified effect link shall be a pair of effect links, where the input source link connects to an
affecting process from an input source state of the affectee, and the output destination link connects
from the same process to the same affectee without specifying a particular state. The output destination
state of the object shall be its default state or, if the object does not have a default state, then the state
probability distribution of the object shall determine the output destination state of that object (see 12.7) .

Existence of the affectee at the input source state is a precondition, or part of the precondition, for
affecting process activation. Existence of the affectee at any one of its states shall be a postcondition, or
part of the postcondition, upon affecting process completion.

© ISO 2015 – All rights reserved 29International Organization for Standardization

ISO/PAS 19450:2015(E)

Graphically, a pair of arrows consisting of an arrow with a closed arrowhead from the input source
state of the affectee to the affecting process, the input link, and a similar arrow from that process to the
affectee but not to any one of its states shall denote the input-specified effect link.

The syntax of an input-specified effect link OPL sentence shall be: Process changes Object from input-
state.

9.3.3.4	 Output-specified	effect	link

An output-specified effect link shall be a pair of effect links, where the input source link connects to an
affecting process from an affectee without specifying a particular state, and the output destination link
connects from the same process to an output destination state of the same affectee. Existence of the
affectee shall be a precondition, or part of a precondition, for affecting process activation. Existence of
the affectee at the output destination state shall be a postcondition, or part of the postcondition, upon
affecting process completion.

Graphically, a pair of arrows consisting of an arrow with a closed arrowhead from the affectee without
specifying a particular state, the input link, and a similar arrow from that process to an output
destination state of that affectee, the output link, shall denote the output-specified effect link.

The syntax of an input-specified effect l ink OPL sentence shall be: Process changes Object to
output-state.

9.3.4	 State-specified	transforming	links	summary

Table 3 summarizes the state-specified transforming links.

30 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Table	3	—	State-specified	transforming	links	summary

Name Semantics Sample OPD & OPL Source Destination

State-spec-
ified	con-

sumption link

The process con-
sumes the object
if and only if the
obj ect is in the
specified state.

Eating consumes edible Food .

c o n s u me e
state

process

State-spec-
ified	result	

link

The process gen-
erates the object
in the specified
state. Mining yields raw Copper.

process resultee state

I n p u t - o u t -
put-specified	
effect link pair

(consis ting of
one state-spec-
i f i e d i n p u t
link a nd one
state-specified
output link)

T h e p r o c e s s
changes the object
from a specified
input s tate via
the input link to a
specified output
state via the out-
put link.

Purifying changes Copper from raw to
pure.

a f f e c t e e
source state

affecting pro-
cess

a f fe c t i n g
process

affectee des-
tination state

Input-specified	
effect link pair

(consis ting of
one state-spec-
i f i e d i n p u t
link a nd one
state-unspeci-
fied output link)

T h e p r o c e s s
changes the object
from a specified
input state to any
output state. Testing changes Sample from awaiting

test.

a f f e c t e e
source state

affecting pro-
cess

a f fe c t i n g
process

affectee

Output-speci-
fied	effect	link	
pair

(consis ting of
one s tate-un-
specified input
link a nd one
state-specified
output link)

T h e p r o c e s s
changes the object
from any input
state to a speci-
fied output state.

Cleaning & Painting changes Engine
Hood to painted .

affectee
affecting pro-
cess

a f fe c t i n g
process

affectee des-
tination state

9.4	State-specified	enabling	links

9.4.1	 State-specified	agent	link

A state-specified agent link shall be an agent link from a specified state of the agent to a process. The
agent in the specified state shall be necessary for process activation and performance.

Graphically, a line with a filled circle resembling a black lollipop at the terminal end extending from the
specified state of the agent object to the process it enables shall denote a state-specified agent link.

The syntax of a state-specified agent link OPL sentence shall be: Specified-state	Agent handles
Processing.

NOTE State name labels do not appear with beginning capital letters except when they appear at the
beginning of an OPL sentence.

© ISO 2015 – All rights reserved 31International Organization for Standardization

ISO/PAS 19450:2015(E)

EXAMPLE A Pilot needs to be sober in order to qualify as an agent for the Flying process of an Airplane . In
OPL: Sober Pilot handles Flying.

9.4.2	 State-specified	instrument	link

A state-specified instrument link shall be an instrument link from a specified state of the instrument to a
process. The instrument in the specified state shall be necessary for process activation and performance.

Graphically, a line with an empty circle resembling a white lollipop at the terminal end extending from
the specified state of the instrument object to the process it enables shall denote a state-specified
instrument link.

The syntax of a state-specified instrument link OPL sentence shall be: Processing requires specified-
state Instrument.

EXAMPLE The OPD in Figure 12 depicts the difference between basic and state-specified instrument links.
On the left, the object Moving Truck is the instrument for Moving , meaning that the state of this object does not
matter, while on the right, the qualifying state serviced of Moving Truck is an instrument of Moving , meaning
that if and only if Moving Truck is serviced can Moving take place.

Moving Truck is physical .
Moving Truck can be worn out or serviced .
Servicing is environmental and physical .
Servicing changes Moving Truck from worn out to
serviced .
Apartment Content Location is physical .
Apartment Content Location can be old apartment or
new apartment.
Moving is physical .
Moving requires Moving Truck.
Moving changes Apartment Content Location from
old apartment to new apartment.

Moving Truck is physical .
Moving Truck can be worn out or serviced .
Servicing is environmental and physical .
Servicing changes Moving Truck from worn out to
serviced .
Apartment Content Location is physical .
Apartment Content Location can be old apartment or
new apartment.
Moving is physical .
Moving requires serviced Moving Truck.
Moving changes Apartment Content Location from
old apartment to new apartment.

Figure	12	—	Instrument	link	on	left	vs.	state-specified	instrument	link	on	right

9.4.3	 State-specified	enabling	links	summary

Table 4 summarizes the state-specified enabling links.

32 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Table	4	—	State-specified	enabling	links	summary

Name Semantics Sample OPD & OPL Source Destination

State-spec-
ified	agent	

link

The human agent
enables the pro-
cess provided she
is at the specified
state.

Healthy Miner handles Copper Min-
ing.

agent state
enabled pro -
cess

State-speci-
fied	instru-
ment link

The process re-
quires the instru-
ment at the spec-
ified state. Copper Mining requires operational

Drill .

instrument
state

enabled pro -
cess

9.5 Control links

9.5.1 Kinds of control links

As part of the Event-Condition-Action paradigm (see 8.2 .1) underlying the operational semantics of
OPM, an event link, a condition link, and an exception link shall express an event, a condition, and a time
exception respectively. These three link kinds shall be control links. Control links shall occur either
between an object and a process or between two processes.

An event link shall specify a source event and a destination process to activate upon event occurrence.
The event occurrence causes an evaluation of the process precondition for satisfaction.

Satisfying the precondition allows process performance to proceed and the process becomes active.
If the process precondition is not satisfied, then process performance shall not occur. Regardless of
whether the evaluation is successful or not, the event shall be lost.

If the process precondition is not satisfied, process activation shall not occur until another event
activates the process. Control links determine if the process waits for another activating event or if the
flow of execution control bypasses the process.

NOTE 1 Subsequent events can come from other sources to initiate precondition evaluation.

A condition link shall be a procedural link between a source object or object state and a destination
process. A condition link shall provide a bypass mechanism, which enables system execution control to
skip, or bypass, the destination process if its precondition satisfaction evaluation fails.

NOTE 2 Without the condition link bypass mechanism, the failure to satisfy the precondition constrains the
process to wait for satisfaction of the precondition.

For both event links and condition links, each kind of incoming transforming link and enabling link,
i .e. a link from an object or object state to a process, shall have a corresponding kind of event link and
condition link.

An exception link shall be a procedural link between a process that for some reason is unable to
complete successfully or takes more or less time to complete than expected, and a process that is to
manage the exception situation.

NOTE 3 Since failure to complete successfully often results in undertime or overtime performance, exception
links can serve other situations. In addition, all non-time related exceptions can be modelled using value ranges
(see Clause C .6 for such usage) .

Graphically, a control modifier appearing as an annotation next to an incoming transforming link or
enabling link, i .e. a link from an object or an object state to a process, shall denote the corresponding
control link. The symbol “e” annotation, signifying event, shall denote an event link and the symbol “c”

© ISO 2015 – All rights reserved 33International Organization for Standardization

ISO/PAS 19450:2015(E)

annotation, signifying condition, shall denote a condition link. The control modifier annotation for an
exception link is one or two short bars crossing the link near the exception managing process.

9.5.2 Event links

9.5.2.1 Transforming event links

9.5.2.1.1 Consumption event link

A consumption event link shall be an annotated consumption link between an object and a process,
which an operational instance of the object initiates. Satisfaction of the process precondition and the
subsequent process performance shall consume the instance of the initiating object.

Graphically, an arrow with a closed arrowhead pointing from the object to the process with the small
letter “e” annotation near the arrowhead, signifying event, shall denote the consumption event link.

The syntax of a consumption event link OPL sentence shall be: Object initiates Process , which
consumes Object.

9.5.2.1.2 Effect event link

An effect event link shall be an annotated portion of an effect link from an object to a process, which an
operational instance of the object initiates. Satisfaction of the process precondition and the subsequent
process performance shall affect the initiating object in some manner.

Graphically, a bidirectional arrow with closed arrowheads at each end between the object and the
process with a small letter “e” annotation near the process end of the arrow, signifying event, shall
denote the effect event link.

The syntax of an effect event link OPL sentence shall be: Object initiates Process , which affects Object.

9.5.2.1.3 Transforming event links summary

Table 5 summarizes the transforming event links.

Table 5 — Transforming event links summary

Name Semantics Sample OPD & OPL Source Destination

Consumption
event link

The object initi-
ates the process,
wh ich , i f p er-
formed, consumes
the object.

Food initiates Eating , which con-
sumes Food .

i n i t i a t i n g
consumee

initiated pro-
c e s s , wh i c h
consumes the
initiating con-
sumee

Effect event
link

The object initi-
ates the process,
wh ich , i f p er-
formed, affects
the object.

Copper initiates Purifying, which
affects Copper.

i n i t i a t i n g
affectee

initiated pro-
cess, which af-
fects the initiat-
ing affectee

NOTE The event link is the link from the object to the process; the link from the process to the object is not an event link.

9.5.2.2 Enabling event links

9.5.2.2.1 Agent event link

An agent event link shall be an annotated enabling link from an agent object to the process that it
initiates and enables.

34 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Graphically, a line with a filled circle resembling a black lollipop at the terminal end extending from an
agent object to the process it initiates and enables with a small letter “e” annotation near the process
end, signifying event, shall denote an agent event link.

The syntax of an agent event link OPL sentence shall be: Agent initiates and handles Process.

9.5.2.2.2 Instrument event link

An instrument event link shall be an annotated enabling link from an instrument object to the process
that it initiates and enables.

Graphically, a line with an empty circle resembling white lollipop at the terminal end extending from
the instrument object to the process it initiates and enables with a small letter “e” annotation near the
process end, signifying event, shall denote an instrument event link.

The syntax of an instrument event link OPL sentence shall be: Instrument initiates Process, which
requires Instrument.

9.5.2.2.3 Enabling event links summary

Table 6 summarizes the enabling event links.

Table 6 — Enabling event links summary

Name Semantics Sample OPD & OPL Source Destination

Agent event
link

T h e a g e n t— a
human—both ini-
tiates and enables
the process . The
agent needs to exist
throughout the pro-
cess duration.

Miner initiates and handles Copper
Mining.

i n i t i a t i n g
agent

initiated pro-
cess

Instrument
event link

The object initiates
the process as an
instrument, so it
does not change,
but it needs to exist
throughout the pro-
cess duration.

Drill initiates Copper Mining , which
requires Drill .

initiating in-
strument

initiated pro-
cess

9.5.2.3	 State-specified	transforming	event	links

9.5.2.3.1	 State-specified	consumption	event	link

A state-specified consumption event link shall be an annotated consumption link from a specified
state of an object to a process, which an operational instance of the object initiates. Satisfaction of the
process precondition, including the initiating object at the specified state, and the subsequent process
performance shall consume the initiating object.

Graphically, an arrow with a closed arrowhead pointing from the specified state of the object to the
process with the small letter “e” annotation near the arrowhead, signifying event, shall denote the
state-specified consumption event link.

The syntax of a state-specified consumption event link OPL sentence shall be: Specified-state Object
initiates Process, which consumes Object.

© ISO 2015 – All rights reserved 35International Organization for Standardization

ISO/PAS 19450:2015(E)

9.5.2.3.2	 Input-output-specified	effect	event	link

An input-output-specified effect event link shall be an annotated input-output-specified effect link that
initiates the affecting process when an operational instance of the object enters the specified input
source state.

Graphically, the input-output-specified effect link with a small letter “e” annotation near the arrowhead
end of the input link, signifying event, shall denote the input-output-specified effect event link.

The syntax of an input-output-specified effect event link OPL sentence shall be: Input-state Object
initiates Process, which changes Object from input-state to output-state .

9.5.2.3.3	 Input-specified	effect	event	link

An input-specified effect event link shall be an annotated input-specified effect link that initiates the
affecting process when an operational instance of the object enters the specified input source state.

Graphically, the input-specified effect link with a small letter “e” annotation at the arrowhead end of the
input link, signifying event, shall denote the input-specified effect event link.

The syntax of an input-specified effect event link OPL sentence shall be: Input-state Object initiates
Process, which changes Object from input-state .

9.5.2.3.4	Output-specified	effect	event	link

An output-specified effect event link shall be an annotated output-specified effect link that initiates the
affecting process when an operational instance of the object comes into existence.

Graphically, the output-specified effect link with a small letter “e” annotation at the arrowhead end of
the input link, signifying event, shall denote the output-specified effect event link.

The syntax of an output-specified effect event link OPL sentence shall be: Object in any state initiates
Process, which changes Object to destination-state .

9.5.2.3.5	 State-specified	transforming	event	links	summary

Table 7 summarizes the state-specified transforming event links.

36 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Table	7	—	State-specified	transforming	event	links	summary

Name Semantics Sample OPD & OPL Source Destination

State-speci-
fied	consump-
tion event

link

The object in the
specified s tate
both i n i t i ates
the process and
is consumed by it. Edible Food initiates Eating, which

consumes Food .

c o n s u m e e
state

initiated pro-
cess

Input-output
specified	
event link

pair

The object in the
specified s tate
both i n i t i ates
the process and
is transformed by
it to the output
state.

Raw Copper initiates Purifying , which
changes Copper from raw to pure.

a f f e c t e e
source state

initiates pro-
cess

initiates pro-
cess

affectee des-
tination state

Input-spec-
ified	effect	
link pair

The object in the
specified s tate
both i n i t i ates
the process and
is transformed by
it to any one of its
states.

Awaiting test Sample initiates Test-
ing , which changes Sample from await-

ing test.

a f f e c t e e
source state

initiated pro-
cess

initiates pro-
cess

affectee

Output-spec-
ified	event	
link pair

The object (in any
one of its states)
both initiates the
process and i s
transformed by
it to the output
state.

Engine Hood initiates Cleaning &
Painting , which changes Engine Hood

to painted .

affectee
initiates pro-
cess

initiates pro-
cess

affectee des-
tination state

9.5.2.4	 State-specified	enabling	event	links

9.5.2.4.1	 State-specified	agent	event	link

A state-specified agent event link shall be an annotated state-specified agent link that initiates the
process when an operational instance of the agent enters the specified state.

Graphically, the state-specified agent link with a small letter “e” annotation near the process end of the
link, signifying event, shall denote the state-specified agent event link.

© ISO 2015 – All rights reserved 37International Organization for Standardization

ISO/PAS 19450:2015(E)

The syntax of a state-specified agent event link OPL sentence shall be: Specified-state	Agent initiates
and handles Processing.

9.5.2.4.2	 State-specified	instrument	event	link

A state-specified instrument event link shall be an annotated state-specified instrument link that
initiates the process when an operational instance of the instrument enters the specified state.

Graphically, the state-specified instrument link with a small letter “e” annotation near the process end
of the link, signifying event, shall denote the state-specified instrument event link.

The syntax of a state-specified instrument event link OPL sentence shall be: Specified-state	
Instrument initiates Processing , which requires specified-state	Instrument.

9.5.2.4.3	 State-specified	enabling	event	links	summary

Table 8 summarizes the state-specified enabling event links.

Table	8	—	State-specified	enabling	event	links	summary

Name Semantics Sample OPD & OPL Source Destination

State-spec-
ified	agent	
event link

The human agent in
the specified state
both initiates the
process and acts
as its agent.

The agent needs to
be at the specified
state throughout
the process dura-
tion. Healthy Miner initiates and handles

Copper Mining.

agent state
initiated pro-
cess

State-speci-
fied	instru-
ment event

link

The object at the
s pec i f i e d s tate
both initiates the
process and is in-
s trument for its
performance.

The ins trument
needs to be at the
s pec i f i e d s tate
throughout the
process duration.

Operational Drill initiates Copper
Mining , which requires operational

Drill .

i ns trument
state

initiated pro-
cess

9.5.2.5 Invocation links

9.5.2.5.1 Process invocation and invocation link

Process invocation shall be an event by which a process initiates a process. An invocation link shall be
a link from a source process to the destination process that it invokes (initiates) , signifying that when

38 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

the source process completes, it immediately initiates the destination process at the other end of the
invocation link.

NOTE 1 A normal or expected flow of execution control does not invoke a new process if the prior process
does not complete successfully. It is up to the modeller to take care of any process that aborts. Clause C .6 provides
several ways to manage termination of a process because of a failure, especially C.6.8.

NOTE 2 Since an OPM process performs a transformation, the invocation link semantically implies the creation
of an interim object by the invoking source process that the subsequent invoked destination process immediately
consumes. In an OPM model, an invocation link can replace a transient, short-lived physical or informatical
object (such as Record ID in a query) , that a source process creates to initiate the destination process, which
immediately consumes the transient object.

Graphically, a lightening symbol jagged line from the invoking source process to the invoked destination
process ending with a closed arrowhead at the invoked process shall denote an invocation link.

The syntax of an invocation link OPL sentence shall be: Invoking-process invokes invoked-process .

9.5.2.5.2 Self-invocation link

Self-invocation shall be invocation of a process by itself, such that upon process completion, the process
immediately invokes itself. The self-invocation link shall specify self-invocation.

Graphically, a pair of invocation links, originating at the process and joining head to tail before ending
back at the original process shall denote the self-invocation link.

The syntax of a self-invocation link OPL sentence shall be: Invoking-process invokes itself.

9.5.2.5.3 Invocation links summary

Table 9 summarizes the invocation links.

Table 9 — Invocation links summary

Name Semantics Sample OPD & OPL Source Destination

Invocation
link

As soon as the
invoking process
ends, it invokes
t h e p r o c e s s
pointed to by the
invocation link.

Product Finishing invokes Product
Shipping.

Initiating pro-
cess

Another initiat-
ed process

Self-invoca-
tion link

Upon process
completion, i t
i mme d i a t e l y
invokes itself.

Recurrent Processing invokes itself.

Initiating pro-
cess

The same pro-
cess

© ISO 2015 – All rights reserved 39International Organization for Standardization

ISO/PAS 19450:2015(E)

9.5.3 Condition links

9.5.3.1 Basic Condition transforming links

9.5.3.1.1 Condition consumption link

A condition consumption link shall be an annotated consumption link from a consumee to a process.
If a consumee operational instance exists when an event initiates the process, then the presence of
that consumee operational instance satisfies the process precondition with respect to that object.
If evaluation of the entire preprocess object set satisfies the precondition, the process starts and
consumes that consumee instance. However, if a consumee operational instance does not exist when
an event initiates the process, then the process precondition evaluation fails and the flow of execution
control bypasses, or ‘skips’, the process without process performance.

Graphically, an arrow with a closed arrowhead pointing from the consumee to the process with
the small letter “c” annotation near the arrowhead, signifying condition, shall denote a condition
consumption link.

The syntax of the condition consumption link OPL sentence shall be: Process occurs if Object exists, in
which case Object is consumed, otherwise Process is skipped.

An alternate syntax of the condition consumption link OPL sentence shall be: If Object exists then
Process occurs and consumes Object, otherwise bypass Process .

NOTE See 14.2 .2 .4.2 for additional detail regarding the semantics of “skip” and Figure C .25 for several
examples.

9.5.3.1.2 Condition effect link

A condition effect link shall be an annotated effect link from an affectee to a process. If an affectee
object operational instance exists when an event initiates the process, then the presence of that affectee
instance satisfies the process precondition with respect to that object. If evaluation of the entire
preprocess object set satisfies the precondition, the process starts and affects that affectee instance.
However, if an affectee operational instance does not exist when an event initiates the process, then the
process precondition evaluation fails and the flow of execution control bypasses, or ‘skips’ the process
without process performance.

Graphically, a bidirectional arrow with two closed arrowheads, one pointing in each direction between
the affectee and the affecting process, with the small letter “c” annotation near the process end of the
arrow, signifying condition, shall denote a condition effect link.

The syntax of the condition effect link OPL sentence shall be: Process occurs if Object exists, in which
case Process affects Object, otherwise Process is skipped.

An alternate syntax of the condition effect link OPL sentence shall be: If Object exists then Process
occurs and affects Object, otherwise bypass Process .

9.5.3.1.3 Condition transforming links summary

Table 10 summarizes the condition transforming links.

40 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Table 10 — Condition transforming links summary

Name Semantics Sample OPD & OPL Source Destination

Condition
consump-
tion link

If an object operation-
al instance exists and
the rest of the process
precondition is sat-
isfied, then the pro-
cess performs and
consumes the object
instance, otherwise
execution control ad-
vances to initiate the
next process.

Process occurs if Object exists , in
which case Process consumes Object,

otherwise Process is skipped.

Conditioning
object

Conditioned
process

Condition
effect link

If an object operation-
al instance exists and
the rest of the process
precondition is satis-
fied, then the process
performs and affects
the object instance,
otherwise execution
control advances to
initiate the next pro-
cess.

Process occurs if Object exists , in
which case Process affects Object,

otherwise Process is skipped.

Conditioning
object

Conditioned
process

9.5.3.2 Basic condition enabling links

9.5.3.2.1 Condition agent link

A condition agent link shall be an annotated agent link from an agent to a process. If an agent operational
instance exists when an event initiates the process, then the presence of that agent instance satisfies
the process precondition with respect to that object. If evaluation of the entire preprocess object
set satisfies the precondition, the process starts and that agent handles its performance. However,
if an agent operational instance does not exist when an event initiates the process, then the process
precondition evaluation fails and the flow of execution control bypasses, or ‘skips’ the process without
process performance.

Graphically, a line with a filled circle resembling a black lollipop at the terminal end extending from
an agent object to the process it enables, with the small letter “c” annotation near the process end,
signifying condition, shall denote a condition agent link.

The syntax of the condition agent link OPL sentence shall be: Agent handles Process if Agent exists,
else Process is skipped.

An alternate syntax for the condition agent link OPL sentence shall be: If Agent exists then Agent
handles Process , otherwise bypass Process .

9.5.3.2.2 Condition instrument link

A condition instrument link shall be an annotated instrument link from an instrument to a process.
If an instrument operational instance exists when an event initiates the process, then the presence of
that instrument instance satisfies the process precondition with respect to that object. If evaluation
of the entire preprocess object set satisfies the precondition, the process starts. However, if an
instrument operational instance does not exist when an event initiates the process, then the process
precondition evaluation fails and the flow of execution control bypasses, or ‘skips’ the process without
process performance.

© ISO 2015 – All rights reserved 41International Organization for Standardization

ISO/PAS 19450:2015(E)

Graphically, a line with an empty circle resembling a white lollipop at the terminal end, extending from
an instrument object to the process it enables, with the small letter “c” annotation near the process end,
signifying condition, shall denote a condition instrument link.

The syntax of the condition instrument link OPL sentence shall be: Process occurs if Instrument
exists , else Process is skipped.

An Alternate syntax for the condition instrument link OPL sentence shall be: If Instrument exists then
Process occurs , otherwise bypass Process .

EXAMPLE Figure 13 is an OPD with a condition instrument link from Nearby Mobile Device to Cellular
Network Signal Amplifying , which occurs only if an environmental object Nearby Mobile Device exists and is
otherwise skipped, as there is no point in amplifying if no device is nearby.

Cellular Network Signal Amplifying occurs if Nearby Mobile Device exists,
otherwise Cellular Network Signal Amplifying is skipped.

Figure 13 — Condition instrument link (with partial OPL)

9.5.3.2.3 Basic condition enabling links summary

Table 11 summarizes the basic condition enabling links.

42 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Table 11 — Basic condition enabling links summary

Name Semantics Sample OPD & OPL Source Destination

Agent con-
dition link

The agent enables
the process if the
agent is present,
otherwise the pro-
cess is skipped.

Engineer handles Part Designing if
Engineer is present, otherwise Part

Designing is skipped.

Condition ing
agent

Conditioned
process

Instrument
condition

link

The instrument
enables the pro-
cess if it exists ,
o ther wi s e the
process is skipped.

Precise Measuring occurs if LASER
Meter exists, otherwise Precise

Measuring is skipped.

Condition ing
instrument

Conditioned
process

9.5.3.3	 Condition	state-specified	transforming	links

9.5.3.3.1	Condition	state-specified	consumption	link

A condition state-specified consumption link shall be an annotated condition consumption link from a
specified state of a consumee to a process. If an operational instance of the consumee at the specified
state exists when an event initiates the process, then the presence of that consumee instance satisfies
the process precondition with respect to that object. If evaluation of the entire preprocess object set
satisfies the precondition, the process starts and consumes that consumee instance. However, if an
operational instance of a consumee in the specified state does not exist when an event initiates the
process, then the process precondition evaluation fails and the flow of execution control bypasses, or
‘skips’, the process without process performance.

Graphically, an arrow with a closed arrowhead pointing from the specified state of the consumee to the
process with the small letter “c” annotation near the arrowhead, signifying condition, shall denote a
condition state-specified consumption link.

The syntax of the condition state-specified consumption link OPL sentence shall be: Process occurs if
Object is specified-state, in which case Object is consumed, otherwise Process is skipped.

An alternate syntax for the condition state-specified consumption link OPL sentence shall be: If
specified-state Object exists then Process occurs and consumes Object, otherwise bypass Process.

9.5.3.3.2	Condition	input-output-specified	effect	link

A condition input-output-specified effect link shall be an annotated input-output-specified effect
link from a source input state to a process. If an operational instance of the affectee at the specified
state exists when an event initiates the process, then the presence of that affectee instance satisfies
the process precondition with respect to that object. If evaluation of the entire preprocess object set
satisfies the precondition, the process starts and affects that object operational instance by changing
the state of the instance from the specified input state to the specified output state. However, if an

© ISO 2015 – All rights reserved 43International Organization for Standardization

ISO/PAS 19450:2015(E)

operational instance of an affectee at the specified state does not exist when an event initiates the
process, then the process precondition evaluation fails and the flow of execution control bypasses, or
‘skips’, the process without process performance.

Graphically, the condition input-output-specified effect l ink with the small letter “c” annotation
near the arrowhead of the input link, signifying condition, shall denote a condition input-output-
specified effect l ink.

The syntax of the condition input-output-specified effect link OPL sentence shall be: Process occurs
if Object is input-state, in which case Process changes Object from input-state to output-state,
otherwise Process is skipped.

An alternate syntax for the condition input-output-specified effect link OPL sentence shall be: If input-
state Object then Process changes Object from input-state to output-state, otherwise bypass Process.

9.5.3.3.3	Condition	input-specified	effect	link

A condition input-specified effect link shall be an annotated input-specified effect link from a source
input state to a process. If an operational instance of the affectee at the specified state exists when an
event initiates the process, then the presence of that affectee instance satisfies the process precondition
with respect to that object. If evaluation of the entire preprocess object set satisfies the precondition, the
process starts and affects that object instance by changing the state of the instance from the specified
input state to a destination state. The destination state shall be either its default state or, if the object
does not have a default state, the state probability distribution of the object shall determine the output
destination state of that object (see 12 .7) . However, if an operational instance of an affectee at the specified
state does not exist when an event initiates the process, then the process precondition evaluation fails
and the flow of execution control bypasses, or ‘skips’, the process without process performance.

Graphically, the condition input-specified effect link with the small letter “c” annotation near the
arrowhead of the input link, signifying condition, shall denote the condition input-specified effect link.

The syntax of a condition input-specified effect link OPL sentence shall be: Process occurs if Object is
input-state, in which case Process changes Object from input-state, otherwise Process is skipped.

An alternate syntax for a condition input-specified effect link OPL sentence shall be: if input-state
Object then Process changes Object from input-state, otherwise bypass Process.

9.5.3.3.4	Condition	output-specified	effect	link

A condition output-specified effect link shall be an annotated output-specified effect link from a source
object to a process. If an operational instance of the affectee exists when an event initiates the process,
then the presence of that affectee instance satisfies the process precondition with respect to that object.
If evaluation of the entire preprocess object set satisfies the precondition, the process starts and affects
that object instance by changing the state of the instance to the specified output-state. However, if an
operational instance of an affectee does not exist when an event initiates the process, then the process
precondition evaluation fails and the flow of execution control bypasses, or ‘skips’, the process without
process performance.

Graphically, the condition output-specified effect link with the small letter “c” annotation near the
arrowhead of the input link, signifying condition, shall denote a condition output-specified effect link.

The syntax of the condition output-specified effect OPL sentence shall be: Process occurs if Object
exists, in which case Process changes Object to output-state, otherwise Process is skipped.

An alternate syntax for the condition output-specified effect OPL sentence shall be: if Object exists then
Process changes Object to output-state, otherwise bypass Process.

9.5.3.3.5	Condition	state-specified	transforming	links	summary

Table 12 summarizes the condition state-specified transforming links.

44 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Table	12	—	Condition	state-specified	transforming	links	summary

Name Semantics Sample OPD & OPL Source Destination

Condition
state-speci-

fied	consump-
tion link

The process performs
if the object is in the
state from which the
link originates, oth-
erwise the process
is skipped.

conditioning
specified

state of the
object

conditioned
process

Testing occurs if Raw Material Sample
is pre-approved, in which case Raw

Material Sample is consumed, otherwise
Testing is skipped.

Condition
input-out-
put-specified	
effect link

The process performs
if the object is in the
input s tate (from
which the link orig-
inates) and changes
the obj ect from its
input state to its out-
put state, otherwise
the process is skipped.

condition ing
specified input
state of the ob-
ject

cond i t ioned
process

Testing occurs if Raw Material is
pre-tested , in which case Testing chang-

es Raw Material from pre-tested to
tested , otherwise Testing is skipped.

Condition in-
put-specified	
effect link

The process performs
if the object is in the
input s tate (from
which the link orig-
inates) and changes
the obj ect from its
input state to any one
of its s tates , other-
wise the process is
skipped.

condition ing
specified input
state of the ob-
ject

cond i t ioned
process

Delivery Attempting occurs if Mes-
sage is created , in which case Delivery
Attempting changes Message from

created , otherwise Delivery Attempting
is skipped.

© ISO 2015 – All rights reserved 45International Organization for Standardization

ISO/PAS 19450:2015(E)

Name Semantics Sample OPD & OPL Source Destination

Condition out-
put-specified	
effect link

The process performs
if the object exists and
changes the obj ect
from its input state
to its output state,
otherwise the process
is skipped.

conditioning
object

cond i t ioned
process

Stress Testing occurs if Suspicious
Component exists, in which case Stress
Testing changes Suspicious Component
to stress-tested , otherwise Stress Test-

ing is skipped.

9.5.3.4	 Condition	state-specified	enabling	links

9.5.3.4.1	Condition	state-specified	agent	link

A condition state-specified agent link shall be an annotated state-specified agent link from a specified
state of an agent to a process. If an operational instance of the agent at the specified state exists when
an event initiates the process, then the presence of that agent instance satisfies the process precondition
with respect to that object. If evaluation of the entire preprocess object set satisfies the precondition, the
process starts and that agent handles operation. However, if an operational instance of an agent in the
specified state does not exist when an event initiates the process, then the process precondition evaluation
fails and the flow of execution control bypasses, or ‘skips’, the process without process performance.

Graphically, the state-specified agent link with a small letter “c” annotation near the process end,
signifying condition, shall denote a condition state-specified agent link.

The syntax of the condition state-specified agent link OPL sentence shall be: Agent handles Process if
Agent is specified-state, else Process is skipped .

An alternate syntax for the condition state-specified agent link OPL sentence shall be: If specified-
state Agent exists then Agent handles Process, otherwise bypass Process.

9.5.3.4.2	Condition	state-specified	instrument	link

A condition state-specified instrument link shall be an annotated state-specified instrument link from
a specified state of an instrument to a process. If an operational instance of the instrument at the
specified state exists when an event initiates the process, then the presence of that instrument instance
satisfies the process precondition with respect to that object. If evaluation of the entire preprocess
object set satisfies the precondition, the process starts. However, if an operational instance of an
instrument in the specified state does not exist when an event initiates the process, then the process
precondition evaluation fails and the flow of execution control bypasses, or ‘skips’, the process without
process performs.

Graphically, the state-specified instrument link with a small letter “c” annotation near the process end,
signifying condition, shall denote a condition state-specified instrument link.

The syntax of the condition state-specified instrument link OPL sentence shall be: Process occurs if
Instrument is specified-state, otherwise Process is skipped.

An alternate syntax for the condition state-specified instrument link OPL sentence shall be: If specified-
state Instrument then Process occurs , otherwise bypass Process .

Table 12 (continued)

46 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

9.5.3.4.3	Condition	state-specified	enabling	links	summary

Table 13 summarizes the condition state-specified enabling links.

Table	13	—	Condition	state-specified	enabling	links	summary

Name Semantics Sample OPD & OPL Source Destination

State-spec-
ified	agent	
condition

link

The agent ena-
bles the process
i f the agent i s
in the specified
state, otherwise
the proces s i s
skipped.

Engineer handles Critical Part De-
signing if Engineer is safety design
authorized, otherwise Critical Part

Designing is skipped.

conditioning
specified state
of agent

c o n d i t i o ne d
process

State-speci-
fied	instru-
ment condi-
tion link

The instrument
enables the pro-
cess i f i t i s i n
t h e s p e c i f i e d
state, otherwise
the proces s i s
skipped.

Ultra-Precision Measuring occurs if
LASER Meter is periodically cali-

brated, otherwise Precise Measuring
is skipped.

conditioning
specified state
of instrument

c o n d i t i o ne d
process

9.5.4 Exception links

9.5.4.1 Minimal, Expected, and Maximal Process Duration and Duration Distribution

A process may have a Duration attribute with a value that expresses units of time. Duration may
specialize into Minimal Duration, Expected Duration, and Maximal Duration.

Minimal Duration and Maximal Duration should designate the minimum and maximum allowable
time units for process completion. Expected Duration of a process should be the statistical mean of
the duration of that process.

Duration may have an optional Duration Distribution property with a value identifying the name
and parameters for a probability distribution function associated with the process duration. At run-
time, the value of Duration is determined separately for each process instance (i.e. for each individual
process occurrence) by sampling from the process Duration Distribution.

NOTE See Annex D for process duration and system time run-time discussion and examples.

© ISO 2015 – All rights reserved 47International Organization for Standardization

ISO/PAS 19450:2015(E)

9.5.4.2 Overtime exception link

The overtime exception link shall connect the source process with an overtime handling destination
process to specify that if at runtime, performance of the source process instance exceeds its Maximal
Duration value, then an event initiates the destination process.

Graphically, a single short bar, oblique to the line connecting the source and destination processes and
next to the destination process, shall denote the overtime exception link.

Given that max-duration is the value of Maximal Duration , and time-unit is an allowable time
measurement unit, the syntax of the overtime exception link shall be: Overtime Handling Destination
Process occurs if duration of Source Process exceeds max-duration time-units .

9.5.4.3 Undertime exception link

The undertime exception link shall connect the source process with an undertime handling destination
process to specify that if at runtime, performance of the source process instance takes less than its
Minimal Duration value, then an event initiates the destination process.

Graphically, two parallel short bars, oblique to the line connecting the source and destination processes
and next to the destination process, shall denote the undertime exception link.

Given that min-duration is the value of Minimal Duration, and time-unit is an allowable time
measurement unit, the syntax of the undertime exception link shall be: Undertime Handling
Destination Process occurs if duration of Source Process falls short of min-duration time-units .

NOTE Similar to the invocation link, the two time exception links are procedural links that connect two
processes directly, unlike most procedural links, which connect an object and a process. There is, in fact, an
interim object Overtime Exception Message or an Undertime Exception Message created by the OPM’s process
execution mechanism realizing the process failed to end by the maximal allotted time or ended prematurely,
falling short of the minimal allotted time, respectively. Since the OPM operational mechanism creates and
immediately consumes these objects, their depiction is not necessary in the model.

10 Structural links

10.1 Kinds of structural links

Structural links specify static, time-independent, long-lasting relations in the system. A structural link
shall connect two or more objects or two or more processes, but not an object and a process, except
in the case of an exhibition-characterization link (see 10.3 .3) . The two kinds of structural links shall
be tagged structural links and fundamental structural links of aggregation-participation, exhibition-
characterization, generalization-specialization, and classification-instantiation.

10.2 Tagged structural link

10.2.1 Unidirectional tagged structural link

A unidirectional tagged structural link shall have a user-defined semantics regarding the nature of
the relation from one thing to the other thing. A meaningful tag, in the form of a textual phrase, shall
express the nature of the structural relation between the connecting objects or connecting processes.
The tag should convey that meaning when placed in the OPL sentence.

Graphically, an arrow with an open arrowhead and a tag annotation near the shaft shall denote a
unidirectional tagged structural link.

48 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

The syntax of the unidirectional tagged structural link OPL sentence shall be: Source-thing tag
Destination-thing.

NOTE Since the tag is a label added to the model by the modeller, in the OPL sentence the tag phrase appears
in bold to distinguish it from other words implicit in the syntactic construction.

10.2.2 Unidirectional null-tagged structural link

A unidirectional null-tagged structural link shall be a unidirectional tagged structural link with no tag
annotation, signifying the use of the default unidirectional tag. The default tag shall be “relates to”.

The syntax of the unidirectional null-tagged structural link OPL sentence shall be: Source-thing relates
to Destination-thing.

NOTE The modeller can have the option of setting the default unidirectional tag, which does not appear in
bold letters, for a specific system or a set of systems.

10.2.3 Bidirectional tagged structural link

Because relations between things are bidirectional, every tagged structural link has a corresponding
tagged structural link in the opposite direction. When the tags in both directions are meaningful
and not just the inverse of each other, they may be annotated by two tags on either side of a single
bidirectional tagged structural link.

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link shall
denote a bidirectional tagged structural link. Each tag shall align on the side of the arrow with the
harpoon edge sticking out of the arrowhead, unambiguously determining the direction in which each
relation applies.

The syntax of the resulting tagged structural link shall be two separate unidirectional tagged structural
link OPL sentences, one for each direction.

EXAMPLE Figure 14 shows two kinds of tagged structural links.

Airport serves City.
Highway surrounds City.
Highway passes through Underwater Tunnel.
Underwater	Tunnel	enables	traffic	flow	in	Highway.

Figure 14 — Two kinds of tagged structural links

10.2.4 Reciprocal tagged structural link

A reciprocal tagged structural link shall be a bidirectional tagged structural link with only one tag or no
tag. In either case, reciprocity shall indicate that the tag of a bidirectional structural link has the same
semantics for each direction of the relation. When no tag appears, the default tag shall be “are related”.

© ISO 2015 – All rights reserved 49International Organization for Standardization

ISO/PAS 19450:2015(E)

The syntax of the reciprocal tagged structural link with only one tag shall be: Source-thing and
Destination-thing are reciprocity-tag.

The syntax of the reciprocal tagged structural link with no tag shall be: Source-thing and Destination-
thing are related .

EXAMPLE In Figure 15, on the right is the reciprocal structure link equivalent to the bidirectional tagged
structure link on the left, which has the same tag in each direction.

Engine is attached to Gearbox.
Gearbox is attached to Engine.

Engine and Gearbox are attached.

Figure 15 — Bidirectional (left) and its equivalent reciprocal tagged structural link (right)

NOTE As shown in Figure 15, a change in verb or noun form from that of the bidirectional tagged structural
link is usually necessary to accommodate the reciprocal tagged structural link syntax.

10.3 Fundamental structural relations

10.3.1 Kinds of fundamental structural relations

The fundamental structural relations are the most prevalent structural relations among OPM things
and are of particular significance for specifying and understanding systems. Each of the fundamental
relations shall elaborate or refine one source thing, the refineable, into a collection of one or more
destination things, the refinees.

The fundamental structural relations shall be:

— Aggregation-participation, which designates the relation between a whole and its parts;

— Exhibition-characterization, which designates the relation between an exhibitor, a thing exhibiting
one or more features (attributes and/or operations) , and the things that characterize the exhibitor;

— Generalization-specialization, which designates the relation between a general thing and its
specializations; and

— Classification-instantiation, which designates the relation between a class of things and a refinee
instance of that class.

Aggregation, exhibition, generalization, and classification shall be the refinement relation identifiers, i .e. ,
the identifiers associated with the relation as seen from the perspective of the refineable. Participation,
characterization, specialization, and instantiation shall be the corresponding complementary relation
identifiers, i .e. the relation identifiers as seen from the perspective of their refinees.

With the exception of exhibition-characterization, the refinee destination things shall all have the same
Perseverance value as the refineable source thing, i .e. either all are objects with static Perseverance or
all are processes with dynamic Perseverance.

50 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Folding the refinees shall be the hiding of those refinees of a refineable, and unfolding the refineable
shall be the expressing of the refinees of that refineable (see 14.2 .1.2) .

Because the fundamental structural relations are bidirectional, the associated OPL paragraph could
provide sentences for each direction. However, since one of these sentences is always the consequence
of the other, the OPL expression of a fundamental structural relation shall be limited to one of the
two possible sentences. The presentation of each kind of fundamental structural relation includes the
specification of the default OPL sentence for only one of the two possible sentences. Table 14 summarizes
these default sentences.

The collection of refinees modelled for some refineable in some OPD may be complete or incomplete,
i .e. the graphical figure explicitly depicts, and the corresponding text explicitly expresses, only those
things relevant to the OPD in which the structural link appears.

10.3.2 Aggregation-participation relation link

The fundamental structural relation aggregation-participation shall mean that a refineable, the whole,
aggregates one or more refinees, the parts.

Graphically, a black solid (filled in) triangle with its apex connecting by a line to the whole and the
parts connecting by lines to the opposite horizontal base shall denote the aggregation-participation
relation link.

The syntax of the aggregation-participation relation link shall be: Whole-thing consists of Part-thing1 ,
Part-thing2 , …, and Part-thingn.

EXAMPLE 1

Resource Description Framework Statement consists of Subject, Predicate and Object.

Figure 16 — Aggregation-participation relation link

When the representation of the collection of parts at the particular extent of detail is incomplete, the
aggregation-participation relation link shall signify the incomplete representation with an annotation.

Graphically, a short horizontal bar crossing the vertical line below the black triangle shall denote the
incomplete aggregation-participation relation link.

The syntax of the aggregation-participation relation link indicating a partial collection of parts where
at least one part is missing shall be: Whole-thing consists of Part-thing1 , Part-thing2 ,… Part-thingk,
and at least one other part.

EXAMPLE 2 In Figure 17, Object from Figure 16 is missing. The short horizontal bar crossing the vertical line
below the black triangle denotes the missing thing.

© ISO 2015 – All rights reserved 51International Organization for Standardization

ISO/PAS 19450:2015(E)

Resource Description Framework Statement consists of Subject, Predicate and at least one other part.

Figure	17	—	Aggregation-participation	relation	link	example	with	partial	refinee	set

EXAMPLE 3 On the left in Figure 18, the Consuming process consumes the Whole along with its Part B and
Part D, while Part A and Part C remain as separate objects. On the right in Figure 18, the terse version using
partial aggregation shows the Consuming process consumes the Whole and only Part B and Part D, while other
parts of the Whole remain as distinct objects.

Figure 18 — Partial aggregation consumption

NOTE A tool can keep track of the set of refinees for each refineable and adjust the symbol and corresponding
OPL sentences (specified below for each fundamental structural relation link) as the modeller changes the
collection of refinees.

10.3.3 Exhibition-characterization link

10.3.3.1 Exhibition-characterization relation link expression

The fundamental structural relation exhibition-characterization shall mean that a refineable, the
exhibitor, exhibits one or more features that characterize the exhibitor, the refinees. The features shall
characterize the exhibitor.

A feature shall be a thing. An attribute shall be a feature that is an object. An operation shall be a feature
that is a process. A process exhibitor and an object exhibitor shall each have at least one feature and
may have both attributes, their object features, and operations, their process features.

The exhibition-characterization relation can combine the four exhibitor-feature combinations of object
and process (see Figure 19) .

52 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Object Exhibitor exhibits Attribute.
Process Exhibitor exhibits Attribute .

Object Exhibitor exhibits Operation.
Process Exhibitor exhibits Operation .

Figure 19 — The four exhibition-characterization feature combinations

Graphically, a smaller black triangle inside a larger empty triangle with that larger triangle’s apex
connecting by a line to the exhibitor and the features connecting to the opposite (horizontal) base shall
denote the exhibition-characterization relation link (see Figure 19) .

The syntax of the exhibition-characterization relation link for an object exhibitor with a complete
collection of n attributes and m operations shall be: Object-exhibitor exhibits Attribute1 , Attribute2 ,
… , and Attributen , as well as Operation1 , Operator2 , … and Operatorm .

The syntax of the exhibition-characterization relation link for a process exhibitor with a complete
collection of n operation features and m attribute features shall be: Process-exhibitor exhibits
Operation1 , Operator2 , … and Operatorn, as well as Attribute1 , Attribute2 , … and Attributem .

NOTE 1 In the OPL for exhibition-characterization, for an object exhibitor the list of attributes precedes the
list of operations, while for a process exhibitor the list of operations precedes the list of attributes.

When the representation of the collection of features at the particular extent of detail is incomplete, the
exhibition-characterization relation link shall signify the incomplete representation with an annotation.

Graphically, a short horizontal bar crossing the vertical line below the larger empty triangle denotes
the incomplete exhibition-characterization relation link.

The syntax of the exhibition-characterization relation link for an object exhibitor with a partial
collection of j attribute features and k operation features shall be: Object-exhibitor-thing exhibits
Attribute1 , Attribute2 , …, Attributej , and at least one other attribute, as well as Operation1 ,
Operator2 , …, Operatork, and at least another operation.

The syntax of the exhibition-characterization relation link for a process exhibitor with a partial
collection of j operation features and k attribute features shall be: Process-exhibitor exhibits
Operation1 , Operator2 , … , Operatorj , and at least another operation, as well as Attribute1 , Attribute2 ,
…, Attributek, and at least one other attribute.

EXAMPLE Figures 20 to 23 show the four exhibitor-feature combinations of object and process.

© ISO 2015 – All rights reserved 53International Organization for Standardization

ISO/PAS 19450:2015(E)

Material exhibits Specific	
Weight.

Person exhibits Age . Chemical Element exhibits
Atomic Weight.

Laptop exhibits Manufac-
turer.

Figure 20 — Object attribute examples

Airplane exhibits Flying. Person exhibits Walking. Printer exhibits Printing. Dog exhibits Watching.

Figure 21 — Object exhibitor with operation examples

Diving exhibits Depth . Commanding exhibits
Language .

Printing exhibits Printer. Striking exhibits Duration .

Figure 22 — Process exhibitor with attribute examples

Moving exhibits Acceler-
ating.

Fluctuating exhibits Stabi-
lizing.

Transmitting exhibits
Delaying.

Communicating exhibits
Interfering.

Figure 23 — Process exhibitor with operation examples

54 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

NOTE 2 A tool can keep track of the set of refinees for each refineable and adjust the symbol and corresponding
OPL sentences (specified below for each fundamental structural relation link) as the modeller changes the
collection of refinees.

10.3.3.2 Attribute state and exhibitor features

10.3.3.2.1 Attribute state as value

An attribute state, i .e. a state of the object that is the refinee attribute, shall be a value for that attribute.
The static, conceptual model, shall identify all possible values for the attribute. Some may be ranges of
values, while the dynamic, operational instance model shall indicate the actual attribute value at the
time of the attribute’s inspection (see Examples 1 and 2 in 10.3 .5 .1) .

10.3.3.2.2 Expressing exhibitor-feature relation

When expressing features or values for an attribute, the model shall identify the exhibitor of that
feature or value. To specify the exhibitor of the feature, the relation “of” shall occur in OPL sentences
between the feature and its exhibitor.

The syntax for an OPL sentence identifying the exhibitor-feature relation shall be: Feature of Exhibitor …

EXAMPLE 1 In Figure 27, the OPL sentence indicating the ownership of the attribute Specific	Weight by
its Metal Powder Mixture exhibitor is: Specific	Weight in g/cm3 of Metal Powder Mixture ranges from
7.545 to 7.537.

EXAMPLE 2 In Figure 25, the OPL sentence indicating the ownership of the attribute Travelling Medium by
its Ship exhibitor is: Travelling Medium of Ship is water surface .

10.3.4 Generalization-specialization and inheritance

10.3.4.1 Generalization-specialization relation link

The fundamental structural relation generalization-specialization shall mean that a refineable, the
general, generalizes one or more refinees, which are specializations of the general. The generalization-
specialization relation binds one or more specializations with the same Perseverance as the general,
such that both the general and all its specializations are objects or the general and all its specializations
are processes.

Graphically, an empty triangle with its apex connecting by a line to the general and the specializations
connecting by lines to the opposite base shall denote the generalization-specialization relation link
(see Figure 24) .

For a complete collection of n specializations of a general that is an object, the syntax of the generalization-
specialization relation link OPL sentence shall be: Specialization-object1 , Specialization-object2 , …,
and Specialization-objectn are General-object.

For a complete collection of n specializations of a general that is a process, the syntax of the generalization-
specialization relation link OPL sentence shall be: Specialization-process1 , Specialization-process2 ,
…, and Specialization-processn are General-process .

When the representation of the collection of specializations at the particular extent of detail is
incomplete, the generalization-specialization relation link shall signify the incomplete representation
with an annotation.

Graphically, a short horizontal bar crossing the vertical line below the empty triangle shall denote the
incomplete generalization-specialization relation link.

For an incomplete set of k specializations of a general that is an object, the syntax of the generalization-
specialization relation link OPL sentence shall be: Specialization-object1 , Specialization-object2 , …,
Specialization-objectk, and at least one other specialization are General-object.

© ISO 2015 – All rights reserved 55International Organization for Standardization

ISO/PAS 19450:2015(E)

For an incomplete set of k specializations of a general that is a process, the syntax of the generalization-
specialization relation link OPL sentence shall be: Specialization-process1 , Specialization-process2 ,
…, Specialization-processk, and at least one other specialization are General-process .

EXAMPLE Figure 24 shows single and plural specializations of objects and processes.

Digital Camera is a Camera Hunting is Food Gathering

Analog Camera and Digital Camera are Cameras Hunting and Fishing are Food Gathering

Figure 24 — Single and plural specializations of objects and processes

NOTE A tool can keep track of the set of refinees for each refineable and adjust the symbol and corresponding
OPL sentences for each fundamental structural relation link as the modeller changes the collection of refinees.

10.3.4.2 Inheritance through specialization

Inheritance shall be assignment of OPM elements, things and links, of a general to its specializations.

A specialization thing shall inherit from the general thing through the generalization-specialization
link each of the following four kinds of inheritable elements that exist:

— all the parts of a general from its aggregation-participation link;

— all the features of the general from its exhibition-characterization link;

— all the tagged structural links to which the general connects; and

— all the procedural links to which the general connects.

OPM shall provide the opportunity for multiple inheritances by allowing a thing to inherit from more
than one general thing each of the refinees - the four inheritable elements (participants, features,
tagged structural links, and procedural links) that exist for that general thing.

The modeller may override any of the participants of the general thing, which are by default inherited
by the specialization, by specifying for any participant inherited from a general, a specialization of that
participant with a different name and a different set of states (see 10.3 .4.3) .

NOTE When a generalization-specialization relation link exists, at runtime the specialized thing instance
does not exist in the absence of the more general thing instance that it specializes and from which it inherits each
of the four kinds of inheritable elements.

56 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

To create a general from one or more candidate specializations, the inheritable elements common to
each of the candidates shall be migrated to a generalization thing. The manipulation of inheritable
elements shall be as follows:

— Combine all of the common features and common participants of the specializations into one newly
created general;

— Connect the new general using the generalization-specialization relation link to the specializations;

— Remove from the specializations all of the common features and common participants, which the
specializations now inherit from the new general; and

— Migrate any common tagged structural links and any common procedural link edge that connects
to all the specializations from the specializations to the general.

10.3.4.3 Specialization restriction through discriminating attribute

The possible values of an attribute inherited from a general may restrict the permissible value
of a specialization. An inherited attribute with different values that constrain distinct values for
corresponding specialization characteristics shall be a discriminating attribute.

NOTE A specialization inherits the features, and possible attribute values, of its generalization. Elaborating
the general through refinement allows for a more precise valuation of inherited attributes, including specification
of attribute value appropriate for the specialization’s characterization through the exhibition-characterization
refinement that it inherits (see also 10.4.1)

EXAMPLE 1 Figure 25 shows an OPD in which Vehicle exhibits the attribute Travelling Medium with values
ground , air, and water surface . Travelling Medium is the discriminating attribute of Vehicle, because it
constrains the specializations of Vehicle to values of its Travelling Medium. Vehicle has specializations Car,
Aircraft, and Ship, with the corresponding Travelling Medium values ground , air, and water surface .

Vehicle exhibits Travelling Medium.
Travelling Medium of Vehicle can be ground , air, and water surface .
Car, Aircraft, and Ship are Vehicles.
Travelling Medium of Car is ground .
Travelling Medium of Aircraft is air.
Travelling Medium of Ship is water surface .

Figure 25 — The discriminating attribute Travelling Medium and its specializations

© ISO 2015 – All rights reserved 57International Organization for Standardization

ISO/PAS 19450:2015(E)

A general may have more than one discriminating attribute. The maximum number of specializations
with more than one discriminating attribute shall be the Cartesian product of the number of possible
values for each discriminating attribute, where some combination of attribute values may be invalid.

EXAMPLE 2 Extending the content of Figure 25, another attribute of Vehicle might be Purpose with the two
values civilian and military. Based on these two values, there are two Vehicle specializations: civilian Vehicle
and military Vehicle. Due to multiple inheritance, the result is an inheritance lattice where the number of
the most detailed specializations would be 3 × 2 = 6 as follows: civilian Car, civilian Aircraft, civilian Ship ,
military Car, military Aircraft, and military Ship .

10.3.5	Classification-instantiation	link

10.3.5.1	Classification-instantiation	relation	link

The fundamental structural relation classification-instantiation shall mean that a refineable, the class,
classifies one or more refinees, the instances of the classification. The classification, which is an object
class or a process class, is a source pattern for a thing connecting with one or more destination things,
which are instances of the source thing’s pattern, i.e. the qualities the pattern specifies acquire explicit
values to instantiate the instance thing. This relation provides the modeller with an explicit mechanism
for expressing the relationship between a class and its instances, which the provisioning of values creates.

NOTE 1 The use of the term instance when considering members of the instance set of a conceptual class are
referred to as ‘refinee instances’ to distinguish them from ‘operational instances’ of an operating model. For
every refinee instance, there are one or more operational instances possible.

NOTE 2 All OPM things expressed in a conceptual model are a class pattern for instances of that thing intended
to occur during model evaluation or operation. By creating a thing in the conceptual model, the modeller is
implying that at least one operational instance of that thing or a specialization of that thing can exist at some
time during the system’s operation.

If the class pattern includes an exhibition-characterization link specifying a refinee attribute with a
permissible range of values, then the corresponding attribute value of each operational instance of a
refinee instance of that class shall be within the value range specification of its class attribute feature.

Graphically, a small black circle inside an otherwise empty larger triangle with apex connecting by a
line to the class thing and the instance things connecting by lines to the opposite base shall denote the
classification-instantiation relation link.

The syntax of the classification-instantiation relation link between an object class and a single instance
shall be: Instance-object is an instance of Class-object.

The syntax of the classification-instantiation relation link between a process class and a single instance
shall be: Instance-process is an instance of Class-process .

The syntax of the classification-instantiation relation link between a process class and n instances shall
be; Instance-object1 , Instance-object2 and Instance-objectn are instances of Class-object.

The syntax of the classification-instantiation relation link between a process class and n instances shall
be; Instance-process1 , Instance-process2 and Instance-processn are instances of Class-process .

NOTE 3 Since the number of instances of any class might not be known a priori and can vary during operation
of the system, there is no distinction between complete and incomplete collections of destination things for the
classification-instantiation relation.

EXAMPLE 1 In Figure 26, Adult is a class with three attributes: Gender, with possible values female and male,
Height in cm, with possible values 120..240 , and Weight in kg , with possible values 40..240 . Jack Robinson is
an instance of Adult, with Gender value male, Height in cm value 185 and Weight in kg value 88 .

58 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Adult exhibits Gender, Height in cm, and Weight in kg.
Gender of Adult can be female or male.
Height in cm of Adult ranges from 120 to 240.
Weight in kg of Adult range from 40 to 240 .

Jack Robinson is an instance of Adult.
Gender of Jack Robinson is male.
Height in cm of Jack Robinson is 185.
Weight in kg of Jack Robinson is 88 .

Figure	26	—	Classification-instantiation	with	value	range	(class	on	left	and	instance	on	right)

EXAMPLE 2 The OPD on the left hand side of Figure 27 is a conceptual model of Metal Powder Mixture,
indicating that its Specific	Weight attribute value can range from 7.545 g/cm3 to 7.537 g/cm3 . Figure 27 is an
operational instance (runtime) model of Metal Powder Mixture Instance, indicating that its Specific	Weight
attribute value is 7.555 g/cm3 . This value is within the allowable range.

Metal Powder Mixture exhibits Specific	Weight	in g/cm3 .
Specific	Weight in g/cm3 of Metal Powder Mixture ranges from 7.545 to 7.537.
Mixture Lot #7545 is an instance of Metal Powder Mixture.
Specific	Weight in g/cm3 of Mixture Lot #7545 is 7.555 .

Figure 27 — Attribute state as value: conceptual versus operational models

NOTE 4 The OPL sentence “Mixture Lot #7545 exhibits Specific	Weight in g/cm3” is not present in the OPL
of Figure 27 because that sentence is implicit from the expressed fact “Mixture Lot #7545 is an instance of
Metal Powder Mixture”, and therefore Mixture Lot #7545 inherits this attribute from Metal Powder Mixture .

10.3.5.2 Instances of object class and process class

An object class and a process class shall be two distinct kinds of classes. An instance of a class shall be
an incarnation of a particular identifiable instance of that class with the same classification identifier.

A single refinee object shall be an object instance, while the pattern of object, to which all of the
instances adhere, shall be an object class, the refineable.

© ISO 2015 – All rights reserved 59International Organization for Standardization

ISO/PAS 19450:2015(E)

A process class shall be a pattern of happening (the sequence of subprocesses) , which involves object
classes that are members of the preprocess and postprocess object sets. A process occurrence, which
follows this pattern and involves particular object instances in its preprocess and postprocess object
sets, shall be a process instance. Hence, a process instance shall be a particular occurrence of a process
class to which that instance belongs. Any process instance shall have associated with it a distinct set of
preprocess and postprocess object instance sets.

NOTE The power of the process class concept is that it enables the modelling of a process as a template or
a protocol for some transformation that a class of objects undergoes. That transformation includes neither the
spatio-temporal framework nor the particular set of object instances with which the process instance associates.

60 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

10.3.6 Structural relation link and tagged structural link summary

Table 14 — Structural relations and link summary

Structural Relation

Forward-Reverse

(refineable-to-refinee;

bold is the short name)

OPD Symbol

OPL Sentence

Forward

refineable-to-re-
finee

Reverse

(refinee-to-refine-
able)

Aggregation-Participa-
tion

Whole consists
of Part A and
Part B .

_

Exhibition-Characteri-
zation

Exhibitor exhib-
its Attribute A
as well as Oper-
ation B.

_

Generalization-Special-
ization

_

Specialization A
and Specializa-
tion B are General
Thing.

Classification-Instanti-
ation

_
Instance A and
Instance B a re
instances of Class .

Unidirectional tagged

[Un id i re c t iona l nu l l
tagged]

Source tag-name Destination.

[Source relates to Destination .]

Bidirectional tagged
A a-to-b tag B.

B b-to-a tag A.

Reciprocal tagged

[Reciprocal null tagged]

A and B are reciprocal tag.

[A and B are related.]

© ISO 2015 – All rights reserved 61International Organization for Standardization

ISO/PAS 19450:2015(E)

10.4	State-specified	structural	relations	and	links

10.4.1	State-specified	characterization	relation	link

A state-specified characterization relation link shall be an exhibition-characterization relation link from
a specialized object that exhibits an attribute value for a discriminating attribute of its generalization,
meaning that the specialized object shall have only that value for the attribute it inherits.

Graphically, the exhibition-characterization relation link triangular symbol, with its apex connecting to
the specialized object and its opposite base connecting to the value shown as a state, shall denote the
state-specified characterization relation link.

NOTE While not necessary, the OPD will be more understandable if the exhibition-characterization link of
the general with the discriminating attribute appears in the same OPD as well (see Figure 28) .

The syntax of the state-specified characterization relation link shall be: Specialized-object exhibits
value-name Attribute-Name.

EXAMPLE Using the state-specified characterization relation link, the OPD in in Figure 28 is significantly
more compact than its equivalent OPD in Figure 25 . Here, the discriminating attribute Travelling Medium of
Vehicle with values ground, air, and water surface appears only once, as opposed to four times in Figure 25 .
The model for Car, Aircraft, and Ship are specializations of Vehicle, connecting each specialization with a state-
specified characterization relation link to the corresponding Travelling Medium value of ground , air, and
water surface respectively.

Vehicle exhibits Travelling Medium.
Travelling Medium of Vehicle can be ground , air, and water surface.
Car, Aircraft, and Ship are Vehicles.
Car exhibits ground Travelling Medium.
Aircraft exhibits air Travelling Medium.
Ship exhibits water surface Travelling Medium.

Figure	28	—	State-specified	characterization	link	example

62 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

10.4.2	State-specified	tagged	structural	relations

10.4.2.1	State-specified	tagged	structural	links

A state-specified tagged structural link shall be a tagged structural link between an object state or
attribute value and another object, object state or attribute value, signifying a relation between these
two things with the tag expressing the semantics of the relation. In case of a null tag, i .e. no explicit tag
specification, the corresponding OPL shall use the default null tag (see 10.2 .2) .

Three kinds of state-specified tagged structural links shall exist: source state-specified tagged
structural link; destination state-specified tagged structural link; and, source-and-destination state-
specified tagged structural link. Each kind shall include the unidirectional, bidirectional, and reciprocal
tagged structural link, giving rise to seven kinds of state-specified tagged structural relation link and
corresponding OPL sentences, which Table 15 summarizes.

10.4.2.2	Unidirectional	source	state-specified	tagged	structural	link

A unidirectional source state-specified tagged structural link shall be a unidirectional tagged structural
link from a specific state of the source object to a destination object without a state specification.

Graphically, an arrow with an open arrowhead connecting from a state of the source object to the
destination object and a tag-name annotation near the shaft shall denote a unidirectional source state-
specified tagged structural link.

The syntax of the unidirectional source state-specified tagged structural link OPL sentence shall be:
Specified-state	source-object tag-name Destination-object.

NOTE A null tag uses the default tag-name “relates to”, not in bold, unless modified by the modeller.

10.4.2.3	Unidirectional	destination	state-specified	tagged	structural	link

A unidirectional destination state-specified tagged structural l ink shall be a unidirectional
tagged structural l ink from a source object without a state specification to a specific state of the
destination object.

Graphically, an arrow with an open arrowhead connecting from a source object to a specific state of the
destination object and a tag-name annotation near the shaft shall denote a unidirectional destination
state-specified tagged structural link.

The syntax of the unidirectional destination state-specified tagged structural link OPL sentence shall
be: Source-object tag-name specified-state Destination-object.

NOTE A null tag uses the default tag-name “relates to”, not in bold, unless modified by the modeller.

10.4.2.4	Unidirectional	source-and-destination	state-specified	tagged	structural	link

A unidirectional source-and-destination state-specified tagged structural link shall be a unidirectional
tagged structural link from a specific state of a source object to a specific state of the destination object.

Graphically, an arrow with an open arrowhead connecting from a specific state of a source object
to a specific state of the destination object and a tag-name annotation near the shaft shall denote a
unidirectional source-and-destination state-specified tagged structural link.

The syntax of the unidirectional source-and-destination state-specified tagged structural link OPL
sentence shall be: Source-specified-state	source-object tag-name destination-specified-state
Destination-object.

NOTE A null tag uses the default tag-name “relates to”, not in bold, unless modified by the modeller.

© ISO 2015 – All rights reserved 63International Organization for Standardization

ISO/PAS 19450:2015(E)

10.4.2.5	Bidirectional	source-or-destination	state-specified	tagged	structural	link

A bidirectional source-or-destination state-specified tagged structural link shall be a bidirectional
tagged structural link with a specific state for either the source or destination object but not both.

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link, one
connecting to an object or object state and the other connecting to an object state or object respectively,
shall denote a bidirectional tagged structural link. Each tag-name shall align on the side of the arrow
with the harpoon edge sticking out of the arrowhead, unambiguously determining the direction in
which each relation applies.

The syntax of the resulting bidirectional source-or-destination state-specified tagged structural link
shall be two separate unidirectional tagged structural link OPL sentences, one for each direction with
the corresponding state specifications.

10.4.2.6	Bidirectional	source-and-destination	state-specified	tagged	structural	link

A bidirectional source-and-destination state-specified tagged structural link shall be a bidirectional
tagged structural link with a specific state for both the source and destination object.

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link,
connecting a specific state of one object to a specific state of another object, shall denote a bidirectional
tagged structural link. Each tag-name shall align on the side of the arrow with the harpoon edge
sticking out of the arrowhead, unambiguously determining the direction to which each relation applies.

The syntax of the resulting bidirectional source-and-destination state-specified tagged structural link
shall be two separate unidirectional source-and-destination tagged structural link OPL sentences, one
for each direction with the corresponding state specifications and tag-names.

10.4.2.7	Reciprocal	source-or-destination	state-specified	tagged	structural	link

A reciprocal source-or-destination tagged structural link shall be a bidirectional source-or-destination
tagged structural link with a specific state for one of the involved objects but not both, and only one
reciprocity-tag or no tag. In either case, reciprocity shall indicate that the tag of a reciprocal source-
or-destination state-specified tagged structural link has the same semantics for each direction of the
relation. When no tag appears, the default tag shall be “are related”.

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link,
connecting a specific state of one object to another object without state specification and depicting only
one tag-name aligning with the arrow, shall denote a reciprocal source-or-destination state-specified
tagged structural link.

The syntax of the reciprocal source-or-destination state-specified tagged structural link with only one
tag shall be either: Source-specified-state	Source-object and Destination-object are reciprocity-
tag; or, Source-object and destination-specified-state	Destination-object are reciprocity-tag.

10.4.2.8	Reciprocal	source-and-destination	state-specified	tagged	structural	link

A reciprocal source-and-destination tagged structural link shall be a bidirectional source-and-
destination tagged structural link with a specific state for both involved objects, and only one
reciprocity-tag or no tag. In either case, reciprocity shall indicate that the tag of a reciprocal source-
and-destination state-specified tagged structural link has the same semantics for each direction of the
relation. When no tag appears, the default tag shall be “are related”.

Graphically, a line with harpoon shaped arrowheads on opposite sides at both ends of the link,
connecting a specific state of one object to a specific state of another object and depicting only one tag-
name aligning with the arrow, shall denote a reciprocal source-and-destination state-specified tagged
structural link.

64 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

The syntax of the reciprocal source-and-destination state-specified tagged structural link with only
one tag-name shall be: Source-specified-state	Source-object and destination-specified-state
Destination-object are reciprocity-tag.

The syntax of the reciprocal source-and-destination state-specified tagged structural link with no tag-
name shall be: Source-specified-state	Source-object and destination-specified-state Destination-
object are related.

10.4.2.9	State-specified	tagged	structural	link	summary

Table	15	—	State-specified	structural	relations	and	links	summary

Direction-
ality

Source/Destination

source	state-specified destination	state-specified
source-and-destination

state-specified

unidirec-
tional

S A tag-name B.
B tag-name s A. Sa A tag-name sb B.

bidirec-
tional

S A f-tag-name B.

B b-tag-name s A.

Sa A f-tag-name sb B.

Sb B b-tag-name sa A.

reciprocal

B and s A are recip-tag-name . Sa A and sb B are recip-tag-
name .

EXAMPLE 1 In the OPD in Figure 29, Keeper is an attribute of Check with values payer, payee, and bank.
Each of these values is also an object in its own right in the model. Three unidirectional, source-state-specified
null-tagged structural links connect each value to its corresponding object. Note that there is no requirement
that the name of the state or value be the same as the name of the related object, as demonstrated by financial	
institution and Bank.

© ISO 2015 – All rights reserved 65International Organization for Standardization

ISO/PAS 19450:2015(E)

Check can be blank, signed, endorsed , or cashed & cancelled.
Check exhibits Keeper.
Keeper can be payer, payee, or financial	institution.
Payer Keeper relates to Payer.
Payee Keeper relates to Payee.
Financial institution Keeper relates to Bank. (remaining OPL omitted)

Figure	29	—	Associating	attribute	values	with	objects	via	state-specified	structural	link

EXAMPLE 2 In the OPD in Figure 30, each one of the three Phase values of Water is associated with its
corresponding Temperature value range via three source-and-destination state-specified tagged structural
links whose tag is “exists for the range of”.

66 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Water exhibits Phase and Temperature in Celsius.
Phase of Water can be solid , liquid or gas.
Temperature of Water in Celsius can be below zero, between zero and 100 , or above 100.
Solid Phase exists for the range of below zero Temperature in Celsius.
Liquid Phase exists for the range of between zero and 100 Temperature in Celsius.
Gas Phase exists for the range of above 100 Temperature in Celsius.

Figure	30	—	Source-and-destination	state-specified	tagged	structural	link

11 Relationship cardinalities

11.1 Object multiplicity in structural and procedural links

Object multiplicity shall refer to a requirement or constraint specification, sometimes called a
participation constraint, on the quantity or count of object operational instances associated with a link.
Unless a multiplicity specification is present, each end of a link shall specify only one object operational
instance. Multiplicity specifications may appear in the following situations:

a) to specify multiple source or destination object operational instances for a tagged structural
link of any kind;

b) to specify a participant object with multiple operational instances in an aggregation-
participation link, where a different participation specification may be attached to each one of
the parts of the whole; and

c) to specify an object with multiple operational instances in a procedural relation.

The specification of object multiplicity may occur as integers or as parameter symbols that resolve to
integer values during model execution and may include arithmetic expressions. The specification may
include a range of values or a set of value ranges.

Graphically, an integer, a range of integers, a parameter symbol, a range of parameter symbols, or set of
integers or parameter symbols, any of which may appear as annotations near the link end to which it
applies, shall denote object multiplicity.

The syntax of an OPL sentence that includes an object with multiplicity shall include the object
multiplicity preceding the object name, with the object name appearing in its plural form if the

© ISO 2015 – All rights reserved 67International Organization for Standardization

ISO/PAS 19450:2015(E)

cardinality specifies more than one operational instance is possible. The following EXAMPLES present
some of the many uses of object multiplicity on OPL sentences.

EXAMPLE Figure 31 shows in the left OPD a participation constraint on the destination end of a unidirectional
tagged structural link. On the right OPD is a participation constraint on the destination (part) end for one of two
objects of an aggregation-participation link.

Factory comprises 3	Shopfloors . Printer consists of 3 Colour Cartridges , Black
Cartridge and other parts.

Figure 31 — Object multiplicity examples

Object multiplicity may be a parameter or a range of parameters or a set of two or more ranges of
numbers and/or parameters separated by a comma. A range shall be indicated as qmin . . qmax and shall
be closed, i .e. include the boundaries qmin and qmax. In OPL, the expression of the range symbol “. .” shall
be “to” and the expression of the comma that separates two adjacent ranges shall be “or”.

The specification of object multiplicity may occur as an optionality parameter using the range symbol,
the asterisk symbol and the question mark symbol in the following manner:

— “0. .1” shall mean zero or one, using the question mark (?) annotation near the object to which it
applies with an OPL syntax of “an optional” immediately preceding the object;

— “0. .*” shall mean zero or more, using the asterisk symbol (*) annotation near the object to which it
applies with the OPL syntax of “optional” immediately preceding the object, and

— “1. .*” shall mean one or more, using the plus symbol (+) annotation near the object to which it applies
with OPL syntax of “at least one” immediately preceding the object

NOTE 1 The range symbol “. .” has two uses in multiplicity specification, one as a separator between two
boundary values, e.g. qmin . . qmax, with interpretation of “to” and one as separator between optional values, e.g.
“0. .*” , with interpretation of “or”.

NOTE 2 Care is necessary when specifying cardinality constraints so that the constraint applies to the object
as specified and not a property of that object. If the object has a unit of measure, then multiplicity refers to the
count of single units of that measure, e.g. 32 Water in millilitres .

Table 16 summarizes link optionality.

68 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Table 16 — Link optionality summary

Lower & Upper
Bounds qmin . . qmax

Participation Con-
straint Symbol &

OPL Phrase
OPD Example & Corresponding OPL Sentence

0. .1
?

an optional

Car has an optional Sunroof.

0. .*

*

optional

(none to many) Car is equipped with optional Airbags.

1. .1 (none)

Car is steered by Steering Wheel.

1. .*
+

at least one

Car carries at least one Spare Tire.

11.2 Object multiplicity expressions and constraints

Object multiplicity may include arithmetic expressions, which shall use the operator symbols “+”, “–”,
“*”, “/”, “(“, and “)” with their usual semantics and shall use the usual textual correspondence in the
corresponding OPL sentences.

An integer or an arithmetic expression may constrain object multiplicity. Graphically, expression
constraints shall appear after a semicolon separating them from the expression that they constrain
and shall use the equality/inequality symbols “=”, “<”, “>”, “<=”, and “>=”, the curly braces “{“ and “}” for
enclosing set members, and the membership operator “in” (element of, ∈) , all with their usual semantics.
The corresponding OPL sentence shall place the constraint phrase in bold letters after the object to
which the constraint applies in the form “, where constraint”.

EXAMPLE 1 Figure 32 provides object multiplicity examples with ranges and parameters.

Machine Center controls 3 to 5 or 8 to 10 Machines.
Machine Center controls 2 or 3*n Machines , where n<=4.

Figure 32 — Object multiplicity examples with ranges and parameters

© ISO 2015 – All rights reserved 69International Organization for Standardization

ISO/PAS 19450:2015(E)

EXAMPLE 2 Figure 33 models a Blade Replacing system in which a Jet Engine has b Installed Blades . Two
to four (a number set to k) Aviation Engine Mechanics handle the Blade Replacing process, for which they use
k Blade Fastening Tools . Also, one or two Aerospace Engineers handle the Blade Replacing process. This
process yields b Dismantled Blades , which undergo Blade Inspecting , an environmental process that yields
a (which is at most b) of Inspected Blades . The process consumes a total of b Blades , with i inspected and b–i
new. Any number of new Blades can be obtained by Purchasing them.

k=2 to 4 Aviation Engine Mechanics handle Blade Replacing.
Jet Engine can be used or refurbished.
Jet Engine consists of b Installed Blades.
1 to 2 Aerospace Engineers handle Blade Replacing.
An optional Aerospace Engineer handles Blade Inspecting.
Blade can be inspected or new.
Blade Replacing requires k Blade Fastening Tools .
Blade Replacing changes Jet Engine from used to refurbished .
Blade Replacing consumes i inspected Blades and b – i new Blades .
Blade Replacing yields b Dismantled Blades .
Blade Inspecting consumes b Dismantled Blades .
Blade Inspecting yields a <= b inspected Blades .
Purchasing yields many new Blades .

Figure 33 — Object multiplicity: arithmetic expressions and constraints example

If an object multiplicity parameter has more than one constraint, they shall appear as a semicolon-
separated list of constraints following the parameter. Any constraint may include any object multiplicity
parameter appearing in the model. Parameter names shall be unique for the entire system model.

EXAMPLE 3 Figure 34 depicts a way to specify parameterized participation constraints in an OPD and the
corresponding OPL sentences.

70 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Airplane consists of Body, 2 Wings , and e Engines , where e >= 1, e = b+2*w.
b Engines are attached to Body, where b in {0, 1}.
w Engines are attached to Wing , where 0 <= w <= 3 .

Figure 34 — Multiple parameterized constraints example

NOTE 1 Aggregation-participation is the only fundamental structural relation for which participation
constraints apply.

NOTE 2 Expressing multiplicity of processes does not use participation constraints. Rather, expressing
sequential repetition of the same process uses a recurrent process with a counter for the number of iterations.
Parallel synchronous processes or asynchronous processes within an in-zoomed process provide other
iteration mechanisms.

11.3 Attribute value and multiplicity constraints

The expression of object multiplicity for structural and procedural links specifies integer values or
parameter symbols that resolve to integer values. In contrast, the values associated with attributes of
objects or processes may be integer or real values, or parameter symbols that resolve to integer or real
values, as well as character strings and enumerated values.

NOTE 1 Real values accommodate expression using the unit of measure associated with the object.

Graphically, a labelled, rounded-corner rectangle placed inside the attribute to which it belongs shall
denote an attribute value with the value or value range (integers, real numbers, or string characters)
corresponding to the label name. In OPL text, the attribute value shall appear in bold face without
capitalization.

The syntax for an object with an attribute value OPL sentence shall be: Attribute of Object is value .

The syntax for an object with an attribute value range OPL sentence shall be: Attribute of Object range
is value-range .

NOTE 2 Attribute value range has the same expressiveness applicable for object multiplicity, except optionality.

A structural or a procedural link connecting with an attribute that has a real number value may specify
a relationship constraint, which is distinct from an object multiplicity.

Graphically, an attribute value constraint is an annotation by a number, integer or real, or a symbol
parameter, near the attribute end of the link and aligning with the link.

12 Logical operators: AND, XOR, and OR

12.1 Logical AND procedural links

A group of two or more procedural links of the same kind that originate from, or arrive at, the same
process shall have the semantics of logical AND.

© ISO 2015 – All rights reserved 71International Organization for Standardization

ISO/PAS 19450:2015(E)

Graphically, the links with AND semantics do not touch each other on the process contour.

The syntax of links with AND semantics shall be a phrase using “and” conjunction in a single OPL
sentence rather than separate sentences for each link.

EXAMPLE 1 Figure 35 (right) , the Safe Opening process requires both Safe Owner A and Safe Owner B. In
Figure 35 (left) , opening the Safe requires all three keys.

Safe can be closed or open.
Safe Opening requires Key A, Key B, and Key C.
Safe Opening changes Safe from closed to open .

Safe can be closed or open.
Safe Owner A and Safe Owner B handle Safe Opening.
Safe Opening changes Safe from closed to open .

Figure 35 — Logical AND for agent and instrument links

EXAMPLE 2 In Figure 36 (left) , Meal Preparing yields all three of the dishes. In Figure 36 (right) , Meal Eating
consumes all three dishes.

Chef handles Meal Preparing.
Meal Preparing yields Starter, Entree and Dessert.

Meal Eating affects Diner.
Meal Eating consumes Dessert, Entree and Starter.

Figure 36 — Logical AND for result and consumption links

EXAMPLE 3 In the OPD on the left of Figure 37, Interest Rate Changing affects the three objects Exchange
Rate, Price Index, and Interest Rate . In the OPD on the right, all three effects of Interest Rate Raising on
Exchange Rate, Price Index, and Interest Rate are explicit via three pairs of input-output-specified effect links.

72 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Central Bank handles Interest Rate Changing.
Interest Rate Changing affects Exchange Rate, Price
Index, and Interest Rate .

Central Bank handles Interest Rate Changing.
Interest Rate can be high or low.
Price Index can be low or high.
Exchange Rate can be high or low.
Interest Rate Raising changes Exchange Rate from
low to high, Price Index from low to high, and Inter-
est Rate from low to high.

Figure 37 — Logical AND for effect link and input-output link pairs

NOTE See Clause 13 for impacts of path labels on AND syntax.

12.2 Logical XOR and OR procedural links

A group of two or more procedural links of the same kind that originate from a common point, or arrive
at a common point, on the same object or process shall be a link fan. A link fan shall follow the semantics
of either a XOR or an OR operator. The link fan end that is common to the links shall be the convergent
link end. The link end that is not common to the links shall be the divergent link end.

The XOR operator shall mean that exactly one of the things at the divergent link end of the link fan
exists or occurs. If the divergent link end has objects, then only one exists. If the divergent link end has
processes, then only one occurs.

NOTE This use of the XOR operator in OPM is different to some binary XOR operator interpretations, where
the output is 1 for an odd number of inputs and 0 for an even number of inputs.

Graphically, a dashed arc across the links of the link fan with the arc focal point at the convergent end-
point of contact shall denote the XOR operator.

The syntax of a link fan of n things with XOR semantics shall be a single OPL sentence containing a
phrase of the form: exactly one of Thing1 , Thing2 ,…, and Thingn . . .

The OR operator shall mean that at least one of the two or more things at the divergent end of the link
fan exists or occurs. If the divergent link end has objects, then at least one object exists. If the divergent
end has processes, then at least one process occurs.

Graphically, two concentric dashed arcs across the links of the link fan with the focal point at the
convergent end-point of contact shall denote the OR operator.

The syntax of a link fan of n things with OR semantics shall be a single OPL sentence containing a phrase
of the form: at least one of Thing1 , Thing2 ,…, and Thingn . . .

EXAMPLE In the OPD on the right of Figure 38 , using XOR, exactly one of Safe Owner A and Safe Owner
B needs to be present in order for Safe Opening to occur. In the OPD on the left, using OR, at least one of Safe
Owner A and Safe Owner B needs to be present in order for Safe Opening to occur. The link fan in both OPDs is
convergent and consists of two agent links.

© ISO 2015 – All rights reserved 73International Organization for Standardization

ISO/PAS 19450:2015(E)

Exactly one of Safe Owner A and Safe Owner B
handles Safe Opening.

At least one of Safe Owner A and Safe Owner B
handles Safe Opening.

Figure 38 — Logical OR (left) and logical XOR (right) examples of agent link

12.3 Diverging and converging XOR and OR links

Table 17 shows that when the source things are objects and the destination thing is a process, the
consumption link fan is converging, while when the source things are processes and the destination
thing is an object, the result link fan is converging.

Table 17 — Summary of XOR and OR converging consumption and result links

XOR OR

Converging
consumption

link fan

P consumes exactly one of A, B , or C. P consumes at least one of A, B , or C.

Converging
result link fan

Exactly one of P, Q, or R yields B. At least one of P, Q, or R yields B.

Table 18 shows that when the source thing is an object and the destination things are processes, the
consumption link fan shall be diverging, while when the source thing is a process and the destination
things are objects, the result link fan shall be diverging.

74 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Table 18 — Summary of XOR and OR diverging consumption and result link fans

XOR OR

Diverging con-
sumption link

fan

Exactly one of P, Q , or R consumes B. At least one of P, Q , or R consumes B.

Diverging re-
sult link fan

P yields exactly one of A, B, or C. P yields at least one of A, B, or C.

Since an effect link is bidirectional, the things linked by an effect link fan are both source and
destination at the same time, voiding the definitions of convergent and divergent link fans. Instead, as
Table 19 shows, the distinction shall occur with respect to multiple objects or multiple processes that a
link fan connects.

Table 19 — Summary of XOR and OR effect link fans

XOR OR

Multiple ob-
jects effect
link fan

P affects exactly one of A, B , or C. P affects at least one of A, B , or C.

Multiple
processes
effect link

fan

Exactly one of P, Q , or R affects B.
At least one of P, Q , or R affects B.

Since an enabler is an object, as shown in Table 20, both agent and instrument link fans shall be
divergent with multiple processes as targets.

© ISO 2015 – All rights reserved 75International Organization for Standardization

ISO/PAS 19450:2015(E)

Table 20 — Summary of agent and instrument link fans

XOR OR

Agent link
fan

B handles exactly one of P, Q , or R. B handles at least one of P, Q, or R.

Instrument
link fan

Exactly one of P, Q, or R requires B. At least one of P, Q, or R requires B.

Invocation link fans may be diverging or converging for both XOR and OR, as shown in Table 21.

Table 21 — Summary of invocation link fans

XOR OR

Diverging
invocation
link fan

P invokes exactly one Q or R. P invokes at least one of Q or R.

Converging
invocation
link fan

Exactly one of P or Q invokes R. At least one of P or Q invokes R.

12.4	State-specified	XOR	and	OR	link	fans

Each one of the link fans in 12 .3 shall have a corresponding state-specified version, where the source
and destination may be specific object states or objects without a state specification. Combinations of
state-specified and stateless links as sources and destinations of a link fan may occur.

EXAMPLE Figure 39 shows on the left a XOR state-specified instrument link fan and on the right an OR
mixed result link fan where the links are state-specified for objects A and C but not for B .

76 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Exactly one of P, Q, or R requires s2 B. P yields at least one of s3 A, B, or s5 C.

Figure	39	—	State-specified	XOR	and	OR	link	examples

12.5	Control-modified	link	fans

Each one of the XOR link fans for consumption, result, effect, and enabling links and their state-specified
versions shall have a corresponding control-modified link fan: an event link fan and a condition link fan.

Table 22 presents the event and condition effect link fans, as representatives of the basic (non-state-
specified) links version of the modified link fans.

Table 22 — Event and condition effect link fans

Event Condition

B initiates exactly one of P, Q , or R, in which case
the occurring process affects B.

Exactly one of P, Q , or R occurs if B exists , in
which case the occurring process affects B, other-

wise these processes are skipped.

12.6	State-specified	control-modified	link	fans

Each one of the control-modified link fans, except the control-modified effect link fan, shall have a
corresponding state-specified control-modified link fan. Since these state-specified versions are more
complicated than their non-state-specified version, Table 23 presents the OPD and OPL of the state-
specified versions and the corresponding stateless version below for each state-specified version.

© ISO 2015 – All rights reserved 77International Organization for Standardization

ISO/PAS 19450:2015(E)

Table	23	—	State-specified	and	stateless	control-modified	link	fans

Event	Control	modifier Condition	Control	modifier

Consumption
link fan

S2 B initiates exactly one of P, Q , or R,
which consumes B.

The stateless case:

B initiates exactly one of P, Q , or R,
which consumes B.

Exactly one of P, Q, or R occurs if B is
s2, in which case the occurring process
consumes B, otherwise these processes

are skipped.

The stateless case:

Exactly one of P, Q, or R occurs if B ex-
ists , in which case the occurring process
consumes B, otherwise these processes

are skipped .

Agent link fan
S2 B initiates and handles exactly one of

P, Q , or R.

The stateless case:

B initiates and handles exactly one of P,
Q , or R.

B handles exactly one of P, Q , or R if B
is s2 , otherwise these processes are

skipped.

The stateless case:

B handles exactly one of P, Q , or R if B
exists, otherwise these processes are

skipped.

Instrument
link fan

S2 B initiates exactly one of P, Q , or R,
which requires s2 B.

The stateless case:

B initiates exactly one of P, Q , or R,
which requires B.

Exactly one of P, Q , or R requires that
B is s2 , otherwise these processes are

skipped.

The stateless case:

Exactly one of P, Q , or R requires that B
exists , otherwise these processes are

skipped.

Each XOR link fan in Table 22 and in Table 23 shall have its OR counterpart (designated by a double-
dotted arc) with a corresponding OPL sentence in which the reserved phrase “at least” replaces “exactly”.

78 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

12.7 Link probabilities and probabilistic link fans

A process P with a result link that yields a stateful object B with n states, s1 to sn , without specifying a
particular state shall mean that the probability of generating B at any one particular state shall be 1/n.
In this case, the single result link to the object shall replace the result link fan to each of its states.

EXAMPLE 1 In the left OPD of Figure 40, the result link from P to B , which has three states, means that P will
create B with equal probability, Pr = 1/3, for creation at each state. The right OPD of Figure 40 shows the more
cumbersome way to express the same situation.

B can be s1, s2 , or s3.
P yields B.

B can be s1, s2 , or s3.
P yields exactly one of s1 B , s2 B , or s3 B.

Figure	40	—	Equivalence	between	result	link	and	a	set	of	XOR	state-specified	result	links

Generally, probabilities of following a specific link in a link fan are not equal. Link probability may be a
property value assigned to a link in a XOR diverging link fan that specifies the probability of following
that particular link among the possible links in the fan link. A probabilistic link fan shall be a link fan
with annotations on each fan link for its probability property, where the sum of the probabilities shall
be exactly 1 .

Graphically, along each fan link with a probability property an annotation shall appear in the form
Pr=p, where p is the link probability numeric value or a parameter, which denotes the probability of the
system execution control to select and follow that particular link of the fan.

The corresponding OPL sentence shall be the XOR diverging link fan sentence without link probabilities
omitting the phrase “exactly one of…” and inserting the phrase “…with probability p” following each
participating thing name with a probability annotation “Pr=p”.

EXAMPLE 2 Figure 41 shows two probabilistic state-specified object creation examples and their
deterministic analogues. In the OPD on the left, process P can create object B in three possible states, s1 , s2 , or
s3 , with corresponding probabilities 0.32 , 0.24, and 0.44 indicated along each result link of the result link fan. In
the OPD on the right, P can create one of the objects A, B , or C at state sc1 with the probabilities indicated along
each result link of the result link fan.

© ISO 2015 – All rights reserved 79International Organization for Standardization

ISO/PAS 19450:2015(E)

P yields s1 B with probability 0.32 , s2 B with probabili-
ty 0.24, or s3 B with probability 0.44.
The analogous deterministic case:
P yields exactly one of s1 B , s2 B , or s3 B.

P yields A with probability 0.3 , B with probability q , or
sc1 C with probability 0.7-q.
The analogous deterministic case:
P yields exactly one of A, B , or sc1 C.

Figure	41	—	Probabilistic	state-specified	object	creation	examples

For a process P with a result link that yields a stateful object B with states s1 to sn, and with initial state
si , P shall create B at state si with probability 1 .0. However, if B has m, with m < n initial states, P shall
create B at one of the initial states with probability 1/m.

For a probabilistic result link fan, any one of the resultees may be an object without or with a specified
state. For all the link fans comprising other procedural link kinds (including those with the event and
condition control modifiers) , where the targets of the links in the link fan are processes, the source may
be an object or a specified state of an object.

EXAMPLE 3 The OPD in the top of Figure 42 shows a probabilistic result link fan in which P yields, with
specified probabilities, one of the objects A or B , or C at state sc1 , or D at state sd1 or sd2 . The OPD in the middle
of Figure 42 shows a probabilistic consumption link fan in which A is consumed, with specified probabilities, by
one of the processes P or Q or R . The OPD in the bottom expresses the same, with the additional fact that A needs
to be at state s2 .

80 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

P yields A with probability 0.3 , B with probability 0.2 , sc1 C with probability 0.1 , sd1 D with probability 0.25 ,
or sd2 D with probability 0.15 .

P with probability p , Q with probability q , or R with probability 1-p-q consumes A .

P with probability p , Q with probability q , or R with probability 1-p-q consumes s2 A .

Figure	42	—	Objects	with	and	without	specified	states	as	sources	and	destinations	of	a	
probabilistic link fan

13 Execution path and path labels

A path label shall be a link property and corresponding annotation aligning a pair of procedural links.
When the process precondition involves an object with path label link connections, and the postprocess
object set has more than one possibility for destination object, the appropriate postprocess object

© ISO 2015 – All rights reserved 81International Organization for Standardization

ISO/PAS 19450:2015(E)

set destination shall be the one obtained using a link with the same path label as that used by the
preprocess object set.

EXAMPLE 1 In Figure 43, there are two output links: one from Heating to the state liquid of Water and the
other to state gas . When entering Heating from state ice, it is not clear whether the result state is liquid or gas .
The path labels along the procedural links, resolve this dilemma by uniquely determining the appropriate link on
process exit, as shown by the animated simulation on the left.

Water can be ice, liquid , or gas.
Following path ice-to-liq, Heating changes Water from ice to liquid.
Following path liq-to-gas, Heating changes Water from liquid to gas.

Figure 43 — Execution path and path labels

NOTE A path label is a label on a procedural link that removes the ambiguity arising from multiple outgoing
procedural links by specifying that the link to follow is the one with the same label as the one initiating the process.

EXAMPLE 2 Figure 44 demonstrates the use of path labels on consumption and result links, followed by the
OPL paragraph.

Following path carnivore, Food Preparing consumes Meat.
Following path herbivore, Food Preparing consumes Cucumber and Tomato.
Following path carnivore, Food Preparing yields Stew and Steak.
Following path herbivore, Food Preparing yields Salad .

Figure 44 — Path labels demonstrated on consumption and result links

82 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

14 Context management with OPM

14.1 Completing the SD

The definition of system purpose, scope, and function in terms of boundary, stakeholders, preconditions
and postconditions shall be the basis for determining whether other elements, including environmental
things, should appear in the model.

The SD shall be an OPD that models:

— the stakeholders, in particular the beneficiaries;

— a process to convey the functional value the beneficiary expects to receive; and

— other environmental and systemic things necessary to create a succinct corresponding OPL paragraph.

The corresponding OPL paragraph should provide the situational context for the system’s operation.

Expression of the functional value may be:

— explicit, by identifying the source input and destination output states of the beneficiary or the initial
and final values of one or more of its attributes, or

— implicit, by indicating that the beneficiary is affected by the system’s function.

The SD should contain only the central, important things – those things indispensable for understanding
the function and context of the system. The modeller shall use the refinement mechanisms of OPM to
expose gradually the detail concerning the things that are the content of the SD.

EXAMPLE In a Manufacturing Facility, the Beneficiary has developed and deployed a Preventive
Maintenance System . The function of the system, Preventive Maintenance Executing , changes the Downtime
attribute of the Manufacturing Facility from “high” to “low”. This change adds functional value to the
Manufacturing Facility, as it has more up-time to manufacture products and increase sales and revenues at the
cost of investing in developing and operating the Preventive Maintenance System .

14.2 Achieving model comprehension

14.2.1	OPM	refinement-abstraction	mechanisms

OPM shall provide abstracting and refining mechanisms to manage the expression of model clarity and
completeness. These mechanisms make possible the specification of contextualized model segments
as separate, yet interconnected OPDs, which, taken together, comprise a model of the functional value
providing system. These mechanisms shall enable presenting and viewing the modelled system, and
the elements it contains, in various contexts that are interrelated with common objects, processes and
relations. The set of clearly specified and compatible interconnected OPDs should completely specify
the entire system to an appropriate extent of detail and provide a comprehensive representation of that
system with a corresponding textual statement of the model in OPL.

The OPM refinement-abstraction mechanisms shall be the following three pairs: State expression and
suppression, unfolding and folding, and in-zooming and out-zooming.

14.2.1.1 State expression and state suppression

Explicitly depicting the states of an object in an OPD may result in a diagram that is too crowded or
busy, making it hard to read or comprehend.

OPM shall provide an option for state suppression, which suppresses the appearance of some or all
the states of an object as represented in a particular OPD when those states are not necessary in the
context of that OPD.

© ISO 2015 – All rights reserved 83International Organization for Standardization

ISO/PAS 19450:2015(E)

The inverse of state suppression shall be state expression, which exposes information concerning
possible object states. The OPL corresponding to an OPD shall express the states of the objects only as
the OPD depicts.

In OPM the modeller may suppress any subset of states. However, the complete set of object states
for an object shall be the union of the states of that same object appearing in all of the OPDs of the
entire OPM model.

Graphically, the annotation indicating that an object presents a proper subset (i.e. at least one but not
all) of its states, shall be a small state suppression symbol in the object’s right bottom corner. This
symbol appears as a small state with an ellipsis label, which signifies the existence of one or more
states that the view is suppressing, The textual equivalence of the state suppression symbol shall be
the reserved phrase “or other states”.

EXAMPLE Figure 45 shows a stateful object with all states expressed, and a suppressed version.

A can be s1, s2 , s3, s4, or s5.
P changes A from s1 to s3 .

A can be s1, s3, or other states .
P changes A from s1 to s3.

Figure 45 — A stateful object with all states expressed (left) and a partially suppressed
version (right)

14.2.1.2 Unfolding and folding

Unfolding shall be a mechanism for refinement, elaboration, or decomposition. Unfolding shall reveal
a set of things, the refineable, that relate to the unfolded thing, the refineable. The result of unfolding
shall be a hierarchy tree, the root of which shall be the unfolded thing. Linked to the root shall be the
things that constitute the elaboration of the unfolded thing.

Conversely, folding shall be a mechanism for abstraction or composition, which shall apply to an
unfolded hierarchical tree. Folding shall hide the set of unfolded things, leaving just the root.

Each of the four fundamental structural relation links may apply unfolding and folding. The four kinds
of unfolding-folding pairs shall be:

— aggregation unfolding—exposing the parts of a whole, and participation folding—hiding the
parts of a whole;

— exhibition unfolding—exposing the exhibitor’s features, and characterization folding—hiding the
exhibitor’s features;

— generalization unfolding—exposing the specializations of the general, and specialization folding—
hiding the general’s specializations; and

— classification unfolding—exposing the class instances, and instantiation folding—hiding the
class instances.

In-diagram unfolding shall occur when the refineable and its refinees appear unfolded in the same
OPD. Because unfolding uses the fundamental structural links, in-diagram unfolding is graphically,
syntactically and semantically equivalent to using fundamental structural links.

84 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

New-diagram unfolding shall occur when the refineable and its refinees appear unfolded in a new OPD.

Graphically, the refineable shall have a thick contour in both the more abstract OPD in which the
refineable appears folded without refinees, and in the new more detailed OPD context, in which the
refineable appears unfolded and connects to its refinees with one or more fundamental structural links.

The corresponding OPL sentence for the new-diagram OPD where the refineable has n refinees shall be:
Refineable unfolds into Refinee1 , Refinee2 ,…, and Refineen

NOTE 1 Unfolding can be more precisely specified as part-unfolding, feature-unfolding, specialization-
unfolding, and instance-unfolding (see A.4.7.2) .

The modeller decision whether to use in-diagram or new-diagram unfolding should account for the
trade-off between the clutter added to the current OPD and the need to create a new OPD for displaying
the refinees and associated links amongst them.

NOTE 2 Unfolding often occurs as a combination of new-diagram and in-diagram unfolding to represent
multiple elaboration or decomposition situations.

NOTE 3 Partial unfolding can be depicted in the same manner as a partial fundamental structural relation link.

To satisfy a particular contextual relevance for an OPD, a modeller may choose which refinees appear
unfolded. Following the bimodal representation of OPM, the OPL corresponding to the OPD shall express
only those refinees that appear in that OPD.

NOTE 4 Partial folding is equivalent to partial unfolding where the collections of displayed and hidden refinee
sets are complementary.

NOTE 5 Unfolding reveals finer structural details rather than behaviour, i .e. no transfer of execution control
occurs, see 14.2 .2 . However, hierarchical dependencies involving procedural links can result in behavioural
changes associated with use of the unfolded thing.

14.2.1.3 In-zooming and out-zooming

In-zooming shall be a kind of unfolding that combines aggregation-participation and exhibition-
characterization with additional semantics. For processes, in-zooming enables modelling the
subprocesses, their temporal order, their interactions with objects, and passing of execution control to
and from that context. For objects, in-zooming creates a distinct context that enables modelling of the
constituent objects’ spatial or logical order.

Graphically, for both in-diagram and new-diagram process in-zooming, the ellipse of the refineable
enlarges to accommodate the symbols for the refinees, and the links amongst them, which are within
the in-zoom context. In the case of new-diagram in-zooming, the refineable shall have a thick contour
in both the more abstract OPD in which the refineable appears without refinees, and in the new more
detailed OPD context, in which the refineable appears surrounding the subprocess refinees and
attendant objects.

The corresponding process in-zoom OPL sentence shall be: Process zooms into Subprocess A,
Subprocess B, and Subprocess C, in that sequence.

NOTE 1 In-zooming can be more precisely specified by indicating the abstract OPD name and the more
detailed OPD name (see A.4.7.4) .

The context of an in-zoomed process shall include the subprocesses, which are parts of the in-zoomed
process, and possibly internal objects that are attributes of the in-zoomed process. The contextual
scope of the in-zoomed process shall be the refineable, its subprocesses, attributes and links as
depicted in the OPD.

The execution timeline within the context of an in-zoomed process shall flow from the top of its
enlarged process ellipse symbol to the bottom of that ellipse. This timeline shall depict the sequence
of subprocess invocations. The vertical arrangement of the top point of the subprocess ellipse symbols

© ISO 2015 – All rights reserved 85International Organization for Standardization

ISO/PAS 19450:2015(E)

within the outer process ellipse shall indicate the nominal execution sequence of the subprocesses
within the context of the process.

Analogous to process in-zooming, object in-zooming shall expose constituent objects as parts of the
in-zoomed object and possibly interim processes that are in-zoomed object operations within the scope
of the in-zoomed object context. Unlike in-zooming a process, in-zooming an object does not result in
a transfer of execution control. The consequence of new-diagram object in-zooming is a context shift
from the object as part of a larger OPD context to the object as the entire OPD context in which the
constituent parts of the object are exposed and spatially or logically ordered.

Graphically, the rectangle of the in-zoomed object enlarges to accommodate the symbols for the
refinees, and the links amongst them. The arrangement of the object rectangles within the context
of the in-zoomed object enlarged rectangle shall indicate spatial arrangement or logical order of the
objects. This enables ordered enumeration of data, such as in a vector or a matrix.

The corresponding object in-zoom OPL sentence shall be: Object zooms into Subobject A, Subobject B,
and Subobject C, in that sequence .

EXAMPLE 1 Figure 46 depicts abstract Processing in SD, the system diagram, and details of Processing in
SD1 after zooming into Processing , showing its two subprocesses.

SD
Agent handles Processing.
Processing requires Instrument.
Processing consumes Consumee.
Processing affects Affectee.
Processing yields Resultee .

SD1
Processing requires Instrument.
Processing affects Affectee.
Processing zooms into A Subprocessing and B Sub-
processing in that sequence .
Agent handles A Subprocessing.
A Subprocessing consumes Consumee.
B Subprocessing yields Resultee .

Figure 46 — New-diagram in-zooming generic example

EXAMPLE 2 Figure 47 depicts the Check-Based Paying process of Figure 29 with in-zooming to expose the
sequence of subprocesses and the allocation of links from the process to its subprocesses.

86 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Check exhibits Keeper.
Check can be blank, signed, endorsed, or cashed & cancelled.
State blank of Check is initial.
State cashed & cancelled of Check is final.
Keeper can be payer, payee, or financial	institution.
State payer of Keeper is initial and final.
Payer Keeper relates to Payer.
Payee Keeper relates to Payee.
Financial institution Keeper relates to Bank.
Check-Based Paying zooms into Writing & Signing, Delivering & Accepting, Endorsing & Submitting, and
Cashing & Cancelling , in that sequence.
Payer handles Writing & Signing and Delivering & Accepting.
Payee handles Delivering & Accepting and Endorsing & Submitting.
Bank handles Cashing & Cancelling.
Writing & Signing changes Check from blank to signed.
Delivering & Accepting changes Keeper from payer to payee.
Endorsing & Submitting changes Check from signed to endorsed and Keeper from payee to	financial	insti-
tution .
Cashing & Cancelling changes Check from endorsed to cashed & cancelled and Keeper from financial	insti-
tution to payer.

Figure 47 — Check-Based Paying process with in-zooming to expose its four sequential
subprocesses

NOTE 2 In-zooming expresses process behaviour that is the result of structural links and procedural links
indicating a dynamic transfer of execution control among OPDs. The operational execution context shifts from
the process to the in-zoomed OPD and then back to the process.

14.2.2 Control (operational) semantics within an in-zoomed process context

14.2.2.1 Implicit invocation link

In-zooming a process shall specify a transfer of execution control to subprocesses at a different extent
of detail. Executing a process with an in-zoomed context shall recursively transfer execution control

© ISO 2015 – All rights reserved 87International Organization for Standardization

ISO/PAS 19450:2015(E)

to the top-most subprocess(es) within that process context, which is in a different OPD in case of new-
diagram in-zooming. Execution control shall return to the in-zoomed process after its final enabled
subprocess completes.

The implicit invocation link shall be an invocation link between a process and an in-zoom subprocess,
between two subprocesses within the context of an in-zoomed process, or between an in-zoomed
subprocess and its parent process. Similar to its explicit counterpart, the implicit invocation link shall
signify the invocation of a subsequent process or concurrently beginning processes.

Upon arriving at an in-zoomed process context, execution control shall immediately transfer to the
subprocess(es) with the highest ellipse (oval) top-most point within this process in-zoom context. The
implicit invocation link from a process to its top-most in-zoom subprocess transfers execution control.
Along the process timeline, the completion of a source subprocess immediately invokes the subsequent
subprocess(es) using the implicit invocation link. Upon completion of the subprocess with an ellipse
top-most point that is lowest within this in-zoom context, execution control shall return to the in-
zoomed process along the implicit invocation link.

Since invocation is an event, satisfaction of the precondition for each subprocess is necessary to allow
that subprocess to perform.

When two or more subprocesses have their top-most ellipse points at the same height, then an implicit
invocation link shall initiate each process and they shall start in parallel upon individual precondition
satisfaction. The process that completes last shall initiate the next process or set of parallel subprocesses.

Graphically, no symbol explicitly denotes the implicit invocation link. The top-to-bottom vertical
arrangement of the top-most point of the subprocess ellipse symbols within the context of the in-zoomed
process shall denote an implicit invocation link between successive subprocesses in that arrangement.

The syntax of an implicit invocation link OPL sentence shall be: Process zooms into Subprocess A and
Subprocess B , in that sequence.

EXAMPLE In the OPD on the left hand side of Figure 48, Cleaning invokes Coating , so Cleaning affects
Product first and then Coating affects Product. The invocation link dictates this process sequence. In the
equivalent OPD on the right hand side of Figure 48, Finishing zooms into Cleaning and Coating , with the
former’s ellipse top point above the latter’s, so when Finishing starts, execution control immediately transfers to
Cleaning , and when Cleaning ends, the implicit invocation link invokes Coating. The two OPDs are semantically
equivalent, except that the one on the left does not have Finishing as an enclosing context, making it less
expressive from a system viewpoint while using more graphical elements.

Cleaning affects Product.
Cleaning invokes Coating.
Coating affects Product.

Finishing affects Product.
Finishing zooms into Cleaning and Coating , in that se-
quence .

Figure 48 — Invocation link (left) and implicit invocation link (right)

88 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

14.2.2.2 Implicit parallel invocation link set

Graphically, when the ellipse top points of two or more subprocesses within the scope of an in-zoomed
process are at the same height (within possible allowable tolerance) , these subprocesses shall begin in
parallel, subject to precondition satisfaction for both. In this situation, there is a set of implicit invocation
links from the source process of the implicit invocation link to each one of the parallel processes.

The heights of the enclosed subprocesses’ ellipse top points induce a partial order among these
subprocesses. Subprocesses whose ellipse top points are at the same height start in parallel. When the
last one of these subprocesses ends, i .e. process synchronization occurs, execution control shall attempt
to invoke the next subprocess. If there are two or more subprocesses with a lower ellipse-top point at
the same height, the execution control invokes them in parallel. If there are no more subprocesses to
invoke, execution control returns to the in-zoomed refineable process.

The syntax of the implicit parallel invocation link OPL sentence shall be: Process zooms into parallel
Subprocess A and Subprocess B.

EXAMPLE Figure 49 shows subprocesses with the following partial order: A, (B , C) , D, (E , F, G) . B and C
start upon completion of A . D starts upon completion of the longer process from among B and C . E , F, and G
start upon completion of D . Execution control returns to Processing upon completion of the longer process from
among E , F, and G .

Processing zooms into A, parallel B and C, D, and parallel E, F, and G, in that sequence .

Figure 49 — Partial subprocesses order and implicit parallel invocation link set

14.2.2.3 Implicit invocation links summary

Table 24 summarizes the implicit invocation links.

© ISO 2015 – All rights reserved 89International Organization for Standardization

ISO/PAS 19450:2015(E)

Table 24 — Implicit invocation links summary

Name Semantics Sample OPD & OPL Source Destination

Implicit in-
vocation link

Upon subpro-
ce s s comp le -
tion within the
context of an in-
zoomed process,
the subprocess
immediately in-
vokes the one(s)
below it.

Product Terminating zooms into
Product Finishing and Product Ship-

ping , in that sequence.

Initiating pro-
cess, whose el-
lipse top point
is above the in-
itiated process

Initiated pro-
ces s , whose
e l l i p s e t o p
point is below
the ellipse top
point of the ini-
tiating process

Parallel Im-
plicit invoca-
tion link set

Top : Subpro -
cesses A and B
initiate in par-
a l le l a s s oon
as Process ing
starts.

Bottom:

Subprocesses B
and C initiate in
parallel as soon
as subprocess A
ends.

Processing zooms into parallel A and
B .

Initiating pro-
cess, whose el-
lipse top point
is above the set
of initiated pro-
cesses, whose el-
lipse top points
are at the same
height (within a
pre-determined
tolerance) .

A set of initiat-
ed processes,
whose ellipse
top points are
at the s ame
height (with-
in tolerance)
and below the
initiating pro-
cess ellipse top
point

Processing zooms into A and parallel B
and C, in that sequence .

14.2.2.4 Link distribution across context

14.2.2.4.1 Semantics of link distribution

Graphically, a procedural link attached to the contour of an in-zoomed process has distributive
semantics. Leaving a link attached to the contour of the in-zoomed process shall mean that the link
is distributed and attached to each one of the subprocesses. The contour of the in-zoomed process
has semantics analogous to that of algebraic parentheses following a multiplication symbol, which
distribute the multiplication operator to the expressions inside the parentheses.

EXAMPLE 1 In Figure 50, the OPDs on the left and right are equivalent, but the one on the left is clearer and
less cluttered. An agent link from A to P means that A handles the subprocesses P1 , P2 , and P3 . An instrument
link from B to P means that the subprocesses P1 , P2 , and P3 require B . Analogously in algebra, suppose the agent
(or instrument) link was a multiplication operator, A was a multiplier and in-zooming was addition, such that P =
P1 + P2 + P3 , and P was a multiplicand, then A*P = A*(P1 + P2 + P3) = A*P1 + A*P2 + A*P3 .

90 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

A handles P.
P requires B.
P zooms into P1, P2, and P3, in that sequence .

P zooms into P1, P2, and P3, in that sequence .
A handles P1, P2, and P3.
P1, P2, and P3 require B.

Figure 50 — In-zooming link distribution

If an enabler connects to the outer contour of an in-zoomed contour it shall connect to at least one of its
subprocesses. Consumption and result links shall not be attached to the outer contour of an in-zoomed
process because this violates temporal logical conditions. With a distributed consumption link, an
attempt would be made to consume an already-consumed object by a subprocesses that is not the first to
perform. Similarly, a distributed result link would attempt to create an already existing object instance.

NOTE 1 The modeller needs to be careful when more than one process creates the same object, i .e. more than
one operational instance of the object exists, or more than one process affect or consume the same object. OPM
modelling tools need to track the number and identities of operational instances of each object and each process
in order to be able to perform simulations.

EXAMPLE 2 In Figure 51 the OPD on the left contains invalid consumption and result links, as annotated in
the OPL . The consumption link gives rise to the OPL sentence “P consumes C .” Applying link distribution, the
consequence is the three OPL sentences “P1 consumes C .”, “P2 consumes C .”, and “P3 consumes C .”. However,
since P1 consumes C first according to its temporal order, the same instance of C does not exist when P2 or P3
performs and therefore P2 and P3 cannot consume C again. Similarly, the same operational instance of B results
only once. The OPD on the right depicts valid links by specifying which of the subprocesses of P consumes C (P1)
and which one yields B (P2) .

A handles P.
P requires D.
P zooms into P1, P2, and P3, in that sequence .
P consumes C. – NOT VALID!
P yields B. – NOT VALID!
P3 affects B .

A handles P.
P requires D.
P zooms into P1, P2, and P3, in that sequence .
P1 consumes C.
P2 yields B.
P3 affects B.

Figure 51 — Link distribution restriction for consumption and result links

© ISO 2015 – All rights reserved 91International Organization for Standardization

ISO/PAS 19450:2015(E)

Since attaching a consumption or result link to an in-zoomed process is invalid, when a process is in-
zoomed, all the consumption and result links that were attached to it shall be attached initially or by
default to its first subprocess.

NOTE 2 A modelling tool can automatically establish default semantics, which the modeller can modify.

EXAMPLE 3 In Figure 51 as soon as the modeller in-zooms P and inserts P1 into its context, the destination
end of the consumption link from C migrates from P to P1 . Similarly, the source end of the result link to B
also migrates from P to P1 . When the modeller adds P2 , the modeller can migrate the destination end of the
consumption link and/or the source end of the result link from P1 to P2 , as Figure 51 shows.

14.2.2.4.2 Event and condition link constraint

An event link from a systemic object or state shall not cross the boundary of an in-zoomed process from
the outside of that process to initiate any one of its subprocesses at any level, because this amounts to
an attempt to interfere with the prescribed temporal order of the synchronous (see 14.2 .3 .5) in-zoomed
process. If the crossing event link emanates from an environmental object or state, the modeller should
model how such a contingency is handled.

If the skipped process is within an in-zoom context and there is a subsequent process in this
context, execution control initiates that process, otherwise execution control transfers back to the
in-zoomed process .

14.2.2.4.3	Split	state-specified	transforming	links

When a process that changes an object from an input state to an output state is in-zoomed and contains
more than one subprocess, the OPD, either in-diagram or new-diagram, becomes underspecified. To
restore specification, the modeller shall attach both the state-specified input link and the state-
specified output link to one of the subprocesses in a temporally-feasible manner. Splitting the input-
output specified link pair in two shall signify the split state-specified transforming link pair.

Graphically, two links to an object with two or more states connecting across a process contour to
different subprocesses with one state-specified input link and one state-specified output link shall
denote the split state-specified transforming link.

EXAMPLE 1 In Figure 52 the OPD in the middle in-zooms process P from the OPD on the left but is
underspecified because P1 or P2 could each change A from s1 to s2 , or P1 could change A from s1 and P2 could
change A to s2 . The OPD on the right models this last case, giving rise to a new split input link from s1 of A to P1
and a new split output link from P2 to s2 .

A can be s1 or s2 .
P changes A from s1 to s2 .

A can be s1 or s2 .
P zooms into P1 and P2, in that
sequence .
P changes A from s1 to s2 .
– UNDERSPECIFIED!

A can be s1 or s2 .
P zooms into P1 and P2 , in that sequence.
P1 changes A from s1.
P2 changes A to s2 .

Figure	52	—	Split	state-specified	transforming	link	to	resolve	under	specification

92 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Table 25 summarizes the split input-output specified effect link pair.

Table	25	—	Split	input-output	specified	effect	link	pair	summary

Name Semantics Sample OPD & OPL Source Destination

S p l i t i n -
p u t- o u t p u t
specified	ef-
fect link pair

The top arrow:
s p l i t i n -
put-specified
effect link

Th e b o ttom
arrow: s p l i t
output-speci-
fied effect link

An early subprocess
of an in-zoomed pro-
cess takes an object
out of its input state.

A late subprocess of
the same in-zoomed
process changes the
object to be in its out-
put state.

P1 changes A from s1.

P2 changes A to s2.

Th e t o p
arrow: Input
state of an
affected ob-
ject

The bottom
arrow: Late
s u b p r o -
cess of an
in-zoomed
process

T h e t o p
arrow: Early
subprocess
o f a n i n -
zoomed pro-
cess

The bottom
arrow: Out-
put state of
the affected
object

NOTE 1 There are no control-link versions of the split input-specified effect link.

NOTE 2 An object can have the role of an instrument in an abstract OPD and a transformee in another
descendent, more detailed and concrete OPD. At the abstract OPD, the process does not appear to affect the
object, because the object’s initial state is the same as its final state. Therefore, at the abstract OPD the object
is an instrument, as indicated by an instrument link. However, at a descendent, more concrete OPD, that same
process does appear to change the state of that object from the initial state and then back to the initial state.

EXAMPLE 2 In Figure 53 the left SD (SD: Dish Washing System) , a Dishwasher object is an instrument to
Dish Washing process, since no change in state of the Dishwasher is visible at that extent of abstraction. In
the descendent OPD (SD1: Dish Washing in-zoomed) , Dish Washing zooms into Loading (of a dirty Dish Set) ,
Cleaning (which changes Dish Set from dirty to clean) , and Unloading (of a clean Dish Set) . Loading changes
the state of Dishwasher from empty to loaded , while Unloading changes it back from loaded to empty, so
empty is both the initial and final state (brown link emphasis) . While the Dishwasher is an instrument in the
SD, at the more detailed descendent OPD, the Dishwasher is an affectee—it becomes loaded and then empty
again. The only effect visible in the SD is the effect on Dish Set.

© ISO 2015 – All rights reserved 93International Organization for Standardization

ISO/PAS 19450:2015(E)

SD: Dish Washing System
Household User handles Dish Washing.
Dish Washing requires Dishwasher.
Dish Washing consumes Soap.
Dish Washing affects Dish Set.

SD1: Dish Washing in-zoomed
Dish Washer consists of Soap Compartment and other parts .
Dishwasher can be empty or loaded.
 State empty of Dishwasher is initial and final .
 Soap Compartment can be empty or loaded.
 State empty of Soap Compartment is initial .
Dish Set exhibits Cleanliness.
 Cleanliness of Dish Set can be dirty or clean.
 State dirty of Cleanliness of Dish Set is initial .
 State clean of Cleanliness of Dish Set is final .
Household User handles Dish Washing.
Dish Washing zooms into Dish Loading, Detergent Inserting,
Dish Cleaning & Drying, and Dish Unloading, in that sequence .
 Dish Loading changes Dishwasher from empty to loaded.
 Detergent Inserting requires Soap.
 Detergent Inserting changes Soap Compartment from empty
to loaded.
 Dish Cleaning & Drying requires Dishwasher.
 Dish Cleaning & Drying consumes Soap.
 Dish Cleaning & Drying changes Cleanliness of Dish Set from
dirty to clean.
 Dish Unloading changes Dishwasher from loaded to empty.

Figure 53 — Role of abstraction with split state transforming links

14.2.2.4.4 Operational instances of involved object set

As a consequence of link distribution, the following constraints shall apply to operational instances of
transformees:

— each consumee operational instance in the preprocess object set of a process shall cease to exist
at the beginning of the most detailed subprocess of that process, which consumes the operational
instance, and the operational instance is not in the postprocess object set of that process;

— each affectee operational instance in the preprocess object set of a process that changes that operational
instance as a consequence of the process performance shall exit from its input state, the state from
which it changes, at the beginning of the most detailed subprocess that changes the affectee;

— each affectee operational instance in the postprocess object set of a process that changes that
operational instance as a consequence of the process performance shall enter its output state at the
completion of the most detailed subprocess that changes the affectee; and,

94 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

— each resultee operational instance in the postprocess object set of a process shall begin existence
at the completion of the most detailed subprocess that yields the resultee operational instance and
the operational instance is not in the preprocess object set of that process.

NOTE 1 A stateful object B for which the execution of process P has the effect of changing the state of B , exits
from the input state at the beginning of the most detailed subprocess of P that changes B , and enters the output
state at the end of the same subprocess of P or some subsequent subprocess of P. Since process P execution takes
a positive amount of time, that object B is in transition between states, from its input state to its output state: it
has left its input state but has not yet arrived at its output state.

14.2.2.5	Synchronous	vs.	asynchronous	process	refinement

Since the aggregation-participation fundamental structural relation does not prescribe any “partial
order” of process performance, the modelling of synchronous process refinement shall use in-zooming.

EXAMPLE 1 The system in Figure 53 is synchronous: there is a fixed, well-defined order of each subprocess
within the in-zoom context of Dish Washing.

The modelling of asynchronous process refinement shall use the aggregation-participation fundamental
structural link either through in-diagram aggregation unfolding or as a new-diagram aggregation
unfolding of the process.

EXAMPLE 2 Figure 54 depicts a portion of a Home Safety System that carries out the function Home Safety
Maintaining , which includes the subprocesses Burglary Handling , Fire Protecting , and Earthquake Alarming.
Since the order of these three subprocesses is unknown, the OPD uses in-diagram aggregation unfolding with an
aggregation-participation link from this function rather than an in-zoomed version of Home Safety Maintaining.
Home Safety Maintaining in-zooms to a recurring systemic process (not shown) , Monitoring & Detecting , for
which Detection Module is an instrument and Threat Appearing is an environmental process.

Home Safety Maintaining consists of Burglary Handling , Fire Protecting , and Earthquake Alarming.
Detection Module exhibits Detection Treat.
Detection Treat can be burglary, fire, or earthquake.
Burglary Detected Threat initiates Burglary Handling , which requires burglary Detected Threat.
Fire Detected Threat initiates Fire Protecting , which requires fire	Detected	Threat.
Earthquake Detected Threat initiates Earthquake Alarming , which requires earthquake Detected Threat.

Figure 54 — Home Safety Maintaining is an asynchronous system

© ISO 2015 – All rights reserved 95International Organization for Standardization

ISO/PAS 19450:2015(E)

14.2.2.6 Expressing the context of a system

14.2.2.6.1 Navigating the contexts of a system

14.2.2.6.1.1 The OPD process tree

An OPD process tree, also called OPD tree, shall be a directed tree graph with root node of SD, the system
diagram, and the other OPDs as nodes with their OPD labels. The directed edges of an OPD tree shall
have labels with each edge pointing from the parent OPD, which contains the refineable process, to a
child OPD containing refines, which elaborates a refineable process in the parent OPD via new-diagram
in-zooming for synchronous subprocesses or new-diagram aggregation unfolding for asynchronous
subprocesses.

14.2.2.6.1.2 The OPD object tree

Unlike the OPD process tree that has a single root, the OPD object tree is more like a forest of many
trees, each stemming from a distinct refineable object that unfolds or in-zooms to reveal detail. Rather
than identifying the possible flow of execution control found in the OPD process tree, the OPD object
tree shall encapsulate the information about an object as a hierarchic structure. The system execution
should maintain dependencies among OPD object tree elements and between OPD object trees.

NOTE OPM tools provide rules for model construction that enforce the maintenance of dependencies during
model creation.

14.2.2.6.1.3 OPM diagram labels

The OPM system name shall be the name of the OPM model that specifies the system. An OPD name is
the name that identifies each OPD in the OPD process tree.

SD shall be the label designation for the root OPD in the OPD tree hierarchy. This SD occupies tier
0 in the OPD hierarchy tree and shall have exactly one process; higher numbered tiers, i .e. those
corresponding to successive refinements, may have one or more processes. SD shall contain one and
only one systemic process, which represents the overarching system function that delivers functional
value to stakeholders. SD may contain one or more environmental processes.

14.2.2.6.1.4 OPD process tree edge label

Since each elaborated process in an OPD process tree has a unique name, each edge label shall refer to
the refinement of that process in another OPD. Each edge in the OPD process tree shall have a label. That
label shall express a refinement relation that corresponds to the implicit invocation link or unfolding
relation. Considering each OPD to be an object and the entire OPD process tree to be a single OPD, each
edge shall be a unidirectional tagged structural link with a tag of “is refined by in-zooming Refineable	
Name in”, or “is refined by unfolding Refineable	Name in”.

An OPD refinement OPL sentence shall be an OPL sentence describing the refinement relation between
a refineable present in a tierN OPD and the tierN+1 refinement OPD.

The syntax of an in-zoomed OPD refinement OPL sentence shall be: TierN OPD label is refined by in-
zooming Refineable	Process	Name in TierN+1 OPD Label .

The syntax of an unfolded OPD refinement OPL sentence shall be: TierN OPD label is refined by
unfolding Refineable	Process	Name in TierN+1 OPD Label .

NOTE Several OPD of Clause C .6 show the use of edge label syntax.

14.2.2.6.1.5 System map and model views

A system map shall be an OPD process tree that explicitly depicts the element (things and links) content
of each OPD (node) . Because the system map may become very large and unwieldy, mechanisms shall

96 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

allow access to model content and the associations among elements. These mechanisms, collectively
referred to as model views consisting of model facts, shall include a list of all things and the OPDs in
which they appear, the OPD process tree, and the OPD object trees.

In addition, an OPM tool set should provide a mechanism for creating views, as OPDs with associated
OPL sentences, of objects and processes that meet specific criteria. These views may include the critical
path for minimal system execution duration, or a list of system agents and instruments, or an OPD of
objects and processes involved in a specific kind of link or set of links.

EXAMPLE An OPD can be created by

a) refining (unfolding or in-zooming) an object, or

b) collecting and presenting in a new OPD things that appear in various OPDs for expressing assignment of
system sub-functions to system-module objects.

14.2.2.6.2	Whole	System	OPL	specification

An OPL paragraph shall be the collection of OPL sentences that together specify in text the semantic
expression of the corresponding OPD.

NOTE 1 An OPL paragraph name, using the OPD name, can precede the first OPL sentence of each OPL paragraph.

An OPM system model shall be the collection of successive OPL paragraphs corresponding to the
collection of OPDs present.

An entire OPL specification of a system should begin with an OPL specification starting title. The OPL
paragraphs follow the title in successive blocks, each beginning on a new line with the corresponding
OPD and the OPL paragraph sentences following.

NOTE 2 The sequence of OPL paragraphs generally begins with the SD and follows breadth-first order, unless
the modeller identifies a different sequence.

EXAMPLE Table 26 contains the entire OPL specification of the OPM model in Figure 53 .

© ISO 2015 – All rights reserved 97International Organization for Standardization

ISO/PAS 19450:2015(E)

Table 26 — Whole system OPL for Dish Washing System

OPL specification of Dish Washing System

SD: Dish Washing System

Household User handles Dish Washing.

Dish Washing requires Dishwasher.

Dish Washing consumes Soap.

Dish Washing affects Dish Set.

SD is refined by in-zooming Dish Washing in SD1 .

SD1: Dish Washing in-zoomed

Dish Washer consists of Soap Compartment and other parts .

Dishwasher can be empty or loaded.

 State empty of Dishwasher is initial and final .

 Soap Compartment can be empty or loaded.

 State empty of Soap Compartment is initial .

Dish Set exhibits Cleanliness.

 Cleanliness of Dish Set can be dirty or clean.

 State dirty of Cleanliness of Dish Set is initial .

 State clean of Cleanliness of Dish Set is final .

Household User handles Dish Washing.

Dish Washing zooms into Dish Loading, Detergent Inserting, Dish Cleaning & Drying, and Dish
Unloading, in that sequence .

 Dish Loading changes Dishwasher from empty to loaded.

 Detergent Inserting requires Soap.

 Detergent Inserting changes Soap Compartment from empty to loaded.

 Dish Cleaning & Drying requires Dishwasher.

 Dish Cleaning & Drying consumes Soap.

 Dish Cleaning & Drying changes Cleanliness of Dish Set from dirty to clean.

 Dish Unloading changes Dishwasher from loaded to empty.

End of OPL specification of Dish Washing System

14.2.3 OPM fact consistency principle

The fact consistency OPM principle stipulates that:

a) a model fact appearing in one OPD shall be true for the entire collection of OPDs within the OPM
system model, and

b) no OPD in the OPD process tree or an OPD object tree shall contain a model fact that contradicts a
model fact in the same OPD or in another OPD.

A fact in one OPD may be a refinement or an abstraction of a fact in a different OPD within the same
OPM system model.

NOTE This principle does not preclude the possibility of representing any model element any number of
times in as many OPDs as the modeller wishes. Since a link cannot exist without the things it links, if a link is
present then the two things on its ends need to be present as well.

98 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

EXAMPLE It is not possible for one OPD to express the fact that “P yields A.” and for the same or another OPD
in the same OPD tree to express the fact that “P consumes A.” However, it is permissible for one OPD to express
the fact that “P affects A.” and for another OPD in the same OPD tree to express the fact that “P changes A from s1
to s2 .” because the latter fact is a refinement, not a contradiction of the former.

14.2.4 Abstraction ambiguity resolution for procedural links

14.2.4.1 Abstraction and procedural link precedence

Out-zooming abstracts a collection of related things, the refinees and associated links, into a refineable.
When the modeller performs the abstraction, the procedural links between refinees and things that
are not refinees, shall migrate to the context of the OPD that depicts the refineable. This migration
may cause a situation in which two or more procedural links of different kinds link an object and a
process. According to the procedural link uniqueness OPM principle (see 8.1.2) an object or an object
state shall link to a process by only one procedural link. To sustain this principle, the modeller shall
resolve the conflict between candidate links to determine which link remains or which new link
replaces the candidates in the abstract OPD. The loss of detail information is consistent with the notion
of abstraction.

EXAMPLE Figure 55 demonstrates the problem of procedural link abstraction. In SD1 , the result link from P1
to B is more significant than the effect link from P2 to B , so when SD1 is out-zoomed to SD, the result link prevails.

Figure 55 — Abstracting procedural links

Semantic strength and link precedence are two concepts to guide the determination of which links to
retain and which to hide when an OPD is out-zoomed or folded.

Semantic strength of a procedural link shall be the significance of the information that the link carries.
Information concerning a change in existence, either creation or elimination, is more significant than
information about change to an existing thing. The relative semantic strength of the two conflicting
procedural links shall determine link precedence. When two or more procedural links compete to
remain represented in an OPD abstraction of refinement, the link that prevails is the one with the
highest semantic strength.

NOTE The concept of link precedence allows the modeller to resolve conflicts in representation amongst OPD
contexts and guides the modeller in establishing appropriate procedural links at the various extents of detail.

14.2.4.2 Precedence among transforming links

Transforming links include result, effect, and consumption links. Since object creation and consumption
are semantically stronger, i .e. they have higher semantic strength than affecting the object by changing
its state, result and consumption links have precedence over effect links, as demonstrated in Figure 55.
However, since result and consumption links are semantically equivalent, when they compete, the
prevailing link shall be the effect link because the effect link can be thought of as implicitly changing an
object from is existent state to its non-existent state, or vice-versa.

Table 27 shows transforming link precedence: P in the upper left corner is out-zoomed. The column
headings show the three possible transforming links between P1 and B , while the row headings show
the three possible links between P2 and B . The table cells show the prevailing link between B and P after
P is out-zoomed. Specifically, Table 27 shows how conflicts between effect, result, and consumption

© ISO 2015 – All rights reserved 99International Organization for Standardization

ISO/PAS 19450:2015(E)

links are resolved. For example, if B-to-P1 link is consumption (middle column) and B-to-P2 link is
result (bottom row), then after P is out-zoomed, the link between B and P is effect link. Cells marked
as “Invalid” indicate the impossibility of the combination. For example, inspecting the centre cell, we
note that if P1 consumes B , B no longer exists when P2 later tries to consume it again. Hence, the
combination of two consumption links is invalid.

Table	27	—	Transforming	link	precedence:	Resolving	conflicts	between	effect,	result,	and	
consumption links

Zoomed-in process P B-to-P1 Link

B-to-P2
Link

Invalid

Invalid

Invalid Invalid

14.2.4.3 Precedence among transforming and enabling links

Transforming links are semantically stronger than enabling links, because transforming links denote
creation, consumption, or change of the linked object, while the enabling links only denote enablement.
A transforming link shall have precedence over an enabling link as shown in Figure 56.

Within the enabling links, an agent link shall have precedence over an instrument link because
in artificial systems the humans are central to the process, and they need to ensure the system’s
proper operation. In addition, wherever there is human interaction, an interface should exist and this
information should be available to the modeller of a refineable so that they can plan accordingly.

Figure 56 — Link precedence for transforming and enabling links

Summarizing the semantic strength of the procedural non-control links, the primary order of
precedence shall be: consumption = result > effect > agent > instrument, where the = and > refer to the
semantic strength of the links. State-specified links shall have higher precedence than basic links that
do not specify states.

14.2.4.4 Secondary precedence among same-kind non-control links and control links

Almost every non-control link kind has a corresponding event and condition link that is useful for
determining finer, secondary precedence distinction within each kind of procedural link. The relative

100 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

semantic strength for the secondary order of precedence within each member of the primary order
of precedence shall have the event link of stronger semantic strength than its corresponding non-
control link, while the condition link shall have a weaker semantic strength than its corresponding
non-control link.

The semantic strength of an event link shall be stronger than the semantic strength of its corresponding
non-control link because any event link has semantics of both its corresponding non-control link plus
the event capable of initiating a process. The semantic strength of a conditional link shall be weaker
than the semantic strength of its corresponding non-control link because the condition modifier
weakens the precondition satisfaction criteria for the connecting process.

14.2.4.5 Summary of the procedural links semantic strength

Summarizing the semantic strength of the procedural links based on the distinction between primary
and secondary precedence, the complete order of precedence shall be as follows:

1. consumption event > consumption

2 . consumption = result

3 . result > consumption condition

4. consumption condition > effect event

5. effect event > effect

6. effect > effect condition

7. effect condition > agent event

8. agent event > agent

9. agent > agent condition

10. agent condition > instrument event

11. instrument event > instrument

12 . instrument > instrument condition

© ISO 2015 – All rights reserved 101International Organization for Standardization

ISO/PAS 19450:2015(E)

Annex A
(normative)

OPL formal syntax in EBNF

A.1 General

OPL is a subset of English that shall express textually the OPM specification that the OPD set
expresses graphically.

OPL is a dual-purpose language. First, it serves domain experts and system architects engaged in analysing
and designing a system, such as an electronic commerce system or a Web-based enterprise resource
planning system. Second, it provides a firm basis for automatically generating the designed application.

OPL is the textual counterpart of the graphic OPM system specification, corresponding to the
diagrammatic description in the OPD set. OPL shall be an automatically generated textual description
of the system in a subset of natural English. Devoid of the idiosyncrasies and excessive cryptic details
that characterize programming languages, OPL sentences shall be understandable to people without
technical or programming experience.

Because of the extensive variety in model expression enabled by OPM, the OPL syntax expression in
EBNF below is necessarily incomplete, e.g. the opportunities for statements regarding probability in
12 .7 and execution path management in Clause 13 are lacking EBNF expressions. The enormous variety
of participation constraints, especially those expressible as mathematical formulas, do not have formal
specification in this annex.

A.2 OPL in the context of OPD

This annex provides a formal specification of the OPL conforming to ISO/IEC 14977:1996, which results
from the various OPD graphical constructions found in Clauses 7 to 14. To aid the reader, this annex
references the corresponding OPD subclauses where appropriate and clause/subclause headings help
to partition the EBNF according to syntactic forms for modelling elements.

A.3 Preliminaries

A.3.1 EBNF syntax

The following syntax uses the notation of EBNF as described in ISO/IEC 14977:1996. The normal
character representing each operator of Extended BNF and its implied precedence shall be (highest
precedence at the top):

* repetition-symbol
- except-symbol
, concatenate-symbol
| definition-separator-symbol
= defining-symbol
; terminator-symbol

The normal precedence shall be over-ridden by the following bracket pairs:

ʹ first-quote-symbol ʹ
ʺ second-quote-symbol ʺ
(* start-comment-symbol end-comment-symbol *)

102 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

(start-group-symbol end-group-symbol)
[start-option-symbol end-option-symbol]
{ start-repeat-symbol end-repeat-symbol }
? special-sequence-symbol ?

NOTE 1 A space character enclosed in quotes as in ʺ ʺ denotes that a literal space character is required,
otherwise space characters and line endings (so-called white space) have no significance.

NOTE 2 A meta identifier can occur on both the left and right sides of a rule, so enabling recursion.

NOTE 3 The first-quote-symbol identifies syntactic elements of OPL variable labels, which are the names and
values appearing in OPD graphical models and OPL sentences. These particular syntactic elements are found
only in A.3 .2 .

NOTE 4 The second-quote-symbol identifies syntactic elements of OPL constants, which are words and phrases
appearing in OPL sentences as interpretations of the graphical element configurations and link tags in an OPD.

NOTE 5 Beginning with A.3 .2 and through the remainder of Annex A, all text, except headings, conform to
ISO/IEC 14977:1996.

A.3.2 Base declarations

(* Region OPL EBNF *)
(* Region Base declarations: The following base declarations define certain strings: *)

non zero digit = ʹ1ʹ | ʹ2 ʹ | ʹ3 ʹ | ʹ4ʹ | ʹ5ʹ | ʹ6ʹ | ʹ7ʹ | ʹ8ʹ | ʹ9ʹ ;
decimal digit = ʹ0ʹ | non zero digit ;
positive integer = non zero digit, {decimal digit} ;
positive real number = {decimal digit}, ʺ.ʺ, decimal digit, {decimal digit} ;
upper case letter = ʹAʹ | ʹBʹ | ʹCʹ | ʹDʹ | ʹEʹ | ʹFʹ | ʹGʹ | ʹHʹ | ʹ I ʹ | ʹ Jʹ | ʹKʹ | ʹLʹ | ʹMʹ
| ʹNʹ | ʹOʹ | ʹPʹ | ʹQʹ | ʹRʹ | ʹSʹ | ʹTʹ | ʹUʹ | ʹVʹ | ʹWʹ | ʹXʹ | ʹYʹ | ʹZʹ ;
lower case letter = ʹaʹ | ʹbʹ | ʹcʹ | ʹdʹ | ʹeʹ | ʹfʹ | ʹgʹ | ʹhʹ | ʹ iʹ | ʹ j ʹ | ʹkʹ | ʹ lʹ | ʹmʹ
| ʹnʹ | ʹoʹ | ʹpʹ | ʹqʹ | ʹrʹ | ʹsʹ | ʹ tʹ | ʹuʹ | ʹvʹ | ʹwʹ | ʹxʹ | ʹyʹ | ʹzʹ ;
letter = upper case letter | lower case letter ;
string character = letter | decimal digit | ʹ_ʹ | ʹ-ʹ | ʹ&ʹ | ʹ/ʹ | ʹ ʹ ; (* note that a string character can be a space *)
name = letter, {string character} ; (* note that the first character is a letter *)
capitalized word = upper case letter {string character} ;
non capitalized word = lower case letter {string character} ;
non capitalized phrase = non capitalized word, { ʹ ʹ, (non capitalized word | capitalized word) } ;
type identifier = ʺ booleanʺ
 | ʺ stringʺ
 | number type
 | ʺ enumeratedʺ ;
prefix = ʺ unsignedʺ ;
number type = [prefix] , ʺ integerʺ
 | ʺ floatʺ
 | ʺ doubleʺ
 | ʺ shortʺ
 | ʺ longʺ ;
participation limit = positive integer | positive real number ;
participation constraint = lower single
 | upper single
 | lower plural
 | upper plural
 | (ʺ0ʺ | participation limit, [ʺ to ʺ, participation limit]) ;
expression constraint = ʺ where ʺ, name, ((logical operation, value name)
 | (logical begin set, (name | value name) , { ʺ, ʺ, [(name | value name)] }, logical end set)) ;
lower single = ʺa ʺ | ʺan ʺ | ʺan optional ʺ | ʺat least one ʺ ;
upper single = ʺA ʺ | ʺAn ʺ | ʺAn optional ʺ | ʺAt least one ʺ ;
lower plural = ʺoptional ʺ | ʺmany ʺ ;

© ISO 2015 – All rights reserved 103International Organization for Standardization

ISO/PAS 19450:2015(E)

upper plural = ʺOptional ʺ | ʺMany ʺ ;
range clause = ʺ is ʺ, value name | ʺ ranges from ʺ, value name, ʺ to ʺ, value name ;
logical operation = ʺ=ʺ | ʺ<ʺ | ʺ>ʺ | ʺ<=ʺ | ʺ >=ʺ ;
logical begin set = ʺ in { ʺ ;
logical end set = ʺ }ʺ ;

(* participation constraints have many forms of expression and the Base Declarations do not include all
of those forms. *)

(* Reserved words and symbols found in OPL statements are delimited by second quote symbols *)

(* EndRegion: Base declarations *)

A.3.3 OPL special sequences

(* Region: special sequences – This region defines all special sequences like New Line, Plural objects
and processes *)

new line = ? application specific character sequence resulting in a line feed followed by return to first
 character position on the line ? ;
measurement unit = ? any specified or commonly understood measurement of time, space, quantity, or
 quality? ;
value name = ? a number or name appropriate for the associated measurement unit? ;
singular object name = ? capitalized singular noun phrase ? ; (* see 7.1.2 *)
plural object name = ? capitalized plural noun phrase ? ;
singular process name = ? capitalized gerund phrase ? | ? capitalized singular noun phrase ? ;
plural process name = ? capitalized gerund phrase ? | ? capitalized plural noun phrase ? ; (* see 7.2.2 *)
parent OPD = ? OPD from which a new-diagram in-zooming or new diagram unfolding occurs ? ;
child OPD = ? OPD resulting from a new-diagram in-zooming or new diagram unfolding ? ;
max duration time units = ? value of maximum duration in time units for process execution ? ;
min duration time units = ? value of minimum duration in time units for process execution ? ;

(* EndRegion: Special Sequences *)

A.4 OPL Syntax

A.4.1 OPL document structure

(* Region OPL document *)

OPL paragraph = OPL sentence, { new line, OPL sentence} ;
OPL sentence = OPL formal sentence, ʺ.ʺ ;
OPL formal sentence = thing description sentence
 | procedural sentence
 | structural sentence
 | context management sentence ;

A.4.2	OPL	Identifiers

(* Region: Identifiers – This region defines all identifiers used throughout the grammar *)

object identifier = singular object name, [ʺ in ʺ, measurement unit] , [range clause]
 | singular object name, ʺ objectʺ, [ʺ in ʺ, measurement unit] , [range clause]
 | plural object name, [ʺ in ʺ, measurement unit] , [range clause]
 | plural object name, ʺ objectsʺ, [ʺ in ʺ, measurement unit] , [range clause] ;
process identifier = singular process name
 | singular process name, ʺ processʺ
 | plural process name
 | plural process name, ʺ processesʺ ;

104 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

thing identifier = object identifier
 | process identifier ; (* see 7.1 and 7.2 *)
state identifier = non capitalized word ;
tag expression = non capitalized phrase ;

(* EndRegion: Identifiers *)

A.4.3 OPL lists

(* Region: Lists – This region defines various lists: object list, process list, object with optional state list *)

process list = process identifier
 | process identifier, [{ʺ, ʺ, process identifier}] , ʺ and ʺ, process identifier ; (* see 12.1 *)
process Or list = process identifier, [{ʺ, ʺ, process identifier}] , ʺ or ʺ, process identifier ;
process Xor list at beginning = ʺOne of ʺ, process Or list ;
process Xor list at end = ʺone of ʺ, process Or list ;

object list = object identifier
 | object identifier, [{ʺ, ʺ, object identifier}] , ʺ and ʺ, object identifier ; (* see 12.1 *)
object with optional state = [state identifier, ʺ ʺ] , object identifier ;
(* object with optional state may replace object identifier in many OPL expressions using object
 identifier *)

object with optional state list = object with optional state
 | object with optional state, [{ʺ, ʺ, object with optional state}] ,
 ʺ and ʺ, object with optional state ;

object Or list = object with optional state, [{ʺ, ʺ, object with optional state}] , ʺ or ʺ, object with optional
 state ; (* see 12.2 *)

object Or list nostates = object identifier, [{ʺ, ʺ, object identifier}] , ʺ or ʺ, object identifier ;

object Xor list at beginning = ʺOne of ʺ, object Or list ;
object Xor list at end = ʺone of ʺ, object Or list ;
object nostate Xor list at end = ʺone of ʺ, object list ;

state list = state identifier
 | state identifier, [{ʺ, ʺ, state identifier}] , ʺ and ʺ, state identifier ;
state Or list = state identifier, [{ʺ, ʺ, state identifier}] , ʺ or ʺ, state identifier ;
state Xor list at end = ʺone of ʺ, state Or list ;

(* EndRegion: Lists *)

A.4.4 OPL Thing description

A.4.4.1 Thing description sentence

(* Region: Thing Description – This region defines all thing description sentences *)

thing description sentence = generic property sentence
 | type description sentence
 | state description sentence ;

A.4.4.2 Generic property sentence

generic property sentence = thing identifier,
 ʺ is ʺ, [essence] , [affiliation] , [perseverance] ; (* see 7.3.3 *)

essence = ʺInformaticalʺ | ʺPhysicalʺ ; (* Physical is the non-default value of Essence, the default
 value of which is Informatical. *)

© ISO 2015 – All rights reserved 105International Organization for Standardization

ISO/PAS 19450:2015(E)

affiliation = ʺSystemicʺ | ʺEnvironmentalʺ ; (* Environmental is the non-default value of Affiliation,
 the default value of which is Systemic. *)

perseverance = ʺPersistentʺ | ʺTransientʺ ; (* Transient is the non-default value of Perseverance, the
 default value of which is Persistent. *)

A.4.4.3 Type description sentence

type description sentence = object identifier, ʺ is of type ʺ, type identifier ;

A.4.4.4 State description sentence

state description sentence = state enum sentence
 | initial states sentence
 | final states sentence
 | default state sentence
 | combined state sentence ; (* see 7.3.5 *)
state enum sentence = object identifier, ʺ is ʺ, state identifier
 | object identifier, ʺ can be ʺ, state identifier, [{ʺ, ʺ, state identifier}] , ʺ and ʺ, state identifier
 | object identifier, ʺ can be ʺ, state identifier, [{ʺ, ʺ, state identifier}] , ʺ and other statesʺ ;
initial states sentence = single initial states sentence
 | multiple initial states sentence ;
single initial states sentence = ʺState ʺ, state identifier, ʺ of ʺ, object identifier, ʺ is initialʺ ;
multiple initial states sentence = ʺStates ʺ, state list ʺ of ʺ, object identifier, ʺ are initialʺ ;
final states sentence = single final state sentence
 | multiple final state sentence ;
single final state sentence = ʺState ʺ, state identifier, ʺ of ʺ, object identifier, ʺ is finalʺ ;
multiple final state sentence = ʺStates ʺ, state list, ʺ of ʺ, object identifier, ʺ are finalʺ ;
default state sentence = ʺState ʺ state identifier, ʺ of ʺ, object identifier, ʺ is defaultʺ ;
combined state sentence = object identifier, {ʺ is initially ʺ, [state identifier | state identifier,
 {ʺ and ʺ, state identifier}] , ʺ and finally ʺ, state OR list } ;
input state = state identifier ; (* the state or states of the associated object in a process
precondition set *)
output state = state identifier ; (* the state or states of the associated object in a process
postcondition set *)

active process identifier = process identifier ;

(* EndRegion: Thing Description *)

A.4.5 OPL Procedural sentences

A.4.5.1 Procedural sentence

(* Region: Procedural sentences. – This region defines all procedural sentences *)

procedural sentence = transforming sentence
 | enabling sentence
 | control sentence ; (* see 8.1.1 *)

A.4.5.2 OPL Transformations

A.4.5.2.1 Transforming sentence

(* Region: Transforming sentences – This region defines consumption, result, effect and change
sentences, and their variations *)

transforming sentence = consumption sentence
 | result sentence

106 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

 | effect sentence
 | change sentence ; (* see 9.1.1 and 9.3.3 *)

A.4.5.2.2 Consumption sentence

consumption sentence = (process identifier, ʺ consumes ʺ, object with optional state list)
 | consumption select sentence ; (* see 9.1.2 *)
consumption select sentence = consumption Or sentence
 | consumption Xor sentence ; (* see 12.3 *)
consumption Or sentence = consumption source Or sentence
 | consumption destination Or sentence ;
consumption source Or sentence = process identifier, ʺ consumes at least one of ʺ, object Or list ;
consumption destination Or sentence = ʺAt least one of ʺ, process Or list,
 ʺ consumes ʺ, object with optional state ;

consumption Xor sentence = consumption source Xor sentence
 | consumption destination Xor sentence ;
consumption source Xor sentence = process identifier, ʺ consumes exactly ʺ, object Xor list at end ;
consumption destination Xor sentence = ʺExactly ʺ, process Xor list at end, ʺ consumes ʺ,
 object with optional state ;

A.4.5.2.3 Result sentence

result sentence = (process identifier, ʺ yields ʺ, object with optional state list)
 | result select sentence ; (* see 9.1.3 *)
result select sentence = result Or sentence
 | result Xor sentence ; (* see 12.3 *)
result Or sentence = result source Or sentence
 | result destination Or sentence ;
result source Or sentence = ʺAt least one of ʺ, process Or list, ʺ yields ʺ, object with optional state ;
result destination Or sentence = process identifier, ʺ yields at least one of ʺ, object Or list ;
result Xor sentence = result source Xor sentence
 | result destination Xor sentence ;
result source Xor sentence = ʺExactly ʺ, process Xor list at end, ʺ yields ʺ, object with optional state ;
result destination Xor sentence = process identifier, ʺ yields exactly ʺ, object Xor list at end ;

A.4.5.2.4 Effect sentence

effect sentence = (process identifier, ʺ affects ʺ, object list)
 | effect select sentence ; (* see 9.1.4 *)
effect select sentence = effect Or sentence
 | effect Xor sentence ;
effect Or sentence = effect object Or sentence
 | effect process Or sentence ; (* see 12.3 *)
effect object Or sentence = process identifier, ʺ affects at least one of ʺ, object Or list nostates ;
effect process Or sentence = ʺAt least one of ʺ, process Or list, ʺ affects ʺ, object identifier ;
effect Xor sentence = effect object Xor sentence
 | effect process Xor sentence ;
effect object Xor sentence = process identifier, ʺ affects exactly ʺ, object nostates Xor list at end ;
effect process Xor sentence = ʺExactly ʺ, process Xor list at end, ʺ affects ʺ, object identifier ;

A.4.5.2.5 Change sentence

change sentence = in out specified change sentence
 | input specified change sentence
 | output specified change sentence ; (* see 9.3 .3 .1 *)

© ISO 2015 – All rights reserved 107International Organization for Standardization

ISO/PAS 19450:2015(E)

in out specified change sentence = (process identifier, ʺ changes ʺ, in out object change list)
 | in out specified change select sentence ; (* see 9.3.3.2 *)
in out object change list = in out object change phrase
 | in out object change phrase, [{ʺ, ʺ, in out object change phrase}] ,
 ʺ and ʺ, in out object change phrase ;
in out object change phrase = object identifier, ʺ from ʺ, input state, ʺ to ʺ, output state ;
in out specified change select sentence = in out specified change Or sentence
 | in out specified change Xor sentence ;
in out specified change Or sentence = (process identifier, ʺ changes ʺ, Or in out object change list)
 | (process Or list, ʺ changes ʺ, in out object change phrase)
 | in out specified change state Or sentence ;
Or in out object change list = in out object change phrase, [{ʺ, ʺ, in out object change phrase}] ,
 ʺ or ʺ, in out object change phrase ;
in out specified change state Or sentence = (process identifier, ʺ changes ʺ, object identifier,
 ʺ from ʺ, state Or list, ʺ to ʺ, state identifier)
 | (process identifier, ʺ changes ʺ, object identifier,
 ʺ from ʺ, state identifier, ʺ to ʺ, state Or list) ;
in out specified change Xor sentence = in out specified change object Xor sentence
 | in out specified change process Xor sentence
 | in out specified change state Xor sentence ;
in out specified change Object Xor sentence = process identifier, ʺ changes one of ʺ,
 Or In out object change list ;

in out specified change process Xor sentence = process Xor list at beginning, ʺ changes ʺ,
 in out object change phrase ;
in out specified change state Xor sentence = (process identifier, ʺ changes ʺ, object identifier,
 ʺ from ʺ, state Xor list at end, ʺ to ʺ, state identifier)
 | (process identifier, ʺ changes ʺ, object identifier, ʺ from ʺ, state identifier, ʺ to ʺ,
 state Xor list at end) ;

input specified change sentence = (process identifier, ʺ changes ʺ, input object change list)
 | input specified change select sentence ; (* see 9.3 .3 .3 *)
input object change phrase = object identifier, ʺ from ʺ, input state ;
input object change list = input object change phrase
 | input object change phrase, [{ʺ, ʺ, input object change phrase }] , ʺ and ʺ,
 input object change phrase ;
input specified change select sentence = input specified change Or sentence
 | input specified change Xor sentence ;
input specified change Or sentence = (process identifier, ʺ changes ʺ, Or input object change list)
 | (process Or list, ʺ changes ʺ, input object change phrase)
 | (process identifier, ʺ changes ʺ, object identifier, ʺ from ʺ, state Or list) ;
Or input object change list = input object change phrase, [{ʺ, ʺ, input object change phrase }] , ʺ or ʺ,
 input object change phrase ;
input specified change Xor sentence = (process identifier, ʺ changes one of ʺ, Or input object change list)
 | (process Xor list at beginning, ʺ changes ʺ, input object change phrase)
 | (process identifier, ʺ changes ʺ, object identifier, ʺ from ʺ, state Xor list at end) ;

output specified change sentence = (process identifier, ʺ changes ʺ, output object change list)
 | output specified change select sentence ; (* see 9.3 .3 .4 *)
output object change list = output object change phrase
 | output object change phrase, [{ʺ, ʺ output object change phrase }] , ʺ and ʺ,
 output object change phrase ;
output object change phrase = object identifier, ʺ to ʺ, output state ;
output specified change select sentence = output specified change Or sentence
 | output specified change Xor sentence ;
output specified change Or sentence = (process identifier, ʺ changes ʺ, Or output object change list)
 | (process Or list, ʺ changes ʺ, output object change list)
 | (process identifier, ʺ changes ʺ, object identifier, ʺ to ʺ, state Or list) ;
Or output object change list = output object change phrase, [{ʺ, ʺ, output object change phrase }] , ʺ or ʺ,

108 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

 output object change phrase ;
output specified change Xor sentence = (process identifier, ʺ changes one of ʺ, Or output object change
 list)
 | (process Xor list at beginning, ʺ changes ʺ, output object change phrase)
 | process identifier, ʺ changes ʺ, object identifier, ʺ to ʺ, state Xor list at end ;
(* EndRegion: Transforming sentences *)

A.4.5.3 OPL Enablers

A.4.5.3.1 Enabling sentences

(* Region: Enabling sentences – This region defines Agent and Instrument sentences and their possible
variations *)

enabling sentence = agent sentence
 | instrument sentence ; (* see 9.2.1 *)

A.4.5.3.2 Agent sentence

agent sentence = (object with optional state list, ʺ handle ʺ, process identifier)
 | agent select sentence ; (* see 9.2 .2 and 12 .3 *)

agent select sentence = agent Or sentence
 | agent Xor sentence ;
agent Or sentence = agent source Or sentence
 | agent destination Or sentence ;
agent source Or sentence = ʺAt least one of ʺ, object Or list, ʺhandlesʺ, process identifier ;
agent destination Or sentence = object with optional state, ʺhandles at least one of ʺ, process Or list ;
agent Xor sentence = agent source Xor sentence
 | agent destination Xor sentence ;
agent source Xor sentence = ʺExactly ʺ, object Xor list at end, ʺ handles ʺ, process identifier ;
agent destination Xor sentence = object with optional state, ʺ handles exactly ʺ, process Xor list at end ;

A.4.5.3.3 Instrument sentence

instrument sentence = (process identifier, ʺ requires ʺ, object with optional state list)
 | instrument select sentence ; (* see 9.2 .3 and 12 .3 *)

instrument select sentence = instrument Or sentence
 | instrument Xor sentence ;
instrument Or sentence = instrument source Or sentence
 | instrument destination Or sentence ;
instrument source Or sentence = process identifier, ʺ requires at least one of ʺ, object Or list ;
instrument destination Or sentence = ʺAt least one of ʺ, process Or list, ʺ requires ʺ,
 object with optional state ;
instrument Xor sentence = instrument source Xor sentence
 | instrument destination Xor sentence ;
instrument source Xor sentence = process identifier, ʺ requires exactly ʺ, object Xor list at end ;
instrument destination Xor sentence = ʺExactly ʺ, process Xor list at end, ʺ requires ʺ,
 object with optional state ;

(* EndRegion: Enabling sentences *)

A.4.5.4 OPL Flow of control

A.4.5.4.1 Control sentence

(* Region : Control sentences – This region defines all sentences related to flow of control in the system *)

© ISO 2015 – All rights reserved 109International Organization for Standardization

ISO/PAS 19450:2015(E)

control sentence = event sentence
 | condition sentence
 | invocation sentence
 | exception sentence ; (* see 9.5.1 *)

A.4.5.4.2 Event sentence

event sentence = consumption event sentence
 | effect event sentence
 | agent event sentence
 | instrument event sentence ; (* see 9.5.2 *)

consumption event sentence = object with optional state, ʺ initiates ʺ, process identifier,
 ʺ, which consumes ʺ, object identifier ;
 (* see 12 .5 and 12 .6 for additional syntax for link fans *)

effect event sentence = simple effect event sentence
 | in out specified effect event sentence
 | input specified effect event sentence
 | output specified effect event sentence ;

simple effect event sentence = object identifier, ʺ initiates ʺ, process identifier, ʺ, which affects ʺ,
 object identifier ;
in out specified effect event sentence = input state, object identifier, ʺ initiates ʺ, process identifier, ʺ,
 which changes ʺ, in out object change phrase ;
input specified effect event sentence = input state, object identifier, ʺ initiates ʺ, process identifier, ʺ,
 which changes ʺ, object identifier, ʺ from ʺ, input state ;
output specified effect event sentence = object identifier, ʺ in any state initiates ʺ, process identifier, ʺ,
 which changes ʺ, object identifier, ʺ to ʺ, output state ;

agent event sentence = object with optional state, ʺ initiates and handles ʺ, process identifier ;
instrument event sentence = object with optional state, ʺ initiates ʺ, process identifier, ʺ,
 which requires ʺ object with optional state ;

A.4.5.4.3 Condition sentence

condition sentence = condition transforming sentence
 | condition enabling sentence ;
condition transforming sentence = conditional consumption sentence
 | conditional state specified consumption sentence
 | conditional effect sentence ; (* see 9.5.3 .1 and 9.5 .3 .3 *)

conditional consumption sentence = (process identifier, ʺ occurs if ʺ, object identifier,
 ʺ exists, in which case ʺ, object identifier, ʺ is consumed, otherwise
 ʺ, process identifier, ʺ is skipped ʺ)
 | (ʺIf ʺ, object identifier, ʺ exists then ʺ, process identifier, ʺ occurs and consumes ʺ, object
 identifier, ʺ, otherwise bypass ʺ, process identifier) ;

conditional state specified consumption sentence = (process identifier, ʺ occurs if ʺ, object identifier,
 ʺ is ʺ, input state, ʺ, in which case ʺ, object identifier, ʺ is consumed, otherwise
 ʺ, process identifier, ʺ is skipped ʺ)
 | (ʺIf ʺ, input state, object identifier, ʺ exists then ʺ, process identifier,
 ʺ occurs and consumes ʺ, object identifier, ʺ, otherwise bypass ʺ, process identifier) ;

conditional effect sentence = simple conditional effect sentence
 | in out specified conditional effect sentence
 | input specified conditional effect sentence
 | output specified conditional effect sentence ;
simple conditional effect sentence = (process identifier, ʺoccurs if ʺ, object identifier,
 ʺ exists, in which case ʺ, process identifier, ʺ affects ʺ, object identifier,

110 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

 ʺ, otherwise ʺ, process identifier, ʺ is skipped ʺ)
 | (ʺIf ʺ, object identifier, ʺ exists then ʺ, process identifier, ʺoccurs and affects ʺ,
 object identifier, ʺ, otherwise bypass ʺ, process identifier) ;
in out specified conditional effect sentence = (process identifier, ʺ occurs if there is ʺ,
 input state, object identifier, ʺ, in which case ʺ, process identifier, ʺ changes ʺ,
 in out object change phrase, ʺ, else ʺ, process identifier, ʺ is skipped ʺ)
 | (process identifier, ʺ occurs if there is ʺ,
 input state, object identifier, ʺ, in which case ʺ, process identifier, ʺ changes ʺ,
 in out object change phrase, ʺ, otherwise bypass ʺ, process identifier) ;
input specified conditional effect sentence = (process identifier, ʺ occurs if there is ʺ,
 input state, object identifier, ʺ in which case ʺ, process identifier, ʺ changes ʺ,
 object identifier, ʺ from ʺ, Input state, ʺ, else ʺ, process identifier, ʺ is skipped ʺ)
 | (process identifier, ʺ occurs if there is ʺ, input state, object identifier,
 ʺ in which case ʺ, process identifier, ʺ changes ʺ, object identifier, ʺ from ʺ,
 Input state, ʺ, otherwise bypass ʺ, process identifier) ;
output specified conditional effect sentence = (process identifier, ʺ occurs if ʺ,
 object identifier, ʺ exists, in which case ʺ, process identifier, ʺ changes ʺ,
 object identifier, ʺ to ʺ, output state, ʺ, otherwise ʺ, process identifier, ʺ is skipped ʺ)
 | (process identifier, ʺ occurs if ʺ, object identifier, ʺ exists, in which case ʺ, process
 identifier, ʺ changes ʺ, object identifier, ʺ to ʺ,
 output state, ʺ, otherwise bypass ʺ, process identifier) ;
condition enabling sentence = conditional agent sentence
 | conditional instrument sentence ; (* see 9.5.3 .2 *)
conditional agent sentence = (process identifier, ʺ occurs if ʺ, object with optional state,
 ʺ exists, else ʺ, process identifier, ʺ is skippedʺ)
 | (process identifier, ʺ occurs if ʺ, object with optional state,
 ʺ exists, else bypass ʺ, process identifier) ;
conditional instrument sentence = (process identifier, ʺ occurs if ʺ, object with optional state,
 ʺ exists, else ʺ, process identifier, ʺ is skippedʺ)
 | (process identifier, ʺ occurs if ʺ, object with optional state,
 ʺ exists, else bypass ʺ, process identifier) ;

A.4.5.4.4 Invocation sentence

invocation sentence = (process identifier, ʺ invokes ʺ, process list)
 | (process identifier, ʺ invokes itself ʺ)
 | invocation select sentence ; (* see 9.5 .2 .5 and 12 .3 *)

invocation select sentence = invocation Or sentence
 | invocation Xor sentence ;

invocation Or sentence = (ʺAt least one of ʺ, process Or list, ʺ invokes ʺ, process identifier)
 | (process identifier, ʺ invokes at least one ofʺ, process Or list) ;
invocation Xor sentence = (ʺExactly one of ʺ, process Or list, ʺ invokes ʺ, process identifier)
 | (process identifier, ʺ invokes exactly ʺ, process Xor list at end) ;

A.4.5.4.5 Exception sentence

exception sentence = overtime exception sentence
 | undertime exception sentence ; (* see 9.5.4 *)
overtime exception sentence = active process identifier, ʺ occurs if duration of ʺ, process identifier, ʺ
 exceeds ʺ, max duration time units ;
undertime exception sentence = active process identifier, ʺ occurs if duration of ʺ, process identifier, ʺ
 falls short of ʺ, min duration time units ;

(* EndRegion: Control sentences *)

(* EndRegion: Procedural sentences *)

© ISO 2015 – All rights reserved 111International Organization for Standardization

ISO/PAS 19450:2015(E)

A.4.6 OPL Structural sentences

A.4.6.1 Structural sentence

(* Region: Structural sentences - This region defines all sentences that connect things in static, time-
independent, long-lasting relations *)

structural sentence = tagged structural sentence
 | aggregation sentence
 | characterization sentence
 | exhibition sentence
 | specialization sentence
 | instantiation sentence ; (* see 10.1 *)

A.4.6.2 OPL tagged structures

A.4.6.2.1 Tagged structural sentence

tagged structural sentence = unidirectional tagged structural sentence
 | bidirectional tagged structural sentence ;

A.4.6.2.2 Unidirectional tagged structural sentence

unidirectional tagged structural sentence = single link unidirectional tagged sentence
 | forked tagged structural sentence ; (* see 10.2 .1 and 11.2 *)
single link unidirectional tagged sentence = nullTag unidirectional object tagged structural sentence
 | nullTag unidirectional process tagged structural sentence
 | non nullTag unidirectional object tagged structural sentence
 | non nullTag unidirectional process tagged structural sentence ; (* see 10.2 .2 and 11.2 *)

nullTag unidirectional object tagged structural sentence = [participation constraint, ʺ ʺ] ,
 source object, uniDirNullTag, [participation constraint, ʺ ʺ] , destination object ;
nullTag unidirectional process tagged structural sentence = [participation constraint, ʺ ʺ] ,
 source process, uniDirNullTag, [participation constraint, ʺ ʺ] , destination process ;
non nullTag unidirectional object tagged structural sentence = [participation constraint, ʺ ʺ] ,
 source object, ʺ ʺ, forward tag, ʺ ʺ, [participation constraint, ʺ ʺ] , destination object,
 [expression constraint] ;
non nullTag unidirectional process tagged structural sentence = [participation constraint, ʺ ʺ] ,
 source process, ʺ ʺ, forward tag, ʺ ʺ, [participation constraint, ʺ ʺ] , destination process ;
forked tagged structural sentence = forked nullTag object tagged structural sentence
 | forked nullTag process tagged structural sentence
 | forked non nullTag object tagged structural sentence
 | forked non nullTag process tagged structural sentence ;
forked nullTag object tagged structural sentence = [participation constraint, ʺ ʺ] , source object,
 uniDirNullTag, object tine set ;
forked nullTag process tagged structural sentence = [participation constraint, ʺ ʺ] , source process,
 uniDirNullTag, process tine set ;
forked non nullTag object tagged structural sentence = [participation constraint, ʺ ʺ] , source object, ʺ ʺ,
 forward tag, ʺ ʺ, object tine set ;
forked non nullTag process tagged structural sentence = [participation constraint, ʺ ʺ] , source process,
 ʺ ʺ, forward tag, ʺ ʺ, process tine set ;
object tine set = tine object | ((tine object, [{ʺ, ʺ, tine object }] , ʺ and ʺ, (tine object | ʺmoreʺ)) ,
 [(ʺ, ordered by ʺ, order criteria) | (ʺ, in that sequenceʺ)]) ;
process tine set = tine process | ((tine process, [{ʺ, ʺ, tine process }] , ʺ and ʺ, (tine process | ʺmoreʺ)) ,
 [(ʺ, ordered by ʺ, order criteria) | (ʺ, in that sequenceʺ)]) ;
order criteria = name ;
tine object = [participation constraint, ʺ ʺ] , object with optional state ;
source object = object with optional state ;

112 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

destination object = object with optional state ;
tine process = [participation constraint, ʺ ʺ] , process identifier ;
source process = process identifier ;
destination process = process identifier ;
uniDirNullTag = ʺ relates to ʺ
 | ʺ relate to ʺ
 | user defined uniDirNullTag ;
forward tag = tag expression ;
user defined uniDirNullTag = tag expression ;

A.4.6.2.3 Bidirectional tagged structural sentences

bidirectional tagged structural sentence = asymmetric bidirectional object tagged structural sentence
 | asymmetric bidirectional process tagged structural sentence
 | symmetric bidirectional object tagged structural sentence
 | symmetric bidirectional process tagged structural sentence ; (* see 10.2 .3 and 11.2 *)

asymmetric bidirectional object tagged structural sentence = ([participation constraint, ʺ ʺ] ,
 source object, bidir forward tag, [participation constraint, ʺ ʺ] ,
 destination object, [expression constraint])
 | ([participation constraint, ʺ ʺ] , destination object, bidir backward tag, [participation
 constraint, ʺ ʺ] , source object, [expression constraint]) ;
asymmetric bidirectional process tagged structural sentence = ([participation constraint, ʺ ʺ] ,
 source process, bidir forward tag, [participation constraint, ʺ ʺ] , destination process)
 | ([participation constraint, ʺ ʺ] , destination process, bidir backward tag, [participation
 constraint, ʺ ʺ] , source process) ;
symmetric bidirectional object tagged structural sentence = ([participation constraint, ʺ ʺ] ,
 source object, ʺ and ʺ, [participation constraint, ʺ ʺ] , destination object,
 ʺ are ʺ, biDirNullTag)
 | ([participation constraint, ʺ ʺ] , source object, ʺ and ʺ,
 [participation constraint, ʺ ʺ] , destination object) , ʺ are ʺ, symmetric tag ;
symmetric bidirectional process tagged structural sentence = ([participation constraint, ʺ ʺ] ,
 source process, ʺ and ʺ, [participation constraint, ʺ ʺ] , destination process,
 ʺ are ʺ, biDirNullTag)
 | ([participation constraint, ʺ ʺ] , source process,
 ʺ and ʺ, [participation constraint, ʺ ʺ] , destination process) , ʺ are ʺ, symmetric tag ;

symmetric tag = tag expression ;
bidir forward tag = tag expression ;
bidir backward tag = tag expression ;
biDirNullTag = ʺ relatedʺ
 | user defined biDirNullTag ;
user defined biDirNullTag = tag expression ;

A.4.6.3 OPL fundamental structures

A.4.6.3.1 Aggregation sentences

aggregation sentence = object forked aggregation sentence
 | process forked aggregation sentence ; (* see 10.3 .2 *)
object forked aggregation sentence = whole object, ʺ consists of ʺ, object parts list ;
process forked aggregation sentence = whole process, ʺ consists of ʺ, process parts list ;
object parts list = part object
 | (part object, [{ ʺ, ʺ, part object } , ʺ and ʺ, (part object | ʺ at least one other partʺ)]) ;
process parts list = part process
 | (part process, [{ ʺ, ʺ, part process }, ʺ and ʺ, (part process | ʺ at least one other partʺ)]) ;
whole object = object identifier ;
part object = [participation constraint, ʺ ʺ] , object identifier ;

© ISO 2015 – All rights reserved 113International Organization for Standardization

ISO/PAS 19450:2015(E)

whole process = process identifier ;
part process = [participation constraint, ʺ ʺ] , process identifier ;

A.4.6.3.2 Characterization sentences

characterization sentence = object forked characterization sentence
 | process forked characterization sentence ; (* see 10.3 .3 *)

object forked characterization sentence = basic object forked characterization sentence
 | partial object forked characterization sentence
 | AsWellAs object forked characterization sentence
 | partial AsWellAs object forked characterization sentence ;
basic object forked characterization sentence = object identifier, ʺ exhibits ʺ,
 (attribute list | operator list) ;
partial object forked characterization sentence = object identifier, ʺ exhibits ʺ,
 ((attribute list, ʺ, and at least one other attribute ʺ)
 | (operator list, ʺ, and at least one other operatorʺ)) ;
AsWellAs object forked characterization sentence = object identifier,
 ʺ exhibits ʺ, attribute list, ʺ, as well as ʺ, operator list ;
partial AsWellAs object forked characterization sentence = object identifier,
 ʺ exhibits ʺ, attribute list, ʺ, and at least one other attributeʺ, ʺ, as well as ʺ, operator list,
 ʺ, and at least one other operatorʺ ;

attribute = object identifier ;
operator = process identifier ;
attribute list = object list ;
operator list = process list ;

process forked characterization sentence = basic process forked characterization sentence
 | partial process forked characterization sentence
 | partial AsWellAs process forked characterization sentence
 | AsWellAs process forked characterization sentence ;
basic process forked characterization sentence = process identifier, ʺ exhibits ʺ,
 (operator list | attribute list) ;
partial process forked characterization sentence = process identifier, ʺ exhibits ʺ,
 ((operator list, ʺ, and at least one other operator ʺ)
 | (attribute list, ʺ, and at least one other attributeʺ)) ;

AsWellAs process forked characterization sentence = process identifier, ʺ exhibits ʺ, operator list, ʺ,
 as well as ʺ, attribute list ;
partial AsWellAs process forked characterization sentence = process identifier, ʺ exhibits ʺ,
 operator list, ʺ, and at least one other operatorʺ, ʺ, as well as ʺ, attribute list,
 ʺ, and at least one other attributeʺ ;

A.4.6.4 Exhibition sentences

exhibition sentence = object exhibition sentence
 | process exhibition sentence ; (* see 10.3 .3 .2 .2 and 11.3 *)
object exhibition sentence = feature, ʺ of ʺ, object identifier, (range clause | ʺ is ʺ,
 ((attribute list | operator list) | (attribute list, ʺ as well as ʺ, operator list))) ;
process exhibition sentence = feature, ʺ of ʺ , process identifier, ʺ is ʺ, ((operator list | object list)
 | (operator list, ʺ as well as ʺ, attribute list)) ;

feature = attribute | operator ;

114 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

A.4.6.5 Specialization sentences

specialization sentence = object specialization sentence
 | process specialization sentence
 | state specialization sentence ; (* see 10.3 .4 *)

object specialization sentence = basic object specialization sentence
 | multiple object specialization sentence
 | partial object specialization sentence
 | Xor object specialization sentence
 | multiple object inheritance specialization sentence ;

basic object specialization sentence = special object, ʺ is a ʺ, general object ;
multiple object specialization sentence = special object list, ʺ are ʺ, general object ;
partial object specialization sentence = special object list, ʺ and other specializations are ʺ, general
 object ;
Xor object specialization sentence = basic Xor object specialization sentence
 | comma separated Xor object specialization sentence ;
basic Xor object specialization sentence = special object, ʺ can be either ʺ, general object, ʺ or ʺ, general
 object ;
comma separated Xor object specialization sentence = special object, ʺ can be one of ʺ, general object,
 { ʺ, ʺ, general object }, ʺ or ʺ, general object ;
multiple object inheritance specialization sentence = special object, ʺ is ʺ, general object list ;

general object = object identifier ;
special object = object identifier ;
general object list = ʺ a ʺ, object identifier, [{ ʺ a ʺ, object identifier }] , ʺ and a ʺ, object identifier ;
special object list = object list ;

process specialization sentence =basic process specialization sentence
 | multiple process specialization sentence
 | partial process specialization sentence
 | Xor process specialization sentence
 | multiple process inheritance specialization sentence ;
basic process specialization sentence = special process, ʺ is ʺ, general process ;
multiple process specialization sentence = special process list, ʺ are ʺ, general process ;
partial process specialization sentence = special process list, ʺ and other specializations are ʺ,
 general process ;
Xor process specialization sentence = basic Xor process specialization sentence
 | comma separated Xor process specialization sentence ;
basic Xor process specialization sentence = special process, ʺ can be either ʺ, general process, ʺ or ʺ,
 general process ;
comma separated Xor process specialization sentence = special process, ʺ can be one of ʺ,
 general process, { ʺ, ʺ, general process }, ʺ or ʺ, general process ;
multiple process inheritance specialization sentence = special process, ʺ is ʺ, general process list ;

general process = process identifier ;
special process = process identifier ;
general process list = ʺ aʺ, process identifier, [{ ʺ a ʺ, process identifier }] ʺ and a ʺ, process identifier ;
special process list = process list ;

state specialization sentence = basic state specialization sentence
 | multiple state specialization sentence
 | partial state specialization sentence ;
basic state specialization sentence = state specified object, ʺ is a ʺ, state specified object ;
multiple state specialization sentence = state specified object list, ʺ are ʺ, state specified object ;
partial state specialization sentence = state specified object list, ʺ and other specializations are ʺ,
 state specified object ;

© ISO 2015 – All rights reserved 115International Organization for Standardization

ISO/PAS 19450:2015(E)

state specified object = state identifier, ʺ ʺ, object identifier ;
state specified object list = state specified object
 | state specified object, [{ ʺ, ʺ, state specified object }] , ʺ and ʺ, state specified object ;

A.4.6.6 Instantiation sentences

instantiation sentence = object instantiation sentence
 | process instantiation sentence ; (* see 10.3 .5 *)

object instantiation sentence = basic object instantiation sentence
 | multiple object instantiation sentence ;
basic object instantiation sentence= instance object, ʺ is an instance of ʺ, object class ;
multiple object instantiation sentence = instance object list, ʺ are instances of ʺ, object class ;

process instantiation sentence = basic process instantiation sentence
 | multiple process instantiation sentence ;
basic process instantiation sentence = instance process, ʺ is an instance of ʺ, process class ;
multiple process instantiation sentence = instance process list, ʺ are an instance of ʺ, process class ;

instance object = object identifier ;
instance process = process identifier ;
object class = object identifier ;
process class = process identifier ;
instance object list = object list ;
instance process list = process list ;
(* EndRegion: Structural sentences *)

A.4.7 OPL Context management

A.4.7.1 Context management sentence

(* Region: Context management sentences - This region defines all sentences that manage OPD
context shifts *)

context management sentence = unfolding sentence
 | folding sentence
 | in Zooming sentence
 | out Zooming sentence ; (* see 14.2 .1 *)

(* in diagram object and process unfolding are equivalent to corresponding structural sentences *)

A.4.7.2 Unfolding sentences

unfolding sentence = object unfolding sentence
 | process unfolding sentence ;
object unfolding sentence = underspecified object unfolding sentence
 | whole object unfolding sentence
 | general object unfolding sentence
 | class object unfolding sentence
 | exhibitor object unfolding sentence ;

underspecified object unfolding sentence = object identifier, ʺ unfolds into ʺ, attribute list,
 [ʺ as well as ʺ, operator list] ;
whole object unfolding sentence = whole object, ʺ from ʺ, parent OPD, ʺ part-unfolds in ʺ, child OPD,
 ʺ into ʺ, object parts list ;
general object unfolding sentence = general object, ʺ from ʺ, parent OPD, ʺ specialization-unfolds in ʺ,
 child OPD, ʺ into ʺ, special object list ;
class object unfolding sentence = object class, ʺ from ʺ, parent OPD, ʺ instance-unfolds in ʺ, child OPD,
 ʺ into ʺ, instance object list ;

116 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

exhibitor object unfolding sentence = object identifier, ʺ from ʺ, parent OPD, ʺ feature-unfolds in ʺ,
 child OPD, ʺ into ʺ, attribute list, [ʺ as well as ʺ, operator list] ;

process unfolding sentence = underspecified process unfolding sentence
 | whole process unfolding sentence
 | general process unfolding sentence
 | class process unfolding sentence
 | exhibitor process unfolding sentence ;
underspecified process unfolding sentence = process identifier, ʺ unfolds into ʺ, operator list,
 [ʺ, as well as ʺ, attribute list] ;
whole process unfolding sentence = whole process, ʺ from ʺ, parent OPD, ʺ part-unfolds in ʺ,
 child OPD, ʺ into ʺ, process parts list ;
general process unfolding sentence = general process, ʺ from ʺ, parent OPD,
 ʺ specialization-unfolds in ʺ, child OPD, ʺ into ʺ, special process list ;
class process unfolding sentence = process class, ʺ from ʺ, parent OPD, ʺ instance-unfolds in ʺ,
 child OPD, ʺ into ʺ, instance process list ;
exhibitor process unfolding sentence = process identifier, ʺ from ʺ, parent OPD,
 ʺ feature-unfolds in ʺ, child OPD, ʺ into ʺ, operator list, [ʺ as well as ʺ, attribute list] ;

A.4.7.3 Folding sentences

folding sentence = object folding sentence
 | process folding sentence ;

(* a folding sentence is only relevant for an OPD object or process for which unfolding produces a child
OPD and is the OPL equivalent to the graphical bold contour designation *)

object folding sentence = object identifier, ʺ is folding of ʺ, child OPD ;
process folding sentence = process identifier, ʺ is folding of ʺ, child OPD;

A.4.7.4 In zoom sentence

in zooming sentence = process in zoom sentence
 | object in zoom sentence ;
process in zoom sentence = in diagram process in zoom sentence
 | new diagram process in zoom sentence ;

in diagram process in zoom sentence = (process identifier, ʺ zooms into ʺ, process list,
 ʺ in that sequenceʺ, [ʺ, as well as ʺ, object in zoom list])
 | (process identifier, ʺ zooms into parallel ʺ, process list, [ʺ, as well as ʺ, object in zoom list])
 | (process identifier, ʺ zooms into ʺ, process list, ʺ and parallel ʺ, process list,
 ʺ, in that sequenceʺ, [ʺ, as well as ʺ, object in zoom list]) ;
new diagram process in zoom sentence = (process identifier, ʺ from ʺ, parent OPD, ʺ zooms in ʺ,
 child OPD, ʺ into ʺ, process list, ʺ in that sequenceʺ, [ʺ, as well as ʺ, object in zoom list])
 | (process identifier, ʺ from ʺ, parent OPD, ʺ zooms in ʺ, child OPD, ʺ into parallel ʺ,
 process list, [ʺ, as well as ʺ, object in zoom list])
 | (process identifier, ʺ from ʺ, parent OPD, ʺ zooms in ʺ, child OPD, ʺ into ʺ, process list,
 ʺ and parallel ʺ, process list, ʺ, in that sequenceʺ, [ʺ, as well as ʺ, object in zoom list]) ;

object in zoom sentence = in diagram object in zoom sentence
 | new diagram object in zoom sentence ;

in diagram object in zoom sentence = (object identifier, ʺ zooms into ʺ, object list, ʺ in that sequenceʺ,
 [ʺ, as well as ʺ, process in zoom list]) ;
new diagram object in zoom sentence = (object identifier, ʺ from ʺ, parent OPD, ʺ zooms in ʺ,
 child OPD, ʺ into ʺ, object list, ʺ in that sequenceʺ, [ʺ, as well as ʺ, process in zoom list]) ;

object in zoom list = object identifier, [{ ʺ, ʺ, object identifier }, ʺ and ʺ, object identifier, ʺ,
 in that sequenceʺ] ;

© ISO 2015 – All rights reserved 117International Organization for Standardization

ISO/PAS 19450:2015(E)

process in zoom list = process identifier, [{ʺ, ʺ, process identifier }, ʺ and ʺ, process identifier,
 ʺ, in that sequenceʺ] ;

A.4.7.5 Out zooming sentence

out zooming sentence = process out zoom sentence
 | object out zoom sentence ;

(* an out zoom sentence is only relevant for an OPD process or object for which in zooming produces a
child OPD and is the OPL equivalent to the graphical bold contour designation *)

process out Zoom sentence = process identifier, ʺ is out zoom from ʺ, child OPD ;
object out Zoom sentence = object identifier, ʺ is out zoom from ʺ, child OPD ;

(* EndRegion: Context management sentences *)

(* EndRegion: OPL document *)

(* EndRegion: OPL EBNF *)

118 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Annex B
(informative)

Guidance for OPM

B.1 General

In view of the rapid development of complex and complicated systems, the need for an intuitive yet formal
way of documenting standards for and designs of new systems, or knowledge about existing systems
becomes ever more apparent. This need, in turn, requires a solid infrastructure for recording, storing,
arranging, and presenting the accumulated knowledge and the creative ideas that build on this knowledge.

Conceptual modelling refers to the practice of representing system-related knowledge. The outcome
of this activity is a conceptual model. Conceptual modelling, which usually precedes mathematical and
physical modelling, is the primary activity required not only for engineering systems to be understood,
designed, and managed, but also for authoring standards that are as complete and as coherent as
possible. Modelling is essential and gives rise to model-based systems engineering (MBSE) .

Understanding physical, biological, artificial, and social systems and devising standards related
to them requires a well-founded, formal, yet intuitive methodology and language that is capable of
modelling these complexities in a coherent, straightforward manner. The same modelling paradigm,
the heart of the methodology, should serve for both designing new systems and for studying and
improving existing systems. The paradigm should apply to artificial as well as natural systems, and
faithfully represent physical and informatical things of the modelled domain. OPM provides the means
to address these aspirations.

B.2 Thing importance OPM principle

Major system-level processes can be as important as, or even more important than objects in the system
model. In particular, OPM specifies that the top-level process of an OPM model of a system is the system’s
function, the value-providing process that embodies the system’s purpose and use. Hence, a process needs
to be amenable for modelling independent of any particular set of objects involved in its occurrence.

The relative importance of a thing T in an OPM system model is generally proportional to the highest
OPD in the OPD hierarchy where T appears.

B.3 What a new OPD should contain

A good OPD set is readable and easy to follow and comprehend. The following rules of thumb are helpful
in deciding when to create a new OPD and ways to keep OPDs as easy to read and grasp as possible:

— the OPD should not stretch over more than one page or one average-size monitor screen;

— the OPD should not contain more than 20–25 things;

— things should not occlude each other, i .e. they are either completely contained within higher-level
things, e.g. in case of zooming, or have no overlapping area;

— the diagram should not contain too many links – roughly the same as the number of things;

— a link should not cross the area occupied by a thing; and,

— the number of links crossing each other should be minimized.

© ISO 2015 – All rights reserved 119International Organization for Standardization

ISO/PAS 19450:2015(E)

B.4 The element representation OPM principle

An OPM model element appearing in one OPD may appear in any other OPD as the same element. This
principle allows the possibility of representing any model element (thing or link) any number of times
in as many OPDs as the modeller finds useful. Since a link cannot exist without the things it links, for a
link to appear in an OPD, the two things that it links need to be present as well

Although a modeller may include any number of things in any OPD, for reasons of clarity and clutter
avoidance, it is often highly desirable to include in an OPD only those elements that are necessary to
grasp a certain aspect or view of the system.

B.5 The multiple thing copies convention

To avoid long and winding links that cross from one side of the OPD to another and clutter it, an OPD
may contain multiple copies of the same thing. This multiple thing copies convention complements
the element representation OPM principle. Just as an OPM model element appearing in one OPD may
appear in any OPD, an OPM element may appear more than once in any OPD. Accordingly, for the sake of
avoiding OPD clutter by long, crisscrossing links, a thing may appear at another place in the same OPD
using a shorter link. To facilitate recognition of the repetition, the modeller may replace thing symbol
by a corresponding duplicate thing symbol – a small object or process slightly showing behind the
repeated thing as illustrated in Figure B.1 . However, the modeller should use this alternative sparingly
as it requires the model reader to notice and keep in mind the longer links that do not appear explicitly
in the current OPD context.

Figure B.1 — Duplicate object and duplicate process symbols

B.6 Naming guidelines

B.6.1 Importance of name selection

Selecting appropriate labelling names for OPM model elements, i .e. the objects, processes, and links, is
important because the labels affect the ease of communication to and comprehension of the model by
the intended audience and the logical flow and sense-making of the corresponding OPL sentences.

B.6.2 Object naming

A name for an object should be singular. Convert plural names to a singular form. The recommended
way to convert an object with several members is to add the word “Set” (usually for inanimate objects)
or “Group” (usually for humans) after the singular form.

EXAMPLE 1 “Ingredients” (say, of a cake) becomes “Ingredient Set”, while “Customers” becomes “Customer
Group”.

Because object names need to be unique within the system model, the modeller may use the name of
a refineable as a prefix for its refine names or may use the name of the refineable as a suffix preceded

120 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

by “of” after the refine name. Either of these naming schemes allows contextual distinctions when
referring to refines with similar semantics.

Object names may be phrases with more than one word, as in Apple Cake or Automobile Crash.

EXAMPLE 2 If a modeller wants Size as an attribute of both Clock Set and Watch Set, then to distinguish
between the two Size attributes the former can be Clock Set Size and the latter Watch Set Size or the former can
be Size of Clock Set and the latter Size of Watch Set.

NOTE 1 An implementation of OPM can notify the modeller when an attempt to include an object as a refinee
in more than one context occurs so that the modeller can determine the appropriateness of the inclusion.

NOTE 2 An implementation can establish a default syntax to resolve refinee names.

B.6.3 Process naming

A process name is a phrase whose last word should be the gerund form of a verb, i .e. a verb with the “ing”
suffix. If there are several choices, such as in Construction vs. Constructing, the latter is preferable.

The following variations for process naming exist:

— the verb version, which is simply the gerund form of the verb, namely verb + ing, as in Making
or Responding ;

— the noun-verb version, which is a concatenation of a noun (an OPM object) with the gerund, namely
noun + verb + ing, as in Cake Making or Crash Responding;

— the adjective-verb version, which is a concatenation of an adjective with the gerund form of the verb,
namely adjective + verb + ing, as in Quick Making or Automated Responding; and,

— the adjective-noun-verb version, which is a concatenation of an adjective with a noun with the gerund,
namely adjective + noun + verb + ing, as in Quick Cake Making or Automatic Crash Responding.

In the latter cases, the adjective qualifies the process (the gerund, which is a noun) . However, the adjective
may also qualify the object (the noun) , as in Sweet Cake Making or Fatal Crash Responding.

The name of the function, as well as the names of all OPM processes, should consist of no more than four
capitalized words ending with a gerund verb form, e.g. Large City Population Securing.

Because process names need to be unique, the modeller may use the name of a refineable as a suffix
preceded by “of” after the refine name. The naming scheme allows contextualized distinctions when
referring to refinees with similar semantics.

B.6.4 State naming

The names of states should reflect the various relevant situations in which their “owning” object can
occur at any given point in time. Preferred state names are passive forms of the owning object rather
than the gerund form.

EXAMPLE If a Product is painted and then inspected, its states need to be painted and inspected, rather
than painting and inspecting. Painting is the process that changes Product from its unpainted to its painted
state, and Inspecting changes Product from its painted state to its inspected state. While Painting of the
Product occurs, it has left its unpainted state for as long as Painting takes place and it is in transition between
states and has not yet entered its painted state until Painting is complete.

B.6.5 Capitalization convention

In OPM the first letter of each word in the name of a thing (object or process) is capitalized, while the
name of an object state or a link is not capitalized. This convention helps to produce OPL sentences that
are more readable.

© ISO 2015 – All rights reserved 121International Organization for Standardization

ISO/PAS 19450:2015(E)

Annex C
(informative)

Modelling OPM using OPM

C.1 OPM models of OPM

The OPD in Figure C .1 represents aspects of OPM as OPM models. Clause C .4 elaborates specific
elements. Clause C .5 presents a model relating to the treatment of links during unfolding and in-
zooming. Clause C .6 presents a model for evaluating process invocation, performance, and completion.

This set of clauses expresses OPM as a set of OPD together with the corresponding OPL. For this
presentation, the modeller has chosen to limit the model contents to relatively simple OPM usage, i .e.
compound links are minimal and there is no attempt to unify the individual OPD into a single OPM
model. However, some advanced OPL expressions that limit the redundancy of text and aid in clarifying
otherwise distinct but related model facts do occur.

122 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

C.2 OPM model structure

© ISO 2015 – All rights reserved 123International Organization for Standardization

ISO/PAS 19450:2015(E)

OPM Model specifies System.
OPM Model consists of OPD Set and OPL Spec.
 OPL Spec consists of at least one OPL Paragraph.
 OPD Set consists of at least one OPD.
						OPD	Set	graphically	specifies	OPL	Spec.
						OPL	Spec	textually	specifies	OPD	Set.
 OPD consists of at least one OPD Construct.
 OPL Paragraph consists of at least one OPL Sentence.
												OPD	graphically	specifies	OPL	Paragraph.
												OPL	Paragraph	textually	specifies	OPD.
																		OPD	Construct	graphically	specifies	OPL	Sentence.
																		OPL	Sentence	textually	specifies	OPD	Construct.
 OPD Construct consists of Thing Set and Link Set.
Thing Set consists of two to many Things.
Link Set consists of at least one Link.
Thing exhibits Name.
OPL Sentence consists of three to many Phrases and at least one Punctuation Mark.
Phrase consists of at least one Word.
OPL Reserved Phrase and Name of Thing are Phrases.
Link	graphically	specifies	Reserved	Phrase.
Reserved	Phrase	textually	specifies	Link.
Thing can be in-zoomed to create OPD.

Figure C.1 — OPM model structure

Figure C .1 is a model of the structure of an OPM model that depicts the conceptual aspects of OPM as
parallel hierarchies of the graphic and textual OPM modalities and their correspondence to produce
equivalent model expressions. An OPD Construct is the graphical expression of the corresponding
textual OPL Sentence, which express the same model fact. An OPD and its corresponding OPL
Paragraph are collections of model facts that a modeller places into the same model context.

C.3 OPD Construct model

Figure C .2 elaborates the OPD Construct concept. The purpose of this model is to distinguish Basic
Construct from another possible OPD Construct. A Basic Construct is a specialization of OPD
Construct, which consists of exactly two Things connected by exactly one Link. The non-basic
constructs include, among others, those with link fans or more than two refinees.

EXAMPLE 1 In Figure C .1, the two objects OPM Model and OPD Set together with the aggregation-
participation link from the former to the latter constitute a basic construct. The OPL sentence that is equivalent
to this basic construct is: OPM Model consists of OPD Set.

EXAMPLE 2 In Figure C .1, the three objects OPM Model , and OPD Set, and OPL Spec together with the
aggregation-participation link from OPM Model to OPD Set and OPL Spec constitute a compound construct. The
OPL sentence that is equivalent to this basic construct is: OPM Model consists of OPD Set and OPL Spec.

NOTE An object-state link is implicit between an object and each one of its states. Graphically, this link
expression occurs by placing the state inside the object rectangle, effectively linking the state with the object.
Therefore, an object with two or more states is an OPD Construct, and an object with one state is a Basic
Construct. A stateless object is not a construct at all, as it has not even an implicit link.

124 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

OPD Construct consists of Thing Set and Link Set.
Thing and Link are Elements.
Thing Set consists of 2 to many Things.
Link Set consists of at least one Link.
Thing Set exhibits Size of Thing Set.
Link Set exhibits Size of Link Set.
Size of Thing Set can be 2 or >=3.
Size of Link Set can be 1 or >=2.
Basic Construct is an OPD Construct.
Basic Construct exhibits 1 Size of Link Set.
Basic Construct exhibits 2 Size of Thing Set.

Figure C.2 — Model of OPD Construct and Basic Construct

In some situations, the syntax of two constructs combine easily into a compound OPL sentence that
reduces redundancy in the text as shown in the next model variation for OPD Construct.

A modeller could add a process to the model of Figure C .2 to indicate that the OPD Construct exhibits
Connecting as shown in Figure C .3 . By adding states disconnected and connected of Thing Set,
the purpose of the model thus includes the action of transforming a disconnected Thing Set to a
connected Thing Set using the Link Set as an instrument of connection.

© ISO 2015 – All rights reserved 125International Organization for Standardization

ISO/PAS 19450:2015(E)

OPD Construct consists of Link Set and Thing Set.
OPD Construct exhibits Connecting.
 Link Set consists of at least one Link.
 Link Set exhibits Cardinality.
 Cardinality of Link Set can be 1 or >=2.
 Thing Set exhibits Cardinality.
 Thing Set consists of 2 to many Things .
 Cardinality of Thing Set can be 2 or >=3.
 Link and Thing are Elements .
 Connecting requires Link Set.
Connecting changes Thing Set from disconnected to connected.
State disconnected of Thing Set is initial.
State connected of Thing Set is final .
Basic Construct is an OPD Construct.
Basic Construct exhibits 1 Cardinality of Link Set and 2 Cardinality of Thing Set.

Figure C.3 — OPD Construct and Basic Construct construction

C.4 OPM Element models

The model in Figure C .4 is only valid for basic constructs because Link connects 2 Things and not
more than two.

126 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Thing and Link are Elements.
Link connects 2 Things.
Link consists of Source, Destination, and Connector.
Connector consists of Line, Symbol, an optional Tag, and an optional Path Label.
Tag and Path Label are Phrases.
Source and Destination are Linked Things.
Linked Thing is a Thing.
Linked Thing exhibits Symbol and Multiplicity.
Multiplicity exhibits Symbol and Lower&Upper Bound.
Lower&Upper Bound can be 0..1, 0. .*, 1. .1, or 1..*.
Lower&Upper Bound is by default 1..1.
Symbol of Multiplicity can be ?, *, NONE, or +.
? Symbol of Multiplicity denotes 0. .1 Lower&Upper Bound.
* Symbol of Multiplicity denotes 0. .* Lower&Upper Bound.
NONE Symbol of Multiplicity denotes 1. .1 Lower&Upper Bound.
+ Symbol of Multiplicity denotes 1. .* Lower&Upper Bound .

Figure C.4 — OPM model of OPM Element

Figure C .5 is a model for an OPM Thing , showing its specialization into Object and Process . A set of
States characterize Object, which can be empty, in a Stateless Object, or non-empty in the case of a
Stateful Object. A Stateful Object with s States gives rise to a set of s stateless State-Specific	Objects ,
one for each State . A particular State-Specific	Object refers to an object in a specific state. Modelling
the concept of State-Specific	Object	as both an Object and a State enables us to simplify the conceptual
model by referring to an object and any one or its states by simply specifying Object.

© ISO 2015 – All rights reserved 127International Organization for Standardization

ISO/PAS 19450:2015(E)

Process and Object are Things.
Object exhibits State Set.
State Set exhibits Size.
Cardinality of State Set can be s=0 or s>= 1.
State Set consists of optional States.
Current State is a State.
Stateless Object and Stateful Object are Objects.
Stateless Object exhibits s= 0 Size of State Set.
Stateful Object exhibits s>= 1 Size of State Set.
Stateful	Object	represents	s	State-Specific	Objects.
State-Specific	Object	Set consists of s	State-Specific	Objects.
State-Specific	Object	refers	to	State.

Figure C.5 — OPM model of Thing

EXAMPLE In Figure C .6 Product is a stateful object with 5 states, from which five distinct specializations
of Product are derived, each referring to a distinct state of Product. Thus, the State-Specific	Product called
Tested Product refers to the state tested of Product. Of course, the same object, Tested Product, refers also
to Product itself, because being a state; “tested” has no meaning without reference to the object of which it is a
state. This way, there are five State-Specific	Products , each being a specialization of Product and capturing a
specific state of Product.

128 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Product can be designed, manufactured, tested, purchased, or used.
Product	derives	State-Specific	Product	Set.
State-Specific	Product	Set consists of 5	State-Specific	Products.
State-Specific	Product is a Product.
State-Specific	Product	refers	to	the	current	state	of	Product.
Designed Product, Manufactured Product, Tested Product, Purchased Product, and Used Product are
State-Specific	Products.
Designed Product refers to Product’s state designed.
Manufactured Product refers to Product’s state manufactured.
Tested Product refers to Product’s state tested.
Purchased Product refers to Product’s state purchased.
Used Product refers to Product’s state used.

Figure	C.6	—	Example	of	state-specific	object

Figure C .7 is an OPM model of stateful object and state.

© ISO 2015 – All rights reserved 129International Organization for Standardization

ISO/PAS 19450:2015(E)

Stateful Object exhibits State Set.
State Set consists of at least one State, optional Initial States, optional Final States, and an optional Default
State.
State exhibits Designation and Symbol.
Designation can be initial,	final, or default.
Initial State, Final State, and Default State are States.
Initial State exhibits initial Designation and bold-contour rountangle Symbol of State.
Final State exhibits final	Designation and double-contour rountangle Symbol of State.
Default State exhibits default Designation and rountangle pointed to by open arrow Symbol of State .

Figure C.7 — OPM model of stateful object and state

The model in Figure C .8 is only valid for basic constructs because Link connects 2 Things and not
more than two.

130 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Thing and Link are Elements.
Link connects 2 Things .
Link exhibits Linked Pair.
Linked Pair consists of 2 Things.
Linked Pair can be object-object, object-state, state-state, process-object, process-state, or process-pro-
cess.
Structural Link and Procedural Link are Links.
Object-Object Link and State-State Link are Structural Links.
Object-State Link is an Object-Object Link.
Object-Object Link exhibits object-object Linked Pair.
Object-State Link exhibits object-state Linked Pair.
State-State Link exhibits state-state Linked Pair.
Process-Object Link and Process-Process Link are Procedural Links.
Process-State Link is a Process-Object Link.
Process-Object Link exhibits process-object Linked Pair.
Process-State Link exhibits process-state Linked Pair.
Process-Process Link exhibits process- process Linked Pair.

Figure C.8 — OPM model of links

Figure C .9, depicts Thing and its Perseverance, Essence, and Affiliation generic properties modelled as
attribute refinees of an exhibition-characterization link. Perseverance is the discriminating attribute
between Object and Process . Essence is the discriminating attribute between Physical Object and
Physical Process on the one hand, Informatical Object, and Informatical Process on the other hand.

© ISO 2015 – All rights reserved 131International Organization for Standardization

ISO/PAS 19450:2015(E)

Affiliation is the discriminating attribute between Systemic Object and Systemic Process on the one
hand, Environmental Object, and Environmental Process on the other hand.

Thing exhibits Perseverance, Essence, and Affiliation.
 Perseverance can be transient or persistent.
 Essence can be physical or informatical.
						Affiliation can be systemic or environmental.
Object and Process are Things.
Process exhibits transient Perseverance.
Object exhibits persistent Perseverance.
Physical Process, Informatical Process, Systemic Process, and Environmental Process are Processes.
Physical Object, Informatical Object, Systemic Object, and Environmental Object are Objects.
Physical Process and Physical Object exhibit physical Essence.
Informatical Process and Informatical Object exhibit informatical Essence.
Systemic Process and Systemic Object exhibit systemic	Affiliation.
Environmental Process and Environmental Object exhibit environmental	Affiliation .

Figure C.9 — OPM model of Thing generic properties

Figure C .10 depicts an OPM model for the graphical representation of OPM things showing a Symbol
refinee attribute and three parts of a Symbol: Shape, Depth, and Contour. Shape is the part that enables
the distinction between Object and Process . Depth is the part that enables the distinction between
Physical Object and Physical Process on the one hand, Informatical Object and Informatical
Process on the other hand. Contour is the part that enables the distinction between Systemic Object
and Systemic Process on the one hand, Environmental Object and Environmental Process on the
other hand. Since the states of an object bind to the object, the Essence and Affiliation associated with
a particular state Object are the same as that of Object.

132 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Thing exhibits Symbol.
Symbol of Thing consists of Shape, Depth, and Contour.
Shape can be ellipse or rectangle.
Depth can be shaded or non- shaded.
Contour can be solid or dashed.
Process and Object are Things.
Process exhibits ellipse Shape.
Object exhibits rectangle Shape.
Physical Process, Informatical Process, Systemic Process, and Environmental Process are Processes.
Physical Object, Informatical Object, Systemic Object, and Environmental Object are Objects.
Physical Process and Physical Object exhibit shaded Depth.
Informatical Process and Informatical Object exhibit flat	Depth.
Systemic Process and Systemic Object exhibit solid Contour.
Environmental Process and Environmental Object exhibit dashed Contour.

Figure C.10 — OPM model of Thing symbolic representation

Figure C .11 is a variation of the model in Figure C .10 in which the three parts of the Symbol attribute
of Thing appear as eight values, one for each of the possible Thing configurations. Here, and in several
other model figures of this annex, the actual symbols appear at the bottom of the OPD. In this case, the
symbol is below its respective model object and the value of Symbol of Thing. These eight symbols
at the bottom of the OPD are illustrative and thus distinct from the OPD itself. Figure C .11, enhances
the Symbol refinee of Figure C .10 by enumerating the eight states of Symbol, which are the Cartesian
product of the 2x2x2 values of the Depth, Contour, and Shape refinee attributes of Symbol .

© ISO 2015 – All rights reserved 133International Organization for Standardization

ISO/PAS 19450:2015(E)

Thing exhibits Symbol.
Symbol of Thing consists of Depth, Contour, and Shape.
Symbol of Thing can be shaded dashed rectangle, shaded solid ellipse, non-shaded dashed ellipse,
non-shaded solid ellipse, non-shaded solid rectangle, non-shaded dashed rectangle, shaded solid rectan-
gle, or shaded dashed rectangle.
Object and Process are Things.
Physical Process, Informatical Process, Systemic Process, and Environmental Process are Processes.
Physical Object, Informatical Object, Systemic Object, and Environmental Object are Objects.
Physical Systemic Process is a Physical Process and a Systemic Process.
Physical Systemic Process exhibits shaded solid ellipse Symbol of Thing.
Physical Environmental Process is a Physical Process and an Environmental Process.
Physical Environmental Process exhibits shaded dashed ellipse Symbol of Thing.
Informatical Environmental Process is an Informatical Process and an Environmental Process.
Informatical Environmental Process exhibits non-shaded dashed ellipse Symbol of Thing.
Informatical Systemic Process is an Informatical Process and a Systemic Process.
Informatical Systemic Process exhibits non-shaded solid ellipse Symbol of Thing.
Physical Environmental Object is a Physical Object and an Environmental Object.
Physical Environmental Object exhibits shaded dashed rectangle Symbol of Thing.
Physical Systemic Object is a Physical Object and a Systemic Object.
Physical Systemic Object exhibits shaded solid rectangle Symbol of Thing.
Informatical Environmental Object is an Informatical Object and an Environmental Object.
Informatical Environmental Object exhibits non-shaded dashed rectangle Symbol of Thing.
Informatical Systemic Object is an Informatical Object and a Systemic Object.
Informatical Systemic Object exhibits non-shaded solid rectangle Symbol of Thing.
Symbol of Thing consists of Depth , Contour and Shape .

Figure C.11 — OPM model of the eight Thing symbol representations

The model in Figure C .12 is only valid for basic constructs because Link connects 2 Things and not
more than two.

134 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Basic Construct consists of Link and 2 Things.
Link connects 2 Things.
Structural Link and Procedural Link are Links.
Basic Structural Construct and Basic Procedural Construct are Basic Constructs.
Basic Structural Construct consists of Structural Link and 2 Objects.
Basic Procedural Construct consists of Procedural Link, Object, and Process.
Structural Link connects 2 Objects.
Procedural Link connects a Process and an Object.

Figure C.12 — Basic Construct elaboration

Figure C .13 is an OPM model of Basic Structural Construct.

© ISO 2015 – All rights reserved 135International Organization for Standardization

ISO/PAS 19450:2015(E)

Basic Structural Construct consists of Refineable,	Refinee, and Structural Link.
Refineable and Refinee are Things.
Whole, Exhibitor, General, and Class are Refineables.
Part, Feature, Specialization, and Instance are Refinees.
Structural Link exhibits Semantics.
Semantics of Structural Link can be aggregation-participation, exhibition-characterization, generaliza-
tion-specialization,	classification-instantiation, or user-defined.
Aggregation-Participation Link, Exhibition-Characterization Link, Generalization-Specialization Link,
Classification-Instantiation	Link, and Tagged Structural Link are Structural Links.
Aggregation-Participation Link exhibits aggregation-participation Semantics.
Exhibition-Characterization Link exhibits exhibition-characterization Semantics.
Generalization-Specialization Link exhibits generalization-specialization Semantics.
Classification-Instantiation exhibits classification-instantiation	Semantics.
Tagged Structural Link exhibits user-defined	Semantics.
Aggregation- Participation Construct, Exhibition-Characterization Construct, Generalization-Special-
ization	Construct,	Classification-Instantiation	Construct and Tagged Structural Construct are Basic
Structural Constructs.
Aggregation-Participation Construct consists of Aggregation-Participation Link, Whole, and Part.
Exhibition- Characterization Construct consists of Exhibition- Characterization Link, Exhibitor, and Fea-
ture.
Generalization- Specialization Construct consists of Generalization- Specialization Link, General, and
Specialization.
Classification-Instantiation	Construct consists of Classification-Instantiation	Link,	Class,	and Instance.
Tagged Structural Construct consists of Tagged Structural Link and 2 Things .

Figure C.13 — OPM model of Basic Structural Construct

136 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Figure C .14 is an OPM model of Basic Procedural Construct.

Basic Procedural Construct consists of Object, Process, and Procedural Link.
Procedural Link exhibits Semantics.
Semantics of Procedural Link can be transformation, enablement, transformation & control, and enable-
ment & control.
Transformee and Enabler are Objects.
Controlling Transformee is a Transformee.
Controlling Enabler is an Enabler.
Transforming Link and Enabling Link are Procedural Links.
Transforming & Control Link is a Transforming Link.
Enabling & Control Link is an Enabling Link.
Transforming Link exhibits transformation Semantics of Procedural Link.
Enabling Link exhibits enablement Semantics of Procedural Link.
Transforming & Control Link exhibits transformation & control Semantics of Procedural Link.
Enabling & Control Link exhibits enablement & control Semantics of Procedural Link.
Transformation Construct and Enablement Construct are Basic Procedural Constructs.
Transformation Construct consists of Transforming Link, Transformee, and Process.
Enablement Construct consists of Enablement Link, Enabler, and Process.
Transformation & Control Construct is a Transformation Construct.
Enablement & Control Construct is an Enablement Construct.
Transformation & Control Construct consists of Transforming & Control Link, Controlling Transformee,
and Process.
Enablement & Control Construct consists of Enablement & Control Link, Controlling Enabler, and Process .

Figure C.14 — OPM model of Basic Procedural Construct

© ISO 2015 – All rights reserved 137International Organization for Standardization

ISO/PAS 19450:2015(E)

Transformation Construct consists of Transformee, Process, and Transforming Link.
Transforming Link exhibits Symbol and Semantics.
Symbol of Transforming Link can be unidirectional closed arrowhead or bidirectional closed arrowhead
pair.
Semantics of Transforming Link can be consumption, effect, or result.
Consumption Link, Effect Link, and Result Link are Transforming Links.
Consumee, Affectee, and Resultee are Transformees.
Consumption Construct, Result Construct, and Effect Construct are Transformation Constructs.
Consumption Construct consists of Consumption Link, Process, and Consumee.
Effect Construct consists of Effect Link, Process, and Affectee.
Result Construct consists of Result Link, Process, and Resultee.
Consumption Link exhibits unidirectional closed arrowhead Symbol of Transforming Link and consump-
tion Semantics of Transforming Link.
Effect Link exhibits bidirectional closed arrowhead consumption pair of Transforming Link and effect
Semantics of Transforming Link.
Result Link exhibits unidirectional closed arrowhead Symbol of Transforming Link and result Semantics
of Transforming Link.
State-Specified	Consumption	Construct is a Consumption Construct.
State-Specified	Result	Construct is a Result Construct.

Figure C.15 — OPM model of Transformation Construct

Figure C .16 complements Figure C .15 by adding information about the directionality of the arrowhead
symbols that connect an object with the process. Adding this information to Figure C .15 could clutter
the model figure and make it more difficult to comprehend.

138 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Transformation Construct consists of Transformee, Process, and Transforming Link.
Consumption Link, Effect Link, and Result Link are Transforming Links.
Consumption Construct, Result Construct, and Effect Construct are Transformation Constructs.
Consumption Construct consists of Consumption Link, Process, and Consumee.
Effect Construct consists of Effect Link, Process, and Affectee.
Result Construct consists of Result Link, Process , and Resultee.
Consumption Link connects from Consumee.
Consumption Link connects to Process.
Effect Link connects Affectee and Process.
Result Link connects to Resultee.
Result Link connects from Process .

Figure C.16 — OPM model of Transformation Construct link directionality

Figure C .17 is an OPM model of Basic Enablement Construct.

© ISO 2015 – All rights reserved 139International Organization for Standardization

ISO/PAS 19450:2015(E)

Enablement Construct consists of Enabler, Process , and Enabling Link.
Enabling Link exhibits Semantics and Symbol.
Enabling Link connects from Enabler.
Enabling Link connects to Process.
Semantics of Enabling Link can be Agent or Instrument.
Symbol of Enabling Link can be black lollipop or white lollipop.
Agent and Instrument are Enablers.
Agent Link and Instrument Link are Enabling Links.
Agent Link exhibits agent Semantics of Enabling Link and black lollipop Symbol of Enabling Link.
Instrument Link exhibits instrument Semantics of Enabling Link and white lollipop Symbol of Enabling
Link.
Agent Construct and Instrument Construct are Enablement Constructs.
Agent Construct consists of Agent, Process , and Agent Link.
Instrument Construct consists of Instrument, Process , and Instrument Link.
State-Specified	Agent	Construct is an Agent Construct.
State-Specified	Instrument	Construct is an Instrument Construct.

Figure C.17 — OPM model of Basic Enablement Construct

140 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

State-Specified	Agent	Construct consists of State-Specified	Agent,	Process , and Agent Link.
State-Specified	Agent is a State-Specified	Enabler.
State-Specified	Enabler is a State-Specified	Object.
Agent	Link	connects	State-Specified	Agent	and Process.

Figure	C.18	—	OPM	model	of	state-specified	agent	construct	with	mapped	example

Figure C .18 depicts two OPM models with the top of the figure expressing essential associations for
a State-Specified Agent Construct and the bottom of the figure expressing a corresponding model
construct. The former provides a metamodel for the latter. The broad arrows map the conceptual parts of
the construct to the OPD symbols of the example. Below the OPD in the example is the corresponding OPL.

For instructional purposes, similar mapping figures may express the correspondence between models
of OPM construct conceptual models and corresponding OPM models in application.

C.5 In-zooming and out-zooming models

C.5.1 The in-zooming and out-zooming mechanisms

Both new-diagram in-zooming and new-diagram out-zooming create a new OPD context from an
existing OPD context. New-diagram in-zooming starts with an OPD of relatively less details and adds
elaboration or refinement as a descendant OPD that applies to a specific thing in the less detailed OPD.
New-diagram out-zooming starts with an OPD of relatively more details and removes elaboration or
refinement to produce a less detailed, more abstract thing in an ancestor context.

New-diagram in-zooming elaborates a refineable present in an existing OPD, say SDn, by creating a new
OPD, SDn+1, which elaborates the refineable by adding subprocesses, associated objects, and relevant
links. The new-diagram in-zooming and in new-diagram out-zooming processes are inverse operations.

© ISO 2015 – All rights reserved 141International Organization for Standardization

ISO/PAS 19450:2015(E)

Figure C .19 depicts the New-Diagram In-Zooming and New-Diagram Out-Zooming processes. The
model on the right uses in-diagram in-zooming of the model on the left to elaborate the two processes,
one for creating a new-diagram in-zoomed context and one for creating a new-diagram out-zoomed
context. New-Diagram In-Zooming begins with Content Showing , followed by Link	Refining. New-
Diagram Out-Zooming begins with Link Abstracting , the inverse process of Link	Refining , followed
by Content Hiding , the inverse process of Content Showing.

New-Diagram In-Zooming requires SDn.
New-Diagram In-Zooming yields SDn+1.
New-Diagram Out-Zooming requires SDn+1 .

New-Diagram In-Zooming zooms into Content Showing and
Link	Refining , in that sequence, as well as Semi-Zoomed OPD.
Content Showing requires SDn.
Content Showing yields Semi-Zoomed OPD.
Link	Refining consumes Semi-Zoomed OPD.
Link	Refining yields SDn+1.
New-Diagram Out-Zooming zooms into Link Abstracting and
Content Hiding , in that sequence, as well as Semi-Zoomed OPD.
Link Abstracting requires SDn+1.
Link Abstracting yields Semi-Zoomed OPD.
Content Hiding consumes Semi-Zoomed OPD.
Content Hiding yields SDn .

Figure C.19 — New-Diagram In-Zooming and New-Diagram Out-Zooming models

Semi-Zoomed OPD is an interim object created and subsequently consumed during New Diagram
In-Zooming or New-Diagram Out-Zooming. Semi-Zoomed OPD appears only within the contexts of
New-Diagram In-Zooming and New-Diagram Out-Zooming.

Figure C .20 shows New-Diagram In-Zooming and New-Diagram Out-Zooming with unfolding of
SDn, SDn+1 , and Semi-zoomed OPD from Figure C .19. New-Diagram In-Zooming and New-Diagram
Out-Zooming operate on a particular instance of SDn shown at the middle top of Figure C .20, where
the SDn detail is one of many possibilities. In this case, SDn includes P, which is the refineable process,
as well as four objects connected to P with different kinds of links: the consumee C , the agent A, the
instrument D, and the resultee B .

The in-diagram in-zooming of Semi-Zoomed OPD makes clear that it is an interim representation
created and consumed during New Diagram In-Zooming as well as during New Diagram Out-
Zooming. The Semi-Zoomed OPD is the same in both situations.

Content Showing is the first of the two New-Diagram In-Zooming subprocesses. During Content
Showing, the boundary of P expands to make room for showing its content—the model subprocesses
P1 , P2 , and P3 , as well as the interim model object BP. The result of Content Showing is the unfolding
of object Semi-Zoomed OPD. As an interim object, recognizable only in the context of New-Diagram
In-Zooming , the second subprocess, Link	Refining , consumes it while creating SDn+1 . During Link
Refining, the procedural links attached to the contour of P migrate to the appropriate subprocesses

142 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

as determined by the modeller. Thus, since P1 consumes C , the consumption link arrowhead migrates
from P to P1 . The agent A handles both P1 and P2 , so in SDn+1 two agent links, one to P1 and the other
to P2 , replace the single one in SDn from A to P. P3 requires D, so the instrument link moves from P to
P3 . Finally, since BP results from P1 and P3 consumes it, the corresponding result and consumption
links are added, making BP an internal object of P, an object that is only recognizable within the context
of P, like P1 , P2 , and P3 . Notice that BP is to P as Semi-Zoomed OPD is to New-Diagram In-Zooming.

Figure C.20 — New-Diagram In-Zooming and New-Diagram Out-Zooming elaboration

C.5.2 Simplifying an OPD

In-diagram out-zooming can combine with new-diagram in-zooming to simplify an already-modelled
OPD that the modeller deems overly complicated. In-diagram out-zooming followed by new-diagram
in-zooming is an option when the modeller realizes that the current OPD is overloaded with details .
In-diagram out-zooming reduces the cognitive load necessary to understand the complicated OPD
at the expense of adding a new OPD to the OPD set, which is the result of the subsequent new-
diagram in-zooming.

Figure C .21 , demonstrates in-diagram out-zooming followed by new-diagram out-zooming. On the left is
the original OPD Set with three OPDs: SD, SD1 and SD1.1 . The modeller deems SD1 overly complicated.
To ease the complication, as shown in the middle, the modeller selects P1 , P2 , and P3 , along with BP
for replacement by P123 using new-diagram out-zooming. On the right is the new OPD Set with four
OPDs renumbered to reflect the new hierarchy. The new SD1 is less complicated than the original SD1 ,
having five fewer elements (three processes, one object, and two links removed; one process—P123—
added) . P123 undergoes new-diagram out-zooming in the new SD1.1 , and this new OPD is inserted into
the process hierarchy, pushing the old SD1.1 to become the new SD1.1.1 .

© ISO 2015 – All rights reserved 143International Organization for Standardization

ISO/PAS 19450:2015(E)

Figure C.21 — Simplifying an OPD

In-diagram out-zooming begins by selecting the set TO of things to out-zoom in the currently
complicated OPD for in-zooming in a new OPD. Assuming a new single process, PA, replaces the TO set,
each procedural link that extends to a member of TO needs to connect to the new process, PA, and to
an object that is not a member of the set TO. PA is a new abstract process that replaces the members of
TO and becomes a new model element. PA becomes in-zoomed in a new OPD and the OPD set labelling
needs to reflect the new OPD hierarchy.

In the middle of Figure C .21 the processes P1 , P2 , and P3 , along with the object BP are the four members
of TO, which are surrounded by P123 . The consequence of creating P123 is the disappearance of the
four members of TO from the new SD1. Each link that crosses the grey-white boundary of the middle
graphic now connects to the boundary of P123 in the new SD1. The objects connecting to the boundary
of P123 in the new SD1 then connect to the appropriate subprocesses in the new SD1.1 The object BK
cannot be a member of TO because if BK occurs in P123 its links create two procedural links connecting
two processes directly, P4 to P123 and P123 to P5 . OPM does not define the semantics of these links
and the model would violate the specification that every procedural link (except the invocation and
time exception links) connects an object to a process.

144 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

C.6 OPM Process Performance Controlling model

C.6.1 OPM Process Performance Controlling System – SD

Involved Object Set consists of Preprocess Object Set and Postprocess Object Set.
Preprocess Object Set exhibits Size.
Size of Preprocess Object Set is r>=0.
Postprocess Object Set exhibits Size.
Size of Postprocess Object Set is s>=0.
Involved Object Set exhibits Size.
Size of Involved Object Set is r+s>=0.
Process Performance Controlling affects Involved Object Set.
Executable Process is environmental.
Executable Process invokes Process Performance Controlling.
Process Performance Controlling yields one of Success Message or Failure Message.
Abort Message and Cancel Message are Failure Messages .

Figure C.22 — Process Performance Controlling system diagram – SD

© ISO 2015 – All rights reserved 145International Organization for Standardization

ISO/PAS 19450:2015(E)

C.6.2 Process Performance Controlling in-zoomed as SD1

Process Performance Controlling zooms into Process Initiating and Process Performing , in that sequence,
as well as Postcondition.
Preprocess Object Set consists of Consumee Set, Affectee Set, and Enabler Set.
Postprocess Object Set consists of Resultee Set and Affectee Set.
Executable Process is environmental.
Executable Process invokes Process Initiating.
Process Performance Controlling exhibits Process Status.
Process Status can be idle, started (t=0), aborted , or completed (t=n) .
Process Status is initially idle and finally completed (t=n) or aborted.
Postcondition can be false or true.
Postcondition is initially false.
Process Initiating requires Preprocess Object Set.
Process Initiating changes Process Status from idle to exactly one of idle or started (t=0) .
Process Initiating yields false Postcondition and Cancel Message.
Process Performing occurs if Enabler Set exists, otherwise Process Performing is skipped .
Process Performing affects Postcondition and Affectee Set.
Process Performing changes Process Status from started (t=0) to exactly one of aborted or completed
(t=n) .
Process Performing yields Resultee Set and either Success Message or Abortion Message .

Figure C.23 — Process Performance Controlling from SD in-zoomed in SD1

146 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

C.6.3 Process Initiating in-zoomed as SD1.1

Process Initiating from SD1 zooms in SD1.1 into Precondition Evaluating and parallel Cancelling and Start-
ing, in that sequence, as well as Precondition.
Process Status can be idle, started (t=0) , or other states.
Process Status is initially idle.
Postcondition can be false or true.
Postcondition is initially false.
Executable Process is environmental.
Executable Process invokes Precondition Evaluating.
Precondition Evaluating yields Precondition.
Precondition can be true or false.
Precondition Evaluating requires Preprocess Object Set.
Precondition Evaluating changes Process Status from idle.
Cancelling occurs if Precondition is false, otherwise Cancelling is skipped .
Cancelling changes Process Status to idle.
Cancelling yields Cancel Message.
Cancellation Message exhibits Failure time.
Cancelling sets the value of Failure time to t=0.
Failure time of Cancel Message is t=0.
Starting occurs if Precondition is true, in which case Precondition is consumed, otherwise Starting is
skipped.
Starting changes Process Status to started (t=0) .
Starting yields false Postcondition .

Figure C.24 — Process Initiating in-zoomed as SD1.1

© ISO 2015 – All rights reserved 147International Organization for Standardization

ISO/PAS 19450:2015(E)

C.6.4 Precondition Evaluating in-zoomed as SD1.1.1

Precondition Evaluating from SD1.1 zooms in SD1.1.1 into Enabler Set Checking, Consumee & Affectee Set
Checking, Precondition Refuting , and Precondition	Confirming , in that sequence, as well as Enabler Set
Check Result and Consumee & Affectee Set Check Result.
Preprocess Object Set consists of Enabler Set and Consumee & Affectee Set.
Process Status can be idle, started (t=0) , or other states.
Process Status is initially idle.
Precondition can be false or true.
Precondition is initially false.
Executable Process invokes Enabler Set Checking.
Enabler Set Checking requires that Enabler Set exists, otherwise Enabler Set Checking is skipped .
Enabler Set Checking changes Process Status from idle.
Enabler Set Check Result can be positive or negative.
Enabler Set Check Result is initially positive.
Enabler Set Checking affects Enabler Set Check Result.
Consumee & Affectee Set Checking occurs if Enabler Set Check Result is positive and Consumee & Affectee
Set exists, otherwise Consumee & Affectee Set Checking is skipped .
Consumee & Affectee Set Check Result can be positive or negative.
Consumee & Affectee Set Check Result is initially positive.
Consumee & Affectee Set Checking affects Consumee & Affectee Set Check Result.
Precondition Refuting requires that either Enabler Set Check Result is negative or Consumee & Affectee
Check Result is negative, otherwise Precondition Refuting is skipped .
Precondition Refuting changes Process Status to idle.
Precondition	Confirming occurs if Transformee Check Result is positive, otherwise Precondition	Confirm-
ing is skipped .
Precondition	Confirming changes Precondition from false to true and Process Status to started (t=0) .

Figure C.25 — Precondition Evaluating in-zoomed – SD1.1.1

148 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

C.6.5 Transformee Set Checking in-zoomed as SD1.1.1.1

Consumee & Affectee Set Checking from SD1.1.1 zooms in SD1.1.1.1 into Consumee Set Checking, Affectee
Set Checking , and Transformee Set Disqualifying , in that sequence, as well as Affectee Set Check Results
and Consumee Set Check Results.
Enabler Set Check Result can be negative or positive.
Enabler Set Check Result is initially positive.
Consumee & Affectee Set Check Result can be negative or positive.
Consumee & Affectee Set Check Result is initially positive.
Consumee & Affectee Set consists of Consumee Set and Affectee Set.
Consumee & Affectee Set Checking occurs if Enabler Set Check Result is positive, otherwise Consumee &
Affectee Set Checking is skipped .
Consumee Set Check Results can be negative or positive.
Consumee Set Check Results is initially positive.
Consumee Set Checking occurs if Consumee Set exists, otherwise Consumee Set Checking is skipped .
Consumee Set Checking affects Consumee Set Check Results.
Affectee Set Checking occurs if Consumee Set Consumee Set Check Results is positive and Affectee Set
exists, otherwise Affectee Set Checking is skipped .
Affectee Set Checking yields Affectee Set Check Results.
Affectee Set Check Results can be negative or positive.
Transformee Set Disqualifying occurs if either Affectee Set Check Results is negative or Consumee Set
Check Results is negative.
Transformee Set Disqualifying changes Consumee & Affectee Set Check Result from positive to negative .

Figure C.26 — Transformee Set Checking in-zoomed – SD1.1.1.1

© ISO 2015 – All rights reserved 149International Organization for Standardization

ISO/PAS 19450:2015(E)

C.6.6 Process Performing in-zoomed as SD1.2

Process Performing from SD1 zooms in SD1.2 into Initial Process Performing, Main Process Performing ,
and Final Process Performing , in that sequence .
Process Status can be idle, started (t=0), operating (t<n), aborted, completing (t=n), completed (t=n) , or
other states.
Process Status is finally completed (t=n) .
Postcondition can be false or true.
Postcondition is initially false.
Affectee Set consists of optional Affectees.
Affectee can be input state or output state.
Affectee is initially input state and finally output state.
Initial Process Performing changes Process Status from started (t=0) to operating (t<n), Postcondition
from false, and Affectee from input state.
Initial Process Performing consumes Consumee Set.
Main Process Performing requires Enabler Set.
Main Process Performing yields an optional Abort Message.
Main Process Performing changes Process Status from operating (t<n) to one of completing (t=n) or abort-
ed.
Final Process Performing changes Process Status from completing (t=n) to completed (t=n), Postcondition
to true, and Affectee to output state.
Final Process Performing yields Success Message and Resultee Set.

Figure C.27 — Process Performing in-zoomed – SD1.2

150 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

C.6.7 Initial Process Performing in-zoomed as SD1.2.1

Initial Process Performing from SD1.2 zooms in SD1.2 .1 into parallel Input State Exiting and Consumee Set
Consuming.
Preprocess Object Set consists of Enabler Set, Affectee Set, and Consumee Set.
Affectee Set consists of optional Affectees.
Affectee can be input state or output state.
Affectee is initially input state and finally output state.
Process Status can be started (t=0), operating (t<0) , or other states .
Postcondition can be false or true.
Postcondition is initially false.
Initial Process Performing requires Enabler Set.
Input State Exiting changes Affectee from input state.
One of Consumee Set Consuming or Input State Exiting changes Process Status from started (t=0) to oper-
ating (t<n) and Postcondition from false .

Figure C.28 — Initial Process Performing in-zoomed – SD1.2 .1

© ISO 2015 – All rights reserved 151International Organization for Standardization

ISO/PAS 19450:2015(E)

C.6.8 Main Process Performing in-zoomed as SD1.2.2

152 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Main Process Performing from SD1.2 zooms in SD1.2 .2 into Elapsed Time & Duration Comparing, Enabler
& Affectee Set Checking, Aborting & Notifying, Time Incrementing , and Finalizing , in that sequence, as well
as Time Comparison Result and Set Approval.
Executable Process exhibits Executable Process Instruction Set and Overtime Exception Handling.
Executable Process, Executable Process Instruction Set, and Overtime Exception Handling are environ-
mental.
Process Status can be aborted, completed (t=n), operating (t<0) or other states .
Process Status is finally aborted or completed (t=n) .
Postcondition can be false or true.
Postcondition is initially false.
Main Process Performing exhibits Elapsed Time in Time Unit and Duration in Time Unit.
Abortion Message exhibits Elapsed Time in Time Unit.
Elapsed Time in Time Unit is e.
Duration in Time Unit is d.
Elapsed Time & Duration Comparing requires Elapsed Time in Time Unit and Duration in Time Unit.
Elapsed Time & Duration Comparing changes Postcondition from false.
Elapsed Time & Duration Comparing yields Time Comparison Result.
Time Comparison Result can be e<d, e=d, or e>d.
Time Comparison Result is initially e<d or e=d and finally	e=d or e>d.
Enabler & Affectee Set Checking requires Enabler Set and Affectee Set.
Enabler & Affectee Set Checking occurs if Time Comparison Result is e<d , in which case Enabler & Affectee
Set Checking consumes Time Comparison Result, otherwise Enabler & Affectee Set Checking is skipped .
Enabler & Affectee Set Checking requires Enabler Set.
Enabler & Affectee Set Checking yields Set Approval.
Set Approval can be granted or denied.
Aborting & Notifying occurs if Set Approval is denied, in which case Aborting & Notifying consumes Set
Approval , otherwise Aborting & Notifying is skipped .
Aborting & Notifying changes Process Status from operating (t<n) to aborted and Postcondition to false.
Aborting & Notifying yields Abort Message.
Abort Message Finalizing occurs if Time Comparison Result is e=d, in which case Finalizing consumes Time
Comparison Result, otherwise Finalizing is skipped .
Finalizing changes Process Status from operating (t<n) to completed (t=n) and Postcondition to true.
Process Executing & Time Incrementing requires Executable Process Instruction Set.
Process Executing & Time Incrementing occurs if Set Approval is granted, in which case Process Execut-
ing & Time Incrementing consumes Set Approval , otherwise Process Executing & Time Incrementing is
skipped .
Time Incrementing consumes Sets are OK?
Time Incrementing yields elt=1. .ext Elapsed Time in Time Unit.
Process Executing & Time Incrementing changes the value e of Elapsed Time in Time Unit.
Process Executing & Time Incrementing invokes Elapsed Time & Duration Comparing.
Overtime Exception Handling consumes e>d Time Comparison Result.

Figure C.29 — Main Process Performing in-zoomed – SD1.2 .2

© ISO 2015 – All rights reserved 153International Organization for Standardization

ISO/PAS 19450:2015(E)

C.6.9 Final Process Performing in-zoomed as SD1.2.3

Final Process Performing from SD1.2 zooms in SD1.2 .3 into parallel Resultee Set Generating, Output State
Entering , and Success Notifying , in that sequence .
Postprocess Object Set consists of Resultee Set and Affectee Set.
Affectee Set consists of optional Affectees.
Affectee can be input state or output state.
Affectee is initially input state and finally output state.
Process Status can be completed (t=n), completing (t=n) , or other states .
Process Status is finally completed (t=n) .
Postcondition can be false or true.
Postcondition is initially false.
Resultee Set Generating yields Resultee Set.
Output State Entering changes Affectee to output state.
Success Notifying changes Postcondition to true.
Success Notifying yields Success Message .

Figure C.30 — Final Process Performing in-zoomed – SD1.2 .3

154 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Annex D
(informative)

OPM dynamics and simulation

D.1 OPM executability

An OPM model provides for executability—the ability to simulate a system by executing its model via
animation in a properly designed software environment.

D.2 Change and effect

A change of an object is an alteration in the state of that object. More specifically, a change of an object
is reflected by replacing its current state by another state. The only thing that can cause this change is
a process. The process causes the change by taking as input an object at some state, and outputting it in
another state. Hence, a change of an object means a change in the state at which the object is at.

Stateful objects can be affected, i.e. their states can change. This change mechanism underlines the
intimate, inseparable link between objects and processes. This change in state is the effect of the
process on the object.

Effect is therefore defined as the change in the state of an object that a process causes.

While the terms “change” and “effect” are almost synonymous, there is a subtle difference in their
usage. Effect is used to refer to what the process does to the object, and change—to what happens to
the object as a result of the process occurrence. The above definition of effect is refined later in this
annex with the notions of input and output links.

D.3 Existence and transformation

Change is only one possibility of what can happen to an object when a process acts on it. A process
affects an object to change it, but it can also do things that are more drastic: it can generate an object or
consume it. The term transformation covers these three additional modes by which a process can act
on an object: construction, effect, and consumption.

Construction is synonymous with creation, generation, or yielding. Effect is synonymous with
change or switch, and consumption is synonymous with elimination, termination, annihilation,
or destruction. The effect of a process on an object is to change that object from one of its states to
another, but the object still exists, and it keeps maintaining the identity it had before the process
occurred. Construction and consumption change the very existence of the object and are therefore
more profound transformations than effect.

When a process constructs (yields, generates, creates, or results in) an object, the meaning is that the
object, which had not previously existed, has undergone a radical transformation. This transformation
made it stand out and become identifiable and meaningful in the system. It now deserves treatment and
reference as a new, separate entity.

When a process consumes (eliminates or destroys) an object, the meaning is that the object, which
had previously existed, and was identifiable and meaningful in the system, has undergone a radical
transformation. Consequently, the object no longer exists in the system and is no longer identifiable.

© ISO 2015 – All rights reserved 155International Organization for Standardization

ISO/PAS 19450:2015(E)

D.4 Timeline OPM principle

By default, the execution timeline within an in-zoomed process begins at the graphical top and ends at
the graphical bottom, unless there is indication to deviate from the timeline. Such indications include
the special OPM internal events within the scope of the process that may cause loops, and the process
whose name is or ends with the phrase Exception Exiting. Regardless of its graphical position, if
this process is invoked, the context process, i .e. the in-zoomed process within which this process is
embedded, exits promptly and unconditionally.

The top-most point of the process ellipse serves as a reference point, so a process whose reference
point is higher than its peer(s) starts earlier. If the reference points of two or more processes are
at the same height (within a few graphical units, e.g. pixels, of tolerance) , these processes start
simultaneously and in parallel.

D.5 Timed events

The events presented so far were object or state events: they happened when a specific object became
existent or entered a specific state. In contrast, timed events depend on the arrival of a specific time in
the system, as shown below.

A state event can represent a time event, as Figure D.1 demonstrates.

Figure D.1 — Legal system model change from minor to adult at the Age of 18 Years

Figure D.2 demonstrates the System Clock event initiating Legal Status Changing.

156 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Figure D.2 — The System Clock event initiating Legal Status Changing

D.6 Object history and the lifespan diagram

At any point in time, an object can be in one of its states, or exists in transition between two states.

A lifespan diagram is a diagram showing for any point in time during the life of the system what objects
exists in the system, what state each object is at, and what processes are active.

Figure D.3 — Car Painting four lifespan diagrams example

The four lifespan diagrams shown at Figure D.3 record the history of the car painting system as time
progresses. These four lifespan diagrams are displayed stacked vertically to facilitate their inspection.
In the first diagram, only the first time period is displayed. Painting is not active, and the Car is white.

In the second diagram, the first three time periods are displayed. In the third period, Painting is active,
and the Car is no longer white. The same happens in the fourth period, as shown in the third diagram.
Finally, in the fifth period, shown in the bottom diagram, Painting is no longer active, and the Car is red.

© ISO 2015 – All rights reserved 157International Organization for Standardization

ISO/PAS 19450:2015(E)

Figure D.4 — Executing the OPM model for Automatic Crash Responding

Figure D.4 presents three OPCAT screenshots, showing three stages of executing an OPM model. The
screenshot on the left hand side shows the system before the Automatic Crash Responding process
occurs. At this stage, Vehicle Occupants Group is at its input state, possibly injured , and this is
marked by the state being solid (coloured brown) .

The middle screenshot shows the process in action, marked as solid (coloured blue) . During the time
that the process Automatic Crash Responding is active (i.e. when it executes) , the object Vehicle
Occupants Group is in transition from its input state, possibly injured, to its output state, being
helped . This is marked by both states being semi-solid.

Observing the animation in action, the input state is gradually fading out while the output state is
becoming solid. At the same time, two red dots travel along the input-output link pair, denoting the
“control” of the system, or where the system is at each time point. One red dot travels from the input
state to the affecting process. At the same time, the second dot travels from that process along the
output link to the output state.

Finally, the screenshot on the right shows the system after the Automatic Crash Responding process
had terminated. At this stage, Vehicle Occupants Group is at its output state, being helped .

The animated execution of the system model has several benefits. First, it is a dynamic visualization aid
that helps both the modeller and the target audience follow and understand the behaviour of the system
over time. Second, like a debugger of a programming language, it facilitates verification of the system’s
dynamics and spotting logical design errors in its flow of execution control. Therefore, frequently
animating the system model during its construction is highly recommended.

D.7 Process duration

System time unit is the default time unit used for specifying all duration kinds of all the processes in the
system unless there is an explicit different time unit for a specific process, in which case that time unit
overrides the system time unit.

A compact way to express the relevant process property values in an OPD uses exhibition-
characterization and specialization links. Assuming that the following are relevant process properties,
Example 1 expresses two ways to graphically configure the properties:

— the time measurement unit;

— time duration parameters, which can be one of the following:

— three values, standing for the minimal, expected, and maximal duration, respectively,

— two values, standing for the minimal and maximal duration, respectively, or

— one value, standing for both the minimal and maximal durations; and,

— the duration distribution name and its one or more parameters.

158 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

The following are possible normative distributions and their parameter(s):

— Normal, mean=xx; sd=yy;

— Uniform, a=xx, b=yy; and,

— Exponential, lambda=xx.

NOTE The time measurement unit of seconds is the customary default and often omitted.

EXAMPLE 1 Figure D.5 i l lustrates a metamodel of Processing Duration with property values. On the left is the
complete metamodel. The process on the right shows a compact way to record all the data on the left, except for
the (actual) Duration, which is a run-time property. The Duration Distribution in this example is normal with
mean 45,6 min and standard deviation 7,3 min.

Processing exhibits 30.0 , 45.6 , and 60.0 min Minimal Duration , Expected Duration , and Maximal Duration ,
respectively and normal Duration Distribution with parameters mean=45.6 and sd=70.0 .

Figure D.5 — Processing Duration with property values

EXAMPLE 2 Figure D.6 provides process duration examples.

Processing exhibits 8.0 h and
10.0 h Minimal Duration and
Maximal Duration , respective-
ly, and exponential Duration
Distribution with parameter
lambda=5.6.

Processing exhibits normal
Duration Distribution with
parameters mean=1.63 and
sd=0.16 ms.

Processing exhibits uniform Duration
Distribution with parameters a=3 and b=5
days.

Figure D.6 — Process duration examples

© ISO 2015 – All rights reserved 159International Organization for Standardization

ISO/PAS 19450:2015(E)

EXAMPLE 3 In Figure D.7, Processing {instance id=1} Duration is 63 ,3 min, hence Overtime Exception
Handling occurs.

Processing exhibits 30.0 , 45.6, and 60.0 min Minimal Duration, Expected Duration, and Maximal Duration ,
respectively, and uniform Duration Distribution with parameters a=5.0 and b=70.0.
Either Processing or Overtime Exception Handling affects Affectee.
Overtime Exception Handling occurs if duration of Processing exceeds 60.0 min.
Overtime Exception Handling affects Affectee .

Figure D.7 — Overtime exception example

EXAMPLE 4 In Figure D.8 , Processing {instance id=2} Duration is 23,4 min, hence Undertime Exception
Handling occurs.

Processing exhibits 30.0 , 45.6, and 60.0 min Minimal Duration, Expected Duration, and Maximal Duration ,
respectively, and uniform Duration Distribution with parameters a=5.0 and b=70.0.
Either Processing or Undertime Exception Handling affects Affectee.
Undertime Exception Handling occurs if duration of Processing falls short of 60.0 min.
Undertime Exception Handling affects Affectee .

Figure D.8 — Undertime exception example

160 © ISO 2015 – All rights reservedInternational Organization for Standardization

ISO/PAS 19450:2015(E)

Bibliography

[1] ISO/IEC 14977:1996, Information technology — Syntactic metalanguage — Extended BNF1)

[2] ISO/TC 184/SC 5 . Terms of Reference: Study Group to Explore OPM for Modeling Standards, 2009

[3] ISO/TC 184/SC 5 N1070 Object Process Methodology Study Group – Interim Report 2010

[4] ISO/TC 184/SC 5 N1111 Object Process Methodology Study Group – Final Report 2011

[5] Bibliowicz A. A Graph Grammar-Based Formal Validation of an Object-Process Diagram, M. Sc.
Thesis, Technion, Israel, 2008

[6] Bibliowicz A. , & Dori D. A Graph Grammar-Based Formal Validation of Object-Process
Diagrams. Soft. Syst. Model. 2012 , 11 (2) pp. 287–302

[7] Crawley E . F, Malmqvist J . , Östlund S . , Brodeur D. R. Rethinking Engineering Education: The
CDIO Approach . Springer, 2007

[8] Dori D. Object-Process Methodology - A Holistic Systems Paradigm. Springer Verlag, Berlin, 2002

[9] Dori D. Words from Pictures for Dual Channel Processing: A Bimodal Graphics-Text
Representation of Complex Systems. Commun. ACM. 2008, 51 (5) pp. 47–52

[10] Dori D. , Feldman R. , Sturm A. From conceptual models to schemata: An object-process-based
data warehouse construction method Inf. Syst. 2008, 33 (6) pp. 567–593

[11] Dori D. Object-Process Analysis: Maintaining the Balance between System Structure and
Behavior. Journal of Logic and Computation. 1995, 5 (2) pp. 227–249

[12] Dori D. Object-Process Methodology – A Holistic Systems Paradigm, Springer Verlag. Foreword
by Edward Crawley, Berlin, Heidelberg, New York, 2002

[13] Dori D. , Reinhartz-Berger I . , Sturm A. LNCS 2813, pp. 570-572 , 2003

[14] Dori D. The International Journal on Very Large Data Bases. 2004, 13 (2) pp. 120–147

[15] Estefan J . Survey of Model-Based Systems Engineering (MBSE) Methodologies 2 . Differentiating
Methodologies from Processes, Methods, and Lifecycle Models. Jet Propuls. 2008, 25 pp. 1–70.
Available at: http://www.omgsysml.org/MBSE_Methodology_Survey_RevB .pdf

[16] Grobshtein Y. , & Dori D. Generating SysML Views from an OPM Model: Design and Evaluation.
Syst. Eng. 2011, 14 (3) pp. 327–340

[17] Myersdorf D. , & Dori D. The R&D Universe and Its Feedback Cycles: an Object-Process
Analysis. R & D Manag. 1997, 27 (4) pp. 333–344

[18] Oliver D.W., Andary J .F. , Frisch H . Model-based systems engineering. In Handbook of Systems
Engineering and Management, pp. 1361-1400, 2009

[19] Osorio C .A. , Dori D. , Sussman J . COIM: An Object-Process Based Method for Analyzing
Architectures of Complex, Interconnected, Large-Scale Socio-Technical Systems. Syst. Eng.
2011, 14 (3)

[20] Peleg M . , & Dori D. The Model Multiplicity Problem: Experimenting with Real-Time
Specification Methods. IEEE Trans. Softw. Eng. 2000, 26 (8) pp. 742–759

[21] Peleg M. J . , and , D. , A Methodology for Eliciting and Modeling Exceptions. (4) , pp. 736-747, 2009

1) Available at: http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards .
htm

© ISO 2015 – All rights reserved 161International Organization for Standardization

ISO/PAS 19450:2015(E)

[22] OPCAT. Enterprise Systems Modeling Laboratory, Technion, Haifa, Israel, http://esml.iem.
technion.ac.il/opm/

[23] Ramos A.L. , Ferreira J .V. , Barceló J . LITHE: An Agile Methodology for Human-Centric Model-
Based Systems Engineering. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 2012

[24] Reichwein A. , & Paredis C . Overview of Architecture Frameworks and Modeling Languages for
Model-Based Systems Engineering. Proceedings of the ASME 2011 International Design Engineering
Technical Conferences Computers and Information in Engineering Conference, 1-9, 2011

[25] Reinhartz-Berger I . , & Dori D. A Reflective Metamodel of Object-Process Methodology: The
System Modeling Building Blocks. In: Business Systems Analysis with Ontologies, (Green P. , &
Rosemann M . eds.) . Idea Group, Hershey: 2005, pp. 130–73

[26] Sharon A. , de Weck O. , Dori D. Model-Based Design Structure Matrix: Deriving a DSM from an
Object-Process Model. Syst. Eng. 2012 , pp. 1–14

[27] Somekh J . , Choder M. , Dori D. Conceptual Model-Based Systems Biology: Mapping Knowledge
and Discovering Gaps in the mRNA Transcription Cycle. PLoS ONE. 2012 Dec. 20, 7 (12)
p. e51430. DOI:10.1371/journal.pone.0051430

[28] Soffer P. , Golany B . , Dori D. ERP Modeling: A Comprehensive Approach. Inf. Syst. 2003,
28 (6) , pp. 673–690

[29] Sturm A. , Dori D. , Shehory O. An Object-Process-Based Modeling Language for Multi-Agent
Systems. IEEE Trans. Syst. Man Cybern. C . 2010, 40 (2) pp. 227–241

[30] Sturm A. , Dori D. , Shehory O. Application-Based Domain Analysis Approach and Its Object-
Process Methodology Implementation. Int. J . Softw. Eng. Knowl. Eng. 2009 February, 19 p. 1

[31] Yaroker Y. , Perelman V. , Dori D. An OPM Conceptual Model-Based Executable Simulation
Environment: Implementation and Evaluation. Syst. Eng. 2013, 16 (4) pp. 381–390

162 © ISO 2015 – All rights reservedInternational Organization for Standardization

International Organization for Standardization

ISO/PAS 19450:2015(E)

© ISO 2015 – All rights reserved

ICS 25.040.01

Price based on 162 pages

International Organization for Standardization

