INTERNATIONAL STANDARD

First edition 1993-12-15

Petroleum and natural gas industries — Pumping units — Specification

Industries du pétrole et du gaz naturel — Unités de pompage — Spécifications

Reference number ISO 10431:1993(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 10431 was prepared by the American Petroleum Institute (API) (as Spec 11E, 16th edition) and was adopted, under a special "fast-track procedure", by Technical Committee ISO/TC 67, *Materials, equipment and offshore structures for petroleum and natural gas industries*, in parallel with its approval by the ISO member bodies.

© ISO 1993

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Introduction

International Standard ISO 10431:1993 reproduces the content of API Spec 11E, 16th edition, 1989 and its supplement 1 (July 1, 1991). ISO, in endorsing this API document, recognizes that in certain respects the latter does not comply with all current ISO rules on the presentation and content of an International Standard. Therefore, the relevant technical body, within ISO/TC 67, will review ISO 10431:1993 and reissue it, when practicable, in a form complying with these rules.

This standard is not intended to obviate the need for sound engineering judgement as to when and where this standard should be utilized and users of this standard should be aware that additional or differing requirements may be needed to meet the needs for the particular service intended.

Standards referenced herein may be replaced by other international or national standards that can be shown to meet or exceed the requirements of the referenced standards.

Appendix G to this document shall not be considered as requirements.

This page intentionally left blank

Petroleum and natural gas industries — Pumping units — Specification

1 Scope

This International Standard lays down specification covering the design and rating of pumping units.

2 Requirements

Requirements are specified in:

"API Specification 11E (Spec 11E), Sixteenth Edition, October 1, 1989 - Specification for Pumping Units",

which is adopted as ISO 10431.

For the purposes of internation standardization, however, modifications shall apply to specific clauses and paragraphs of publication API Spec 11E. These modifications are outlined below.

Throughout publication API Spec 11E, the conversion of English units shall be made in accordance with ISO 31, parts 1 and 3. In particular,

LENGTH	1 inch (in) 1 foot (ft)	= 25,4 mm (exactly) = 304,8 mm (exactly)
MASS	1 pound (lb)	= 0,453 592 37 kg (exactly)
PRESSURE	1 pound-force per square inch (lbf/in ²) or 1 psi	= 6894,76 Pa
VOLUME	1 cubic inch (in ³)	= 16,387 064.10 ⁻³ dm ³ (exactly)
AREA	1 square inch (in ²)	$= 645,16 \text{ mm}^2$ (exactly)
VELOCITY	1 foot per second (ft/s)	= 0,3048 m/s (exactly)
TORQUE	1 inch pound-force (in lbf)	= 0,112985 N⋅m

Page 11

Information given in the POLICY is relevant to the API publication only.

Page 64

Appendix G

Information relating to the use of API monogram is relevant to the API publication only.

(Blank page)

Specification for Pumping Units

API SPECIFICATION 11E (SPEC 11E) SIXTEENTH EDITION, OCTOBER 1, 1989

> American Petroleum Institute 1220 L Street, Northwest Washington, DC 20005

ISO 10431:1993(E)

Supplement 1 (July 1, 1991)

Specification for Pumping Units

API SPECIFICATION 11E (SPEC 11E) SIXTEENTH EDITION, OCTOBER 1, 1989

> American Petroleum Institute 1220 L Street, Northwest Washington, DC 20005

Issued by AMERICAN PETROLEUM INSTITUTE Production Department

FOR INFORMATION CONCERNING TECHNICAL CONTENT OF THIS PUBLICATION CONTACT THE API PRODUCTION DEPARTMENT, 1201 MAIN STREET, SUITE 2535, DALLAS, TX 75202-3904 — (214) 748-3841. SEE BACK COVER FOR INFORMATION CONCERNING HOW TO OBTAIN ADDITIONAL COPIES OF THIS PUBLICATION.

Users of this publication should become completely familiar with its scope and content, including any provisions it may have regarding marking of manufactured products. This document is intended to supplement rather than replace individual engineering judgment.

OFFICIAL PUBLICATION

Copyright © 1991 American Petroleum Institute

Foreword

This supplement contains revisions authorized at the 1990 Standardization Conference as reported in Circ PS-1920 and approved by letter ballot.

Page 5. Replace Par. 2.4 and Fig. 2.1 with the following:

2.4 Walking Beam. The following formula shall be used for rating conventional walking beams as shown in Fig. 2.1.

$$W = -\frac{f_{cb}}{A} S_x$$

Wherein:

- W = walking-beam rating in pounds of polishedrod load.
- f_{cb} = compressive stress in bending in pounds per square inch. See Table 2.1 for maximum allowable stress.
- S_x = section modulus in cubic inches. The gross section of the rolled beam may be used except that holes or welds are not permissible on the tension flange in the critical zone. See Fig. 2.1.
- A = distance from centerline of saddle bearing to centerline of well in inches. See Fig. 2.1.
- C = distance from centerline of saddle bearing to centerline of equalizer bearing in inches. See Fig. 2.1.

Page 6. Replace the equation in Column 4, Row 2 of Table 2.1 with:

*
$$\sqrt{\frac{E I_{y} G J}{S_{x} l}}$$

Delete all the nomenclature at the end of Table 2.1 and replace it with:

* Where:

- J = Torsional constant, in4
- l = Longest laterally, unbraced length of beam, inches (longer of A or C (See Fig. 2.1)).

 ${\rm E}\,$ =Modulus of elasticity; 29,000,000 psi.

Iy =Weak axis moment of inertia, in4.

G =Shear modulus; 11,200,000 psi.

FIG. 2.1 WALKING-BEAM ELEMENTS

Order No. 811-05201

Additional copies available from AMERICAN PETROLEUM INSTITUTE Publications and Distribution Section 1220 L Street, NW

Washington, DC 20005 (202) 682-8375

Issued by AMERICAN PETROLEUM INSTITUTE Production Department

FOR INFORMATION CONCERNING TECHNICAL CONTENTS OF THIS PUBLICATION CONTACT THE API PRODUCTION DEPARTMENT, 1201 MAIN STREET, SUITE 2535, DALLAS, TX 75202-3904 — (214) 748-3841. SEE BACK COVER FOR INFORMATION CONCERNING HOW TO OBTAIN ADDITIONAL COPIES OF THIS PUBLICATION.

Users of this publication should become completely familiar with its scope and content, including any provisions it may have regarding marking of manufactured products. This document is intended to supplement rather than replace individual engineering judgment.

OFFICIAL PUBLICATION

Copyright © 1989 American Petroleum Institute

TABLE OF CONTENTS

Page	е
olicy	3
oreword	ł
ect. 1: Scope 4	ł
ect. 2: Pumping-Unit Structures 5	5
ect. 3: Pumping-Unit Reducers 9)
ect. 4: Inspection and Rejection 29	9
ppendix A: Approved Data Forms 30)
ppendix B: Recommended Practice for the Calculation and Application of Torque Factor on Pumping Units 32 (Rear Mounted Geometry Class I Lever Systems with Crank Counterbalance)	2
ppendix C: Recommended Practice for the Calculation and Application of Torque Factor on Pumping Units 39 (Front Mounted Geometry Class III Lever Systems with Crank Counterbalance)	Э
Appendix D: Recommended Practice for the Calculation and Application of Torque Factor on Pumping Units 44 (Front Mounted Geometry Class III Lever System Air Counterbalance)	4
Appendix E: Recommended Practice for the Calculation and Application of Torque Factor on Pumping Units 48 (Rear Mounted Geometry Class I Lever Systems with Phased Crank Counterbalance)	8
Appendix F: Recommended Practice for Calculation Torque Ratings for Pumping Unit Gear Reducers	4
Appendix G: Use of API Monogram 56	6

Note

This edition supersedes the fifteenth edition of Spec 11E. It includes changes adopted at the 1988 Standardization Conference as reported in Circ PS-1858 and subsequently passed by letter ballot. Requests for permission to reproduce or translate all or any part of the material published herein should be addressed to the Director, American Petroleum Institute, Production Department, 1201 Main Street, Suite 2535, Dallas TX 75202-3904.

POLICY

API PUBLICATIONS NECESSARILY ADDRESS PROBLEMS OF A GENERAL NATURE. WITH RESPECT TO PARTICULAR CIRCUMSTANCES, LOCAL, STATE AND FEDERAL LAWS AND REG-ULATIONS SHOULD BE REVIEWED.

API IS NOT UNDERTAKING TO MEET DUTIES OF EMPLOYERS, MANUFACTURERS OR SUP-PLIERS TO WARN AND PROPERLY TRAIN AND EQUIP THEIR EMPLOYEES, AND OTHERS EX-POSED, CONCERNING HEALTH AND SAFETY RISKS AND PRECAUTIONS, NOR UNDERTAKING THEIR OBLIGATIONS UNDER LOCAL, STATE, OR FEDERAL LAWS.

NOTHING CONTAINED IN ANY API PUBLICA-TION IS TO BE CONSTRUED AS GRANTING ANY RIGHT, BY IMPLICATION OR OTHERWISE, FOR THE MANUFACTURE, SALE, OR USE OF ANY METHOD, APPARATUS, OR PRODUCT COVERED BY LETTERS PATENT. NEITHER SHOULD ANY- THING CONTAINED IN THE PUBLICATION BE CONSTRUED AS INSURING ANYONE AGAINST LIABILITY FOR INFRINGEMENT OF LETTERS PATENT.

GENERALLY, API STANDARDS ARE REVIEWED AND REVISED, REAFFIRMED, OR WITHDRAWN AT LEAST EVERY FIVE YEARS. SOMETIMES A ONE-TIME EXTENSION OF UP TO TWO YEARS WILL BE ADDED TO THIS REVIEW CYCLE. THIS PUBLICATION WILL NO LONGER BE IN EFFECT FIVE YEARS AFTER ITS PUBLICATION DATE AS AN OPERATIVE API STANDARD OR, WHERE AN EXTENSION HAS BEEN GRANTED, UPON REPUBLICATION. STATUS OF THE PUBLICATION CAN BE ASCERTAINED FROM THE API AUTHOR-ING DEPARTMENT (TEL. 214-748-3841). A CATALOG OF API PUBLICATIONS AND MATERIALS IS PUBLISHED ANNUALLY AND UPDATED QUAR-TERLY BY API, 1220 L ST., N.W., WASHINGTON, D.C. 20005.

American Petroleum Institute

API SPECIFICATION FOR PUMPING UNITS

Foreword

a. This specification is under the jurisdiction of the Committee on Standardization of Production Equipment.

b. This specification covers designs and ratings of beam-type pumping-unit components. It does not cover chemical properties of materials, nor the use of the equipment.

c. Approved forms are given in Appendix A for rating of crank counterbalances and for recording pumping-unit stroke and torque factors.

- d. The following nomenclature is standard:
 1. Pumping unit.
 - 2. Pumping-unit structure.

- 3. Pumping-unit gear reducer.
- 4. Pumping-unit chain reducer.
- 5. Pumping-unit beam counterbalance.
- 6. Pumping-unit crank counterbalance.

e. Attention Users of this Publication: Portions of this publication have been changed from the previous edition. The location of changes has been marked with a bar in the margin. In some cases the changes are significant, while in other cases the changes reflect minor editorial adjustments. The bar notations in the margins are provided as an aid to users to identify those parts of this publication that have been changed from the previous edition, but API makes no warranty as to the accuracy of such bar notations.

SECTION 1 SCOPE

1.1 This specification covers the design and rating of the following:

- a. Pumping-unit structure.
- b. Pumping-unit gear reducer.

c. Pumping-unit chain reducer.

1.2 American Petroleum Institute (API) Specifications are published as aids to the procurement of standardized equipment and materials, as well as instructions to manufacturers of equipment or materials covered by an API Specification. These Specifications are not intended to obviate the need for sound engineering, nor to inhibit in any way anyone from purchasing or producing products to other specifications.

1.3 The formulation and publication of API Specifications and the API monogram program is not intended in any way to inhibit the purchase of products from companies not licensed to use the API monogram. 1.4 API Specifications may be used by anyone desiring to do so, and diligent effort has been made by the Institute to assure the accuracy and reliability of the data contained therein. However, the Institute makes no representation, warranty, or guarantee in connection with the publication of any API Specification and hereby expressly disclaims any liability or responsibility for loss or damage resulting from their use, for any violation of any federal, state, or municipal regulation with which an API Specification may conflict, or for the infringement of any patent resulting from the use of an API Specification.

1.5 Any manufacturer producing equipment or materials represented as conforming with an API Specification is responsible for complying with all the provisions of that Specification. The American Petroleum Institute does not represent, warrant or guarantee that such products do in fact conform to the applicable API standard or specification.

SECTION 2 PUMPING-UNIT STRUCTURES

2.1 Scope. This section covers:

- a. Standardization of specific structure sizes in combination with established reducer sizes as given in Section 3.
- b. Walking beam design, with specific rating formula.
- c. Design loads and limiting working stresses on other structural components are also included.

NOTE: Only loads imposed on the structure and/or gear reducer by the polished rod load are considered in this specification. Additional loads on the pumping unit imposed by add-on devices attached to the reducer, walking beam, or other structural components are not part of this specification. These would include such devices as compressors, stroke increasers, etc.

2.2 No dimensional requirements, other than stroke length, are established. Rating methods are given only for polished-rod capacities; however, allowable working stresses of other structural components for a given polished rod capacity are defined.

Other design criteria such as bearing design, braking capacity, etc., are also established.

2.3 Standard Pumping-Unit Series. It is recommended that pumping units furnished to this specification adhere to the gear reducer rating, structure capacity, and stroke length as given in Table 2.2, although the combinations of these items that make up the pumping unit designation need not be identical to those in the table. The particular combinations in the table are typical but combinations other than those listed are acceptable under this standard. NOTE: It is the spirit and intent of above provision, that any manufacturer having authority to use the API monogram on pumpingunit structures, may not represent a structure carrying the monogram or for which the letters API or the words "American Petroleum Institute" are used in its description as having a rating of any kind or size other than provided above. This applies to sales information as well as to structure markings.

2.4 Walking Beam. The following formula shall be used for rating conventional walking beams as shown in Fig. 2.1.

$$W = \frac{f_{cb}S}{L}$$

Wherein:

- W = walking-beam rating in pounds of polishedrod load.
- $L = greater of l_f or l_r$
- f_{cb} = compressive stress in bending in pounds per square inch. See Table 2.1 for maximum allowable stress.
- S = section modulus in cubic inches. The gross section of the rolled beam may be used except that holes or welds are not permissible on the tension flange in the critical zone. See Fig. 2.1.
- l_f = distance from centerline of saddle bearing to centerline of well in inches. See Fig. 2.1.
- l_r = distance from centerline of saddle bearing to centerline of equalizer bearing in inches. See Fig. 2.1.

WALKING-BEAM ELEMENTS

American Petroleum Institute

TABLE 2.1

MAXIMUM ALLOWABLE STRESSES IN PUMPING-UNIT WALKING BEAMS

(See Fig. 2.1)

1	2	3	4
	Stress	Symbol	ASTM A36 Structural Steel
1	Tensile stress in extreme fibers in bending, psi.	feb	11,000
2	Compressive stress in extreme fibers in bending, psi. (May not exceed values on line 3)	f eb	$\frac{ *6,000,000}{\frac{ld}{bt}}$
3	Maximum compressive stress in bending, except as limited by equation on line 2, psi.	fcb	11,000
4	Minimum yield strength of material, psi.		36,000
_			

*In the quantity l d = t

l = longest laterally, unbraced length of beam, inches (longer of l_r or l_f, see Fig. 2.1).

d = depth of beam section, inches.

b = width of compression flange, inches.

t = thickness of compression flange, inches.

NOTE: The formula given in Par. 2.4 is based on the conventional beam construction using a single rolled section. With unconventional construction or built-up sections, due regard shall be given to change in loading, to checking stresses at all critical sections, and to the existence of stress concentrating factors.

2.5 The working stress, f_{cb} for the beam rating formula given in Par. 2.4, shall be determined from Table 2.1. For standard rolled beams having cross sections symmetrical with the horizontal neutral axis, the critical stress will be compression in the lower flange. The maximum value of this stress, f_{cb} , is the smaller of the values determined from lines 2 and 3 of Table 2.1.

2.6 Unit Rotation. Viewed from the side of the pumping unit with the well head to the right. crank rotation is defined as either clockwise or counter-clockwise.

2.7 Design Loads for All Structural Members Except Walking Beams. For all pumping unit geometries, and unless otherwise specified, use the maximum load exerted on the component in question by examining the loads on the component at each 15° crank position on the upstroke of the pumping unit. Use polished rod load W, for all upstroke crank positions. (See Par. 2.1c)

For units with bi-directional rotation and nonsymmetrical torque factors, the direction of rotation for

SPEC 11E	PUMPING-UNIT STRUCTURE
PUMPING UNIT STRUCTURE	
STRUCTURAL UNBALANCE (PC	DUNDS)
SERIAL NUMBER	
(NAME OF MAN	NUFACTURER)
(ADDRESS OF M	ANUFACTURER)
FIC	0.0

FIG. 2.2 PUMPING-UNIT STRUCTURE NAME PLATE

NOTE: Structural unbalance is that force in pounds required at the polished rod to hold the beam in a horizontal position with the pitmans disconnected from the crank pins. This structural unbalance is considered positive when the force required at the polished rod is downward, and negative when upward. The minus (—) sign shall be stamped on the name plate when this value is negative.

design calculations shall be that which results in the highest loading on structural components.

Due consideration shall be given to the direction of loading on all structural bearings and on the structural members supporting these bearings.

NOTE: Allowable stress levels are based on simple stresses without consideration of stress risers. Adequate stress concentration factors shall be used when stress risers occur.

2.8 Design Stresses for All Structural Members Except Walking Beam, Bearing Shafts and Cranks.

- a. Design stresses for all structural components shall be a function of the yield strength of the material, Sy, psi.
- b. Components subjected to simple tension or compression and non-reversing bending shall have a limiting stress of .3 Sy. If stress risers occur in critical zones of tension members, the limiting stress shall be .25 Sy.
- c. Components subjected to reverse bending shall have a limiting stress of .2 Sy.
- d. The following formula shall be used for all components acting as columns:

$$W_{2} = \frac{a Sy}{4} \left[1 - \frac{Sy}{4n \pi^{2} E} \left(\frac{1}{r} \right)^{2} \right]$$

Wherein:

- W₂ = maximum applied load on column, lbs.
- a = area of cross section, sq. in.
- Sy = yield strength of material, psi
- n = end restraint constant (assume = 1)
- E = modulus of elasticity, psi
- l = unbraced length of column, in.
- r = radius of gyration of section, in.
- l shall be limited to a maximum of 90. For $\frac{1}{r}$
- r values of 30 or less, columns may be assumed to be acting in simple compression (See Par. 2.8b).

2.9 Shafting. All bearing shafts as well as other structural shafting shall have limiting stresses as outlined in Par. 3.8 in the reducer section of this specification.

2.10 Hanger. Wirelines for horseheads shall have a minimum factor of safety of five when applied to the breaking strength of the wireline.

For allowable stresses on carrier bar, end fittings, etc., see Par. 2.8b and 2.8c.

2.11 Brakes. Pumping unit brakes shall have sufficient braking capacity to withstand a torque exerted by the cranks at any crank position with a maximum amount of counterbalance torque designed by the manufacturer for the particular unit involved. This braking torque to be effective with the pumping unit at rest under normal operating conditions with the well disconnected.

NOTE: The pumping unit brake is not intended as a safety stop but is intended for operational stops only.

When operations or maintenance are to be conducted on or around a pumping unit, the position of the crank arms and counterweights should be securely fixed in a stationary position by chaining or other acceptable means.

2.12 Horseheads. Horseheads shall be either hinged or removable to provide access for well servicing.

Horseheads shall be attached to the walking beam in such a manner as to prevent falling off due to a high rod part or other sudden load changes.

The distance from the pivot point of the horsehead to the tangent point of the wireline on the horsehead shall have a maximum dimensional tolerance at any position of the stroke of the following values:

- $\pm \frac{1}{2}$ in. for stroke lengths to 100 in.
- $\pm\%$ in. for stroke lengths 100 in. to 200 in.
- $\pm \frac{3}{4}$ in. for stroke lengths of 200 in. and longer

2.13 Cranks. All combined stresses in cranks shall be limited to a maximum value of .15 Sy.

2.14 Structural Bearing Design. Structural bearing shafts may be supported in sleeve or anti-friction bearings.

a. Anti-Friction Bearings.

For bearings subject to oscillation or rotation use the bearing load ratio formula:

$$\mathbf{R}_1 = \mathbf{k} \; \frac{\mathbf{C}_1}{\mathbf{W}_1}$$

Where:

- R₁ = bearing load ratio
- k = 1 for bearings rated at 33-1/3 rpm and 500 hours or
- k = 3.86 for bearings rated at 500 rpm and 3000 hours
- C₁ = bearing manufacturer's specific dynamic rating in lbs.
- W₁ = maximum load on bearing in lbs.

For bearings subject to oscillation only use an R_1 value of 2.0 or greater.

For bearings subject to rotation use an $R_{\rm i}$ value of 2.25 or greater.

8____

American Petroleum Institute

TABLE 2.2 PUMPING UNIT SIZE RATINGS

1	2	3	4	1	2	3	4
Pumping Unit Size	Reducer Rating, inlb	Structure Capacity, lb	Max. Stroke Length, in.	Pumping Unit Size	Reducer Rating, inlb	Structure Capacity, lb	Max. Stroke Length, in.
6 4 22 16	6 400	3 200	16	320-213- 86	320.000	21,300	86
6.4 - 32 - 10 6.4 - 21 - 24	6,400	2,100	24	320-213-30 320-256-100 320-305-100	320,000	25,600	100
10-32-24 10-40-20	10,000 10,000	3,200 4,000	24 20	320 - 213 - 120 320 - 256 - 120 320 - 256 - 144	320,000 320,000 320,000	21,300 25,600 25,600	120 120 144
16-27-30	16,000	2,700	30	020-200-144	020,000	20,000	
16- 53- 30	16,000	5,300	30	456 - 256 - 120 456 - 305 - 120	456,000 456,000	25,600 30,500	120 120
25 - 53 - 30	25,000	5,300	30	456-365-120	456,000	36,500	120
25 - 50 - 30 25 - 67 - 36	25,000	6,700	36	456-256-144	456,000	25,600	144
20 01 00	20,000	-,		456 - 305 - 168	456,000	30,500	168
40- 89- 36	40,000	8,900	36			,	
40 - 76 - 42	40,000	8,000	42	640 - 305 - 120	640,000	30,500	120
40 - 76 - 42	40,000	7.600	48	640 - 206 - 144 640 - 305 - 144	640,000	25.600	144
10 10 10	10,000	1,000		640 - 365 - 144	640.000	36,500	144
57- 76- 42	57,000	7,600	42	640-305-168	640,000	30,500	168
57 - 89 - 42	57,000	8,900	42	640-305-192	640,000	30,500	192
57 - 95 - 48 57 109 48	57,000	9,500	48	010 407 144	019 000	49 700	144
57 - 109 - 40 57 - 76 - 54	57,000	7,600	54	912 - 427 - 144 912 - 305 - 168	912,000	42,700	168
01 10 01	01,000	.,		912 - 365 - 168	912,000	36,500	168
80-109-48	80,000	10,900	48	912-305-192	912,000	30,500	192
80 - 133 - 48	80,000	13,300	48 54	912 - 427 - 192	912,000	42,700	192
80-119-54 80-133-54	80,000	13,300	54	912-470-240 912-497-916	912,000	47,000	240
80-119-64	80,000	11,900	64	512-421-210	312,000	42,100	210
		,		1280 - 427 - 168	1,280,000	42,700	168
114-133- 54	114,000	13,300	54	1280 - 427 - 192	1,280,000	42,700	192
114 - 143 - 64	114,000	14,300	64 64	1280 - 427 - 216	1,280,000	42,700	216
114 - 173 - 64 114 - 143 - 74	114,000	14,300	74	1280 - 470 - 240 1280 - 470 - 300	1,280,000	47,000	300
114 - 143 - 74 114 - 119 - 86	114,000	11,900	86	1200-470-300	1,200,000	41,000	000
	111,000			1824-427-192	1,824,000	42,700	192
160 - 173 - 64	160,000	17,300	64	1824 - 427 - 216	1,824,000	42,700	216
160 - 143 - 74	160,000	14,300	74	1824 - 470 - 240	1,824,000	47,000	240
160 - 173 - 74 160 - 200 - 74	160,000	20,000	74	1824-470-300	1,824,000	47,000	300
160 - 173 - 86	160,000	17,300	86	2560-470-240	2.560.000	47.000	240
	,	-		2560-470-300	2,560,000	47,000	300
228 - 173 - 74	228,000	17,300	74	0040 (80 040	0.040.000	47.000	940
228 - 200 - 74 228 - 212 - 24	228,000	21,000	86	3648-470-240	3,648,000	47,000	240
228-246- 86	228,000	24,600	86	3048-470-300	3,048,000	47,000	300
228-173-100	228,000	17,300	100				
228 - 213 - 120	228,000	21,300	120				

b. Sleeve Bearings.

The design of sleeve bearings is beyond the scope of this specification. It shall be the responsibility of the pumping unit manufacturer to design sleeve bearings, based on available test data and field experience, which are comparable in performance to anti-friction bearings designed for the same operating loads and speeds.

2.15 Installation Markings. Clearly defined and readily usable markings shall be provided on the end cross members of the base to indicate the vertical projection of the walking beam centerline. The markings shall be applied with a chisel, punch, or other suitable tool.

2.16 Marking.* Each pumping-unit structure shall be provided with a name plate substantially as shown in Fig. 2.2. At the discretion of the manufacturer. the

name plate may contain other non-conflicting and appropriate information. such as model number or lubrication instructions.

2.17 In order that the torque on a reducer may be determined conveniently and accurately from dynamometer test data, manufacturers of pumping units shall provide, on request of the purchaser, stroke and torque factors for each 15-deg position of the crank. An approved form for the submission of these data is shown in Appendix A.

*Users of this specification should note that there is no longer a requirement for marking a product with the API monogram. The American Petroleum Institute continues to license use of the monogram on products covered by this specification but it is administered by the staff of the Institute separately from the specification. The policy describing licensing and use of the monogram is contained in Appendix H. herein. No other use of the monogram is permitted.

SECTION 3 PUMPING-UNIT REDUCERS

3.1 SCOPE

Applicability. This Specification is applicable to enclosed speed reducers wherein the involute gear tooth designs include helical and herringbone gearing. This Specification is intended primarily for beam-type pumping units.

Limitations. The rating methods and influences identified in this Specification are limited to single and multiple stage designs applied to oilfield pumping units, in which the pitch-line velocity of any stage does not exceed 5000 feet per minute and the speed of any shaft does not exceed 3600 revolutions per minute.

3.2 **RESPONSIBILITY**

Gear Reducer Designers. Professionals using this Specification should realize that it is quite difficult to identify and offer solutions to all the influences affecting a gear reducer. For this reason, it is recommended that this Specification be used by engineers with significant experience in mechanical systems.

Reducers rated under this Specification, and properly applied, installed, lubricated and maintained, shall be capable of safely carrying the rated peak torque under normal oilfield conditions.

Rating Factors. The allowable stress numbers in this Specification are maximum allowed values. Less conservative values for other rating factors in this Specification shall not be used.

Metallurgy. The allowable stress numbers, s_{ac} and s_{ai} , included in this Specification are based on commercial ferrous material manufacturing practices. Hardness, tensile strength, and microstructure are the criteria for allowable stress numbers. Reasonable levels of cleanliness and metallurgical controls are required to permit the use of the allowable stress numbers contained in this Specification.

Residual Stress. Any material having a case-core relationship is likely to have residual stresses. If properly managed, these stresses will be compressive and will enhance the bending strength performance of the gear teeth. Shot peening, case carburizing, nitriding, and induction hardening are common methods of inducing compressive prestress in the surface of the gear teeth.

American Petroleum Institute

ATensile Area of Fastener, in?3.8CnLad Distribution Factor for Pitting Resistance3.5Cr,Pitting Volotity Number3.5Cr,Pitting Stress Number3.5Cr,Pitting Stress Number3.5Cr,Victority Factor for Pitting Resistance3.5DOperating Pitch Diameter of Gear, in.3.8dOperating Pitch Diameter of Fastener, in.3.8dOperating Pitch Diameter of Finion, in.3.8dOperating Pitch Diameter of Finion, in.3.8dModulus of Elasticity for Gear, psiTable 3.4FNet Face Width of Narrowest Member, in.3.5HReserve Width of Narrowest Member, in.3.6HKey Height in Shaft or Ilub, in.3.6JGeometry Pactor for Pitting Resistance3.5JGeometry Pactor for Pitting Resistance3.6KMultis Pactor In Beding Strength3.6KStrength Orabin Factor for Beding Strength3.6KStrength Orabin Factor for Beding Strength3.6KStrength Stress Number3.6KStrength Stress Number3.6KStrength Orabing Strength3.6KStrength Orabing Strength3.6KStrength Orabing Strength3.6KStrength Orabing Strength3.6KStrength Orabing Strength3.6KStrength Orabing Strength3.6KStrength Orabing Strength3.6K <th>Symbol</th> <th>Description</th> <th>Reference</th>	Symbol	Description	Reference
CmLad Disribution Factor for Pitting Resistance3.5CpPitting Velocity Number3.5C1Pitting Contact Number3.5C3Pitting Stress Number3.5C4Velocity Factor for Pitting Resistance3.5C5Velocity Factor for Pitting Resistance3.5DOperating Pitch Diameter of Gear, in.3.8dOperating Pitch Diameter of Pinion, in.3.8dSaft Diameter of Fastener, in.3.8Eq.Modulus of Elasticity for Gear, psiTable 3.4FNet Face Width of Narroweet Member, in.3.5HaBrinell HardnessFig. 3.1hiKey Fleight in Shaft or Hub, in.3.8IGeometry Factor for Bending Strength3.6KmLoad Distribution Factor for Bending Strength3.6KmLoad Distribution Factor for Bending Strength3.6KmLoad Distribution Factor for Bending Strength3.6KaStrength Gometry Number3.6KiStrength Gometry Number3.6KiStrength Gometry Number3.6KiStrength Geometry	Α	Tensile Area of Fastener, in.2	3.8
CpElastic Coefficient3.5CrPitting Velocity Number3.5CrPitting Contact Number3.5CrVelocity Factor for Pitting Resistance3.5CrVelocity Factor for Pitting Resistance3.7DmOperating Pitch Diameter of Gear, in.3.8dOperating Pitch Diameter of Pinion, in.3.8dOperating Pitch Diameter of Pinion, pin3.8dModulus of Elasticity for Gear, psiTable 3.4EqModulus of Elasticity for Gear, psiTable 3.4FNet Face Width of Narrowest Member, in.3.5HBirnell HardnessFig. 3.1hKey Height in Shaft of Hub, in.3.8IGeometry Factor for Pitting Resistance3.5JGeometry Factor for Pitting Resistance3.6KmLoad Distribution Factor For Bending Strength3.6KmLoad Distribution Factor, Static Torque3.7KnStrength Stress Number3.6KaStrength Stress Number3.6KaStrength Stress Number3.6KaStrength of Lines of Contact in Contact Zone3.5NoNumber of Teeth in Gear3.5NoSpeed of Uutyut Shaft, rpm3.5NoSpeed of Output Shaft, rpm3.5Normal Dametry Pitch, in.*3.6KaStrength Dianeter Jin.*3.6KaStrength Dianeter Jin.*3.5Namber of Teeth in Fluion3.5Namber of Teeth in Gear3.5 </td <td>Cm</td> <td>Load Distribution Factor for Pitting Resistance</td> <td>3.5</td>	Cm	Load Distribution Factor for Pitting Resistance	3.5
	Cp	Elastic Coefficient	3.5
C_Pitting Contact Number3.5C_Pitting Stress Number3.5C_Velocity Pactor for Pitting Resistance3.5DOperating Pitton Diameter of Gear, in.3.7D_mMean Diameter of Fastener, in.3.5dOperating Pitton Diameter of Pinion, in.3.5dShaft Diameter, in.3.5dModulus of Elasticity for Pinion, psiTable 3.4E_oModulus of Elasticity for Pinion, psiTable 3.4FNet Face Width of Narrowest Member, in.3.5H_BBrinell HardnessFig. 3.1h_Key Height in Shaft or Hub, in.3.6Geometry Factor for Pitting Resistance3.5JGeometry Factor for Pitting Resistance3.6K_mLoad Distribution Factor for Bending Strength3.6K_mLoad Distribution Factor Static Torque3.7K_yStrength Pactor3.6K_gStrength Stress Number3.6K_gStrength Ontact Number3.6K_gStrength of Lies of Contact in Contact Zone3.5N_GNumber of Teeth in Gear3.5N_GNumber of Teeth in Gear3.5N_gNormal Base Pitch, in.3.5<	\mathbf{C}_{1}	Pitting Velocity Number	3.5
C1Pitting Stress Number3.5C5Velocity Factor for Pitting Resistance3.5DOperating Pitch Diameter of Gear, in.3.8dMean Diameter of Fastener, in.3.8dShaft Diameter, in.3.8L6Modulus of Elasticity for Cear, psiTable 3.4E9Modulus of Elasticity for Pinion, psiTable 3.4FNet Face Width of Narrowset Member, in.3.5H8Brinell HardnessFig. 3.1h1Key Height in Shaft or Hub, in.3.8IGeometry Factor for Bending Strength3.6KmLoad Distribution Factor. Static Torque3.7KwLoad Distribution Factor. Static Torque3.7KyYield Strength Factor3.6KuStrength Contact Number3.6KuStrength Contact Number3.6KuStrength Contact Number3.6KuStrength Geometry Factor3.6KuStrength Geometry Number3.6KuStrength Geometry Number3.6KuStrength of Pathener3.6KuVelocity Pattor for Bending Strength3.6Longth of Key, in.3.5Longth Of Key, in.3.5Longth Of Key, in.3.5Longth Of Key, in.3.5Longth Of Key, in.3.5Number of Teeth in Gear3.5NoNumber of Teeth in Gear3.5NoNumber of Teeth in Gear3.5NoNormal Diametral Pitch, in.^13.6 <td>C_2</td> <td>Pitting Contact Number</td> <td>3.5</td>	C_2	Pitting Contact Number	3.5
C_6 Velocity Factor for Pitting Resistance 3.5 DOperating Pitch Diameter of Gear, in. 3.7 D_m Mean Diameter of Fastener, in. 3.6 d_4 Operating Pitch Diameter of Pinion, in. 3.5 d_4 Shaft Diameter, in. 3.6 E_0 Modulus of Elasticity for Cear, psiTable 3.4 E_0 Modulus of Elasticity for Pinion, psi 3.6 F Net Face Width of Narrowest Member, in. 3.5 H_8 Brinell HardnessFig. 3.1 h_1 Key Height in Shaft or Hub, in. 3.8 I Geometry Factor for Pitting Resistance 3.6 J Geometry Factor for Bending Strength 3.6 K_m Load Distribution Factor. Static Torque 3.7 K_i Strength Velocity Number 3.6 K_a Strength Contact Number 3.6 K_a Strength Contact Number 3.6 K_a Strength Contact Number 3.6 K_a Strength of Key, in. 3.8 L_{min} Minimum Total Length of Lines of Contact Zone 3.5 N_0 Number of Teeth in Gear 3.5 N_0 Number of Teeth in Pinion 3.5 N_0 Number of Teeth in Gear 3.5 N_0 Number of Teeth in Pinion 3.5 N_0 Number of Teeth in Pinion 3.5 <t< td=""><td>C_3</td><td>Pitting Stress Number</td><td>3.5</td></t<>	C_3	Pitting Stress Number	3.5
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C ₅	Velocity Factor for Pitting Resistance	3.5
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	D	Operating Pitch Diameter of Gear, in.	3.7
dOperating Pitch Diameter of Pinion, in. 3.5 d_q Shaft Diameter, in. 3.6 E_0 Modulus of Elasticity for Cear, psiTable 8.4 E_0 Modulus of Elasticity for Pinion, psiTable 3.4 F Nct Face With of Narrowest Member, in. 3.5 H_8 Brinell HardnessFig. 3.1 h_1 Key Height in Shaft of Hub, in. 3.8 IGeometry Factor for Pitting Resistance 3.5 JGeometry Factor for Bending Strength 3.6 K_m Load Distribution Factor. Static Torque 3.7 K_w Load Distribution Factor. Static Torque 3.7 K_y Yield Strength Factor 3.6 K_s Strength Velocity Number 3.6 K_s Strength Stress Number 3.6 K_s Strength Stress Number 3.6 K_s Velocity Factor for Bending Strength 3.6 K_s Strength Geometry Number 3.6 K_s Velocity Factor for Bending Strength 3.6 L_s Length of Key, in. 3.8 L_min Minimum Total Length of Lines of Contact in Contact Zone 3.5 N_G Number of Testh in Gear 3.5 N_p Threads Per Inch of Fastener 3.6 N_p Number of Testh in Gear 3.5 N_p Diametral Pitch, Nominal, in the Plane Rotation (Transverse), in1 3.6 N_p Normal Base Pitch, in. 3.5 N_p Diametral Pitch, Nominal, in the Plane Rotation (Transverse), in1	D _m	Mean Diameter of Fastener, in.	3.8
d_Shaft Diameter, in.3.8E_GModulus of Elasticity for Gear, psiTable 3.4E_pNet Face Width of Narrowest Member, in.3.5H_BBrinell HardnessFig. 3.1h_1Key Height in Shaft or Hub, in.3.8IGeometry Factor for Pitting Resistance3.5JGeometry Factor for Pitting Resistance3.6K_mLoad Distribution Factor for Bending Strength3.6K_mLoad Distribution Factor for Bending Strength3.6K_mLoad Distribution Factor for Bending Strength3.6K_sStrength Contact Number3.6K_sStrength Contact Number3.6K_sStrength Geometry Number3.6K_sStrength Geometry Number3.6K_sStrength Geometry Number3.6LuinLength of Key, in.3.5M_GGear Ratio3.5N_GNumber of Teeth in Gear3.5N_GNumber of Teeth in Gear3.5N_pNumber of Teeth in Gear3.6N_pNumber of Teeth in Chastner3.8N_nNormal Base Pitch, in.3.5P_dDiametral Pitch, in.3.6P_MNormal Base Pitch, in.3.5S_sKey Shear Stress, psiFig. 3.7S_sAllowable Contact Stress Number, psi3.6S_sKey Shear Stress, psi5.5S_sKey Shear Stress, psi5.5S_sAllowable Stress Number, psi3.5S_sAllo	d	Operating Pitch Diameter of Pinion, in.	3.5
E_G Modulus of Elasticity for Cear, psiTable 3.4 E_p Modulus of Elasticity for Pinion, psiTable 3.4 F Net Face Width of Narrowest Member, in.3.5 H_B Brinell HardnessFig. 3.1 h_1 Key Height in Shaft of Hub, in.3.8IGeometry Factor for Pitting Resistance3.5JGeometry Factor for Bending Strength3.6 K_m Load Distribution Factor. Static Torque3.7 K_y Yield Strength Factor3.7 K_y Strength Velocity Number3.6 K_a Strength Velocity Number3.6 K_a Strength of Dendery Number3.6 K_a Strength of Dendery Number3.6 K_a Strength of Dendery Number3.6 K_a Strength of Paetor for Bending Strength3.6 L_a Length of Key, in.3.8 L_{min} Minimum Total Length of Lines of Contact In Contact Zone3.5 m_G Gear Ratio3.5 N_p Number of Teeth in Gear3.5 N_p Number of Teeth in Pinion3.5 n_a Speed of Output Shaft, rpm3.5 n_b Normal Diametral Pitch, in. ¹ 3.6 P_d Normal Diametral Pitch, in. ¹ 3.6 N_p Number of Teeth in Gue at the stress Number, psi3.5 n_b Nerge at the stress Number, psi3.5 n_b Speed of Output Shaft, rpm3.5 n_b Normal Diametral Pitch, in. ¹ 3.6 N_p Number	ds	Shaft Diameter, in.	3.8
EpModulus of Elasticity for Pinion, psiTable 3.4FNet Face Width of Narrowest Member, in.3.5H _B Brinell HardnessFig. 3.1h ₁ Key Height in Shaft or Hub, in.3.8IGeometry Factor for Pitting Resistance3.6JGeometry Factor for Bending Strength3.6KmLoad Distribution Factor for Bending Strength3.6KmLoad Distribution Factor for Bending Strength3.6KmLoad Distribution Factor for Bending Strength3.6KaStrength Velocity Number3.6KaStrength Contact Number3.6KaStrength Geometry Number3.6KaStrength Geometry Number3.6KaVelocity Factor for Bending Strength3.6LuinLength of Key, in.3.5Minimum Total Length of Lines of Contact in Contact Zone3.5NGNumber of Teeth in Gear3.5NgNumber of Teeth in Gear3.5NgNumber of Teeth in Pinion3.5naSpeed of Output Shaft, rpm3.5naSpeed of Output Shaft, rpm3.5naNormal Base Pitch, in. 13.6PadNormal Base Pitch, in.3.5SaAllowable Contact Stress Number, psi3.5SaAllowable Str	E_{G}	Modulus of Elasticity for Gear, psi	Table 3.4
F Net Face Width of Narrowest Member, in.3.5 H_B Brinell HardnessFig. 3.1 h_i Key Height in Shaft or Hub, in.3.8IGeometry Factor for Bending Strength3.6 K_m Load Distribution Factor, Static Torque3.7 K_w Vield Strength Factor3.7 K_w Yield Strength Valocity Number3.6 K_a Strength Valocity Number3.6 K_2 Strength Contact Number3.6 K_4 Strength Grometry Number3.6 K_4 Welocity Factor for Bending Strength3.5 M_1 Minimum Total Length of Lines of Contact in Contact Zone3.5 m_6 Gear Ratio3.5 N_6 Number of Teeth in Gear3.5 N_7 Threads Per Inch of Fastener3.5 N_9 Number of Teeth in Finion3.5 N_9 Number of Teeth in Plane Rotation (Transverse), in13.6 P_4 Normal Diametral Pitch, in13.6 N_8 Key Compressive Stress, psiFig. 3.7 s_4 Allowable Contact Stress Number, psi3.5 s_4 Allowable Contact Stress Number, psi3.6 S_8 Key Compressive Stress Number, psi3.6 S_8 Allowable Contact Stress Number, psi3.6 S_8 Allowable Stati	En	Modulus of Elasticity for Pinion, psi	Table 3.4
HgBrinell HardnessFig. 3.1h1Key Height in Shaft or Hub, in.3.8JGeometry Factor for Pitting Resistance3.5JGeometry Factor for Bending Strength3.6KmLoad Distribution Factor for Bending Strength3.6KmLoad Distribution Factor for Bending Strength3.6KmLoad Distribution Factor for Bending Strength3.6KyYield Strength Velocity Number3.6K_1Strength Contact Number3.6K_2Strength Geometry Number3.6K_3Strength Geometry Number3.6LLength of Key, in.3.8LLength of Key, in.3.8LLength of Key, in.3.5NGNumber of Teeth in Gear3.5NGNumber of Teeth in Pinion3.5NgThreads Per Inch of Fastner3.8NpNumber of Teeth in Pinion3.5ngSpeid of Output Shaft, rpm3.6NgNormal Base Pitch, in.'3.6PadNormal Base Pitch, in.'3.6PadNormal Base Pitch, in.'3.6SaKey Compressive Stress, psiFig. 3.7SaKey Compressive Stress, psiSig. 3.7SaAllowable Contact Stress Number, psi3.6SaAllowable Yield Strength Number, psi3.7SaAllowable Static Torque, 1.83.7SaAllowable Static Torque, 2.03.7SaAllowable Static Torque, 2.03.7Sa <td< td=""><td>F</td><td>Net Face Width of Narrowest Member, in.</td><td>3.5</td></td<>	F	Net Face Width of Narrowest Member, in.	3.5
hKey Height in Shaft or Hub, in.3.81Geometry Factor for Pitting Resistance3.5JGeometry Factor for Bending Strength3.6KmLoad Distribution Factor, Static Torque3.7KyYield Strength Factor3.6KyYield Strength Factor3.6KyYield Strength Vomber3.6KyStrength Volcity Number3.6KyStrength Contact Number3.6KyStrength Geometry Number3.6KyVelocity Factor for Bending Strength3.6KuLength of Key, in.3.8LuminMinimum Total Length of Lines of Contact in Contact Zone3.5MGCuart Ratio3.5NGNumber of Teeth in Gear3.5NgGeore Ratio3.5NpNinmo Pot Teeth in Pinion3.5ngDiametral Pitch, in.13.6PalDiametral Pitch, in.13.6Pinion Speed, rpm3.5NpNormal Diametral Pitch, in.13.6Normal Diametral Pitch, in.13.5SeKey Compressive Stress, psiFig. 3.7SeAllowable Fording Strength Number, psi3.6SaAllowable Fording Strength Number, psi3.6SaAllowable Fording Strength Number, psi3.6SaAllowable Fording Stress Number, psi3.6SaAllowable Fording Stress Number, psi3.6SaAllowable Static Torque, 1st Reduction, lb. in.3.7TaAllowable Sta	H _B	Brinell Hardness	Fig. 3.1
IGeometry Factor for Pitting Resistance8.5JGeometry Factor for Bending Strength3.6KmLoad Distribution Factor for Bending Strength3.6KmLoad Distribution Factor, Static Torque3.7K1Strength Factor3.7K1Strength Contact Number3.6K2Strength Stress Number3.6K3Strength Stress Number3.6K4Strength Stress Number3.6K5Velocity Pactor for Bending Strength3.6LLength of Key, in.3.8LminMinimum Total Length of Lines of Contact in Contact Zone3.5MGGear Ratio3.5NGNumber of Teeth in Pinion3.5NpNumber of Teeth in Pinion3.5NpPinion Speed, rpm3.5NpPinion Speed, rpm3.5NgNormal Diametral Pitch, in.13.6Normal Diametral Pitch, in.23.63.7SeKey Shar Stress, psiFig. 3.7SeAllowable Contact Stress, psiSig. 3.7SeAllowable Contact Stress, psi3.6SayAllowable Contact Stress, psi3.6SayAllowable Contact Stress Number, psi3.6SayAllowable Static Torque, 18. Number, psi3.7SaAllowable Static Torque, 18. Number, psi3.7SayAllowable Static Torque, 18. Number, psi3.7SayAllowable Static Torque, 18. Number, psi3.6SayAllowable Static Torque, 18. N	h ₁	Key Height in Shaft or Hub, in.	3.8
JGeometry Factor for Bending Strength3.6KmLoad Distribution Factor for Bending Strength3.6KmLoad Distribution Factor for Static Torque3.7KyYield Strength Factor3.7KyStrength Contact Number3.6K2Strength Contact Number3.6K3Strength Stress Number3.6K4Strength Geometry Number3.6K5Velocity Factor for Bending Strength3.6LLength of Key, in.3.8LminMinimum Total Length of Lines of Contact in Contact Zone3.5MGNumber of Teeth in Gear3.5NrThreads Per Inch of Fastener3.8NgNumber of Teeth in Gear3.5NgNumber of Teeth in Plane3.5NgDiametral Pitch, Nominal, in the Plane Rotation (Transverse), in.13.6PadDiametral Pitch, in.13.6NgNormal Base Pitch, in.3.5SaKey Compressive Stress, psiFig. 3.7SaAllowable Contact Stress Number, psi3.6SayAllowable Strength Number, psi3.6SayAllowable Strength Number, psi3.6SayAllowable Bransmitted Torque at Output3.5TaAllowable Static Torque, 1b, in.3.6SayAllowable Static Torque at Output3.7TaAllowable Static Torque, 1st Reduction, lb, in.3.7TaAllowable Static Torque, 1st Reduction, lb, in.3.7TaAllowable Static Torque, 1st	I	Geometry Factor for Pitting Resistance	3.5
K_m Load Distribution Factor for Bending Strength3.6 K_m Load Distribution Factor, Static Torque3.7 K_y Yield Strength Factor3.7 K_1 Strength Velocity Number3.6 K_2 Strength Contact Number3.6 K_3 Strength Stress Number3.6 K_4 Strength Stress Number3.6 K_5 Velocity Factor for Bending Strength3.6LLength of Key, in.3.8LminMinimum Total Length of Lines of Contact in Contact Zone3.5NGNumber of Teeth in Gear3.5NrThreads Per Inch of Fastener3.8NpNumber of Teeth in Phinon3.5ngGear Ratio3.5NpPhinon Speed of Output Shaft, rpm3.5ngDiametral Pitch, in.13.6PMNormal Diametral Pitch, in.13.6PMNormal Diametral Pitch, in.13.6SaKey Shear Stress, psiFig. 3.7SaKey Compressive Stress, psiS.5SaAllowable Contact Stress Number, psi3.6SayAllowable Bending Stress Number, psi3.6SayAllowable Transmitted Torque at Output3.7Saft Based on Pitching Resistance, lb. in.3.7TatAllowable Static Torque, bb. in.3.7TatAllowable Static Torque, et al. deduction, lb. in.3.7TatAllowable Static Torque, et al. deduction, lb. in.3.7TatAllowable Static Torque, the Reduction, lb. in.	J	Geometry Factor for Bending Strength	3.6
Km mainLoad Distribution Factor. Static Torque3.7KyYield Strength Factor3.7KyStrength Olocity Number3.6K2Strength Contact Number3.6K3Strength Geometry Number3.6K4Strength Geometry Number3.6K4Strength Geometry Number3.6K4Strength Geometry Number3.6K5Velocity Factor for Bending Strength3.6LLength of Key, in.3.8LminMinimum Total Length of Lines of Contact in Contact Zone3.5MGNumber of Teeth in Gear3.5NGNumber of Teeth in Gear3.5NgNumber of Teeth in Finion3.5ngSpeed of Output Shaft, rpm3.5ngSpeed of Output Shaft, rpm3.5ngNormal Diametral Pitch, Nominal, in the Plane Rotation (Transverse), in13.6PMNormal Base Pitch, in13.6PNNormal Base Pitch, in13.6SaAllowable Contact Stress Number, psi3.7SaAllowable Contact Stress Number, psi3.5SatAllowable Contact Stress Number, psi3.5SatAllowable Bending Stress Number, psi3.7SatAllowable Transmitted Torque at Output3.5TatAllowable Transmitted Torque at Output3.5SatAllowable Transmitted Torque at Output3.7TatAllowable Static Torque, Ist Reduction, Ib. in.3.7TatAllowable Static Torque, Ist Red	Km	Load Distribution Factor for Bending Strength	3.6
Number3.7K1Strength Velocity Number3.6K2Strength Contact Number3.6K3Strength Stress Number3.6K4Strength Geometry Number3.6K5Velocity Factor for Bending Strength3.6LminMinimum Total Length of Lines of Contact in Contact Zone3.5MGGear Ratio3.5NGNumber of Teeth in Gear3.5NGNumber of Teeth in Gear3.5NpNumber of Teeth in Fastener3.5NpNumber of Teeth in Pinion3.5noSpeed of Output Shaft, rpm3.5NpPhinon Speed, rpm3.5PdDiametral Pitch, in.13.6PNNormal Diametral Pitch, in.13.6Normal Diametral Pitch, in.13.5SkKey Shear Stress, psiFig. 3.7SkAllowable Contact Stress Number, psi3.5SkAllowable Bending Stress Number, psi3.6SkAllowable Fransmitted Torque at Output3.5SkAllowable Transmitted Torque at Output3.6TasAllowable Static Torque, 2nd Reduction, Ib. in.3.7TasAllowable Static Torque, 2nd Reduction, Ib. in.3.7TasAllowabl	Kma	Load Distribution Factor, Static Torque	3.7
Number3.6 K_1 Strength Velocity Number3.6 K_2 Strength Contact Number3.6 K_3 Strength Geometry Number3.6 K_4 Strength Geometry Number3.6 K_5 Velocity Factor for Bending Strength3.6LLength of Key, in.3.8LminMinimum Total Length of Lines of Contact in Contact Zone3.5 m_G Gear Ratio3.5 N_G Number of Teeth in Gear3.5 N_r Threads Per Inch of Fastener3.8 N_p Number of Teeth in Pinion3.5 n_e Speed of Output Shaft, rpm3.5 n_p Speed of Output Shaft, rpm3.5 P_d Diametral Pitch, in13.6 P_nd Normal Base Pitch, in.3.5 s_k Key Shear Stress, psiFig. 3.7 s_k Key Compressive Stress, psi5.5 s_a Allowable Contact Stress Number, psi3.6 s_sv Allowable Contact Stress Number, psi3.6 s_sv Allowable Transmitted Torque at Output3.5 T_ac Allowable Transmitted Torque at Output3.5 T_{ast} Allowable Static Torque, 1b. in.3.7 T_{ast} Allowable Static Torque, 2nd Reduction, 1b. in.3.7	K.	Yield Strength Factor	3.7
R_2 Strength Contact Number3.6 K_3 Strength Stress Number3.6 K_4 Strength Geometry Number3.6 K_5 Velocity Factor for Bending Strength3.6 L Length of Key, in.3.8LminMinimum Total Length of Lines of Contact in Contact Zone3.5 M_G Quarkan Minimum Total Length of Lines of Contact in Contact Zone3.5 M_G Number of Teeth in Gear3.5 N_{Γ} Threads Per Inch of Fastener3.8 N_p Number of Teeth in Pinion3.5 n_o Speed of Output Shaft, rpm3.5 n_p Pinion Speed, rpm3.5 P_d Diametral Pitch, in.'13.6 N_N Normal Base Pitch, in.3.5 s_s Key Shear Stress, psiFig. 3.7 s_k Key Shear Stress, psi3.5 s_k Allowable Contact Stress Number, psi3.6 s_k Allowable Yield Strength Number, psi3.6 s_k Allowable Yield Stress Number, psi3.6 s_k Allowable Transmitted Torque at Output3.7 T_k Shaft Based on Pitting Resistance, lb. in.3.7 T_{ast} Allowable Static Torque, ndt Reduction, lb. in.3.7 T_{ast} Allowable Static Torque, ndt Reduction, lb. in.3.7 T_{ast} Allowable Static To	K,	Strength Velocity Number	3.6
12 Dring if Stress Number3.6 K_4 Strength Geometry Number3.6 K_5 Velocity Factor for Bending Strength3.6LLength of Key, in.3.8LminMinimum Total Length of Lines of Contact in Contact Zone3.5 N_G Gear Ratio3.5 N_G Number of Teeth in Gear3.5 N_G Number of Teeth in Pinion3.5 n_0 Speed of Output Shaft, rpm3.5 n_0 Speed of Output Shaft, rpm3.5 n_p Pinion Speed, rpm3.6 P_d Diametral Pitch, in. ⁻¹ 3.6 P_M Normal Diametral Pitch, in. ⁻¹ 3.6 N_N Normal Base Pitch, in.3.5 s_c Key Compressive Stress, psiFig. 3.7 s_c Key Compressive Stress, psi5.5 s_{st} Allowable Bending Strength, Number, psi3.6 s_{sy} Allowable Strength Number, psi3.6 s_{sy} Allowable Transmitted Torque at Output3.5 T_a Allowable Transmitted Torque at Output3.7 T_{ast} Allowable Static Torque, 1st Reduction, Ib. in.3.7 T_{ast} Allowable Static Torque, nth Reduction, Ib. in.3.7 T_{ast} Allowable Static Torque, Pressure Angle, degrees3.5 M <td< td=""><td>K</td><td>Strength Contact Number</td><td>3.6</td></td<>	K	Strength Contact Number	3.6
NoStrength Geometry Number3.6 K_s Velocity Factor for Bending Strength3.6LLength of Key, in.3.8LminMinimum Total Length of Lines of Contact in Contact Zone3.5 M_G Rear Ratio3.5 N_G Number of Teeth in Gear3.5 N_F Threads Per Inch of Fastener3.8 N_p Number of Teeth in Pinion3.5 n_{0} Speed of Output Shaft, rpm3.5 n_p Pinion Speed, rpm3.5PdDiametral Pitch, Nominal, in the Plane Rotation (Transverse), in13.6 N_N Normal Base Pitch, in.3.6 N_N Normal Base Pitch, in.3.5 s_s Key Shear Stress, psiFig. 3.7 s_s Key Compressive Stress, psi5.5 s_{st} Allowable Contact Stress Number, psi3.6 s_{sy} Allowable Stress Number, psi3.6 s_{sy} Allowable Transmitted Torque at Output3.5TaAllowable Transmitted Torque at Output3.6 T_{ast} Allowable Static Torque, 1st Reduction, lb. in.3.7 T_{ast} Allowable Static Torque, 2nd Reduction, lb. in.3.7 T_{ast} Allowable Static Torque, 1th Reduction, lb. in.3.7 T_{ast} Allowable Static Torque, 2nd Reduction, lb. in.3.7 T_{ast} Allowable Static Torque, 2nd Reduction, lb. in.3.7 T_{ast} Allowable Static Torque, 1th Reduction, lb. in.3.7 T_{ast} Allowable Static Torque, 1th Reduction, l	K.	Strength Stress Number	3.6
NameDescriptionStrength K_s Velocity Factor for Bending Strength3.6 L Length of Key, in.3.8 L_{min} Minimum Total Length of Lines of Contact in Contact Zone3.5 m_G Gear Ratio3.5 N_C Number of Teeth in Gear3.5 N_T Threads Per Inch of Fastener3.8 N_p Number of Teeth in Pinion3.5 n_p Pinion Speed routy thaft, rpm3.5 n_p Pinion Speed, rpm3.5 P_d Diametral Pitch, Nominal, in the Plane Rotation (Transverse), in.13.6 P_n Normal Base Pitch, in.3.5 s_s Key Shear Stress, psiFig. 3.7 s_s Key Compressive Stress, psi5.5 s_s Allowable Contact Stress Number, psi3.6 s_{st} Allowable Stress Number, psi3.6 s_{st} Allowable Yield Strength Number, psi3.6 s_{st} Allowable Transmitted Torque at Output3.7 T_a Allowable Transmitted Torque at Output3.7 T_{ast} Allowable Static Torque, 1b. in.3.7 T_{ast} Allowable Static Torque, 1b. in.3.7 T_{ast} Allowable Static Torque, 2d. Reduction, 1b. in.3.7 T_{ast} Allowable Static Torque, 1th Reduction, 1b. in.3.7 T_{ast} Allowable Static Torque, 2d. Reduction, 1b. in.3.7 T_{ast} Allowable Static Torque, 2d. Reduction, 1b. in.3.7 T_{ast} Allowable Static Torque, 2d. Reduction, 1b. in. <td>K.</td> <td>Strength Geometry Number</td> <td>3.6</td>	K.	Strength Geometry Number	3.6
RsFreedomStateLLength of Key, in.3.8LminMinimum Total Length of Lines of Contact in Contact Zone3.5mgGear Ratio3.5NGNumber of Teeth in Gear3.5NrThreads Per Inch of Fastener3.8NpNumber of Teeth in Pinion3.5noSpeed of Output Shaft, rpm3.5npPinion Speed, rpm3.5PdDiametral Pitch, Nominal, in the Plane Rotation (Transverse), in.'13.6PMNormal Diametral Pitch, in.'13.6NNNormal Base Pitch, in.3.5scKey Compressive Stress, psiFig. 3.7scKey Compressive Stress, psi5.5satAllowable Contact Stress Number, psi3.6SayAllowable Gorque at Output3.5TaAllowable Transmitted, Ib. in.3.8TaAllowable Transmitted Torque at Output3.5Shaft Based on Bending Strength, Ib. in.3.7TasAllowable Static Torque, 1b. in.3.7TasAllowable Static Torque, 2nd Reduction, Ib. in.3.7TasAllowable Static Torque, 2nd Reduction, Ib. in.3.7TasAllowable Static Torque, nth Reduction, Ib. in.3.7Ta	K.	Velocity Factor for Bending Strength	3.6
DDDDLminMinimum Total Length of Lines of Contact in Contact Zone3.5 M_G Gear Ratio3.5 N_G Number of Teeth in Gear3.5 N_F Threads Per Inch of Fastener3.8 N_p Number of Teeth in Pinion3.5 n_0 Speed of Output Shaft, rpm3.5 n_p Pinion Speed, rpm3.5 P_d Diametral Pitch, Nominal, in the Plane Rotation (Transverse), in. ⁻¹ 3.6 P_nd Normal Diametral Pitch, in. ⁻¹ 3.6 P_N Normal Base Pitch, in.3.5 s_c Key Compressive Stress, psiFig. 3.7 s_c Key Compressive Stress, psiFig. 3.7 s_c Key Compressive Stress, psi3.6 s_{sv} Allowable Contact Stress Number, psi3.6 s_{sv} Allowable Stress Number, psi3.6 s_{sv} Allowable Transmitted, Ib. in.3.5 T_a Allowable Transmitted Torque at Output3.5 T_{at} Allowable Transmitted Torque at Output3.7 T_{as1} Allowable Static Torque, 1st Reduction, Ib. in.3.7 T_{as2} Allowable Static Torque, 2nd Reduction, Ib. in.3.7 T_{as4} Allowable Static Torque, 2nd Reduction, Ib. in.3.7 T_{as4} Allowable Static Tor	I.	Length of Key in	3.8
Immunit mGGear Ratio3.5NGNumber of Teeth in Gear3.5NGNumber of Teeth in Pinion3.5NpNumber of Teeth in Pinion3.5noSpeed of Output Shaft, rpm3.5noSpeed of Output Shaft, rpm3.5noSpeed of Output Shaft, rpm3.5noNormal Diametral Pitch, in:13.6PdDiametral Pitch, Nominal, in the Plane Rotation (Transverse), in:13.6PndNormal Diametral Pitch, in:13.6PNNormal Base Pitch, in.3.5SaKey Shear Stress, psiFig. 3.7SaKey Compressive Stress, psi5.5SaAllowable Contact Stress Number, psi3.6SayAllowable Vield Strength Number, psi3.7TtShaft Torque Transmitted, lb. in.3.8TacAllowable Transmitted Torque at Output3.5Saft Based on Pitting Resistance, lb. in.3.6TasAllowable Static Torque, lb. in.3.7TasAllowable Static Torque, 1st Reduction, lb. in.3.7Tas:Allowable Static Torque, 2nd Reduction, lb. in.3.7Tas:Allowable Static Torque, nth Reduction, lb. in.3.7Tas:Allowable Static Torque, and	L .	Minimum Total Length of Lines of Contact in Contact Zone	3.5
IndependentSolution N_G Number of Teeth in Gear3.5 N_T Threads Per Inch of Fastener3.8 N_p Number of Teeth in Pinion3.5 n_o Speed of Output Shaft, rpm3.5 n_o Speed of Output Shaft, rpm3.5 n_p Pinion Speed, rpm3.5PdDiametral Pitch, Nominal, in the Plane Rotation (Transverse), in13.6 Pnd Normal Base Pitch, in.3.5SaKey Shear Stress, psiFig. 3.7SeKey Compressive Stress, psiSig. 3.7SeKey Compressive Stress, psi3.5SatAllowable Contact Stress Number, psi3.6SayAllowable Bending Stress Number, psi3.6SayAllowable Transmitted, lb. in.3.8TShaft Based on Pitting Resistance, lb. in.3.5TatAllowable Transmitted Torque at Output Shaft Based on Pitting Resistance, lb. in.3.6TasAllowable Static Torque, 1b. in.3.7TasAllowable Static Torque, 2nd Reduction, lb. in.3.7TasAllowable Static Torque, 2nd Reduction, lb. in.3.7TaszAllowable Static Torque, 2nd Reduction, lb. in.3.7TassAllowable Static Torque, 2nd Reduction, lb. in.3.7TaszAllowable Static Torque, 2nd Reduction, lb. in.3.7TaszAllowable Static Torque, 2nd Reduction, lb. in.3.7TaszAllowable Static Torque, 2nd Reduction, lb. in.3.5TassAllowable Static Torque, 2nd Reduction,	D _{min}	Coar Patio	3.5
NGNumber of Teeth in Pinion3.6NpNumber of Teeth in Pinion3.5 n_o Speed of Output Shaft, rpm3.5 n_p Pinion Speed, rpm3.5PdDiametral Pitch, Nominal, in the Plane Rotation (Transverse), in. ⁻¹ 3.6PndNormal Diametral Pitch, in. ⁻¹ 3.6PNNormal Base Pitch, in.3.5SaKey Shear Stress, psiFig. 3.7SaKey Compressive Stress, psi5.5SaAllowable Contact Stress Number, psi3.6SayAllowable Contact Stress Number, psi3.6SayAllowable Yield Strength Number, psi3.7TShaft Based on Pitting Resistance, lb. in.3.5TagAllowable Transmitted Torque at Output3.5Shaft Based on Bending Strength, lb. in.3.6TagAllowable Static Torque, lb. in.3.7TagAllowable Static Torque, lb. in.3.7TagAllowable Static Torque, lb. in.3.7TagAllowable Static Torque, nt Reduction, lb. in.3.7TagAllowable Static Torque, and Reduction, lb. in.3.7TagAllowable Static Torque, and Reduction, lb. in.3.7TagAllowable Static Torque, th Reduction, lb. in.3.7TagAllowable Static Torque, th Reduction, lb. in.3.7TagAllowable Static Torque, and Reduction, lb. in.3.7TagAllowable Static Torque, th Reduction, lb. in.3.7TagAllowable Static Torque, th Reduction, lb. in.3.6 <td>M_G</td> <td>Number of Tooth in Gear</td> <td>3.5</td>	M _G	Number of Tooth in Gear	3.5
Nr P P Number of Teeth in Pinion3.5 3.5Np P Number of Teeth in Pinion3.5Np P Pinion Speed, rpm3.5Pd Diametral Pitch, Nominal, in the Plane Rotation (Transverse), in.13.6Pnd Normal Diametral Pitch, in.13.6PN Normal Base Pitch, in.3.5Sg Key Schear Stress, psiFig. 3.7Sg Key Compressive Stress, psiFig. 3.7Sg Kat Allowable Contact Stress Number, psi Sat3.5Sat Allowable Bending Stress Number, psi Sat3.6Symp Allowable Transmitted Torque at Output Shaft Based on Pitting Resistance, lb. in.3.6Tas Allowable Static Torque, lb. in.3.7Tas Allowable Static Torque, lb. in.3.7Tas Allowable Static Torque, 2nd Reduction, lb. in.3.7Tas Allowable Static Torque, 2nd Reduction, lb. in.3.7Tas Allowable Static Torque, norque, 2nd Reduction, lb. in.3.7Tas Allowable Static Torque, 2nd Reduction, lb. in.3.7Tas C Allowable Static Torque, 2nd Reduction, lb. in.3.7Tas Allowable Static Torque, 2nd Reduction, lb. in.3.7Tas C Allowable Static Torque, 2nd Reduction, lb. in.3.7Tas C Allowable Static Torque, 2nd Reduction, lb. in.3.6Tas C C Pitchline Velocity, ft/min3.5 <td>N_G</td> <td>Threads Por Inch of Eastener</td> <td>3.8</td>	N _G	Threads Por Inch of Eastener	3.8
NpNumber of Yeen HT Hubb3.5 n_0 Speed of Output Shaft, rpm3.5 n_p Pinion Speed, rpm3.5 P_d Diametral Pitch, Nominal, in the Plane Rotation (Transverse), in.'3.6 P_{nd} Normal Diametral Pitch, in.'3.6 p_N Normal Base Pitch, in.3.5 s_s Key Shear Stress, psiFig. 3.7 s_c Key Compressive Stress, psiFig. 3.7 s_c Key Compressive Stress, psi3.5 s_at Allowable Contact Stress Number, psi3.6 s_{at} Allowable Strength Number, psi3.6 s_{at} Allowable Strength Number, psi3.7 T_t Shaft Torque Transmitted, Ib. in.3.8 T_{ac} Allowable Transmitted Torque at Output3.5 s_{at} Allowable Transmitted Torque at Output3.6 T_{at} Allowable Torque, Ist Reduction, Ib. in.3.6 T_{as} Allowable Static Torque, Ist Reduction, Ib. in.3.7 T_{as1} Allowable Static Torque, and Reduction, Ib. in.3.7 T_{as2} Allowable Static Torque, and Reduction, Ib. in.3.7 T_{as1} Allowable Static Torque, and Reduction, Ib. in.3.7 T_{as2} Allowable Static Torque, and Reduction, Ib. in.3.7 V_t Pitchline Velocity, fl/mi	N	Number of Teeth in Pinion	3.5
n_p Speet of output shart r pin3.5 p_p Pinion Speed, rpm3.5 P_d Diametral Pitch, Nominal, in the Plane Rotation (Transverse), in. 13.6 P_{nd} Normal Diametral Pitch, in. 33.5 P_nd Normal Base Pitch, in. 33.5 S_s Key Shear Stress, psiFig. 3.7 S_e Key Compressive Stress, psi5.5 S_s Allowable Contact Stress Number, psi3.5 S_{at} Allowable Bending Stress Number, psi3.6 S_{ay} Allowable Yield Strength Number, psi3.6 S_{ay} Allowable Transmitted Torque at Output3.5 T_t Shaft Based on Pitting Resistance, lb. in.3.5 T_{at} Allowable Transmitted Torque at Output3.6 T_{as1} Allowable Static Torque, lst Reduction, lb. in.3.7 T_{as2} Allowable Static Torque, lst Reduction, lb. in.3.7 T_{as2} Allowable Static Torque, 2nd Reduction, lb. in.3.7 T_{as1} Allowable Static Torque, nth Reduction, lb. in.3.7 T_{as1} Allowable Static Torque, nth Reduction, lb. in.3.7 T_{as2} Allowable Static Torque, and Reduction, lb. in.3.7 T_{as1} Allowable Static Torque, nth Reduction, lb. in.3.7 T_{as2} Allowable Static Torque, and Reduction, lb. in.3.7 T_{as1} Allowable Static Torque, and Reduction, lb. in.3.7 T_{as2} Allowable Static Torque, and Reduction, lb. in.3.7 V_{as2} Length of Line Action in Trans	n n	Snood of Output Shaft rpm	3.5
InpFind Speed, 1pm3.6 P_d Diametral Pitch, Nominal, in the Plane Rotation (Transverse), in13.6 P_nd Normal Diametral Pitch, in13.6 p_N Normal Base Pitch, in.3.5 s_s Key Shear Stress, psiFig. 3.7 s_c Key Compressive Stress, psiFig. 3.7 s_ac Allowable Contact Stress Number, psi3.5 s_ac Allowable Contact Stress Number, psi3.6 s_{av} Allowable Stress Number, psi3.6 s_{av} Allowable Yield Strength Number, psi3.7TtShaft Based on Pitting Resistance, lb. in.3.8 T_{ac} Allowable Transmitted Torque at Output3.5 $Shaft Based on Pitting Resistance, lb. in.3.6T_{as}Allowable Static Torque, lb. in.3.7T_{as1}Allowable Static Torque, lb. in.3.7T_{as2}Allowable Static Torque, 2nd Reduction, lb. in.3.7T_{as2}Allowable Static Torque, and Reduction, lb. in.3.7T_{as3}Allowable Static Torque, and Reduction, lb. in.3.7T_{as4}Allowable Static Torque, and Reduction, lb. in.3.6$	n _o	Dinion Speed rom	3.5
r_d Drametral Pitch, in. ¹ 3.6 P_{nd} Normal Diametral Pitch, in. ¹ 3.6 P_n Normal Base Pitch, in.3.5 s_s Key Shear Stress, psiFig. 3.7 s_e Key Compressive Stress, psi5.5 s_s Allowable Contact Stress Number, psi3.6 s_{at} Allowable Bending Stress Number, psi3.6 s_{av} Allowable Yield Strength Number, psi3.7 T_t Shaft Torque Transmitted, lb. in.3.8 T_{ac} Allowable Transmitted Torque at Output Shaft Based on Pitting Resistance, lb. in.3.6 T_{as} Allowable Static Torque, lb. in.3.6 T_{as1} Allowable Static Torque, lst Reduction, lb. in.3.7 T_{as2} Allowable Static Torque, nth Reduction, lb. in.3.7 v_t Pitchline Velocity, ft/min3.5 w Width of Key, in.3.8 Z Length of Line Action in Transverse Plane, in.3.8 Q_n Normal Operating Pressure Angle, degrees3.5 ψ Helix Angle at Operating Pitch Diameter3.5	п _р р.	Diametral Pitch Naminal in the Plane Rotation (Transverse) in d	3.6
IndNormal Base Pitch, in.3.5 p_N Normal Base Pitch, in.3.5 p_N Normal Base Pitch, in.3.5 s_s Key Shear Stress, psiFig. 3.7 s_c Allowable Contact Stress Number, psi3.5 s_ac Allowable Bending Stress Number, psi3.6 s_{av} Allowable Yield Strength Number, psi3.7TtShaft Torque Transmitted, lb. in.3.8 T_{ac} Allowable Transmitted Torque at Output3.5Shaft Based on Pitting Resistance, lb. in.3.5TatAllowable Transmitted Torque at Output3.6Shaft Based on Pitting Resistance, lb. in.3.6TasAllowable Static Torque, at Cutput3.7TasAllowable Static Torque, lb. in.3.7Tas1Allowable Static Torque, 1st Reduction, lb. in.3.7Tas2Allowable Static Torque, 2nd Reduction, lb. in.3.7TasnAllowable Static Torque, nth Reduction, lb. in.3.7VPitchline Velocity, f/min3.5WWidth of Key, in.3.8ZLength of Line Action in Transverse Plane, in.3.8ZLength of Line Action in Transverse Plane, in.3.5 ϕ_n Normal Operating Pressure Angle, degrees3.5 ϕ_t Operating Transverse Pressure Angle, degrees3.5 ϕ_t Helix Angle at Operating Pitch Diameter3.5	P.	Normal Diametral Pitch, in :1	3.6
pNNormal Date Friet, in:a.s. s_s Key Shear Stress, psiFig. 3.7 s_c Key Compressive Stress, psiSig. 3.7 s_c Allowable Contact Stress Number, psi3.5 s_{at} Allowable Bending Stress Number, psi3.6 s_{ay} Allowable Yield Strength Number, psi3.6 s_{ay} Allowable Yield Strength Number, psi3.7TtShaft Torque Transmitted, lb. in.3.8TacAllowable Transmitted Torque at Output3.5Shaft Based on Pitting Resistance, lb. in.3.5TatAllowable Transmitted Torque at Output3.6Shaft Based on Bending Strength, lb. in.3.6TatAllowable Static Torque, lb. in.3.7TasAllowable Static Torque, ls. Reduction, lb. in.3.7Tas1Allowable Static Torque, 2nd Reduction, lb. in.3.7Tas2Allowable Static Torque, nth Reduction, lb. in.3.7TasnAllowable Static Torque, nth Reduction, lb. in.3.7VtPitchline Velocity, ft/min3.5WWidth of Key, in.3.8ZLength of Line Action in Transverse Plane, in.3.5 ϕ_n Normal Operating Pressure Angle, degrees3.5 ϕ_t Operating Transverse Pressure Angle, degrees3.5 ψ Helix Angle at Operating Pitch Diameter3.5	Ind	Normal Base Ditah in	3.5
s_s Rey Shear Suress, part 148.01 s_c Key Compressive Stress, partFig. 3.7 s_{ac} Allowable Contact Stress Number, psi3.6 s_{at} Allowable Yield Strength Number, psi3.6 s_{av} Allowable Yield Strength Number, psi3.7 T_t Shaft Torque Transmitted, lb. in.3.8 T_{ac} Allowable Transmitted Torque at Output3.5 T_{at} Allowable Transmitted Torque at Output3.5 T_{at} Allowable Transmitted Torque at Output3.6 T_{as} Allowable Transmitted Torque at Output3.6 T_{as} Allowable Static Torque, lb. in.3.6 T_{as1} Allowable Static Torque, lb. in.3.7 T_{as2} Allowable Static Torque, 2nd Reduction, lb. in.3.7 T_{as1} Allowable Static Torque, nth Reduction, lb. in.3.7 V_t Pitchline Velocity, ft/min3.5 W Width of Key, in.3.8 Z Length of Line Action in Transverse Plane, in.3.5 ϕ_h Operating Pressure Angle, degrees3.5 ϕ_t Operating Transverse Pressure Angle, degrees3.5 Ψ Helix Angle at Operating Pitch Diameter3.5	ри	Kor Shoar Stross ngi	Fig. 3.7
s_c Rey compressive suress, psr r_{12} s.r s_{ac} Allowable Contact Stress Number, psi 3.5 s_{at} Allowable Bending Stress Number, psi 3.6 s_{at} Allowable Strength Number, psi 3.7 T_t Shaft Torque Transmitted, lb. in. 3.8 T_{ac} Allowable Transmitted Torque at Output 3.5 T_{ac} Allowable Transmitted Torque at Output 3.6 T_{at} Allowable Transmitted Torque at Output 3.6 T_{at} Allowable Static Torque, lb. in. 3.6 T_{as1} Allowable Static Torque, lb. in. 3.7 T_{as2} Allowable Static Torque, 2nd Reduction, lb. in. 3.7 T_{as1} Allowable Static Torque, nth Reduction, lb. in. 3.7 T_{asn} Allowable Static Torque, nth Reduction, lb. in. 3.7 v_t Pitchline Velocity, ft/min 3.5 w Width of Key, in. 3.8 Z Length of Line Action in Transverse Plane, in. 3.5 ϕ_n Normal Operating Pressure Angle, degrees 3.5 ψ Helix Angle at Operating Pitch Diameter 3.5	ss o	Key Shear Stress, psi	Fig. 3.7
SaceAllowable Contact Stress Number, psi3.5SatAllowable Bending Stress Number, psi3.6SayAllowable Yield Strength Number, psi3.7TtShaft Torque Transmitted, lb. in.3.8TacAllowable Transmitted Torque at Output Shaft Based on Pitting Resistance, lb. in.3.5TatAllowable Transmitted Torque at Output Shaft Based on Bending Strength, lb. in.3.6TasAllowable Static Torque, lb. in.3.6TasAllowable Static Torque, lst Reduction, lb. in.3.7Tas1Allowable Static Torque, and Reduction, lb. in.3.7Tas2Allowable Static Torque, nth Reduction, lb. in.3.7TasnAllowable Static Torque, nth Reduction, lb. in.3.7VtPitchline Velocity, ft/min3.5WWidth of Key, in.3.8ZLength of Line Action in Transverse Plane, in.3.5 Φ_n Normal Operating Pressure Angle, degrees3.5 Ψ Helix Angle at Operating Pitch Diameter3.5	Sc	Allowable Contact Stress Number, psi	3.5
SatAllowable Bending Stress Number, psi3.0 s_{ay} Allowable Yield Strength Number, psi3.7TtShaft Torque Transmitted, lb. in.3.8 T_{ac} Allowable Transmitted Torque at Output3.5 T_{at} Allowable Transmitted Torque at Output3.6 T_{at} Allowable Static Torque, lb. in.3.6 T_{as} Allowable Static Torque, lb. in.3.7 T_{as1} Allowable Static Torque, lst Reduction, lb. in.3.7 T_{as2} Allowable Static Torque, and Reduction, lb. in.3.7 T_{asn} Allowable Static Torque, nth Reduction, lb. in.3.7 T_{asn} Allowable Static Torque, nth Reduction, lb. in.3.7 V_t Pitchline Velocity, ft/min3.5 W Width of Key, in.3.8 Z Length of Line Action in Transverse Plane, in.3.5 Φ_n Normal Operating Pressure Angle, degrees3.5 Ψ Helix Angle at Operating Pitch Diameter3.5	Sac	Allowable Contact Stress Number, psi	3.6
sayAllowable Tield Strength Number, part3.7TtShaft Torque Transmitted, lb. in.3.8TacAllowable Transmitted Torque at Output3.5Shaft Based on Pitting Resistance, lb. in.3.5TatAllowable Transmitted Torque at OutputShaft Based on Bending Strength, lb. in.3.6TasAllowable Static Torque, lb. in.3.7TasAllowable Static Torque, lb. in.3.7Tas1Allowable Static Torque, 2nd Reduction, lb. in.3.7Tas2Allowable Static Torque, nth Reduction, lb. in.3.7TasnAllowable Static Torque, nth Reduction, lb. in.3.7VtPitchline Velocity, ft/min3.5WWidth of Key, in.3.8ZLength of Line Action in Transverse Plane, in.3.5ΦnNormal Operating Pressure Angle, degrees3.5ΨHelix Angle at Operating Pitch Diameter3.5	Sat	Allowable Viold Strongth Number, psi	3.7
TtShart Torque Transmitted, ib. in. 3.5 TacAllowable Transmitted Torque at Output Shaft Based on Pitting Resistance, lb. in. 3.5 TatAllowable Transmitted Torque at Output Shaft Based on Bending Strength, lb. in. 3.6 TasAllowable Static Torque, lb. in. 3.7 TasAllowable Static Torque, ls. Reduction, lb. in. 3.7 Tas1Allowable Static Torque, 2nd Reduction, lb. in. 3.7 Tas2Allowable Static Torque, nth Reduction, lb. in. 3.7 TasnAllowable Static Torque, nth Reduction, lb. in. 3.7 VtPitchline Velocity, ft/min 3.5 WWidth of Key, in. 3.8 ZLength of Line Action in Transverse Plane, in. 3.5 Φ_n Normal Operating Pressure Angle, degrees 3.5 Ψ Helix Angle at Operating Pitch Diameter 3.5	Say T	Shoft Targue Transmitted lb in	3.8
TacAllowable Transmitted Torque at Output 3.5 T_{at} Allowable Transmitted Torque at Output 3.6 T_{at} Allowable Transmitted Torque at Output 3.6 T_{as} Allowable Static Torque, Ib. in. 3.7 T_{as1} Allowable Static Torque, Ist Reduction, Ib. in. 3.7 T_{as2} Allowable Static Torque, 2nd Reduction, Ib. in. 3.7 T_{asn} Allowable Static Torque, nth Reduction, Ib. in. 3.7 T_{asn} Allowable Static Torque, nth Reduction, Ib. in. 3.7 v_t Pitchline Velocity, ft/min 3.5 wWidth of Key, in. 3.8 ZLength of Line Action in Transverse Plane, in. 3.5 Φ_n Normal Operating Pressure Angle, degrees 3.5 Ψ Helix Angle at Operating Pitch Diameter 3.5	յլ Ծ	Allewable Transmitted Torque at Output	5.6
TatAllowable Transmitted Torque at Output Shaft Based on Bending Strength, lb. in.3.6TasAllowable Static Torque, lb. in.3.7Tas1Allowable Static Torque, 1st Reduction, lb. in.3.7Tas2Allowable Static Torque, 2nd Reduction, lb. in.3.7TasnAllowable Static Torque, nth Reduction, lb. in.3.7TasnAllowable Static Torque, nth Reduction, lb. in.3.7VtPitchline Velocity, ft/min3.5WWidth of Key, in.3.8ZLength of Line Action in Transverse Plane, in.3.5 Φ_n Normal Operating Pressure Angle, degrees3.5 Ψ Helix Angle at Operating Pitch Diameter3.5	Lac	Shoft Based on Ditting Resistance Ib in	3.5
TatAllowable Transmitter forque at Output3.6 $Shaft Based on Bending Strength, lb. in.3.7T_{as}Allowable Static Torque, lb. in.3.7T_{as1}Allowable Static Torque, 1st Reduction, lb. in.3.7T_{as2}Allowable Static Torque, 2nd Reduction, lb. in.3.7T_{asn}Allowable Static Torque, nth Reduction, lb. in.3.7T_{asn}Allowable Static Torque, nth Reduction, lb. in.3.7v_tPitchline Velocity, ft/min3.5wWidth of Key, in.3.8ZLength of Line Action in Transverse Plane, in.3.5\Phi_nNormal Operating Pressure Angle, degrees3.5\PsiHelix Angle at Operating Pitch Diameter3.5$	Τ.	Allowable Transmitted Torque at Output	0.0
TasAllowable Static Torque, lb. in.3.7 T_{as1} Allowable Static Torque, 1st Reduction, lb. in.3.7 T_{as2} Allowable Static Torque, 2nd Reduction, lb. in.3.7 T_{as2} Allowable Static Torque, 2nd Reduction, lb. in.3.7 T_{asn} Allowable Static Torque, nth Reduction, lb. in.3.7 v_t Pitchline Velocity, ft/min3.5wWidth of Key, in.3.8ZLength of Line Action in Transverse Plane, in.3.5 Φ_n Normal Operating Pressure Angle, degrees3.5 Ψ Helix Angle at Operating Pitch Diameter3.5	1 at	Sheft Deced on Bonding Strongth lh in	3.6
TasAllowable Static Torque, Ib. In. 3.7 T_{as1} Allowable Static Torque, 1st Reduction, Ib. in. 3.7 T_{as2} Allowable Static Torque, 2nd Reduction, Ib. in. 3.7 T_{asn} Allowable Static Torque, 2nd Reduction, Ib. in. 3.7 v_t Pitchline Velocity, ft/min 3.5 wWidth of Key, in. 3.8 ZLength of Line Action in Transverse Plane, in. 3.5 ϕ_n Normal Operating Pressure Angle, degrees 3.5 ψ Helix Angle at Operating Pitch Diameter 3.5	T	Allewable Static Torque lh in	3.0
T_{as1} Allowable Static Torque, 1st Reduction, 1b. in.3.7 T_{as2} Allowable Static Torque, 2nd Reduction, 1b. in.3.7 T_{asn} Allowable Static Torque, nth Reduction, 1b. in.3.7 v_t Pitchline Velocity, ft/min3.5wWidth of Key, in.3.8ZLength of Line Action in Transverse Plane, in.3.5 Φ_n Normal Operating Pressure Angle, degrees3.5 Φ_t Operating Transverse Pressure Angle, degrees3.5 Ψ Helix Angle at Operating Pitch Diameter3.5	I as	Allowable Static Torque, 10. In.	27
T_{as2} Allowable Static Torque, 2nd Reduction, 10. In. 3.7 T_{asn} Allowable Static Torque, nth Reduction, lb. in. 3.7 v_t Pitchline Velocity, ft/min 3.5 wWidth of Key, in. 3.8 ZLength of Line Action in Transverse Plane, in. 3.5 Φ_n Normal Operating Pressure Angle, degrees 3.5 Φ_t Operating Transverse Pressure Angle, degrees 3.5 Ψ Helix Angle at Operating Pitch Diameter 3.5	Las1	Allowable Static Torque, 1st Reduction, 15. III.	3.1
T_{asn} Allowable Static Torque, nth Reduction, lb. in. 3.7 v_t Pitchline Velocity, ft/min 3.5 wWidth of Key, in. 3.8 ZLength of Line Action in Transverse Plane, in. 3.5 Φ_n Normal Operating Pressure Angle, degrees 3.5 Φ_t Operating Transverse Pressure Angle, degrees 3.5 Ψ Helix Angle at Operating Pitch Diameter 3.5	Las2	Allowable Static Torque, 2nd Reduction, 10. In.	5.7
v_t Pitchline Velocity, ft/min 3.5 wWidth of Key, in. 3.8 ZLength of Line Action in Transverse Plane, in. 3.5 Φ_n Normal Operating Pressure Angle, degrees 3.5 Φ_t Operating Transverse Pressure Angle, degrees 3.5 Ψ Helix Angle at Operating Pitch Diameter 3.5	T_{asn}	Allowable Static Torque, nth Reduction, lb. in.	3.7
wWidth of Key, in.3.8ZLength of Line Action in Transverse Plane, in.3.5ΦnNormal Operating Pressure Angle, degrees3.5ΦtOperating Transverse Pressure Angle, degrees3.5ΨHelix Angle at Operating Pitch Diameter3.5	v _t	Pitchline Velocity, ft/min	3.5
ZLength of Line Action in Transverse Plane, in.3.5ΦnNormal Operating Pressure Angle, degrees3.5ΦtOperating Transverse Pressure Angle, degrees3.5ΨHelix Angle at Operating Pitch Diameter3.5	w	Width of Key, in.	3.8
ΦnNormal Operating Pressure Angle, degrees3.5ΦtOperating Transverse Pressure Angle, degrees3.5ΨHelix Angle at Operating Pitch Diameter3.5	Z	Length of Line Action in Transverse Plane, in.	3.5
ΦtOperating Transverse Pressure Angle, degrees3.5ΨHelix Angle at Operating Pitch Diameter3.5	Φ_n	Normal Operating Pressure Angle, degrees	3.5
Ψ Helix Angle at Operating Pitch Diameter 3.5	Φt	Operating Transverse Pressure Angle, degrees	3.5
	Ψ	Helix Angle at Operating Pitch Diameter	3.5

TABLE 3.1 SYMBOLS USED IN GEAR RATING EQUATIONS

Grinding the tooth surface after heat treatment may reduce the residual compressive stresses. Grinding the root fillet area may introduce tensile stresses in the root. Care must be taken to avoid changes in microstructure during the grinding process. Shot peening is often performed after grinding to assure the presence of residual compressive stresses.

System Analysis. A pumping system analysis is the responsibility of the user. This analysis will indicate whether the calculated loading on the gear reducer is within the design limits for which it is offered. A polished rod dynamometer can be used to determine the actual loading on the gear reducer.

Methods of computing or of measuring well loads are not within the scope of this Specification, however, API Recommended Practice API RP11L can be used to predict approximate polished rod loads and gear-reducer torque values. Cognizance should be taken by the user of the possibility of actual loads exceeding apparent loads under one or more of the following conditions:

- (1) Improper counterbalancing.
- (2) Excessive fluctuation in engine power output.
- (3) Serious critical vibrations of the reducer and engine system.
- (4) Poor bottom-hole pump operation.
- (5) Looseness in the pumping-unit structure.

The pumping system includes the prime mover (electric motor, multi-cylinder engine, or single cylinder engine), the pumping unit structure including gear reducer, the sucker rod string, the bottom hole pump, tubing, casing and any other component or condition that influences the loading.

3.3 DEFINITIONS AND SYMBOLS

Definitions. The terms used, wherever applicable, conform to the following standards:

- ANSI Y10.3-1968 "Letter Symbols for Quantities Used in Mechanics of Solids."
- (2) AGMA 112, "Gear Nomenclature, Terms, Definitions, Symbols, and Abbreviations."

Symbols. The symbols used in the pitting resistance and bending strength formulas are shown in Table 3.1.

NOTE: The symbols and definitions used in this Specification may differ from other specifications. Users should assure themselves that they are using these symbols and definitions in the manner indicated herein.

3.4 GEAR RATING TERMINOLOGY

Peak Torque Rating. The peak torque rating of the gear reducer will be the lower of the pitting resistance torque rating, bending strength torque rating, or static

torque ratings as determined by the use of the applicable formulas listed.

Gear ratings as given in the formulas listed are extracted from "AGMA Application Standard for Helical and Herringbone Speed Reducers for Oilfield Pumping Units" (AGMA 422.03), with the permission of the publisher. the American Gear Manufacturers Association, 1901 North Fort Myer Drive, Suite 1000, Arlington, Virginia 22209.

Standard Sizes. The pumping unit reducer of a given size shall have a capacity, calculated as provided herein, as near as practical to, but not less than, the corresponding peak torque rating in Table 3.2.

TABLE 3.2

PUMPING	UNIT REDUCER SIZES AND RATINGS
	Peak Torque Rating,

Size	lb. in.
6.4	6,400
10	10,000
16	16,000
25	
40	40,000
57	57,000
80	
114	
160	
228	228,000
320	320,000
456	456,000
640	640,000
912	912,000
1280	
1824	
2560	2,560,000
3648	3,648,000

Rating Speeds. Gear ratings shall be based on a nominal pumping speed of 20 strokes per minute up to and including the 320 API gear reducer size (peak torque rating — 320,000 pound inches). On gear reducers with ratings in excess of 320,000 pound inches, the ratings shall be based on the following nominal pumping speeds:

Strokes Per Minute, n _o	Peak Torque Rating Pounds Inches
16	456,000
16	640.000
15	912,000
14	1,280,000
13	1,824,000
11	2,560,000 and larger

3.5 PITTING RESISTANCE TORQUE RATING

Pitting is considered to be a fatigue phenomenon, and is a function of the stresses at the tooth surface.

The two kinds of pitting, initial pitting and destructive pitting, are illustrated in AGMA Standard 110, "Nomenclature of Gear Tooth Wear and Failure."

The aim of the pitting resistance formula is to determine a load rating at which destructive pitting of the teeth does not occur during their design life.

The following formula shall be used for rating the pitting resistance of gears:

$$T_{ac} = \frac{n_p d^2 C_5}{2n_o} \cdot \frac{F}{C_m} \cdot I\left(\frac{s_{ac}}{C_p}\right)^2$$
(Eq. 1)

or

$$\mathbf{T}_{ac} = \mathbf{C}_1 \cdot \mathbf{C}_2 \cdot \mathbf{C}_3 \tag{Eq. 2}$$

where:

- T_{ac} = Allowable transmitted torque at output shaft, based on pitting resistance, lb. in.
- $C_1 = \frac{n_p d^2 C_5}{2n_0} \quad \text{pitting velocity number} \quad (Eq. 3)$

 $n_p = pinion speed, rpm$

- d = operating pitch diameter of pinion, in. In the equations for C_1 , and T_{ac} above, the value of d may be taken as the outside diameter minus two standard addendums for enlarged pinions
- C₅ = velocity factor for pitting resistance

$$C_5 = \frac{78}{78 + \sqrt{v_t}}$$
 (Eq. 4)

- v_t = (d) (n_p) (.262), pitch line velocity, ft/min. (Do not use enlarged pinion pitch diameter) (Eq. 5)
- n_o = speed of output shaft, rpm (pumping speed, strokes per minute)

$$C_2 = \frac{F}{C_m}$$
 pitting contact number (Eq. 6)

- F = net face width in inches of the narrowest of the mating gears. For herringbone or double helical gearing, the net face width is the sum of the face widths of each helix.
- C_m = load-distribution factor for pitting resistance from Fig. 3.2. If deflections or other sources of misalignment are such that the values of C_m from Fig. 3.2 do not represent the actual maldistribution of load across the face, then calculate the load distribution factor using AGMA 218, Load Distribution Factor, Analytical Method.

NOTE: When gears are hardened after cutting, and the profiles and leads are not corrected or otherwise processed to insure high accuracy, the tooth distortion will affect load distribution. This makes it necessary to apply a distortion factor to the C_2 value. The following shall be used:

- (1) Multiply C_2 by 0.95 when one element is hardened after cutting
- (2) Multiply C₂ by 0.90 when both elements are hardened after cutting

The above C_2 factors can only be attained with well controlled heat-treating processes. If the as-heat-treated accuracy is such that the required C_m values (for above C_2 values) can not be attained, calculate C_m per AGMA 218, Load Distribution Factor, Analytical Method.

$$C_{:i} = 0.225 \cdot \frac{m_G}{m_G + 1} \cdot \left(\frac{S_{ac}}{C_p}\right)^2 \frac{\text{pitting stress number}}{\text{for external helical (Eq. 7)}}$$

- s_{ac} = allowable contact stress number from Fig. 3.1 or Table 3.3
- C_{p} = elastic coefficient
 - = 2300 for mating steel elements. Consult Table 3.4 for C_P values of materials other than steel

$$m_G = \text{gear ratio} = \frac{N_R}{N_p}$$
 (Eq. 8)

The values of C_a determined from this equation are minimums for good gear design. C_a may be determined more precisely as follows:

$$C_{3} = I \left(\frac{s_{ac}}{C_{p}}\right)^{2}$$
 (Eq. 9)

$$I = \frac{\cos \Phi_t \sin \Phi_t}{2} \cdot \frac{m_G}{m_G + 1} \cdot \frac{L_{\min}}{F}$$
(Eq. 10)

I = geometry factor for pitting resistance (wear)

$$\phi_t$$
 = operating transverse pressure angle, degrees

$$\Phi_{t} = \tan^{-1} \left(\frac{\tan \Phi_{n}}{\cos \Psi} \right)$$
 (Eq. 11)

 Φ_n = normal operating pressure angle, degrees

 Ψ = operating helix angle

L_{min} = minimum total length of lines of contact in contact zone. For most helical gears having a face contact ratio of 2 or more; a conservative estimate is:

$$\frac{L_{\min}}{F} = \frac{.95Z}{p_N}$$
(Eq. 12)

With good gear design, the above value of $L_{min} \div F$ is acceptable for a face contact ratio of 1.0 to 2.0 but is a less conservative estimate.

Z = length of line of action in the transverse plane, inches

 $p_N = normal base pitch, inches$

$$C_3 = \frac{\cos \Phi_t \sin \Phi_t}{2} \cdot \frac{m_G}{m_G + 1} \cdot \frac{.95Z}{p_N} \left(\frac{s_{ac}}{C_p} \right)^2 \quad (Eq. 13)$$

The method used in this Specification for determining the geometry factors for pitting resistance "I" is simplified. A more precise and detailed analysis can be made using the method in AGMA 218. The more precise method in 218 must be used for face contact ratios less than 1.0. When "I" is determined in accordance with AGMA 218 and if $2C \div (m_G + 1)$ is not equal to outside diameter minus two standard addendums, the operating pitch diameter of the pinion in all of the preceding rating equations must be defined in AGMA 218.

Values are to be taken from the curve above for the minimum hardness specified for the gear. Suggested gear and pinion hardness combinations are tabulated below for convenience.

SUGGESTED MINIMUM GEAR AND PINION BRINELL HARDNESS COMBINATIONS FOR THROUGH HARDENED AND TEMPERED STEEL GEARS

		the second s									
Gear	180	210	225	245	255	270	285	300	335	350	375
Pinion	210	245	265	285	295	310	325	340	375	390	415

TABLE 3.3 MAXIMUM ALLOWABLE CONTACT STRESS NUMBER - sac

(For Other Than Through Hardened and Tempered Steel Gears)

Material	AGMA Class	Commercial Designation	Heat Treatment	Minimum Hardness at Surface	s _{ac} , psi
Steel			Flame or Induction Hardened 2*	50 HRC 54 HRC	170,000 175,000
			Carburized and Case Hardened*	55 HRC 60 HRC	180,000 200,000
		AISI 4140 AISI 4340	Nitrided** Nitrided	48 HRC 46 HRC	155,000 155,000
Cast Iron	20 30 40		As Cast As Cast As Cast	175 BHN 200 BHN	57,000 70,000 80,000
Nodular (Ductile) Iron	A-7-a A-7-c	60-40-18 80-55-06	Annealed Quenched & Tempered	140 BHN 180 BHN	1* 90 to 100% of s _{ac} value of steel with
	A-7-d	100-70-03	Quenched & Tempered	230 BHN	same hardness
	А-7-е	120-90-02	Quenched & Tempered	270 BHN	(see Fig. 3.1)
		120-90-02 Mod.	Quenched & Tempered	300 BHN	
Malleable	A-8-c	45007		165 BHN	68,000
Iron	А-8-е	50005		180 BHN	74,000
(Pearl-	A-8-f	53007		195 BHN	79,000
itic)	A-8-i	80002		240 BHN	89,000

*For minimum carburized case depth Per Fig. 3.5 **For minimum nitrided case depth Per Fig. 3.6

1*The higher allowable stress for nodular iron is determined by metallurgical controls.

2*For minimum flame or induction hardened case depths and hardening pattern, see Fig. 3.7

TABLE 3.4 ELASTIC COEFFICIENT-C_p

			Gear Materia of Elasticity	al & Modulus E _g — psi	
Pinion Material and Modulus of Elasticity E _p		Steel 30x10 ⁶	Malleable Iron 25x10 ⁶	Nodular Iron 24x10 ⁶	Cast Iron 22x10 ⁶
Steel Mall. Iron Nod. Iron Cast Iron	30×10^{6} 25×10^{6} 24×10^{6} 22×10^{6}	2300 2180 2160 2100	2180 2090 2070 2020	2160 2070 2050 2000	2100 2020 2000 1960

Poisson's ratio = 0.30

•

LOAD DISTRIBUTION FACTOR - Cm

(

23

ISO 10431:1993(E)

3.6 BENDING STRENGTH TORQUE RATING

Bending strength rating is related to fracture at the gear tooth root fillet. Fracture in this area is considered to be a fatigue phenomenon and is a function of the bending stress in the tooth as a cantilever plate.

Typical fractures are illustrated in AGMA Standard 110, "Nomenclature of Gear Tooth Wear and Failure."

The aim of the bending strength rating formula is to determine a load rating at which tooth root fillet fracture does not occur during the design life of the teeth.

The following formula shall be used for rating the bending strength of helical and herringbone gears:

$$T_{at} = \frac{n_p d K_5}{2n_0} \cdot \frac{F}{K_m} \cdot s_{at} \cdot \frac{J}{P_d}$$
(Eq. 14)

or

 $T_{at} = K_1 \cdot K_2 \cdot K_3 \cdot K_4$ (Eq. 15)

where:

T_{at} = allowable transmitted torque at output shaft based on bending strength, lb. in.

$$K_1 = \frac{n_p d K_5}{2n_0} \text{ strength velocity number} \quad (Eq. 16)$$

 n_p = pinion speed, rpm

- d = operating pitch diameter of pinion, in.
- K_5 = velocity factor for bending strength

$$K_5 = \sqrt{\frac{78}{78 + \sqrt{v_t}}}$$
 (Eq. 17)

- n₀ = speed of output shaft, rpm (pumping speed, strokes per minute)
- $v_t = (d) (n_p) (.262)$ pitchline velocity, ft/min. (Eq. 18)
- $K_2 = \frac{F}{K_m}$ strength contact number (Eq. 19)
- F = face width in inches of the narrowest of the mating gears. For herringbone or double helical gearing the net face width is the sum of the face width of each helix
- K_m = load distribution factor from Fig. 3.4. If deflection or other sources of misalignment are such that the values of K_m from Fig. 3.4 do not represent the actual maldistribution of load across the face, then calculate the load distribution factor using AGMA 218, Load Distribution Factor, Analytical Method.

NOTE: When gears are hardened after cutting, and the profiles and leads are not corrected or otherwise processed to insure high accuracy, the tooth distortion will affect load distribution. This makes it necessary to apply a distortion factor to the K_2 value. The following shall be used:

- (1) Multiply K_2 by 0.95 if one element is hardened after cutting.
- (2) Multiply K_2 by 0.90 if both elements are hardened after cutting.

The above K_2 factor can only be attained with well controlled heat treating processes. If the as heat treated accuracy is such that the required K_m values (for the above K_2 values) can not be attained, calculate K_m per AGMA 218, Load Distribution Factor, Analytical Method.

$$K_3 = s_{at}$$
 strength stress number (Eq. 20)

- s_{at} = allowable bending stress number, psi, from Fig. 3.3 or Table 3.5
- $K_4 = \frac{J}{P_d}$ strength geometry number (Eq. 21)
- J = geometry factor for bending strength per AGMA 226. For reference, see Appendix A in AGMA 422.03.
- P_d = diametral pitch in plane of rotation, (transverse)
- $P_{d} = (P_{nd}) (\cos \Psi)$ (Eq. 22)
- Pnd = normal diametral pitch, nominal, in-1

NOTE: The bending strength rating must be calculated for both pinion and gear. The lower value is the bending strength rating of the gear set.

3.7 STATIC TORQUE RATING

The static torque loads on the gear teeth can be caused by resisting the torque exerted by the counterbalance or other non-operating conditions. A description of the many conditions of installation, maintenance, and use of pumping unit reducers which can cause high static torques to be applied is not within the scope of this Specification.

The static torque rating of the gear reducer to resist these loads must be equal to or greater than 500% of the reducer name plate rating. Certain pumping unit geometries may require a higher static torque rating. The system analysis required by 3.2 will be used to determine when the higher static torque rating is required.

The following formula shall be used to determine static torque rating of helical and herringbone gears:

$$T_{as} = \frac{D}{2} \cdot \frac{J}{P_d} \cdot \frac{F}{K_{ms}} \cdot s_{ay} \times K_y \qquad (Eq. 23)$$

where:

D = operating pitch diameter of gear, inches

Spec 11E: Pumping Units

FROM AGMA 422.03

LOAD DISTRIBUTION FACTOR - Km

<u>1</u>

1.5

2.0

0.5

ہ **ب**

⊥.

ISO 10431:1993(E)

ISO 10431:1993(E)

FROM AGMA 422.03 MINIMUM TOTAL CASE DEPTH FOR NITRIDED GEARS, h.

ISO 10431:1993(E)

 $\mathbf{21}$

TABLE 3.5 ALLOWABLE BENDING FATIGUE STRESS NUMBER — s_{at}

(For Other Than Through Hardened and Tempered Steel Gears)

	AGMA	Commercial	Heat	Min. Surface	
Material	Class	Designation	Treatment	Hardness §	s _{at} , psi
Steel			Flame or Induction	50-54 RC	38,300
				Hardened 2*	
			Carburized	55 RC	47,000
			& Case Hardened*	60 RC	47,000
		AISI 4140	Nitrided**	48 RC	29,000
		AISI 4340	Nitrided	46 RC	31,000
Cast	20		As Cast		4,200
Iron	30		As Cast	175 BHN	7.200
	40		As Cast	200 BHN	11,000
Nodular	A-7-a	60-40-18	Annealed	140 BHN	1* 90 to 100%
(Ductile)	A-7-c	80-55-06	Quenched		of s _{at} value
Iron			& Tempered Quenched	180 BHN	of steel with
	A-7-d	100-70-03	& Tempered	230 BHN	same hardness
			Quenched		
	А-7-е	120-90-02	& Tempered	270 BHN	
			Quenched		
		120-90-02 Mod.	& Tempered	300 BHN	
Malleable	A-8-c	45007		165 BHN	8,500
Iron	А-8-е	50005		180 BHN	11,000
(Pearl-	A-8-f	53007		195 BHN	13,600
itic)	A-8-i	80002		240 BHN	17,900

*For minimum carburized case depths Per Fig. 3.5

**For minimum nitrided case depths Per Fig. 3.6

1*The higher allowable stress for nodular iron is determined by metallurgical controls.

2*For minimum flame or induction hardened case depths and hardening pattern, see Fig. 3.7 and Fig. 3.8. Pattern 3.8A is limited to approximately 5DP and finer. Process control is important to the achievement of correct hardening pattern. Parts of this type should be carefully reviewed since residual compressive stresses are less than with pattern 3.8B. Tooth distortion and lack of ductility may necessitate a reduction of allowable stress numbers.

Score hardness for nitrided gears to be a minimum of 300 BHN. Core hardness for case hardened and ground gears and pinions to be shown in Manufacturer's Data Sheet 4.5.

 T_{as} = allowable static torque at the gear or pinion being checked:

T_{as1} = 1st reduction,

 $T_{as:2}$ = 2nd reduction,

 $T_{asn} = nth reduction$

(NOTE: Torque on output shaft. $T_{as2} = T_{as1} \times m_{G2}$, etc.) (Eq. 24)

 s_{ay} = allowable yield strength number of the gear or pinion material; Fig. 3.9 for steel and nodular iron. For case hardened (flame, induction, nitrided, carburized) material, use core hardness from Manufacturers Data Sheet to determine yield strength number
$$\begin{split} K_y &= \text{yield strength factor. See Table 3.6.}\\ K_{ms} &= 0.0144F + 1.07 \text{ for } F \leq 16 \end{split} \tag{Eq. 25}\\ K_{ms} &= 1.3 \text{ for } F > 16'' \end{split}$$

 $K_{ms}\,$ = load distribution factor, static torque

Allowable static torque rating determined using this formula will be conservative since the geometry factor J includes a stress concentration factor for fatigue. It should be pointed out that some gear materials do not have a well-defined yield point and the ultimate strength is approximately equal to the yield. For these materials, a much lower value of K_y must be selected. The user of this specification should satisfy himself that the yield values selected are appropriate for the materials used.

PATTERN 8A

FIG. 3.8 ACCEPTABLE FLAME AND INDUCTION HARDENING PATTERNS FROM AGMA 422.03

PATTERN 8B

ISO 10431:1993(E)

Spec 11E: Pumping Units

HELICAL AND HERRINGBONE GEARS

23

FIG. 3.9 ALLOWABLE YIELD STRENGTH NUMBER — s_{ay} STEEL AND NODULAR IRON FROM AGMA 422.03

TABLE 3.6YIELD STRENGTH FACTOR - K_y

Material	Ky
Steel (Through Hardened)	1.0
Nodular Iron	1.0
Steel (Flame or Induction Hardened	0.85
Steel (Case Carburized)	1.20
Steel (Nitrided)	0.85
Cast Iron	0.75
Malleable Iron	1.0

3.8 COMPONENTS

Component Design. Gear reducers for oilfield pumping units must be designed for the unusual external loads encountered in this service. All components are subject to loading determined by the structural geometry and the load rating of the pumping unit. The data in this section are general in nature and should only be used after careful consideration of all factors which influence the loading.

Housing. The housing may be of any design, provided it is sufficiently rigid to properly maintain shaft positions under maximum gear and structural loads for which it is intended.

Bearings. Shafts may be supported in sleeve or antifriction bearings.

Sleeve Bearings. Sleeve bearings shall be designed for bearing pressures not in excess of 750 pounds per square inch of projected area, based on actual loading (internal and external), at the rated peak torque.

Antifriction Bearings. Antifriction bearings shall be selected according to the bearing manufacturer's recommendations based on actual loads (internal and external) at rated peak torque and rated speed for not less than 15,000 hours L-10 life.

Shaft Stresses. For steel shafts, the maximum stress due to torsion and the maximum stress due to bending shall not exceed the values shown in Fig. 3.10 for the torque rating of the unit. These allowable stress limitations provide for effective stress concentrations arising from keyways, shoulders, and grooves, etc., not exceeding a value of 3.0. Effective stress concentration (considering notch sensitivity) exceeding a value of 3.0, press fits, or unusual deflections, require detailed analysis.

Shaft Deflections. Shaft deflections causing tooth misalignment must be analyzed regardless of stress levels to insure satisfactory tooth contact as required to achieve the C_m and K_m values used to rate the gearing.

Key Stresses. The shear and compressive stress in a key is calculated as follows:

$$s_s = \frac{2T_t}{(d_s)(w)(L)}$$
(Eq. 26)

$$s_{c} = \frac{2T_{t}}{(d_{s})(h_{1})(L)}$$
 (Eq. 27)

where:

- $s_s = shear stress of key, psi (see Table 3.7)$
- $s_c = compressive stress of key, psi (see Table 3.7)$
- T_t = transmitted shaft torque, lb. in.
- d_s = shaft diameter, in.
 - (for tapered shaft use mean diameter)
- w = width of key, in.
- L = length of key, in.
- h₁ = height of key in the shaft or hub that bears against the keyway, in.

For designs where unequal portions of the keyway are in the hub or shaft, h_1 must be the minimum portion.

Allowable Stresses. Maximum allowable key stresses based on peak torque rating are shown in Table 3.7. These stress limits are based on the assumption that an interference fit is used with a torque capability equal to or greater than the reducer rating at that shaft.

Overloads. The shaft to hub interface must be capable of withstanding the overloads associated with oilfield pumping units.

Fastener Stresses. Fastener stresses are to be determined from the forces developed at the torque rating of the gear reducer in addition to any external structural loading.

The maximum allowable stress at the tensile area of threaded fasteners (bolts, studs, or capscrews) shall not exceed the values given in Table 3.8. The tensile area (A) is calculated as follows:

A =
$$0.785 \left(D_m - \frac{0.97}{N_T} \right)^2$$
 (Eq. 28)

where:

A = tensile area of fastener, in.²

 D_m = major diameter of fastener, inches

 N_T = threads per inch of fastener

TABLE 3.7 ALLOWABLE KEY STRESSES*

Key	Hardness	Allowable Stress, psi		
Material	BHN	Shear	Comp.	
AISI 1018	None Specified	10,000	20,000	
AISI 1045	225-265 265-305	15,000 20,000	30,000 40,000	
AISI 4140	310-360	30,000	60,000	

*The values tabulated assume an interference fit with a torque capacity equal to or greater than the reducer rating. When other methods of attachment are used, a detailed stress analysis must be performed.
ISO 10431:1993(E)

25

FIG. 3.10
ALLOWABLE STRESS - SHAFTING
FROM AGMA 422.03

TABLE 3.8	
MAXIMUM ALLOWABLE TENSILE STRESS,	FASTENERS

SAE and/or ASTM Designation	Threaded Fastener Diameter, inches	Hardness BHN	Yield <u>Strength</u> psi min.	Ultimate Tensile <u>Strength</u> psi min.	Allowable Applied Tensile Stress psi max.
SAE 2	Over ¼ to ¾ incl. Over ¾ to 1½ incl.	149-241 121-241	55,000 33,000	74,000 60,000	11,000 11,000
SAE 5 (ASTM A-449)	Over ½ to 1 incl. Over 1 to 1½ incl.	241-302 223-285	$85,000 \\ 74,000$	120,000 105,000	20,000 18,000
ASTM A-449	Over 1½ to 3 incl.	183-235	55,000	90,000	13,000
ASTM A-354	Over $\frac{1}{4}$ to $2\frac{1}{2}$ incl.	217-285	80,000	105,000	17,000
Grade BB	Over 2½ to 4 incl.	217-285	75.000	100,000	17,000
ASTM A-354	Over ¼ to 2½ incl.	255-321	109,000	125,000	22,000
Grade BC	Over 2½ to 4 incl.	255-321	99,000	115,000	22,000
SAE 7	Over ¼ to 1½ incl.	277-321	105,000	133,000	24,600
SAE 8 (ASTM A-354 Gra	Over ¼ to 1½ incl. de BD)	302-352	120.000	150,000	27,700

NOTE: The basis for the values in Table 3.8 is to prevent joint opening at a peak rated load.

Tensile Preload. The tensile preload in the bolt, stud, or capscrew should be 70 percent of the yield strength of the material as determined at the tensile area of the thread.

Special Seals and Breathers. It is recognized that oilfield pumping units operate outdoors under adverse atmospheric conditions and must be equipped with seals and breathers designed for these conditions.

3.9 LUBRICATION (See API RP 11G)

*Substitute "CHAIN" when appropriate.

FIG. 3.11

PUMPING-UNIT REDUCER NAME PLATE

3.10 Data Sheet. The manufacturer shall retain in his files, and make available to an API surveyor upon request, a completed Manufacturer's Gear Reducer Data Sheet as shown in Table 3.9 for each gear reducer size manufactured.

3.11 MARKING*

Each pumping—unit reducer shall be provided with a nameplate substantially as shown in Fig. 3.11. The size (peak torque rating in 1.000 lb. in.) shown on the nameplate shall be one of those listed in Table 3.2. No other rating marking shall be applied to the reducer. The nameplate may, at the option of the manufacturer, contain information such as model number, lubrication instructions, etc., provided such marking does not conflict with the API rating marking.

NOTE: It is the spirit and intent of the above prorision that any manufacturer having authority to use the API monogram on pumping unit reducers may not represent a reducer carrying the monogram or for which the letters API or the words "American Petroleum Institute" are used in its description as having a rating of any kind or size other than provided above. This applies to sales information as well as to reducer markings.

CHAIN REDUCERS

3.12 Design. Chain drives shall be either single, double, or triple reduction.

3.13 Single, or multiple strand roller chain, conforming to American National Standards Institute (ANSI) B29.1 heavy series, shall be used. Link plates may be thicker than specified. Center link plates of multiple strand chains shall be press-fitted on the pins.

3.14 Sprockets shall have ANSI tooth form.

3.15 The small sprocket shall have not less than eleven teeth.

3.16 The small sprocket shall be of steel, and of 225 minimum Brinell hardness. The large sprocket shall be of steel or cast iron.

3.17 The distance between sprocket centerlines shall not be less than the sum of the pitch circle radius of the large sprocket plus the pitch circle diameter of the small sprocket. Chain length shall be selected to obtain an even number of pitches (no offset link).

3.18 A minimum take-up of two pitches, or 3 per cent of chain length, whichever is less, shall be provided.

3.19 Shafts and sprockets shall be aligned to provide proper distribution of load across the width. Where a shaft is movable for take-up, reference marks shall be provided for checking parallelism.

3.20 Rating Forumula. Chain and sprocket ratings shall be based on a nominal pumping speed of 20 strokes per minute.

3.21 The peak torque rating of the first reduction shall be calculated as follows:

- a. For double-reduction reducers, the peak-torque rating of the first (high speed) reduction shall be related to the crankshaft peak torque rating by multiplying the high speed reduction peak torque by the ratio of the second (low speed) reduction.
- b. For triple reduction reducers, the peak torque rating of the first (high speed) reduction shall be related to the crankshaft peak torque rating by multiplying the high speed reduction peak torque by the product of the ratios of the second (intermediate speed) and third (low speed) reductions.

3.22 The following formula shall be used for rating of chain:

$$T = \frac{S \times R}{12}$$

Wherein:

- T = peak-torque rating in inch-pounds.
- S = ANSI ultimate tensile strength of chain in pounds.
- R = pitch radius of large sprocket in inches.

^{*}Users of this specification should note that there is no longer a requirement for marking a product with the API monogram. The American Petroleum Institute continues to license use of the monogram on products covered by this specification but it is administered by the staff of the Institute separately from the specification. The policy describing licensing and use of the monogram is contained in Appendix H. herein. No other use of the monogram is permitted.

Spec 11E: Pu	amping Units 27
TAB MANUFACTURER'S GEA	LE 3.9 R REDUCER DATA SHEET
MANUFACTURED BY: ,	DATE SUBMITTED
NOMINAL API REDUCER SIZE	
CALCULAT	ED VALUES
PITTING RESISTANCE TORQUE	Third Reduction:
First Reductionlb. in.	Gear lb. in., Pinion lb. in.
Second Reduction lb. in.	STATIC TORQUE
Third Reduction lb. in.	First Reduction:
BENDING STRENGTH TORQUE	Gear lb. in., Pinion lb. in.
First Reduction:	Second Reduction:
Gear lb. in., Pinion lb. in.	Gear ID. In., Pinion ID. In.
Second Reduction:	Coor Ib in Dinion Ib in
Gear ID. In., Finion ID. In.	Gear 10. In., Finion 10. In.
NOTE: (1) First Reduction is high speed reduction.	
(2) Second reduction is slow speed reduction on dou on triple reduction gear reducers.	ible reduction gear reducers and the intermediate reduction
(3) Third reduction is the slow speed reduction or reduction reducers.	n triple reduction reducers and is not applicable on double
CONSTRUCTIO	ON FEATURES
TYPE OF REDUCER: (Cross out if not applicable)	
(Single) (Double) (Triple) Reduction (Single) (Double) Helical Gearing	
TEETH	
Number of Teeth and Normal Diametral Pitch or Trans	verse Diametral Pitch
First Reduction, N _P , N _G , P	nd, P_d
Second Reduction, $N_{\rm P}$, $N_{\rm G}$,	P _{nd} , P _d
Third Reduction, N_P , N_G , 1	P _{nd} , P _d
Center Distance and Net Face Width	
First Reduction, C.D., F.W.	
Second Reduction, C.D., F.W.	
Third Reduction,C.D., F.W.	
Helix Angle and Normal Pressure Angle or Transverse	Pressure Angle (Degrees)
First Reduction, H.A.,	NPA, TPA
Second Reduction H.A.,	NPA, TPA
Third Reduction, H.A.,	NPA TPA

28 American Petroleum Institute							
TABLE 3.9	(Continued)						
GEOMETRY FACTORS. I & J (FOR PINION AND GEAR)							
First Reduction Geometry Factor I, J_P, J_G							
Second Reduction Geometry Factor I, J_P, J_G							
Third Reduction Geometry Factor I, J_P .	, J _G						
MANUFACTURING METHODS							
Teeth Generated by Process Teeth Finished by Process							
Tooth Hardening Method	_						
GEAR & PINION MATERIALS & HARDNESS							
First Reduction:							
Gear Material, Surface BHN/Rc	, Core BHN§						
Pinion Mtl, Surface BHN/Rc	, Core BHN§						
Second Reduction:							
Gear Material, Surface BHN/Rc	, Core BHN§						
Pinion Mtl, Surface BHN/Rc	, Core BHN§						
Third Reduction:							
Gear Material, Surface BHN/Rc	, Core BHN§						
Pinion Mtl, Surface BHN/Rc	, Core BHN§						
§ Core hardness required for surface hardened gears and pi	nions only.						
OTHER COMPONENTS							
Crankshaft Material	, Hardness						
Housing Material							
Housing Type (Check ✔): Split, One Piece	_						
BEARING SIZES*	BEARING LOADING***						
High Speed Pinion	High Speed Pinion						
**Intermediate Speed Pinion	**Intermediate Speed Pinion						
Low Speed Pinion	Low Speed Pinion						
Low Speed Gear	Low Speed Gear						
*For journal bearings indicate projected area; for roller bearings indicate AFBMA (or equivalent) size. List all bearings on each shaft. (State if bearings are mounted in carriers or directly in gear housing.)	***For journal bearings list psi loading on each bear- ing. For roller bearings, list L-10 life as calculated in 3.8. **Not applicable on double reduction reducers.						

**Not applicable on double reduction reducers.

SECTION 4

INSPECTION AND REJECTION

4.1 The inspector representing the purchaser shall have free entry at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacturer of the material specified hereinbefore. The manufacturer shall afford the inspector, free of charge, all reasonable facilities to satisfy him that the material is being furnished in accordance with this specification. Any inspection made at the place of manufacture shall be considered process inspection, and shall be so conducted as not to interfere unnecessarily with the operation of the works. The manufacturer shall furnish the inspector with gages, or other necessary measuring instruments, the accuracy of which shall be proved to the satisfaction of the inspector.

4.2 Material manufactured and rated under this specification which proves to be defective subsequent to acceptance may be rejected, and the manufacturer shall be notified.

4.3 No rejections, under this or any other specification, are to be stamped with the API monogram or sold as API material.

4.4 Compliance. The manufacturer is responsible for complying with all of the provisions of this specification. The purchaser may make any investigation necessary to satisfy himself of compliance by the manufacturer and may reject any material that does not comply with this specification.

30	American Pe	etroleum Institute	e	
	APPE	NDIX A		
A1. Rating Form approved form for counterbalances is s are urged to use thi mation indicated.	APPROVED a for Crank Counterbalances. An rating of pumping-unit crank hown in Fig. A-1. Manufacturers s form when providing the infor-	DATA FO A2. So for subm factors i urged to mation.	RMS troke and Torque H nission of pumpin is shown in Fig. use this form wh	Factors. An approved form g-unit stroke and torque A-2. Manufacturers are hen supplying such infor-
Name of Manufact	urer		Designation of U	nit
	1 Description ¹		2 Total Weight, lb.	3 Maximum ² Moment about Crankshaft, inlb.

¹Describe parts in use accurately enough to avoid any possible misunderstanding, showing on separate lines a series of practical combinations from minimum to maximum. ²Equals total weight (Col. 2) times distance to center of gravity in inches, with crank in horizontal position.

FIG. A-1

API RATING FORM FOR CRANK COUNTERBALANCE

Spec 11E: Pumping Units

____pounds

Name of Manufacturer____

Designation of Unit_

Pumping Unit Structural Unbalance____

1	2	3	4	5	6	7	8	9
Position	Constant of Consta	Position	of Rods ²			Torque	Factor ³	
deg.		Length of Stroke, in.				Length of Stroke, in.		
-								
0							-	
15								
30								
45								
60								
75								
90								
105								
120								
135								
150								
165								
180								
195								
210								
225				_				
240								
255								
270								
285								
300								
315								
330								
345								

¹For crank counterbalanced units with Class I Geometry, the position of the crank is the angular dis-placement measured clockwise from the 12 o'clock position, viewed with the wellhead to the right. For crank counterbalanced units with Class III Geometry, the position of the crank is the angular dis-placement measured counter-clockwise from the 6 o'clock position, viewed with the wellhead to the right. For air counterbalanced units with Class III Geometry, the position of the crank is the angular displace-ment measured clockwise from the 6 o'clock position, viewed with the wellhead to the right.

²Position is expressed as a fraction of stroke above lowermost position.

^sTorque factor $=\frac{T}{W}$ where T = torque on pumping-unit reducer due to polished-rod load W.

Α	Р
С	К
R,	Н
R	Ι
R ₃	G

NOTE: See Appendix B, C, D or E for symbol identification.

FIG. A-2 PUMPING-UNIT STROKE AND TORQUE FACTOR

American Petroleum Institute

APPENDIX B

RECOMMENDED PRACTICE FOR THE CALCULATION AND APPLICATION OF TORQUE FACTOR ON PUMPING UNITS

(Rear Mounted Geometry Class I Lever Systems with Crank Counterbalance)

Definition

B1. The torque factor for any given crank angle is that factor which, when multiplied by the load in pounds at the polished rod, gives the torque in inchpounds at the crankshaft of the pumping-unit reducer.

Method of Calculation

B2. Torque factors (as well as the polished-rod position) may be determined by a scale layout of the unit geometry so that the various angles involved may be measured. They may also be calculated from the dimensions of the pumping unit by mathematical treatment only. The approved form for submission of torque factor and polished-rod position data are given in Appendix A, Fig. A2.

B3. Torque factors and polished-rod positions are to be furnished by pumping-unit manufacturers for each 15-deg crank position with the zero position at 12 o'clock. Other crank positions are determined by the angular displacement in a clockwise direction viewed with the wellhead to the right. The polishedrod position for each crank position is expressed as a fraction of the stroke above the lowermost position.

B4. Referring to Fig. B1, the following system of nomenclature and symbols is adopted:

- A = Distance from the center of the saddle bearing to the centerline of the polished rod, inches.
- C = Distance from the center of the saddle bearing to the center of the equalizer bearing, inches.
- P = Effective length of the pitman, inches, (from the center of the equalizer bearing to the center of the crank-pin bearing).
- R = Radius of the crank, inches.
- K = Distance from the center of the crankshaft to the center of the saddle bearing, inches.
- H = Height from the center of the saddle bearing to the bottom of the base beams, inches.
- I = Horizontal distance between the centerline of the saddle bearing and the centerline of the crankshaft, inches.
- G = Height from the center of the crankshaft to the bottom of the base beams, inches.
- J = Distance from the center of the crank-pin bearing to the center of the saddle bearing, inches.
- $\phi = \text{Angle between the 12 o'clock position and} \\ K, degrees; equals <math>\tan^{-1}\left(\frac{I}{H-G}\right)$
- e = Angle of crank rotation in a clockwise direction viewed with the wellhead to the

right and with zero degrees occurring at 12 o'clock, degrees.

- β = Angle between C and P, degrees.
- α = Angle between P and R, degrees, measured clockwise from R to P.
- $\Psi = \text{Angle between } C \text{ and } K \text{, degrees, (equals angle } \chi \text{ angle } \rho).$
- Ψ_t = Angle between c and k, degrees, at top (highest) polished rod position.
- $\Psi_{\rm b}$ = Angle between c and k, degrees, at bottom (lowest) polished rod position.
- x = Angle between C and J, degrees.
- = Angle between K and J, degrees.
- \overline{TF} = Torque factor for a given crank angle θ , inches.
- W = Polished-rod load at any specific crank angle θ , pounds.
- B = Structural unbalance, pounds; equal to the force at the polished rod required to hold the beam in a horizontal position with the pitmans disconnected from the crank pins. This force is positive when acting downward and negative when acting upward.
- W_n = Net polished-rod load, pounds; equal to W B.
- $T_{wn} = Torque, inch-pounds, due to the net pol$ ished-rod load for a given crank angle $<math>\theta$, (equals $\overline{TF} \times W_n$).
- M = Maximum moment of the rotary counterweights, cranks, and crank pins about the crankshaft, inch-pounds.
- T_r = Torquè, inch-pounds, due to the rotary counterweights, cranks, and crank pins for a given crank angle θ (equals $M \sin \theta$)
- T_n = Net torque, inch-pounds, at the crankshaft for a given crank angle θ (equals $T_{wn} - T_r$).
- \overline{PR} = Polished-rod position expressed as a fraction of the stroke length above the lowermost position for a given crank angle θ .

B5. By application of the laws of trigonometric functions, the following expressions are derived. All angles are calculated in terms of a given crank angle θ .

$$\overline{\mathrm{TF}} = \frac{\mathrm{AR}}{\mathrm{C}} \quad \frac{\sin \alpha}{\sin \beta} \dots B.1$$

Sin α is positive when the angle α is between 0 deg and 180 deg, and is negative when angle α is between 180 deg and 360 deg. Sin β is always positive because the angle β is always between 0 deg and 180 deg. A negative torque factor (\overline{TF}) only indicates a change in direction of torque on the crankshaft.

$$\phi = \operatorname{Tan}^{-1}\left(\frac{\mathrm{I}}{\mathrm{H}-\mathrm{G}}\right)$$
B.2

This is a constant angle for any given pumping unit.

$$\beta = \cos^{-1} \frac{C^2 + P^2 - K^2 - R^2 + 2KR \cos(\theta - \phi)}{2CP} \dots B.3$$

The cos of $(\theta - \phi)$ is positive when this angle is between 270 deg and 90 deg moving clockwise, and is negative from 90 deg to 270 deg moving clockwise. When the angle $(\theta - \phi)$ is negative, it should be subtracted from 360 deg, and the foregoing rules apply.

$$x = \cos^{-1} \left(\frac{C^2 + J^2 - P^2}{2CJ} \right) \dots B.4$$
$$\rho = \sin^{-1} \pm \left[\frac{\mathbf{R} \sin (\theta - \phi)}{\mathbf{J}} \right] \dots B.5$$

The angle ρ is taken as a positive angle when sin ρ is positive. This occurs for crank positions between $(\theta - \phi) = 0 \deg$ and $(\theta - \phi) = 180 \deg$.

The angle ρ is taken as a negative angle when sin ρ is negative. This occurs for crank positions between $(\theta - \phi) = 180 \ deg \ and \ (\theta - \phi) = 360 \ deg.$

$$\Psi = \chi - \rho \qquad B.6$$

$$\alpha = \beta + \Psi - (\theta - \phi) \qquad B.7$$

$$\overline{PR} = \frac{\Psi_b - \Psi}{\Psi_b - \Psi_t} - B.8$$

$$\Psi_{b} = \cos^{-1} \frac{C^{2} + K^{2} - (P + R)^{2}}{2 CK} \dots B.9$$

$$\Psi_{t} = \cos^{-1} \frac{C^{2} + K^{2} - (P - R)^{2}}{2 CK} \dots B.10$$

Application of Torque Factors

B6. Torque factors are used primarily for determining peak crankshaft torque on operating pumping units. The procedure is to take a dynamometer card and then use torque factors, polished-rod position factors, and counterbalance information to plot the net torque curve. Points for plotting the net torque curve are calculated from the formula:*

$$T_n = \overline{TF} (W - B) - M \sin \theta$$
.....B.11

B7. The formula for net crankshaft torque, T_n , does not include the change in structural unbalance with change in crank angle; neglects the inertia effects of beam, beam weights, equalizer, pitman, crank, and crank counterweights; and neglects friction in the saddle, tail, and pitman bearings. For units having 100-percent crank counterbalance and where crank-speed variation is not more than 15 percent of average, these factors usually can be neglected without introducing errors greater than 10 percent. When beam weights are used, the inertia effects of the weights must be included to determine peak torque with any degree of accuracy. The pro-

*This formula applies to pumping units where maximum counterbalance moment is obtained at θ equals 90 deg or 270 deg.

cedure for including the inertia effect of beam counterweights has been omitted because of the limited use of this type of balance. Some non-dynamic factors that can have an effect on the determination of instantaneous net torque loadings, and which accordingly should be recognized or considered, are outlined in paragraphs B17., B18., and B19.

B8. Torque factors may be used to obtain the effect at the polished rod of the rotary counterbalance. This is done for a given crank angle by dividing the counterbalance moment, $M \sin \theta$, by the torque factor for the crank angle θ . The result is the rotary counterbalance effect, in pounds, at the polished rod.

B9. Torque factors may also be used to determine the maximum rotary counterbalance moment. This is done by placing the cranks in the 90 deg or 270 deg position and tying off the polished rod. Then, with a polished-rod dynamometer, the counterbalance effect is measured at the polished rod. Using this method, the measured polished-rod load (W) is the combined effect of the rotary counterbalance and the structural unbalance. The maximum rotary counterbalance moment can then be determined from the formula:

$$M = \overline{TF} (W - B) B.12$$

To check measurements, the maximum moment, M, should be determined with the cranks in both the 90-deg and 270-deg positions. Should there be a significant difference in the maximum moments calculated from measurements at 90 deg and 270 deg, a recheck of polished-rod measurements and crank positions should be made. However, if there is only a slight difference, a satisfactory check is indicated and it is suggested that an arithmetic average of the two maximum moments be used.

B10. To illustrate the use of torque factors, a sample calculation will be made. A dynamometer card taken on a 4,000-ft well is shown in Fig. B2. The first step in calculating the net crankshaft torque is to divide the dynamometer card so that the load may be determined for each 15 deg of crank angle θ . Lines are projected down from the ends of the card, as shown, to determine its length which is proportional to the length of the stroke.

The length of the base line or zero line is then divided into 10 equal parts and these parts are subdivided. This may easily be done with a suitable scale along a suitable diagonal line as shown.*

B11. To further illustrate, a calculation will be made considering the point where the crank angle θ equals 75 deg. From polished-rod stroke and torque factor data for the particular 64-in. stroke 160-D pumping unit used for this example, it is found that the position of the polished rod at 75 deg is 0.397, and that the torque factor \overline{TF} is 34.38. A vertical line is drawn from the 0.397 position on the scale up to the point of intersection with the load on the upstroke (Fig. B2). The dynamometer deflection at this point is read to be 1.16 in. which, with a scale constant of 7,450 lb. per in., makes the load, (W) at that point 8,650 lb.

B12. In a similar manner, the polished-rod load may be obtained for each 15-deg angle of crank rotation. The dynamometer card has been marked to show

*Using the polished-rod position data, vertical lines representing each 15 deg of crank angle θ are projected upward to intersect the dynamometer card. Then the polished-rod load may be determined for each 15 deg of crank angle θ .

the load and position involved for each 15 deg of crank angle. The structural unbalance, B, for the example unit equals + 650 lb. Therefore, the net polished-rod load, W_n at $\theta = 75$ deg = W-B = 8,650 -(+650) = 8,000 lb. The torque, T_{wn} , due to the net polished-rod load = $\overline{TF} \times W_n = 34.38 \times 8,000 =$ 275,000 in.-lb.

B13. To find the torque, T_r , due to the crank counterbalance, the maximum moment, M, must be determined. This may be done either from manufacturers' counterbalance tables or curves, or as described in Par. B9. Because of the lack of manufacturers' counterbalance data in a majority of the cases, the polished-rod measurement technique will be used more frequently in determining the maximum moment. Should the manufacturers' counterbalance data be used, it is suggested that a check be made using a polished-rod measurement technique.

B14. The horizontal dotted line drawn across the dynamometer card in Fig. B2 is the counterbalance effect measured with the dynamometer at the 90-deg crank angle and is 6,250 lb. The maximum moment can then be calculated as follows, using formula B.12:

$$\mathbf{M} = \overline{\mathbf{TF}} (\mathbf{W} - \mathbf{B})$$

 $= 32.76 \times (6,250 - 650)$

= 183,000 in.-lb

(The torque factor of 32.76 is the value at the 90-deg crank position for the example unit.)

Although not shown, the measured counterbalance effect for the 270-deg crank position was 6,410 lb. Using the torque factor of 32.04 at the 270-deg crank position for the example unit, the maximum moment is:

$$M = 32.04 \times (6,410 - 650)$$

= 185,000 in.-lb

The maximum moments determined at the 90-deg and 270-deg crank positions are in good agreement, and the average maximum moment of 184,000 in.-lb will be used.

B15. The torque, T_r , due to the counterbalance at the 75-deg crank position would therefore be equal to $184,000 \times \sin 75$ -deg = $184,000 \times 0.966 = 178,000$ in.-lb. The net torque at the crankshaft for the 75-deg crank position would then be calculated from formula B.11 as follows:

$$T_n = \overline{TF} (W - B) - M \sin \theta$$

$$= 34.38 \times (8,650 - 650) - 184,000 \times 0.966$$

= 275,000 - 178,000 = 97,000 in.-lb

These values may be calculated for other crank angle positions in the same manner as outlined above. Shown in Fig. B3 is a plot of torque vs. crank angle which includes the net polished-rod load torque curve, the counterbalance torque curve, and the net crankshaft torque curve.

B16. The foregoing sample illustration on the use of torque factors has been based on the pumping unit operating with the cranks rotating toward the well from top dead center. If the pumping unit is operating with the cranks rotating away from the well from top dead center, the calculation technique is changed only in the use of the torque factor in polished-rod position data form. (Fig. A2, Appendix A, Std 11E.) The position of crank, degrees, (Col. 1) is reversed, starting from the bottom with 15 deg and counting up in 15-deg increments to 360 deg.

B17. The foregoing technique is generally accepted. Those wanting more precise results must realize the true stroke length can vary somewhat with a change in beam position in relation to the centerline of the saddle bearing due to an adjustable feature provided on most medium to large sized units or due to manufacturing tolerances. Any dimensional deviation will produce some change in the angular relationships with a resultant minor change in the torque factors furnished by the manufacturer.

B18. The geometry of the utilized dynamometer can influence the determination of instantaneous load values for the various specified or selected crank angles. When critical calculations are to be made the dynamometer manufacturer should be contacted for information on the involved performance characteristics of his dynamometer and the procedures that should be followed to adjust the recorded card when completely accurate data are required.

B19. It must be recognized that the maximum and minimum loads will most frequently fall at points other than the 15-degree divisions for which torque factors are provided. Interpolation between 15° divisions is permissible without significant error.

PUMPING UNIT GEOMETRY See Par. B4 for definition of symbols

Spec 11E: Pumping Units

NET REDUCER TORQUE CALCULATION SHEET

(Conventional Crank Balanced Unit Only – CLOCKWISE ROTATION)

Company: ___

 $\mathbf{Tn} = \overline{\mathbf{TF}} (\mathbf{W} - \mathbf{B}) - \mathbf{M} \operatorname{SIN} \theta$

Location: _____

Well No.: _____

Unit Size: _____

0	SINE 0	w	в	W—B	TF	TF (W-B)	-M (SINE 9)	Tn
0	0						0	
15	.259						-	
30	.500						-	
45	.707						-	
60	.866						-	
75	.966						-	
90	1.000						-	
105	.966						-	
120	.866						-	
135	.707						-	
150	.500						_	
165	.259						-	
180	0						0	
195	259						+	
210	500						+	
225	707						+	
240	866						+	
255	966						+	
270	-1.000						+	
285	966						+	
300	866						+	
315	707						+	
330	500				1		+	6
345	259						+	

Tn = Net Reducer Torque, in.-lbs

= Position of Crank .

TF = Torque Factor at **0**, in.

= Maximum Moment of Counterbalance, in.-lbs Μ

= Measured Polished Rod Load at (), lbs w

= Unit Structural Unbalance, lbs В

M = $(CB \text{ at } 90^\circ - B)(\overline{TF} \text{ at } 90^\circ) =$ _____

American Petroleum Institute

NET REDUCER TORQUE CALCULATION SHEET (Conventional Crank Balanced Unit Only - COUNTER CLOCKWISE ROTATION)

Company: ____

Location: _____ Well No.: ____

 $Tn = \overline{TF} (W-B) - M SIN \theta$

Unit Size: _____

θ	SINE 0	w	в	W—B	ŦF	TF (W-B)	-M(SINE θ)	Tn
0	0						0	
345	259						+	
330	500						+	
315	707						+	
300	866						+	
285	966						+	
270	-1.000						+	
255	966						+	
240	866						+	
225	707						+	
210	500						+	
195	259						+	
180	0						0	
165	.259						-	
150	.500						-	
135	.707						-	
120	.866						-	
105	.966						-	
90	1.000						-	
75	.966						-	
60	.866						-	
45	.707						-	
30	.500						-	
15	.259						-	

Tn = Net Reducer Torque, in.-lbs

θ = Position of Crank

= Maximum Moment of Counterbalance, in.-lbs М

w = Measured Polished Rod Load at θ , lbs = Unit Structural Unbalance, lbs

 \overline{TF} = Torque Factor at θ , in.

CB at 270° =

M = $(CB \text{ at } 270^\circ - B)(\overline{TF} \text{ at } 270^\circ) =$ _____

46

В

Spec 11E: Pumping Units

39

APPENDIX C

RECOMMENDED PRACTICE FOR THE CALCULATION AND APPLICATION OF TORQUE FACTOR ON PUMPING UNITS

(Front Mounted Geometry Class III Lever Systems with Crank Counterbalance)

ø

A

B

Definition

C1. The torque factor for any given crank angle is that factor which, when multiplied by the load in pounds at the polished rod, gives the torque in inchpounds at the crankshaft of the pumping-unit reducer.

Method of Calculation

C2. Torque factors (as well as the polished-rod position) may be determined by a scale layout of the unit geometry so that the various angles involved may be measured. They may also be calculated from the dimensions of the pumping unit by mathematical treatment only. The approved form for submission of torque factor and polished-rod position data are given in Fig. A2, Appendix A.

C3. Torque factors and polished-rod positions are to be furnished by pumping-unit manufacturers for each 15-deg crank position with the zero position at 6 o'clock. Other crank positions are determined by the angular displacement in a counter-clockwise direction viewed with the wellhead to the right. The polished-rod position for each crank position is expressed as a fraction of the stroke above the lowermost position.

C4. Referring to Fig. C1, the following system of nomenclature and symbols is adopted:

- A = Distance from the center of the Samson Post bearing to the centerline of the polished rod, inches.
- C = Distance from the center of the Samson Post bearing to the center of the equalizer (or cross yoke) bearing, inches.
- P = Effective length of the pitman, inches, (from the center of the equalizer (or cross yoke) bearing to the center of the crank-pin bearing).
- **R** = Radius of the crank, inches.
- K = Distance from the center of the crankshaft to the center of the Samson Post bearing, inches.
- H = Height from the center of the Samson Post bearing to the bottom of the base beams, inches.
- I = Horizontal distance between the centerline of the Samson Post bearing and the centerline of the crankshaft, inches.
- G = Height from the center of the crankshaft to the bottom of the base beams, inches.
- J = Distance from the center of the crank-pin bearing to the center of the Samson Post bearing, inches.

= Angle between the 6 o'clock position and K,

degrees; equals $\tan^{-1} \left[\frac{I}{H-G} \right] + 180^{\circ}$

- = Angle of crank pin rotation in a counterclockwise direction viewed with the wellhead to the right and with zero degrees occurring at 6 o'clock, degrees.
- = Angle between C and P, degrees.
- α = Angle between P and R, degrees, measured clockwise from R to P.
 - Angle between C and K, degrees, (equals angle χ angle ρ).
- x_t = Angle between c and k, degrees, at top (highest) polished rod position.
- $\Psi_{\rm b}$ = Angle between c and k, degrees, at bottom (lowest) polished rod position.
- χ = Angle between C and J, degrees.
- = Angle between K and J, degrees.
- \overline{TF} = Torque factor for a given crank angle θ , inches.
- $W = Polished-rod load at any specific crank angle <math>\theta$, pounds.
- W. = Counterbalance in pounds at the polished rod determined using dynamometer with crank pin at 90° position.
- B = Structural unbalance, pounds; equal to the force at the polished rod required to hold the beam in a horizontal position with the pitmans disconnected from the crank pins. This force acts upward on Class III Geometry Units and is negative.
- $W_n =$ Net polished-rod load, pounds; equal to W B.
- $T_{wn} = Torque$, inch-pounds, due to the net polished-rod load for a given crank angle θ (equals $\overline{TF} \times W_n$).
- M = Maximum moment of the rotary counterweights, cranks, and crank pins about the crankshaft, inch-pounds.
 - Angle of crank counterweight arm offset for front mounted geometry (Class III Lever System).
- $T_r = Torque$, inch-pounds, due to the rotary counterweights, cranks, and crank pins for a given crank angle θ [equals M sin $(\theta + \tau)$]

- T_n = Net torque, inch-pounds, at the crankshaft for a given crank angle θ (equals $T_{wn} - T_r$).
- \overline{PR} = Polished-rod position expressed as a fraction of the stroke length above the lowermost position for a given crank angle θ .

C5. By application of the laws of trigonometric functions, the following expressions are derived. All angles are calculated in terms of a given crank angle θ .

Sin α is positive when the angle α is between 0° and 180°, and is negative when angle α is between 180° and 360°. Sin β is always positive because the angle β is always between 0° and 180°. A negative torque factor (TF) only indicates a change in direction of torque on the crankshaft.

$$\phi = \operatorname{Tan}^{-1} \qquad \left[\frac{\mathrm{I}}{\mathrm{H} \cdot \mathrm{G}} \right] + 180^{\circ} \dots C.2$$

This is a constant angle for any given pumping unit.

$$\boldsymbol{\beta} = \cos^{-1} \left[\frac{C^2 + P^2 - K^2 - R^2 + 2KR \cos \left(\boldsymbol{\theta} - \boldsymbol{\phi}\right)}{2CP} \right] \dots C.3$$

The sign of $\cos(\theta - \phi)$ must be correct. $\cos(\theta - \phi)$ is negative when $(\theta - \phi)$ is 90° through 270°. It is positive for all other angles between 0° and 360°. When the angle $(\theta - \phi)$ is a negative number, it can be subtracted from 360° and this new angle can be used to determine the proper sign.

$$\chi = \sin^{-1} \left[\frac{P \sin \beta}{J} \right]^{\dots C.4}$$
$$\rho = \sin^{-1} \left[\frac{R \sin (\theta - \phi)}{J} \right]^{\dots C.5}$$

For equation C.6 to be correct, it is necessary to use the proper sign for the angle ρ . The angle ρ is taken as positive when $\sin \rho$ is positive. This occurs for crank positions where $(\theta - \phi) = 0^{\circ}$ to $(\theta - \phi) =$ 180°.

The angle ρ is taken as negative when $\sin \rho$ is negative. This occurs for crank positions $(\theta - \phi) = 180^{\circ}$ through $(\theta - \phi) = 360^{\circ}$.

When the angle $(\theta - \phi)$ is negative, it can be subtracted from 360° and this new angle can be used to determine the proper sign.

$$\Psi = \chi - \rho$$
.....C.6

n
$$\alpha = \sin \left[(\theta - \phi) - \Psi - \beta \right]$$
.....C.7

$$\overline{PR} = \frac{\Psi_b - \Psi}{\Psi_b - \Psi_t}$$
.C.8

$$\Psi_{t} = \cos^{-1} \left[\frac{C^{2} + K^{2} - (P + R)^{2}}{2 C K} \right] \dots C.9$$

$$\Psi_{b} = \cos^{-1} \left[\frac{C^{2} + K^{2} - (P - R)^{2}}{2 CK} \right] \dots C.10$$

Application of Torque Factors

C6. Torque factors are used primarily for determining peak crankshaft torque on operating pumping units. The procedure is to take a dynamometer card and then use torque factors, polished rod position factors, and counterbalance information to plot the net torque curve. Points for plotting the net torque curve are calculated from the formula:

$$T_n = \overline{TF} (W - B) - M \sin (\theta + \tau)$$
.....C.11

C7. The formula for net crankshaft torque, T_n, does not include the change in structural unbalance with change in crank angle; neglects the inertia effects of beam, equalizer (or cross yoke), pitman, crank, and crank counterweights; and neglects friction in the bearings. For units having 100-percent crank counterbalance and where crank-speed variation is not more than 15 percent of average, these factors usually can be neglected without introducing errors greater than 10 percent. Some non-dynamic factors that can have an effect on the determination of instantaneous net torque loadings, and which accordingly should be recognized or considered, are outlined in paragraphs C16, C17, and C18.

C8. Torque factors may be used to obtain the effect at the polished rod of the rotary counterbalance. This is done for a given crank angle by dividing the counterbalance moment, $M \sin (\theta + r)$, by the torque factor for the crank angle θ . The result is the rotary counterbalance effect, in pounds, at the polished rod.

C9. Torque factors may also be used to determine the maximum rotary counterbalance moment. This is done by placing the crank pins in the 90 deg position and tying off the polished rod. Then, with a polished-rod dynamometer, the counterbalance effect is measured at the polished rod. Using this method, the measured counterbalance effect in pounds (W_e) is the combined effect of the rotary counterbalance and the structural unbalance. The maximum rotary counterbalance moment can then be determined from the formula:

$$M = \frac{\overline{\text{TF}} (W_{e}-B)}{\sin (90^{\circ} + \tau)}$$
.C.12

C10. To illustrate the use of torque factors, a sample calculation will be made. A dynamometer card taken on a 2872 ft well is shown in Fig. C2. The first step in calculating the net crankshaft torque is to divide the dynamometer card so that the load may be determined for each 15 deg of crank angle θ . Lines are projected down from the ends of the card, as shown, to determine its length which is proportional to the length of the stroke.

The length of the base line or zero line is then divided into 10 equal parts and these parts are subdivided. This may easily be done with a suitable scale along a suitable diagonal line as shown.*

C11. To further illustrate, a calculation will be made considering the point where the crank angle θ equals 60 deg. From polished-rod stroke and torque

si

^{*}Using the polished-rod position data, vertical lines representing each 15 deg of crank angle θ are projected upward to intersect the dynamometer card. Then the polished-rod load may be determined for each 15 deg of crank angle θ .

factor data for the particular 86-in. stroke 160-D pumping unit used for this example, it is found that the position of the polished rod at 60 deg is 0.405, and that the torque factor \overline{TF} is 36.45. A vertical line is drawn from the 0.405 position on the scale up to the point of intersection with the load on the upstroke (Fig. C2). The dynamometer deflection at this point is read to be 0.99 in. which, with a scale constant of 7,500 lb. per in., makes the load, (W) at that point 7425 lb.

C12. In a similar manner, the polished-rod load may be obtained for each 15-deg angle of crank rotation. The dynamometer card has been marked to show the load and position involved for each 15 deg of crank angle. The structural unbalance, B, for the example unit equals -1535 lb. Therefore, the net polished-rod load, W_n at $\theta = 60$ deg. = W-B = 7425 - (-1535) = 8960 lb. The torque, T_{wn} , due to the net polished-rod load = $\overline{TF} \times W_n = 36.45 \times 8960 = 326,592$ in.—lb.

C13. To find the torque, T_r , due to the crank counterbalance, the maximum moment, M, must be determined. This may be done either from manufacturers' counterbalance tables or curves, or as described in Par. C9. Should the manufacturers' counterbalance data be used, it is suggested that a check be made using a polished-rod measurement technique.

C14. The horizontal dotted line drawn across the dynamometer card in Fig. C2 is the counterbalance effect measured with the dynamometer at the 90-deg crank angle and is 4594 lb. The maximum moment can then be calculated as follows, using formula C.12:

$$M = \frac{\overline{TF} (W_c - B)}{\sin (90^\circ + \tau)}$$

= 38.38 \times (4594 + 1535) / .891

= 264,008 in.--lb.

(The torque factor of 38.38 is the value at the 90-deg crank position and angle τ is 27° for the example unit).

C15. The torque, T_r, due to the counterbalance at the 60 deg crank position would therefore be equal to $264,008 \times \sin(60^\circ + 27^\circ) = 264,008 \times 0.999 = 263,744$ in.—lb. The net torque at the crankshaft for the 60-deg crank position would then be calculated from formula C.11 as follows:

$$T_n = TF (W - B) - M \sin (\theta + \tau)$$

= $T_{wn} - T_r$
= 326,592 - 263,744 = 62,848 in.-lb.

These values may be calculated for other crank angle positions in the same manner as outlined above. Shown in Fig. C3 is a plot of torque vs. crank angle which includes the net polished-rod load torque curve, the counterbalance torque curve, and the net crankshaft torque curve.

C16. The foregoing technique is generally accepted. Those wanting more precise results must realize the true stroke length can vary somewhat with a change in beam position in relation to the centerline of the saddle bearing due to an adjustable feature provided on most medium to large sized units or due to manufacturing tolerances. Any dimensional deviation will produce some change in the angular relationships with a resultant minor change in the torque factors furnished by the manufacturer.

C17. The geometry of the utilized dynamometer can influence the determination of instantaneous load values for the various specified or selected crank angles. When critical calculations are to be made the dynamometer manufacturer should be contacted for information on the involved performance characteristics of his dynamometer and the procedures that should be followed to adjust the recorded card when completely accurate data are required.

C18. It must be recognized that the maximum and minimum loads will most frequently fall at points other than the 15-degree divisions for which torque factors are provided. Interpolation between 15° divisions is permissible without significant error.

ISO 10431:1993(E)

APPENDIX D

RECOMMENDED PRACTICE FOR THE CALCULATION AND APPLICATION OF TORQUE FACTOR ON PUMPING UNITS

(Front Mounted Geometry Class III Lever System Air Counterbalance)

θ

Definition

D1. The torque factor for any given crank angle is that factor which, when multiplied by the load in pounds at the polished rod, gives the torque in inchpounds at the crankshaft of the pumping-unit reducer.

Method of Calculation

D2. Torque factors (as well as the polished-rod position) may be determined by a scale layout of the unit geometry so that the various angles involved may be measured. They may also be calculated from the dimensions of the pumping unit by mathematical treatment only. The approved form for submission of torque factor and polished-rod position data are given in Fig. A2, Appendix A.

D3. Torque factors and polished-rod positions are to be furnished by pumping-unit manufacturers for each 15-deg crank position with the zero position at 6 o'clock. Other crank positions are determined by the angular displacement in a clockwise direction viewed with the wellhead to the right. The polished rod position for each crank position is expressed as a fraction of the stroke above the lowermost position.

D4. Referring to Fig. D1, the following system of nomenclature and symbols is adopted:

- A = Distance from the center of the Samson Post bearing to the centerline of the polished rod, inches.
- C = Distance from the center of the Samson Post bearing to the center of the equalizer bearing, inches.
- P = Effective length of the pitman, inches,(from the center of the equalizer bearingto the center of the crank-pin bearing).
- \mathbf{R} = Radius of the crank, inches.
- K = Distance from the center of the crankshaft to the center of the Samson Post bearing, inches.
- H = Height from the center of the Samson Post bearing to the bottom of the base beams, inches.
- I = Horizontal distance between the centerline of the Samson Post bearing and the centerline of the crankshaft, inches.
- **G** = Height from the center of the crankshaft to the bottom of the base beams, inches.
- J = Distance from the center of the crank-pin bearing to the center of the Samson Post bearing, inches.

 $= \sqrt{C^2 + P^2 - (2CP\cos\beta)}$

\$\phi\$ = Angle between the 6 o'clock position and K, degrees; equals

$$180^{\circ} - \tan^{-1} \left[\frac{I}{H-G} \right]$$

- = Angle of crank rotation in a clockwise direction viewed with the wellhead to the right and with zero degrees occurring at 6 o'clock, degrees.
- β = Angle between C and P, degrees.
- α = Angle between P and R. degrees, measured counterclockwise from R to P.
- $\Psi = \text{Angle between C and K, degrees, (equals angle <math>\chi$ angle ρ).
- Ψ_t = Angle between c and k, degrees, at top (highest) polished rod position.
- $\Psi_{b} = Angle between c and k. degrees, at bottom (lowest) polished rod position.$
- x = Angle between C and J, degrees.
- Angle between K and J, degrees.
- \overline{TF} = Torque factor for a given crank angle θ , inches.
- W = Polished-rod load at any specific crank angle θ , pounds.
- W_c = Counterbalance effect at the polished rod at any specific crank angle θ , pounds. Equals $M(P_a - S)$
- T_n = Net torque, inch-pounds, at the crankshaft for a given crank angle θ .
- M = Geometry constant for a given unit, sq. in. (distance from Samson Post Bearing to air tank bearing multiplied by the area of piston in the air cylinder divided by the distance from the Samson Post Bearing to the centerline of the polished rod).
- P_a = Pressure, psig, in air counterbalance tank for a given crank position θ .
- S = Pressure, psig, in air counterbalance tank required to offset the weight of the walking beam, horsehead, equalizer, pitmans, etc.
- \overline{PR} = Polished-rod position expressed as a fraction of the stroke length above the lowermost position for a given crank angle θ .

D5. By application of the laws of trigonometric functions, the following expressions are derived. All angles are calculated in terms of a given crank angle θ .

Sin α is positive when the angle α is between 0 deg and 180 deg, and is negative when angle α is between 180 deg and 360 deg. Sin β is always positive because the angle β is always between 0 deg and 180 deg. A negative torque factor (TF) only indicates a change in direction of torque on the crankshaft.

$$\phi = 180^{\circ} - \tan^{-1} \left[\frac{I}{H-G} \right] - D.2$$

This is a constant angle for any given pumping unit.

$$\beta = \cos^{-1} \left[\frac{C^2 + P^2 - K^2 - R^2 + 2KR \cos(\theta - \phi)}{2CP} \right] \dots D.3$$

The cos of $(\theta - \phi)$ is positive when this angle is be-tween 270 deg and 90 deg moving clockwise, and is negative from 90 deg to 270 deg moving clockwise. When the angle $(\theta - \phi)$ is negative, it should be sub-tracted from 360 deg, and the foregoing rules apply.

$$\chi = \sin^{-1} \left[\frac{P \sin \beta}{J} \right] \dots D.4$$
$$\rho = \sin^{-1} \left[\frac{R \sin (\beta - \phi)}{J} \right] \dots D.5$$

The angle ρ is taken as a positive angle when sin ρ is positive. This occurs for crank positions between $(\theta - \phi) = 0 \deg$ to $(\theta - \phi) = 180 \deg$.

The angle ρ is taken as a negative angle when sin ρ is negative. This occurs for crank positions between $(\theta - \phi) = 180 \text{ deg to } (\theta - \phi) = 360 \text{ deg.}$

$$\Psi = \chi + \rho \qquad D.6$$

sin $\alpha = \sin \left[\beta + \Psi + (\theta - \phi)\right] \qquad D.7$

$$\overline{PR} = \frac{\Psi_b - \Psi}{\Psi_b - \Psi_t}$$
.....D.8

$$\Psi_{t} = \cos^{-1} \left[\frac{C^{2} + K^{2} - (P + R)^{2}}{2CK} \right] \dots D.9$$

$$\Psi_{b} = \cos^{-1} \left[\frac{C^{2} + K^{2} - (P - R)^{2}}{2CK} \right] \dots D.10$$

Application of Torque Factors

D6. Torque factors are used primarily for determining peak crankshaft torque on operating pumping units. The procedure is to take a dynamometer card and then use torque factors, polished-rod position fac-tors, and counterbalance information to plot the net torque curve. Points for plotting the net torque curve are calculated from the formula:

$$T_n = \overline{TF} (W - W_c) \dots D.11$$

D7. The formula for net crankshaft torque, Tn, does not include the change in structural unbalance with change in crank angle; neglects the inertia efwith change in crank angle; hegiects the inertia er-fects of beam, equalizer, pitman, crank; and neglects friction in the Samson Post, Equalizer, and pitman bearings. For units where crank-speed variation is not more than 15 percent of average, these factors usually can be neglected without introducing errors greater than 10 percent. Some non-dynamic factors that can have an effect on the determination of instantaneous net torque loadings, and which accordingly should be recognized or considered, are outlined in paragraphs D14, D15, and D16.

D8. To illustrate the use of torque factors, a sample calculation will be made. A dynamometer card taken on a 5560 ft well is shown in Fig. D2. The first step in calculating the net crankshaft torque is to divide the dynamometer card so that the load may be determined for each 15 deg of crank angle θ . Lines are projected down from the ends of the card, as shown, to determine its length which is proportional to the length of the creater to the length of the stroke.

The length of the base line or zero line is then divided into 10 equal parts and these parts are sub-divided. This may easily be done with a suitable scale along a suitable diagonal line as shown.*

D9. The counterbalance line may then be drawn on the card. To avoid time-consuming geometrical con-siderations, it can be assumed that the counterbalance line is straight between the two end points of maximum and minimum counterbalance. The assumed counterbalance will be 3 to 4 percent lower than the actual counterbalance around the midpoint of the stroke, slightly higher at the bottom of the stroke, and nearly equal at the top of the stroke.

For the sample calculation, the recorded maximum air counterbalance tank pressure at the bottom of the air counterbalance tank pressure at the bottom of the stroke, 0 degree crank position, was 328 psig and the minimum air pressure at the top of the stroke, 180 degree crank position, was 262 psig. Using the for-mula, $W_c = M(P_a-S)$ where M = 52.5 in.² and S is 73 psig (as furnished by the pumping unit manufac-turer) we calculate the following results: Maximum counterbalance at the 0 degree crank position is $W_c = 52.5$ (328-73) = 13,388 pounds counterbalance at the polished rod. 13,388 divided by the scale constant, 11,300 lbs per inch gives us 1.185 inches.

inches.

Minimum counterbalance at the 180 degrees crank Minimum countercatance at the 150 degrees crank position is $W_c = 52.5$ (262-73) - 9923 pounds. 9923 divided by 11,300 lbs per in. gives us .878 inch. The counterbalance line can now be drawn on the

dynamometer card as shown in Fig. D2.

D10. To further illustrate, a calculation will be made considering the point where the crank angle θ equals 75 deg. From polished-rod stroke and torque factor data for the particular 86 in. stroke 320-D Pumping Unit used for this example, it is found that the position of the polished rod at 75 deg is 0.332, and that the torque factor \overline{TF} is 39.02. A vertical line is drawn from the 0.332 position on the scale up to the point of intersection with the load on the up-stroke (Fig. D2). The dynamometer deflection at this point is read to be 1.45 in. which, with a scale con-stant of 11,300 lb. per in., makes the load, (W) at that point 16,385 lb.

D11. In a similar manner, the polished-rod load may be obtained for each 15-deg angle of crank rotation. The dynamometer card has been marked to show the load and position involved for each 15 deg of crank angle. However, it is usually only necessary to deter-mine the maximum polished rod load which in the example case occurs between the 105 and 120 degrees crank position. The maximum dynamometer deflection at this point is 1.60 inches which when multiplied by the scale constant of 11,300 lb. per inch gives 18,080 pounds polished rod load.

D12. The net torque, Tn, can now be determined. In the formula $T_n = \overline{TF}$ (W-W_c), the value

^{*}Using the polished-rod position data, vertical lines representing each 15 deg of crank angle are projected upward to intersect the dynamometer card. Then the polished-rod load may be determined for each 15 deg of crank angle.

 $(W-W_c)$ is represented by the difference in the dynamometer deflection between the card and the counterbalance line. Referring to the card in Fig. D2, we read the difference in the dynamometer deflection between the counterbalance line and the well card as .36 inch at 75° crank position. This value multiplied by the scale constant of 11,300 and the torque factor of 39.25 at 75° crank position gives 159,669 in-lb net torque. These values may be calculated for other crank positions in the same manner. Fig. D3 is a plot of the net torque curve.

D13. The foregoing sample illustration on the use of torque factors has been based on the pumping unit operating with the cranks rotating toward the well from top dead center. If the pumping unit is operating with the cranks rotating away from the well from top dead center, the calculation technique is changed only in the use of the torque factor in the polished-rod position data form. (Fig. A2, Appendix A, Std 11E.) The position of crank, degrees, (Col. 1) is reversed, starting from the bottom with 15 deg and counting up in 15-deg increments to 360 deg.

D14. The foregoing technique is generally accepted. Those wanting more precise results must realize the true stroke length can vary somewhat with a change in beam position in relation to the centerline of the saddle bearing due to an adjustable feature provided on most medium to large sized units or due to manufacturing tolerances. Any dimensional deviation will produce some change in the angular relationships with a resultant minor change in the torque factors furnished by the manufacturer.

D15. The geometry of the utilized dynamometer can influence the determination of instantaneous load values for the various specified or selected crank angles. When critical calculations are to be made the dynamometer manufacturer should be contacted for information on the involved performance characteristics of his dynamometer and the procedures that should be followed to adjust the recorded card when completely accurate data are required.

D16. It must be recognized that the maximum and minimum loads will most frequently fall at points other than the 15-degree divisions for which torque factors are provided. Interpolation between 15° divisions is permissible without significant error.

FIG. D1 PUMPING UNIT GEOMETRY See Para. D4 for definition of symbols

APPENDIX E

RECOMMENDED PRACTICE FOR THE CALCULATION AND APPLICATION OF TORQUE FACTOR ON PUMPING UNITS

(Rear Mounted Geometry Class I Lever Systems with Phased Crank Counterbalance)

Definition

E1. The torque factor for any given crank pin angle is that factor which, when multiplied by the load in pounds at the polished-rod, gives the torque in inchpounds at the crankshaft of the pumping-unit reducer.

Method of Calculation

E2. Torque factors (as well as the polished-rod position) may be determined by a scale layout of the unit geometry so that the various angles involved may be measured. They may also be calculated from the dimensions of the pumping unit by mathematical treatment only. The approved form for submission of torque factor and polished-rod position data is given in Appendix A, Fig. A2.

E3. Torque factors and polished-rod positions are to be furnished by pumping-unit manufacturers for each 15 deg crank pin position with the zero position at 12 o'clock. Other crank pin positions are determined by the angular displacement in a clockwise direction viewed with the wellhead to the right. The polished-rod position for each crank pin position is expressed as a fraction of the stroke above the lowermost position.

E4. Referring to Fig. E1, the following system of nomenclature and symbols is adopted:

- A = Distance from the center of the saddle bearing to the centerline of the polished rod, inches.
- C = Distance from the center of the saddle bearing to the center of the equalizer bearing, inches.
- P = Effective length of the pitman, inches, (from the center of the equalizer bearing to the center of the crank-pin bearing).
- R = Radius of the crank pin, inches.
- K = Distance from the center of the crankshaft to the center of the saddle bearing, inches.
- H = Height from the center of the saddle bearing to the bottom of the base beams, inches.
- I = Horizontal distance between the centerline of the saddle bearing and the centerline of the crankshaft, inches.
- G = Height from the center of the crankshaft to the bottom of the base beams, inches.

- J = Distance from the center of the crank-pin bearing to the center of the saddle bearing, inches.
- ϕ = Angle between the 12 o'clock position and

K, degrees; equals $\tan^{-1} \left(\frac{I}{H-G} \right)$

- θ = Angle of crank pin rotation in a clockwise direction viewed with the wellhead to the right and with zero degrees occurring at 12 o'clock, degrees.
- β = Angle between C and P, degrees.
- α = Angle between P and R, degrees, measured clockwise from R to P.
- Ψ = Angle between C and K, degrees (equals angle x angle ρ).
- Ψ_t = Angle between C and K, degrees, at top (highest) polished rod position.
- $\Psi_{\rm b}$ = Angle between C and K, degrees, at bottom (lowest) polished rod position.
- χ = Angle between C and J, degrees.
- σ = Angle between K and J, degrees.
- \overline{TF} = Torque factor for a given crank pin angle θ , inches.
- W = Polished-Rod load at any specific crank pin angle θ , pounds
- B = Structural unbalance, pounds; equal to the force at the polished rod required to hold the beam in a horizontal position with the pitmans disconnected from the crank pins. This force is positive when acting downward and negative when acting upward.
- $W_n = Net polished-rod load, pounds; equal to W-B.$
- T_{wn} = Torque, inch-pounds, due to the net polished rod load for a given crank pin angle θ . (equals $\overline{TF} \times W_n$).
- M = Maximum moment of the rotary counterweights, cranks, and crank pins about the crankshaft, inch-pounds.
- Angle of crank counterweight arm offset (negative when weights are counterclockwise relative to crank pin bearings).

- T_r = Torque, inch-pounds, due to the rotary counterweights, cranks, and crank pins for a given crank pin angle θ [equals M sin $(\theta + \tau)$]
- T_n = Net torque, inch-pounds, at the crankshaft for a given crank pin angle θ (equals $T_{wn} - T_r$).
- PR = Polished-rod position expressed as a fraction of the stroke length above the lowermost position for a given crank pin angle θ .

 $\mathbb{E}5$. By application of the laws of trigonometric functions, the following expressions are derived. All angles are calculated in terms of a given crank pin angle θ .

Sin α is positive when the angle α is between 0 deg and 180 deg, and is negative when angle α is between 180 deg and 360 deg. Sin β is always positive because the angle β is always between 0 deg and 180 deg. A negative torque factor (\overline{TF}) only indicates a change in direction of torque on the crankshaft.

$$\phi = \operatorname{Tan}^{-1}\left(\frac{\mathrm{I}}{\mathrm{H-G}}\right)$$
 E.2

This is a constant angle for any given pumping unit.

$$\beta = \cos^{-1} \frac{C^2 + P^2 - K^2 - R^2 + 2KR\cos(\theta - \phi)}{2CP} \dots E.3$$

The cos of $(\theta - \phi)$ is positive when this angle is between 270 deg and 90 deg moving clockwise, and is negative from 90 deg to 270 deg moving clockwise. When the angle $(\theta - \phi)$ is negative, it should be subtracted from 360 deg, and the foregoing rules apply.

$$x = \cos^{-1} \left(\frac{C^2 + J^2 - P^2}{2CJ} \right) \dots E.4$$

$$\rho = \sin^{-1} \pm \left[\frac{R \sin \left(\theta - \phi\right)}{r} \right] \dots E.5$$

The angle ρ is taken as a positive angle when $\sin \rho$ is positive. This occurs for crank pin positions between $(\theta - \phi) = 0 \text{ deg and } (\theta - \phi) = 180 \text{ deg.}$

The angle ρ is taken as a negative angle when $\sin \rho$ is negative. This occurs for crank pin positions between $(\theta - \phi) = 180 \text{ deg and } (\theta - \phi) = 360 \text{ deg.}$

$$\Psi = x - \rho \dots E.6$$

$$\sin \alpha = \sin \left[\beta + \Psi - (\theta - \phi)\right] \dots E.7$$

$$\overline{PR} = \frac{\Psi_b - \Psi}{\Psi_b - \Psi_t} \quad \dots \quad E.8$$

$$\Psi_{t} = \cos^{-1} \frac{C^{2} + K^{2} - (P - R)^{2}}{2 CK} \dots E.10$$

Application of Torque Factors

E6. Torque factors are used primarily for determining peak crankshaft torque on operating pumping units. The procedure is to take a dynamometer card and then use torque factors, polished-rod position factors, and counterbalance information to plot the net torque curve. Points for plotting the net torque curve are calculated from the formula:

$$T_n = TF(W-B) - M \sin(\theta - \tau) \dots E.11$$

E7. The formula for net crankshaft torque T_n , does not include the change in structural unbalance with change in crank pin angle; neglects the inertia effects of beam, equalizer, pitman, crank, and crank counterweights; and neglects friction in the saddle, tail, and pitman bearings. For units having 100-percent crank counterbalance and where crank-speed variation is not more than 15 percent of average, these factors usually can be neglected without introducing errors greater than 10 percent.

Some non-dynamic factors that can have an effect on the determination of instantaneous net torque loadings, and which accordingly should be recognized or considered, are outlined in paragraphs E16., E17., and E18.

E8. Torque factors may be used to obtain the effect at the polished rod of the rotary counterbalance. This is done for a given crank pin angle by dividing the counterbalance moment, M sin $(\theta + \tau)$, by the torque factor for the crank pin angle θ . The result is the rotary counterbalance effect, in pounds, at the polished rod.

E9. Torque factors may also be used to determine the maximum rotary counterbalance moment. This is done by placing the crank pins in the 90 deg position and tying off the polished rod. Then, with a polished-rod dynamometer, the counterbalance effect is measured at the polished rod. Using this method, the measured polished-rod load (W) is the combined effect of the rotary counterbalance and the structural unbalance. The maximum rotary counterbalance moment can then be determined from the formula:

$$M = \frac{\overline{\text{TF}} (W-B)}{\sin (90^\circ + \tau)} \dots E.12$$

E10. To illustrate the use of torque factors, a sample calculation will be made. A dynamometer card taken on a 5954-ft well is shown in Fig. E2. The first step in calculating the net crankshaft torque is to divide the dynamometer card so that the load may be determined for each 15 deg of crank pin angle θ . Lines are projected down from the ends of the card, as shown, to determine its length which is proportional to the length of the stroke.

The length of the base line or zero line is then divided into 10 equal parts and these parts are subdivided. This may easily be done with a suitable scale along a suitable diagonal line as shown.*

E11. To further illustrate, a calculation will be made considering the point where the crank pin angle θ equals 120 deg. From polished-rod stroke and torque factor data for the particular 86-in. stroke 114-D pumping unit used for this example, it is found that the position of the polished rod at 120 deg is 0.629, and that the torque factor TF is 35.446. A vertical line is drawn from the 0.629 position on the scale up to the point of intersection with the load on the upstroke (Fig. E2). The dynamometer deflection at this point is read to be 1.672 in. which, with a scale constant of 5000 lb. per in., makes the load, (W) at that point 8,360 lb.

E12. In a similar manner, the polished-rod load may be obtained for each 15-deg angle of crank pin rotation. The dynamometer card has been marked to show the load and position for each 15 deg of crank pin angle. The structural unbalance, B, for the example unit equals +231 lb. Therefore, the net polished-rod load, W_n at $\theta = 120$ deg = W-B = 8360 - (+231) = 8129 lb. The torque, T_{wn} , due to the net polished-rod load = TF × W_n = 35.446 × 8,129 = 288,1400 in.-lb.

E13. To find the torque T_r , due to the crank counterbalance, the maximum moment, M, must be determined. This may be done either from manufacturers' counterbalance tables or curves, or as described in Par. E9. Because of the lack of manufacturers' counterbalance data in a majority of the cases, the polished-rod measurement technique will be used more frequently in determining the maximum moment. Should the manufacturers' counterbalance data be used, it is suggested that a check be made using a polished-rod measurement technique.

E14. The horizontal dotted line drawn across the dynamometer card in Fig. E2 is the counterbalance effect measured with the dynamometer at the 90-deg crank pin angle, and is 7000 lbs. The maximum moment can then be calculated as follows, using formula E. 12:

$$M = \frac{\overline{\mathrm{TF}} (W-B)}{\mathrm{Sin} (90^{\circ} + \tau)}$$

*Using the polished-rod position date, vertical lines representing each 15 deg of crank pin angle θ are projected upward to intersect the dynamometer card. Then the polished-rod load may be determined for each 15 deg of crank pin angle θ .

$$= \frac{39.575 \times [7000 - (+231)]}{\text{Sin} [90^{\circ} + (-14^{\circ})]} = 276,084 \text{ in.-lb.}$$

(The torque factor of 39.575 is the value at the 90-deg crank pin position and angle τ is (-14°) for the example unit.)

E15. The torque, T_r due to the counterbalance at the 120 -deg crank pin position would therefore be equal to 276,084 x sin[120°+(-14°)] = 276,084 x0.961 = 265,389 in. lb. The net torque at the crankshaft for the 120 -deg crank pin position would then be calculated from formula E.11 as follows:

$$T_{n} = \overline{TF} (W-B) - M \sin (\theta + \tau)$$

= $T_{wn} - T_{r}$
= 288,140-265,389 = 22,751 in.-lb.

These values may be calculated for other crank pin angle positions in the same manner as outlined above. Shown in Fig. E3 is a plot of torque vs. crank pin angle which includes the net polished-rod load torque curve, the counterbalance torque curve, and the net crankshaft torque curve.

E16. The foregoing technique in generally accepted. Those wanting more precise results must realize the true stroke length can vary somewhat with a change in beam position in relation to the centerline of the saddle bearing due to an adjustable feature provided on most medium to large sized units or due to manufacturing tolerances. Any dimensional deviation will produce some change in the angular relationships with a resultant minor change in the torque factors furnished by the manufacturer.

E17. The geometry of the utilized dynamometer can influence the determination of instantaneous load values for the various specified or selected crank pin angles. When critical calculations are to be made the dynamometer manufacturer should be contacted for information on the involved performance characteristics of his dynamometer and the procedures that should be followed to adjust the recorded card when completely accurate data are required.

E18. It must be recognized that the maximum and minimum loads will most frequently fall at points other than the 15-degree divisions for which torque factors are provided. Interpolation between 15° divisions is permissible without significant error.

ISO 10431:1993(E)

DOWNSTROKE

FIG. E1 REAR MOUNTED GEOMETRY CLASS I LEVER SYSTEMS WITH PHASED CRANK COUNTERBALANCE See Par. E4 for definition of symbols.

NET REDUCER TORQUE CALCULATION SHEET (Rear Mounted Geometry Class I Lever Systems With Phased Crank Counterbalance - Clockwise Rotation Only)

Company: ____

Location: _____

Tn = $\overline{TF}(W-B)$ ---M SIN ($\theta + \tau$)

Well No.: ____ Unit Size: ____

	T							
θ	$\frac{\text{SIN}}{(\theta + \tau)}$	w	в	W—B	TF	TF(W-B)	$\begin{array}{c} M [SIN \\ (\theta + \tau)] \end{array}$	Tn
0								
15								
30								
45								
60								
75								
90								
105								
120								
135								
150								
165								
180								
195								
210								
225								
240								
255								
270								
285								
300								
315								
330								
345								
								· · · · · · · · · · · · · · · · · · ·

Τn = Net Reducer Torque, in.-lbs

= Position of Crank Pin θ

- М = Maximum Moment of Counterbalance, in.-lbs
- w = Measured Polished Rod Load at θ , lbs

В = Unit Structural Unbalance, lbs $\overline{\mathrm{TF}}$ = Torque Factor at θ , in.

CB at 90° Crank Pin Angle = _____ $M = (CB \text{ at } 90^\circ - B) (TF \text{ at } 90^\circ) = ____$

 $\overline{\mathrm{Sin}\,(90^\circ+\tau)}$

= Angle of Crank Counterweight arm offset τ (negative when weights are counterclockwise relative to crank pin bearings) =

American Petroleum Institute

APPENDIX F RECOMMENDED PRACTICE FOR CALCULATING TORQUE RATINGS FOR PUMPING-UNIT GEAR REDUCERS

ILLUSTRATIVE EXAMPLE, PITTING RESISTANCE

Calculate the allowable transmitted torque at the output shaft based on the pitting resistance for the following first reduction helical gear set. The pinion speed is 588 rpm and the reducer output speed is 20 rpm.

Gear set data.

d	= 3.167 inches	$\Phi_{\rm n} = 17.4952^{\circ}$
D	= 16.833 inches	Ψ = 30°
N _P	= 19	$n_p = 588 \text{ RPM}$
N _G	= 101	$N_o = 20 RPM$
P _d	= 6.0	Min. pinion hardness = 340 Bhn (Steel)
F	= 3 inches	Min. gear hardness = 300 Bhn (Steel)

Determine pitting resistance torque rating as follows:

(from Eq. 5)

$$v_t = \frac{\pi (3.167) (588)}{12} = 487.5 \text{ ft/min}$$

(from Eq. 4)

 $C_5 = \frac{78}{78 + \sqrt{487.5}} = 0.779$

(from Eq. 3)

$$C_1 = \frac{(588) (3.167)^2 (0.779)}{2 (20)} = 114.9$$

 $C_m = 1.33$ (See Fig. 3.2)

(from Eq. 6)

$$C_2 = \frac{3}{1.33} = 2.25$$

$$s_{ac} = 129,100 \text{ psi} (\text{See Fig. 3.1})$$

(from Eq. 7)

$$C_3 = 0.225 \frac{5.316}{5.316+1} \left(\frac{129,100}{2300}\right)^2 = 597$$

(from Eq. 2)

 $T_{ac} = (114.9) (2.25) (597) = 154,300$ lb. in.

NOTE: The pitting resistance rating of this gear set is 154,300 lb. in. The final rating will be the lowest calculated value of pitting resistance rating, and bending strength ratings as determined in equations (2) and (15) of this Specification, but not to exceed one of the standard pumping unit reducer sizes listed in Table 3.2.

ILLUSTRATIVE EXAMPLE, BENDING STRENGTH

Calculate the allowable transmitted torque at the output shaft based on bending strength for the following first reduction helical (or double helical) gear set. The pinion speed is 588 rpm, and the reducer output speed is 20 RPM.

NOTE: This is the same gear set used in the pitting calculation example.

Pinion. Determine strength numbers for pinion as follows:

(from Eq. 5)

$$v_t = \frac{\pi (3.167) (588)}{12} = 487.5 \text{ ft/min}$$

(from Eq. 17)

$$\mathbf{K}_5 = \sqrt{\frac{78}{78 + \sqrt{487.9}}} = 0.883$$

(from Eq. 16)

$$K_1 = \frac{(588)(3.167)(0.883)}{2(20)} = 41.11$$

$$K_m = 1.22$$
 (See Fig. 3.4)

(from Eq. 19)

$$K_2 = \frac{3}{1.22} = 2.46$$

 $K_3 = 33,250$ (See Fig. 3.3)

(from Eq. 21)

$$\mathbf{K}_4 = \frac{0.437}{6.0} = 0.0728$$

(from Eq. 15)

 $T_{at} = (41.11) (2.46) (33,250) (0.0728)$

Gear. Determine bending strength torque rating for gear as follows:

(from Eq. 21)

$$K_1 = 41.11$$

(from Eq. 22)

 $K_2 = 2.46$

J = 0.387 calculated per Appendix A in AGMA 422.03 and as recorded on Manufacturer's Data Sheet 4.5

(from Eq. 21)

$$\mathbf{K}_{4} = \frac{0.387}{6.0} = 0.0645$$

(from Eq. 15)

 $T_{at} = (41.11) (2.46) (30,900) (.0645)$

= 201,560 lb. in. (Gear)

NOTE: The calculated bending strength torque rating of this gear set is 201,560 lb. in., the lower value of the bending strength ratings for the pinion and the gear. The calculated pitting resistance torque rating is 154,300 lb. in. (see previous example). The next smaller torque rating shown in Table 3.2 is 114,000; therefore, 114,000 is the stated (nameplate) peak torque rating as far as this gear set is concerned.

ILLUSTRATIVE EXAMPLE, STATIC TORQUE

Calculate the allowable static torque rating based on bending strength for the first reduction helical (or double helical) gear set. The pinion speed is 588 rpm.

NOTE: This is the same gear set used in the pitting resistance calculation example and the bending strength calculation example.

D = 16.833"

J = 0.387

$$m_{G_2} = 5.53$$

 $P_d = 6$

- F = 3''
- s_{ay} = 112,000 psi (See Fig. 3.9)

 $K_v = 1.0$ (See Table 3.6)

 $K_{ms} = .0144(3) + 1.07 = 1.113$ (See Eq. 25)

(from Eq. 23)

$$T_{as1} = \frac{16.833}{2} \times \frac{0.387}{6} \times \frac{3}{1.113} (112,000) (1.0)$$

= 163.880 lb. in. at the high speed gear

The allowable static torque at the output shaft would be the value calculated above (163,880 in. lb.) multiplied by the ratio to the output gear set.

(from Eq. 24)

$$\Gamma_{as2} = (T_{as1}) (m_{G2})$$

= (163,800) (5.53)
= 906,260 lb. in. at output shaft

This value is for the high speed gear only and must be repeated for each gear and pinion in the reducer. The lowest value of T_{as} will be the maximum allowable imposed static torque, but must be equal to or greater than 500% of the applicable nameplate rating recorded in Table 3.2. In this example the nameplate rating as far as the first reduction is concerned is 114,000 lb. in. (see bending strength calculation above). The static torque rating must therefore be equal to or greater than $5 \times 114,000 = 570,000$ lb. in. The calculated static torque rating of 906,260 lb. in. satisfies this condition and is the static torque rating as far as the first reduction set is concerned.

APPENDIX G USE OF API MONOGRAM

The API monogram \mathbf{P} is a registered trademark

of the American Petroleum Institute.

Manufacturers desiring to warrant that articles manufactured or sold by them conform with this specification shall obtain the license to use the Official API Monogram.

The original resolutions adopted by the Board of Directors of the American Petroleum Institute on Oct. 20, 1924, embodied the purpose and conditions under which such official monogram may be used.

The following restatement of the resolution was adopted by the Board of Directors on Nov. 14, 1977.

WHEREAS, The Board of Directors of the American Petroleum Institute has caused a review of the Institute's program for licensing the use of the API monogram and

WHEREAS. It now appears desirable to restate and clarify such licensing policy and to confirm and make explicitly clear that it is the licensees. not API, who make the representation and warranty that the equipment or material on which they have affixed the API monogram meets the applicable standards and specifications prescribed by the Institute;

NOW, THEREFORE, BE IT RESOLVED. That the purpose of the voluntary Standardization Program and the Monogram Program of the American Petroleum Institute is to establish a procedure by which purchasers of petroleum equipment and material may identify such equipment and materials as are represented and warranted by the manufacturers thereof to conform to applicable standards and specifications of the American Petroleum Institute; and be it further

RESOLVED, That the previous action under which the following monogram was adopted as the official monogram of the American Petroleum Institute is reaffirmed:

BE IT FURTHER RESOLVED, That the American Petroleum Institute's monogram and standardization programs have been beneficial to the general public as well as the petroleum industry and should be continued and the Secretary is hereby authorized to license the use of the monogram to anyone desiring to do so under such terms and conditions as may be authorized by the Board of Directors of the American Petroleum Institute, provided that the licensee shall agree that the use of the monogram by such licensee shall constitute the licensee's representation and warranty that equipment and materials bearing such monogram complies with the applicable standards and specifications of the American Petroleum Institute; and that licensee shall affix the monogram in the following manner;

BE IT FURTHER RESOLVED, That the words "Official Publication" shall be incorporated with said monogram on all such standards and specifications that may hereafter be adopted and published by the American Petroleum Institute, as follows:

OFFICIAL PUBLICATION

REG. U.S. PATENT OFFICE

G.1 API Monogram. The API monogram is a registered trademark/servicemark of the American Petroleum Institute. Authorization to use the monogram is granted by the Institute to qualified licensees for use as a warranty that they have obtained a valid license to use the monogram and that each individual item which bears the monogram conformed, in every detail, with the API Specification applicable at the time of manufacture. However, the American Petroleum Institute does not represent, warrant or guarantee that products bearing the API monogram do in fact conform to the applicable API standard or specification. Such authorization does not include use of the monogram on letterheads or in advertising without the express statement of fact describing the scope of licensee's authorization and further does not include use of the monogram, the name AMERICAN PETROLEUM INSTITUTE or the description "API" in any advertising or otherwise to indicate API approval or endorsement of products.

The formulation and publication of API Specifications and the API monogram program is not intended in any way to inhibit the purchase of products from companies not licensed to use the API monogram.

G.2 Application for Authority to Use Monogram. Manufacturers desiring to warrant that products manufactured by them comply with the requirements of a given API specification may apply for a license to use the monogram with forms provided in an appendix to each specification.

The "Agreement" form must be submitted in duplicate for each specification under which monogram rights are desired. One "Statement of Manufacturer's Qualifications" is required for each facility.

A manufacturer desiring to apply the monogram at more than one facility (a facility is any manufacturing location) must submit a separate application for each facility.

Applicants shall have an approved functioning quality program in conformance with API Spec Q1 prior to being issued a license to use the API monogram.

G.3 Authorization to Use the Monogram. A decision to award or withhold monogram rights will be made by the staff of the Institute. A survey of the applicant's facilities will be made by an approved Institute surveyor prior to a decision to approve or withhold

the license. The basis of the survey shall be the appropriate product Specification and all applicable portions of API Spec Q1.

For a manufacturer having more than one facility (plant), each facility will be judged separately and if determined to be eligible for authorization to use the monogram will be granted a separate license for each Specification, or part thereof, under which authorization is granted. The application of the monogram may not be subcontracted.

G.4 Fee for Use of Monogram.

Initial Authorization Fee. The applicant will be invoiced an initial authorization fee for the first Specification included in the application, and a separate fee for each additional Specification included in the application. The applicant will also be invoiced for the surveyor's fee.

Annual Renewal Fee. In addition to the initial authorization fee, licensees will be assessed an annual renewal fee for each specification under which he is authorized to use the monogram. Applicants issued monogram certificates dated November 1 through December 31 shall not be required to pay a renewal fee for the following year.

The fees assessed are to defray the cost of the Monogram Program.

G.5 Periodic Surveys. Existing licensees must be periodically surveyed by an approved Institute surveyor to determine whether or not they continue to qualify for authorization to use the monogram. The frequency of the periodic surveys will be at the discretion of the staff of the Institute. The surveyor's fee and expenses for making a periodic survey will be paid by the Institute.

G.6 Cancellation of Monogram Rights. The right to use the monogram is subject to cancellation for the following causes:

- a. Applying the monogram on any product that does not meet the Specification.
- b. Failure to maintain reference master gages in accordance with the Specifications.
- c. Failure to meet the requirements of any resurvey.
- d. Failure to pay the annual renewal fee for use of the monogram.

e. For any other reason satisfactory to the Executive Committee on Standardization of Oilfield Equipment and Materials.

G.7 Reinstatement of Monogram Rights. Manufacturers whose authorization to use the monogram has been cancelled may request reinstatement at any time. If a request for reinstatement is made within sixty (60) days after cancellation, and if the reason for cancellation has been corrected. no new application is necessary. A resurvey of the manufacturer's facilities will be made by an approved Institute surveyor prior to a decision to reinstate monogram rights. The manufacturer will be invoiced for this resurvey regardless of the Institute's decision on reinstatement. If the resurvey indicates that the manufacturer is qualified, the license will be reissued.

Request for reinstatement made more than sixty (60) days after cancellation shall be treated as a new application unless circumstances dictate an extension of this time period as agreed upon by the API staff.

G.8 Appeals.

An interested party may appeal a decision by the API staff to withhold monogram rights. Appeals shall be directed to the Director, API Production Department and handled by the General Committee of the Production Department with a further right of appeal to the API Management Committee. Competing suppliers or manufacturers of the product or service to which the standard applies or might apply may not be involved in appeals. The General Committee and the Management Committee may convene appeals boards to hear and act on appeals.

G.9 Marking. The following marking requirements apply to licensed manufacturers using the API monogram on products covered by this specification.

G.9.1 Each pumping-unit structure shall be provided with a name plate substantially as shown in Fig. G.1, except that the API monogram may be applied only by authorized manufacturers. At the discretion of the manufacturer, the name plate may contain other nonconflicting and appropriate information, such as model number or lubrication instructions.

58	American Petroleum Institute
	STRUCTURAL UNBALANCE (POUNDS)
	SERIAL NUMBER (NAME OF MANUFACTURER)
•	(ADDRESS OF MANUFACTURER)
	FIG. G.1

NOTE: Structural unbalance is that force in pounds required at the polished rod to hold the beam in a horizontal position with the pitmans disconnected from the crank pins. This structural unbalance is consid-

G.9.2 Each pumping-unit reducer shall be provided with a nameplate substantially as shown in Fig. G.2, except that the API monogram may be applied only by authorized manufacturers. The size (peak torque rating in 1,000 lb. in.) shown on the nameplate shall be one of those listed in Table 3.2. No other rating marking eved positive when the force required at the polished rod is downward, and negative when upward. The minus (—) sign shall be stamped on the name plate when this value is negative.

> shall be applied to the reducer. The nameplate may, at the option of the manufacturer, contain information such as model number, lubrication instructions, etc., provided such marking does not conflict with the API rating marking.

Þ	PUMPING-UNIT GEAR• REDUCER		
SIZE (PEAK-TORQUE RATING IN THOUSANDS OF INCH-POUNDS)	1		
RATIO			
SERIAL NUMBER			
(NAME OF MANUFACTURER)			
(ADDRESS OF MANUFACTURER)			

*Substitute "CHAIN" when appropriate.

FIG. G.2 PUMPING-UNIT REDUCER NAME PLATE

Order No. 811-05200

Additional copies available from AMERICAN PETROLEUM INSTITUTE Publications and Distribution Section 1220 L Street, NW Washington, DC 20005 (202) 682-8375

This page intentionally left blank

ISO 10431:1993(E)

=

UDC 622.32:622.276.054

Descriptors: petroleum industry, pumping, pumps, specifications, marking, technical data sheets.

Price based on 53 pages