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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies 
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO 
technical committees. Each member body interested in a subject for which a technical committee has been 
established has the right to be represented on that committee. International organizations, governmental and 
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the 
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of technical committees is to prepare International Standards. Draft International Standards 
adopted by the technical committees are circulated to the member bodies for voting. Publication as an 
International Standard requires approval by at least 75 % of the member bodies casting a vote. 

In exceptional circumstances, when a technical committee has collected data of a different kind from that 
which is normally published as an International Standard (“state of the art”, for example), it may decide by a 
simple majority vote of its participating members to publish a Technical Report. A Technical Report is entirely 
informative in nature and does not have to be reviewed until the data it provides are considered to be no 
longer valid or useful. 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights. ISO shall not be held responsible for identifying any or all such patent rights. 

ISO/TR 13587:2012 was prepared by Technical Committee ISO/TC 69, Applications of statistical methods, 
Subcommittee SC 6, Measurement methods and results. 

This Technical Report is primarily based on Reference [10].  
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Introduction 

The adoption of ISO/IEC Guide 98-3 (GUM) [1] has led to an increasing recognition of the need to include 
uncertainty statements in measurement results. Laboratory accreditation based on International Standards 
like ISO 17025 [2] has accelerated this process. Recognizing that uncertainty statements are required for 
effective decision-making, metrologists in laboratories of all types, from National Metrology Institutes to 
commercial calibration laboratories, are exerting considerable effort on the development of appropriate 
uncertainty evaluations for different types of measurement using methods given in the GUM. 

Some of the strengths of the procedures outlined and popularized in the GUM are its standardized approach 
to uncertainty evaluation, its accommodation of sources of uncertainty that are evaluated either statistically 
(Type A) or non-statistically (Type B), and its emphasis on reporting all sources of uncertainty considered. The 
main approach to uncertainty propagation in the GUM, based on linear approximation of the measurement 
function, is generally simple to carry out and in many practical situations gives results that are similar to those 
obtained more formally. In short, since its adoption, the GUM has sparked a revolution in uncertainty 
evaluation. 

Of course, there will always be more work needed to improve the evaluation of uncertainty in particular 
applications and to extend it to cover additional areas. Among such other work, the Joint Committee for 
Guides in Metrology (JCGM), responsible for the GUM since the year 2000, has completed Supplement 1 to 
the GUM, namely, “Propagation of distributions using a Monte Carlo method” (referred to as GUMS1) [3]. The 
JCGM is developing other supplements to the GUM on topics such as modelling and models with any number 
of output quantities.  

Because it should apply to the widest possible set of measurement problems, the definition of measurement 
uncertainty in ISO/IEC Guide 99:2007 [4] as a “non-negative parameter characterizing the dispersion of the 
quantity values being attributed to a measurand, based on the information used” cannot reasonably be given 
at more than a relatively conceptual level. As a result, defining and understanding the appropriate roles of 
different statistical quantities in uncertainty evaluation, even for relatively well-understood measurement 
applications, is a topic of particular interest to both statisticians and metrologists. 

Earlier investigations have approached these topics from a metrological point of view, some authors focusing 
on characterizing statistical properties of the procedures given in the GUM. Reference [5] shows that these 
procedures are not strictly consistent with either a Bayesian or frequentist interpretation. Reference [6] 
proposes some minor modifications to the GUM procedures that bring the results into closer agreement with a 
Bayesian interpretation in some situations. Reference [7] discusses the relationship between procedures for 
uncertainty evaluation proposed in GUMS1 and the results of a Bayesian analysis for a particular class of 
models. Reference [8] also discusses different possible probabilistic interpretations of coverage intervals and 
recommends approximating the posterior distributions for this class of Bayesian analyses by probability 
distributions from the Pearson family of distributions. 

Reference [9] compares frequentist (“conventional”) and Bayesian approaches to uncertainty evaluation. 
However, the study is limited to measurement systems for which all sources of uncertainty can be evaluated 
using Type A methods. In contrast, measurement systems with sources of uncertainty evaluated using both 
Type A and Type B methods are treated in this Technical Report and are illustrated using several examples, 
including one of the examples from Annex H of the GUM. 

Statisticians have historically placed strong emphasis on using methods for uncertainty evaluation that have 
probabilistic justification or interpretation. Through their work, often outside metrology, several different 
approaches for statistical inference relevant to uncertainty evaluation have been developed. This Technical 
Report presents some of those approaches to uncertainty evaluation from a statistical point of view and 
relates them to the methods that are currently being used in metrology or are being developed within the 
metrology community. The particular statistical approaches under which different methods for uncertainty 
evaluation will be described are the frequentist, Bayesian, and fiducial approaches, which are discussed 
further after outlining the notational conventions needed to distinguish different types of quantities. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



TECHNICAL REPORT ISO/TR 13587:2012(E)

 

© ISO 2012 – All rights reserved 1
 

Three statistical approaches for the assessment and 
interpretation of measurement uncertainty 

1 Scope 

This Technical Report is concerned with three basic statistical approaches for the evaluation and 
interpretation of measurement uncertainty: the frequentist approach including bootstrap uncertainty intervals, 
the Bayesian approach, and fiducial inference. The common feature of these approaches is a clearly 
delineated probabilistic interpretation or justification for the resulting uncertainty intervals. For each approach, 
the basic method is described and the fundamental underlying assumptions and the probabilistic interpretation 
of the resulting uncertainty are discussed. Each of the approaches is illustrated using two examples, including 
an example from ISO/IEC Guide 98-3 (Uncertainty of measurement — Part 3: Guide to the expression of 
uncertainty in measurement (GUM:1995)). In addition, this document also includes a discussion of the 
relationship between the methods proposed in the GUM Supplement 1 and these three statistical approaches. 

2 Normative references 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO 3534-1:2006, Statistics — Vocabulary and symbols — Part 1: General statistical terms and terms used in 
probability 

ISO 3534-2:2006, Statistics — Vocabulary and symbols — Part 2: Applied statistics 

ISO/IEC Guide 98-3:2008, Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in 
measurement (GUM:1995) 

ISO/IEC Guide 98-3:2008/Suppl 1:2008, Uncertainty of measurement — Part 3: Guide to the expression of 
uncertainty in measurement (GUM:1995) — Supplement 1: Propagation of distributions using a Monte Carlo 
method 

3 Terms and definitions 

For the purposes of this document, the terms and definitions in ISO 3534-1, ISO 3534-2 and the following 
apply. 

3.1 
empirical distribution function 
empirical cumulative distribution function 
distribution function that assigns probability 1 n  to each of the  items in a random sample, i.e., the empirical 

distribution function is a step function defined by 

n

 
( )

i

n

x x
F x

n


 , 

where  1,..., nx x is the sample and A is the number of elements in the set A . 
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3.2 
Bayesian sensitivity analysis 
study of the effect of the choices of prior distributions for the parameters of the statistical model on the 
posterior distribution of the measurand 

3.3 
sufficient statistic 
function of a random sample 1,..., nX X  from a probability density function with parameter   for which the 

conditional distribution of  1,..., nX X  given this function does not depend on   

NOTE A sufficient statistic contains as much information about   as 1,..., nX X . 

3.4 
observation model 
mathematical relation between a set of measurements (indications), the measurand, and the associated 
random measurement errors 

3.5 
structural equation 
statistical model relating the observable random variable to the unknown parameters and an unobservable 
random variable whose distribution is known and free of unknown parameters 

3.6 
non-central chi-squared distribution 
probability distribution that generalizes the typical (or central) chi-squared distribution 

NOTE 1 For  independent, normally distributed random variables k iX  with mean i  and variance 2
i , the random 

variable 2

1

k

X X

 ( )i i
i

 is non-central chi-squared distributed. The non-central chi-squared distribution has two 

parameters: , the degrees of freedom (i.e., the number of k iX ), and  , which is related to the means of the random 

variables iX  by 2

1

(
k

i i
i

)  


   and called the non-centrality parameter. 

NOTE 2 The corresponding probability density function is expressed as a mixture of central 2  probability density 

functions as given by 

2

2

0

( )
1

2 2

202

( 2)
( ) ( )

!

2 !2
2

k i

i

X Y
i

k
i i

k
ii

e
g g

i

e

k
i i



 

 

 







 
 








   
 




, 

where is distributed as chi-squared with degrees of freedom. qY q

4 Symbols (and abbreviated terms) 

In 4.1.1 of the GUM, it is stated that Latin letters are used to represent both physical quantities to be 
determined by measurement (i.e., measurands in GUM terminology) as well as random variables that may 
take different observed values of a physical quantity. This use of the same symbols, whose different meanings 
are only indicated by context, can be difficult to interpret and sometimes leads to unnecessary ambiguities or 
misunderstandings. To mitigate this potential source of confusion, the more traditional notation often used in 
the statistical literature is employed in this Technical Report. In this notation, Greek letters are used to 
represent parameters in a statistical model (e.g., measurands), which can be either random variables or 
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constants depending on the statistical approach being used and nature of the model. Upper-case Latin letters 
are used to represent random variables that can take different values of an observable quantity (e.g., potential 
measured values), and lower-case Latin letters to represent specific observed values of a quantity (e.g., 
specific measured values). Since additional notation may be required to denote other physical, mathematical, 
or statistical concepts, there will still always be some possibility for ambiguity1). In those cases the context 
clarifies the appropriate interpretation. 

5 The problem addressed 

5.1 The concern in this Technical Report is with a measurement model in which 1,..., p   are input 

quantities and   is the output quantity: 

 1 ..., ,pf     (1) 

where f  is known as the measurement function. The function f  is specified mathematically or as a 

calculation procedure. In the GUM (4.1, NOTE 1), the same functional relationship is given as 

 1 ..., pY f X X   (2) 

which cannot be easily distinguished from the measurement function evaluated at the values of the 
corresponding random variables for each observed input. 

Using the procedure recommended in the GUM, the  unknown quantities p 1 p…    are estimated by 

values 1 ..., px x  obtained from physical measurement or from other sources. Their associated standard 

uncertainties are also obtained from the relevant data by statistical methods or from probability density 
functions based on expert knowledge that characterize the variables. The GUM (also see 4.5 in 
Reference [11]) recommends that the same measurement model that relates the measurand   to the input 
quantities 1 p…    be used to calculate y from 1 ..., px x . Thus, the measured value (or, in statistical 

nomenclature, the estimate)  of y   is obtained as 

1( ..., )py f x x  ,  (3) 

that is, the evaluated Y , , is taken to be the measured value of 1( ,... )py f x x  . The estimates y , 1 ..., px x  

are realizations of 1 ., .., pY X X , respectively. 

5.2 In this Technical Report, three statistical approaches are each used to provide (a) a best estimate  of y

 , (b) the associated standard uncertainty , and (c) a confidence interval or coverage interval for ( )u y   for a 

prescribed coverage probability (often taken as 95 %). 

5.3 When discussing standard uncertainties, distinction is made between evaluated standard uncertainties 
associated with estimates of various quantities and their corresponding theoretical values. Accordingly, 
notation such as   or X  will denote theoretical standard uncertainties and notation such as XS  and xs  will 

denote an evaluated standard uncertainty before and after being observed, respectively. 

                                                      
1) For example, not all quantities represented by Greek letters in a statistical model must be parameters of the model. 
One common example of this type of quantity is the set of unobservable quantities that represent the random 
measurement errors found in most statistical models (i.e., the i  in the model i iY    ). 
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6 Statistical approaches 

6.1 Frequentist approach 

6.1.1 The first statistical approach to be considered, in which uncertainty can be evaluated probabilistically, 
is frequentist. The frequentist approach is sometimes referred to as “classical” or “conventional”. However, 
due to the nature of uncertainty in metrology, these familiar methods must often be adapted to obtain 
frequentist uncertainty intervals under realistic conditions. 

6.1.2 In the frequentist approach, the input quantities 1 p…    in the measurement model (1) and the output 

quantity   are regarded as unknown constants. Then, data related to each input parameter, i , is obtained 

and used to estimate the value of   based on the measurement model or the corresponding statistical 
models. Finally, confidence intervals for , for a specified level of confidence, are obtained using one of 
several mathematical principles or procedures, for example, least-squares, maximum likelihood, or the 
bootstrap. 

6.1.3 Because   is treated as a constant, a probabilistic statement associated with a confidence interval 
for   is not a direct probability statement about its value. Instead, it is a probability statement about how 
frequently the procedure used to obtain the uncertainty interval for the measurand would encompass the value 
of   with repeated use. “Repeated use” means that the uncertainty evaluation is replicated many times using 
different data drawn from the same distributions. Traditional frequentist uncertainty intervals provide a 
probability statement about the long-run properties of the procedure used to construct the interval under the 
particular set of conditions assumed to apply to the measurement process. 

6.1.4 In most practical metrological settings, on the other hand, uncertainty intervals are to account for the 
uncertainty associated with estimates of quantities obtained using measured values (observed data) and also 
the uncertainty associated with estimates of quantities based on expert knowledge. To obtain an uncertainty 
interval analogous to a confidence interval, the quantities that are not based on measured values are treated 
as random variables with probability distributions for their values while those quantities whose values can be 
estimated using statistical data are treated as unknown constants. 

6.1.5 Traditional frequentist procedures for the construction of confidence intervals are then to be modified 
to attain the specified confidence level after averaging over the potential values of the quantities assessed 
using expert judgment [5]. Such modified coverage intervals provide long-run probability statements about the 
procedure used to obtain the interval given probability distributions for the quantities that have not been 
measured, just as traditional confidence intervals do when all parameters are treated as constants. 

6.1.6 Table 1 summarizes interpretations of the frequentist, Bayesian and fiducial approaches to uncertainty 
evaluation. 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

--`,,```,,,,````-`-`,,`,,`,`,,`---



ISO/TR 13587:2012(E) 

© ISO 2012 – All rights reserved 5
 

Table 1 — Interpretations of the approaches to uncertainty evaluation 

Approach Characterization of quantities 
in measurement model 

 1 ..., pf     

Uncertainty interval for 
output quantity   

Note 

Frequentist    and the i  all unknown 

constants 

Long-run occurrence 
frequency that interval 
contains   

Classical frequentist approach 
extended to integrate over 
uncertainties that are not 
statistically evaluated 

Bayesian    and the i are random 

variables. Their probability 
distributions represent beliefs 
about the values of the input 
and output quantities 

Coverage interval 
containing   based on a 
posterior distribution 
for   

Possible non-uniqueness of 
interval due to the choice of  
priors 

Fiducial  
i  regarded as random 

variables whose distributions 
are obtained from assumptions 
on observed data used to 
estimate i  and expert 

knowledge about i   

Coverage interval 
containing   based on a 
fiducial distribution for   

Non-uniqueness due to the 
choice of the structural equation 

 

6.2 Bayesian approach 

The second approach is called the Bayesian approach. It is named after the fundamental theorem on which it 
is based, which was proved by the Reverend Thomas Bayes in the mid-1700s [12]. In this approach, 
knowledge about the quantities in measurement model (1) in Clause 5 is modelled as a set of random 
variables that follow a joint probability distribution for 1 p…    and  . Bayes’ theorem then allows these 

probability distributions to be updated based on the observed data (also modelled using probability 
distributions) and the interrelationships of the parameters defined by the function f or equivalent statistical 

models. Then, a probability distribution is obtained that describes knowledge of   given the observed data. 
Uncertainty intervals that contain   with any specified probability can then be obtained from this distribution. 
Because knowledge of the parameter values is described by probability distributions, Bayesian methods 
provide direct probabilistic statements about the value of   and the other parameters, using a definition of 
probability as a measure of belief. 

6.3 Fiducial approach 

6.3.1 The fiducial approach was developed by R.A. Fisher [13] in the 1930s. In this approach, a probability 
distribution, called the fiducial distribution, for   conditional on the data is obtained based on the 
interrelationship of   and the i  described by f  and the distributional assumptions about the data used to 

estimate the i . Once obtained, the fiducial distribution for   can be used to obtain uncertainty intervals that 

contain   with any specified probability.  

6.3.2 The argument that justifies the process used to obtain the fiducial distribution is illustrated using a 
simple example. Suppose the values taken by a quantity Y  can be described by the equation Y Z  , 

where   is the measurand and Z  is a quantity characterized by a standard normal random variable. If  is a 

realized value of Y  corresponding to a realized value z  of 

y

Z , then y z   . Despite Z  not being 

observable, knowledge of the distribution from which  was generated enables a set of plausible values of z   

to be determined. The probability distribution for Z  can be used to infer the probability distribution for  . The 
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process of transferring the relationship y z    to the relation y Z    is what constitutes the fiducial 

argument. The fiducial distribution for   is the probability distribution for the random variable y Z  with  

fixed. 

y

6.4 Discussion 

When describing the different methods for uncertainty evaluation under each of these statistical approaches, 
their fundamental underlying assumptions, incorporation of uncertainties obtained using Type A or Type B 
evaluation, and the probabilistic interpretation of the resulting uncertainty evaluations will be discussed. A 
description of how the methods used in the GUM relate to the frequentist, Bayesian, or fiducial results will also 
be given.  

7 Examples 

7.1 General 

Two examples are given to illustrate the approaches. Example 1 is concerned with a physical quantity that is 
to be corrected for background interference. Table 2 gives the notation used and Subclauses 7.2 to 7.4 define 
variants of this evaluation problem. Example 2 is the calibration of the length of a gauge block taken from 
Annex H.1 of the GUM. Because it is more complicated, it is considered in Clause 11, after the three methods 
for uncertainty evaluation are discussed and illustrated using Example 1. 

In later clauses, the three approaches will be applied to these examples. 

NOTE The units of the quantities involved are not given when they are immaterial for the example. 

Table 2 — Notation for Example 1 

Quantity Symbol 

Physical quantity of interest (the measurand)   

Quantity detected by measurement method when measuring background 
(i.e., expected value of ) (Background interference) B

  

Quantity detected by measurement method  when measuring the physical 
quantity of interest   (i.e., expected value of Y ) 

     

Standard deviation of measurement method when measuring the physical 
quantity of interest   (i.e., standard deviation of Y ) 

Y  

Standard deviation of measurement method when measuring background      
(i.e., standard deviation of ) B

B  

 

7.2 Example 1a 

Five measured values, obtained independently, of signal plus background are observed. Each measured 
value is assumed to be a realization of a random variable, , having a Gaussian distribution with mean Y
     and standard deviation Y . The measured values, , of the signal plus background are y

3,738,   3,442,   2,994,   3,637,   3,874. 

This data has a sample mean of 3,537y   and a sample standard deviation of 0,342ys  . 
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Similarly, five measured values, obtained independently, of the background are obtained. These measured 
values are assumed to be realizations of a random variable, , having a Gaussian distribution with mean B   

and standard deviation B . The observed values, , of the background are b

1,410,   1,085,   1,306,   1,137,   1,200. 

Because there are measured values for each quantity that is a source of uncertainty, Example 1a has a 
straightforward statistical interpretation for each approach. 

7.3 Example 1b 

Example 1b is identical to Example 1a with the exception that the assessment of the background is based on 
expert knowledge or past experience, rather than on fresh experimental data. In this case, the background   

is believed to follow a uniform (or rectangular) distribution with endpoints 1,126 and 1,329. Because expert 
judgment is applied, the uncertainty associated with a value of the background will be obtained using a Type B 
evaluation. Thus, Example 1b can be considered closer than Example 1a to a real measurement situation. 

7.4 Example 1c 

Example 1c is identical to Example 1b except that the signal   is closer to the background. The data 
observed for the signal plus background in this case are 

1,340,   1,078,   1,114,   1,256,   1,192. 

With the signal just above the background, Example 1c illustrates how physical constraints can be 
incorporated in the evaluation of uncertainty for each approach. 

8 Frequentist approach to uncertainty evaluation 

8.1 Basic method 

8.1.1 In the frequentist context, parameters are unknown constants. Following the convention to denote 
random variables by upper case letters and observed values of random variables by lower case letters, a 
confidence interval can be obtained from a pivotal quantity for  , i.e., a function ( , )W Y   of the (possibly 

multivariate) data Y  and the parameter  , whose probability distribution is parameter-free (provided such a 
distribution can be determined.) Then, a 100(1 ) % confidence interval for   can be determined by 

calculating lower and upper percentiles   and u  to satisfy ( ( )Y u ) 1P W        . 

8.1.2 For example, let  be random variables, distributed as 1( ,..., )nY Y Y 2(N )  , with the further random 

variable 
1

n

i
i

Y Y


  n . If the parameter of interest is  , then for known , 
Y

Z
n








~  (0,1).N

is a pivotal quantity. The frequentist confidence interval for   is 

2 ,Y z
n




  (4) 

where zβ is the 100   percentile of the standardized normal distribution. 
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If   is not known, it can be estimated by the sample standard deviation 

 2
1

1

n

j
j

Y Y

S
n









 

Then, the (exact) pivotal quantity for   is obtained by replacing   in interval (4) by : S

Y

S n




~  (5) ( 1)t n  .

Thus, a 100(1  ) % confidence interval for   based on the Student’s t-distribution is 

1 1 2n

S
Y t

n
      

where 1nt    is the 100  percentile of the t-distribution with 1n   degrees of freedom. 

8.1.3 Instead of exact pivotal quantities, which exist only in simple situations, approximate pivotal quantities 
are commonly employed in applications. For large samples, the central limit theorem can be invoked to obtain 
approximate confidence intervals based on the normal distribution. 

8.1.4 Further methods of obtaining confidence intervals (inverting a test statistic, pivoting a continuous 
cumulative distribution function, ordering the discrete sample values according to their probabilities, etc.) are 
discussed in Reference [14]. Some of them are mentioned in Example 1. A computer-intensive method, called 
the bootstrap, also can be used to construct a confidence interval for pivotal quantities that have unknown 
distributions. The bootstrap procedure is discussed in 8.2. 

8.1.5 Although not explicitly given a frequentist justification from fundamental scientific considerations, the 
procedures recommended in the GUM can be used to obtain an approximate confidence interval for the 
measurand. Such confidence intervals are based on an approximate pivotal quantity with an 
assumed t-distribution obtainable from the measurement model (1). Under this procedure, the unknown 
quantities 1 p…    are estimated by values 1 px x   obtained from physical measurement or from other 

sources. Some of the values ix  might be sample means or other functions of data designed to estimate the 

quantities 1,...,i i m   . Their associated standard uncertainties  are also evaluated from the data by 

statistical methods, typically using the sample standard deviation or using robust rank-based procedures. 
Such methods are known as Type A evaluations of uncertainty. The degrees of freedom 

( )iu x

i  associated with 

 is determined from the sample size used to estimate( )iu x i . 

8.1.6 Since physical measurements might not always be possible or feasible for some of the i , estimates 

ix  of i  for some , say , are obtained by subjective (or potentially subjective) evaluations, and 

used together with 

i 1,...,i m p 

ix , for , obtained from Type A evaluations of uncertainty. Thus, non-statistical 

types of information are used to estimate 

1,...,i p

1m … p     using Type B evaluations of uncertainty, including 

scientific judgment, manufacturer’s specifications, or other indirectly related or incompletely specified 
information. 

NOTE Sometimes uncertainties are obtained by both Type A and Type B evaluations of uncertainty. 

8.1.7 The GUM recommends that the same measurement model relating the measurand   to the input 
quantities 1 p…    be used to calculate y  from 1 ..., px x . Thus, the measured value (or the estimate)  of y   

is obtained as  

1 1( ..., , ,..., ),m m py f x x x x   
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that is, the evaluated , Y 1( ,... )py f x x , is taken to be the measured value of  . 

8.1.8 In the GUM, the law of propagation of uncertainty is used to evaluate the standard uncertainty, . 

associated with . The standard uncertainties 

( )u y

y 1( ) ..., ( )pu x u x  associated with the values 1( ,..., )px xx  are 

used in the Taylor series expansion of the function 1( ,... )pf x x  at 1 p…   , whose terms up to first order are 

1 1
1

( ,..., ) ( ,..., ) ( )
p

p p i i
i

f x x f c x i  


     (6) 

Denoting 1( ,..., )p  by , the partial derivatives μ

i
i

f
c







μ=x

 

are called sensitivity coefficients. Applying the law of propagation of uncertainty in the GUM gives the 
approximate standard uncertainty associated with : y

2 2

1

( ) ( ) 2 ( )
p

i i i j i j
i i j

u y c u x c c u x x
 

    

)

  (7) 

where  is the covariance between ( i ju x x iX  and jX . 

8.1.9 To evaluate the standard uncertainty , the GUM uses the effective degrees of freedom ( )u y eff  

computed from the Welch-Satterthwaite formula, 

4 4

4

eff
( )

( )
1

( )

i i

i

p
c u x

x
i

u y







 


 (8) 

NOTE Reference [15] discusses a counter-intuitive property according to which in interlaboratory studies a 
confidence interval based on the Welch-Satterthwaite approximation may be shorter for a between-laboratory difference 
than for one of its components. 

8.1.10 Finally, in order to construct a confidence interval for , the approximate pivotal quantity, 

( )
( )

y
W y

u y

 
   (9) 

is employed. According to the GUM, 

( )W Y  ~ eff( )t ,  (10) 

that is, (W Y )  is an approximately pivotal quantity having a t-distribution with eff  degrees of freedom. 

The 100(1 ) % confidence interval 

eff ,1 2( )y u y t  , (11) 

for   can then be recommended as the 100(1 –  ) % uncertainty interval for  . The half-width  of 

this interval is known as the expanded uncertainty associated with . 
eff ,1 2 ( )t u   y

y
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8.1.11 This recommendation agrees with standard statistical practice when all uncertainties are determined 
using Type A evaluation, in which case the most commonly used statistical estimate for a particular input 
quantity   is the sample mean of n  observed values. The traditional method for summarizing data to obtain 

the Type A standard uncertainty of this estimator is S n  with 1n   degrees of freedom. This is based on the 

fact that 2 2( 1)n S  has a chi-squared distribution with n 1 degrees of freedom. This method applies to 

more general statistics of the form , where estimators 1( ..., pY G X X  ) 1 ...,iX i p    obey the central limit 

theorem. Indeed in this situation, the standard deviation of Y  can be approximated by Expression (7) 
with  replaced by( i x )ju x Cov( i )jX X . 

The GUM method presents the collective wisdom of many metrologists, but is restricted by assumptions of 

 local linearity of the function f : ideally the sensitivity coefficients should not vary much and not vanish; 

 normality of the probability distribution of point estimators 1( ,..., )pY f X X : may not hold even 

approximately for small samples; 

 validity of the Welch-Satterthwaite Formula (8): it may not work well when the input quantities are 
mutually dependent, the input quantities are not normally distributed, and the standard uncertainties are 
dissimilar (degrees of freedom for distributions unrelated to the chi-squared law are difficult to interpret, 
indeed, they are not used in statistical theory). 

8.1.12 To motivate Expression (7) in the frequentist setting, the concepts of statistical decision theory can be 
employed and the variance (squared standard uncertainty)  interpreted as the mean squared error of the 

statistical estimator of 

2 ( )u y

1 2( ..., )pf x x x  . These steps can be taken provided that the quantities whose 

uncertainties are determined using a Type B evaluation, namely, 1,...,m px x , are eliminated by integrating over 

their distributions. See Reference [5]. If f  “is sufficiently close to being linear”, Expression (7) provides the 

first order approximation of the mean squared error. 

8.1.13 The discussion in Example 1 gives another customary frequentist procedure for obtaining confidence 
intervals.  

8.2 Bootstrap uncertainty intervals 

8.2.1 Bootstrapping is a resampling strategy [16] for estimating distribution parameters such as variance and 
determining confidence intervals for parameters when the form of the underlying distribution is unknown. The 
key idea for the bootstrap method is that the relation between the cumulative probability distribution (CDF) F  
for Y  and a sample from F  is similar to the relation between an estimated CDF , which may be not the 
empirical distribution generated by the sample and a second sample drawn from . When 

F̂

F̂ F  is not available, 
draws cannot be made from it, but modern computers allow a large number of draws to be made from  So, 
one uses the primary sample to form an approximation of 

F̂

F̂ F , and then calculates the sampling distribution 
of the parameter estimate based on . This calculation is carried out by drawing many secondary samples 
and forming the estimate (or a function of the estimate) for each of the secondary sample. If  is a good 
approximation to 

F̂

F̂

F , then H , the sampling distribution of the estimate based on , is generally a good 
approximation to the sampling distribution for the estimate based on 

F̂
F . H  is commonly called the bootstrap 

distribution of the parameter. 

8.2.2 There are two types of bootstrap procedures useful, respectively, for non-parametric and parametric 
inference. The non-parametric bootstrap relies on the consideration of the empirical distribution  generated 
by the primary sample from 

F̂
F . In the parametric bootstrap setting, the probability distribution F  is a member 

of some prescribed parameter family and  is obtained by estimating the parameter(s) from the data. F̂

NOTE Since in typical metrological problems, data sets are not large enough to ensure the validity of the 
non-parametric bootstrap approach, that approach is not considered here. 
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)

8.2.3 The key assumption used in constructing the GUM confidence interval is (10), which may not hold 
approximately even for simple problems. However, the bootstrap enables confidence intervals to be obtained 
that do not involve making assumptions like (10). One way to obtain such intervals is the “bootstrap-t" 
approach. This procedure generates an empirical distribution for the approximate pivotal quantity (W Y   [to 

replace the t-distribution in (10)]. When (10) is correct, the bootstrap-t distribution will reproduce 
the t-distribution. The empirical bootstrap-t distribution is then used to construct a confidence interval in 
exactly the same way that the t-distribution is used in constructing (11). 

For the relationship between bootstrapping and the methods proposed in GUMS1, see 12.2. 

8.2.4 An outline of the generation of a bootstrap sample is as follows. Assume that 1x  and  are the 

mean and standard deviation for the random variable 
1( )u x

1X , which is assumed to follow a probability distribution 

in some prescribed parameter family. Here for illustration, a Gaussian distribution is used: 

a) 1x  and 1( )u x  are the estimated mean and standard deviation of a random sample of size k  from a 

Gaussian distribution. 

b) From  2
1 1 , generate a sample with sample size k , that is, * *

1,1 1,{ ,..., }k( , ( ))N x u x x x . 

c) From * *
1,1 1,{ ,..., }kx x , calculate the sample mean *

1x and the sample standard error *
1( )u x . 

1 1{ , ( )}x u x   is a bootstrap sample of 1X . Similarly, for a given number B , bootstrap samples can be 

generated for any variable. 

B

8.2.5 Just as the GUM takes ( ( )i i )x u x , for 1 ...,i p  , as its input to produce y , , and ( )u y (W Y ) ,  the 

bootstrap samples { ( )i i }x u x  ,  (see 8.2.4) can be taken as input, to compute  , and 1 ...,i p  ( )yy u 

( )
( )

y y
W W y y

u y


 




   

)

 (12) 

8.2.6 To obtain a bootstrap distribution for (W Y  , for a suitably large , say 100 000, generate B  

bootstrap samples {

B

( ) ( ( ))}i ix b u x b  , 1 ...,i p  , and for each compute , . The 100( )W b 1,...,b  B  th 

percentile of the bootstrap-t distribution of W Y( )  is then approximated by the value t̂   such that 

{ ( ) }ˆW b Bt         

where A  is the number of elements in the set A . Finally, the 100(1  ) % bootstrap-t confidence interval is 

21 2
ˆ( ( ) ˆ ( ))y t u y y u yt         (13) 

The Student-t percentiles are symmetric about zero, and as a consequence, (11) must always be  symmetric 
about . In contrast, the bootstrap-t percentiles used in (13) can be asymmetric about zero, leading to an 

asymmetric uncertainty interval about y , which may provide a more accurate description of the physical 

situation in some applications. The details of this process in constructing a 95 % uncertainty interval are 
shown in the following algorithm. 

y

a) For 1,...,i p , using the given distributions for the iX , generate B  bootstrap samples 

( ( ... ( ( ) ( ( )))i i1) ( (1)))i ix u x   x B u x B   . 

b) For each bootstrap sample ( ( ) ( ( )))i ix b u x b  , 1 ...,i p  and 1,..., ,Bb   compute ( )y b , ( ( ))u y b , 

and W b  following the GUM. ( ) ( ( ) ) ( (y b y u y b    ))
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c) Estimate the 100 th percentile of the bootstrap-t distribution of ( )W Y   by the value t̂   such 

that { ( )W b }ˆ Bt         

d) Form the 95 % bootstrap-t confidence interval ))0,0250,975
ˆ( ( ) (ˆy t u y y u yt       

8.2.7 Bootstrap samples can also be used to replace  by estimating the standard deviation of Y , when 

the Taylor approximation (6) is deemed inappropriate. To do so, for 

( )u y

1 ...,i p   and , only input 

estimates 

1 ...b   B

( )ix b  are generated. For each bootstrap sample, 1( ( ) ...( ) (p ))y b f x b   x b  is evaluated. The 

bootstrap estimate of the standard uncertainty associated with  is the sample standard deviation of the B  

replicates: 

y

2

1

( ) [ ( ) ( )] ( 1)
B

c
b

u y y b y B 



     B,      . 
1

( ) ( )
B

b

y y b 



  

8.2.8 Finally, when the Taylor approximation may be inappropriate and there is significant asymmetry in the 
underlying distribution for Y , a nested bootstrap of  ×  bootstrap samples can be carried out to construct 

a bootstrap-t interval using the bootstrap standard deviation estimator.  bootstrap samples of input 

estimates and the corresponding  are generated. For each bootstrap sample,  is computed by  

second-level bootstrap samples, and 

1B 2B

1B
*y ( )cu y

2B

( )

y y

u y






  

is evaluated. The collection of  such ratios is then used to estimate percentiles of 1B (W Y ) , which leads to 

the construction of a bootstrap-t interval as in (13). An algorithm to construct a 95 % uncertainty interval using 
the nested bootstrap is as follows. 

a) For 1 ...,i p  , using the distribution for the iX , generate 1B  first-level bootstrap samples 1(1) ... ( )i ix x B   . 

b) For each first-level bootstrap sample 1( )ix b , 1 ...,i p  , 11,..., B1b  compute 11 1 1( ) ( ( ) ... ( ))py b f x b x b     , 

and 1 , where 1( ( ))u y b  is determined by a second-level bootstrap using the 

following algorithm: 
1 1( ) ( ( ) ) ( ( ))W b y b y u y b    

1. For 1,..., ,p using the distribution for ,ii   generate 2B  second-level bootstrap 

samples 2( )(1) ...,i ix x B .  

2. For each second-level bootstrap sample, evaluate 2 1 2 2( ) ( ( ) ... ( ))py b f x b x b     . 

3. Form the bootstrap estimate of the standard uncertainty of 1( )y b  as the sample standard deviation 

2

2

2
1 2

1

( ( )) [ ( ) ( )] ( 1)
B

b

u y b y b y B  



    2   

of the 2B  replicates, where B . 
2

2

2 2
1

( ) ( )
B

b

y y b 



  

c) Estimate the 100 th percentile of the bootstrap-t distribution of ( )W Y   by the value t̂   such 

that 1 1}t̂ { ( )W b B      . 
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( ))y 

n

d) The 95 % “nested bootstrap- t " confidence interval is 

0,975 0,025( ( )ˆ ˆy u y y ut t      

Although it is a more general approach, the nested bootstrap is computationally more involved and harder to 
implement. The simpler bootstrap method was chosen to analyse all examples. 

8.3 Example 1 

8.3.1 General 

8.3.1.1 As an illustration, consider the statistical model given for Example 1 in Clause 7, namely, 

1 ...i iY i           (14) 

where   is the measurand,   represents the background and i  are independent (0N 2 )  errors. For a fixed 

value , with   denoting the mean of the data, the measurement equation for this model 

is ( )f        . 

8.3.1.2 If the background, ,  has a uniform distribution on the interval ( , the interval for )a d a d     

derived using the GUM is  

2 2

2
3

d
Y a

n


     

Reference [5] discusses the properties of such intervals and compares them to the interval 

2

2Y a d
n

 
    

  
 (15) 

which is recommended by Eisenhart [17] and which can be motivated as follows. Since the conditional 
distribution of Y  for a given   is Gaussian, 2( )N n     , 

2
0,95P Y

n

  
      
 

 

while 

  1P a d      

It follows that the Eisenhart interval in (15), namely,  

2
0,95,P Y a d

n

 
     
 

  (16) 

is conservative. 

8.3.1.3 However, if 12d  n , the interval recommended in the GUM contains interval (15), which 

demonstrates the difference between these two approaches. 

8.3.1.4 The interval (15) can be adjusted for a t-distributed ratio (n Y a S )   . It can also be adjusted 

for other distributions for the background (triangular, trapezoidal, etc.). Different frequentist methods for 
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construction of confidence intervals are available in this situation. Indeed in the model (14), Y  subsumes all 
the information the data provide about   (that is, Y  is a sufficient statistic for  ) with probability density 

2 20 5 ( ) d
2 2

a d n y

a d

n
e

d
   



     


  

The special form of this distribution allows alternative confidence intervals (all centred at the maximum 
likelihood estimator, Y a , but of different lengths) to be derived [14]. 

8.3.2 Example 1a 

The simple example introduced in Clause 7 summarizes the measured values in the model (14) by 3,537y   

and ( ) 0,153u y  . The latter is substituted for n  in Inequality (16) and the factor 2 should be replaced by 

the percentile of the t-distribution with 5,15 effective degrees of freedom. In Example 1a, the background   

can be estimated from measured values regarded as drawn from a Gaussian distribution, leading to 1,228b   

and ( ) 0,059u b  . The resulting estimate of   is 2,309y b   with associated standard uncertainty 

2 2( ) ( ) 0,164u y u b  . The GUM confidence interval is 

2,309 2,548 0,164 2,309 0, 417 (1,892  2,727)       

The 100(1  ) % bootstrap-t confidence interval according to (13) is 21 2
ˆ(2,309   2,309 0,164 )ˆ,164 t t 0      , 

where t̂   is the 100 th percentile of W  of (12). 

For the benefit of users of the R-language and WinBUGS, some R-code fragments [18] and WinBUGS 
fragments [19] are used to illustrate some of the concepts in this Technical Report. For Example 1a, an R 
program  for generating the  = 10 000 realizations of WB   is listed below. 

B = 10000  

 y.star = rnorm(B, mean=3.537, sd=0.153)  

 u.y.star = 0.153 * sqrt(rchisq(B, df=4)/4)   

b.star = rnorm(B, mean=1.228, sd=0.059)  

 u.b.star = 0.059 * sqrt(rchisq(B, df=4)/4)  

 w.star = ((y.star-b.star)-2.309)/sqrt(u.y.star^2+u.b.star^2) 

The 95 % bootstrap-t confidence interval based on the 0,025 and 0,975 quantiles of the simulated distribution 
is 

   2.309 - quantile(w.star, c(0.975,0.025))*0.164 

## 1.895754 2.7288172) 

Namely, the 95 % bootstrap-t confidence interval is given by (1,896  2,729)3) 

                                                      
2) In the examples computed using R, WinBugs, or other software packages, the output is given as reported using the 
software’s standard format. As indicated explicitly by the values of the uncertainties reported, not all digits in the output 
may be significant digits. Note also that the standard output from these software packages uses the period rather than the 
comma as a decimal indicator. 

3) Values rounded to the equivalent of three significant digits in the expanded uncertainty. Note: for Monte Carlo 
methods, recomputation of examples will be subject to random error from simulation. 
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8.3.3 Example 1b 

When there is no statistical data for the background,   is instead assumed to have a uniform distribution on 

the interval . Then, the approximate confidence interval derived from the use of the GUM is (1,126  1,329)

2 20,342 0,102
3,537 1, 228 2,533 2,310 0,415 (1,895  2,724)

5 3
        

The Eisenhart confidence interval is wider, namely, 

0,342
3,537 1, 228 2,776 0,102 2,310 0,526 (1,783  2,836)

5

 
      

 
  

Similar to Example 1a, a bootstrap-t confidence interval can be constructed for  . For this example, the 
estimates and the associated standard uncertainties for , y   and   are numerically the same as those in 

Example 1a, except that   is determined based on experience or expert opinions and its associated 

uncertainty is obtained by a Type B evaluation. Therefore, the realizations of W  are generated in a different 
way from those in from Example 1a, namely, only in generating the bootstrap sample b  and its associated 
uncertainty. The bootstrap sample b  is now generated from the known uniform (1,126, 1,329) distribution 
with standard uncertainty 0,059. The R code for generating 







B  10 000 realizations of W  is as follows. 

B = 10000  

y.star = rnorm(B, mean=3.537, sd=0.153)  

u.y.star = 0.153 * sqrt(rchisq(B, df=4)/4)  

b.star = runif(B, min=1.126, max=1.329)  

u.b.star = 0.059  

w.star = ((y.star-b.star)-2.309)/sqrt(u.y.star^2+u.b.star^2) 

The 95 % bootstrap-t confidence interval based on the 0,025 and 0,975 quantiles of the distribution so formed 
is 

2.309 - quantile(w.star, c(0.975,0.025))*0.164 

## 1.918643 2.699749 

Namely, the 95 % bootstrap-t confidence interval is given by (1,919 2,700). 

8.3.4 Example 1c 

Since 1,196 0,047yy s   , both intervals have negative lower end-points. If the mean   is known to be 

positive, these end-points are replaced by zero leading to the GUM-recommended interval (  and to 

the Eisenhart interval . 

0  0,124)

(0  0,202)

An R program for generating the  = 10 000 realizations of WB   to obtain the bootstrap interval is the same as 
Example 1b with 1,196y   and ( ) 0,047u y  . 

    B = 10000  

  y.star = rnorm(B, mean=1.196, sd=0.047)  

  u.y.star = 0.047 * sqrt(rchisq(B, df=4)/4)  

  b.star = runif(B, min=1.126, max=1.329)  
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  u.b.star = 0.059 

  w.star=((y.star-b.star)+0.032)/sqrt(u.y.star^2+u.b.star^2) 

The untruncated 95 % bootstrap-t confidence interval is 

  -0.032-quantile(w.star,c(0.975,0.025))*0.075 

  ## -0.1762648 0.1128422 

Namely, the 95 % bootstrap-t confidence interval is given by (0,176 0,113). 

As   is known to be positive, the truncated 95 % bootstrap-t confidence interval for   is (0 .   0,113)

9 Bayesian approach for uncertainty evaluation 

9.1 Basic method 

9.1.1 In metrology, the measurand and the input variables of model (1) are physical quantities with fixed 
quantity values. Nevertheless, under the Bayesian approach, the corresponding parameters i  and   are 

considered as random variables in the sense that their probability distributions summarize knowledge about 
these quantities. 

9.1.2 The Bayesian framework uses a definition of probability that allows probability distributions to be 
defined without physical data, for example, using manufacturers' specifications or other expert knowledge. In 
typical metrology applications, however, there are measured values (data) of physical quantities that can be 
used to estimate one or more input quantities. In such cases, a probability density function can be obtained for 
the quantity using Bayes’ theorem as follows. Let ( )ip   be a probability density function for i  as given 

before physical data is obtained. This function is called the prior density for i . Let Y  denote a random 

variable for which a realization y  (data) exists. The probability density ( | ip y )  for Y  is termed a statistical 

model. Under the Bayesian framework, since i  is a random variable, the notation |  represents the fact that 

the probability density of Y  is conditional (or depends) on i . For a particular realization ( |p y )i  of , 

viewed as a function of 

Y

i  is called the likelihood function. Applying Bayes’ theorem, 

  ( | ) ( )
|

( | ) ( )

i i
i

i i

p y p
p y

p y p d

 


i  



 (17) 

is the posterior density of i  that summarizes our knowledge about i  after the data  was observed. iy

9.1.3 When no prior knowledge of the i  exists, then a so-called non-informative prior distribution [20] is 

used. In cases when prior information does exist, it is represented by an informative probability distribution. 
This is one of the mechanisms, under the Bayesian approach, for including information that is used to perform 
a Type B evaluation of uncertainty. The form of the likelihood function is usually selected based on knowledge 
of the process that generates the data. 

9.1.4 The form of the likelihood function and the prior densities determine the shape of the posterior 
density. It is important to select the likelihood function and the prior densities carefully and to perform 
sensitivity analysis of the results with respect to plausible changes in these distributions. For the prior 
distributions, this may mean comparing the results of using several different densities. A test of 
appropriateness of the likelihood function (the statistical model that describes the measurement data) is a 
form of model validation [21], which applies equally to Bayesian, frequentist, and fiducial models. 
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9.1.5 The definition of measurement uncertainty given in the Introduction can be interpreted in the context 
of Bayesian statistics as referring to the posterior probability distribution for the measurand  , that is, the 
standard uncertainty is the standard deviation of the random variable (quantity) characterized by this 
probability distribution. To obtain this standard deviation, it is necessary first to find the joint probability 
distribution of the i , and then apply a change-of-variables formula [14] to derive the distribution for  . 

Moments of this distribution can be obtained more simply as follows. For a function  h  , obtain the expected 

value    1 1 1E ( ) ( )p pf p d pdh h       
 
 

     

  22E   
 
 

  

 
 E

. The corresponding variance can be obtained as 

. Often, the necessary integration is carried out using Monte Carlo methods [20]. Var

9.1.6 When the i  are independent random variables, their joint probability distribution is the product of the 

individual distributions. In many situations, however, the i  are not independent such as when the probability 

distribution for Y  is a function of 1  and 2 , that is,  1 2|p y    is the statistical model and 

   1 2 1p p p  2     . Then, the posterior density for  21   is obtained as  

  1 2 1 2
1 2

1 2 1 2 1 2

( | ) ( )
|

( | ) ( )

p y p
p y

p y p d d

   
 

     

 
 

 
  

9.1.7 A common situation that leads to such dependence is when the statistical model is a function of  , as 
well as some of the i . Both of the examples considered here fall into this category, illustrating the point that 

under the Bayesian approach, whenever measurement data is available, the process of specifying the related 
probability distributions requires an appropriate definition of a statistical model. Doing so will automatically 
lead to the likelihood functions needed for the application of Bayes’ theorem and to appropriate posterior 
densities. The process can be summarized as follows. 

a) Identify all measurement data relevant to the physical quantities of interest (parameters). 

b) Specify a statistical model (also called an observation model) relating the data to the parameters, which 
could be the i  or sometimes the measurand  . 

c) Specify prior distributions for all parameters involved. 

d) Apply Bayes’ theorem to obtain posterior distributions for the parameters. 

e) Compute the posterior mean and posterior standard deviation of the measurand. 

f) Perform sensitivity analysis of the results with respect to plausible changes in the prior distributions. 

9.1.8 Where appropriate, a Taylor series approximation and a normality assumption may be used to avoid 
the numerical computations. Specifically, the Taylor series expansion of 1( pf )   about the expected 

values of the i  together with a normality assumption can be used to state that 1( )pf    is approximately 

distributed as 2
1( ( ( ),..., ( )) )pN f E E   , where 

2 =  Var(2

1

p

i
i

c

 i ) + 2 i j

i j

c c

 Cov( )i j  . 

Cov( )i j   denotes the covariance of i  and j , and the  are the partial derivatives of ic   with respect to 

the i  evaluated at the expected values of the i . 

NOTE Similarly appearing Formulae (6) and (7) are used in 8.1.8, but there the expansion is employed to find an 
estimate of the variance of the estimator of  , not of   itself. 
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9.2 Example 1 

9.2.1 General 

This process is now illustrated on Example 1 given in Clause 7. The measurand in this example is denoted 
by  . The measurement model as described in 8.3.1.1 is 

      (18) 

9.2.2 Example 1a 

9.2.2.1 There are two relevant sets of data: (i) five measured values , obtained independently, of signal 

plus background, and (ii) five measured values , obtained independently, of background alone.  Each value 

in data set (i) is regarded as a realization of a random variable  having a Gaussian distribution with 

mean 

iy

ib

iY

     and standard deviation Y , and similarly for each value in (ii) but for a random variable  

with mean 
iB

  and standard deviation B . Thus, the statistical model for  is iY

2|i YY     ~ 2( , YN ),    

and since the five measured values are obtained independently, 

 
5

2
5

1
1 5 2

1
( | ) exp

22

i
i

Y
YY

y
p y y

 
  

 


 
                 

  


 

9.2.2.2 The statistical model for  is iB

2|i BB   ~  2( , ),BN  

that is, 

 
5

2
5

1
1 5 2

1
( | ) exp

22

i
i

B
BB

b
p b b


 

 


 
               

  


 

9.2.2.3 Since the two sets of observations are mutually independent, the statistical model for Y  and  is B

1 5 1 5( | ) ( | ) ( | )Y B B Yp y b p b b p y y                     

9.2.2.4 There are four parameters,  ,  , Y  and B , which are to be assigned prior distributions. In this 

example, there is no additional information about these parameters, other than that they are non-negative, 
and thus the random variables will be taken as independent. It is desirable for the forms of the prior 
distributions to have minimal effect on the results of the analysis. Such an effect is obtained by the use of so-
called reference priors [20]. For the parameters associated with the means, that is   and  , such a density 

can be approximated by 

 ~ Un     iform(0 )c   ~ Uni  form(0, )c

with a large value for . For the scale parameters c Y  and B , the reference prior densities 

( ) 1Y Yp        ( ) 1B Bp    
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are improper, that is, they do not integrate to unity. Since this aspect can cause difficulties in numerical 
computation, a proper density such as 

Y ~  Uniform(0 )c 

or 

Y ~  Gamma( )c c 

with large values of c  is used. The notation  1 2Gamma    represents a gamma distribution with parameters 

1  and 2 , that is, for a random variable X , this probability density is given by 

   
1

1 212
1 2

1

| xp x x e


 
 


  


  

This completes the specification of the prior distributions. 

9.2.2.5 Application of Bayes’ theorem results in the joint posterior density for  ,  , Y and B  as 

follows: 

  ( , | ) ( ) ( ) ( ) ( )
|

( , | ) ( ) ( ) ( ) ( )

Y B Y B
Y B

Y B Y B Y B

p y b p p p p
p y b

p y b p p p p d d d d

       
   

           

  
     

  
 

The posterior density of the measurand   is obtained by integration as 

   | |Y B Y Bp y b p y b d d d               

This posterior distribution summarizes all information about   available after the measured values were 
obtained. The expectation of this distribution is taken as an estimate of the physical quantity and the standard 
deviation of this distribution is used as the standard uncertainty associated with this estimate. It is 
straightforward to obtain a coverage interval for the measurand from this distribution. This coverage interval is 
an interval of possible values for   with a fixed probability. In Bayesian statistics this interval is called a 
credible interval. In many cases, numerical methods are employed to accomplish the necessary integrations 
when applying Bayes’ theorem. One possible method of making draws from the posterior distribution is 
Markov Chain Monte Carlo (MCMC) [22] using the software WinBUGS[19]. The code for this example, with the 
uniform prior distributions with  = 100, is as follows c

Example1a{  

theta~dunif(0,100)  

beta~dunif(0,100)  

  gamma <- theta+beta  

sigma.Y~dunif(0,1)  

sigma.B~dunif(0,1)  

tau.Y <- 1/(sigma.Y*sigma.Y) 

  tau.B <- 1/(sigma.B*sigma.B)  

for(i in 1:n){ 

y[i]~dnorm(gamma,tau.Y) 

b[i]~dnorm(beta,tau.B)} 

}    
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With the data given in 7.2, for which  = 5, the program produced a posterior mean of n   of 2,309, and a 
posterior standard deviation of 0,247. A 95 % credible interval for   is (1,805  2,815). A Bayesian sensitivity 
analysis with respect to changes in the form of the four prior distributions can be carried out by varying the 
value of  (see 9.2.2.4), and by substituting the lines c

tau.Y~dgamma(1,0E-5,1,0E-5)  

tau.B~dgamma(1,0E-5,1,0E-5)   

for the four lines 

sigma.Y~dunif(0,1)  

sigma.B~dunif(0,1)  

tau.Y <- 1/(sigma.Y*sigma.Y)  

tau.B <- 1/(sigma.B*sigma.B)   

and comparing the resulting values of posterior mean and standard deviation. The results in this example are 
robust to such changes. 

9.2.3 Example 1b 

9.2.3.1 The information about the background parameter   is provided in the form of a probability 

distribution obtained by a Type B evaluation of uncertainty. In this case, the observation model is only in terms 
of data set (i) in Example 1a (9.2.2), that is, 

2|i YY     ~ .2( , YN )     

9.2.3.2 There are now three parameters that are to be assigned prior distributions. For the background 
parameter  , the prior density is based on the information given in the Introduction, that is, 

 ~ Uni  form(1,126 1,329) 

For   and Y , 

 ~ Uni ,    form(0, )c Y  ~ ,  Uniform(0, )c

with a large value for . c

This completes the specifications for the prior distributions. 

9.2.3.3 The WinBUGS code for this example is as follows. 

Example1b{  

theta~dunif(0,100)  

beta~dunif(1.126,1.329)  

  sigma.Y~dunif(0,1)  

gamma <- theta+beta  

tau.Y <- 1/(sigma.Y*sigma.Y) for(i in 1:n){ 

y[i]~dnorm(gamma,tau.Y) 

  }  
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With the data given in the Introduction, this code produces a posterior mean for   of 2,309, and a posterior 
standard deviation for   of 0,232. A 95 % credible interval for   is (1,832  2,788). A sensitivity analysis of the 
results is again satisfactory. 

9.2.4 Example 1c 

9.2.4.1 The only difference from Example 1b is in the actual measured values (which are now close to 
the background) and so the same model and WinBUGS code can be used. The posterior mean for   is 
now 0,069, the posterior standard deviation for   is 0,067 and the 95 % credible interval for   is 
(0,000  0,188). These results are robust to changes in the value of c  with the uniform priors. Changing the 
form of the prior density for Y  from uniform to Gamma results in a posterior mean of 0,058, posterior 

standard deviation of 0,052 and 95 % credible interval of (0,000  0,150). This is a larger change than in the 
previous examples, and indicates that here, because of the closeness of the data to the background, the data 
is not quite as informative about the measurand. The size of Y  (controlled to some degree by the prior 

distribution since there are only five measured values on which an estimate is based) affects how informative 
is the data. In a case such as this, the conservative solution is to use the longer credible interval based on the 
uniform distribution. A better way would be to obtain more measured values. The consequence would be a 
reduction in the effect of the prior density of Y  on the results. (An interesting fact about the Bayes’ credible 

intervals such as those given here can be found in Reference [23]. The authors show that in models such as 
Example 1, the 95 % Bayes’ credible interval based on the uniform prior has frequentist coverage of close to 
95 %, while the interval based on the gamma prior usually has lower frequentist coverage.) 

9.2.5 Summary of example 

Example 1a illustrates the case when measured values from two independent sources are used in a single 
uncertainty evaluation. Example 1b shows how information about the background that is used to perform a 
Type B evaluation of uncertainty can be included in the Bayesian model. Example 1c illustrates the ease with 
which a constraint can be included in the Bayesian model, such as the positive constraint here on the value of 
the measurand. It also shows how the choice of a non-informative prior distribution can affect the results. 

10 Fiducial inference for uncertainty evaluation 

10.1 Basic method 

10.1.1 For the measurement function (1), the uncertainty evaluation for a measurand   may be based on the 
fiducial distribution for  . he following examples serve to illustrate the recipe for obtaining fiducial 
distributions for parameters of interest. 

T

10.1.2 Suppose Y ~ ( 1)N  , where   is the measurand, the measurement process has a known variance 

equal to 1, and Y  is the random variable representing values that may be observed. One might express the 
relation between the measured values and the underlying random experimental error process by the equation 

Y E    (19) 

where E is a random error with  distribution. Each measured value is associated with a particular 

random experimental error. Suppose a single measured value of 10 is obtained. The associated measurement 
error is denoted by e . So 

(0 1)N 

10 e    

Hence 10 e   . If the value of  were known, the measurand would be known exactly, but the value of  is 
not known. Nevertheless, the fact that the distribution from which e was generated is known helps a set of 
values of 

e e

  to be determined that is considered plausible. For instance, how plausible is the value 2   for 
the measurand? For this to be true, e  = 8 is needed. A value of 8 is highly unlikely to have come from 
an  distribution. So, it is concluded that the value (0N ,1) 2   is unlikely. How likely is it that   lies between 
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10 and 12? For   to be between 10 and 12, e  needs to be between 0 and 2 and the probability for this 
is , where  is the value of the cumulative standard Gaussian distribution at z . Thus, 

probabilities associated with  can be transferred to probabilities for 

(2) (0)  ( )z
E  . The knowledge about  , based on 

the measured value of 10, can be described by the distribution of the random variable   whose distribution is 

given by that of 10 – . That is, E ̂ ~ or the fiducial distribution for (10 1)N    (that is, the distribution for  ) is 

. The random variable (0 1)N   is also called a fiducial quantity (FQ) for  . Such an FQ is related to what is 

called generalized pivotal quantity [24], [25] or fiducial generalized pivotal quantity [26], [27] in the literature. 

10.1.3 In the above example, suppose two measurements are made. Let  and  be the random variables 

denoting the possible values one might obtain for the two measurements, which can be expressed as 
1Y 2Y

1 1Y E 

2 2Y E

  

 

1

2

10

8

e

e




 
 

  (20) 

Suppose the actual measured values are 10 and 8. Then, the following equations relate the measured values, 
the measurand, and the realized values of experimental errors, say  and  1e 2e



 

Plausible values for   are related to plausible values of 1 2(e e ) . What makes this example different from the 

previous example is that here it is known that 1e 2e  equals 2. So, the set of possible values for (  is now 

limited by this requirement. It is known that 
1 2e e )

1 2(e e )  is from a standard bivariate Gaussian distribution, but is 

constrained to lie on the line e e1 2 2  . So, the probabilities one would associate with   are the probabilities 

with either 10 –  or 8 –  knowing that 1e 2e 1 2(e e )  is a realization from a bivariate standard Gaussian 

distribution subject to the additional condition that e e1 2 2  . Hence an FQ   is defined to have a distribution 

that is equal to the conditional distribution of 110 E  given that 1 2E E 2  . This is the same distribution as the 

conditional distribution of 8  given that . A simple calculation shows that the distribution of 2E 1 2E E  is 2
( 1 2)N y   where 1 2( )y 

n

2 ( 10 8) 2   9y y  . 

210.1.4 More generally, for  independent measurements made from ( )N   , 

1 1Y E     

2 2Y E     

…  

n nY E     (21) 

where 1  are independent, standard Gaussian random variables. The joint fiducial distribution for ... nE E  ( )   

can be obtained as follows. Use the first two (or any two) of the above n  structural equations to solve for   

and  , denoted by   and  , as functions of , , , and . The joint fiducial distribution for 1y 2y 1E 2E ( )   is 

the joint distribution for ( )    conditioned on the  imposed by the rest of the iE 2n   equations. In particular, 

the fiducial distribution for   is 

1n

s
y T

n
     (22) 
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namely, a shifted and scaled t-distribution with 1n   degrees of freedom. Here y  and s  are the realized 

values of the sample mean X  and the sample standard deviation  for the  measured values, and S n 1nT   is a 

random variable having a t-distribution with 1n   degrees of freedom. 

10.1.5 There is an alternative, simpler method than that just outlined to derive a fiducial distribution for   
in (22), which will be illustrated in the subsequent examples. 

10.1.6 The above argument can be generalized and fiducial distributions can be developed for model 
parameters in wide-ranging problems. The starting point for this process is called a structural equation [28].  
Denote this structural equation by (Y G E)  . For a single measurement, Equation (19) constitutes the 

structural equation. For n  measurements, equations (21) constitute the structural equations. The structural 
equations relate the measurements Y  with model parameters   and error processes  whose distributions 

are fully known. For instance, for a single measurement the distribution for  is known completely. For any 
fixed values of 

E

E
 , the distribution for E  and the structural equation ( )G   determine the distribution for the 

data Y . After observing the data Y  the role of data and parameters can be interchanged. In particular, the 
value of Y  is fixed and the distribution of E  and the structural equation G( )  are used to infer a distribution 

for  . This is what constitutes the fiducial argument. 

10.2 Example 1 

10.2.1 Example 1a 

10.2.1.1 To illustrate, consider Example 1a described in Clause 7 where the physical quantity   is to be 
estimated from measured values that follow the model 

1 ...i iY i n           (23) 

where the i  are independent measurement errors with i ~ 2(0 )YN  . Also,   represents a background and 

can be estimated from measurements that follow the model 

1 ...i iB i bn       , (24) 

where i  are independent measurement errors with i ~ 2(0 )BN  . It is assumed that i  and i  are 

independent. From (23) and (24), it follows that Y B  has a Gaussian distribution with mean   and 

variance , where 2 2
Y Bn    bn Y  and B  are the means of  and , respectively and can be expressed by iY iB

2 2
Y B

b

Y B Z
n n

 
      (25) 

where Z  is a standard Gaussian random variable. This is a structural equation for Y B . Also 

2

2

( 1) y
y

Y

n S
W




 ~ 2 ( 1n )  

and 

2

2

( 1)b b
b

B

n S
W




 ~ , 2 ( 1bn  )

where 2 ( )   stands for the chi-squared distribution with   degrees of freedom,  and  are sample 

variances of  and , respectively. Thus 

2
yS 2

bS

iY iB
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2
2

1
Y y

y

W
S

n





 (26) 

is a structural equation for  and  2
yS

2
2

1
B b

b
b

W
S

n





 (27) 

is a structural equation for . By solving the above three structural equations for 2
bS  , Y , and B , an FQ for 

  is obtained as 

2 2( 1) ( 1)y b b

y b b

n s n s
y b Z

nW n W


 
      (28) 

10.2.1.2 A 1   fiducial interval for  is given by 2 1 2(      )  , where   is the  -quantile of the 

distribution of  . These quantiles can be determined analytically in simple situations. However, they are most 
conveniently approximated using a Monte Carlo approach. This approach involves generating a large number 

of realizations from the distribution of   and determining the empirical 2  and 1 2   quantiles. These 

quantiles are used as the estimates for 2   and 1 2   . A single realization of   may be generated as follows. 

a) Generate a realization of a standard Gaussian random variable Z . 

b) Generate realizations of independent 2  random variables yW  and bW  with 1n   and 1bn   degrees of 

freedom, respectively. 

c) Calculate   as in (28). 

For this example, , 5bn n  3,537y  , , 0,342ys  1,228b  , and 0,131bs  . An R program for generating the 

500 000 realizations of   is listed below. 

nrun = 500000  

Z = rnorm(nrun)  

W1 = rchisq(nrun, 4)  

Wb = rchisq(nrun, 4)  

theta = 3.537 - 1.228 - sqrt(4*0.342^2/(5*W1)+4*0.131^2/(5*Wb))*Z 

The mean of the simulated distribution is 

 mean(theta) 

## 2.308893 

and a 95 % fiducial interval based on the 0,025 and 0,975 quantiles of the simulated distribution is 

 quantile(theta, c(0.025,0.975)) 

## 2.5 %  97.5 % 

## 1.857814  2.760931 

Namely, the 95 % fiducial interval is given by (1,858  2,761). 
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10.2.2 Example 1b 

10.2.2.1 There is now no statistical data relating to the background. It is assumed that the information 
regarding   is specified in terms of a probability distribution for   and that   and i  are independent. 

Furthermore, it is assumed the probability distribution for   is fully known, that is, does not involve any 

unknown parameters. 

10.2.2.2 The structural equation for Y  is given by 

Y Z
n

      (29) 

Together with the structural equation for  in (26), we obtain an FQ for 2
yS   as 

( 1)

y

y

s Z
y

n W n
    

 
  

Since 1( 1)y nZ W n T      is a random variable having a t-distribution with 1n   degrees of freedom, 

1
y

n

s
y T

n
       (30) 

A single realization of   may be generated as follows. 

a) Generate a realization of 1nT    of a Student’s t random variable with 1n   degrees of freedom. 

b) Generate   according its distribution, independently of 1nT  . 

c) Calculate   as in (30). 

For this example,   is assumed uniformly distributed over the interval (1,126 1,329). The 500 000 realizations 

of   are generated by 

beta = runif(nrun, 1.126, 1.329)  

theta = 3.537 - beta - 0.342/sqrt(5)*rt(nrun, 4)   

The mean of the simulated distribution is 

 mean(theta)   

 ## 2.309454   

and a 95 % fiducial interval based on the 0,025 and 0,975 quantiles of the simulated distribution is 

 quantile(theta, c(0.025, 0.975))   

 ## 2.5 %    97.5 % 

 ## 1.871685 2.745590   

Namely, the 95 % fiducial interval is given by (1,872  2,746). 

10.2.2.3 The above fiducial interval agrees with the uncertainty interval obtained using the method 
proposed in GUMS1. 
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10.2.3 Example 1c 

10.2.3.1 The case of Example 1b applies except 1,196y   and 0,106ys  . The 500 000 realizations of   

are generated by 

 theta = 1.196 - beta - 0.106/sqrt(5)*rt(nrun, 4)   

The mean of the realizations is 

 mean(theta)   

 ## -0.03158058   

which lies outside the parameter space for  . The number of realizations outside of the parameter space can 
be found by   

 length((1:nrun)[theta < 0])   

 ## 319168   

The approach for handling parameter constraints is to truncate the fiducial distribution to the constrained 

parameter space. That is, we use ma  to obtain the realizations of the fiducial distribution for x( 0)   . A 95 % 

fiducial interval is calculated as 

quantile(pmax(theta, 0), c(0.025, 0.975)) 

   ##  2.5 %    97.5 % 

##  0.0000000 0.1361553   

Namely, the 95 % fiducial interval is given by (0,000  0,136). 

10.2.3.2 The recipe described in 10.2.1.1 and 10.2.2.2 can be generalized to arbitrary statistical models. A 
prescription for constructing FQs is given in Reference [29]. A simpler recipe for more common problems 
where sufficient statistics exist was given in a technical report (Reference [30]) and is further discussed in 
References [24] and [25]. It is reproduced here for completeness. The recipe consists of the following steps: 

a) Express each sufficient statistic as a function of one or more parameters and random variables whose 
distributions are completely known, free of any unknown parameters. That is, obtain a structural equation 
for each sufficient statistic. 

b) In each structural equation, express each parameter as a function of the sufficient statistics and random 
variables whose distributions are completely known. 

c) Obtain an FQ for each parameter by replacing the sufficient statistics with their corresponding observed 
values. 

11 Example 2: calibration of a gauge block 

11.1 General 

11.1.1 This example, which is taken from Annex H.1 of the GUM, is concerned with the determination of the 
length of a gauge block by comparing it with a nominally identical gauge bock that has previously been 
calibrated. The notation used in the GUM is closely followed, but has been modified where needed to agree 
with the notational conventions in Clause 4 that distinguish measurands from measured values. Table 2 lists 
the physical quantities used. 
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11.1.2 Use the notation given in Table 3 and based on 

 the first line of Equation (H.2) in the GUM, 

 the relationships s      and s        defined in H.1.2, and 

 inferences drawn from the propagation of uncertainty in H.1.3.2 and H.1.3.4 of the GUM. 

11.1.3 The measurement model for   used in the GUM analysis of Example H.1 can be expressed as 

   
r nr

1

1

s s C C

s

 



      


  

  
  

  
      


   

  (31) 

Equation (31) is the measurement model as described in H.1.1 and the first line of Equation (H.2) of the GUM, 
rather than the approximation made on the second line of Equation (H.2) and then used throughout the rest of 
H.1. 

Table 3 — Notation for analysis of GUM Example H.1 under each of the three statistical approaches. 
The random variable corresponding to   is denoted by D , and its observed value by d   

Quantity Symbol

Length of unknown end gauge at 20 °C      

Length of standard end gauge at 20 °C  s    

Difference between end gauge lengths at laboratory ambient temperature      

Correction to difference between gauge block lengths to compensate for random comparator errors  
rC    

Correction to difference between gauge block lengths to compensate for systematic comparator errors 
nrC    

Coefficient of thermal expansion of the standard end gauge  s    

Difference in coefficients of thermal expansion of the standard and unknown end gauges      

Average deviation of test bed temperature from standard conditions during data collection      

Cyclic variation of test bed temperature from mean temperature due to thermostatic control      

Difference in temperatures of the standard and unknown end gauges      

 

11.1.4 Equation (31) is also expressed in terms of the physical quantities used to determine the length of the 
gauge block, rather than pre-summarizing the effects due to the difference between the lengths of the two 
gauges and in the temperature of the test bed. It is good practice to express the measurement model in terms 
of all quantities needed to determine it. This practice helps to minimize a possible failure to identify 
correlations between different physical quantities, such as   and s  and   and s  as mentioned in H.1.2, 

whose values ultimately might be based on the same data. 

11.1.5 Table 4 summarizes the rest of the information taken from the analysis of GUM example H.1 needed 
for the analysis by the different statistical approaches to be discussed and compared in the remainder of this 
clause. 
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11.1.6 The description of the example in the GUM indicates that there is only one quantity,  , whose value 

has been estimated using the analysis of statistical data. The distribution of the mean of the measured values, 
which provides an estimate of  , is taken as Gaussian (normal) with an expected value that depends on the 

length of the gauge block and the other physical quantities described in Table 3 and Table 4. 

11.1.7 The values and standard uncertainties associated with the estimates of all other quantities are 
obtained by Type B evaluations. Because the quantities   and   follow rectangular rather than Gaussian 

distributions, however, there are no widely accepted statistical methods to account for the degrees of freedom 
in these two cases. As a result, the given degrees of freedom will not be used for those quantities. 

Table 4 — Summary of information from the analysis of GUM example H.1 needed for its re-analysis 

Quantity Value Standard 
uncertainty 

Degrees of 
freedom 

Type of uncertainty 
evaluation 

Characterizing 
distribution 

s  50 000 623 nm 25 nm  18 B Gaussian 

d   215 nm  5,8 nm  24 A Gaussian   

rC  0 nm  3,9 nm  5 B Gaussian   

nrC  0 nm  6,7 nm  8 B Gaussian   

s  6 111,5 10 C    6 11, 2 10 C     B Rectangular   

  10 C  6 10,58 10 C    50 B Rectangular   

  0,1 C   0,2 C   B Not specified  

  0 C  0,35 C   B Arcsine   

  0 C  0,029 C  2 B Rectangular   

 

11.2 Frequentist approach 

11.2.1 In this example, the sensitivity coefficients 
s s

c c   vanish, and the second order terms are to be 

incorporated in Equations (6) and (7), although just one of them is noticeably different from zero (GUM, p 71). 

11.2.1 The value y  = 50 000 838 nm of the measurand, namely, the length of the gauge block under 

calibration, and the associated standard uncertainty ( ) 34u y   nm are returned by the evaluation in the GUM 

using second-order terms. As was mentioned in 8.1.12, the uncertainties associated with these estimates are 
approximated by the marginal quadratic error if the parameters s s   are averaged over their normal 

distributions, and s s   and   are integrated out according their uniform distributions. 

11.2.2 These results are confirmed by the propagation of distributions implemented by a Monte Carlo 
method as in GUMS1, which provides a very close answer. Moreover, the approximation by 
the t-distribution (10) seems to be reasonable. Figure 1 shows the empirical percentiles plotted 
against t-distribution quantiles when the degrees of freedom are estimated according to Equation (8). More 
results from a Monte Carlo method are reported in Reference [31]. 
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Figure 1 — Empirical percentiles versus percentiles of t-distribution in Example 2 

11.2.3 To construct a bootstrap interval for this example,   is estimated to be 50 000 838 nm with a 
combined standard uncertainty u  = 31,7 nm. From Equation (13), the 100(1 – ) % bootstrap-t confidence 
interval is 21 2

ˆ(50 000 838 31,7 500 00 838 31,7)ˆt t      , where t̂  is the 100 th percentile of W  of (12). The R 

code for generating  = 10 000 realizations of W



B   is as follows. 

 B = 10000  

  x.star = cbind(  

           rnorm(B, mean=50000623, sd=25),  

           rnorm(B, mean=215, sd=5.8),  

           rnorm(B, mean=0, sd=3.9),  

           rnorm(B, mean=0, sd=6.7),  

           runif(B, min=0.0000095, max=0.0000135),  

           runif(B, min=-0.000001, max=0.000001),  

           runif(B, min=-0.45, max=0.25),  

           rbeta(B, 0.5, 0.5)-0.5,  

           runif(B, min=-0.05, max=0.05))  
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  u.star = cbind(  

           25 * sqrt(rchisq(B, df=18)/18),  

           5.8 * sqrt(rchisq(B, df=24)/24),  

           3.9 * sqrt(rchisq(B, df=5)/5),  

           6.7 * sqrt(rchisq(B, df=8)/8),  

           0.000001 2,  

           0.00000058 * sqrt(rchisq(B, df=50)/50),  

           0.2,  

           0.35,  

           0.029 * sqrt(rchisq(B, df=2)/2))  

       x.name = c("L.s","D.lambda","Dc.r","Dc.s","A.std","D.alpha",  

           "T.bar","T.cv","D.theta")  

       f = expression((L.s*(1+A.std*(T.bar+T.cv-D.theta))+  

         D.lambda+Dc.r+Dc.s)/ (1+(A.std+D.alpha)*(T.bar+T.cv)))  

       star = delta(f, x.star, u.star, x.name)  

       w.star = (star$y-50000838)/star$uc   

The R function delta is defined below. 

   delta = function(meq,x,u,namevec){ 

         for(i in 1:ncol(x)) assign(namevec[i], x[,i])  

           c = attr(eval(deriv(meq,namevec)),"gradient") 

  list(y=eval(meq),uc=sqrt(apply((c*u)^2,1,sum)))      

   } 

This function accepts a valid R expression meq, the measurement function, whose parameter names are given 
by namevec, and a matrix of input values x, one column of x containing the bootstrap replicates for each 
quantity in meq. The function uses the R function deriv to evaluate the measurement function and obtain the 
first derivatives c (the "gradient" of meq at x) with respect to all the parameters in namevec evaluated at  
the input values given by x. Finally, the function returns the evaluated expression (as y) and the associated 
uncertainty calculated using the usual first-order Taylor approximation. In the bootstrap code above, the 
function delta is applied to the measurement function defined as f in the code. 

The 95 % bootstrap-t confidence interval based on the 0,025 and 0,975 quantiles of the simulated distribution 
is 

   50000838-quantile(w.star,c(0.975,0.025))*31.70511 

  ## 50000777 50000899 

This interval, (50 000 777  50 000 899) nm, is almost 10 % shorter than that given by application of the GUM. 
This general behaviour, the width of a bootstrap interval being shorter than that of an interval derived from an 
uncertainty evaluation based on the first-order Taylor approximation, is further discussed in Reference [32]. 

11.3 Bayesian approach 

11.3.1 An observational model relating the data to the parameters can be specified. 
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11.3.2 The GUM can be interpreted as stating that the expected value  E D  of the measurement is equal 

to  , where 

      1 1s s   s         
  

          
  
  (32) 

The expected value of the measurements is a function of the parameter vector ( , , , , , )s s         and the 

measurand  . The GUM gives two additional components of uncertainty involving the comparator determined 
by Type B evaluations. Therefore there is uncertainty about the expected value of the difference measurement 
being equal to  . Similarly to the GUM, the two components can be combined additively to obtain an 

uncertainty of 7,8 nm, with 12 degrees of freedom using the Welch-Satterthwaite formula. The following 
two-stage statistical model combines the available information: 

|
r

D  ~  2 5
r DN

   (33) 

|
r   ~ 127.8 T   . 

11.3.3 Given in the example is the uncertainty associated with the measured difference ds


 obtained by a 

Type A evaluation, providing an estimate of D
 . From basic probability theory, for a sample of size n  from a 

Gaussian distribution with a known variance 2 , 

  2
2

1n
S




~ .  2 ( 1)n 

As  is also the 2 1n    1 1
2 2Gamma n    density, 

2 |d DS
 
 ~

 
2

25 1 1
Gamma

2 2 D


 
   

 
 

11.3.4 There are eight parameters in the statistical model, including the measurand  . To find a posterior 
distribution for  , the joint prior distribution of the eight parameters is first specified. A priori, these random 
variables can be regarded as independent, and so their joint distribution is the product of their individual prior 
distributions. For the elements of the parameter vector  , the information that is used to perform a Type B 

evaluation of uncertainty can be interpreted as informative prior densities as follows 

S ~ , (34) (50000623,625)N

 ~ , 6 6Uniform 1 10 1 10  
 
 
   

 ~ , ( 0,1  0,1681)N  

 ~ , Beta(0,5  0,5) 0,5 

S ~ , 6 6Uniform 9,5 10  13,5 10  
 
 

  

 ~  Uniform( 0,05  0,05)  

So, the joint prior distribution is 

( ) ( ) ( ) ( ) ( ) ( ) ( )s sp p p p p p p          
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Prior distributions for the measurand   and D
  are needed to complete the prior specification. In this 

example, there is no additional information about these two parameters other than that they are non-negative. 
As in Example 1, the parameters are assigned reference priors [20]. For  , a reference density is 
approximated as 

 ~  (35) Uniform(0 )c

with a large value for . Similarly, for c D
 , 

D
 ~  (36) Uniform(0 )c 

or . This completes the prior distribution specification. Gamma( )c c

Note that the two reference prior distributions, which sensitivity analysis shows have little impact on the 
results, are the only distributions not used in some manner by the frequentist or fiducial approaches. 

11.3.5 Application of Bayes’ theorem results in the following joint posterior density of : D
   

 
  
 
 

   
   

( | ) ( | ) ( )
| .

( | ) ( | )
r r

r r

D

D d

D

p p p p pd
p sd

p p p p d d dd



 



   


   

     
  

       
 
 
  
 
   


 

The posterior density of   is then obtained by integration as 

( | ) ( , | )d D dp s p s d dd d D    
           

This posterior distribution summarizes all of the information about   available after the measurements were 
obtained. The WinBUGS code for this example is as follows: 

Example2 { 

 n<-25  

 df<-(n-1)/2  

 lambda~dnorm(0.1,0E-18) 

 delta.a~dunif(-0.000001, 0.000001)  

 alpha~dunif(0.0000095,0.0000135)  

 theta~dnorm(-0.1,5.94) 

 ddelt~dbeta(0.5,0.5)  

 delta<-ddelt-0.5  

 delta.t~dunif(-0.05,0.05)  

   lambda.s~dnorm(50000623, 0.0016)  

   sigma.D~dunif(0.20)  

   tau.D<-1/(sigma.D*sigma.D)  

   delta.l<-lambda*(1+(delta.a+alpha)*(theta+delta)) 

        -lambda.s*(1+((theta+delta)-delta.t)*alpha) 

        delta.l.r~dt(delta.l, 0.0164,12)  

   msg<-5*tau.D  

   dbar~dnorm(delta.l.r,msg)  
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   pg<-tau.D/2  

   ssq<-(n-1)*s.y*s.y  

   ssq~ dgamma(df,pg)    

   } 

For d  = 215 and Ys  = 13, this WinBUGS code obtains the posterior mean of   as 50 000 837 nm, with 

posterior standard deviation of 34 nm. The 95 % credible interval is (50 000 768 nm  50 000 908 nm). These 
results are almost identical those in the GUM. 

11.3.6 In the solution here, the measurement model in terms of  , that is Equation (31), is never used, so 
avoiding the unnecessary and difficult task of determining how the distributions of the various parameters are 
related. As in Example 1 with the two parameters, the approach given here leads to an appropriate joint 
posterior distribution for all eight parameters. 

11.3.7 Consider an approximate solution for this example based on the Taylor series approximation. In the 
GUM solution, Equation (31) is approximated as 

 1s s         
      

        

Define a parameter     . Using the Taylor series approximation, the probability density of   can be 

approximated by a Gaussian as ~ N (50 000 623 nm, 911 nm2). For simplicity, also approximate D
  by ds


. 

Then, the statistical model becomes 

 2
13

|
5r r

ND   
 
 
 
 

� , 

  2
| 7,8

r
N     � , 

(0 )N c � , 

 50 000 623  911,47N  �  

For this model, the posterior density of   can be obtained analytically [33]. We obtain 

   
2

213
50 000 623 911,477,8

5
N d
 
    
 
 

� . 

Since d  =215 nm, we obtain the posterior mean of   as 50 000 838 nm with posterior standard deviation 

of 31 nm, again close to those in the GUM. 

11.4 Fiducial approach 

11.4.1 This example is used to illustrate the fiducial inference approach in a more complex application. The 
measurement function is given in (31). Based on the information provided in the GUM, the following 
assumptions are made: 

a) The estimated value of s  (i.e., the value given in the calibration certificate), denoted by sl , is equal to 

50 000 623 nm. The standard uncertainty associated with the estimate is 25 nm with 18 degrees of 
freedom. Under a normality assumption, a fiducial quantity (FQ) for s  is 
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1850000623 25s T    (37) 

Expression (37) is obtained from Distribution (22) with y   50 000 623 nm, ( )u y = 25 nm, and 18 degrees 

of freedom associated with ( )u y . 

b) Each replicate measured value is regarded as drawn from a normal distribution with mean   and 

standard deviation 


 . The observed mean of the five measured values is d  = 215 nm. From a 

separate experiment, 


  is estimated to be 13 nm with 24 degrees of freedom. Thus, ( )u d 13 5   . So, 

an FQ for   is 

24215 13 5T      (38) 

Also, based on the calibration certificate for the comparator device, an estimate of 
rC  is 0 with a 

standard uncertainty of 3,9 nm (5 degrees of freedom), and an estimate of 
nrC  is 0 with a standard 

uncertainty of 6,7 nm (8 degrees of freedom). Furthermore, the comparator errors can be assumed to be 
independent of the replication errors. Thus, 

53,9
rC T  , (39) 

and 

86,7
nrC T    (40) 

Mutual independence among the random variables is a consequence of the GUM assumption about the 
measurement process. 

c) Let   be the deviation of the average temperature of the test bed from the nominal value of 20 °C. An 
estimate of   is –0,1 °C with a standard deviation of 0,2 °C. Since the GUM gives no additional 
information concerning this standard deviation, infinite degrees of freedom is assumed for it and also that 
  is a draw from a Gaussian distribution. Hence 

0,1 0,2 Z    , (41) 

where Z  is a draw from a standard Gaussian random variable, independent of all other random 
variables. 

d) An FQ for   has a probability density function given by 

2

2
( ) 0,5 C 0,5 C

1 4
g x x

x
    


   (42) 

For making random draws from the arcsine distribution (42), observe that if 1U  is a uniform (0,1) random 

variable, 1cos( ) 2U   has the required arcsine distribution. So, an FQ for   may be taken to be 

1cos( ) 2U      (43) 

e) An FQ for   is 

2U    (44) 

where  is a uniform random variable over the interval ±1 × 10–6 °C–1. 2U

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 

Not for ResaleNo reproduction or networking permitted without license from IHS

-
-
`
,
,
`
`
`
,
,
,
,
`
`
`
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



ISO/TR 13587:2012(E) 

© ISO 2012 – All rights reserved 35
 

f) An FQ for   is 

3U    (45) 

where  is a uniform random variable over the interval ±0,05 °C. 3U

g) An FQ for s  is 

6
411,5 10s U      (46) 

where  is a uniform random variable over the interval ±2 × 10–6 °C–1. 4U

11.4.2 Substituting the fiducial quantities in Expressions (37) to (46) into Expression (31), a fiducial quantity 

is obtained for  . An approximation to the distribution for   is provided using 500 000 Monte Carlo trials. The 
mean and the standard deviation of this approximate distribution are 50 000 838 nm and 35 nm, respectively. 
A 95 % fiducial interval for   is given by the 0,025 and 0,975 quantiles of this distribution, namely, 

(50 000 768 nm  50 000 907 nm). R code for generating the 500 000 realizations of   follows. 

    nrun = 500000  

    lambda.s = 50000623 - 25 * rt(nrun, 18)  

    delta.lambda = 215 - 13/sqrt(5) * rt(nrun, 24)  

    delta.cr = 3.9*rt(nrun, 5)  

    delta.cnr = 6.7*rt(nrun, 8)  

    theta = rnorm(nrun, -0.1, 0.2)  

    delta = (-cos(pi*runif(nrun))/2) 

    delta.alpha=runif(nrun,-10^(-6), 10^(-6)) 

    delta.theta=runif(nrun, -0.05, 0.05) 

    alpha.s=runif(nrun, (11.5-2)*10^(-6), (11.5+2)*10^(-6)) 

    lambda=(lambda.s*(1 + alpha.s*(theta + delta - delta.theta))+delta.lambda 
+delta.cr + delta.cnr)/(1 + (alpha.s + delta.aplha)*(theta+delta)) 

12 Discussion 

12.1 Comparison of uncertainty evaluations using the three statistical approaches 

12.1.1 Table 4 summarizes the results for Example 1. The frequentist bootstrap, Bayesian and fiducial 
solutions for Example 1a and Example 1b are very similar. The bootstrap and the GUM solutions produce 
slightly shorter intervals in both Example 1a and Example 1b. More substantial differences are seen in the 
solution for Example 1c. Here the Bayes’ solution based on the uniform prior density produces an interval that 
is markedly longer than most of the other methods; only the conservative Eisenhart interval is wider. 
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Table 4. Expanded uncertainty intervals for the three statistical approaches for Example 1 

 GUM  Eisenhart  Bootstrap  Bayes  Fiducial  

Example 1a  (1,89  2,73) (1,89  2,73) (1,83  2,66) (1,81  2,82) (1,86  2,76)   

Example  1b  (1,90  2,72) (1,78  2,84) (1,86  2,64) (1,83  2,79) (1,87  2,75)   

Example  1c  (0,00  0,12) (0,00  0,20) (0,00  0,11) (0,00  0,19) (0,00  0,14)   
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Example 1c:
Fiducial Density for theta
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Figure 2 — Comparison of the approximate Bayesian and fiducial densities for Examples 1a and 1c 
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12.1.2 Because the Bayesian and fiducial approaches produce probability distributions for the measurand, 
 , their results for Example 1a and Example 1c are further compared in Figure 2, in addition to the 
comparison of the expanded uncertainty intervals in Table 4. The results for Example 1b are not displayed 
because they are visually indistinguishable from those for Example 1a. From the histograms in Figure 2 it is 
clear that the Bayesian posterior probability distribution for   and the fiducial distribution for   are similar 
when the signal appreciably exceeds the background. When the signal is near the background, however, the 
two distributions have very different characteristics due to their different methods of incorporating the physical 
constraints inherent in the problem. 

12.1.3 In the frequentist context, the measurand   and the input quantities 1 ... p    in the measurement 
model (1) are all assumed to be fixed unknown constants. This approach seems to be quite reasonable if the 
measurand represents a physical constant for which previous studies do not provide an appropriate 
(informative) prior distribution or a structural equation. It is favoured by statisticians who do not believe that all 
parameters must be modelled as random variables, although it typically handles uncertainties obtained by 
Type B methods of evaluation by assigning them a probability distribution and integrating over this distribution. 
In this regard, it is similar to the Bayesian approach, where all parameters are characterized by probability 
distributions, but it needs fewer distributional assumptions. 

12.1.4 The bootstrap is a well-established statistical method that can replace complicated and often 
inaccurate approximate confidence intervals by computer simulations. There are various bootstrap schemes 
developed to construct confidence intervals under different conditions. The parametric bootstrap-t interval, 
introduced in this document, is the natural choice as an improvement to the Student-t interval of the GUM. The 
advantage of bootstrapping is its simplicity – it is straightforward to apply the bootstrap to derive confidence 
intervals as demonstrated in the examples. 

12.1.5 It was shown with the examples that Bayesian uncertainty evaluation using a statistical model is 
conceptually simple, and can be applied to complicated measurement problems without any change to the 
basic method. Systematic effects, which cannot be estimated from measured values (that is, there are no 
functions of the observations whose expected values are equal to the systematic effect) and for which 
information is used to perform a Type B evaluation of uncertainty, can easily be included in the Bayesian 
model. Computation of posterior distributions can be carried out using MCMC methods, often using existing 
software. As was seen, there is no need for asymptotic arguments to justify the probability statements since 
small and large samples share a common, probabilistic justification. 

12.1.6 There are some drawbacks to the Bayesian methods described here. Most importantly, to use them 
prior distributions are to be specified for all parameters in the measurement model, including the measurand. 
Even though in metrology informative prior distributions are often available in the form of Type B uncertainty 
evaluations, it is usually the case that one or two of the parameters will need to be assigned vague (non-
informative) prior distributions because of lack of prior knowledge. Such distributions are not unique, and as 
was demonstrated in Example 1c, they can influence the results. It is therefore advisable to perform sensitivity 
analyses to judge the magnitude of such effects. Large effects arising from the specification of a non-
informative prior require further study of the measurement system. Generally the presence of such effects 
means that there is insufficient information available about the measurand in the data and thus the prior 
distribution has considerable influence on the result. In some cases, this problem can be addressed by 
increasing the number of replicated measured values, or by changing the way in which the data is collected, 
for example by improving resolution. In other situations, it may be that the mathematical model being used has 
too many parameters about which no real prior information is known and so the model should be simplified. 

12.1.7 When substantial prior information about the measurand does exist, it can be introduced simply, and 
updated efficiently via Bayes’ theorem. Further, sensitivity to the prior form, not just for the measurand, but 
also for the standard deviation of the likelihood function, can be a good indication that there are problems with 
the measurement system. These can then be studied and corrected. 

12.1.8 Fiducial inference provides a framework for associating a distribution with a parameter of interest. 
Recent research results [26] show that fiducial inference is a valid statistical method with generally good 
operating characteristics. The examples used demonstrated that the fiducial approach could easily and 
naturally incorporate the uncertainty information into the measurement model, and obtain the estimate of the 
measurand and its associated standard uncertainty by propagating the component statistical distributions. 
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There is no need for propagation of uncertainty based on Taylor series expansions or the Welch-Satterthwaite 
approximation under the fiducial approach. 

12.1.9 There is an issue of non-uniqueness in the fiducial distribution due to the choice of a particular form of 
the structural equation. However, it is important to note that, in many practical applications, the physical 
process by which the data was generated is known. In this case, the structural equation should be chosen to 
reflect this process, thus eliminating the problem of non-uniqueness. In metrology, where an unknown 
measurand is measured using some known processes, it is known that random errors influence the 
measurement in some specified fashion. The resulting measured values are expressed in terms of a 
measurement model that combines the measured quantities and errors in the form of influence quantities. 
This model can be taken as the structural equation. 

12.2 Relation between the methods proposed in GUM Supplement 1 (GUMS1) and the three 
statistical approaches 

12.2.1 GUMS1[3] generates random draws from a probability distribution for an output quantity Y  in a 
measurement model that "describes the knowledge of that quantity, based on the knowledge of the input 
quantities, as described by the PDFs assigned to them" (page vii of Reference [3]). On the same page, 
GUMS1 states that the "PDF for a quantity is not to be understood as a frequency density." Finally, on page 7, 
it defines the output quantity Y  to be the measurand. Thus, the results of the GUMS1 analysis, such as the 
mean and standard deviation of the Monte Carlo draws, are estimates of features of a probability density for 
the measurand. Accordingly, a direct comparison between the results from GUMS1 and the fiducial method as 
well as the traditional Bayesian method, is possible. The GUMS1 uncertainty intervals may be studied for their 
frequentist coverage properties but they should not be interpreted as usual frequentist confidence intervals. 

12.2.2 As indicated in 9.1.1 and 9.1.2, traditional Bayesian methods are based on a statistical model that 
accommodates prior knowledge of the measurand. This statement is not true of GUMS1 because this method 
is based on a measurement model, where the measurand is the output quantity, and so its probability 
distribution is completely determined by the probability densities of the input quantities. (This is also stated on 
pages 2 and 8 of Reference [3].) Thus, any direct comparison of results from traditional Bayesian methods 
and GUMS1 methods are limited to the case of no prior knowledge of the measurand. 

12.2.3 Reference [34] performs such a comparison for a particular but widely applicable measurement 
problem.  In this paper, the measurand   is a function of  and  , that is, the measurement model is 

( , )f   . The parameter   can be estimated from data because it is the mean of a Gaussian random 

variable X , for which there is a set of observed values. No data is available to estimate the parameter  , but 

a belief distribution is given. The GUMS1 analysis (see 6.4.9.2 of Reference [3]) assigns a scaled and shifted 
Student-t distribution to   and then propagates the distributions for   and   using the function f . In 

Reference [34], it is shown that this analysis is equivalent to a Bayesian calculation of the probability density 
for the function ( , )f   , where the two parameters are taken to be independent, the likelihood function for X  

is Gaussian with mean  , an improper uniform prior distribution is used for  , and the density for   is given 

by the belief distribution. Note that a prior density for   is not used here. 

12.2.4 Suppose now that there exists a function g  such that ( , )g   . Traditional Bayesian analysis uses 

a Gaussian likelihood function for X  with mean ( , )g    and prior distributions for   and  . In the absence 

of any additional information about the measurand, the improper uniform distribution might be used for  , but 

there are also other choices. The belief distribution of   is a natural choice for the prior. Usually,   and   

would be taken as independent random variables. Note that for this model, a prior density for   is not used. 

12.2.5 GUMS1 and traditional Bayesian analysis use different parametrizations of the same statistical model. 
Ignorance of the measurand is expressed differently under each parametrization. The model used by GUMS1 
does not do this directly by means of a density for  , but instead uses a non-informative, improper prior 

for  . As indicated in Reference [34], this is a different assumption. Traditional Bayesian analysis generally 
uses a non-informative prior for the measurand  , itself. Reference [34] shows that the two analyses yield 

identical probability distributions for the measurand when the improper uniform prior for   is used in the 
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Bayesian analysis, and the function f  is linear. For non-linear functions, the probability distributions for   

derived under the two parametrizations are not the same. It is important to note that if the non-informative 
prior for   is transformed into a prior for   then the corresponding traditional Bayes analysis yields the same 

results as GUMS1 for any function. 

12.2.6 As stated earlier, based on the measurement model, GUMS1 obtains a PDF for the measurand by 
propagating the PDFs for the input quantities. The resulting PDF describes knowledge of the measurand 
given the observed data and assumptions made in assigning the joint PDF for the input. In many standard 
models with measured values regarded as draws from univariate normal distributions, uncertainty intervals 
obtained using GUMS1 and fiducial methods are very similar, if not identical. Recall the measurement model 
in Example 1a, namely 

   

N

 

with ~iY 2( , )Y  , and ~1,...,5i  jB 2( , )BN   , 1,...,5j  . Based on the guidance in GUMS1, a scaled and 

shifted t-distribution is assigned as the PDF for   and the PDF for  . Specifically, the PDF for   has the 

same distribution as the random variable 

(1)
4 ,y T

5

ys
 

where is a Student's-t random variable with 4 degrees of freedom, and the PDF for (1)
4T   has the same 

distribution as the random variable 

(2)
4 ,

5
bs

b T  

where  is a Student's-t random variable with 4 degrees of freedom that is independent of . 

Consequently, the PDF for the measurand 

(2)
4T (1)

4T

  can be obtained from the distribution for 

(1) (2)
4 4 .

5 5

y b
s s

y b T T    

R code for generating the 500 000 realizations of the above distribution is listed below. 

 nrun = 500000 

 T1 = rt(nrun, 4) 

 T2 = rt(nrun, 4) 

 theta = 3.537 - 1.228 - 0.342/sqrt(5)*T1 + 0.131/sqrt(5)*T2 

A 95 % uncertainty interval based on the 0,025 and 0,975 quantiles of the approximate PDF is 

 quantile(theta, c(0.025, 0.975)) 

 ## 2.5%  97.5% 

 ## 1.853703 2.763999 

which is essentially identical to the fiducial interval for this example given earlier. Similarly, the GUMS1 and 
fiducial approaches produce the same uncertainty interval for problems in Examples 1b and 1c. 

12.2.7 In many other cases, the GUMS1 and fiducial methods produce different results. An “extreme” case 
can be found in a problem described in Reference [35]. In the example presented in Reference [35], the 
measurand is the magnitude of a complex-valued quantity. 
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1 2 .i      

That is, the measurand is 

2 2
1 2 .      

Assuming 1X ~ 2
1( , )N   and 2X ~ 2

2( , )N   with known  , GUMS1 assigns 2
1( , )N x  to the PDF for 1  and 

2
2( ,N x ) to the PDF for . Consequently, the PDF for 2   based on GUMS1 is the distribution of for random 

variable 

2 2
1 1 2 2( ) (x Z x Z    ) ,  (43) 

where 1Z and 2Z  are independent standard normal random variables. Reference [35] showed that the GUMS1 

intervals for   have unsatisfactory frequentist performance (insufficient coverage probabilities) when   is 

small compared to  . This is because the random variable in Expression (43) is positive and hence the lower 
bound of the uncertainty interval for   will be positive also, which may not cover   when   is close to 0. 

12.2.8 A fiducial solution for the problem can be derived based on the fact that 2 2
1 2( )X X 2 is distributed as 

a non-central 2  with 2 degrees of freedom and non-centrality parameter 
2 2   . This distributional 

property can be used to develop a structural equation that relates the observable statistic 2 2
1 2( )X X 2  to , 

which contains the parameter of interest  . Based on this structural equation, a fiducial interval for   can be 

constructed. Reference [36] showed that this fiducial interval maintains the nominal frequentist coverage in all 
situations. 

13 Summary 

13.1 In this Technical Report, three approaches for constructing uncertainty intervals that have clear 
probabilistic interpretations are discussed. In contrast, much other work in this area has focused on assessing 
the statistical properties of procedures currently in popular use across the metrology community. One of the 
goals in approaching the study of methods for uncertainty evaluation from such a vantage point was to try to 
gain insight into current methods and highlight new options that may also prove useful. 

13.2 As Reference [9] observed, the uncertainty intervals obtained under the different approaches will often 
be similar numerically. Even when this is case, however, their interpretations are different. 

13.3 Frequentist uncertainty intervals make probabilistic statements about the long-term performance of a 
particular procedure for constructing uncertainty intervals during repeated use under identical conditions. 
Thus, the probability statement is not directly about the value of the measurand, but is about the long-term 
relation between the procedure by which the interval has been constructed and the measurand. Once 
measured values have been obtained and a frequentist uncertainty interval has been computed, there is no 
longer anything random about the results. Although it is not known whether the value of the measurand is 
captured in any particular interval, such intervals will capture the value of the measurand with a specified 
probability. Unlike a traditional confidence interval based only on statistical data, the frequentist uncertainty 
interval is typically constructed so that the desired confidence level is attained on average after integrating 
over the probability distributions of any quantities that are obtained using Type B evaluations of uncertainty. 

13.4 Bayesian and fiducial uncertainty intervals, on the other hand, are based on probability distributions that 
directly describe knowledge of the value of the measurand. The methods used to obtain these two types of 
intervals are different, but the results are similar in this aspect of their interpretation. The Bayesian results are 
obtained by combining probability distributions for each parameter specified prior to analysis of the data with a 
probability model that describes the variation in the data using Bayes’ theorem. The resulting posterior 
distributions for each parameter reflect the probability of the parameter values given the prior information and 
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the data. The fiducial results are obtained by inverting a probability model for the data given the parameters to 
obtain a distribution for the parameter values given the data. 

13.5 If the numerical results were always similar, each of the interpretations would be applicable (at least 
approximately) to every uncertainty interval. However, as demonstrated in the examples in this Technical 
Report, the numerical results can differ appreciably from one another in some instances, even though each 
can be justified probabilistically and they share a common level of significance (generally 95 %). Other 
differences also may be observed. For example, if one of the dominant sources of uncertainty in a particular 
application corresponds to a quantity having a skewed distribution, the uncertainty intervals obtained using the 
Bayesian or fiducial approaches reflect that asymmetry, while an approximate confidence interval obtained 
using the procedures of the GUM will produce a symmetric uncertainty interval (and may be longer than 
necessary on one side). Frequentist results based on other statistical principles may match the Bayesian or 
fiducial results in some cases, but the different methods will not agree in general because each approach is 
ultimately based on a different set of mathematical assumptions and criteria. 

13.6 The existence of different approaches for uncertainty evaluation that do not always agree might be seen 
as a complication. However, it is better seen as an indication of further opportunity. It is only by continually 
working together to appreciate the features of different approaches that methods for uncertainty evaluation will 
ultimately be obtained that meet all the great bulk of scientific and economic needs: methods that are practical 
to implement, make efficient use of resources, are applicable to many types of measurement, both old and 
new, and are transparent in meaning. 
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