INTERNATIONAL ISO/IEEE
STANDARD 11073-20601

First edition
2010-05-01

Health informatics — Personal health
device communication —

Part 20601.:
Application profile — Optimized
exchange protocol

Informatique de santé — Communication entre dispositifs de santé
personnels —

Partie 20601: Profil d'application — Protocole d'échange optimisé

i N Reference number
Iso ISO/IEEE 11073-20601:2010(E)

NS/
¢ IEEE
7 © IEEE 2010

ISO/IEEE 11073-20601:2010(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. Neither the ISO Central
Secretariat nor IEEE accepts any liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies
and IEEE members. In the unlikely event that a problem relating to it is found, please inform the ISO Central Secretariat or IEEE at the
address given below.

©
©

COPYRIGHT PROTECTED DOCUMENT

ISO 2010
IEEE 2010

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO or IEEE at the respective
address below.

ISO copyright office Institute of Electrical and Electronics Engineers, Inc.
Case postale 56 ¢ CH-1211 Geneva 20 3 Park Avenue, New York ¢ NY 10016-5997, USA
Tel. +412274901 11 E-mail stds.ipr@ieee.org

Fax +41 22 749 09 47 Web www.ieee.org

E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Contents Page
0T VY 0] (o FO USSP Vi
T gL oo [1o o TSRS viii
L. OVBIVIBW ...ttt st b et ae e e b e e e s bt eb e e aeeh e e st e ae e e e eE e eb e SRt e he e At e me e e e aEeebeeheeheeaeaneeseenbesbeebeeneesanbeseens 1
R oo o= TSP ORPPRTO 1
O 1SS 1
R O] o (TP PP URUPPRUROPPRN 2

2. NOIMBLIVE FEFEIENCES. ... vttt sttt sttt sttt bbbt b e st et be s be et s be e et s be e e besbe e e 5
3. Definitions, acronyms, and abbreViationS...........ccovieieceeieeiese e 5
30 B = 10T] PO RPSRRRIN 5
3.2 Acronyms and aDDrEVIALIONS.coue ettt st ae e e e e 5

4. GUIAING PITNCTPIES. ...ttt sttt e e bt ae e s e e e et e ee s e e e besaeebeeneeneeseeebesaeeaeeneeneanseseeneas 6
5. Introduction to |EEE 11073 personal health deviCes..........cooeieririeiireeeee e 7
B GBNENEL ...ttt b h et E e Rt E e Rt ehe et e A e EeeReebeeReehe et e benheebeeae e e eneenaenas 7
5.2 Domain information MOE] (DIM).......cociiiiiieeeeee et se s 8
GRS < VTt 1270 o = USRS 8
5.4 COMMUNICALTON MOGE]cotiieiiitiiieiete ettt st st see et sa et ebeseebeseenesbeseeneas 8

6. Personal health deVICE DIMcoi it sttt bbb 8
L T 0T TSP 8
6.2 NOMENCIAEUNE USAJE...... . eeevertertesieseeseesees e stestessesseeseeseetessessessesseeseesseseesseseessesseeseesensessessessessennsessnnses 9
6.3 Personal health object Class defiNitioNS...........cccviieieeererie e e s 10
B.3. L GENENEL ...ttt b e e b bR bbb ne e e 10

LRI Y TS o =SSR 12
LSRRG IV < 1 oo =SSR 18

LR 1000 ol = S R 23

LR IS Y AN o = TSSO 26

6.3.6 ENUMEIALION ClESS......ueiuiiiieiieiiie sttt sttt st st ese et e e e sbeseesbesae e s e e e e e eneeseenas 27

L Y S o] = o = PRSP 30

6.3.8 PM-SEOMENT ClaSS.....cciuieieeiieiesie e eese e ste st e st e ste e te e e e e sseesseesaeesreesaeensesneesneesseeseensennsesneesneas 34

5.3.9 SCANNEY ClASSESc.ei ittt bbb s e b bbbt e e se bbbt ebe e e e e e srenas 37

6.4 Information model eXteNSIDIILY FUIES..........ccuiiiieecce e 45

7. Personal health device SErviCe MOooiiiiiiiii e e 45
T L GENEIEL ...t h bR R bR b e e R R e e e e R e Rt eh e Re et e e n e e 45
FA A AN o To T 1T TS = oY T ST 46
7.3 ObJ ECE BCCESS SEIVICES ...ttt ettt sttt sttt st b et be bt be b e bt b et e bt s b et e b e s b et ebene et eb e b e e e be b e 46
7.4 Specific application of object access EVENT REPORT services for persona health devices.......... 47
R T 0 - SR 47

7.4.2 Confirmed and unconfirmed EVENE FEPOMS........ccciireirireiree e e 47

© 1SO 2010 — All rights reserved
1l

ISO/IEEE 11073-20601:2010(E)

7.4.3 Configuration EVENE FEPOITcceeiieeeeeeerees e e ee st st sr e re e e eseese e testesresreeneeneeneenes 47
7.4.4 Agent- and manager-initiated measurement data transSmiSSioNcccceveveverereeeeseesesee e 49
7.4.5 Variable, fixed, and grouped format eVENt rEPOMS.vieeeereerere e e 50
7.4.6 Single-person and multi ple-person eVENE FEPOISccverereiesereeeereese e e enas 50
7.4.7 Temporarily Stored MEASUIEMENLS.........ccvieeierieriesesereteseeeeseestesresreesesseessessessessessessessessessenees 51

8. COMMUNICALION MOUEc.uiiiiiiece et s st s e et e et e eareeaeesbeesbe e beesreesreeneenneenns 52
R R T= 1= | ORI 52
8.2 SYSLEIM CONMEEXL ...ttt ettt ettt sttt ae ettt e ae e sh e e b e et e et e e ae e s ae e sae e saeesbe e et easeenbeenbesaeesaeesanas 52
8.3 ComMMUNICatioNS CharaCLENISHICS.iiviieeceeccie ettt e re e be e b e eareeae e aeesreesaeas 53
B.3. L GENENElecviiieeti sttt Rt R ARt Rt et R et et AR Rt tebe e enente e ene 53
8.3.2 Common communications CharaCteriStiCS........cuveiirieirie e 55
8.3.3 Reliable communications CharaCteristiCs.........ouvirirere e 55
8.3.4 Best-effort communiCations CharaCleriStiCS.... ..o 56
8.4 SEALE MBCIINES. ... et h et b bbb e e ae bt e e e e et e sb e b e e st ene e e et e 56
8.4.1 AQENt StALE MACKINEeeveeieeiece ettt e s e st e e nae e e e saeesreesseenseenteeneesnensneas 56
8.4.2 Manager Stale MACHINE.........iccueeee et et ste s e e saeesre e aeenteeneennaesneesneas 59
8.4.3 TIMEOUL VAITADIES......cui ittt ettt ettt et e s ee s ae e saeesaeeneenseeateeneesaeesanas 60
8.5 CONNECLEA PIrOCEAUIE.. ..ottt ettt et b e bt b e bbbt b e bt b e b et be b 61
B.D. L GENEYEl ...ttt et e b e b et e et abeehee s heesheeabeebeeareeaeeebe e beenteeareeaeesaeas 61
8.5. 2 ENLIY CONTITIONScueeiiiieiiiitete sttt bbbttt 61
8.5.3 NOIMAl PIrOCEAUIES ..ottt bbbt bbb e et st b e 61
B.5.4 EXIt CONAILIONS.......ocueiieieetiecteete ettt ettt ettt et st s e she e saeeteeaseeaeesbeenbeenbeentesneesaeas 61
8.5.5 EITOF CONTITIONS.cotiterieeteeieeteie sttt ettt sttt e e ae et e b s b bt e b et e e e se e besbe b e nbe e e eneeneenas 62
8.6 UNaSSOCIAtEA PrOCEUUIEccveeieeieeieeesee st st e ste et e et e e st e s e e e et esatesaaesaeesaeesseeseenseenneansesseesnensnnas 62
B.0. L GENENEL ...ttt ettt Rt R ARt Rt R et Re bR bete st eRe et e e 62
8.6.2 ENLrY CONAITIONSeeiiicie ettt ettt e e et e e ee s ae e saeesreeteenseentesneesneesneas 62
8.6.3 NOIMAl PrOCEAUIES ..ottt sttt e b ettt e bbb et e ae et e b e b seesbesae e st e nnenas 62
8.6.4 EXIT CONITIONS.cviitiieeeiieiereete sttt e b ettt e b bbbt e e e e e se e b e sbeebesbe e e e e e seennas 62
8.6.5 EITOr CONQITIONS.......ueiitiiiiciictie ettt e be et e et e st s be e s be e sbeesbeeneesaeeebeesbe e besatesatesaeesaeas 62
8.7 ASSOCIAING PIrOCEAUNE. ..ottt sttt sttt sttt sttt sttt st e e b b e se bt b et e b e s b et e be s be e ebe st et ebesbenene 63
B.7. L GENEYEl ...ttt et et be e b e b e et et e eheesheeabeeabeebeeareeaeeebeebeenbeeatesaeesaeas 63

8. 7.2 ENLIY CONTITIONSoueeiiiieiitie ettt bbbt sttt 63

8. 7.3 NOIMAl PIrOCEAUIESc.eeuitiieiiettrieee sttt bttt bttt e et st e e 63
B.7.4 EXIt CONAITIONS.......ociiitiieticctece et ettt ettt et e st e s ae e ste e saeeaeeeaeesaeesbe e teentesneesreesanas 67
8.7.5 EITOr CONAILIONS.......ueiiiicii ettt ettt e st e s be e s te e sbeesreeaeesaeesreesbe e beentesntesneesaeas 67
R =S 1S oL = 1 o o PSS 67
8.8 CONfIgUITNG PIrOCEAUNE ...ttt et h et b et ae b et e se e e e b e seesbesbesneenee e ebeee 69
B.B.L GENENEl ...c.eeveieeete ettt R Rt Re Rt et R et et R Reneetente st tente e e 69
8.8.2 ENLIY CONTITIONS ...ttt sttt ettt sttt ae e e e et e se et et eae e e e s eeeseeeneeneeneeneennas 69
TG N[0T a7z o0 or o (U] = P 69
8.8.4 EXIt CONUITIONS.ccuiiineetisiiietirieeete sttt ettt sttt ettt sttt et ne et b e 71
8.8.5 ENTON CONUILIONS.oueiviiiiieiiiiietisiesee ettt bttt ettt sttt ettt b e 71
8.9 OPErating PrOCEAUIE.ecueeeeeeriesieste st e e eeeeesee e testeste s e eseeeestessestesteaseeseesseseeseessessesrensesseeneensensees 72
BLO. L GENENEL ...ttt bRt b bbb bbbt b re e 72
8.9.2 ENLIY CONAITIONSveviieiee ettt ettt sttt e s e e e e e besr et e s aeeneensensetesrenteeneenseneenns 72
8.9.3 NOIMAl PIrOCEAUIESc.eeuitiieiiett sttt ettt b et b et st e et b b 72
8.9.4 EXit CONQITIONS.......ocueiitiitieteee ettt ettt st e st esre e saeeeeeaeeeaeesbe e beenbeentesaeesaeas 83
8.9.5 EITOr CONAITIONS.......ueiiuieiicie ettt ettt et et e b et e st e s te e sbeeebeeaeesaeeebeesbeenbeenteentesneesanas 83
8.10 DiSaSSOCi tiNG PrOCEUUNEcueveuietireeiete sttt sttt sttt sttt se et b e bbbt sbe et e st et b e b 85
B.L0.L GENENAlceeeieee ettt ettt et e st e s be et e et e e ab e e heeehe e e beeebeebeeeeeaeeehe e beenbeenteearesaaesaeas 85
8.10.2 ENLIY CONUITIONSeeivieiieieeiesieseesee st e steete et et este et e e e e stessee s e e saeesaeeseensesnseeneesseessennsessensnnes 85
8.10.3 NOIMEl PrOCEAUIESeecueeeeeeeieeiee e ete s te s e st e steeste et e eseesreesteesteesteesesseesaeesseenseenseensenneessensnnes 85
8.10.4 EXit CONAITIONS......eeitiieerieeieeieie sttt sttt s e et bbbt e e e e et e sbesbesbe e e eneeseenas 85
8.10.5 EFTOr CONAITIONS.......eiteieieeiiieeieie sttt ettt b ettt b e bbbt e e e e et e sbe s besbe e e e e seenas 86
8.11 MESSAGE ENCOTINGveveereeteeteeteete st e st e st e steesteete et e sseesseeste e te e teessesnsesaeesaeesseeseenseenseensenseessensreas 86
8.12 TIME COOTTINGLIONveee ittt sttt e bbbt e e bbbt b e st e s e e se e b e sbesbesbesaeene e e et ree 86

. ©IS0 2010 - All rights reserved
v © IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

BLL2. L GENENE ...cveeieeetesieeet ettt b et bt bbbt b bt ae b 86
8.12.2 ADSOIULE TIME ...ttt bbbt be e et st e b ne et st 86

8. L12.3 REIBIIVE TIME......eetieieeetirieet ettt ettt b ettt e bbbt ne et st ne e 88
8.12.4 High-resolUtion relatiVe tiMe.........vieeieieeee ettt st enaenne e 89

9. CONFOIMANCE MOE ...ttt ettt ettt b e et st e sttt e b besbe e e 89
LS AN ol o] Lo o T L YU 89
9.2 Conformance SPECITICALTION.oiuiieere ettt e b et e e et et ae e e e e et e 90
9.3 Implementation conformance StALEMENES (ICSS)c.vvverveiruirieiririeire et 90
9.4 GENEral CONFOMMAICE ... eeueeeeieieeie ettt sttt e e e be s et be bt e aeese e e enbeseeebesaeebeeneeneeneeaseneeee 90
S =0 T SR 91

9.4.2 Minimum reqUIrEMENES ICS.......oiiii et ee et sre b ene e eneeneennas 92

9.4.3 SErVICE SUPPOIT ICS......iiiee ettt sttt e et ae e et e besee et e s seene e e e aesteseenreeneeneeneennn 93

9.5 Device additiong/eXtENSIONS ICS.......ccco ittt sttt st st sttt 94
9.5.1 General additions/eXtENSIONS ICS........coeiiiiie e s sb e 94

9.5.2 Personal health device DIM object and class (POC) ICS........ccoooviiveesieeeeee e 95

O.5.3 POC AITDULE ICS.... .ottt sttt sttt ne e st e b ebe st e 95

LR O O o 0= Y o 0 RSP 96

9.5.5 POC NOLIFICAIION ICS.....cnieieie ettt sttt ne et st seente e eneeneennas 96

9.5.6 POC NOMENCIALUrE ICS ... oottt sttt st e e e e beseesneeneennas 97
Annex A (Normative) ASN.L defiNitioNS.........ccciiriiiiire e e 98
Annex B (informative) Scale and range specification eXample..........cccoovveiierenincine e 130
Annex C (informative) The PM-SIOIr€ CONCEPL........ccctiiiririerieesereeie sttt s 132
Annex D (informative) Transport Profil@ tYPES.......ocieceeieeie et 137
Annex E (NOrmative) Stale taIESccveuieieeee ettt te e re e ne e s 140
Annex F (normative) Medical device encoding rules (MDER)cccvvcvieiiiesieeeeee e 151
Annex G (informative) Encoded datatype defiNitioNScccevieeeiieicee e 163
Annex H (informative) EXAMPIES........cociiiiii sttt e e st e te st snesre e e eneeneens 182
Annex | (normative) NOMENCIAtUIE COUES.......ccuiiiiieieriere sttt ee ettt se e tesre e saesne e e eaeneeseens 190
Annex J (informative) Derivation and modification hiStOryccoereinireinencseee e 194
Annex K (informative) Bibliography ..o e e 197

© 1SO 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is
normally carried out through ISO technical committees. Each member body interested in a
subject for which a technical committee has been established has the right to be represented on
that committee. International organizations, governmental and non-governmental, in liaison with
ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.

IEEE Standards documents are developed within the IEEE Societies and the Standards
Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The
IEEE develops its standards through a consensus development process, approved by the
American National Standards Institute, which brings together volunteers representing varied
viewpoints and interests to achieve the final product. Volunteers are not necessarily members of
the Institute and serve without compensation. While the IEEE administers the process and
establishes rules to promote fairness in the consensus development process, the IEEE does not
independently evaluate, test, or verify the accuracy of any of the information contained in its
standards.

The main task of technical committees is to prepare International Standards. Draft International
Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies
casting a vote.

Attention is called to the possibility that implementation of this standard may require the use of
subject matter covered by patent rights. By publication of this standard, no position is taken with
respect to the existence or validity of any patent rights in connection therewith. ISO/IEEE is not
responsible for identifying essential patents or patent claims for which a license may be required,
for conducting inquiries into the legal validity or scope of patents or patent claims or determining
whether any licensing terms or conditions provided in connection with submission of a Letter of
Assurance or a Patent Statement and Licensing Declaration Form, if any, or in any licensing
agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that
determination of the validity of any patent rights, and the risk of infringement of such rights, is
entirely their own responsibility. Further information may be obtained from ISO or the IEEE
Standards Association.

ISO/IEEE 11073-20601 was prepared by the 11073 Committee of the Engineering in Medicine
and Biology Society of the IEEE (as IEEE Std 11073-20601-2008). It was adopted by Technical
Committee ISO/TC 215, Health informatics, in parallel with its approval by the ISO member
bodies, under the “fast-track procedure” defined in the Partner Standards Development
Organization cooperation agreement between 1SO and IEEE. Both parties are responsible for the
maintenance of this document.

ISO/IEEE 11073 consists of the following parts, under the general title Health informatics —
Personal health device communication (text in parentheses gives a variant of subtitle):

— Part 10101: (Point-of-care medical device communication) Nomenclature
— Part 10201: Domain information model

— Part 10404: Device specialization — Pulse oximeter

] © 1SO 2010 — All rights reserved
Vi © IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

— Part 10407: Device specialization — Blood pressure monitor

— Part10408: (Point-of-care medical device communication) Device specialization —
Thermometer

— Part 10415: (Point-of-care medical device communication) Device specialization — Weighing
scale

— Part 10417: Device specialization — Glucose meter

— Part10471: (Point-of-care medical device communication) Device specialization —
Independant living activity hub

— Part 20101: (Point-of-care medical device communication) Application profiles — Base
standard

— Part 20601: (Point-of-care medical device communication) Application profile — Optimized
exchange protocol

— Part 30200: (Point-of-care medical device communication) Transport profile — Cable
connected

— Part 30300: (Point-of-care medical device communication) Transport profile — Infrared
wireless

© 1SO 2010 — All rights reserved B
Vil

ISO/IEEE 11073-20601:2010(E)

Introduction

ISO and IEEE 11073 standards enable communication between medical devices and external computer
systems. This standard and corresponding |EEE 11073-104zz standards address a need for a simplified and
optimized communication approach for personal health devices, which may or may not be regulated
devices. These standards align with, and draw upon, the existing clinically focused standards to provide
easy management of data from either aclinical or personal health device.

This document addresses a need for an openly defined, independent standard for converting the collected
information into an interoperable transmission format so the information can be exchanged between agents
and managers.

Other closely related standards include the following:

— ISO/IEEE P11073-00103 [B8]2 provides an overview of the persona health space and defines the
underlying use cases and usage models.

— ISO/IEEE 11073-10101 [B12] documents the nomenclature terms that can be used.

— ISO/IEEE 11073-10201:2004 [B13] documents the extensive domain information model (DIM)
leveraged by this standard.

— |ISO/IEEE 11073-104zz standards define specific device specializations. For example, 1SO/IEEE
P11073-10404 [B9] defines how interoperable pul se oximeters work.

— ISO/IEEE 11073-20101:2004 [B14] defines the medical device encoding rules (MDER) used in this
standard.

@The numbers in brackets correspond to the numbers of the bibliography in Annex K.

© 1SO 2010 — All rights reserved
VI © IEEE 2010 — All rights reserved

INTERNATIONAL STANDARD ISO/IEEE 11073-20601:2010(E)

Health informatics — Personal health device
communication —

Part 20601:
Application profile — Optimized exchange protocol

IMPORTANT NOTICE: This standard is not intended to assure safety, security, health, or
environmental protection in all circumstances. Implementers of the standard are responsible for
determining appropriate safety, security, environmental, and health practices or regulatory
requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers.
These notices and disclaimers appear in all publications containing this document and may be found
under the heading “Important Notice” or “Important Notices and Disclaimers Concerning
|IEEE Documents.” They can also be obtained on request from I|EEE or viewed at
http://standards.ieee.org/l PR/disclaimers.html.

1. Overview

1.1 Scope

Within the context of the ISO/IEEE 11073 family of standards for device communication, this standard
defines a common framework for making an abstract model of personal health data available in transport-
independent transfer syntax required to establish logical connections between systems and to provide
presentation capabilities and services needed to perform communication tasks. The protocol is optimized to
personal health usage requirements and leverages commonly used methods and tools wherever possible.

1.2 Purpose

This document addresses a need for an openly defined, independent standard for converting the information
profile into an interoperable transmission format so the information can be exchanged to and from personal
telehealth devices and compute engines (e.g., cell phones, personal computers, personal health appliances,
and set top boxes).

© 1SO 2010 — All rights reserved

http://standards.ieee.org/IPR/disclaimers.html

ISO/IEEE 11073-20601:2010(E)

1.3 Context

Figure 1 shows categories and typical devices supporting the personal health space. Agents (e.g., blood
pressure monitors, weighing scales, and pedometers) collect information about a person (or persons) and
transfer the information to a manager (e.g., cell phone, health appliance, or personal computer) for
collection, display, and possible later transmission. The manager may aso forward the data to remote
support services for further analysis. The information is available from a range of domains including
disease management, health and fitness, or aging independently applications.

The communication path between agent and manager is assumed to be a logical point-to-point connection.
Generadly, an agent communicates with a single manager at any point in time. A manager may
communicate with multiple agents simultaneously using separate point-to-point connections.

The overlay shows the focus area of the IEEE 11073™ Personal Health Devices Working Group. The
primary concentration is the interface and data exchange between the agents and manager. However, this
interface cannot be created in isolation by ignoring the remainder of the solution space. Remaining
cognizant of the entire system helps to ensure that data can reasonably move from the agents all the way to
the remote support services when necessary. This path may include converting the data format, exchange
protocols, and transport protocols across different interfaces. Much of the standardization effort is outside
of the scope of the Personal Health Devices Working Group; however, aligning al standardization efforts
allows data to flow seamlesdly through the overall set of systems.

Disease Diet Fitness Aging
Mgmt Service Service Services

Personal
Computer

-— s

Blood
Pressure
Monitor

Weighing Activity

L Scale Monitor

Figurel —Overall context of work

Figure 2 shows a hierarchical view of the architecture of an agent or manager superimposed with a view of
the related standards. The application layers are, for the most part, not specific to any particular transport.
Where necessary, this standard identifies assumptions that require direct support by a transport or a “shim”
layer above the transport. This approach alows support for various transports. The definition of the
transports is outside the scope of this standard and the working group.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Above the transport layer is the Optimized Exchange Protocol (described in this standard). This protocol
consists of two aspects: the application layer services and the definition of the data exchange protocol
between agents and managers. The application layer services provide the protocol for connection
management and reliable transfer of actions and data between agent and manager. The data exchange
protocol defines the commands, agent configuration information, data format, and overall protocol. The
Optimized Exchange Protocol provides the basis to support any type of agent. For a specific device type,
the reader is directed to the device specialization for that agent to understand the capabilities of the device
and its implementation according to this standard. The device specialization indicates which aspects of this
standard to comprehend and where further information to implement the device is found.

Above the exchange protocol are device specializations that describe specific details relative to the
particular agent (e.g., blood pressure monitor, weighing scale, or pedometer). The specializations describe
the details of how these agents work and act as a detailed description for creating a specific type of agent.
Additionally, they provide reference to a related standard for further details. The standard numbers reserved
for device speciaizations range from IEEE Std 11073-10401 through IEEE Std 11073-10499, inclusive.
When the collection of standards is being referenced, the term |EEE 11073-104zz is used where zz could be
any number in the range from 01 to 99, inclusive.

The ISO/IEEE P11073-00103 [B8]* technical report describes the overall personal health space with further
definition of the underlying use cases and usage models.

-00103 Technical Report - Overview

' Device Specializations

-10404 | -10407 | -10408 | -10415 | -10417 5")‘4';';4[{‘;]? -10471 {Phase 11
Pulse | Blood |Thermo- Weighing: Glucose | Cardio/ | Activity |

OximeteriPressurei meter i Scale ! ! Strength Hub

-20601 Optimized Exchange Protocol

Transports

Figure2 —Document map

The personal health device specializations are not being created independently of all other standards. There
are a number of existing standards generated for clinical environments upon which these standards draw.
Figure 3 shows the relationship to the remainder of the IEEE 11073 documents. There are two types of
relationships:

! The numbers in brackets correspond to the numbers of the bibliography in Annex K.

© 1SO 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

— Drawing ideas and/or content from the other documents (dashed lines)

— Leveraging information from the other document and introducing new content into that document to
support this standard (solid lines)

This standard imports information from ISO/IEEE 11073-10201:2004 [B13] and ISO/IEEE 11073-
20101:2004 [B14] as normative annexes. If there is a discrepancy between these standards, this standard
takes priority. Because of the reuse of constructs from these standards, some of the names appear to be
more clinically focused [e.g., medical device system (MDS) instead of personal health device system];
however, to maintain consistency, the traditional names have been preserved.

This standard replicates relevant portions of ISO/IEEE 11073-10101 [B12] and incorporates new
nomenclature codes.

s [: ! 3
' Device Specializations !
-10304 | -10307 |/ -10306 | -10315 | -10308 |
Pulse | Blood ",{ Pulse |Weighing: Thermo- |
{)xill'li:ll_‘l‘iPI‘USNLII“;}’E Scale meter | y
' 7
/ -10201
-101p1 Domain
T L g -
Nomen¢lature Information
/ Model
/

-30300

! A4
Device | peCIallzait:l::i IrDA

!’ i f’
-10417 10442 H&H -10471 :I:]iasc 1
Glucose |

et
' 17.".51r1:li|:u‘§r "\Ct';“ty,':'f
| Strength! b At

-10404 | -10407 | -10408 | £10415
Pulse | Blood |Thermo- AMeighing
Oximeter| Pressure i meter /| Scale

-20601 Optimized Exchange Protocol

Transports

Figure 3 —Relationship to other IEEE 11073 documents

L e © I1SO 2010 — All rights reserved
4 © IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

2. Normative references

The following referenced documents are indispensable for the application of this standard (i.e., they must
be understood and used; therefore, each referenced document is cited in the text and its relationship to this
standard is explained). For dated references, only the edition cited applies. For undated references, the latest
edition of the referenced document (including any amendments or corrigenda) applies.

IEEE Std 802°-2001, |EEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture.?

ITU-T Rec. X.667 (Sept. 2004), Information technology — Open Systems Interconnection — Procedures for
the operation of OSI Registration Authorities: Generation and registration of universally unique identifiers
(UUIDs) and their use as ASN.1 object identifier components.

3. Definitions, acronyms, and abbreviations

3.1 Definitions

For the purposes of this standard, the following terms and definitions apply. The Authoritative Dictionary of
|EEE Sandards [B6] should be referenced for terms not defined in this clause.

3.1.1 agent: A node that collects and transmits personal health data to an associated manager.

3.1.2 compute engine: See: manager .

3.1.3 confirmed: An application-level, completion notification service mechanism. For EVENT REPORT
services (i.e., the data plane), confirmation allows the agent to know when the manager has “accepted
responsibility” for a piece of data so that the agent can delete that data. For the ACTION, GET, and SET
services (i.e., the control plane), confirmation allows the manager to know when the agent has “completed”
the requested transaction.

3.1.4 device: A physical deviceimplementing either an agent or manager role.

3.1.5 handle: An unsigned 16-bit number that is locally unique and identifies one of the object instances
within an agent.

3.1.6 manager: A node receiving data from one or more agent systems. Examples of managers include a
cellular phone, health appliance, set top box, or computer system.

3.1.7 personal health device: A device used in personal health applications.
3.1.8 personal telehealth device: See: personal health device.

3.2 Acronyms and abbreviations

ASCII American Standard Code for Information I nterchange®
ASN.1 Abstract Syntax Notation One
APDU application protocol data unit

2 |EEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).

% |TU-T publications are available from the International Telecommunications Union, Place des Nations, CH-1211, Geneva 20,
Switzerland/Suisse (http://www.itu.int/).

4 Note that throughout this standard the term ASCII is used to mean the character set as defined in 1SO/IEC 646 (1991) [B7].

© 1SO 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

AVA attribute val ue assertion

BER binary encoding rules

DIM domain information model

EUI-64 extended unique identifier (64 bits)

GMDN Global Medical Device Nomenclature

ICS implementation conformance statement

ID identifier

LSB least significant bit

MDER medical device encoding rules

MDNF medical device numeric format

MDS medical device system

MOC medical object class

MSB most significant bit

NaN not a number

NBO network byte order

NRes not at thisresolution

NTP Network Time Protocol

OoID object identifier

Oul organizationally unique identifier

PDU protocol data unit

PER packed encoding rules

POC personal health device domain information model object and class
RCoscoc retry count: association procedure

RTC real-time clock

RT-SA real-time sample array

SNTP Simple Network Time Protocol

TCP Transmission Control Protocol

TOsss0c timeout: association procedure

TOca timeout: confirmed action service

TOcer-mds timeout: confirmed event report service for the MDS object
TOcer-pms timeout: confirmed event report service for the PM-store object
T Ocer-scan timeout: confirmed event report service for the scanner object
TOqr-pms timeout: confirmed action service to clear the PM-store object
TOconfig timeout: configuration procedure

TOk timeout: confirmed set service

TOget timeout: get service

TO dease timeout: association release procedure

TOgxp-mas timeout: special interservice timeout for the MDS object
TOgp-pms timeout: special segment transfer timeout for the PM-segment object
uTC universal time coordinated

UuID universally unique identifier

UsSB universal serial bus

XER Extensible Markup Language (XML) encoding rules

4. Guiding principles

This standard and the other personal health device standards fit in the larger context of the ISO/IEEE 11073
family of standards. The full suite of standards enables agents to interconnect and interoperate with
managers and with computerized healthcare information systems.

The communication profile defined in this standard takes into account the specific requirements of personal
health agents and managers, which are typically used outside a clinical setting, e.g., mobile or in a person’s
home:

— Personal health agents typically have very limited computing capabilities.

© I1SO 2010 — All rights reserved
6 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

— Personal health agents typically have a fixed configuration, and they are used with a single manager
device.

— Personal health agents are frequently battery powered, mobile devices, using a wireless communication
link. Therefore, energy efficiency of the protocol is an important aspect.

— Personal health agents are often not permanently active. For example, a weighing scale may provide
data only once or twice a day. An efficient connection procedure is needed for minimum overhead for
such devices.

— Personal health managers tend to have more processing power, memory, and storage space so the
protocol intentionally places more load on the managers.

— Personal health agents and managers convey information that could be useful to clinical professionals.
As such, the quality of the data may be considered to have clinical merit even if acquired in a personal
health or remote monitoring environment.

The ISO/IEEE 11073 family of standards is based on an object-oriented systems management paradigm.
Data (measurement, state, and so on) are modeled in the form of information objects that are accessed and
manipulated using an object access service protocol.

To address the unique requirements of personal health devices, a specialized application profile is defined
in this standard. This profile leverages concepts from the ISO/IEEE 11073 family of standards and industry
best practices to define an optimized communication profile for this domain:

— Where possible, the communication profile is not specific to any particular transport.

— The information model of the communication profile is built on the ISO/IEEE 11073 domain
information model (DIM) and includes optimizations where possible.

— An optimized communication protocol is defined to reduce message size, run-time packet construction,
and parsing overheads. This is possible due to the lower complexity of the devices in the personal
health domain.

— Required definitions for a protocol implementation are included in this standard, rather than referenced.
This approach facilitates easier adoption of this standard. In the case of discrepancies between the
normative inclusions and a referenced document, this standard takes precedence.

Where possible, versions of this standard are fully backward compatible with at least two major versions.

NOTE—It is expected that any new additions to the DIM or other relevant parts of the ISO/IEEE 11073 family of
standards will be adopted and reflected in future revisions of those standards.®

5. Introduction to IEEE 11073 personal health devices

5.1 General

The overall ISO/IEEE 11073 system model is divided into three principal components: the DIM, the
service model, and the communications model. These three models work together to represent data, define
data access and command methodologies, and communicate the data from an agent to a manager. Because
of the tight relationship between the models, the DIM, service model, and communications model are
briefly introduced in 5.2, 5.3, and 5.4, respectively, so that when they are described in more detail, in
Clause 6, Clause 7, and Clause 8, respectively, the basic concepts are familiar.

® Notes in text, tables, and figures of a standard are given for information only and do not contain requirements needed to implement
the standard.

© 1SO 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

5.2 Domain information model (DIM)

The DIM, described in detail in Clause 6, characterizes information from an agent as a set of objects. Each
object has one or more attributes. Attributes describe measurement data that are communicated to a
manager as well as elements that control behavior and report on the status of the agent.

5.3 Service model

The service model, described in detail in Clause 7, provides data access primitives that are sent between the
agent and manager to exchange data from the DIM. These primitives include commands such as Get, Set,
Action, and Event Report.

5.4 Communication model

The communication model, described in detail in Clause 8, supports the topology of one or more agents
communicating over point-to-point connections to a single manager. For each point-to-point connection,
the dynamic system behavior is defined by a connection state machine. The connection state machine
defines the states and substates an agent and manager pair passes through, including states related to
connection, association, and operation. The communication model also defines in detail the entry, exit, and
error conditions for the respective states including various operating procedures for measurement data
transmission. The communication model aso includes assumptions regarding the underlying
communication layers' behavior.

Another function of the communication model is to convert the abstract data modeling (abstract syntax)
used in the DIM into a transfer syntax, for example, to binary messages using medical device encoding
rules (MDER), that are sent using the communication model.

6. Personal health device DIM

6.1 General

Personal health devices, within this standard, are defined using an object-oriented model. This DIM defines
severa classes for modeling an agent. The model describes an agent device as a set of objects that represent
the data sources, as the elements that a manager can use to control the behavior of the agent, and as the
mechanism the agent uses to report updates to the status of agent representation. Agent device objects have
attributes that represent information and status for the object.

Manager devices communicate with agent device objects through the use of well-defined methods, such as
GET and SET, and are defined in each subclause describing an object. Information, such as measurements,
is sent from agent data objects to the manager device using event reports.

The information model for the domain of personal health devices is an object-oriented model defining data
objects of agents, including their attributes and methods. The use of an object-oriented information model
supports the following:

T ©1S0 2010 — Al rights reserved
8 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

— Separation of specification from implementation through the principle of encapsulation
— Support for evolution through the principle of inheritance

— Support for backward compatibility through the principle of polymorphism

The objects derived from classes defined in the information model represent all data that an agent system
can communicate to a manager system by means of the application protocol defined in this standard. Such
data are modeled in the form of object attributes. Furthermore, the information model defines specific data
access services in the form of methods that are used for data exchange between agent and manager systems.
These services model the application protocol messages (data access primitives) defined in this standard.

Objects define the structure and the capabilities of the agent system. The manager system accesses these
objects to retrieve data and/or to control the agent system. This standard does not define an information
model of the manager system.

The information model is a hierarchical model that defines the logical structure and capability of a personal

health device. At a top level, the MDS object represents the properties and services of the device itself,
“ independent of its health data capabilities. Properties of the MDS object include attributes for device
= identification and further technical descriptive and state data. The application-specific data (e.g., health data
- and measurement data) provided by the personal health device are modeled in the form of further
. information objects that are logically contained in the MDS object. The set of object attributes, together
¢ with this containment relation, describes the configuration and, as such, the capabilities of the personal
- health device.

~ Note that while the definitions in this standard make use of object orientation to define the information
model, this practice does not imply use of object-oriented technologies (e.g., object-oriented programming
languages) for the implementation of this standard in a particular device. The model is used to define data
structures and access methods (protocol messages) in a consistent and maintainable way. Conformance to
these definitions is at a communication protocol message level only. Specifically, definitions in this
standard are optimized to allow very simple agent implementations (e.g., by use of pre-defined transmission
templates). Likewise, the implementation of the manager device is free to choose a design that makes use of
the information objects versus other design alternatives.

This standard makes use of information classes and objects that are defined in ISO/IEEE 11073-
10201:2004 [B13], but adapts these to the domain of personal health device communication in the
following ways.

— Thedefinition of attributes that are mandatory, optional, or conditional may be different.
— Additional object services may be defined.

— Additional attributes may be defined.
— Some features of the original model might not be used.

6.2 Nomenclature usage

A key aspect of the DIM isthat object classes and attributes are referenced using nomenclature codes found
in ISO/IEEE 11073-10101 [B12]. By using a consistent nomenclature, interoperability is enhanced as all
implementations maintain the same semantic meaning for the numeric codes. Using nomenclature codes
also assists with international implementations as the use of stringsis reduced.

The ISO/IEEE 11073 nomenclature is defined as a set of context-dependent partitions. The nomenclature
code in each context-dependent partition is defined by a 16-bit code that supports up to 65 536 independent
terms per partition. The partitions are referenced by a 16-bit partition code. When the partition of the
nomenclature code is defined through context, then it is possible to use only the 16-bit term code. If the
context is not defined or a context-independent term code is required, then this situation is specified by a

© 1SO 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

32-hit code constructed from the 16-bit partition code together with the 16-bit term code. Table 1 shows the
partitions that are defined in this standard and/or 1SO/IEEE 11073-10101 [B12].

Term codes from 0xFO00 — OXFFFF in each partition in the nomenclature are reserved for private (vendor-
specified) nomenclature codes.

For each nomenclature term, ISO/IEEE 11073-10101 [B12] defines a systematic name that explains the
term, a unique code value, and a reference identifier (ID). The reference ID has the form
MDC_XXX_YYY (with MDC referring to “medical device communication”). Throughout this standard,
nomenclature terms and nomenclature codes are referenced by the reference ID.

Table 1—Partitions in the nomenclature

Partition number Nomenclature category
1 Object-oriented (OO)
2 Supervisory control and data acquisition (SCADA)
3 Events
4 Dimensions (units of measurement)
5 Virtual attributes
6 Parameter groups
7 [Body] sites
8 Infrastructure
9-127 Reserved
128 Personal health devices disease management
129 Personal health devices health and fitness
130 Persona health devices aging independently
131-254 Reserved
255 Return codes
256 External nomenclature references
257-1023 Reserved
1024 Private
102565 535 Reserved

10

6.3 Personal health object class definitions

6.3.1 General

The diagram in Figure 4 uses Unified Modeling Language (UML) to represent the information objects of a
personal health agent along with class relationships. The top-most object represents the MDS information
and its status (see 6.3.2). There are zero or more numeric, real-time sample array (RT-SA), enumeration,
scanner, or PM-store objects associated with an MDS object. There are zero or more PM-segments that
contain persistent metrics associated with a PM-store. Numeric, RT-SA, and enumeration are derived from
a common metric base class that contains common and shared attributes (see 6.3.3). In general, numeric
objects represent episodic measurements (see 6.3.4), RT-SA objects represent continuous samples or wave
forms (see 6.3.5), enumeration objects represent event annotations (see 6.3.6), and PM-stores (see 6.3.7)
along with PM-segments (see 6.3.8) provide a persistent storage mechanism for metrics that are accessed
by the manager at a later time. In addition, a scanner object (further defined in 6.3.9) facilitates the
reporting of agent-initiated data transfers.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Class PHD-DIM J
: MDS
0\ : PM-Store
1
11
1 1 1 : Metric
0.*
0»’
: Scanner
: Numeric : RealTime-SA : Enumeration : PM-Segment
Figure4 —Personal health device — DIM

Subclauses 6.3.2 through 6.3.9 describe the classes of the personal health device DIM. Each subclause uses
the following format:

— The nomenclature code used to identify the class. This code is used during the configuration event to
report the class for each object and allows the manager to learn whether the object being specified is
numeric, RT-SA, or any of the other classes.

— Theattributes defined by the class.
— Themethods available.
— The potentia events generated by objectsinstantiated from the class.

— Theavailable services such as getting or setting attributes.

Each attribute data type is defined using an Abstract Syntax Notation One (ASN.1). The ASN.1 definitions
for all datatypes and exchange formats are found in Annex A.

The attributes for each class are defined in tables that specify the name of the attribute, its nomenclature
reference ID, its type, a description of the attribute, and its qualifier. The qualifiers mean O — Attribute is
Optional, M — Attribute is Mandatory, and C — Attribute is Conditional and depends on the condition
stated in the Remark column. Optional attributes may be implemented on an agent. Mandatory attributes
shall be implemented by an agent. Conditional attributes shall be implemented if the condition applies and
may be implemented otherwise.

The nomenclature code of the object class (e.g., numeric, RT-SA) is sent to the manager at configuration
time to create a mirrored object representation. Each object has a Handle attribute that is used to identify
the object for operations (to or from the object) and other attributes to represent and convey information on
the physical device and its data sources. Attributes are accessed and modified using methods such as GET
and SET. Data are transmitted using EVENTS.

© 1SO 2010 — All rights reserved

11

ISO/IEEE 11073-20601:2010(E)

12

6.3.2 MDS class

6.3.2.1 General

Each personal health device agent is defined by an object-oriented model as shown in Figure 4. The top-
level object of each agent is instantiated from the MDS class. Each agent has one MDS object. The MDS

represents the identification and status of the agent through its attributes.

6.3.2.2 MDS class identification

The nomenclature code to identify the MDS classisMDC_MOC_VMS MDS _SIMP.

6.3.2.3 MDS class attributes

Table 2 defines the set of MDS attributes that are supported for personal health agent communication. An
MDS object shall support all mandatory attributes, but may have a subset of the conditional and optional

attributes present.

Table 2—MDS attributes

Attribute name

Attribute D

Attributetype

Remark

Qual.

Handle

MDC _ATTR ID_
HANDLE

HANDLE

The Handle attribute represents a
reference | D for this object.

The value of the MDS Handle
atribute shall be 0.

System-Type

MDC_ATTR SYS TYPE

TYPE

This attribute defines the type of
the agent, as defined in
nomenclature (e.g., weighing
scale). The values shall come
from ISO/IEEE 11073-10101
[B12], nom-part-object partition,
and subpartition MD-Gen
(Medical Device — Generic).
Either this attribute or System-
Type-Spec-List shall be present.
This attribute shall remain
unchanged after the configuration
is agreed upon.

System-Model

MDC_ATTR_ID_MODEL

SystemModel

This attribute defines
manufacturer and model number
of the agent device. This attribute
shall remain unchanged after the
configuration is agreed upon.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Table 2—MDS attributes

Attribute name Attribute ID Attribute type Remark Qual.

System-Id MDC_ATTR_SYS ID OCTET STRING Thisattributeisan IEEE EUI-64, | M
which consists of a24-hit unique
organizationally unique identifier
(OUI) followed by a40-bit
manufacturer-defined ID. The
OUI shall be avaue assigned by
the |EEE Registration Authority
(http://standards.ieee.org/regauth/
index.html) and shall be used in
accordance with |EEE Std 802-
2001.° This attribute shall remain
unchanged after the configuration

is agreed upon.
Dev-Configuration- | MDC_ATTR_DEV_ Configld This attribute defines the M
Id CONFIG_ID identification of the agent device

configuration. This Dev-
Configuration-1d is static during
thelifetime of an association; itis
normally exchanged during the
association procedure. The
manager can GET this attribute
during operation. If this attribute
isqueried prior to when the agent
and manager agree upon a
configuration, the agent shall
return the configuration ID that is
being offered at that time. For
more information on this
attribute, see 8.7.6. This attribute
shall remain unchanged after the
configuration is agreed upon.
Attribute-Value- MDC _ATTR_ AttrVaMap This attribute defines the C
Map ATTRIBUTE_VAL_MAP atributesthat are reported in the
fixed format data update
messages (see 7.4.5 for more
information). Usage of this
atributeis mandatory if the agent
device uses fixed format value

messages to report dynamic data

for the object.
Production- MDC _ATTR_ID_PROD _ ProductionSpec This attribute defines component | O
Specification SPECN revisions, serid numbers, and so

on in amanufacturer-specific
format. This attribute shall
remain unchanged after the
configuration is agreed upon.
Mds-Time-Info MDC_ATTR_MDS TIME_ | MdsTimelnfo This attribute defines the time C
INFO handling capabilities and the
status of the MDS. Usage of this
atributeisrequired if
synchronization or settabletime
is supported.

5 For information on references, see Clause 2.

© 1SO 2010 — All rights reserved 13

http://standards.ieee.org/regauth/index.html
http://standards.ieee.org/regauth/index.html

ISO/IEEE 11073-20601:2010(E)

14

Table 2—MDS attributes

Attribute name

Attribute D

Attribute type

Remark

Qual.

Date-and-Time

MDC_ATTR_TIME_ABS

AbsoluteTime

This attribute defines the date and
time of an agent with resolution
of 1/100 of asecond, if available.
For more information on this
atribute, see 8.12. If the agent
reports AbsoluteTimein any
other message, it shall report its
current value of AbsoluteTimein
this attribute.

Relative-Time

MDC _ATTR TIME_REL

RelativeTime

If the agent reports RelativeTime
in any other message, it shall
report its current value of
RelativeTimein this attribute.

HiRes-Ré ative-
Time

MDC_ATTR TIME REL_

HI_RES

HighResRelativeTime

If the agent reports
HighResRelativeTimein any
other message, it shall report its
current value of

HighResRd ativeTimein this
attribute.

Date-and-Time-
Adjustment

MDC_ATTR TIME_ABS_

ADJUST

AbsoluteTimeAdjust

This attribute reports any date
and time adjustments that occur
either due to a person’s changing
the clock or events such as
daylight savingstime. Thisis
used in event reportsonly. If
queried with Get MDS Object
command, this value shall be not
present or 0. If the agent ever
adjusts the date and time, this
atributeis used in an event report
to report such adjustment.

Power-Status

MDC_ATTR_POWER_
STAT

PowerStatus

This attribute reports whether
power is being drawn from
battery or main power lines and
the status of charging.

Battery-Level

MDC_ATTR VAL_
BATT CHARGE

INT-U16

This attribute reports the
percentage of battery capacity
remaining, which is undefined if
value > 100.

Remaining-Battery-
Time

MDC_ATTR TIME_
BATT_REMAIN

BatMeasure

This attribute represents the
predicted amount of operational
time left on the batteries. The
BatMeasure' s unit shdl be set to
oneof MDC_DIM_MIN,
MDC_DIM_HR, or
MDC_DIM_DAY for minutes,
hours, or days, respectively.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

Table 2—MDS attributes

ISO/IEEE 11073-20601:2010(E)

Attribute name

Attribute D

Attribute type

Remark

Qual.

Reg-Cert-DatarList

MDC_ATTR REG _CERT_
DATA_LIST

RegCertDatal ist

This attribute lists various
regulatory and/or certification
compliance itemsto which the
agent claims adherence as an
informative statement. The
Implementation Conformace
Statements (see Clause 9) take
precedence over this attribute and
arethelegaly binding claims.
This attribute shall remain
unchanged after the configuration
is agreed upon.

System-Type-Spec-
List

MDC_ATTR SYS TYPE_
SPEC_LIST

TypeVerList

This attribute reports the type(s)
of the agent, as defined in
nomenclature (e.g., weighing
scale). The values shall come
from 1SO/IEEE 11073-10101
[B12], nom-part-infrastruct
partition, subpartition DEV spec,
and reference | SO/IEEE 11073-
104zz specidizations. If an
agent does not follow any
specialization, the list shall be
left blank. Thislist shall also
contain the version of the
specialization. Either this
attribute or System-Type shall
be present. If the agent is
multifunction, this attribute shall
be present. This attribute shall
remain unchanged after the
configuration is agreed upon.

Confirm-Timeout

MDC_ATTR_CONFIRM_
TIMEOUT

RelativeTime

Thisinformational timeout
attribute defines the minimum
time that the agent shall wait for
aResponse message from the
manager after issuing a
Confirmed Event Report invoke
message before timing out and
transitioning to the Unassociated
state.

Thisisan informationa attribute
for the benefit of the manager. If
this attribute is supplied, it shall
match the actual timeout value
that the agent uses for the
Confirmed Event Report
generated from the M DS object.

This attribute is informational for
the manager in the sense that the
manager does not use this
attribute in an actual
implementation of the protocol
(i.e., the manager does not time
out on an agent-generated
Confirmed Event Report).

© 1SO 2010 — All rights reserved

15

ISO/IEEE 11073-20601:2010(E)

16

Table 2—MDS attributes

Attribute name

Attribute ID Attribute type

Remark

Qual.

However, the manager might
wish to use thisinformation to
prioritize its handling of a“short”
timeout agent over that of a
“long” timeout agent.

The attribute data types are defined in Annex A.

6.3.2.4 MDS object methods

Table 3 defines the methods (actions) available for the MDS object. These methods are invoked using the
ACTION service. In Table 3, the Method/Action column defines the name of the method. The Mode
column defines whether the method is invoked as an unconfirmed action (i.e., roiv-cmip-action from
A.10.2) or a confirmed action (i.e., roiv-cmip-confirmed-action). The Action-type column defines the
nomenclature ID to use in the action-type field of an action request and response (see A.10.6). The action-
info-args column defines the associated data structure to use in the action message for the action-info-args
field of the request. The Resulting action-info-args column defines the structure to use in the action-info-
args of the response.

Table 3—MDS object methods

M ethod/Action M ode Action-type action-info-args Resulting action-info-args
MDS-Data- Confirmed | MDC_ACT_DATA_ DataRequest DataResponse
Request REQUEST
Set-Time Confirmed | MDC ACT _SET TIME SetTimelnvoke None

— MDS-Data-Request:
This method allows the manager system to enable or disable measurement data transmission from the

agent (see 8.9.3.3.3 for adescription).

— Set-Time:

This method allows the manager system to set a real-time clock (RTC) with the absolute time. The
agent indicates whether the Set-Time command is valid by using the mds-time-capab-set-clock bit in
the Mds-Time-Info attribute (see Table 2).

6.3.2.5 MDS object events

Table 4 defines the potential events sent by the MDS object. A manager shall support al methods defined

in Table 4.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Table 4—MDS object events

Event M ode Event-type Event-info parameter Event-reply-info
MDS-Configuration- Confirmedor | MDC_NOTI_CONFIG | ConfigReport ConfigReportRsp
Event unconfirmed
MDS-Dynamic-Data- Confirmedor | MDC_NOTI_SCAN_ ScanReportInfoVar -

Update-Var unconfirmed REPORT VAR

MDS-Dynamic-Data Confirmedor | MDC_NOTI_SCAN_ ScanReportlnfoFixed -
Update-Fixed unconfirmed REPORT_FIXED

MDS-Dynamic-Data- Confirmedor | MDC_NOTI_SCAN_ ScanReportinfoMPVar -
Update-MP-Var unconfirmed REPORT MP VAR

MDS-Dynamic-Data- Confirmedor | MDC_NOTI_SCAN_ ScanReportInfoM PFixed -
Update-MP-Fixed unconfirmed REPORT MP FIXED

— MDS-Configuration-Event:

This event is sent by the agent during the configuring state of startup if the manager does not already
know the agent’s configuration from past associations. The event provides static information about the
supported measurement capabilities of the agent.

M DS-Dynamic-Data-Update-Var:

This event provides dynamic data (typically measurements) from the agent for some or al of the
objects that the agent supports. Data for reported objects are reported using a generic attribute list
variable format (see 7.4.5 for details on event report formats). The event is triggered by an MDS-Data-
Request from the manager system, or it is sent as an unsolicited message by the agent. For agents that
support manager-initiated measurement data transmission, refer to 8.9.3.3.3 for information on
controlling the activation and/or period of the data transmission. For agents that do not support
manager-initiated measurement data transmission, refer to 8.9.3.3.2 for information on the limited
control a manager can assert.

M DS-Dynamic-Data-Update-Fixed:

This event provides dynamic data (typically measurements) from the agent for some or all of the metric
objects or the MDS object that the agent supports. Data are reported in the fixed format defined by the
Attribute-Value-Map attribute for reported metric objects or the MDS object (see 7.4.5 for details on
event report formats). The event is triggered by an MDS-Data-Request from the manager system (i.e., a
manager-initiated measurement data transmission), or it is sent as an unsolicited message by the agent
(i.e,, an agent-initiated measurement data transmission). For agents that support manager-initiated
measurement data transmission, refer to 8.9.3.3.3 for information on controlling the activation and/or
period of the data transmission. For agents that do not support manager-initiated measurement data
transmission, refer to 8.9.3.3.2 for information on the limited control a manager can assert.

M DS-Dynamic-Data-Update-M P-Var:
This is the same as MDS-Dynamic-Data-Update-Var, but alows inclusion of data from multiple
persons.

M DS-Dynamic-Data-Update-M P-Fixed:
This is the same as MDS-Dynamic-Data-Update-Fixed, but allows inclusion of data from multiple
persons.

6.3.2.6 Other MDS services

6.3.2.6.1 GET service

Any agent supporting two-way communication links shall support the GET service to retrieve the values of
all implemented MDS object attributes. The GET service can be invoked as soon as the agent receives the
Association Response and moves to the Associated state, including the Operating and Configuring

substates.

©1S0 2010 — All rights reserved

17

ISO/IEEE 11073-20601:2010(E)

The manager may request the MDS object attributes of the agent in which case the manager shall send the
“Remote Operation Invoke | Get” command (see roiv-cmip-get in A.10.2) with the reserved handle val ue of
0. The agent shall respond by reporting its MDS object attributes to the manager using the “Remote
Operation Response | Get” response (see rors-cmip-get in A.10.2). In the response to a Get MDS Object
command, only attributesimplemented by the agent are returned.

6.3.2.6.2 SET service

There are currently no settable attributes.

6.3.3 Metric class

6.3.3.1 General
The metric class is the base class for all objects representing measurements, status, and context data. The
metric class is not instantiated; therefore, it is never part of the agent configuration. As a base class, it

defines al attributes, methods, events, and services that are common for all objects representing
measurements.

6.3.3.2 Metric class identification

The nomenclature code to identify the metric class is MDC_MOC_VMO_METRIC. This homenclature
code is not used in an agent or a manager implementation as the metric class is just a base class for other
classes.

6.3.3.3 Metric class attributes

Table 5 defines the set of metric attributes that are supported for personal health device communication and
that are inherited by all metric-derived classes.

Table 5—Metric attributes

Attribute name Attribute D Attributetype Remark Qual.
Handle MDC_ATTR_ID_HANDLE HANDLE The Handle attribute represents | M
areference ID for this object.
Each object shall have aunique
ID assigned by the agent. The
handle identifies the object in
event reports sent to the
manager. This attribute shall
remain unchanged after the
configuration is agreed upon.
Type MDC_ATTR_ID_TYPE TYPE This attribute defines a specific | M
static type of this object as
defined in the nomenclature
(e.g., pulserate for a specific
numeric object instance). The
Type attribute contains the
nomenclature partition and
term code | Ds for context-free,
extensible identification. This
attribute shdl remain
unchanged after the
configuration is agreed upon.

© I1SO 2010 — All rights reserved
18 © IEEE 2010 — Al rights reserved

Table 5—Metric attributes

ISO/IEEE 11073-20601:2010(E)

Attribute name

Attribute D

Attributetype

Remark

Qual.

Supplemental-
Types

MDC ATTR_
SUPPLEMENTAL_TYPES

Supplemental TypelL.ist

This attribute may be used to
convey supplemental
information about the object
beyond the Type and Metric-1d
attributes. Supplemental
information covers conditions
like the location of the sensor
or the rate at which the object
reacts to changes. Device
specializations define the
expected usage of this attribute.
For example, IEEE Std 11073-
10471 [B5] defines|ocation
nomencl ature for specifying the
location of a sensor in ahome
and 1SO/IEEE P11073-10404
[B9] definesthree
supplemental types for fast
response, dow response, and
spot checking of the pulse rate
or blood oxygenation. This
attribute shall remain
unchanged after the
configuration is agreed upon.

Metric-Spec-Small

MDC_ATTR METRIC_SPEC_
SMALL

MetricSpecSmall

This attribute describes the
characteristics of the
measurements.

Metric-Structure-
Small

MDC_ATTR METRIC_
STRUCT SMALL

MetricStructureSmall

This attribute describes the
structure of the measurement.
If not present, the manager
shall assume
MetricStructureSmall :=
{ms-struct-simple, O} .

M easurement-
Status

MDC_ATTR_MSMT_STAT

M easurementStatus

This attribute indicates the
validity of aparticular value or
set of samples.

© 1SO 2010 — All rights reserved

19

ISO/IEEE 11073-20601:2010(E)

Table 5—Metric attributes

Attribute name Attribute D Attributetype Remark Qual.
Metric-1d MDC_ATTR_ID_PHYSIO OID-Type This attribute may be used to (0]
hold an identification that is
more specific than the generic
ID in the Type attribute. If the
Metric-1d-Partition attribute is
valued, it definesthe
nomenclature partition for this
attribute. Otherwise, the OID-
Typeistaken from the same
nomenclature partition as
defined in the partition field of
the Type attribute.

Thisattribute is needed only if
identification changes during
operation and the Type
attribute does not contain full
identification. For example, if
the Type attribute contains a
generic temperature code
(MDC_TEMP), this attribute
could report a specific, but
changing, identification such as
MDC_TEMP_ORAL or
MDC_TEMP_RECT.

Only one attribute of Metric-1d
and Metric-Id-List shall be

present.
Metric-1d-List MDC_ATTR_ID_PHYSIO_ MetricldList Thisattribute shall beusedifa | C
LIST compound observed valueis

used and does not incorporate
the Metric-1d directly (e.g.,
Compound-Simple-Nu-
Observed-Value or Compound-
Basic-Nu-Observed-Vaue) so
that elementsin the observed
vauelist can beidentified
individually. The order of the
Metric-Id-List shal correspond
to the order of the elementsin
the compound observed value.
Only one attribute of Metric-1d
and Metric-Id-List shall be

present.
Metric-1d-Partition | MDC_ATTR_METRIC_ID_ NomPartition This attribute may be used to (0]
PART define the partition from which

the Metric-1d or Metric-1d-List
nomenclature terms were taken.
If not present, the partitionis
the same as the nomenclature
partition defined in the partition
field of the Type attribute.
Unit-Code MDC_ATTR_UNIT_CODE OID-Type This attribute defines the (0]
nomenclature code for the units
of measure from the nom-part-
dim partition (e.g.,

MDC DIM _KILO G).

© I1SO 2010 — All rights reserved
20 © IEEE 2010 — Al rights reserved

Table 5—Metric attributes

ISO/IEEE 11073-20601:2010(E)

Attribute name

Attribute D

Attributetype

Remark

Qual.

Attribute-Value-
Map

MDC_ATTR ATTRIBUTE_
VAL_MAP

AttrVaMap

This attribute defines the
attributes that are reported in
thefixed format data update
messages. Usage of this
attributeis mandatory if the
agent uses fixed format value
messages to report dynamic
measurement data for the
object.

Source-Handle-
Reference

MDC_ATTR_SOURCE _
HANDLE_REF

HANDLE

This attribute establishes a
relation of this object instance
to asource object (e.g., pulse
references sourcing SpO2).
This attribute is used whenever
it isrequired to model an
explicit relation between object
instancesto define
dependencies. The usage of this
attribute is defined by device
specializations.

Label-String

MDC_ATTR ID_LABEL_
STRING

OCTET STRING

This attribute defines the
textua representation of Type
attributein printable ASCI|I.
Thevalue of this attributeis at
the complete discretion of the
agent’s manufacturer. It could
potentialy be useful for a
manager as adisplay string or
asan ad in deciding how to
behave when it does not
understand the
MDC_ATTR_ID_TYPE as
reported by the agent.

Unit-Label String

MDC _ATTR UNIT_LABEL_
STRING

OCTET STRING

This attribute defines the
textua representation of Unit-
Codedimension in printable
ASCII. The value of this
attributeis at the complete
discretion of the agent’s
manufacturer. It could
potentialy be useful for a
manager as adisplay string or
asan aid in deciding how to
behave when it does not
understand the
MDC_ATTR_UNIT_CODE as
reported by the agent.

© 1SO 2010 — All rights reserved

21

ISO/IEEE 11073-20601:2010(E)

22

Table 5—Metric attributes

Attribute name

Attribute D

Attributetype

Remark

Qual.

Absolute-Time-
Stamp

MDC_ATTR_TIME_STAMP_
ABS

AbsoluteTime

This atribute defines the date
and time of observation with
resolution of 1/100 of a second,
if available. For more
information on this attribute,
see 8.12. If an agent stores data
(either in aPM-store object or
asa“temporarily stored
measurement”), it shall

associ ate atime stamp
(Absolute-Time-Stamp,
Relative-Time-Stamp, or
HiRes-Time-Stamp) with the
data

Relative-Time-
Stamp

MDC_ATTR TIME_STAMP_
REL

ReativeTime

This attribute defines the time
of observation (time stamp in a
relative time format/number of
clock ticks as defined by
RelativeTime datatype). If an
agent stores data, it shall

associ ate atime stamp
(Absolute-Time-Stamp,
Relative-Time-Stamp, or
HiRes- Time-Stamp) with the
data

HiRes-Time-
Stamp

MDC_ATTR_TIME_STAMP_
REL_HI_RES

HighResRel ativeTime

This attribute defines the time
of observation (timestampina
high-resolution relative time
format/number of clock ticks as
defined by a

HighResRd ativeTime data
type). If an agent Stores data, it
shall associate atime stamp
(Absolute-Time-Stamp,
Relative-Time-Stamp, or
HiRes-Time-Stamp) with the
data

Measure-Active-
Period

MDC_ATTR TIME_PD_
MSMT_ACTIVE

FLOAT-Type

This attribute defines the time
duration of the observation
period in seconds.

6.3.3.4 Metric object methods

None

6.3.3.5 Metric object events

Objects that derive from the metric class do not report their observations directly; rather, the observations
are reported through another object, such asthe MDS object, a scanner object, or a PM-store object.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

6.3.3.6 Other metric services

None

6.3.4 Numeric class

6.3.4.1 General

An instance of the numeric class represents a numerical measurement. The values of a numeric object are
sent from the agent to the manager using the EVENT REPORT service (see 7.3). This classis derived from
the metric base class.

6.3.4.2 Numeric class identification

The nomenclature code to identify the numeric classisMDC_MOC VMO _METRIC_NU.

6.3.4.3 Numeric class attributes

Table 6 defines the set of numeric attributes that are supported for personal health device communication.

Table 6—Numeric attributes

Attribute name AttributeID Attributetype Remark Qual.
Simple-Nu- MDC_ATTR_NU_VAL_ SimpleNuObsVaue This attribute defines the C
Observed-Vaue OBS SIMP numerical observed vaue of

the object, without any further
embedded status information as
found in Nu-Observed-Value.
One of Simple-Nu-Observed-
Vaue, Basic-Nu-Observed-
Vaue, Nu-Observed-Value,
Compond-Nu-Observed-Value,
Compound-Simple-Nu-
Observed-Vaue, or
Compound-Basic-Nu-
Observed-Value shal be

present.
Compound- MDC_ATTR_NU_CMPD_ SimpleNuObsVaueCmp | Thisattribute represents an C
Simple-Nu- VAL_OBS SIMP array of Simple-Nu-Observed-
Observed-Vaue Values. One of Simple-Nu-

Observed-Vaue, Basic-Nu-
Observed-Vaue, Nu-
Observed-Value, Compond-
Nu-Observed-Vaue,
Compound-Simple-Nu-
Observed-Value, or
Compound-Basic-Nu-
Observed-Vaue shal be
present.

© 1SO 2010 — All rights reserved

23

ISO/IEEE 11073-20601:2010(E)

24

Table 6—Numeric attributes

Attribute name

Attribute D

Attributetype

Remark

Qual.

Basic-Nu-
Observed-Vdue

MDC_ATTR NU_VAL_
OBS BASIC

BasicNuObsValue

This attribute defines the
numerical observed vaue of
the object, without any further
embedded status information,
but with a smaller numerica
representation compared to
Simple-Nu-Observed-Vaue.
One of Simple-Nu-Observed-
Vaue, Basic-Nu-Observed-
Vadue, Nu-Observed-Value,
Compond-Nu-Observed-Vaue,
Compound-Simple-Nu-
Observed-Vaue, or
Compound-Basic-Nu-
Observed-Vaue shal be
present.

Compound-Basic-
Nu-Observed-
Vaue

MDC_ATTR_NU_CMPD_
VAL_OBS BASIC

BasicNuObsVaueCmp

This attribute represents an
array of Basic-Nu-Observed-
Values. One of Simple-Nu-
Observed-Value, Basic-Nu-
Observed-Value, Nu-
Observed-Vaue, Compond-
Nu-Observed-Vaue,
Compound-Simple-Nu-
Observed-Value, or
Compound-Basic-Nu-
Observed-Value shal be
present.

Nu-Observed-
Vaue

MDC_ATTR NU_VAL_OBS

NuObsVaue

This attribute defines the
numerical observed value of
the object and combinesit with
measurement status and unit
information. It is used when
status/unit are dynamic and are
always provided together with
the value. One of Simple-Nu-
Observed-Value, Basic-Nu-
Observed-Vaue, Nu-
Observed-Value, Compond-
Nu-Observed-Vaue,
Compound-Simple-Nu-
Observed-Vaue, or
Compound-Basic-Nu-
Observed-Vaue shal be
present.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Table 6—Numeric attributes

Attribute name Attribute D Attributetype Remark Qual.
Compound-Nu- MDC_ATTR_NU_CMPD_ NuObsVaueCmp This attribute combines an C
Observed-Vaue VAL_OBS array of vaue, status, and unit.

This attribute is available for
useonly in variable format
event reports. One of Simple-
Nu-Observed-Vaue, Basic-Nu-
Observed-Vaue, Nu-
Observed-Value, Compond-
Nu-Observed-Value,
Compound-Simple-Nu-
Observed-Vaue, or
Compound-Basic-Nu-
Observed-Vaue shal be

present.
Accuracy MDC_ATTR_NU_ACCUR_ | FLOAT-Type This attribute defines the (0]
MSMT maximum deviation of actual

value from reported observed
vaue (if it can be specified).
This attribute shall remain
unchanged after the
configuration is agreed upon.

The attributes Compound-Simple-Nu-Obs-Value, Compound-Basic-Nu-Obs-Vaue, and Compound-Nu-
Observed-Value represent a list concept for observed values. This concept should be used whenever a
strong relationship between the individual observed values is given, which might be nomenclature and/or
application dependent. The compound observed values share the same static attribution context except for
the identification of elements. An example is the blood pressure application, where the nomenclature base
term expresses “Blood Pressure” and more specific terms express “Blood Pressure Systolic,” “Blood
Pressure Diastolic,” and “Blood Pressure Mean.” The corresponding DIM would contain only a single
instance of a numeric object, which would use one of the compound numeric observed value formats to
represent the “systolic,” “diastolic,” and “mean” parts of the “Blood Pressure.”

6.3.4.4 Numeric object methods

None

6.3.4.5 Numeric object events

None

6.3.4.6 Other numeric services

None

© 1SO 2010 — All rights reserved o5

ISO/IEEE 11073-20601:2010(E)

6.3.5 RT-SA class

6.3.5.1 General

An instance of the RT-SA class represents a wave form measurement. The values of the RT-SA object are
sent from the agent to the manager using the EVENT REPORT service (see 7.3). Thisclassis derived from
the metric base class.

6.3.5.2 RT-SA class identification

The nomenclature code to identify the RT-SA classisMDC_MOC VMO _METRIC_SA_RT.

6.3.5.3 RT-SA class attributes

Table 7 defines the set of RT-SA attributes that are supported for personal health device communication.

Table 7—RT-SA attributes

Attribute name

Attribute ID

Attributetype

Remark

Qual.

Sample-Period

MDC_ATTR_TIME_PD_
SAMP

ReativeTime

This attributes definestime
interval between successive
samplesgivenin 1/8 of a
millisecond. Thus, 8000=1s.
This attribute shall remain
unchanged after the
configuration is agreed upon.

Simple-Sa
Observed-Vaue

MDC_ATTR SIMP_SA_OBS_
VAL

OCTET STRING

Thisbyte array containsthe
samplesthat are reported by the
agent intheformat that is
described by the Sa
Specification and Scale-and-
Range-Specification. The
length shall be even with
padding bytes a the end. Sa-
Specification defines the actual
number of utilized bytes.

Scae-and-Range-
Specification

MDC_ATTR SCALE_SPECN_
18

MDC_ATTR SCALE_SPECN_
116

MDC_ATTR SCALE_SPECN_
132

ScaleRangeSpec8
ScaleRangeSpec16
ScaleRangeSpec32

This attribute defines mapping
between samples and actua
vaues as well as measurement
range. The type depends on
sample resolution (sample-size
field within sample-typefield
of Sa-Specification). Exactly
one of the three specifications
shall beincluded. This attribute
shall remain unchanged after
the configuration is agreed
upon.

Sa-Specification

MDC_ATTR_SA_SPECN

SaSpec

This attribute describes the
sample array and sample types.
This attribute shall remain
unchanged after the
configuration is agreed upon.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Characteristics of the RT-SA object can be gained by examination of the Sa-Specification attribute. This
attribute defines the number of elements in the array and the size of an element and is more thoroughly
describedin A.3.4.

For agents that support manager-initiated measurement data transmission, refer to 8.9.3.3.3 for information
on controlling the activation and/or period of the data transmission. For agents that do not support manager-

initiated measurement data transmission, refer to 8.9.3.3.2 for information on the limited control a manager
can assert.

— Scale-and-Range-Specification:

The Scale-and-Range-Specification attribute defines the coefficients for an algorithm to map the scaled
valuesinto their absolute values. The manager shall apply the following algorithm:

Y=MxX+B

where

Y = the converted absolute value

M = (upper-absol ute-val ue — lower-absol ute-value) / (upper-scaled-value — lower-scal ed-val ue)

B = upper-absolute-value — (M x upper-scaled-val ue)

X =the scaled value
An example of this agorithm in use can be found in Annex B.
Note that the term absolute-value does not refer to the mathematical absolute value in which al values are
positive, but rather to the actual, measured value.

6.3.5.4 RT-SA object methods

None

6.3.5.5 RT-SA object events

None

6.3.5.6 Other RT-SA services

None

6.3.6 Enumeration class

6.3.6.1 General

An instance of the enumeration class represents status information and/or annotation information. The
values of the enumeration object are coded in the form of normative codes (as defined in ISO/IEEE 11073-
10101 [B12]) or in the form of free text. The values of the enumeration object are sent from the agent to the
manager using the EVENT REPORT service (see 7.3). This classis derived from the metric base class.

© 1SO 2010 — All rights reserved 27

ISO/IEEE 11073-20601:2010(E)

28

6.3.6.2 Enumeration class identification

The nomenclature code to identify the enumeration classisMDC_MOC_VMO_METRIC_ENUM.

6.3.6.3 Enumeration class attributes

Table 8 defines the set of enumeration attributes that are supported for personal health device

communication.

Table 8—Enumeration attributes

Attribute name

Attribute D

Attribute type

Remark

Qual.

Enum-Observed-
Vaue-Smple-
oD

MDC_ATTR ENUM_OBS_
VAL_SIMP_OID

OID-Type

Thevaueisreported asa
nomenclature code. If the
Enum-Observed-Vaue-
Partition attribute is valued, it
defines the nomenclature
partition for this attribute.
Otherwise, the OID-Typeis
taken from the same
nomenclature partition as
defined in the partition field of
the Type attribute. One of
Enum-Observed-Vaue-
Simple-OID, Enum-Observed-
Value-Simple-Bit-Str , Enum-
Observed-Value-Basic-Bit-Str,
Enum-Observed-Vaue-
Simple-Str, or Enum-
Observed-Vaue shal be
present.

Enum-Observed-
Vaue-Simple-Bit-
Str

MDC_ATTR ENUM_OBS_
VAL_SIMP BIT_STR

BITS-32

The valueisreported as a bit
string of 32-bits. One of Enum-
Observed-Vaue-Simple-OID,
Enum-Observed-Vaue-
Simple-Bit-Str , Enum-
Observed-Vaue-Basic-Bit-Str,
Enum-Observed-Vaue-
Simple-Str, or Enum-
Observed-Vaue shal be
present.

Enum-Observed-
Vdue-Basic-Bit-
Str

MDC_ATTR_ENUM_OBS_
VAL_BASIC BIT_STR

BITS-16

The valueisreported as a bit
string of 16-bits. One of Enum-
Observed-Vaue-Simple-OID,
Enum-Observed-Vaue-
Simple-Bit-Str, Enum-
Observed-Vaue-Basic-Bit-Str,
Enum-Observed-Vaue-
Simple-Str, or Enum-
Observed-Vaue shal be
present.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

Table 8—Enumeration attributes

ISO/IEEE 11073-20601:2010(E)

Attribute name

Attribute D

Attributetype

Remark

Qual.

Enum-Observed-
Vaue-Smple-Str

MDC_ATTR_ENUM_OBS_
VAL_SIMP_STR

EnumPrintableString

The vaueisreported as an
ASCII printable string. One of
Enum-Observed-Vaue-
Simple-OID, Enum-Observed-
Value-Simple-Bit-Str , Enum-
Observed-Vaue-Basic-Bit-Str,
Enum-Observed-Vaue-
Simple-Str, or Enum-
Observed-Vaue shal be
present.

Enum-Observed-
Vaue

MDC_ATTR_VAL_ENUM_

OBS

EnumObsVaue

This attribute defines a
structured observed value that
permits additional flexibility
about the data type of the
reported vaue. One of Enum-
Observed-Vaue-Simple-OID,
Enum-Observed-Vaue-
Simple-Bit-Str , Enum-
Observed-Vaue-Basic-Bit-Str,
Enum-Observed-Vaue-
Simple-Str, or Enum-
Observed-Vaue shdl be
present.

Enum-Observed-
Vaue-Partition

MDC_ATTR_ENUM_OBS_
VAL_PART

NomPartition

This attribute may be used to
define the partition from which
the Enum-Observed-Vaue-
Simple-OID or the Enum-
Observed-Vaue' s observation
OID nomenclature term was
taken. If not present, the
partition isthe same asthe
nomenclature partition defined
in the partition field of the
Type attribute.

6.3.6.4 Enumeration object methods

None

6.3.6.5 Enumeration object events

None

6.3.6.6 Other enumeration services

None

© 1SO 2010 — All rights reserved

29

ISO/IEEE 11073-20601:2010(E)

30

6.3.7 PM-store class

6.3.7.1 General

An instance of the PM-store class provides long-term storage capabilities for metric data. Data are stored in
a variable number of PM-segment objects (see 6.3.8). The stored data of the PM-store object are requested
from the agent by the manager using object access services (see 7.3). Anybody not familiar with the PM-
store concept may wish to read Annex C for a conceptual overview prior to reading the following

subclauses.

6.3.7.2 PM-store class identification

The nomenclature code to identify the PM-store classisMDC_MOC_VMO_PMSTORE.

6.3.7.3 PM-store class attributes

Table 9 defines the set of PM-store attributes that are supported for personal health device communication:

Table 9—PM-store attributes

Attribute name

Attribute ID

Attributetype

Remark

Qual.

Handle

MDC_ATTR_ID_HANDLE

HANDLE

The Handle attribute represents
areference ID for this object.
Each object shall have aunique
ID assigned by the agent. The
handle identifies the object in
event reports sent to the
manager and to address the
object instance in messages
invoking object methods. This
attribute shall remain
unchanged after the
configuration is agreed upon.

PM-Store-Capab

MDC_ATTR PM_STORE_

CAPAB

PmStoreCapab

This attribute defines basic
capabilities of the PM-store
object instance. This attribute
shdl remain unchanged after
the configuration is agreed
upon.

Store-Sample-
Algorithm

MDC_ATTR METRIC_
STORE_SAMPLE ALG

StoSampleAlg

This attribute describes how the
sample values stored in the
PM-segment have been
processed. The StoSampleAlg
structure describes the available
sampling algorithms. If thereis
no specific sampling agorithm
used (in other words the sample
values are raw data), then this
attribute shdl have avalue of
st-a g-no-downsampling. This
attribute shdl remain
unchanged after the
configuration is agreed upon.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

Table 9—PM-store attributes

ISO/IEEE 11073-20601:2010(E)

Attribute name

Attribute D

Attributetype

Remark

Qual.

Store-Capacity-
Count

MDC_ATTR_METRIC_
STORE_CAPAC_CNT

INT-U32

This attribute is the maximum
number of stored PM-segment
entries (entriesin all contained
PM-segments). This attribute
shdl remain unchanged after
the configuration is agreed

upon.

Store-Usage-
Count

MDC_ATTR METRIC_
STORE_USAGE_CNT

INT-U32

Thisattribute is the actua
number of currently stored PM-
segment entries (entriesin al
contained PM-segments).

Operationa -State

MDC_ATTR OP STAT

Operationa State

The attribute indicates if new
entries are currently being
inserted in any of the contained
PM-segments. If any PM-
segment contained by this PM-
storeis having data actively
added to it, this attribute shall
be set to enabled. Otherwisg, it
shall be st to disabled.

PM-Store-L abel

MDC_ATTR PM_STORE_
LABEL_STRING

OCTET STRING

This attribute is an application-
dependent |abel for the PM-
storein printable ASCII to
indicate itsintended use and
may be used for display
purposes. This attribute shall
remain unchanged after the
configuration is agreed upon.

Sample-Period

MDC_ATTR TIME_PD_SAMP

RdativeTime

This attribute determinesthe
frequency at which entriesare
added to the PM-segments.
This attribute shal be present
either in the PM-store (in
which caseit appliesto all
periodicdly storing PM-
segments in the PM-store) or
aternatively in each PM-
segment, if values are sampled
periodicaly, so thetime
difference for two entriesin the
Fixed-Segment-Datais
constant (i.e., the pmsc-peri-
seg-entries bit in the Pm-Store-
Capab attribute is set). This
attribute shall remain
unchanged after the
configuration is agreed upon.

Number-Of-
Segments

MDC_ATTR_NUM_SEG

INT-U16

This attribute is the number of
currently instantiated PM-
segments contained in the PM-
store. Note that the PM-
segment attribute | nstance-
Number isNOT related to this
number (i.e., does not need to
bein therange from 0 to
Number-Of-Segments), but
shall beretrieved with the Get-
Segment-Info method.

© 1SO 2010 — All rights reserved

31

ISO/IEEE 11073-20601:2010(E)

32

Table 9—PM-store attributes

Attribute name

Attribute D

Attributetype

Remark

Qual.

Clear-Timeout

MDC_ATTR CLEAR_
TIMEOUT

RelativeTime

Thistimeout attribute defines
the minimum time that the
manager shall wait for the
completion of a PM-store clear
command.

If, after the manager sendsa
Confirmed Action(Clear
Segments) invoke command,
the timeout expires before the
manager recelvesthe
corresponding Confirmed
Action response message, the
manager shal transition to the
Unassoci ated state as described
in 8.9.5.6.

The attributes Handle and PM-Store-Capab are part of the agent configuration; therefore, the manager
knows the corresponding attribute val ues after the Configuring procedure.

6.3.7.4 PM-store object methods

Table 10 defines the methods (actions) of a PM-store object. These methods can be invoked using the

ACTION service.

Table 10—PM-store object methods

M ethod/Action M ode Action-type action-info-args Resulting action-info-args
Clear-Segments Confirmed | MDC _ACT SEG CLR SegmSelection (empty)
Get-Segment-Info Confirmed | MDC_ACT_SEG _GET_ | SegmSdlection SegmentinfoList
INFO
Trig-Segment-Data Confirmed | MDC_ACT_SEG _ TrigSegmDataxXfer- | TrigSegmDataXferRsp
Xfer TRIG XFER Req

If an agent supports the PM-store class, the support of the Get-Segment-Info and Trig-Segment-Data-Xfer
methods is mandatory. Support for the Clear-Segments method is optional and is indicated in the PM-Store-

Capab attribute.

— Clear-Segments:
This method alows the manager to delete the data currently stored in one or more selected PM-
segments. All entries in the selected PM-segments are deleted. If the agent supports a variable number
of PM-segments, the agent may delete empty PM-segments. Additionally, the agent may clear PM-
segments without direction from the manager (e.g., the user of the agent could choose to delete data
stored on the agent); however, if doing so while in an Associated state, the Instance-Number shall
remain empty for the duration of the association. The Instance-Number of all other PM-segments shall
be unaffected by clearing a segment. If this method is invoked on a PM-segment that has the
Operational-State attribute set to enabled, the agent shall reply with a not-allowed-by-object error
(roer) with areturn code of MDC_RET_CODE_OBJ BUSY.

Note that the behavior of the Clear-Segments method is application specific. The method may remove

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

all entries from the specified PM-segment, leaving it empty, or it may remove the defined PM-segment
completely. This behavior is defined in the PM-Store-Capab attribute. For specific applications,
recommendations are defined in corresponding device specializations, making use of the PM-store.

Get-Segment-Info:

This method allows the manager to retrieve PM-segment attributes of one or more PM-segments, with
the exception of the Fixed-Segment-Data attribute which contains the actual stored data and is
retrieved by using the Trig-Segment-Data-Xfer method. In particular, the Get-Segment-Info method
allows the manager to retrieve the Instance-Number attributes of the PM-segment object instances and
their data contents.

Trig-Segment-Data-Xfer:

This method allows the manager to start the transfer of the Fixed-Segment-Data attribute of a specified
PM-segment. The agent indicates in the response if it accepts or denies this request. If the agent accepts
the request, the agent sends Segment-Data-Event messages as described in 6.3.7.5. If this method is
invoked on a PM-segment that has the Operational-State attribute set to enabled, the agent shall reply
with a not-allowed-by-object error (roer) with areturn code of MDC_RET_CODE_OBJ BUSY.

6.3.7.5 PM-store object events

Table 11 defines the potential events sent by a PM-store object:

Table 11 —PM-store object events

Event-info
Event Mode Event-type parameter Event-reply-info
Segment-Data-Event Confirmed MDC_NOTI_ SegmentDataEvent | SegmentDataResult
SEGMENT DATA

— Segment-Data-Event:

This event sends data stored in the Fixed-Segment-Data of a PM-segment from the agent to the
manager. The event is triggered by the manager by the Trig-Segment-Data-Xfer method. Once the data
transfer is triggered, the agent sends Segment-Data-Event messages until the complete Fixed-Segment-
Dataistransferred or the transfer is aborted by the manager or agent. See Transfer PM-segment content
in 8.9.3.4.2 for afull description.

It is encouraged to place as many segment entries contained in a Segment-Data-Event as possible to
reduce the number of messages required for the transfer of the segment.

Support for the event by the agent is mandatory if the agent supports PM-store objects.

6.3.7.6 Other PM-store services

6.3.7.6.1 GET service

Support for the GET service shall be provided by any agent that supports one or more PM-store objects
only while in the Operating state. The manager uses the GET service to retrieve the values of all PM-store

object attributes.

© 1SO 2010 — All rights reserved

33

ISO/IEEE 11073-20601:2010(E)

34

The manager may request the PM-store object attributes of the agent in which case the manager shall send
the “Remote Operation Invoke | Get” command (see roiv-cmip-get in A.10.2) with the handle value of the
PM-store object, as defined in the agent’s configuration. The agent shall respond by reporting its PM-store
object attributes to the manager using the “Remote Operation Response | Get” response (see rors-cmip-get
in A.10.2).

6.3.8 PM-segment class

6.3.8.1 General

An instance of the PM-segment class represents a persistently stored episode of measurement data. A PM-
segment object is not part of the static agent configuration because the number of instantiated PM-segment
instances may dynamically change. The manager accesses PM-segment objects indirectly by methods and
events of the PM-store object.

6.3.8.2 PM-segment class identification

The nomenclature code to identify the PM-segment classisMDC_MOC_PM_SEGMENT.

6.3.8.3 PM-segment class attributes

Table 12 defines the set of PM-segment attributes that are supported for persona health device
communication.

Table 12—PM-segment attributes

Attribute name Attribute 1D Attribute type Remark Qual.

Instance-Number MDC_ATTR_ID_INSTNO InstNumber The Instance-Number isthe M
ID of aspecific PM-segment
object instance. It isused by

the manager to address a PM-
segment.
PM-Segment- MDC _ATTR_ PM_SEG MAP | PmSegmentEntryMap | Thisattribute definesthe M
Entry-Map format and contents of one

stored entry. An entry has an
optionda header containing
information applicableto all
elementsin the entry. The
entry then contains one or
more elements, defined by the
class, metric ID, handle, and
an attribute value map
defining the object attributes
for each element in the PM-

segment.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

Table 12—PM-segment attributes

ISO/IEEE 11073-20601:2010(E)

Attribute name

Attribute | D

Attribute type

Remark

Qual.

PM-Seg-Person-1d

MDC_ATTR PM_SEG_
PERSON_ID

Personid

This standard supports
devices that have smple
support for data from multiple
persons. A person ID isused
to differentiate different
persons. If the PM-gtoreis
ableto store data for multiple
persons, it shal set the pmsc-
multi-person bit in the PM-
Store-Capab attribute. If this
bit is set, all PM-segment
instances contained in the
PM-store shall support the
PM-Seg-Person-Id attribute.
Otherwise, this attribute is not
defined.

Operationa -State

MDC ATTR OP _STAT

Operationa State

This attribute indicates if new
entries are currently being
inserted into this PM-
segment. If this PM-segment
ishaving data actively added
to it, this attribute shall be set
to enabled. Otherwise, it shall
be st to disabled.

Sample-Period

MDC_ATTR TIME_PD_
SAMP

RelativeTime

This atribute defines the
frequency at which entriesare
added to the PM-segment.
This attribute shdll be present
either in the PM-store (in
which caseit appliesto al
periodicdly storing PM-
segments in the PM-store) or
aternatively in each PM-
segment. If valuesare
sampled, then the pmsc-peri-
seg-entries bit in the PM-
Store-Capab attribute shall be
st

Segment-L abel

MDC_ATTR PM_SEG_
LABEL_STRING

OCTET STRING

Thisattributeisan
application-dependent label in
printable ASCI| for the
segment to indicate its
intended use and may be used

for display purposes.

Segment-Start-Abs-
Time

MDC_ATTR TIME_START_
SEG

AbsoluteTime

This attribute defines the start
time of segment.

Segment-End-Abs-
Time

MDC_ATTR_TIME_END_
SEG

AbsoluteTime

This attribute defines the end
time of segment.

Date-and-Time-
Adjustment

MDC_ATTR TIME_ABS_
ADJUST

AbsoluteTimeAdjust

This attribute reports any date
and time adjustments that
occur either dueto aperson’s
changing the clock or events
such as daylight savingstime.
If the agent ever adjuststhe
date and time, this attribute is
reports such adjustment.

©1S0 2010 — All rights reserved

35

ISO/IEEE 11073-20601:2010(E)

36

Table 12—PM-segment attributes

Attribute name Attribute ID Attribute type Remark Qual.
Segment-Usage- MDC _ATTR_SEG _USAGE_ INT-U32 Thisattribute givestheactual | O
Count CNT (current) number of stored

entries.

Segment-Statistics | MDC_ATTR_SEG_STATS SegmentStatistics This attribute defines the (0]
array for reporting minimum,
mean, maximum statistics for
each element to be tagged.

Fixed-Segment- MDC_ATTR_SEG _FIXED_ N/A This attribute defines the M

Data DATA Thedatais stored segment data transferred as an

interna to the device array of entriesin aformeat as
and so thisdatatype specified in the PM-Segment-
never occursin any Entry-Map attribute. Thisis
protocol definition defined here as an opaque
directly. data structure without a
defined data type. Note that
thisattribute is not directly
accessible itisonly
retrievable by the manager
using the PM-store Trig-
Segm-Data-Xfer method.
Confirm-Timeout MDC_ATTR_CONFIRM_ RelativeTime Thisinformational timeout (0]

TIMEOUT

attribute defines the minimum
time that the agent shall wait
for a Response message from
the manager after issuing a
Confirmed Event Report
invoke message before timing
out and transitioning to the
Unassociated state.

Thisis an informational
attribute for the benefit of the
manager. If this attribute is
supplied, it shall match the
actud timeout value that the
agent uses for the Confirmed
Event Report generated from
the PM-store object.

This attribute isinformational
for the manager in the sense
that the manager does not use
this attribute in an actual
implementation of the
protocal (i.e., the manager
does not time out on an agent-
generated Confirmed Event
Report). However, the
manager might wish to use
thisinformation to prioritize
its handling of a*short”
timeout agent over that of a
“long” timeout agent.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Table 12—PM-segment attributes

Attribute name Attribute ID Attribute type Remark Qual.
Transfer-Timeout MDC_ATTR_TRANSFER _ RelativeTime Thistimeout attribute defines | M
TIMEOUT the minimum time that the

manager shall wait for the
complete transfer of PM-
segment information.

If the timeout expires prior to
the reception of the complete
PM-segment, the manager
shall transition to the
Unassociated state as
described in 8.9.5.6.

The Fixed-Segment-Data attribute stores an array of identically formatted entries. In cases where a
measurement is not available at the required time, then the value for a numeric measurement represented by
the (S)FLOAT-type data type shall use the special NaN (not a number) value to indicate an unavailable
value.

The Fixed-Segment-Data attribute may hold very large amounts of data, depending on the agent capabilities
and the application. An agent may choose to restrict the maximum size of the Fixed-Segment-Data attribute
in away that is aligned with the maximum transmission unit of the transport system. In order to support this
type of behavior, a manager shall be able to support the transfer of Fixed-Segment-Data attributes in
multiple application messages.

6.3.8.4 PM-segment object methods

None

6.3.8.5 PM-segment object events

None

6.3.8.6 Other PM-segment services

None

6.3.9 Scanner classes

6.3.9.1 General

A scanner object is an observer and “summarizer” of object attribute values. It observes attributes of metric
objects (e.g., numeric objects) and generates summariesin the form of notification event reports. See Figure
5 for the class hierarchy of the scanner classes. Each class is described in 6.3.9.2 through 6.3.9.5,
respectively.

© 1SO 2010 — All rights reserved 37

ISO/IEEE 11073-20601:2010(E)

Class Scanner J
Scanner
CfgScanner
EpiCfgScanner PeriCfgScanner
Figure5 —Personal health device — DIM — scanner model

The different scanner classes (periodic and episodic) as well as the different instances should be used to
distribute different data types across one or many data flows represented by a scanner instance. A pulse
oximetry application might choose to have a periodic configurable scanner for RT-SA objects with a
Reporting-Interval of 50 ms, a periodic configurable scanner with a Reporting-Interval of 1 s for numeric
and enumeration objects, and an episodic configurable scanner for beat-to-beat metric objects (numeric or
enumeration objects).

6.3.9.2 Scanner class

6.3.9.2.1 General

The scanner classis an abstract class defining attributes, methods, events, and services that are common for
its subclasses. As such, it cannot be instantiated.

The scanner concept provides three different event report notifications: variable format, fixed format, and
grouped format. See 7.4.5 for the reporting of observed object attributes. The event report formats are
described further in 6.3.9.4.5, 6.3.9.5.5, and A.11.5, respectively.

More specialized scanner classes are derived from the scanner base class.

6.3.9.2.2 Scanner class identification

The nomenclature code to identify the scanner classisMDC_MOC_SCAN.

6.3.9.2.3 Scanner class attributes

Table 13 defines the set of scanner attributes that are supported for personal health device communication.

o © I1SO 2010 — All rights reserved
38 S © IEEE 2010 — All rights reserved

Table 13—Scanner attributes

ISO/IEEE 11073-20601:2010(E)

Attribute name

Attribute ID

Attribute type

Remark

Qual.

Handle

MDC_ATTR_ID_HANDLE

HANDLE

Scanners are identified by
handles. This attribute shall
remain unchanged after the
configuration is agreed upon.

Operational -State

MDC_ATTR OP _STAT

Operationa State

This attribute definesif scanner
isactive and can be set by the
manager.

Scan-Handle-List

MDC_ATTR_SCAN_
HANDLE_LIST

HANDLEList

This attribute defines the
metric-derived objects that
might be reported in the Unbuf-
Scan-Report-Var, Buf-Scan-
Report-Var, Unbuf-Scan-
Report-Fixed, Buf-Scan-
Report-Fixed, or any of the
four multiple-person
equivaents. For episodic
scanners, aparticular object is
included in an event report
whenever there are changesin
one or more attribute values.
For periodic scanners, the
scanned objects and attribute
vaues are reported in each
period. The manager shall not
assume the order of the objects
contained in the event reportsis
the same as the order of the
Scan-Handle-List. This
attribute shall be present if any
of these eight reporting styles
are used by the scanner.

Scan-Handle-Attr-
Va-Map

MDC_ATTR_SCAN_
HANDLE_ATTR VAL_MAP

HandleAttrVaMap

This attribute defines the
metric-derived objects, the
attributes, and the order in
which objects and attribute
values are reported in a Unbuf-
Scan-Report-Grouped, Buf-
Scan-Report-Grouped, Unbuf-
Scan-Report-M P-Grouped, or
Buf-Scan-Report-M P-Grouped.
All values shall be present to
maintain a consistent layout of
message. This attribute shall be
present if any of these four
reporting styles are used.

6.3.9.2.4 Scanner object methods

None

6.3.9.2.5 Scanner object events

See the derived class event descriptionsin 6.3.9.4.5 and 6.3.9.5.5.

© 1SO 2010 — All rights reserved

39

ISO/IEEE 11073-20601:2010(E)

40

6.3.9.2.6 Other scanner services
— SET service:

Agents that have scanner derived objects shall support the SET service for the Operational-State
attribute of the scanner objects.

6.3.9.3 CfgScanner class

6.3.9.3.1 General

The CfgScanner classis an abstract class defining attributes, methods, events, and services that are common
for its subclasses. In particular, it defines the communication behavior of a configurable scanner object. As
such, it cannot be instantiated.

6.3.9.3.2 Configurable scanner class identification

The nomenclature code to identify the configurable scanner classisMDC_MOC_SCAN_CFG.

6.3.9.3.3 Configurable scanner class attributes

Table 14 defines the set of scanner attributes that are supported for personal health device communication.

Table 14 —Configurable scanner attributes

Attribute name Attribute D Attributetype Remark Qual.
Confirm-Mode MDC_ATTR_CONFIRM_ ConfirmMode This attribute defines whether M
MODE event reports are sent
confirmed or unconfirmed.
Confirm-Timeout | MDC_ATTR_CONFIRM_ RelativeTime Thisinformational timeout C
TIMEOUT attribute defines the minimum
time that the agent shall wait
for a Response message from

the manager after issuing a
Confirmed Event Report
invoke message beforetiming
out and transitioning to the
Unassociated state.

Thisisan informationa
attribute for the benefit of the
manager. If this attribute is
supplied, it shall match the
actua timeout vaue that the
agent uses for the Confirmed
Event Report generated from
the scanner object.

This attribute is informational
for the manager in the sense
that the manager does not use

this attribute in an actual

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Table 14 —Configurable scanner attributes

Attribute name

Attribute D

Attributetype

Remark

Qual.

implementation of the protocol
(i.e., the manager does not time
out on an agent-generated
Confirmed Event Report).
However, the manager might
wish to use thisinformation to
prioritizeits handling of a
“short” timeout agent over that
of a“long” timeout agent.

Transmit-Window | MDC_ATTR_TX_WIND

INT-U16

This attribute defines
informative data provided by
the agent that may help a
manager optimizeits
configuration. The Transmit-
Window represents the number
of unacknowledged confirmed
event reports that the agent will
allow to be outstanding. For
this version of this standard,
the attribute shall have only a
vaueof 1.

Figure 6 illustrates the handling of the optional transmit queue when Transmit-Window is greater than 1.

act Scanner-New-Event

New Event / Data

Is Transmit-Window full? e

No

Send Event Report

Done

Yes Delay Event / Data
processing

Figure 6

—Configurable scanner Transmit-Window handling

6.3.9.3.4 Configurable scanner object methods

None

© 1SO 2010 — All rights reserved

41

ISO/IEEE 11073-20601:2010(E)

6.3.9.3.5 Configurable scanner object events

See the derived class event descriptionsin 6.3.9.4.5 and 6.3.9.5.5.

6.3.9.3.6 Other configurable scanner services

None

6.3.9.4 EpiCfgScanner class

6.3.9.4.1 General

The EpiCfgScanner class represents a class that can be instantiated. Epi CfgScanner objects are used to send
reports containing episodic data, that is, data not having a fixed period between each data value. A report is
sent whenever one of the observed attributes changes value; however, two consecutive event reports shall
not have atimeinterval less than the value of the Min-Reporting-Interval attribute.

6.3.9.4.2 Episodic configurable scanner class identification

The nomenclature code to identify the episodic configurable scanner class is MDC_MOC _SCAN_CFG _
EPI.

6.3.9.4.3 Episodic configurable scanner class attributes

Table 15 defines the set of episodic configurable scanner attributes that are supported for personal health
device communication

Table 15—Episodic configurable scanner attributes

Attribute name Attribute 1D Attribute type Remark Qual.
Min-Reporting- MDC_ATTR_SCAN_REP_PD_ | RelativeTime This attribute provides an (0]
Interval MIN estimate of the expected

minimum time between any
two successive event reports.

6.3.9.4.4 Episodic configurable scanner object methods

None

6.3.9.4.5 Episodic configurable scanner object events

Table 16 defines the potential events sent by an episodic configurable scanner object. The event reports are
classified as unbuffered since the agent sends the event when the episode occurs and it does not need to
buffer the information waiting for the next periodic transmission. If an agent supports an episodic
configurable scanner, it shall support at least one of the eventsidentified in Table 16.

© I1SO 2010 — All rights reserved
42 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

Table 16 —Episodic configurable scanner object events

Event-

Event M ode Event-type Event-info parameter reply-info
Unbuf-Scan-Report- Confirmedor | MDC_NOTI_UNBUF_SCAN_ | ScanReportinfoVar —
Var unconfirmed REPORT VAR
Unbuf-Scan-Report- Confirmedor | MDC_NOTI_UNBUF_SCAN_ | ScanReportinfoFixed —
Fixed unconfirmed REPORT FIXED
Unbuf-Scan-Report- Confirmedor | MDC_NOTI_UNBUF_SCAN_ | ScanReportInfoGrouped —
Grouped unconfirmed REPORT_ GROUPED
Unbuf-Scan-Report- Confirmedor | MDC_NOTI_UNBUF_SCAN_ | ScanReportinfoMPVar —
MP-Var unconfirmed REPORT MP VAR
Unbuf-Scan-Report- Confirmedor | MDC_NOTI_UNBUF_SCAN_ | ScanReportInfoMPFixed —
M P-Fixed unconfirmed REPORT MP FIXED
Unbuf-Scan-Report- Confirmedor | MDC_NOTI_UNBUF_SCAN_ | ScanReportInfoM PGrouped —
MP-Grouped unconfirmed REPORT MP GROUPED

NOTE 1—For variable and fixed format reports, if no attribute of an object changes its value, then no data of this object
areincluded in the scan report.

NOTE 2—Because an episodic scanner does not buffer any changes and does not have an update period specification

attribute (this is not needed because updates are sent on value changes), attribute change notifications shall be sent at a

rate that ensures no data loss. For example, to ensure that no metric value changes more than once between scans of
object attributes, the episodic scanner implementation should check for changes at arate at least as fast as the shortest
update period of the metric instances in the scanner’ s scan list.

— Unbuf-Scan-Report-Var:
This event style reports summary data about any objects and attributes that the scanner monitors. The
event is triggered whenever data values change and the variable message format (type/length/value) is
used when reporting data that changed.

— Unbuf-Scan-Report-Fixed:
This event style is used whenever data values change and the fixed message format of each object is

used to report data that changed.
— Unbuf-Scan-Report-Grouped:

This style is used when the scanner object is used to send the data in its most compact format. The
Handle-Attr-Val-Map attribute describes the objects and attributes that are included and the format of

the message.
— Unbuf-Scan-Report-M P-Var:

Thisis the same as Unbuf-Scan-Report-Var, but allows inclusion of data from multiple persons.

— Unbuf-Scan-Report-M P-Fixed:
Thisis the same as Unbuf-Scan-Report-Fixed, but allows inclusion of data from multiple persons.

— Unbuf-Scan-Report-M P-Grouped:
Thisis the same as Unbuf-Scan-Report-Grouped, but allows inclusion of data from multiple persons.

6.3.9.4.6 Other episodic configurable scanner services

None

© 1SO 2010 — All rights reserved

43

ISO/IEEE 11073-20601:2010(E)

6.3.9.5 PeriCfgScanner class

6.3.9.5.1 General

The PeriCfgScanner class represents a class that can be instantiated. PeriCfgScanner objects are used to
send reports containing Periodic data, that is, data sampled during fixed periods. It buffers any data value
changes to be sent as part of a periodic report. Event reports shall be sent with a time interval equa to the
Reporting-Interval attribute value.

The number of observations for each metric object is dependent on the metric object’s update interval and
the scanner’s Reporting-Interval.

Example: A periodic configurable scanner is set up to “scan” two metric objects with a Reporting-Interval
of 1 s. The two objects update their corresponding observed value periodically with an interval of 1 sand %2
s, respectively. The periodic configurable scanner then issues event reports every second containing one
observation scan of metric object #1 and two observation scans of metric object #2.

6.3.9.5.2 Periodic configurable scanner object identification

The nomenclature code to identify the periodic configurable scanner class is MDC_MOC_SCAN_CFG _
PERI.

6.3.9.5.3 Periodic configurable scanner object attributes

Table 17 defines the set of scanner object attributes that are supported for personal health device
communication.

Table 17 —Periodic configurable scanner object attributes

Attribute name Attribute D Attributetype Remark Qual.
Reporting-Interval | MDC_ATTR_SCAN_REP PD | ReativeTime Reporting period of the event M
reports.

6.3.9.5.4 Periodic configurable scanner object methods

None

6.3.9.5.5 Periodic configurable scanner object events

Table 18 defines the potential events sent by a periodic configurable scanner object. If an agent supports a
periodic configurable scanner, it shall support at least one of the eventsidentified in Table 18.

© I1SO 2010 — All rights reserved
44 © IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Table 18 —Periodic configurable scanner object events

Event-
Event M ode Event-type Event-info parameter reply-info
Buf-Scan-Report-Var | Confirmedor | MDC_NOTI_BUF_SCAN_ ScanReportinfoVar —
unconfirmed REPORT VAR
Buf-Scan-Report- Confirmedor | MDC_NOTI_BUF_SCAN_ ScanReportinfoFixed —
Fixed unconfirmed REPORT FIXED
Buf-Scan-Report- Confirmedor | MDC_NOTI_BUF_SCAN_ ScanReportInfoGrouped —
Grouped unconfirmed REPORT_ GROUPED
Buf-Scan-Report-MP- | Confirmedor | MDC_NOTI_BUF_SCAN_ ScanReportinfoMPVar —
Var unconfirmed REPORT MP VAR
Buf-Scan-Report-MP- | Confirmedor | MDC_NOTI_BUF_SCAN_ ScanReportinfoM PFixed —
Fixed unconfirmed REPORT MP FIXED
Buf-Scan-Report-MP- | Confirmedor | MDC_NOTI_BUF_SCAN_ ScanReportinfoM PGrouped —
Grouped unconfirmed REPORT MP GROUPED

All of the event report styles listed in Table 18 are buffered equivalents to their unbuffered counterparts in
6.3.9.4.5. One difference is that the scanner buffers data over the reporting interval and sends a single
message at the end of the interval. A second difference is that the same objects and attributes are included
in each report regardless of whether their values have changed.

6.3.9.5.6 Other periodic configurable scanner services

None

6.4 Information model extensibility rules

The information model is extended in an implementation by using additional object attributes for the
objects defined in this standard that are defined in 1SO/IEEE 11073-10201:2004 [B13].

Another extension available is to use private (e.g., manufacturer-specific) object attributes and/or methods
for the objects defined in this standard. Private attributes shall be identified by assigning homenclature
codes from the private numbering space (0xF000 — OxFFFF) within the corresponding partition as defined
in ISO/IEEE 11073-10101 [B12].

An implementation of a manager system shall process a message fully by skipping any unknown attributes
(e.g., vendor-specified attributes) and ignoring the assigned data values of such attributes, without protocol
errors. The implementation may log the occurrence of such attributes (e.g., in log files) as appropriate.

7. Personal health device service model

7.1 General

The service model defines the conceptual mechanisms for data exchange services. These services are
mapped to messages that are exchanged between the agent and manager. Protocol messages within the
ISO/IEEE 11073 family of standards are defined in ASN.1. The messages defined in this standard can
coexist with messages defined in other standard profiles defined in the ISO/IEEE 11073 family of
standards.

© 1SO 2010 — All rights reserved

45

ISO/IEEE 11073-20601:2010(E)

46

The protocol messages are structured as follows:

— The upper layer protocol frame structure separates the connection-management-related command
messages (association messages) from the upper layer object-related messages (data and service
communication).

— The upper layer frame structure, in particular, provides a message type and length field.

— The protocol, when using MDER, allows agents to store predefined transmission templates and modify
just the fixed location, varying parts before sending.

7.2 Association service

The association service manages the association between an agent and manager. The following messages
are part of the association service:

— An Association Request establishes an upper layer connection over an existing transport connection.
— An Association Response accepts the Association Request if the connection is bidirectional.

— A Release Request terminates an upper layer association gracefully.

— A Release Response confirms termination of the upper layer association if the connection is
bidirectional.

— An Abort terminates an upper layer association immediately and without response. This is usually sent
asaresult of afailure.

7.3 Object access services

Object access services are used to access the information objects defined in the DIM. These services are, in
particular, used for the data reporting and data access functions provided by an agent.

The following generic object access services are supported:

— GET service: used by the manager to retrieve the values of the agent MDS aobject and PM-store
attributes. The list of MDS object attributes is given in 6.3.2.3, and the list of PM-store attributes is
givenin 6.3.7.3

— SET service: used by the manager to set values of attributes of the agent’s object. Currently, only the
scanner objects support the SET service (see 6.3.9.2.6).

— EVENT REPORT service: used by the agent to send configuration updates and measurement data to
the manager. The list of event reportsisgivenin 6.3.2.5, 6.3.7.5, 6.3.9.4.5, and 6.3.9.5.5.

— ACTION service: used by the manager to invoke actions (or methods) supported by the agent. An
example is MDS-Data-Request action, which is used to request measurement data from the agent. The
list of methodsisgivenin 6.3.2.4 and 6.3.7.4.

Access to agent objects via the Get request shall be considered invalid unless one of the following
conditionsis true:

— The agent is in the Operating state, and the GET references the MDS object or an object handle that
has been declared during configuration.

— Theagent isin the Associated state, and the GET references the MDS object.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

A manager receiving a confirmed event report from an agent shall respond with either a rors-cmip-
confirmed-event-report or an appropriate roer error message with a suitable return code.

If arequest for a confirmed action is received by an agent that does not support the action, the agent shall
reply with an error (roer) with an error value of no-such-action. If an error occurs in executing a confirmed
action, then the error may be indicated by returning an error (roer) with an appropriate error value and,
where appropriate, additional information on the error may be included in the parameter field using one of
the return codes from the return codes partition.

7.4 Specific application of object access EVENT REPORT services for personal
health devices

7.4.1 General

The EVENT REPORT service is the primary mechanism for the agent to report both measurement and
configuration data. Event reports in this standard are a property of the MDS and scanner objects. These
specific event reports can have various forms and properties, as defined in 7.4.2 through 7.4.7.

7.4.2 Confirmed and unconfirmed event reports

The sender of an event report may optionally require a confirmation from the receiver.

7.4.3 Configuration event report

7.4.3.1 General

Subclauses 7.4.3.2 through 7.4.3.4 describe configurations, configuration event reports, and device
specializations used to describe the objectsin the agent.

7.4.3.2 Agent device configuration

The set of objects and attributes that exists in an agent denotes the agent device configuration and is
associated with a Dev-Configuration-Id value (see Table 2). In case an agent owns multiple device
configurations, the assigned Dev-Configuration-ld values shall be locally unique. During the lifetime of an
association, the configuration of an agent shall remain fixed, that is, the set of objects shall remain fixed.
However, the agent may add new attributes to an object or change attribute values as described in 7.4.3.3.
An agent that requires a different configuration shall release the association and establish a new association
with the desired configuration.

7.4.3.3 Configuration event report

The configuration that the agent wants to use for the duration of the association to a manager is indicated by
using the Dev-Configuration-Id value for the dev-config-id field in Association Request message. If the
manager does not already know the agent’s device configuration (e.g., based on a previous association
phase), the manager asks for the agent’s device configuration. The agent transfers its configuration to the
manager using a configuration event report. The report describes all the objects of the agent’s device
configuration along with the associated Dev-Configuration-1d value. For the duration of the association, the
agent’s configuration is fixed with respect to the number of objects. In case the agent intends to use a
different configuration or wants to change the existing configuration by adding or removing objects, the
agent shall release the association and re-associate with a new configuration.

© 1SO 2010 — All rights reserved 47

ISO/IEEE 11073-20601:2010(E)

For each object, the configuration also contains attributes used by the object. Typically, the infrequently
changing attributes are included within the configuration report and dynamic values, such as measurements,
are sent in later measurement event reports. The agent may add new attributes to an object or change
attribute values during the association without sending a new configuration. Adding new attributes can only
be achieved using a variable format event report (see 7.4.5 for details on event report formats). Changing
attribute values may use variable, fixed, or grouped event reports depending on the configuration.

Changes to an existing configuration, whether extended or standard, are effective only for the duration of
that association and are not considered persistent changes to the configuration. Therefore, the Dev-
Configuration-Id represents the configuration as agreed upon at configuration time. In subsequent
associations when a previously used Dev-Configuration-1d is specified, the configuration being referenced
does not include any changes made during a prior association. Persistent changes to a configuration shall be
made only by re-associating and specifying a different Dev-Configuration-ld and the new configuration
desired at configuration time.

A manager uses the configuration information to create an equivalent model of the agent’s information.
Thisinformation is then updated by the agent as measurements are collected.

7.4.3.4 Device specializations

The ISO/IEEE 11073-104zz device specializations define mandatory objects and attributes that shall exist
within an agent’s configuration. Furthermore, each of the specializations defines mandatory elements (e.g.,
including mandatory actions and methods) of the service and communication models, which have to be
supported by an agent following that specialization.

7.4.3.5 Types of configuration

To reduce transmission message sizes, this standard introduces the ability to inform the manager of the
agent’s configuration in an efficient fashion. There are two types of configuration: standard and extended.

7.4.3.5.1 Standard configuration

A standard configuration is one that is specified in one of the ISO/IEEE 11073-104zz specidizations and
that has a Dev-Configuration-1d value assigned from the range between standard-config-start and standard-
config-end, inclusive. That range is further subdivided by reserving 100 IDs for each 1SO/IEEE 11073-
104zz specialization in the range from zz x 100 to zz x 100 + 99, inclusive. For example, the range 1500—
1599 is reserved for IEEE Std 11073-10415 [B4]. All unused values in the standard range are reserved for
future use. A manager that supports one of the |SO/IEEE 11073-104zz device specializations knows all the
standard device configurations specified in that particular specialization. Every time an agent requests to
associate with that manager using a Dev-Configuration-1d value of a standard configuration, the manager
can accept the association without asking for the agent’s configuration since it is aready known. After
successful association, both manager and agent enter the Operating mode.

It is important to note that standard configuration devices are required to send their configuration, if
requested. This requirement covers a case where an agent associates with a manager that does not have
preconfigured knowledge of the standard configuration (e.g., the manager is version 1.0 and the device
specialization is version 2.0 or greater). How well the manager is able to utilize the configuration depends
on the manager’ s implementation.

© I1SO 2010 — All rights reserved
48 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

If an agent uses a Dev-Configuration-ld value assigned to a standard configuration, it shall also fulfill all
additional mandatory elements (e.g., including mandatory actions and methods) of the service and
communication models as defined in the corresponding device specialization.

7.4.3.5.2 Extended configuration

In extended configurations, the agent’s configuration is not standard; it might have a different set of
objects, different attributes present, and/or different attribute values. An agent implementing extended
configuration(s) shall select a unique Dev-Configuration-Id value from the range between extended-config-
start and extended-config-end, inclusive for each extended configuration. At association time, the agent
sends the Dev-Configuration-Id to identify the agent’s selected configuration for the duration of the
association. If the manager already understands that configuration either because it was preloaded via an
installation program or the agent previously associated with the manager, then the manager shall respond
with the configuration accepted response, and no further configuration information needs to be sent.
However, if the manager does not know the agent’s configuration, the manager shall respond with an
accepted-unknown-config response, and the agent shall transmit its configuration information by sending a
configuration event report. See 8.7 and 8.8 for full details on associating and configuring procedures. Once
the manager has the configuration, the agent may transmit measurement data. To save association time, the
same Dev-Configuration-ld should be used by an agent for subsequent associations provided the device
configuration remains the same.

Unlike standard configurations, two agents with the same extended Dev-Configuration-ld do not
necessarily represent the same configuration. A manager shall differentiate extended configurations on a
per-agent basis. An agent’s System-1d may be used to differentiate extended configurations since System-1d
is mandatory, required to be unique, and sent during association; however, other techniques such as
manufacturer/model/serial number may be used instead as long as they do not lead a manager to use an
incorrect configuration for an agent.

In principle, an agent having an extended configuration supports zero, one, or multiple device
speciaizations as defined in the ISO/IEEE 11073-104zz specifications. In case it supports one or more
device specidlizations, it shall implement all mandatory and a valid choice of conditional items (including
objects, attributes, actions, and methods) specified in the respective specializations.

7.4.4 Agent- and manager-initiated measurement data transmission

Agent-initiated measurement data transmission is sent by the agent, for example, as a result of a new
measurement that is taken.

Manager-initiated measurement data transmission is explicitly requested by the manager by issuing a
command (i.e, MDS-Data-Request) to instruct the agent to start or stop sending measurement data.
Dependent on the capability of the agent, the time period while this reporting mode is active is configurable
(e.0., fixed period or always while associated).

A manager shall support receipt of both agent- and manager-initiated measurement data transmission from
an agent. An agent may support generation of either one or both agent- and manager-initiated measurement
data transmission.

In both agent- and manager-initiated measurement data transmission, event reports are used to carry the
measurement data.

© 1SO 2010 — All rights reserved 49

ISO/IEEE 11073-20601:2010(E)

7.4.5 Variable, fixed, and grouped format event reports

Event reporting can take on three styles: variable format, fixed format, or grouped format. Figure 7 shows
the relationship between each of the message formats.

The variable format event report explicitly defines each reported attribute by including the attribute
identification field, the value length, and the value in the message. This approach provides flexibility for
including a different set of attributes per event report but at the expense of message overhead.

The fixed format event report is optimized by defining the message format in the Attribute-Vaue-Map of
the object in a previous configuration message before transfer commences. When an agent transmits datain
a fixed format event report, it shall report the object handle and the attribute values in the same order and
size as specified in the Attribute-Vaue-Map. In this way, the overhead of sending attribute identification
and length in each event report is avoided. On receipt of a fixed format event report, the manager uses the
object handle to retrieve the Attribute-Value-Map previoudly given at configuration time to know how to
extract the data.

The grouped format event report is further optimized by defining an event report's message formet,
containing one or more objects, in the scanner object’s Handle-Attr-Val-Map in a separate configuration
message before transfer commences. When an agent transmits data in a grouped format event report, it shall
report the scanner object’s handle along with the scanned objects’ attribute values in the same order and
size as specified in the Handle-Attr-Va-Map. In this way, the overhead of sending the scanned object’s
handles, their attribute identification, and data lengths in each event report is avoided. On receipt of a
grouped format event report, the manager uses the scanner object’s handle to retrieve the Handle-Attr-Val-
Map previoudly given at configuration time to know how to extract the data.

A manager shall support variable format, fixed format, and grouped format event reports. An agent may
support any or all of variable format, fixed format, and grouped format event reports. The manager learns
which format(s) the agent might use by inspecting the Attribute-Value-Map of objects defined in the MDS-
Configuration-Event from the agent or by inspecting the Handle-Attr-Val-Map attribute for scanner objects
defined in the MDS-Configuration-Event.

7.4.6 Single-person and multiple-person event reports

Agents designed to operate in an environment where data may be collected from multiple people may use
the multiple-person event report to transmit all the data from all the people in a single event. Where the
functionality is not required, the agent may use the single-person event report for reduced overhead.

A manager shall support both single-person and multiple-person event reports. An agent may support either
one or both single-person and multiple-person event reports. Subclause A.11.5 describes the formats for
single-person and multiple-person event reports.

© I1SO 2010 — All rights reserved
50 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

Comparision between different reporting formats

Obj—handle X ———— 1' 2 bytes (Using MDER) ‘

Attribute ID x_y T :
Len gth Xy _r;__“_"'l 4 bytes (Using MDER) ‘
Variable Format Fixed Format Grouped Format
: N (N N
| Obj-handle 1 | Obj-handle 1
Attribute ID 1_1
Length 1_1I
| Value_1_1 | | Value_1_1 | | Value_1_1 |
Attribute ID 1_2
Length 1 2
[Value 1 2 | | Value 1 2 | | Value 1 2 l
Attribute ID 1_3
Length 1 3
Value 1_3 | | Value_1_3 | | Value_1_3 |
[Obj_handie 2 |:> [Obj_handle] |:>
Attribute ID 2_1
Length2_1
‘ Value 2 1 | | Value 2 1 | | Value 2 1 ‘
| Obj_handle n | Obj_handle n
Attribute ID n_1
Lengthn_1
l Value_n_1 | | Value n_I | | Value n_1 ‘
Attribute ID n_2
Lengthn_2
[Value_n_2 | | Value_n_2 | | Value_n_2 ‘
\ Y K 2/ \ 2/
Figure7 — Variable format, fixed format, and grouped format relationships

7.4.7 Temporarily stored measurements

An agent may optionally store a small number of measurements in local memory while it is not connected
to a manager system (i.e., temporarily stored measurements). When the agent can subsequently establish a
connection with the manager, all previously stored measurements are transferred to the manager.

NOTE—A typical example for temporarily stored measurementsis a weighing scale: new measurements are performed
infrequently. The scale is not connected to a manager, and it powers down after the measurement rather than waiting
indefinitely for the manager and using up energy.

For the support of temporarily stored measurements, the following behavior shall apply for the agent
system:

© 1SO 2010 — All rights reserved 51

ISO/IEEE 11073-20601:2010(E)

— Only metric-derived objects that are not RT-SAs (e.g., numeric and enumeration objects) are supported
as temporarily stored measurements.

— The use of time stamp attributes (i.e,, Date-and-Time, Relative-Time, or HiRes-Relative-Time) is
reguired for temporarily stored measurements.

— Theagent shall not send temporarily stored measurements if the time stamp information is known to be
inaccurate (e.g., if the time base used to time stamp the values has changed between measurements by
an amount significant for the type of measurement) unless it includes the appropriate Date-and-Time-
Adjustment at the beginning of the event report.

— Temporarily stored measurements are included in any of the defined event report mechanisms
(manager- or agent-initiated; grouped, fixed, or variable format; and single- or multiple-person).

— After transmitting the temporarily stored measurements to the manager, the agent should delete the
stored measurements from its local memory. The agent should ensure ownership of the measurements
is successfully transferred to the manager by using confirmed event reports.

— To limit the amount of data transported by this mechanism, the agent shall provide no more than
25 temporarily stored measurements in any one event report. If storage of more than 25 measurements
is required, the PM-store mechanism should be used for archiving measurements.

8. Communication model

8.1 General

Generally speaking, the expected topology is one or more agents communicating over point-to-point
connections to a manager. If a manager wants to support multiple and simultaneous agents (e.g., using a
Bluetooth piconet), then the manager shall be capable of handling multiple connection indications and
separate associations from each of these agents.

Any agent that supports multiple modalities (device specializations) may choose to generate a single
connection and association to a manager or to generate multiple connection indications and associations
(e.g., one for each modality) to a manager. However, if an agent chooses to implement multiple connection
indications and associations, object instances in the different associations shall be completely independent
just as if the associations were implemented by different devices. As an example, the MDS object for each
connection indication and association must act as separate, independent agents.

8.2 System context

The communication profile defined in this standard takes into account the specific requirements of personal
health agents and managers that are typically used in mobile environments or a person’s home. The
following assumptions are made regarding the services and features that shall be provided by the transport
layers. Additionally, the context of the system outside of this communications profile (i.e., the other non-
personal health device/supporting application layer functionality) and its relationship to the assumptions of
the transport layers are also covered.

This standard assumes that transport technologies are feature rich and takes a generic view of transport
technologies to alow their features to be used, leveraged, and exploited natively. If the transport is not
natively intelligent, then a“shim” is added to meet the required characteristics.

© I1SO 2010 — All rights reserved
52 © IEEE 2010 — Al rights reserved

PHD Optimized
Exchange Protocol
Functionality

Other non-PHD/
supporting
functionality

Multiple transport technologies

Figure 8

—System context

ISO/IEEE 11073-20601:2010(E)

Application layers
(aka “upper layers™)

Transport layers
(aka “lower layers”)

This standard utilizes the concept of a “type” to group and differentiate the services offered by available
transport technologies that have been profiled for use by the ISO/IEEE 11073 family of standards.
Specifically, the ISO/IEEE 11073 family of standards recognizes the following transport profile types:

— Type 1: Transport profiles that contain both “reliable” and “best-effort” transport services, where there
shall be one or more virtual channels of reliable transport services and zero or more virtual channels of

best-effort transport services

— Type 2: Transport profiles that contain only a unidirectional transport service

— Type 3: Transport profiles that contain only a best-effort transport service, where there shall be one or
more virtual channels of best-effort transport services

The reason the transport profile types are significant is that the different transport services offered by the
transport profile types have an effect on the implementation of some upper layer functionality. In particular,
they have an effect on the implementation of this standard’ s confirmed service mechanism. This standard is
defined for use only with Type 1 transport profiles.

For a more complete description of the various transport profile types and how they interact with the

confirmed and unconfirmed service mechanisms, refer to Annex D.

8.3 Communications characteristics

8.3.1 General

For this standard, Type 1 transport profiles shall be used.

For this standard, each device shall support a primary virtual channel. A primary virtual channel shall be a
reliable virtual channel (i.e., areliable transport service) from the Type 1 transport profile.

The primary virtual channel shall be used for the following:

— All messages related to the association procedure

— aare, aarq, rlre, rirq, abrt

— All messages related to the confirmed service mechanism

© 1SO 2010 — All rights reserved

53

ISO/IEEE 11073-20601:2010(E)

54

— prst.roiv-cmip-confirmed-action,
prst.roiv-cmip-confirmed-set

prst.roiv-cmip-confirmed-event-report, prst.roiv-cmip-get,

— prst.ror s-cmip-confirmed-action,
prst.ror s-cmip-confirmed-set

prst.ror s-cmip-confirmed-event-report, prst.ror s-cmip-get,

— All messages related to fault or abnormal conditions
— roer, rofj

For this standard, each device may support one or more secondary virtual channels. Each secondary virtual
channel may be either a reliable virtual channel or a best-effort virtual channel from the Type 1 transport
profile.

The primary virtual channel or any secondary channel(s) may be used for messages related to the
unconfirmed service mechanism.

— prst.roiv-cmip-action, prst.roiv-cmip-event-report, prst.roiv-cmip-set

Established by PHD association procedure

Agent Manager

Application n PHD virtual channels are Application
layer possible, each with independent layer

.: .l communications characteristics.

Offered transport services

Type 1
transport
profile

Type 1

transport \ ,9
K

yE

profile
—General communications model

Figure 9

In general, the term metadata means data about data. In the context of IEEE 11073-20601 communications
characteristics, metadata is used to mean supporting information or data relating to the application protocol
data unit (APDU). Examplesinclude the following:

— Transport-technol ogy-specific address for the delivery of a given APDU to a given agent or manager
— Reliahility and/or latency needs of agiven APDU

— Size or length of agiven APDU

Some metadata describe communication characteristics that are represented as a single value that
encompasses a wide range of possible values. With respect to the general metadata examples above, some
specific examples are as follows:

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

— APDU-metadata.address (for an USB end point) = 1 — 1023
— APDU-metadata.address (for an 1Pv4 network) = 0.0.0.0 — 255.255.255.255
— APDU-metadata.size = 1 — 64512

Other metadata describe communication characteristics that are represented as a single value but that only
have a few discrete, possible values. With respect to the general metadata examples above, some specific
examples are as follows:

— APDU-metadata.latency = (10ms | 100ms | 1sec | 10sec)
— APDU-metadata.reliability = (high | medium | low)
— APDU-metadata.bandwidth = (100bps | 1Kbps | 10K bps | 100K bps | 1M bps)

The following subclauses describe the common characteristics (see 8.3.2) and the unique characteristics of
reliable (see 8.3.3) and best-effort (see 8.3.4) of the virtual channels as applied to this standard.

8.3.2 Common communications characteristics

A number of common communications characteristics are applicable to both reliable and best-effort
communications:

a) AnAPDU may be processed in any manner (e.g., part by part asthe APDU arrivesor asa
complete buffered APDU in memory), but the APDU shall be processed so that its effects are as
an atomic transaction.

b) APDUs may be segmented and reassembled during transport, or they may be sent as a complete
unit.

c) APDUSs, in the agent-to-manager direction, shall be no larger than 63K (64 512) bytes in size.
Specific device specializations or implementations may evaluate the messages exchanged to
determine a specific implementation size for a manager receive buffer that is smaller than the
maximum agent-to-manager APDU size. If a manager receives a larger APDU, it shall reply
with an error (roer) code of protocol-violation.

d) APDUSs, in the manager-to-agent direction, shall be no larger than 8K (8192) bytes in size.
Specific device specializations or implementations may evaluate the messages exchanged to
determine a specific implementation size for an agent receive buffer that is smaller than the
maximum manager-to-agent APDU size. If an agent receives alarger APDU, it shall reply with
an error (roer) code of protocol-violation.

€) The overadl length of the APDU shall be passed to and from the communications layers as
metadata.

f) The communications layer shall indicate the overal length of the APDU to its peer
communications layer.

8.3.3 Reliable communications characteristics

For a communications technology/method to be considered reliable and usable by the Optimized Exchange
Protocol, the following characteristics apply:

g) APDUSs shall be received in the order they are sent.

© 1SO 2010 — All rights reserved 55

ISO/IEEE 11073-20601:2010(E)

56

h) APDUs shall be free of detectable errors.

i) APDUs shal not be duplicated.

j) APDUs shall not be missing.

k) APDUsare generally sent in an expeditious manner, but may be delayed due to retries.

[) The communications layers should provide a mechanism to indicate to the application layer
when a complete APDU has been received.

m) The communications layers shall provide a mechanism to indicate to the application layer when
a connection path between an agent and a manager is established.

n) The communications layers should provide a mechanism to indicate to the application layer
when a connection is terminated or disconnected.

0) The communications layers shall provide a mechanism to indicate to the application layer when
it isunable to send an APDU.

p) Fow control between the sending and receiving application shall be supported for complete
APDUSs. The lower layers may implement flow control for smaller subsets of the APDU.

8.3.4 Best-effort communications characteristics

When a communications technology does not meet the criterion of a reliable communications channel as
described above, it is termed best-effort by the Optimized Exchange Protocol. The following characteristics
aretypical of abest-effort channel:

a An APDU may not be delivered in the order in which it was sent. It is possible for the
communication channel itself, independent of the operation of a personal health device
transmitter, to misorder packets.

b) AnAPDU may belost or duplicated.

c) APDUs may arrive at arate that causes buffer exhaustion at the receiver.

8.4 State machines

8.4.1 Agent state machine

Figure 10 shows an overview of the agent state machine.
The detailed agent state table is described in Annex E.2.
Table 19 provides a description of each of the states.

Table 20 provides a description of each of the state transitions.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

‘—> Disconnected

Transport connect indication Transport disconnect indication
 J
Connected
Disassociating a Associated N
< assocRelReg
+entry / TxAssocRelReq Operating
TxAsspcAbort RxAsso¢RelReg/
RxAssocAbort | TXAssotRelRsp
v RxAssocRel Rsp A
Unassociated _, TxAssocAbort
RxAssocAbort VSR
- .
Configuring RxConfigEventReportRsp
_, RxAssocRelReg/ (accepted-config)
" TxAssocRelRsp
Waiting Approval
A
Req
RxAssocAbort
Or RxConfigEventReportRsp
TxAssocAbort (unsupported-config)
TxA Rsp
(rejected)

Y TxConfigEventReportReq

Associating
+ entry / TxAssocReq RxAssocRsp o . [Sending Config

'(accepted-unknown-config

Figure 10 —Agent state machine diagram

Table 19—Agent state description

State Description
Disconnected When an agent initiadly powers on, it is assumed to start in the Disconnected state, which
indicates that a trangport connection between the agent and manager was not established. After a
transport connection is established, it is possible to return to the Disconnected state if the transport
connection isintentionally terminated or unintentionally disconnected.
Connected When a transport connection is established, the agent receives a Transport Connection Indication
from the transport layer, causing a transition into the Connected state (see 8.4.3). The agent
remains in the Connected state as long as there is a trangport connection established. Initially, the
agent startsin the Unassociated state, a substate of the Connected state.

© 1SO 2010 — All rights reserved 57

ISO/IEEE 11073-20601:2010(E)

Table 19—Agent state description

State Description
Unassociated The agent is in the Unassociated state whenever it does not have an application layer association
with amanager. This situation can occur due to any of the following:
— A new connection was just established.
— The manager rejects an Association Request.
— Either party releases or aborts an active association at any time while connected.
The agent remains in the Unassociated state until the agent determines that it should begin
associating with the manager.
Associating Whenever the agent determines it should create an association, the agent moves to the Associating
state and sends an Association Request to the manager (see 8.6). If an association fails, but
aternative association parameters are possible, the agent may attempt to associate with each new
set of association parameters. In the case of timeout, the agent shall attempt to associate up to the
maximum retry count is reached or association is successful.
Associated When the manager determines that the agent and manager share common versions and protocols,
it sends an Association Response with an “accepted” parameter (see 8.7.3.3) to the agent. When
the agent receives this message, it moves to the Associated state. It remains in this state until the
agent sends or receives a release or abort request for the association. The initial substate when
entering the Associated state depends on whether the manager responded to the Association
Reguest with an indication that the agent’s configuration is recognized or not.
Operating When a manager recognizes an agent’s configuration, it informs the agent with an Association
Response with an “accepted” parameter to cause the agent to move into the Operating state.
Alternatively, if the configuration is not recognized, the configuration is transferred. If the
configuration is accepted, the agent enters the Operating state. See 8.9 for a description of
possible procedures while in the Operating state.
Configuring When the manager does not recognize the agent’s configuration, it informs the agent by sending
an Association Response with an “accepted-unknown-config” parameter to indicate that the
association was accepted but that the configuration needs to be transmitted. The agent remainsin
the Configuring state until the agent transfers the configuration information and the manager
acknowl edges the configuration (see 8.7.6).
Disassociating Whenever the agent determines it should release the current association, the agent moves to the
Disassociating state and sends an Association Release Request to the manager (see 8.10). In cases
of atimeout, the agent sends an abort request and moves to the unassociated state.

Table 20 —Agent state transition description

Transition Description
Transport Connection Indication | The Transport Connection Indication transition occurs whenever the transport (or a
supporting shim layer) indicates that a connection has been established.

assocReq Whenever the agent determines that it wishes to attempt associating with the
manager, it transitions to the Associating state.

RxAssocRsp(accepted or As the agent attempts to associate with the manager, it sends an Association

accepted-unknown-config) Request message (or multiple in timeout conditions) and awaits an Association

Response from the manager. When it receives an approval of association, the agent
transitions to the Associated state.

RxAssocRsp(rejected) If the manager determines that it is not able to associate with the agent after
receiving an Association Request, it sends an Association Response with an
AssociateResult code of rejected, either permanently or temporarily, to cause the
agent to transition back to the Unassociated state.

RxAssocRelReq/TxAssocRelRsp | When an agent is associated with a manager and receives an Association Release
Request, the agent responds and transitions to the Unassociated state.

© I1SO 2010 — All rights reserved
58 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

Table 20 —Agent state transition description

Transition

Description

RxAssocAbort or TxAssocAbort

Any time the agent and manager are associating, associated, or disassociating, the
agent can either send or receive an Association Abort message. When this event
occurs, the agent transfers from its current state into the Unassociated state. If the
agent is associated, it can send an Association Abort message to inform the
manager that a serious failure has occurred. This message should be a last resort
with a preference toward sending an Association Release Request to move to the
Unassociated state gracefully. If the agent receives an Association Abort message,
it does not need to respond since this message is received only when the manager
isaborting (e.g., acrash).

assocRelReq

When an agent decides to stop an association, it transitions to the Disassociating
state and sends an Association Release Request. This transition is used during a
normal shutdown sequence by sending a ReleaseRequestReason of normal or, if
the agent’s configuration has changed and requires the agent to release the
association, the agent uses the ReleaseRequestReason of configuration-changed.
Either way, the next time the agent associates, it indicates the configuration to use
in the Association Request, and the manager determines whether it knows about
the configuration.

RxAssocRelRsp

This transition indicates that the request to release the current association has been
granted. In the case where the agent sent the Association Release Request, this
indicates the agent has received an Association Release Response indicating that
termination is approved by the manager.

Transport Disconnect Indication

At any point, the agent or manager can terminate the transport connection, or the
connection may be lost due to fault conditions. When the indication that the
transport has been disconnected is received, the agent transitions to the
Disconnected state.

8.4.2 Manager state machine

An overview of the manager state machine is shown in Figure 11. The majority of the states and transitions
are symmetric with the items described for an agent in Table 19 and Table 20. The key differences are as

follows:

— The manager shall wait in the Waiting for Config state for at least TOcqnrig SeCONds before sending an
Association Release Request or Association Abort message.

— If the manager does not accept the configuration, it shall send a configuration response with an

unsupported-config result.

— If the manager accepts the configuration, it shall send a configuration response with an accepted-config

result.

The detailed manager state table is described in Annex E.3.

© 1SO 2010 — All rights reserved

59

ISO/IEEE 11073-20601:2010(E)

.—> Disconnected
o —
Transport connect indication Transport disconnect indication
Y
Connected
Disassociating Associated
assocRel Reqg
+entry / TxAssocRelReq Operating
TxAssocAbort RxAssocRel Reg/
RxAssocAbort TxAssocRelRsp
RxAssocRelRsp A
/ /
Unassociated TxAssocAbort
RxAssocAbort YOS,
Configuring TxConfigEventReportRsp
_, RxAssocRelReg/ (accepted-config)
" TxAssocRelRsp
Checking Config
A
RxAssocReq
RxAssocAbort
r TxConfigEventReportRsp
TxAssocAbort (unsupported-config)
TxAssocRsp
(rejected)
Associating RxConfigEventReportReq
+ entry / LookupConfig TxAssocRsp o - [Waiting for Config
'(accepted-unknown-config) o
_
/

Figure 11

8.4.3 Timeout variables

—Manager state machine diagram

There are a few places in the personal health device protocol where timeouts are used. There are both retry
timeout periods and retry counts. To ease long-term document management and facilitate doing electronic
“searches’ on the timeout values, the specific numerical values have been factored out of the body of this
standard and replaced with specific timeout variables. The mapping of the timeouts to numerical valuesis

in Table 21.

60

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Table 21 —Timeout variables

Timeout
Communications service Vari- Sub-
able Value clause
Associating procedure
Association TOxasoc 10 s (and RCasnc = 3) 8.75
Configuration TOcorfig 10s 8.8.5
Association Release TOrelence 3s 8.10.5
Operating procedure
MDS Confirm action TOcs 3s 8.95.2
object Confirm event report TO-mss | MDS.Confirm-Timeout 8.95.3
Get TOu 3s 8.954
Confirm set TOgs 3s 8955
<inter-service timeout> TOg mds 3s 8.9.5.6
PM-store Confirm action TOcs 3s 8.9.5.2
object Confirm event report TOurpms | Segm.Confirm-Timeout 8.95.3
Get TOu 3s 8.954
Confirm set TOgs 3s 8955
<end of Segm timeout> TOgp-pms Segm.Transfer-Timeout 8.9.5.6
Confirm action — SegmClear TOur-pms PMS.Clear-Timeout 8.95.6
Scanner Confirm set TOg 3s 8.9.55
object Confirm event report TOcer-scan Scan.Confirm-Timeout 8.95.3

8.5 Connected procedure

8.5.1 General

Subclauses 8.5.2 through 8.5.5 describe the entry conditions, the normal procedures, the exit conditions,
and any error conditions that can occur for the Connected state in the state diagrams.

8.5.2 Entry conditions

The agent and manager enter the Connected state whenever the transport layer indicates that a connection
has been established between the agent and manager. Both the agent and manager receive the connection
indication from their own transport layers (i.e., no application layer communication occurs by this time).
Upon initial entry into the Connected state, both the agent and manager start in the Unassociated state, a
substate of the Connected state.

8.5.3 Normal procedures

As the Connected state has a number of substates, the actual operating conditions are described as part of
those substates.

8.5.4 Exit conditions

The agent and manager should exit the Associated state by moving to the Disassociating state, sending an
Association Release Request, and waiting for an Association Release Response. The agent and manager
shall then have closed the active association and returned to the Unassociated state. Thisis normal behavior
before an agent or manager leaves the Connected state. The transport layer is then responsible for closing
the connection.

© 1SO 2010 — All rights reserved

61

ISO/IEEE 11073-20601:2010(E)

8.5.5 Error conditions
The transport may disconnect unexpectedly (e.g., a wireless transport may be moved out of range or a
cabled interface may be removed prematurely). In these cases, the transport should aert the application

layer of the disconnection. The agent and manager shall then be responsible to reset to the Disconnected
state. This requirement applies to the Connected state and all substates.

8.6 Unassociated procedure

8.6.1 General

Subclauses 8.6.2 through 8.6.5 describe the entry conditions, the normal procedures, the exit conditions,
and any error conditions that can occur for the Unassociated state in the state diagrams.

8.6.2 Entry conditions

The Unassociated state is the default state that is entered whenever an agent or manager is first notified
about establishment of a connection. This state is also reentered whenever the agent or manager releases or
aborts an association with the peer.

8.6.3 Normal procedures

Normally, the agent does nothing during this state.

The manager waitsin this state until it receives an Association Request message.

8.6.4 Exit conditions

Whenever the agent determines that it wishes to attempt associating with the manager, it transitions to the
Associating state. The manager transitions when it receives an Association Request message.

8.6.5 Error conditions

A number of error conditions may occur while in the unassociated state. The response to such conditionsis

either to ignore the condition or to generate an Association Abort message. See Table E.1, state 2 (the
Unassociated state), for more information.

© I1SO 2010 — All rights reserved
62 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

8.7 Associating procedure

8.7.1 General

The associating procedure allows the agent and manager to agree on a common data protocol and a
common set of operating parameters.

8.7.2 Entry conditions

Both the agent and manager shall remain in the Unassociated state until the agent determines that an
association is desirable. At that point, the agent shall enter the Associating state and send an Association
Request. The manager shall enter the Associating state when it receives an Association Request from the

agen.

8.7.3 Normal procedures

Figure 12 and Figure 13 show sequence diagrams of the associating procedure between an agent and
manager. Figure 12 shows the situation where the manager already knows about the agent’s configuration
due either to a prior connection with the agent or to the fact that the agent has a standard configuration (i.e.,
a predefined configuration that is specified in a specialization standard). Figure 13 shows the case where
the manager does not know the agent’s configuration and informs it that the association request is accepted,
but that the configuration is unknown.

Agent Manager

T

|
|
|
|

alt Association (known Co:nfigld))
I
: Connectlndication(LowerLayerInfo)
[]
Connectlndication(LowerLayerInfo)
%
I
AssocRequest(Protocol List, System-Id,
Dev-Configuration-1d, OptionList)
checkSystemld, checkConfigld
AssocResponse(accepted, DataProtol d, System-1d, OptionList)
T ;
Manager recognizesthe
System-Id and
Dev-Configuration-1d
Figure 12 —Association procedure (known configuration)

© 1SO 2010 — All rights reserved

63

ISO/IEEE 11073-20601:2010(E)

Agent Manager

alt Association (unknowri1 Configld) /
I

: Connectlndication(L owerLayerlnfo)

[]
Connectlndication(LowerL ayerlnfo)
%

AssocRequest(ProtocolList, System-Id, I
Dev-Configuration-Id, OptionList)) H
checkSystemlid, checkConfigld

AssocResponse(accepted-unknown-config,

T “DataProtold, System-Id, OptionL.ist)
H
Manager does NOT
recognize the System-Id
and Dev-Configuration-Id
Figure 13 —Association procedure (unknown configuration)

Subclauses 8.7.3.1 and 8.7.3.2 describe the operating conditions for the two different device roles: agent
and manager.

8.7.3.1 Agent procedure

8.7.3.1.1 General

When the agent wants to create an association, it shall begin by transitioning to the Associating state and
sending an Association Request message to the manager. The AargApdu definition (see A.8) describes the
format of the Association Request message. An example of an Association Request isfound in H.2.1.1.

The Association Request message contains the items listed below:

— The version of the association protocol used (assoc-version). This field allows the agent and manager
to ensure that they are using the same version of the protocol exchange.

— A list of data protocols that the agent supports (data-proto-list). The agent is allowed to support one or
more data protocols for exchanging information. The agent shall order the list of data protocols with
the most preferred protocol listed first descending to the least preferred protocol last.

The manager selects the desired protocol and communicates that to the agent.

To alow selection of a data protocol during association, the data-proto-list contains an ID that denotes
either that the data protocol is defined by one of the ISO/IEEE 11073 family of standards or that it is
manufacturer defined. These options are described in the next two subclauses. Additional codes are
available, but reserved, for future extensions.

© I1SO 2010 — All rights reserved
64 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

8.7.3.1.2 Data exchange protocol —defined by this standard

If an agent sets the data-proto-id in A.8 to data-proto-id-20601, then it shall adhere to the abstract syntax
definitions found in this standard for data types and message exchange. Further, the data-proto-info field
shall be filled in with a PhdAssociationlnformation structure, which defines the following information:

— Theversion of the data exchange protocol.

— The specific DataApdu encoding rule(s) supported by the agent. The agent shall set one or more of the
encoding-rules bits.

— The agent shall aways support MDER, i.e., the mder bit of the encoding-rules field shall be set by
the agent.

— The agent may offer other encoding rules, besides MDER, to the manager by setting other bitsin
the encoding-rules field.

— The version of the nomenclature used.
— A field indicating all functional units and optional features supported by the agent.
— The system type (agent in this case).

— A unique System-Id (see Table 2) of the agent. The EUI-64 format is used to identify the agent. A
manager may use this field to determine the identity of the agent with which it is communicating and
optionally to implement a simple access restriction policy.

— A dev-config-id, which identifies the current configuration of the agent as described in 7.4.3. For
standard configurations, the dev-config-id value shall lie between standard-config-start and standard-
config-end, inclusive. For extended configurations, the dev-config-id value shall lie between extended-
config-start and extended-config-end, inclusive.

— A data-reg-mode-capab, which defines the data request modes supported by the agent (see 8.9.3.3.3).

— Anoption-list that contains alist of additional attributes the agent wishes to communicate.

8.7.3.1.3 Data exchange protocol — manufacturer defined

Other specifications may use the initial association request to negotiate the use of manufacturer-defined
protocols. In this case, the agent sets the data-proto-id in A.8 to data-proto-id-external. To distinguish
between many possible manufacturer-defined protocols, the agent uses the ManufSpecAssociation-
Information structure to provide a UUID that denotes the specific protocol. The actual behavior of the
protocol, beyond the initial association, is outside the scope of the ISO/IEEE 11073 family of standards.
The UUID shall be generated according to ITU-T Rec. X.667 (Sept. 2004).

8.7.3.2 Association response

After the agent has sent the Association Request message, the agent shall wait either for an Association
Response message from the manager or for atimeout (see 8.7.5 for timeout conditions).

The AareApdu definition (see A.8) describes the format of the Association Response message. An example
of an Association Responseis found in H.2.1.2. The Association Response message contains the following:

— A result field representing the outcome of the association procedure.

© 1SO 2010 — All rights reserved

65

ISO/IEEE 11073-20601:2010(E)

66

— The version of the common data protocol chosen by the manager if the result field is equal to accepted
or accepted-unknown-config.

— The one, and only one, DataApdu encoding rule chosen by the manager if the result field is equal to
accepted or accepted-unknown-config.

— The manager shall always support MDER to enable interoperability.

— Alternatively, the manager may select one of the other encoding rules, besides MDER, that are
offered by the agent.

NOTE—MDER is aways supported by both the agent and the manager. However, if the agent offers
additional encoding rules to the manager, it can be concluded that the agent had a valid reason to do so (i.e,,
the development of additional encoding rule support is not done without a compelling product reason). Thus,
if an agent offers additional encoding rules beyond MDER, it is suggested that the manager honor one of the
additional encoding rules offered if possible. For example, if an agent offers MDER and packed encoding
rules (PER), it is suggested that the manager honor the PER encoding, if possible. If an agent offers MDER
and XML encoding rules (XER), it is suggested that the manager honor the XER encoding rules, if possible.
If an agent offers MDER, PER, and XER, this standard offers no suggestion as to the preferred encoding rule
selection.

— The version of the nomenclature chosen by the manager if the result field is equal to accepted or
accepted-unknown-config.
— The system type (manager in this case since the message originated from the manager).

— The unique system ID of the manager. EUI-64 is used to uniquely identify the manager. An agent may
use this field to determine whether it is communicating with the intended manager.

— Thedev-config-id field shall be manager-config-response in the response.
— The data-reg-mode-capab shall be zero in the response.

— A field indicating the common functional units and optional features chosen by the manager if the
result field is equal to accepted or accepted-unknown-config.

The result field in the Association Response message indicates the outcome of the request. Possible
outcomes are (see AssociateResult in A.8) as follows:

— accepted means the association is accepted and the configuration is known. The agent shall transition
to the Operating state (see 8.9 for more detail on the operating procedures).

— accepted-unknown-config means the association is accepted but the agent is required to send its
configuration to the manager. When an agent receives a response that the configuration is unknown, it
shall transition to the Configuring state and follow the proceduresin 8.7.6 to transfer its configuration.

— rejected-unsupported-assoc-version means that the agent and manager do not share a common
association version.

— rejected-no-common-protocol means the manager rejects the Association Request because there is no
common data protocol found in the DataProtoList shared between the manager and the agent.

— rejected-no-common-parameter means the manager rejects the Association Request because the
manager and the agent do not have a common set of operating parameters in the protocol-specific
association information (PhdAssociationl nformation).

— rejected-unauthorized is used when the manager determines that the agent is not authorized to connect.
The method of making the determination is vendor specified.

— rejected-transient is used when the manager cannot accept the association due to transient conditions
such as resource limitations.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

— rejected-permanent means that the manager is unable to associate with the agent, but no further detail
onthereasonisavailable.

— rejected-unknown should be used sparingly and only when the above return codes do not apply.

In all regjected-* conditions, the agent shall transition to the Unassociated state.

8.7.3.3 Manager procedure

When a manager receives an Association Request, it shall compare the protocol and operating parameters
with its own and determine whether the agent is compatible with the manager. If the connection is
bidirectional, the manager shall report the outcome of this assessment in the result field of an Association
Response.

The possible regjection reasons are enumerated in 8.7.3.2. If the manager rejects the association, it shall
transition to the Unassociated state.

If the request is not rejected by the manager, the result field in the Association Response message from the
manager indicates whether the manager understands the configuration. If the manager recognizes the dev-
config-id as a known standard device specialization or as a previous association, the manager shall send an
Association Response message with aresult field of accepted and transition to the Operating state.

If the manager does not recognize the dev-config-id, the manager shall send an Association Response
message with the result field set to accepted-unknown-config and transition to the Configuring state.

When the manager accepts a common protocol, it shall return the preferred common data protocol and
common set of operating parameters selected from the list provided in the Association Request in the
Association Response.

8.7.4 Exit conditions

The manager exits when it has sent the Association Response. The agent exits the Associating state
whenever it receives the Association Response.

8.7.5 Error conditions

The agent shall wait for an Association Response message for a TOas (timeout: association procedure)
period. If the TOxc period expires, the agent shall retransmit the Association Request message up to
RCassoc (retry count: association procedure) times after the first timeout, with a TO., period in between
each successive message. If, after this retry sequence, the agent does not successfully receive any
Association Response messages, then the agent shall send an Association Abort message to the manager
and transition back to the Unassociated state.

If the agent or manager receives an Association Abort message while in the Associating state, it shall
transition to the Unassociated state.

8.7.6 Test association

A test association is an association entered into by an agent and manager that frames data exchanges that
are intended for test purposes. This standard does not define what these exchanges look like, nor the
semantics associated with them, but only the process by which devices enter and exit a test association.
Individual device specializations may define standardized test resources, configuration 1Ds, and processes

© 1SO 2010 — All rights reserved 67

ISO/IEEE 11073-20601:2010(E)

that can be used during a test association. The test association may be used for manufacturer-specific
testing needs.

Since this standard does not define the semantics of the test association, it also does not define specific
mechanisms to ensure that test data are managed properly. However, it is critical that devices provide
protection to ensure that test data are not processed by other entities as actual measurement data. In general,
only elements that understand the concept of a test association should see measurement data generated by a
test association. Implementers should take the following steps:

— Set the test-data bit or the demo-data bit of the M easurementStatus attribute when generating simulated
measurement data. If the MeasurementStatus attribute is not supported, alternative means to flag such
data should be used.

— Ensure that local displays and stores of measurement data ignore test or demo data unless they can
properly flag such data to the user and can detect entry and exit from a test association. A local
component on an agent that does not participate in the IEEE 11073-20601 protocol may not be a good
candidate to receive test measurement data.

— Ensure that measurement data that are placed in a PM-store, or other persistent store structure, are
never seen outside of a test association. Tagging and/or clearing of persistent stores may be used for
this purpose.

— Ensure that devices that display or store test or demo data properly update when events, such as a
disconnection, cause the test association to be terminated.

In order for a test association to be formed, both the manager and the agent need to support test
associations, and both need to be willing to enter into a test association at a given point in time. A three-
step protocol is used to unambiguously enter atest association.

In the first step, the agent passes the manager two bits of information in the fun-units field of the
PhdAssociationinformation structure. The fun-unit-havetestcap bit indicates that the agent has testing
capabilities that can be used within a test association. The fun-unit-createtestassociation bit is used by the
agent to request that the manager establish a test association. The agent shall not set the fun-unit-
createtestassociation bit unless it aso sets the fun-unit-havetestcap bit. If an agent fills in the
PhdAssociationlnformation structure with the fun-units-havetestcap bit set, it should not terminate the
association due to the receipt of a response with the fun-unit-createtestassociation bit set. This implies that
if an agent sets the fun-unit-havetestcap bit and offers more than one configuration in which standardized
test capabilities are defined, then the agent should be willing to enter into a test association using any of
those configurations.

In the second step of the protocol, the manager signals back to the agent its intent to establish a test
association. The manager communicates this information to the agent through the fun-units-
createtestassociation bit. The bit is set by the manager to indicate that it has entered into a test association.
The manager shall set this bit if, and only if, the fun-units-havetestcap is set in the request from the agent.
The manager is not obligated by this standard to enter into a test association even when requested by the
agent. The agent shall ignore the fun-units-havetestcap bit in the association reply.

The final step of the test association protocol involves a decision by the agent to either continue with the
test association or terminate it. The agent shall not enter into the test association state unless the manager
has set the fun-units-createtestassociation bit. The test association shall end whenever the association state
machine enters the Unassociated state.

© I1SO 2010 — All rights reserved
68 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

8.8 Configuring procedure

8.8.1 General

The Configuring state occurs when the agent needs to pass configuration information to the manager.

8.8.2 Entry conditions

An Association Response message with an accepted-unknown-config result field shall trigger the agent to
enter the Configuring state and send its configuration to the manager. The manager enters the Configuring
state immediately after it sends the Association Response with the accepted-unknown-config result.

Note that part of the configuration is also the assignment of values of the Handle attribute to object
instances. If the manager knows the agent configuration, it also knows the assigned values of the Handle
attribute. Thisimplies that a standard configuration, such as a configuration defined in an | SO/IEEE 11073-
104zz device specialization, defines fixed values for the Handle attributes.

8.8.3 Normal procedures

Figure 14 shows the sequence diagram for the configuration procedure. During the configuration procedure,
the agent shall transfer the configuration information of all objects that it supports, except the MDS object,
as well as all static attributes within the objects. Agents typically have a very static configuration so
communicating all static portions during a one-time configuration phase reduces overall communication
traffic. New measurement types are not added dynamically, many attributes do not change, and the set of
reported object attributes is often the same. A reconfiguration is required only if the agent changes (e.g., as
part of an initial setup procedure where specific measurement capabilities may be configured).

The agent performs the configuration procedure using the Confirmed Event Request message with an
MDC_NOTI_CONFIG event to send its configuration to the manager. The configuration notification
message identifies

— All the objects supported by the agent except the MDS object and
— The set of gtatic attributes for each object.

The attributes include object class nomenclature identification (see 6.3.4.2, 6.3.5.2, and 6.3.6.2),
physiological 1D (nomenclature code), unit/dimension ID (nomenclature code), optionally strings for
labeling, and any other static attributes that might be useful. This information is considered a flat
(nonhierarchical) and static containment tree of the agent. The MDS aobject is excluded from the
configuration since the majority of information is dynamic or manufacturer specific. A separate Get MDS
Object command provides a mechanism to retrieve this information (see 6.3.2.6.1).

For objects that report on the same attributes each time, the fixed format event report (see 7.4.5) is
recommended, and the agent shall send an Attribute-Vaue-Map describing the message layout. In the case
of scanner objects that use the grouped format event reports, the agent shall send the Handle-Attr-Va-Map
describing the layout.

If the set of reported object attributes is not fixed, the variable format event report is recommended. In this
format, it is possible to communicate the configuration attributes as part of the value updates. In this case,
the Attribute-Value-Map is not provided in the configuration event report or is an empty list.

© 1SO 2010 — All rights reserved 69

ISO/IEEE 11073-20601:2010(E)

Agent Manager

alt Configuring Procedure / Agent receives an Association Response messag

with accepted-unknown-config result field.

L oop until accepted-config received
or all configurations attempted

Data(Invoke | CfmEventReport, MDC_NOTI_CONFIG,

Configld, ConfigObjectList)

alt configuration Store Configld
accepted _and configuration

alt configuration || Data(Response | CfmEventReport, MDC_NOTI_CONFIG, unsupported-config)
unsupported

Data(Response | CfmEventReport, MDC_NOTI_CONFIG, accepted-config)

Figure 14 —Configuration procedure

The agent shall use a “Remote Operation Invoke | Confirmed Event Report” data message (see A.10.3 for
the initial definition of EventReportArgumentSimple) with an event-type of MDC_NOTI_CONFIG when
transferring its configuration (see the ConfigReport in A.11.5 for the remainder of the structure). The
manager shall respond with a “Remote Operation Response | Confirmed Event Report” message (see
A.10.3 for the definition of EventReportResultSimple) with an event-type of MDC_NOTI_CONFIG filling
in the ConfigReportRsp structure. See H.2.2 for an example configuration event request sent by the agent
followed by an example response from a manager.

Agents may support more than one configuration. In this case, an agent shall send each of its available
configurations beginning with the preferred configuration. If the manager accepts the configuration, it
responds with an accepted-config message, and both manager and agent move to the Operating state. If the
manager does not accept the configuration, it shall return an unsupported-config response. On receipt of
unsupported-config, the agent shall send a further configuration. This processis repeated until the agent has
attempted al configurations. Then it shall send an Association Release message with a reason code of no-
more-configurations to indicate that it is unable to operate with the manager.

An agent that conforms to one or more device specializations that define standard configurations (i.e.,
ISO/IEEE 11073-104zz specializations) shall support one or more of the standard configurations and may
support one or more extended configurations. For interoperability, this agent shall send the supported
standard configurations as a fall back if the extended configurations are unsupported.

- - © I1SO 2010 — All rights reserved
70 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

If the agent conforms to a standard configuration, it shall use a dev-config-id as defined in the specific
ISO/IEEE 11073-104zz device specialization. These standard configuration dev-config-id values are
assigned in the range between standard-config-start and standard-config-end, inclusive. When an agent
submits a dev-config-id corresponding to a standard configuration, the configuration message need not
contain the configuration information and may send an event-type of MDC_NOTI_CONFIG with a
standard configuration ID and an empty ConfigObjectList. If the manager does not recognize the standard
configuration (e.g., the manager was released prior to the device specialization being released), it shall send
a response of standard-config-unknown. The agent may retry the configuration for the standard device by
sending the full configuration information.

An agent having a nonstandard configuration shall assign a unique ID to its configuration by generating a
value for dev-config-id in the range between extended-config-start and extended-config-end, inclusive.

An agent may use the same value for dev-config-id in future Association Requests with the manager to
denote the same configuration of the device. The selected value of dev-config-id shall be reported in the
Dev-Configuration-ld attribute of the MDS object.

If the agent changes its configuration so that it can no longer support the old configuration or determines
that a new configuration should be used in preference, it shall close any existing association by sending an
Association Release message with a reason of configuration-changed. If the new configuration is a new
extended configuration, the agent shall assign a new configuration ID. The next time the agent associates, it
negotiates with the manager by stepping through each configuration in order of priority as described
previously.

8.8.4 Exit conditions

When the manager accepts the preferred configuration, it shall send the accepted-config response to the
agent and shall transition to the Operating state. If the manager receives an Association Release Request
with a reason of no-more-configurations to indicate that the agent has no further configurations, the
manager shall transition to the Unassociated state.

When the agent receives the accepted-config response from the manager, it shall transition to the Operating
state. If the agent receives the unsupported-config response from the manager, it shal send the next
configuration to the manager until no further configurations are available. Then it shall send an Association
Release Request message with a reason of no-more-configurations and enter the Unassociated state.

8.8.5 Error conditions

The agent shall wait for the “Remote Operation Response | Confirmed Event Report |
MDC_NOTI_CONFIG" message for a TOcnrig (timeout: configuration procedure) period. If the TOconig
period expires, the agent shall send an Association Abort message to the manager and transition back to the
Unassociated state.

The manager shall wait at least TOg,nrig SeCONds in the Waiting for Configuration state for the configuration
information prior to sending an Association Abort message and returning to the Unassociated state.

If the agent or manager receives or sends an Association Abort message at any time, it shall transition to the
Unassociated state.

© 1SO 2010 — All rights reserved

71

ISO/IEEE 11073-20601:2010(E)

8.9 Operating procedure

8.9.1 General

The communication of health data and status information about the agent occurs during the Operating state.

8.9.2 Entry conditions
The agent and manager enter the Operating state either when the agent’s configuration is already known by
the manager or after the agent has communicated an acceptabl e configuration to the manager.

8.9.3 Normal procedures

8.9.3.1 General

Subclauses 8.9.3.2 through 8.9.3.4 describe procedures that can occur when in the Operating state.

8.9.3.2 MDS object attributes

At any time in the Operating or Associated state, the manager may request the MDS object attributes of an
agent by sending a data message with the “Remote Operation Invoke | Get” command and a reserved
handle value of 0. The agent shall report its implemented MDS object attributes to the manager using a data
message with the “Remote Operation Response | Get” response. See H.2.3 for example usages of this set of
messages. Agents shall support a Get command that requests all attributes (i.e., the attribute-id-list is
empty). Agents may support retrieval of a specific list of attribute 1Ds.

Figure 15 shows the sequence diagram of the manager requesting the MDS object attributes from an agent.

Agent Manager

Get MDS Object Attributes /

S i

Data(Invoke | Get, handle=0)

Data(Response | Get, handle=0,
i B —_— P
attribute-list)

Figure 15 —Get MDS object attributes sequence diagram

© I1SO 2010 — All rights reserved
72 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

8.9.3.3 Measurement data transfer

8.9.3.3.1 General

Measurement data transfer may be initiated by either agent or manager, as introduced in 7.4.4. Agent-
initiated transfers would normally be expected from agents that transfer small amounts of infrequent
episodic information or require minimal bandwidth. Agents with large amounts of data, frequent data
transfer, or streaming data should use manager-initiated transfer. Manager-initiated transfer is preferred in
all cases as this approach provides mechanisms to control the data flow. Note that receipt of a request to
transfer measurement data is not intended to be a command that an agent perform a measurement, but rather
that it shall transfer any measurement data that are available.

In each case, except the single response mode, measurement data transfer is performed using the event
report that is confirmed or unconfirmed as selected by the agent.

All variants of the two styles are described in detail in 8.9.3.3.2 through 8.9.3.3.8.

8.9.3.3.2 Agent-initiated measurement data transmission

When an agent supports agent-initiated transmission, it shall indicate that support via the
DataRegModeCapab structure or have one or more instances of a scanner object in the agent's
configuration.

The agent shall use the EVENT REPORT service (see 7.3) to send a spontaneous measurement to the
manager without being requested by the manager first. A DataApdu message in a “Remote Operation
Invoke | Event Report” command and one of the MDC_NOTI_SCAN_REPORT_* event-types shall be
used for this purpose. If the Confirmed Event Report is used, the manager shall respond with a DataApdu
message with the “Remote Operation Response | Confirmed Event Report” response (see Figure 16). If the
Unconfirmed Event Report is used, the manager shall not respond.

Scanner objects shall begin with the Operational-State attribute set to disabled on agents with bidirectional
communication until the manager enables it. The manager shall set the state of scanner objects to enabled
when it wants to receive the data.

For agent-initiated measurement data transmission, the data-reg-id field in the Scan Report
(MDC_NOTI_SCAN_REPORT_*) shall be set to data-reg-id-agent-initiated.

The manager may stop an agent-initiated measurement data transmission from the agent by sending an
Association Release Request or Association Abort message to the agent to terminate the association, If the
agent uses a scanner object, the manager can disable the scanner by using the SET service on the
Operational-State attribute.

© 1SO 2010 — All rights reserved 73

ISO/IEEE 11073-20601:2010(E)

Agent Manager

a7

Unsolicited M easurement Data Transmission /

]
]
i

Data(lnvoke | Event Report,
MDC_NOTI_SCAN_REPORT_*, ScanReportlnfo*)

g‘;:l)(taélfroor(l;‘:tr)med Data(Response | Confirmed Event Report,
e % MDC_NOTI_SCAN_REPORT *)

A

Figure 16 —Agent-initiated measurement data transmission

8.9.3.3.3 Manager-initiated measurement data transmission overview

When an agent supports manager-initiated transmission, it shall indicate what features it supports using the
DataReqM odeCapab structure. If the agent does not provide any DataReqModeCapab, the manager shall
assume it does not support any of the features.

In manager-initiated measurement data transmission, the manager uses the ACTION service (see 7.3)
provided by the agent to request measurement data transmission from the agent. When the manager wishes
to do this, it shall send a DataApdu ActionArgumentSimple confirmed request with an
MDC_ACT_DATA_REQUEST action type followed by the DataRequest information. This data request
may be a start request or a stop request as indicated by the data-reg-start-stop bit of the data-reg-mode (see
A.11.5) or acontinuation request as indicated by the data-reg-continuation bit.

For a start request, three modes may be used: single response (data-req-mode-single-rsp), time period (data-
reg-mode-time-period), and no time limit (data-reg-mode-time-no-limit). Depending on the mode of the
start request, the agent may send one or multiple event reports to the manager. When the manager starts a
data mode, it provides a data-reg-id that shall be used by the agent in all event reports. If, while a data mode
is running, a new start request is received with the same data-reg-id, this request shall be treated as taking
precedence and the new mode initiated. The agent treats the new start request asif it was a stop followed by
a start. Both single response and time period modes have well-defined end points after which the resources
supporting the request may be released. The no time limit request does not have a well-defined end point. A
manager should issue a stop request when it is no longer interested in a measurement flow, especialy for no
time limit requests, in order to free up resources on the agent.

For each of these modes one of three different options for the object scope to which the data request refers
may be chosen: all data available at the agent (data-reqg-scope-all), data available at the agent according to a
particular object class (data-reg-scope-class), and data available at the agent according to specific objects
identified by their handles (data-reg-scope-handle).

When data-reg-scope-al is used, the agent shall consider all objects, except the MDS object, when
determining the content of each event report.

When data-reg-scope-class, the manager shall use data-reg-class to define the class of objects to report. The
agent shall consider only the objects described by the given class when generating event reports. Legal

© I1SO 2010 — All rights reserved
74 © IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

class IDs include MDC_MOC_VMO_METRIC_NU, MDC_MOC_VMO_METRIC_SA_RT, and MDC_
MOC_VMO_METRIC_ENUM.

When data-reg-scope-handle is sent, the manager shall provide alist of handles in data-reg-obj-handle-list.
The agent shall consider only the objects described by valid handles in the handle list when generating
event reports. Here, the term valid refers to all handles associated to a metric- derived object (e.g., numeric,
RT-SA, or enumeration) supported by the agent.

A stop request may be used by the manager to stop a time period or no time period measurement data
transmission that was started earlier.

When using timed mode, if the manager wants to extend the time that an agent is allowed to send data, the
manager shall set the data-reg-continuation bit in the mode and set the data-reg-time to the amount of time
allotted to the agent for continued transmission.

The data-reg-id field in the data request is used to differentiate responses from multiple data requests to the
same agent (if the agent allows for multiple simultaneous data requests). The manager shall set the value of
the data-reg-id field to a value in the range from data-reg-id-manager-initiated-min to data-reg-id-manager-
initiated-max, inclusive. The agent shall use the same value of data-reg-id in al associated event reports.

Note that the manager may set the value of the data-reg-id field to any value within the acceptable range.
Then agent shall not rely on the data-reg-id field to deduce, for example, the order in which different data
requests were generated by the manager.

Streaming agents should use manager-initiated data transmission (or scanner objects) in order to allow the
manager to control how it receives the data. Managers should enable streaming agents as soon as possible
so agent information is readily available.

The three modes of manager-initiated measurement data transmission are described in 8.9.3.3.4 through
8.9.3.3.6.

8.9.3.3.4 Manager-initiated single response mode

The single response mode allows the manager to request data from the agent and receive it in the response
message (see Figure 17). There is no requirement that the agent collect any data (e.g., inflate a blood
pressure cuff) to fulfill the response. If the agent does not have data available, it shall return an empty list of
data. If the agent has data and the result status is data-reg-result-no-error, it shall send a DataResponse
message that contains the result status of the request (DataReqResult) as well as the measurement data
(ScanReportInfo*). This response message shall complete the measurement data access.

Single response mode does not alow the agent to confirm that the manager receives the measurement data.
Where such confirmation isimportant, the timed command with atimeout value of 0 isused (see 8.9.3.3.5).

© 1SO 2010 — All rights reserved 75

ISO/IEEE 11073-20601:2010(E)

Agent Manager

T

I

I

i
data—reqlkmodesinglersp)

Manager sends a start
datarequest in single
response mode.

N

}_________________

I
I
I
I
I
I
I
1 o

Data(Invoke | Confirmed Action, MDC_ACT_DATA_REQUEST,

T — .
DataRequest(start, single))

Data(Response | Confirmed Acti%n, MDC_ACT_DATA_REQUEST,

DataResponse) / >
/

Confirmation and
measurement are sent in
the same message.

Figure 17 —Manager-initiated measurement data transmission
(data-req-mode-single-rsp)

8.9.3.3.5 Manager-initiated time period mode

The time period mode is used by the manager to enable an agent to send any data it collects for the duration
of the requested time period (refer to Figure 18). When an agent receives the start DataRequest message
from the manager, the agent shall send a DataResponse message acknowledging the result status of the
request (DataRegResult) without transferring any measurement data in the response message. If
DataReqResult is data-reg-result-no-error, anytime data becomes available, the agent shall use the EVENT
REPORT service to send event report(s) containing the measurement data to the manager until the time
period as specified in the data request has expired, it receives a stop request from the manager, or the
association between the agent and manager is terminated. The agent determines whether to use a Confirmed
or Unconfirmed Event Report message to transfer the data.

If the manager wants to extend the amount of time, it shall pass in the datareg-id, set the data-reg-
continuation bit in the mode, and set the data-reg-time to the amount of time that the agent may continue
transferring data. All other parameters in the DataRequest shall be ignored, and the settings from the
original start command shall be used. The agent shall apply each new time period measured from the time
the command is received. If a continuation command is received for a data-reg-id that is not functioning in
atimed mode, the agent shall return a result of data-reqg-result-continuation-not-supported. If a continuation
command is received for a nonexistent data-reg-id, the agent shall return data-req-result-invalid-reg-id. For
example, if the timer expires prior to receiving the continuation command, the data-reg-id stops and is
removed.

In timed mode, if the datarreg-time is set to 0, the agent shall acknowledge the request, if confirmed,
transfer immediately any data currently available in event reports, and then stop. In contrast to single
response mode (see 8.9.3.3.4), timed mode allows the agent to use either Confirmed or Unconfirmed Event
Report messages. For example, an agent may use the Confirmed Event Report to ensure the data have been
received by the manager prior to removal from alocal cache.

On receipt of a stop data request for an enabled data-reg-id, the agent shall stop sending the event reports
for that data-reg-id immediately.

© I1SO 2010 — All rights reserved
76 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

The data-reg-id field in these event reportsis used by the manager to couple these measurement data to the
appropriate data request.

Agent Manager

data-req-mode time period / Agent first Manager sends a start
acknowledges the data DataRequest in time
request. period mode.
7 \
- / Data(Invoke | Confirmed Action, \ i
¢/ MDC_ACT_DATA_REQUEST, N W

Ve DataReguest(start, time-period, time=T))
/ ' Data(Response | Confirmed Action,

S MDC_ACT_DATA_REQUEST, >
DataResponse)
Agent sends event Manager may send another star
reports until time period DataRequest to change the time
has expired or receives a period, or send a stop
stop data request from DataRequest to terminate
Manager. immediately.

/
7 N
/ \
Ji N

7 5
‘ /.v'"' Data(Invoke | EventReport,

4 MDCNOTI_SCAN_REPORT *, |
ScanReportInfo*)

loop until time period expires
or a stop DataRequest received

opt
o Data(Response | Confirmed Event Report, |
MDC_NOTI_SCAN_REPORT_*)
Figure 18 —Manager-initiated measurement data transmission

(data-req-mode-time-period)

8.9.3.3.6 Manager-initiated no time limit mode

The no time limit mode shall be used to command an agent to send event reports continually until a stop
request command is received or the association between the agent and the manager is terminated (see
Figure 19).

© 1SO 2010 — All rights reserved 27

ISO/IEEE 11073-20601:2010(E)

78

Agent Manager

data-reg-mode-time-no-limit ‘ Manager sends a start

Agent first DataRequest in time no

acknowledges the data limit mode.

request. .

A
M / Data(Invoke | Confirmed Action, ™ -
4~ MDC_ACT_DATA_REQUEST; S
/ DataRequest(start, no-limit))
Agent sends event reports 7 '
until it receives a stop Ve Data(Response | Confirmed Action,
DataRequest from Manager. A—M DC_ACT_DATA_REQUEST, —— P
= DataResponse)

s

loop until stop data ‘
reguest received

}7

Data(Invoke | EventReport,
MDC_NOTI_SCAN_REPORT *————— |
ScanReportl nfo*)

opt Data(Response | Confirmed Event Report,

-
MDC_NOTI_SCAN_REPORT_*)

Manager sends a stop
DataRequest.

\
\

Data(Invoke | Confirmed Action,

4———— MDC_ACT_DATA REQUEST4@7
DataRequest(stop))

Data(Response | Confirmed Action,
MDC_ACT DATA_REQUEST, — =

T DataResponse) T

Figure 19 —Manager-initiated measurement data transmission
(data-reg-mode-time-no-limit)

8.9.3.3.7 Scan report number management

A data request, in which the data-reg-start-stop bit is set, establishes a new flow of one or more
measurement observations from the agent to the manager in the context of the MDS. When a MDS flow is
established, the agent creates a new instance of a scan-report-no counter for that flow. There shall be one
instance of a scan-report-no counter for each flow, as differentiated by data-reg-id. This counter shall start
at 0 and increment by 1 for each event report sent on the flow, rolling over to 0. If an agent receives a data-
request that has the data-reg-start-stop bit set and a value of data-reg-id that is already being used inaMDS
flow, the agent shall reset the scan-report-no counter of the identified flow to 0. If an agent receives a data-
request that has the data-reg-continuation bit set, the scan-report-no shall continue counting without a reset.

The manager-initiated single response mode (data-reg-mode-single-rsp) form of measurement transmission
shall result in a response that has a 0 in the scan-report-no field of the ScanReportinfo* structure. Thisis
because a new flow is created with each data-reg-mode-single-rsp request and terminated when the
response is sent.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

An agent-initiated transfer from the MDS or scanner objects, by way of contrast, establishes a flow that
terminates only when the association is broken. Thus for the agent-initiated transfer, the scan-report-no
starts at 0, but cannot be reset by the manager within the context of the association. Setting the scanner’s
Operational-State attribute to disabled halts transmission of event reports, i.e., internal observation of
metric objects is halted and continues again after setting the Operational-State attribute to enabled again.
The scan-report-no in this case will continue counting from where it was halted.

8.9.3.3.8 Multiple MDS flows referencing a single measurement object

An agent may initiate, as well as receive, requests for flows that associate data-reg-ids with metric objects
through the context of the MDS. When a metric object that is associated with multiple flows generates
measurement data, observations of the data shall be reported on each of the flows.

The agent shall report the maximum number of concurrent manager-initiated flows that it supports in data-
reg-init-manager-count during the association process. A manager shall limit the number of concurrent
manager-initiated flows it requests so that the value reported by the agent is not exceeded. If an agent is
unable to establish a new manager-initiated flow due to resource exhaustion, it shall set data-reg-result to
the value data-reg-result-init-manager-overflow in the message response.

8.9.3.4 Persistently stored metric data transfer

8.9.3.4.1 General

When an agent implements one or more PM-store objects, the agent reports about the existence of the PM-
store object during the configuration phase. The manager uses this information to query the PM-store
object(s) of the agent. The interactions between the manager and agent when retrieving the information in
the PM-store(s) isdescribed in 8.9.3.4.2.

8.9.3.4.2 Persistently stored metric data transmission

a) Retrieving the PM-store attributes. When the agent and manager are in the
Operating state, the manager can inspect the configuration negotiated with the
agent to determine the number of PM-store objects in the agent. The manager
may query each PM-store to determine the number of PM-segments that exist
within the PM-store. Figure 20 shows the sequence diagram of this operation.
The manager sends a Get command to the agent requesting attribute information
from a particular PM-store. The manager uses the handle number to reference
the desired PM-store. The manager shall leave the attribute-id-list empty to
request all attributes be returned. The agent responds with the values of the
requested attributes. The manager can inspect the attributes to learn about how
the store is configured. For instance, the PM-Store-Capab describes the
capabilities of the store, and Number-Of-Segments defines how many segments
are present in the store. See Table 9 for the full list of attributes and their
definitions.

If the agent supports multiple PM-store object instances, a Get request is
required for each PM-store.

© 1SO 2010 — All rights reserved 79

ISO/IEEE 11073-20601:2010(E)

80

Agent first sendsits
configuration so the
Manager knows the
Agent HANDLEs of all PM- M anager
Store objects. It uses
these handlesto fill in
obj-handle.

Opt - Get the PM-Store
attributes

}_____________

Data(Invoke | Get, obj-handle, attribute-id-list)

Data(Response | Get, obj-handle, attribute-list)

Figure 20 —Retrieving a PM-store’s attributes

b) Retrieving the PM-segment information. The manager retrieves information on the segments
in a PM-store by sending an ACTION.Get-Segment-Info command to the specific PM-store (see
Figure 21) with a request to return information from all segments, a particular list of segments,
or any segments within a given time range. The agent shall support the first two selection
criteria and may provide support for the time range selection criteria. The manager is able to
determine whether the agent provides support by inspecting pmsc-abs-time-select in the PM-
Store-Capab attribute of the PM-store information retrieved earlier.

The agent responds to the ACTION.Get-Segment-Info command with alist of segment numbers
followed by the full attribute list for each of the segments.

Agent Manager

k_____________

< Data(Invoke | Confirmed Action, obj-handle_,
MDC_ACT_SEG_GET_INFO, SegmSelection)
. . . Store segment
________________________ Data(Response | Confirmed Action, obj-handle,] | information including

MDC_ACT_SEG_GET_INFO, SegmentlnfoList) — PM. Segment.Ertry-Map
-

Figure 21 —Retrieve PM-segment information

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

¢) Transfer PM-segment content. The manager retrieves specific PM-segments by using the
Trig-Segm-Data-Xfer ACTION method to initiate the data transfer (see Figure 22). The
manager shall pass on information about the PM-store handle to access and the segment instance
number to transmit.

The agent shall decide whether the request can be honored. It checks for a valid segment
number, available segment data (i.e., they could be in the update process), or any other error
conditions. If there is an error, the agent shall return an appropriate error code in the response
and ignore the transmit request. Otherwise, the agent shall send a tsxr-successful response code
to indicate that it has received the request and it can be honored.

The manager may send the Trig-Segm-Data-Xfer ACTION invoke message at any time.
However, if the manager does send a Trig-Segm-Data-Xfer ACTION invoke message while a
Clear-Segments ACTION invoke message is outstanding, the agent may generate a Trig-Segm-
Data-Xfer ACTION response message with a return code of trig-segm-xfer-rsp = tsxr-fail-clear-
in-process. An example of when this return code might be sent isif the storage medium for the
PM-store is a single Flash device. When a Flash device is being erased, it might cause the entire
Flash device to be inaccessible.

The agent shall send confirmed Segment-Data-Event event reports until all entries in the PM-
segment are sent to the manager or the transfer is aborted by either the sevtsta-agent-abort or
sevtsta-manager-abort bits described later. The agent fills in the SegmentDataEvent structure
with information about the segment being sent. The agent informs the manager of the PM-store
handle and uses the SegmDataEventDescr to describe the segment number being transferred, the
entry number of the first entry in the segm-data-event-entries field, the number of entries in the
message, and current status information. The agent shall always set any sevtsta-manager-* bits
to 0. If the message contains the first entry and/or the last entry of the data entries, then the agent
shall set the sevtsta-first-entry and/or sevtsta-last-entry bits, respectively. If the agent wishes to
abort the transfer, it shall set the sevtsta-agent-abort bit to 1.

When transferring a segment, the agent uses the segm-data-event-entries field to send all the
entries. The agent shall start with the first entry collected, followed by the next entry, and so on.
The agent should pack as many entries as possible into the event structure to optimize the
transmissions. Each entry shall be formatted according to the structure defined in the PM-
segment PM-Segment-Entry-Map.

When the manager receives an event report, it shall reply with a SegmentDataResult response
that shall contain the same store-handle, segm-instance number, segm-evt-entry-index, and
segm-evt-entry-count. In the segm-evt-status, the manager shall set the sevtsta-manager-confirm
bit.

If the agent sets the sevtsta-agent-abort bit, then the manager shall confirm the agent abort by
setting the same bit. If the manager wishes to abort the exchange, it shall set the sevtsta-
manager-abort bit.

© 1SO 2010 — All rights reserved 81

ISO/IEEE 11073-20601:2010(E)

Agent Manager

Retrieve segment content ‘

L oop through all instance numbers ‘
from Get-Segment-I nfo

Data(lnvoke | Confirmed Action, obj-handle,

) MDC_ACT_SEG TRIG_XFER, TrigSegmDataX ferReq)

Data(Response | Confirmed Action, obj-handle,
. —P
MDC_ACT_SEG_TRIG_XFER, TrigSegmDataXferRsp

Alt —If transfer reqg| st was accepted
L oop until all segme¢ | data transfered

Data(Invoke | CfmEventReport,

MDC_NOTI_SEGMENT_DATA, SegmentDataEvent) »

Data(Response | CfmEventReport,

-
MDC_NOTI_SEGMENT_DATA, SegmentDataResult

Figure 22 —Retrieve PM-segment content

d) Clear a PM-segment. The manager may clear a PM-segment at any time and uses the sequence
shown in Figure 23. A typical time for clearing a segment is directly after the entire segment
was transferred to the manager. The manager recognizes this condition when it receives a
SegmEvtStatus with the sevtsta-last-entry bit set.

Whenever the manager decides to clear segment(s), it sends an ACTION command to the agent
with the Clear-Segments method and segment selection criteria of all segments, a particular list
of segments, or any segments within a given time range. The agent shall support clearing all
segments, should support clearing a particular list of segments (pmsc-clear-segm-by-list-sup),
and may support the time range selection criteria (pmsc-clear-segm-by-time-sup). The manager
determines which capabilities are supported by inspecting the PM-Store-Capab attribute bits.

When the agent receives a Clear-Segment command, it may delete all present entries and leave
the segment, or it can remove the segment. The manager determines which capabilities are
supported by inspecting the pmsc-clear-segm-remove bit of the PM-Store-Capab attribute.

© I1SO 2010 — All rights reserved
82 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

Agent M anager

Clear segment entries

Data(Invoke | Confirmed Action, obj-handle,
MDC_ACT_SEG_CLEAR, SegmSelection)

Data(Response | Confirmed Action, obj-handle___ >
MDC_ACT_SEG_CLEAR)

Figure 23 —Clear segment entries

8.9.4 Exit conditions

A normal exit from the Operating state occurs when the agent or manager decides to terminate the
association. In this case, the agent or manager shall enter the Disassociating state and follow the
disassociating procedure (see 8.10).

When an agent or manager receives an Association Release Request, it shall send an Association Release
Response and transition to the Unassociated state.

An agent exiting the Operating state, either normally or abnormally, shall stop al data transfer mechanisms
including agent- or manager-initiated measurement data transmission, PM-segment transmission, and
scanner transmission.

8.9.5 Error conditions

8.9.5.1 General

Asin 8.9.4, an agent exiting the Operating state, either normally or abnormally, shall stop all data transfer
mechanisms including agent- or manager-initiated measurement data transmission, PM-segment
transmission, and scanner transmission.

If, at any time, there is atransport layer timeout from the reliable transport layer, then the agent or manager
shall do the following:

— For timeout/connection-dependent reliable transports (TCP, for example), transition back to the
Disconnected state, due to the fact that transport timeouts are reported as a “transport disconnect
indication” to the upper layers.

— For timeout/connection-independent reliable transports (USB, for example), attempt to recover the
transport link, attempt to send an Association Abort message to its peer, and then transition back to the
Unassociated state.

© 1SO 2010 — All rights reserved

83

ISO/IEEE 11073-20601:2010(E)

8.9.5.2 Confirmed Action

After sending a Confirmed Action invoke message, the manager shall wait for a Confirmed Action
response message for a TOg, (timeout: confirmed action service) period. If the TO, expires, the manager
shall send an Association Abort message to the agent and transition back to the Unassociated state.

8.9.5.3 Confirmed Event Report

After sending a Confirmed Event Report invoke message, the agent shall wait for a Confirmed Event
Report response message for a TO. (timeout: confirmed event report service) period. If the TO, expires,
the agent shall send an Association Abort message to the manager and transition back to the Unassociated
State.

The TO. is defined on a per-object basis. Each of the objects in this standard that generate event reports
has a separate timeout value that is reported by an appropriate attribute in each object:

— TOce-mds (TOe for the MDS object) MDS.Confirmed-Timeout
— TOce-pms (TOce for the PM-store object) Segm.Confirmed-Timeout
— TOg-scan (TOc for the scanner object) Scan.Confirmed-Timeout
8.9.5.4 Get

After sending a Get invoke message, the manager shall wait for a Get Response message for a TOg
(timeout: get service) period. If the TOy expires, the manager shall send an Association Abort message to
its peer and transition back to the Unassociated state.

8.9.5.5 Confirmed Set

After sending a Confirmed Set invoke message, the manager shall wait for a Confirmed Set Response
message for a TO (timeout: confirmed set service) period. If the TO expires, the manager shall send an
Association Abort message to the agent and transition back to the Unassociated state.

8.9.5.6 Special timeouts

In addition to the typical communication service timeouts described previously, there are three special-case
timeouts that are also used in the persona health device protocol:

— TOqrpms: Special TO related to the clearing of the PM-store object PMS.Clear-Timeout
— TOgmas: Specia TO inter-service timeout for the MDS object 3s
— TOgpms: Specia TO for PM-store segment transfer Segm.Transfer-Timeout

For TOyr.pms, after sending a Confirmed Action (MDC_ACT_SEG_CLR) invoke message, the manager
shall wait for a Confirmed Action response message for a TOg,.pms (timeout: confirmed action service to
clear the PM-store object) period. If the TOyr.oms €Xpires, the manager shall send an Association Abort
message to the agent and transition back to the Unassociated state.

For TOg.mes after sending a Confirmed Action (MDC_ACT_DATA_REQUEST, start, time-period,
time=0) invoke message, the manager shall wait for a Confirmed Event Report invoke message for a TOg,.
mas (timeout: special interservice timeout for the MDS object) period. If the TOg mas €Xpires, the manager
shall send an Association Abort message to the agent and transition back to the Unassociated state.

© I1SO 2010 — All rights reserved
84 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

For TOgpms: after sending a Confirmed Action (MDC_ACT_SEG_TRIG_XFER) invoke message, the
manager shall wait for a Confirmed Event Report (segm-evt-status=sevtsta-last-entry, semg-data-event-
entries) invoke message for a TOg pms (timeout: special segment transfer timeout of the PM-store object)
period. If the TOgpms €Xpires, the manager shall send an Association Abort message to the agent and
transition back to the Unassociated state.

8.10 Disassociating procedure

8.10.1 General

The disassociating procedure provides a mechanism for either the agent or manager to release the
association gracefully.

8.10.2 Entry conditions

When an agent or manager decides to close the association, it shall transition to the Disassociating state and
initiate the disassociating procedure.

8.10.3 Normal procedures

In the Disassociating state, the agent or manager sends an Association Release Request to its peer and waits
for the response. The Association Release Request contains a Rel easeRequestReason to indicate the reason
for releasing the association:

— The no-more-configurations reason is used by the agent during the Configuring state to indicate that all
possible configurations were attempted and the manager rejected every one.

— The configuration-changed reason is used by the agent during the Operating state to indicate that the
agent’s configuration changed and it is not possible to continue sending data with the previously
agreed-upon configuration. Typically, the agent follows this message by sending a new Association
Request with a new dev-config-id; however, this step is not required.

— The norma reason is used by either the agent or manager to leave the Operating state without
indicating a special condition.

Should an agent or manager receive an Association Release Request when it has an outstanding invoke-id,
it shall respond with an Association Release Response and assume that it shall receive no response to its
request.

8.10.4 Exit conditions

When the agent or manager receives the response to its release request, it shall transition to the
Unassociated state.

© 1SO 2010 — All rights reserved

85

ISO/IEEE 11073-20601:2010(E)

If an agent or manager receives an Association Release Request while in the Disassociating state, then it
shall send an Association Release Response and shall remain in the Disassociating state waiting for the
response to its own Association Release Request.

8.10.5 Error conditions

After sending an Association Release message, the agent or manager shall wait for an Association Release
Response message for a TOyqease (timeout: association release procedure) period. If the TO,gease €XpPIres, the
agent or manager shall send an Association Abort message to its peer and transition back to the
Unassociated state.

The agent or manager can either send or receive an Association Abort message for other failure conditions
and shall transition immediately to the Unassociated state.

8.11 Message encoding

The ASN.1 used in this standard allows conversion into many possible transmission formats. Both manager
and agent shall support the MDER as defined in | SO/IEEE 11073-20101:2004 [B14]. The MDER encoding
rules are reproduced in Annex F along with additional optimizations specific to this standard. Further, for
binary transmissions, network byte order (big-endian encoding) shall be used. This standard also allows
manager and agent to negotiate alternate encodings of PER [B17] and XER [B18].

Annex G shows one example of how the ASN.1 data structures could be encoded into C syntax.

Annex H contains supporting examples of binary encodings resulting from messages defined in this
standard.

All of the nomenclature codes used in this standard are defined using the MDC ... representation, but the
nomenclature codes shall be used during transmission. Annex | contains a listing of the defined values for
all the codes utilized in this standard.

8.12 Time coordination

8.12.1 General

There are three types of clocks that an agent may implement: absolute time, relative time, and high-
resolution relative time. In al cases, information about the clock capabilities of the agent and whether one
or more of the clocks are synchronized with an external time source can be found via the Mds-Time-Info
attribute in Table 2. All bit references in the subclauses are part of this attribute. All agents with any type of
clock shall support this attribute.

8.12.2 Absolute time

8.12.2.1 General

Agents with an internal real-time clock (RTC) shall indicate this capability by setting the mds-time-capab-
real-time-clock bit (see A.11.1). Agents that support the Set-Time action (see 6.3.2.4 and A.4) shall set the
mds-ti me-capab-set-clock bit.

© I1SO 2010 — All rights reserved
86 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

Agents may support an independent method to synchronize the internal RTC to external clock sources. The
synchronization method used is not in the scope of this standard. However, the agent shall indicate whether
it synchronizes absolute time using the mds-time-capab-sync-abs-time hit. If synchronization is supported,
the protocol used to synchronize the internal RTC (e.g., NTP and SNTP) is reported in the time-sync-
protocol field using IDs such asMDC_EXT_PROTO_TIME_NTP. The mds-time-state-abs-time-synced bit
shall be set only when the agent believes its Date-and-Time attribute is synchronized with the external
clock source.

Agents may wish to indicate to the manager whether it should set the time with the Set-Time action. If the
mds-time-mgr-set-time bit is set, the manager shall use the Set-Time action command to set the absolute
time on the agent. If not set, the agent does not want the manager to set the clock. This situation can occur
when the agent is synchronizing the clock via an external clock source or when the user has set the clock
locally. In this case, the manager shall not attempt to set the clock.

The Date-and-Time and Absolute-Time-Stamp attributes report the agent’ s date and time. For some usages,
it isimportant that the agent report the date and time as it was displayed to the person using the device (e.g.,
a glucose meter). For other usages, reporting a time that is coordinated to a universal time system such as
universal time coordinated (UTC) is important. For example, this situation can occur when the date and
time are set in the factory to UTC and the device does not expose a method for altering the date and time.
On the manager side, the ability to associate the measurement times with the manager’s notion of time is
critical for some usages.

8.12.2.2 Comparable time

This standard utilizes a concept of “comparable time” to support all three usages. The key concepts of
comparable time are as follows:

— When an agent reports time information, it shall ensure that all measurements reported as a set are from
the same, unbroken timeline. For temporary measurements, a set consists of al the measurementsin a
single event report. For PM-store, a set is equivaent to a PM-segment.

— If aset of measurements was collected when the current clock was set differently, then the agent shall
either discard the data or communicate the data along with the number of 1/100 of a second to add to
each of the measurement times to place them on the same timeline as the agent’s current Date-and-
Time attribute.

— The above two concepts apply only if the time base used to time stamp the values has changed by an
amount significant for the type of measurement. In other words, small clock drifts or minor
adjustmentsto a clock to keep it synchronized with an external time source do not need to be reported

Absolute time shall be interpreted as comparabl e time for the agent as follows:

— If an agent is associated with a manager when the Date-and-Time attribute is adjusted, it shall send an
event report that contains the new Date-and-Time attribute value. The one exception is the case where
the manager uses the Set-Time command to change the agent’stime. In this case, the agent may decide
not to send the event report since the manager aready knows the time was changed.

— If an agent collects temporary measurements and the Date-and-Time attribute is adjusted, the agent
shall ensure that all measurements included in an event report come from the same, unbroken timeline,
that is, no time adjustments occurred within the span of the timestamps contained in that event report.
Further, all event reports that contain measurements prior to the time when the current time of the
agent was adjusted shall have the MDS attribute Date-and-Time-Adjustment as the first reported data
in the event report. This attribute shall specify the number of 1/100s of a second to add to each
timestamp in the event report to align with the current clock (e.g., if the clock was advanced by 60 min,
this would report 360 000).

© 1SO 2010 — All rights reserved

87

ISO/IEEE 11073-20601:2010(E)

— If an agent collects PM-store measurements and the Date-and-Time attribute is adjusted, the agent shall
ensure that each PM-segment includes only measurements from the same, unbroken timeline. Further,
the PM-segment attribute Date-and-Time-Adjustment shall be present in any PM-segment that contains
measurements collected with respect to a different clock setting.

— Note that in the cases where measurements are collected off line, if the clock is changed multiple times
before uploading data, the Date-and-Time-Adjustment value is cumulative. In other words,
measurements are collected, then the clock is set backwards 30 min, more measurements are collected,
and the clock is set back another 30 min Then the first set of data needs to report an offset of .60 min,
and the second set reports an offset of =30 min.

8.12.3 Relative time

Agents may implement a relative timer with time resolution down to 125 ps [least significant bit (LSB)].
This resolution is sufficient for sampling rates up to 8 kHz, permits high-resolution relative time periods to
be measured, and spans time periods up to 6.2 days. If relative time is used with either temporarily stored
measurements or a PM-store, agents shall ensure that the length of storage time never exceeds the
resolution of the timer (i.e., 6.2 days). This assurance from an agent allows the manager to query the
agent’s current relative time and compute how long ago the measurement was taken. If longer storage times
are required, either absolute time or high-resolution relative time attributes are used. Agents shall indicate
support for relative time by setting the mds-time-capab-relative-time bit in the Mds-Time-Info attribute.
This timer shall be initialized prior to association. With the exception of counter rollover, it shall
monotonically increase its count and shall not have its value changed once initialized. The actua time
resolution (i.e., internal update period) is defined by the agent, but should be appropriate for the purpose of
that device.

Agents may support a method to synchronize their internal timer to an externa clock source (e.g.,
Bluetooth piconet). The synchronization method used is not in the scope of this standard. However, the
agent shall indicate whether it synchronizes relative time using the mds-time-capab-sync-rel-time bit. If
synchronization is supported, the mds-time-state-rel-time-synced bit shall be set only when the agent
believes its relative clock is synchronized with the external source. All agents connected to the same
manager and indicating their internal timers are synchronized should supply the same relative time for
events synchronized in time.

If the agent provides a relative time stamp for a numerical measurement, the time stamp shall be accurate
within the limits of the stated time synchronization accuracy and the sample time of the numerical value.
The relative time stamp, when used as event time and current time, may provide accurate event-to-event
interval time. The relative time stamp can provide accurate absolute time measurements when the manager
gets the relative time and absolute time attributes from the MDS object of the agent and determines time
relative to its own internal clock.

If the agent provides a relative time stamp for an RT-SA, the time stamp shall relate to the first sample in
that array, and the time stamp is accurate within the limits of the stated accuracy of the relative time
attribute and the sample time of the RT-SA.

Event reports may contain relative time stamps indicating when the event was generated. |f metric-derived
objects held in the event report do not have an overriding time stamp, then the event time shall be used as
the measurement time as well. If the agent provides a relative time stamp for an event time, the time stamp
is accurate within the limits of the stated accuracy of the relative time attribute, the time of the event, and
any sampl e time attributes associated with the event.

:: © 1SO 2010 — All rights reserved
88 © IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

8.12.4 High-resolution relative time

Agents may implement an internal high-resolution timer with time resolution down to 1 ps (LSB). This
high-resolution timer is sufficient for sampling rates up to 1 MHz, permits very high resolution relative
time periods for measurement, and spans time periods up to 584 000 years. Agents shall indicate support
for this feature by setting the mds-time-capab-high-res-relative-time bit in the Mds-Time-Info attribute.
This timer shall be initialized prior to association. With the exception of counter rollover, it shall
monotonically increase its count and shall not have its value changed once initialized. The actual time
resolution (i.e., internal update period) is defined by the agent, but should be appropriate for the purpose of
that device. High-resolution relative time should retain frequency synchronization with relative time.

Agents may support a method to synchronize their high-resolution internal timer to an external clock source
(e.g., Bluetooth piconet). The synchronization method used is not in the scope of this standard. However,
the agent shall indicate whether it synchronizes high-resolution relative time using the mds-time-capab-
sync-hi-res-relative-time bit. If synchronization is supported, the mds-time-state-hi-res-rel ative-time-synced
bit shall be set only when the agent believes its relative clock is synchronized with the external source.
When the agent disconnects from the clock synchronization source, it shall set the synced bit to false as
soon as it exceeds the accuracy of the clock synchronization parameters.

If the agent provides a high-resolution relative time stamp for a numerical measurement, the time stamp
shall be accurate within the limits of the stated accuracy of the relative time attribute and the sample time of
the numerical value.

If the agent provides a high-resolution relative time stamp for an RT-SA, the time stamp shall relate to the
first sample in that array. The time stamp is accurate within the limits of the stated accuracy of the relative
time attribute and the sample time of the RT-SA.

9. Conformance model

9.1 Applicability

It is expected that this standard will be referenced by other standards in the ISO/IEEE 11073 family of
standards to define applications (e.g., for the exchange of personal health measurement data) or to define
functional communication profiles (e.g., persona health device interoperability profiles).

In particular, the series of ISO/IEEE 11073-104zz device specializations are necessary to enable an
interoperable system. Thus, interoperability requires checking for conformance against this standard and the
set of device specializations that are implemented. The device speciaizations define an appropriate
conformance model that includes conformance requirements from this standard for personal health device
representation. Device specializations utilize device specific information to define additional conformance
criteriathat are out of the scope of this standard.

Conformance to definitions of this standard is specified primarily at the appropriate application interface or
system interface. Further, behaviors specified by this standard (such as adherence to the specified state
machines) are also part of the specification. The behavior at thislevel is considered critical for conformance
to assure the proper and accurate operation of the protocol as a whole. Implementation details such as
programming language, layering of software, internal interfaces, and so on are not subject to conformance
specifications.

© 1SO 2010 — All rights reserved 89

ISO/IEEE 11073-20601:2010(E)

9.2 Conformance specification

This standard on persona health representation offers a high degree of flexibility in how the model is
applied for a particular personal health device, particularly in the following areas:

— Information model of a specific device

— Useof attributes, value ranges, and access

— Use of extended communication services (i.e., scanners), scan periods, and scanner configurability

To support interoperability of applications and systems, an implementation based on this standard shall
provide specific details about the way that the definitions of this standard are applied, in conjunction with
the conformance requirements of any derived device specializations.

These specifications take the form of a set of implementation conformance statements (ICSs). An ICSisa
form of data sheet that discloses details of a specific implementation and specifies the features provided.
Specific applications or functional communication profiles that are based on this standard shall define more
specific conformance requirements, in addition to the ICS defined here.

NOTE—The ICSs defined in the following subclauses provide understanding of the details of an implementation.
However, they are not sufficient to provide interoperability of devices or applications. For such interoperability,
additional specifications (e.g., timing, latencies, and system loading assumptions) shall be taken into account. These
specifications are not within the scope of this standard.

9.3 Implementation conformance statements (ICSs)

The general format of the ICSsisin the form of tables. Templates for these ICS tables are givenin Table
22, Table 23, Table 24, Table 25, Table 26, Table 27, Table 28, and Table 29. The tables are to be filled out
and provided as an overall conformance statement document.

Generally the column headers of an ICS table contain the following information:

— Index, whichisan ID (e.g., anumber) of a specific feature.
— Feature, which briefly describes the characteristic for the conformance statement to make.
— Reference, which is areference to the definition of the feature (may be empty).

— Status, which specifies the conformance requirement (i.e.,, the requirements for a conforming
implementation regarding the feature). In some cases, this standard does not specify conformance
requirements, but still wants a definition of the status for a particular feature.

— Support, which is filled out by the implementer and specifies the characteristics of the feature in the
implementation.

— Comment, which contains additional information provided by the implementer.

9.4 General conformance

Table 22, Table 23, and Table 24 are intended for use in describing the general base conformance to this
standard. Articulated in 9.4.1 through 9.4.3 are the fundamental aspects of the support that a device shall
have to claim conformance.

© I1SO 2010 — All rights reserved
90 © IEEE 2010 — Al rights reserved

9.4.1 General ICS

In a top-level general ICS, the implementer specifies the versiongrevisions that are supported by the

implementation as well as some high-level system behavior definitions.

Table 22 shows the general ICS.

Table 22 —General ICS

ISO/IEEE 11073-20601:2010(E)

Index

Feature

Reference

Status

Support

Comment

GEN-1

Implementation
Description

Identification of the
device/application.
Description of
functionality.

GEN-2

Standard
Document
Revision

(Standard
documents)

Identification of the
supported revisionsto
|EEE Std 11073-20601.

(Set of supported
|EEE 11073-
20601 revisions)

GEN-3

Conformance
Adherence
-Level 1-

Base conformance
declaration that device
meets the following
IEEE 11073-20601
conformance
reguirements:

A) All minimum
mandatory (shall)
requirements (See
Table23in 9.4.2 for
some of the more critical
aspects.)

B) All conditional
elements were
implemented according
to the stated conditions.
C) All optional elements
that are implemented are
defined as part of the
conformance statement
(e.g., inthe Attribute
ICStables (see

Table 27)).

YesNo
(Noimplies
NON-
conformant)

GEN-4

Conformance
Adherence
-Leve 2-

In addition to GEN-3,
device conforms to one
or more device
specializations based on
|EEE Std 11073-20601.

(list the set of
|EEE 11073-
20601 device
specializations
that were
followed and
prepare the
information
specified in 9.5)

GEN-5

Communication
Profile
and Hardware

Description of
communication
infrastructure and
hardware requirements
for interfacing.

For each implementation, one general |CS shall be provided.

© 1SO 2010 — All rights reserved

91

ISO/IEEE 11073-20601:2010(E)

9.4.2 Minimum requirements ICS

Table 23 shows the minimum requirements for conformance to this standard.

Table 23—IEEE 11073-20601 minimum requirements

Index Feature Reference Status Support Comment

REQ-1 State Machine | — -Mandatory- Yes/No
Does the implementation have (Noimplies
strict adherence to the |IEEE NON-
11073-20601 personal health conformant)
device articulated state machine
behavior?

REQ-2 Protocol — -Mandatory- Yes/No

Messages Does the implementation adhere | (Noimplies
to the IEEE 11073-20601 NON-
personal health device protocol conformant)
messages?

REQ-3 Objects — -Recommended- Yes/No. If
Do dl objects adhere to no, list the
IEEE Std 11073-20601 or extensions
device specializations based on | as described
IEEE Std 11073-206017? in9.5.2.
Adherence to this set of objects,
fields, vaues, and behavior is
strongly recommended.

REQ-4 Encoding — -Mandatory- Yes/No
Is MDER supported? The (Noimplies
protocol messages are encoded NON-
from the ASN.1 description conformant)
to/from transmission format
using encoding rules. Support (list of
for MDER isrequired. These dternate
encoding rules are defined in encoding
Annex F of |IEEE Std 11073- rulesthat are
20601. supported)
Negotiation of an alternate
encoding ruleis alowed. List al
supported encoding rules.

REQ-5 Nomenclature | — -Mandatory- Yes/No
IEEE Std 11073-20601 isbased | (Noimplies
on ISO/IEEE 11073-10101 NON-
[B12] Nomenclature for base conformant)
nomenclature. |IEEE Std 11073-

20601 and associated device
specializations augment those
with additions.

Are all nomenclature codesin
compliance with one of these
sources?

REQ-6 Transport — -Mandatory-

List al transport classes (i.e., (List of
reliable and/or best-effort) transport
supported by the classes)
implementation.
Areal transport requirementsas | Yes/No
documented in |IEEE Std 11073- | (No implies
20601 met for these transports? | NON-
conformant)

92

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

9.4.3 Service support ICS

The service support ICS defines services defined in the service model that are implemented. This ICS is

supplied only for communicating devices.

Table 24 shows the service support ICS.

Table 24 —Service support ICS

ISO/IEEE 11073-20601:2010(E)

Index Feature Reference Status Support Comment
SRvV-1 GET Service 7.3 Doesthe Sends command,
implementation and/or accepts
support GET? command, or not
conditional supported.
SRV-2 SET Service 7.3 Doesthe Sends command,
implementation and/or accepts
support SET? command, or not
conditiona supported.
SRV-3 Confirmed 7.3 Does the Sends command,
SET Service implementation and/or accepts
support command, or not
confirmed SET? | supported.
optional
SRV-4 EVENT 7.3 Doesthe Sends command,
REPORT implementation and/or accepts
Service support EVENT | command, or not
REPORT? supported.
conditional
SRV-5 Confirmed 7.3 Doesthe Sends command,
EVENT implementation and/or accepts
REPORT support command, or not
Service confirmed supported.
EVENT
REPORT?
conditional
SRV-6 ACTION 7.3 Doesthe Sends command,
Service implementation and/or accepts
support command, or not
ACTION? supported.
conditional
SRV-7 Confirmed 7.3 Does the Sends command,
ACTION implementation and/or accepts
Service support command, or not
confirmed supported.
ACTION?
optional

The Support column of the completed table should define if the implementation invokes the service (e.g.,
sends a GET PDU), provides the service (e.g., processes a received GET PDU), or does not implement the

service at all.

In addition, specific restrictions are listed (e.g., if aspecific serviceis restricted to only one object class).

© 1SO 2010 — All rights reserved

93

ISO/IEEE 11073-20601:2010(E)

94

9.5 Device additions/extensions ICS

Table 25, Table 26, Table 27, Table 28, and Table 29 are intended for use in describing the ICS for any
additions or extensions the device uses beyond this standard and its specializations. It is expected that all
conditional or optional behaviors are articulated as part of the corresponding conformance statement for the
respective device specializations.

9.5.1 General additions/extensions ICS

The general additiong/extensions ICS defines the basic background on the scope of the supported
additions/extensions.

Table 25 —General additions/extensions ICS

Index Feature Reference Status Support Comment
ADD-1 Use of Private — Doesthe Yes/No
Objects implementation use [If yes: POC ICS
objects that are not (see 9.5.2) shall
defined in |EEE Std be utilized to
11073-20601 or any explain
of the listed device implementation
specializations? details]
ADD-2 Use of Non- — Doesthe Yes/No
20601 implementation use (If yes: explain
Nomenclature nomenclature codes inthe
Codes from from the ISO/IEEE appropriate ICS,
ISO/IEEE 11073-10101 [B12] see 9.5.6)
11073-10101 that are not part of
[B12]. |EEE Std 11073-
20601 or any of the
listed device
specializations?
ADD-3 Use of Private — Doesthe Yes/No
Nomenclature implementation use (If yes: explain
Extensions private extensions to inthe
the nomenclature? appropriate ICS,
Private nomenclature | see9.5.6)
extensions are
alowed only if the
standard
nomenclature does
not include the
specific terms
required by the
application.
ADD-4 Payload Format | — Were any additional Yes/No
payload formats (If yesthen
introduced beyond explain fully
those defined in IEEE | with purpose and
Std 11073-20601 or layout. Should
any of thelisted be described in
device ASN.1)

specializations?

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

9.5.2 Personal health device DIM object and class (POC) ICS
The POC ICS defines which managed objects from this standard are instantiated by the implementation and

references the class of each object. Table 26 is a template only. For each object supported by the
implementation, one row shall be filled out.

Table 26 —Template for POC ICS

Index Feature Reference Status Support Comment
POC-n Object Theclassof the | Implemented Specify restrictions
Description object (i.e, (e.g., maximum
numeric, etc.) number of supported
instances)

The n in the Index column should be the object handle for implementations that have pre-defined objects.
Otherwise, the Index column shall simply be a unique number (1..m).

All private objects shall be specified and include a reference to the definition for the object. Where no
publicly available reference is available, the definition of the object should be appended to the conformance
statement.

The Support column should indicate any restrictions for the object implementation.

An object containment diagram (class instance diagram) should be provided as part of the POC ICS.

9.5.3 POC attribute ICS

For each supported object defined in the POC ICS, a POC attribute ICS is provided to define the
conditional, optional, or extended attributes used/supported by the implementation, including any inherited
attributes. Mandatory attributes do not need to be listed since they are required to be implemented to be
conformant.

Table 27 isatemplate only.

Table 27 —Template for POC attribute ICS

Index Feature Reference Status Support Comment
ATTR- Attribute Name. | Fill inthe Implemented Describe;
nN—x reference to the Access
Extended ASN.1 structure if Vaueranges
attributes shall the attribute is not Additional restrictions
include the defined in this value
Attribute ID standard or one of
also. the listed device
specializations.

The nin the Index column is the ID of the managed object for which the table is supplied (i.e., the index of
the managed object as specified in the POC ICS in 9.5.2). There is one separate table for each supported
managed object.

The x in the Index column isjust aserial number (1..m).

© 1SO 2010 — All rights reserved

95

ISO/IEEE 11073-20601:2010(E)

All attributes beyond those defined in this standard or any of the listed device specializations shall be
specified and include reference to the definition for the attribute. Where no publicly available reference is
available, the definition of the attribute should be appended to the conformance statement.

The attribute access specification fields in the Support column are specified if the implementation provides
access services for attributes.

The Support column should also contain attribute value ranges (if applicable), hints about specific
restrictions for attribute access or attribute availability and information, and an indication if the attribute
valueis static or dynamic in the implementation.

NOTE—The attribute definition tables in this standard define a minimum mandatory set of attributes for each object.

9.5.4 POC behavior ICS

The POC behavior ICS specifies all implemented object methods that can be invoked by the ACTION
service. Table 28 isatemplate only. One tableis provided for each object that supports special methods.

Table 28 —Template for POC behavior ICS

Index Feature Reference Status Support Comment
ACT- Method Name. Fill in the reference Specific
n—x tothe ASN.1 restrictions
Methods not structure if method
defined in the isnot defined in
standards shall this standard or one
include the of the listed device
Method ID also. specidlizations.

The nin the Index column isthe ID of the managed object for which the table is supplied (i.e., the index of
the managed object as specified in the POC ICS). There is one separate table for each managed object that
supports specific object methods (i.e., actions).

The x in the Index column isjust aserial number (1..m).
All methods beyond those defined in this standard or any of the listed device specializations should be
specified and include reference to the definition for the method. Where no publicly available reference is

available, the definition of the method should be appended to the conformance statement.

The Support column should specify any restrictions for the method.

9.5.5 POC notification ICS

The POC notification ICS specifies all implemented notifications (typically in form of the EVENT
REPORT service) that are emitted by supported objects. Table 29 is atemplate only. One table is provided
for each object that supports special object notifications.

© I1SO 2010 — All rights reserved
96 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

Table 29 —Template for medical object class (MOC) notification ICS

Index Feature Reference Status Support Comment
NOTI- Notification Referenceto the Specific
n-x Name subclause in this restrictions, ID,
and Notification | standard where and description
ID theevent is of each object
defined. involved

The nin the Index column is the ID of the managed object for which the table is supplied (i.e., the index of
the managed object as specified in the POC ICS). There is one separate table for each managed object that
supports specific object notifications (i.e., events).

The x in the Index column isjust a serial number (1..m).

All private notifications shall be specified and include reference to the definition for the notification. Where
no publicly available reference is available, the definition of the notification should be appended to the
conformance statement.

The Support column should specify any restrictions for the notification.

9.5.6 POC nomenclature ICS

The POC nomenclature ICS specifies all implemented nomenclatures that are utilized by the agent.

Table 30 isatemplate only. One row of the table isto be used for each nomenclature element.

Table 30 —Template for MOC nomenclature ICS

Index Feature Reference Status Support Comment
NOME- Nomenclature Reference to the Describe how the
n Name subclause in the nomenclatureis
and standard or other used.
Nomenclature location where Describe any
Vaue the nomenclature specific
is defined or restrictions
used

Theninthe Index column isjust a sequential number for uniqueness (1..m).

© 1SO 2010 — All rights reserved

97

ISO/IEEE 11073-20601:2010(E)

98

Annex A
(normative)

ASN.1 definitions

A.1 General

This annex provides ASN.1 definitions relevant for the personal health device protocol. Some are imported
from other parts of the ISO/IEEE 11073 family of standards and others are created specifically for the
personal health device domain. If thereisinterest in understanding which structures are imported and which
are new, see Annex J. This annex ensures that all data structures required to implement this standard are

readily available.

The naming convention followed in this annex is to use hyphen (-) to separate words in attributes and to use
mixed case when describing data types; however, constructs that were imported from other specifications

follow the existing use of capitalization and hyphenation.

A.2 Common data types

This subclause defines a set of ASN.1 data types that are used in the object definitions.

A.2.1 Integer and bit string data types

For representing integer numbers, the object definitions use fixed-size data types only. The bit string data
type represents a bit field where each single bit has a defined meaning (i.e., flag fields). The following

integer data types and bit string data types are used:

-- 8-bit unsigned integer

INT-U8 ::= INTEGER (0..255)

-- 8-bit signed integer

INT-I18 ::= INTEGER (-128..127)

-- 16-bit unsigned integer

INT-U16 ::= INTEGER (0..65535)

-- 16-bit signed integer

INT-116 ::= INTEGER (-32768..32767)

-- 32-bit unsigned integer

INT-U32 ::= INTEGER (0..4294967295)

-- 32-bit signed integer

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

INT-132 ::= INTEGER (-2147483648..2147483647)

-- 16-bit bit string

BITS-16 ::= BIT STRING (SIZE(16))

-- 32-hit bit string

BITS-32 ::= BIT STRING (SIZE(32))

Note that in object definitions, integer and bit string data types with named constants or named bits use the
above defined basic data types for simplicity. This approach provides an abbreviated notation, but it is
illegal ASN.1 syntax. It can be easily transformed to the correct syntax. For example, the definition

NamedConstant ::= INT-U16 {
const1(1),
const2(2)

becomes correct ASN.1 syntax defined as:

NamedConstant ::= INTEGER {
const1(1),
const2(2)

} (0..65535)

A.2.2 Identification data type

All elements (e.g., classes, objects, and measurement types) that need unique identification are assigned an
object identifier (OID). The set of valid OIDs for this standard is defined in ISO/IEEE 11073-10101 [B12].
The nomenclature consists of a set of partitions, where each partition covers a specific concept and has its
own 16-bit codes. In other words, a specific code is identified by both its partition number and an OID
within that partition or its use is context dependent. In the case of context-dependent codes, the specific
partition the code utilized is called out within this standard.

The 16-bit identification datatypeis defined as follows:

-- OID type as defined in nomenclature
-- (do not confuse with ASN.1 OID)

OID-Type ::= INT-U16 -- 16-bit integer type

A private partition is available for codes and IDs that are yet to be standardized or for manufacturer-specific
codes.

-- Private OID

PrivateQid ::= INT-U16

© 1SO 2010 — All rights reserved 99

ISO/IEEE 11073-20601:2010(E)

100

A.2.3 Handle data type

The handle data type is used for efficient and locally unique identification of al managed object instances.
(Locally unique means unique within one MDS context.) This data type is defined as follows:

-- handle

HANDLE ::=INT-U16
A.2.4 Instance number data type

The instance number is used to distinguish class or object instances of the same type or object instances that
are not directly manageable (used, e.g., as the identification attribute for PM-segment objects).

-- Instance Number

InstNumber ::= INT-U16
A.2.5 Type ID data type

The type ID data type is used to identify the type of al elements (e.g., classes, objects, and measurement
types). It is similar to the OID type (B2.2), but includes both the nomenclature partition and code to provide
unique identification of an element. It shall be used when the context is not implicit. This data type is
defined as follows:

-- Type D

TYPE ::= SEQUENCE {
partition NomPartition,
code OID-Type

}

-- The following nomenclature partitions exist:

NomPartition ::= INT-U16 {
nom-part-unspec(0),

nom-part-obyj (1), -- object-oriented partition

nom-part-metric(2), -- metric [supervisory control and data acquisition
-- (SCADA)] partition

nom-part-alert(3), -- dlertgevents partition

nom-part-dim(4), -- dimensions partition

nom-part-vattr(5), -- virtual attribute partition for operation objects

nom-part-pgrp(6), -- parameter group |D partition

nom-part-sites(7), -- measurement and body site locations

nom-part-infrastruct(8), -- infrastructure elements partition

nom-part-fef(9), -- file exchange format partition

nom-part-ecg-extn(10), -- electrocardiogram extensions partition

nom-part-phd-dm(128), -- disease management

nom-part-phd-hf(129), -- health and fitness

nom-part-phd-ai (130), -- aging independently

nom-part-ret-code(255), -- return codes partition

nom-part-ext-nom(256), -- IDs of other nomenclatures and dictionaries

nom-part-priv(1024) -- private partition

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

A.2.6 Attribute value assertion (AVA) data type

The AV A datatype fully specifies the attribute of an object by its attribute ID and its value. Asthe structure
of the value is attribute dependent, the type is specified by ANY DEFINED BY. This data type supports a
number of services used to access object attributes (e.g., GET and SET). The attribute ID values are defined
for each object type in the Attribute ID column of the object definition tables (i.e., Table 2, Table 5, Table
6, Table 7, Table 8, Table 9, Table 12, Table 13, Table 14, Table 15, and Table 17). The structure used for
the attribute-value is defined by the Attribute Type column of the same tables. The AVA data type is
defined as follows:

AVA-Type ::= SEQUENCE {
attribute-id OID-Type, -- This shall come from the nom-part-obj partition
attribute-value ANY DEFINED BY attribute-id

}

A.2.7 Attribute list data type

Frequently, alist of attribute | D—attribute value pairs is needed. The attribute list datatype is a specia data
typethat is provided for this situation and is defined as follows:

AttributeList ::= SEQUENCE OF AVA-Type
A.2.8 Attribute ID list data type

Frequently, alist of attribute IDsis used. The attribute ID list datatype is a specia type that is provided for
convenience and is defined as follows:

AttributeldList ::= SEQUENCE OF OID-Type
A.2.9 Floating point type (FLOAT-Type) data type

The FLOAT-Type data type is defined to represent numeric values that are not integer in type. The
FLOAT-Type is defined as a 32-bit value with 24-bit mantissa and 8-bit exponent. See F.7 for full
definition of this data type. This datatype is defined as follows:

-- 32-hit float type; the integer typeis a placeholder only

FLOAT-Type ::= INT-U32

The 32 bits contain an 8-bit signed exponent to base 10, followed by a 24-bit signed integer (mantissa).
Special values are assigned to express the following:

— NaN (not anumber) [exponent 0, mantissa +(2**23 —1) > O0x007FFFFF]

— NRes (not at this resolution) [exponent 0, mantissa—(2**23) - 0x00800000]
— + INFINITY [exponent O, mantissa +(2**23 —2) - 0x007FFFFE]

— —INFINITY [exponent O, mantissa—(2**23 —2) - 0x00800002]

— Reserved for future use [exponent 0, mantissa—(2**23-1) - 0x00800001]

© 1SO 2010 — All rights reserved: ...
101

ISO/IEEE 11073-20601:2010(E)

102

A.2.10 Short floating point type (SFLOAT-Type) data type

The short floating point type SFLOAT-Type data type is defined to represent numeric values that are not
integer in type and have limited resolution. The SFLOAT-Type is defined as a 16-bit value with 12-bit
mantissa and 4-bit exponent. See Annex F.7 for full definition of this data type. This datatypeis defined as
follows:

-- 16-hit float type; the integer typeis a placeholder only

SFLOAT-Type ::= INT-U16

The 16-hit value contains a 4-hit exponent to base 10, followed by a 12-bit mantissa. Each is in twos-
complement form.

Special values are assigned to express the following:

— NaN [exponent 0, mantissa +(2**11 —1) > 0x07FF]

— NRes[exponent 0, mantissa—(2**11) - 0x0800]

— + INFINITY [exponent O, mantissa +(2**11 —2) > Ox07FE]

— —INFINITY [exponent O, mantissa—(2**11 —2) - 0x0802]

— Reserved for future use [exponent 0, mantissa—(2**11 —1) > 0x0801]

A.2.11 Relative time data type

The relative time data type is a time counter that is used to determine the relative time between events. This
data type is used to position events relative to each other. It is defined as follows:

-- Relative time has a resolution of 125 us (LSB), which is sufficient for sampling

-- rates up to 8 kHz and spans time periods up to 6.2 days.

-- The value of OxFFFFFFFF shall be used when an agent is required to send arelativetimein an ASN.1
-- structure but does not support a relative time clock.

RelativeTime ::= INT-U32
Note that the actual time resolution is defined by the agent.

A.2.12 High-resolution relative time data type

The high-resolution relative time data type is a high-resolution time counter that is used to determine the
relative time between events. This datatype is used to position events relative to each other. It is defined as
follows:

-- High-resolution time has aresolution of 1 ps and can represent time

-- gpans of over 584 000 years. Theoretically, this could be modeled asan INT-U64;
-- however, dueto limitations in the ASN.1 compilers, embedded devices support

-- for 64-bit integers, and the MDER specifications, an OCTET STRING was

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

-- used instead.

HighResRelativeTime ::= OCTET STRING (SIZE(8))

Note that the agent defines the actual time resolution used.

-- Absolute time adjust has a resolution of 1/100 of a second and can represent time

-- adjustments of plus or minus 44 505 years. Theoretically, this could be modeled as an INT-148;
-- however, due to potential limitationsin ASN.1 compilers, embedded devices support

-- for 48-hit integers, and the MDER specifications, an OCTET STRING was

-- used instead.

AbsoluteTimeAdjust ::= OCTET STRING (SIZE(6))
A.2.13 Absolute time data type

The absolute time data type specifies the time of day with a resolution of 1/100 of a second. The hour field
shall be reported in 24-hr time notion (i.e., from 0 to 23). The valuesin the structure shall be encoded using
binary coded decimal (i.e., 4-bit nibbles). For example, the year 1996 shall be represented by the
hexadecimal value 0x19 in the century field and the hexadecimal value 0x96 in the year field. This format
is easily converted to character- or integer-based representations. The absolute time data type is defined as
follows:

AbsoluteTime ::= SEQUENCE {

century INT-US8,
year INT-US8,
month INT-US,
day INT-US,
hour INT-US,
minute INT-US,
second INT-US8,
sec-fractions INT-U8 -- 1/100 of asecond if available

Note that the agent defines the actual time resolution used (i.e., if the clock resolution is 1 s, then
sec-fractionsis always zero). Agents should have aresolution of 1 s or better.

A.2.14 Operational state data type
The operational state data type definesif a certain object or other property is enabled or disabled.
Operational State ::= INT-U16 {

disabled(0),

enabled(1),
notAvailable(2)

© 1SO 2010 — All rights reserved
103

ISO/IEEE 11073-20601:2010(E)

A.3 Attribute data types

A.3.1 MDS attributes

-- SystemModel contains manufacturer name and manufacturer specific model information.
-- While model-number field name suggests a number, there is no requirement that the field
-- contains numeric values. The format of the manufacturer name and model number strings
-- are decided upon by the agent vendor, but shall be printable ASCII.

SystemModel ::= SEQUENCE {
manufacturer
model-number

}

OCTET STRING,
OCTET STRING

-- string size shall be even
-- string size shall be even

-- ProductionSpec deals with serial numbers, part numbers, revisions, etc.

-- Note that an agent may have multiple components; therefore, the prod-spec should be an
-- ASCII printable string of the format “ spec-type: vendor-specified-str” where spec-typeis
-- replaced by the string representation of spec-type. The format of the vendor-specified-str

-- isdetermined by the vendor.

ProductionSpec ::= SEQUENCE OF ProdSpecEntry

ProdSpecEntry ::= SEQUENCE {
spec-type

component-id
prod-spec
}

INT-U16 {
unspecified(0),
seria-number(1),
part-number(2),
hw-revision(3),
sw-revision(4),
fw-revision(5),
protocol-revision(6),
prod-spec-gmdn(7) -- see note on GMDN below
PrivateOid,

OCTET STRING -- string size shall be even

-- Note: The Globa Medical Device Nomenclature (GMDN) is based on SO 15225 [B15]
-- and was devel oped under the auspices of CEN TC257 SC1.”

-- PowerStatus defines whether device is on battery or on mains. Upper bits define the charging

-- state.

PowerStatus ::= BITS-16 {
onMains(0),
onBattery(1),

chargingFull(8),

chargingTrickle(9),

chargingOff(10)

" More information can be found about this technical committee at http://www.nkkn.net/gmdn/gmdnproject.htm.

104

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

-- All measures about the battery are values with their dimensions. See the description
-- of Remaining-Battery-Timein Table 2 for adescription of legal units.

BatMeasure ::= SEQUENCE {
value FLOAT-Type,
unit OID-Type -- from nom-part-dim partition

}

A.3.2 Metric attributes

This group contains imported attribute definitions that apply to the numeric, enumeration, and the RT-SA
objects.

-- Status of the measurement
-- The bit values 14 and 15 are used in other ISO/IEEE 11073 standards and shall not be used for a different
-- purpose.
MeasurementStatus ::= BITS-16 {
invalid(0),
guestionable(l),
not-available(2),
calibration-ongoing(3),

test-data(4),

demo-data(5),

validated-data(8), -- relevant, e.g., inan archive

early-indication(9), -- early estimate of value

msmt-ongoing(10) -- indicates a new measurement is just being taken

-- (episodic)
}

A.3.3 Numeric attributes

-- NuObsValue (Numeric Observed Value) always includes identification, state, and dimension.

NuObsValue ::= SEQUENCE {

metric-id OID-Type, -- This code comes from the partition identified in
-- Metric:: Type attribute of the numeric object.

state M easurementStatus,

unit-code OID-Type, -- from nom-part-dim dimensions nomenclature
-- partition

value FLOAT-Type

}

-- Observed value for compound numerics
NuObsVaueCmp ::= SEQUENCE OF NuObsValue

A.3.4 RT-SA attributes

-- SaSpec describes the sample array.

© 1SO 2010 — All rights reserved
105

ISO/IEEE 11073-20601:2010(E)

-S-aSpec := SEQUENCE {

array-size INT-U16, -- number of samples per metric update period
sample-type SampleType,
flags SaFlags

}

-- SampleType describes one sample in the observed value array.

SampleType ::= SEQUENCE {

sample-size INT-US, -- e.g., 8 for 8-bit samples, 16 for 16-bit samples,
-- shall be divisible by 8
significant-bits INT-U8 -- defines significant bitsin one sample
{ signed-samples(255)} -- if valueis 255, the samples
-- in Simple-Sa-Observed-Value and

-- lower-scaled-value and upper-scaled-value in
-- ScaleRangeSpec shall be interpreted as signed
-- integers in twos-complement form.

}

-- SaFlags defines additional wave form properties.

SaFlags::=BITS-16 {

smooth-curve(0), -- for optimum display, use a smoothing algorithm
delayed-curve(l), -- curve isdelayed (not real time)

static-scale(2), -- ScaleRangeSpec does not change
sa-ext-val-range(3) -- The nonsignificant bitsin asample are not 0, e.g.,

-- when they are used for annotations or markers.

-- The receiver shall apply abit mask to extract the
-- significant bits from the sample. If the samples are
-- signed, the sa-ext-val-range bit shall not be set

-- (because, by definition, there cannot be

-- nonsignificant bitsin the field).

}

-- The scale and range definition attribute describes a mapping between scaled values

-- and absolute val ues and defines the expected range of absolute values and scaled values.
-- Dependent on the range of the scaled values, multiple attribute types exist.

-- The mapping between sample values and converted absolute values is defined by

-- the Scale-and-Range-Specification formulain 6.3.5.3.

ScaleRangeSpecs ::= SEQUENCE {

lower-absolute-value FLOAT-Type,
upper-absolute-value FLOAT-Type,
lower-scaled-value INT-US, --n.b. interpret as INT-18
upper-scaled-value INT-U8 -- if Sa-Specification attribute
-- indicates signed samples
}
ScaleRangeSpec16 ::= SEQUENCE {
lower-absol ute-value FLOAT-Type,
upper-absol ute-value FLOAT-Type,
lower-scal ed-value INT-U16, -- n.b. interpret as INT-116

© I1SO 2010 — All rights reserved
106 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

upper-scal ed-value INT-U16 -- if Sa-Specification attribute
-- indicates signed samples
}
ScaleRangeSpec32 ::= SEQUENCE {
lower-absolute-value FLOAT-Type,
upper-absolute-value FLOAT-Type,
lower-scaled-value INT-U32, -- n.b. interpret as INT-132
upper-scaled-value INT-U32 -- if Sa-Specification attribute
-- indicates signed samples
}

A.3.5 Enumeration attributes

-- EnumObsV al ue describes the enumeration observed value.

EnumObsValue ::= SEQUENCE {
metric-id OID-Type, -- This code comes from the partition defined in the
-- Metric-Id-Partition attribute, if valued. Otherwise,
-- it comes from the same partition as the Type
-- attribute.
state M easurementStatus,
value EnumVval -- supports different value data types

}

-- EnumVal is used to denote different specific observation data types as follows
-- (Note that the type of measurement is coded in the top-level structure EnumObsVal::metric-id):

- enum-obj-id: used to communicate a metric OID, e.g., as an annotation or
- other event defined in the Metric:: Type partition

-- enum-text-string: used to communicate a free text string (e.g., a status message)
-- enum-bit-str: for coding bit string values; the bit string data type shall be

-- defined separately, e.g., in the nomenclature or in a

-- device-specific standard

-- Other data types defined in 1SO/IEEE 11073-10201:2004 [B13] are not included here as they are not
-- relevant for personal health devices.

EnumVal ::= CHOICE {
enum-obj-id [1] OID-Type, -- Thiscode comes from the partition defined in the
-- Enum-Observed-Value-Partition attribute, if
-- valued. Otherwise, it comes from the same
-- partition asthe Type attribute.

enum-text-string [2] OCTET STRING, -- printable ASCI|I text, size even
enum-bit-str [16] BITS-32 -- bit string
}

A.3.6 Scanner attributes

None

© 1SO 2010 — All rights reserved
107

ISO/IEEE 11073-20601:2010(E)

A.3.7 Configurable scanner attributes

-- ConfirmM ode definesif confirmed event reports or unconfirmed event reports are used.

ConfirmMode ::= INT-U16 {
unconfirmed(0),
confirmed(1)

}
A.3.8 Episodic configurable scanner attributes

None

A.3.9 Periodic configurable scanner attributes

None

A.3.10 PM-store and PM-segment attributes

-- StoSampleAlg describes how samples are derived and averaged.
StoSampleAlg ::= INT-U16 {
st-alg-nos(0), -- not otherwise specified
st-alg-moving-average(1),
st-alg-recursive(2),
st-alg-min-pick(3),
st-alg-max-pick(4),

st-alg-median(5),
st-alg-trended(512), -- trend values are used
st-alg-no-downsampling(1024), -- means no averaging, thisis areal measured sample

st-alg-manuf-specific-start(61440), -- start of the reserved manufacturer-specific range
st-alg-manuf-specific-end(65535) -- end of the reserved manufacturer-specific range

}
A.4 ACTION-method-related data types

-- SetTimel nvoke selects the date and time to be set.

SetTimelnvoke ::= SEQUENCE {
date-time AbsoluteTime,
accuracy FLOAT-Type -- accountsfor set time (e.g., 2 min error);
-- valueis defined in seconds. This parameter is
-- inherited from | SO/IEEE 11073-10201:2004
-- [B13], but not used. Thus, it shall be zero (0).
}

-- SegmSel ection selects the PM-segments that are subject to the method.

SegmSelection ::= CHOICE {

© I1SO 2010 — All rights reserved
108 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

all-segments [1] INT-U16, -- if thistypeis chosen to select al segments
-- the actual contents of the field is “do not care”
-- and shall be zero

segm-id-list [2] SegmidList, -- using thislist requiresthat the manager already
-- knows the Instance-Number attributes of the
-- PM-segments, e.g., from a previous
-- Get-Segment-Info method call.
abstime-range [3] AbsTimeRange
-- support of abs-time-range is optional, indicated in
-- the PM-Store-Capab attribute

-- SegmlidList selects PM-segments by ID.

SegmldList ::= SEQUENCE OF InstNumber

-- AbsTimeRange allows selection of PM-segments by time period.

AbsTimeRange ::= SEQUENCE {
from-time AbsoluteTime,
to-time AbsoluteTime

}

-- SegmentinfoL.ist returns the object attributes (except the Fixed-Segment-Data) of all
-- selected PM-segment object instances in response to the Get-Segment-Info PM-store method.
-- Thisisrequired by the manager to retrieve the dynamic information about the segments.

SegmentInfoList ::= SEQUENCE OF Segmentinfo

Segmentlnfo ::= SEQUENCE {
seg-inst-no InstNumber,
seg-info AttributeList

}
A.5 Message-related data types

ObservationScan ::= SEQUENCE {
obj-handle HANDLE,
attributes AttributeList

}
A.6 Other

-- TimeProtocolld indicates the time protocols that are supported/used by the device.

TimeProtocolld ::= OID-Type -- from the nom-part-infrastruct nomenclature partition

© 1SO 2010 — All rights reserved
109

ISO/IEEE 11073-20601:2010(E)

110

A.7 Personal health device protocol frame

The following data type represents the top-level message frame of the personal health device protocol. The
data Apdu (encapsulated by the PrstApdu) is interpreted according to this standard as a result of the
negotiation contained within the association procedure as described in 8.7.3.1.

MDER encoding rules shall always apply to the structurein A.7.

ApduType ::= CHOICE {

aarq [57856] AargApdu, -- Association Request [0xE200]
aare [68112] AareApdu, -- Association Response [0xE300]
rirq [58368] RIrgApdu, -- Association Release Request
-- [0XE400]
rire [58624] RireApdu, -- Association Release Response
-- [OXE500]
abrt [58880] AbrtApdu, -- Association Abort [OXE600]
prst [59136] PrstApdu -- Presentation APDU [OXE700]

}
A.8 Association protocol definitions
MDER encoding rules shall always apply to the structuresin A.8.

AargApdu ::= SEQUENCE {
-- The assoc-version defines the version of the association procedure
-- used by the agent. The agent shall set exactly one
-- version bit. If the manager does not understand that version, it shall
-- reject the association request with rejected-unsupported-assoc-version.
assoc-version AssociationVersion,
data-proto-list DataProtoList

}

DataProtoList ;:= SEQUENCE OF DataProto

-- If the data-proto-id is set to data-proto-id-20601, the data-proto-info shall
-- befilled with a PhdAssociationl nformation structure.
-- If the data-proto-id is set to data-proto-id-external, the data-proto-info shall
-- befilled with a Manuf SpecA ssociationlnformation structure.
-- If the data-proto-id is set to data-proto-id-empty, the data-proto-info shall
-- be empty (only used when the AareApdu is areject).
DataProto ::= SEQUENCE {
data-proto-id DataProtold,
data-proto-info ANY DEFINED BY data-proto-id

}

-- All other DataProtold values are reserved and shall not be used.
DataProtold ::= INT-U16 {

data-proto-id-empty(0), -- shall be used in AareApdu only when result is

-- argjection
data-proto-id-20601(20601), -- indicates exchange protocol follows this standard
data-proto-id-external (65535) -- indicates manufacturer specific

-- data protocol UUID is part of
-- the Manuf SpecA ssociationl nformation

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

-- Association response

AareApdu ::= SEQUENCE {
result
selected-data-proto

}

-- Release request

RIrgApdu ::= SEQUENCE {
reason

}

-- Release response

RIreApdu ::= SEQUENCE {
reason

}

-- Abort

AbrtApdu ::= SEQUENCE {
reason

}

-- Reason for the Abort

ISO/IEEE 11073-20601:2010(E)

AssociateResult,
DataProto

ReleaseRequestReason

Rel easeResponseReason

Abort-reason

-- All unassigned " Abort-reason " values are reserved for future expansion and shall not be used.

Abort-reason ::= INT-U16 {
undefined(0),
buffer-overflow(1),
response-timeout(2),
configuration-timeout(3)

}

-- See 8.7.3.2 for a usage description.

-- Configuration message not received in timely
-- fashion

-- All unassigned " AssociateResult " values are reserved for future expansion and shall not be used.

AssociateResult ::= INT-U16 {
accepted(0),
rejected-permanent(1),
rejected-transient(2),

accepted-unknown-config(3),

rejected-no-common-protocol (4),

rejected-no-common-parameter(5),

rejected-unknown(6),

rejected-unauthorized(7),

rejected-unsupported-assoc-version(8)
}

-- All unassigned " ReleaseReguestReason " values are reserved for future expansion and shall not be used.

ReleaseRequestReason ::= INT-U16 {
normal (0), -- used when the agent or manager decidesto

-- release the association under normal conditions

-- used by the agent when all possible configurations

-- were attempted and the manager

-- rgjected them all.

-- used by the agent when its configuration changes

-- requiring the agent to release the association. This

-- may be followed by an Association Request with

-- new configuration information.

no-more-configurations(1),

configuration-changed(2)

© 1SO 2010 — All rights reserved

111

ISO/IEEE 11073-20601:2010(E)

112

}

-- All unassigned " ReleaseResponseReason " values are reserved for future expansion and
-- shall not be used.
ReleaseResponseReason ::= INT-U16 {
normal (0)
}

-- Association Request DataProto values are mapped to the PhdA ssociationl nformation.
-- Thisinformation is used to announce and negotiate the protocol version, profile, etc.

PhdAssociationlnformation ::= SEQUENCE {
-- The protocol Version information is used to communicate acceptable versions. When
-- the agent sends the protocol Version, it shall set the bit(s) for each version
-- that it supports. When the manager responds, it shall set a single bit
-- to indicate the protocol version to be used by both. If there is not
-- acommon protocol version, the manager shall reject the association request
-- and set the protocol Version to al zeros.

protocol-version Protocol Version,
encoding-rules EncodingRules,
nomenclature-version NomenclatureVersion,
functional -units Functional Units,
system-type SystemType,
system-id OCTET STRING,
dev-config-id Configld,
data-req-mode-capab DataReqM odeCapab,
option-list AttributeList

-- Manufacturer-specific association information for a proprietary data protocol

Manuf SpecAssociationlnformation ::= SEQUENCE {
data-proto-id-ext Uuidldent,
data-proto-info-ext ANY DEFINED BY data-proto-id-ext

}

-- All unassigned " AssociationVersion " bit values are reserved for future expansion and
-- shall be set to zero.
AssociationVersion ::= BITS-32 {
assoc-version1(0) -- Thishit shall be set if version 1 of the association
-- protocol is supported

}

-- All unassigned " Protocol Version " bit values are reserved for future expansion and shall be set to zero.
ProtocolVersion ::= BITS-32 {
protocol-version1(0) -- Thisbit shall be set if version 1 of the data
-- exchange protocol is supported

--The agent and manager shall always support MDER.
--The agent and manager may negotiate other encoding rules besides MDER.
-- All unassigned " EncodingRules " bit values are reserved for future expansion and shall be set to zero.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

EncodingRules::= BITS-16 {

mder(0), -- This bit shall be set if MDER supported/sel ected
xer(1), -- Thisbit shall be set if XER supported/selected
per(2) -- Thisbit shall be set if PER supported/selected

}

-- All unassigned " NomenclatureVersion " bit values are reserved for future expansion and

-- shall be set to zero.

NomenclatureVersion ::= BITS-32 { -- values reference a specific nomenclature standard
nom-version1(0) -- Thishit shall be set if version 1 is supported

}

-- All unassigned " FunctionalUnits ™ bit values are reserved for future expansion and shall be set to zero.
FunctionalUnits ::= BITS-32 {

fun-units-unidirectional (0), -- Reserved for future use. This bit shall be set if
-- the agent is unidirectional
fun-units-havetestcap(1), -- Thishit indicates if the device can enter a
-- test association
fun-units-createtestassoc(2) -- Thishit is used to indicate an intention to

-- form atest association

}

-- All unassigned " SystemType " bit values are reserved for future expansion and shall be set to zero.
SystemType ::= BITS-32{

sys-type-manager(0),

sys-type-agent(8)
}

Configld ::= INT-U16 {
manager-config-response(0),
standard-config-start(1),
standard-config-end(16383),
extended-config-start(16384),
extended-config-end(32767),
reserved-start(32768),
reserved-end(65535)

}

A.9 Presentation protocol definitions

MDER encoding rules shall always apply to the structuresin A.9.

-- The OCTET STRING contains the data APDU encoded according to the abstract and transfer syntaxes
-- negotiated at association time. When the data-proto-id is negotiated to be data-proto-id-20601, the
-- OCTET STRING shall be an encoded version of DataApdul.

PrstApdu ::= OCTET STRING

© 1SO 2010 — All rights reserved
113

ISO/IEEE 11073-20601:2010(E)

114

A.10 Data protocol definitions

A.10.1 General

The DataApdu and the related structures in A.10 shall use encoding rules as negotiated during the
association procedure as described in 8.7.3.1. The agent and manager shall always support the MDER. The
agent and manager may negotiate other encoding rules besides MDER.

A.10.2 Data protocol frame

-- Combined Remote Operation Primitive Type and Operation Type

-- In the remote operation invoke messages (roiv-*), invoke-id is an opaque handle

-- that allows the sender of the message to identify the associated response message (if any).

-- The sender of roiv-* message shall select avalue of invoke-id that enablesit to differentiate this message
-- from any other roiv-* messages that have not been retired. Messages are retired either by the

-- reception of aresponse (rors-*, roer, or rorj) or by exceeding the confirmation timeout value.

-- When a response message (rors-*, roer, or rotj) isreturned, the invoke-id from the invocation

-- message shall be copied into the invoke-id of the response. This allows theinitiator to match

-- responses to outstanding requests. Since the handle is opague, the receiver can make no other

-- assumptions about invoke-id. In particular, it can not assume that it will be unique over any sequence of
-- numbers or period of time.

DataApdu ::= SEQUENCE {

invoke-id Invokel DType,

message CHOICE{

roiv-cmip-event-report [256] EventReportArgumentSimple, -- [0x0100]
roiv-cmip-confirmed-event-report [257] EventReportArgumentSimple, -- [0x0101]
roiv-cmip-get [259] GetArgumentSimple, -- [0x0103]
roiv-cmip-set [260] SetArgumentSimple, -- [0x0104]
roiv-cmip-confirmed-set [261] SetArgumentSimple, -- [0x0105]
roiv-cmip-action [262] ActionArgumentSimple, -- [0x0106]
roiv-cmip-confirmed-action [263] ActionArgumentSimple, -- [0x0107]
rors-cmip-confirmed-event-report [513] EventReportResultSimple, -- [0x0201]
rors-cmip-get [515] GetResultSimple, -- [0x0203]
rors-cmip-confirmed-set [517] SetResultSimple, -- [0x0205]
rors-cmip-confirmed-action [519] ActionResultSimple, -- [0x0207]

roer [768] ErrorResult, -- [0x0300]

rorj [1024] RejectResult -- [0x0400]

}

}

-- The sender should limit the number of messages outstanding simultaneously.
-- In fact, the receiver might not be able to handle more than one message at a time.
InvokelDType ::= INT-U16

-- At any point, if a DataApdu invoked action (roiv-*) resultsin an error, the receiver sends
-- back an ErrorResult. The invokel D is used to determine which invocation resulted in an
-- error condition. The error-value shall be filled in with an error value from the RoerErrorValue list
-- below. The parameter isfilled in with further information if warranted by the error-value. The use of
-- the parameter value is defined in the comments found in RoerErrorValue.
ErrorResult ::= SEQUENCE {
error-value RoerErrorValue,

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

parameter ANY DEFINED BY error-value
}

-- All unassigned " RoerErrorValue " values are reserved for future expansion and shall not be used.
-- Note that | SO/IEEE 11073-20101:2004 [B14] defines a number of RoerErrorValue values that are not
-- defined in this standard. For consistency, numbering of the RoerErrorValue skips any value aready
-- defined in 1SO/IEEE 11073-20101:2004.
RoerErrorVaue ::= INT-U16 {
-- no-such-object-instance is returned when referencing an illegal handle or when there
-- isan attempt to access any object other than the MDS before the configuration
-- isagreed, i.e., agent and manager are not in the operating state.
no-such-object-instance(1),
-- no-such-action is returned when the action command isillegal
no-such-action(9),
-- invalid-object-instance is returned when object exists but the command
--isillegal for that object type (e.g., Get on any object except MDS or PM-store)
invalid-object-instance(17),
-- protocol-violation is returned when there has been a protocol violation (e.g., APDU
-- exceeds maximum size)
protocol-violation(23) ,
-- not-allowed-by-object is returned when an action is attempted on an object
-- but the object did not allow the action
-- The higher layer may report the reason for aborting the action as an OID-Type
-- in the parameter field using a return code taken from the return code partition
not-allowed-by-obj ect(24),
-- action-timed-out is returned when an action is aborted before completion or when to
-- compl ete the action would exceed the currently defined timeout value.
-- The higher layer may report the reason for aborting the action as an OID-Type
-- in the parameter field using a return code taken from the return code partition
action-timed-out(25),
-- action-aborted is returned when an action has been aborted due to reasonsin the
-- higher layers (e.g., storage capacity exceeded).
-- The higher layer may report the reason for aborting the action as an OID-Type
-- in the parameter field using a return code taken from the return code partition
action-aborted(26)

}

-- The RejectResult shall be used when a message is rejected.
RejectResult ::= SEQUENCE {

problem RorjProblem
}

-- All unassigned " RorjProblem " values are reserved for future expansion and shall not be used.
RorjProblem ::= INT-U16 {

-- unrecognized-apdu is returned if the DataApdu is unrecognized,

unrecognized-apdu(0),

-- badly-structured-apdu is returned when the receiver is unable to

-- understand the DataApdu due to its structure (or lack thereof)

-- (e.g., incorrect data lengths)

badly-structured-apdu(2),

-- unrecognized-operation is sent when the operation being requested

-- isnot understood by the receiver

unrecognized-operation(101),

-- resource-limitation is sent when the receiver cannot handle the

-- message due to limited resources.

resource-limitation(103),

© 1SO 2010 — All rights reserved
115

ISO/IEEE 11073-20601:2010(E)

116

-- unexpected-error covers error conditions where thereis not a
-- more specific error code defined
unexpected-error(303)

}

A.10.3 EVENT REPORT service

-- For event reports defined in this standard, obj-handle shall either be O to represent the MDS object
-- or a handle representing a scanner or PM-store object.

-- If the agent does not support RelativeTime (as indicated by the mds-time-capab-rel ative-time
-- bit in MdsTimeCapState), it shall set the event-time to OxFFFFFFFF. Managers shall

-- ignore the event-time if the agent reports that it does not support RelativeTime.

-- For the event-types defined in Table 4, Table 11, Table 16, and Table 18, the

-- corresponding event-info structure shall be used. Accordingly, event-info will be one of

-- ConfigReport, ScanReportlnfoFixed, ScanReportinfoVar, ScanReportinfoM PFixed,

-- ScanReportIinfoM PV ar, ScanReportInfoGrouped, ScanReportlnfoM PGrouped,

-- or SegmentDataEvent

EventReportArgumentSimple ::= SEQUENCE {

obj-handle HANDLE,
event-time RelativeTime,
event-type OID-Type, -- From the nom-part-obj partition
-- Subpartition NOTI (MDC_NOTI_*)
event-info ANY DEFINED BY event-type

}

-- For event reports defined in this standard, obj-handle shall be either O to represent the MDS object
-- or a handle representing a scanner or PM-store object.

-- The event-type of the result shall be a copy of the event-type from the invocation.

-- For the event-types defined in Table 4, Table 11, Table 16, and Table 18, the corresponding

-- event-reply-info shall be used. Accordingly event-reply-info will be empty, ConfigReportRsp,

-- or SegmentDataResult.

EventReportResultSimple ::= SEQUENCE {

obj-handle HANDLE,
currentTime RelativeTime,
event-type OID-Type, -- From the nom-part-obj partition

-- Subpartition NOTI (MDC_NOTI_*)
event-reply-info ANY DEFINED BY event-type

}

A.10.4 GET service

-- For GET requests defined in this standard, obj-handle shall either be 0 to represent the MDS object
-- or a handl e representing a PM-store object.
-- The attribute-id-list shall be left empty to query for all attributes of the MDS or PM-store object.
-- Alternatively, specific attributes of an object may be queried by listing the desired
-- Attribute IDs found in Table 2 or Table 9.
GetArgumentSimple ::= SEQUENCE {
obj-handle HANDLE,
attribute-id-list ~ AttributeldList

}

-- For GET responses defined in this standard, obj-handle shall match the one in the corresponding request.
-- The attribute-list contains all the requested attributes using the variable format.

-- If arequested attribute ID does not exist within the MDS object, it shall not

-- be returned in the attribute-list.

GetResultSimple ::= SEQUENCE {

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

obj-handle HANDLE,
attribute-list AttributeList

}
TypeVerlList ::= SEQUENCE OF TypeVer

-- Since the type shall come from | SO/IEEE 11073-10101 [B12], communication
-- nom-part-infrastruct partition, subpartition DEV spec, asimple OID-Type is used rather
--thanaTYPE.
-- Theindividual |EEE 11073-104zz specializations define which specification is classified
--asversion], 2, ..., and so on; thus, version 3 may correspond to specification version 1.5.
TypeVer ::= SEQUENCE {

type OID-Type,

version INT-U16
}

A.10.5 SET service

-- For SETs defined in this standard, obj-handle shall be the value of a handle representing a scanner object.
SetArgumentSimple ::= SEQUENCE {

obj-handle HANDLE,

modification-list ModificationList
}

ModificationList ::= SEQUENCE OF AttributeM odEntry

AttributeM odEntry ::= SEQUENCE {
modify-operator ModifyOperator,
attribute AVA-Type

}

-- All unassigned " ModifyOperator " values are reserved for future expansion and shall not be used.
ModifyOperator ::= INT-U16 {

replace(0),

addV alues(1), -- used for modifying the values contained in list-like data types
removeVaues(2), --used for modifying the values contained in list-like data types
setToDefault(3)

-- The obj-handle shall be set to the value received in the SetArgumentSimple.
-- The attribute-list shall contain each attribute-id that was modified and return
-- the new value of the attribute. Normally, thisisthe value from the Set
-- command; however, it is possible that, due to rounding conditions or an
-- error condition, the returned value could differ from the requested value.
SetResultSimple ::= SEQUENCE {

obj-handle HANDLE,

attribute-list Attributelist

}

A.10.6 ACTION service

-- For action requests defined in this standard, obj-handle shall either be O to represent the MDS object or
-- ahandle representing a PM-store obj ect.
-- For the action-types defined in Table 3 and Table 10, the corresponding action-info-args

© 1SO 2010 — All rights reserved
117

ISO/IEEE 11073-20601:2010(E)

118

-- structures shall be used. Accordingly, action-info-args will be one of DataRequest,
-- SetTimelnvoke, SegmSelection, or TrigSegmDataX ferReq.
ActionArgumentSimple ::= SEQUENCE {
obj-handle HANDLE,
action-type OID-Type, -- From the nom-part-obj partition
-- Subpartition ACT (MDC_ACT_*)

action-info-args ANY DEFINED BY action-type
}

-- For action responses defined in this standard, obj-handle shall match the onein the

-- corresponding request.

-- The action-type shall be copied from the invocation message action-type.

-- For the action-types defined in Table 3 and Table 10, the resulting action-info-args

-- shall be used. Accordingly, action-info-args will be empty, DataResponse,

-- SegmentInfoList, or TrigSegmDataXferRsp.

ActionResultSimple ::= SEQUENCE {
obj-handle HANDLE,
action-type OID-Type, -- From the nom-part-obj partition

-- Subpartition ACT (MDC_ACT_*)

action-info-args ANY DEFINED BY action-type

}

A.11 Data types for new object attributes and object services

A.11.1 General data types
AttrValMap ::= SEQUENCE OF AttrValMapEntry
AttrValMapEntry ::= SEQUENCE {

attribute-id OID-Type, -- This comes from the nom-part-obj partition
attribute-len INT-U16

}

A.11.2 MDS-related data types

Uuidldent ::= OCTET STRING(SIZE(16))

-- time-sync-accuracy alows an agent to report how closely synchronized its clock is with

-- respect to the clock sync master when time synchronization is used.
MdsTimelnfo ::= SEQUENCE {

mds-time-cap-state MdsTimeCapState,
time-sync-protocol TimeProtocolld, -- thisisanomenclature code from
-- nom-part-infrastruct partition
time-sync-accuracy RelativeTime, -- OXFFFFFFFF if unknown
-- 0 if better than 1/8 ms
time-resol ution-abs-time INT-U16, -- Resolution of the agent’s

-- absolute time clock.

-- 0 if unknown; otherwise,

-- the number of 1/100 s

-- that elapse with each clock

-- increment. For example, if an
-- agent has a clock that clicks at
-- 1 sintervals, this value

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

-- would be 100.
time-resol ution-rel-time INT-U186, -- Resolution of the agent’s

-- relative time clock. O if

-- unknown; otherwise, the number

-- of 125 psthat elapse

-- with each clock increment. For

-- example, if an agent has a clock

-- that clicks at 1 sintervals,

-- this value would be 8000.
time-resol ution-high-res-time INT-U32 -- Resolution of the agent’s

-- high-resol ution time clock.

-- 0 if unknown; otherwise, the

-- the number of microseconds

-- that elapse with each clock

-- increment. For example, if an

-- agent has a clock that clicks

-- at 1 sintervals, this value

-- would be 1 000 000.

}

-- All unassigned " MdsTimeCapState " bit values are reserved for future expansion and shall be set to zero.
MdsTimeCapState ::= BITS-16 {

mds-ti me-capab-real -time-clock(0), -- device supports aninternal RTC
mds-ti me-capab-set-clock(1), -- device supports Set Time Action
mds-time-capab-rel ative-time(2), -- device supports RelativeTime
mds-time-capab-high-res-rel ative-time(3), -- device supports

-- HighResRel ativeTime
mds-ti me-capab-sync-abs-time(4), -- device syncs AbsoluteTime
mds-ti me-capab-sync-rel-time(5), -- device syncs RelativeTime
mds-ti me-capab-sync-hi-res-rel ative-time(6), -- device syncs HiResRelativeTime
mds-time-state-abs-time-synced(8), -- AbsoluteTime is synced
mds-time-state-rel-time-synced(9), -- RelativeTimeis synced
mds-time-state-hi-res-rel ative-time-synced(10), -- HiResRelativeTime is synced
mds-ti me-mgr-set-time(11) -- manager is encouraged to

-- set thetime

}

_kkkkkkkkkkkk

-- A list of various regulatory and certification compliance items to which the agent claims adherence.

_kkkkkkkkkkkk

RegCertDatal ist ::= SEQUENCE OF RegCertData

RegCertData ::= SEQUENCE {

auth-body-and-struc-type AuthBodyAndStrucType,

auth-body-data ANY DEFINED BY auth-body-and-struc-type
}
AuthBodyAndStrucType ::= SEQUENCE {

auth-body AuthBody,

auth-body-struc-type AuthBodyStrucType
}

-- All unassigned " AuthBody " values are reserved for future expansion and shall not be used.
AuthBody ::= INT-U8 {

auth-body-empty(0),

auth-body-ieee-11073(1),

© 1SO 2010 — All rights reserved
119

ISO/IEEE 11073-20601:2010(E)

120

auth-body-continua(2),
auth-body-experimental (254),
auth-body-reserved(255)

}

-- Some other possible/expected authoritative bodies

-- auth-body-eu(),

-- auth-body-ieeg(),

-- auth-body-iso(),

-- auth-body-us-fda(),

-- gpecific values will be assigned when a given authoritative body
-- assgnsitsfirst AuthBodyStrucType for a specific

-- auth-body-data.

-- AuthBodyStrucType is controlled and assigned by the authoritative body
AuthBodyStrucType ::= INT-U8

A.11.3 Metric-related data types

-- Supplemental TypeL.ist provides an extensible mechanism to list additional information about an object.
-- This can hold information such as the location of the sensor or the responsiveness of the object.

Supplemental TypeList ::= SEQUENCE OF TYPE

-- The Metric Spec Small attribute is an abbreviated MetricSpec attribute as defined in | SO/IEEE

-- 11073-10201:2004 [B13]. It defines availability, periodicity, and category of the measurement.

-- If the metric corresponds to default values (no bits set), the attribute is not required.

-- All unassigned " MetricSpecSmall " bit values are reserved for future expansion and shall be set to zero.

MetricSpecSmall ::= BITS-16 {

mss-avail-intermittent(0), -- valueis available only intermittently
mss-avail-stored-data(1), -- Agent may store and send multiple historical

-- values (e.g., aweighing scale stores up

-- to 25 values)
mss-upd-aperiodic(2), -- valueis sent only aperiodically

-- (e.g., when changed)
mss-msmt-aperiodic(3), -- the measurement is aperiodic
mss-msmt-phys-ev-id(4), -- the measurement is a physiological trigger only

-- (e.g., to mark the detection of a heart beat)
mss-msmt-btb-metric(5), -- the measurement is best-to-beat or breath-to-breath
mss-acc-manager-initiated (8), -- the object value can be accessed by manager-

-- initiated measurement data transmission
mss-acc-agent-initiated(9), -- the object value is updated using agent-initiated

-- measurement data transmission
-- NOTES regarding the usage of the following mss-cat-* bits
-- For automatically acquired measurements, neither the mss-cat-setting nor the
-- mss-cat-calculation bits are set. The metric represents a normal, regular measured
-- value. Thisimpliesthat, for automatically acquired measurements provided by an
-- agent, none of the mss-cat-* bits are set (default).
mss-cat-manual (12), -- if this bit is set, the metric is acquired manually
-- (e.g., aperson manually entered the value).
-- If this bit is not set, the metric is acquired

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

-- automatically (e.g., the device measures the val ue)
mss-cat-setting(13), -- If this bit is set, the metric represents a device

-- setting. This may be a manually or automatically

-- set value, as reported by the mss-cat-manual bit.
mss-cat-cal cul ation(14) -- If this bit is set, the metric represents a cal culated

-- value. This may be a manually or automatically

-- calculated value, as reported by the

-- mss-cat-manual bit. Calculated values are

-- derived from automatically acquired measurements

-- and/or manually entered values.

}

-- This attribute is partly inherited from | SO/IEEE 11073-10201:2004 [B13], but enhanced by
-- value ms-struct::fix-comp-no.

MetricStructureSmall ::= SEQUENCE {
ms-struct INT-U8 {
ms-struct-simple(0),

ms-struct-compound(1), -- multiple observed values,

-- same dynamic context
ms-struct-reserved(2), -- for ISO/IEEE 11073-10201:2004
ms-struct-compound-fix(3) -- similar to compound(1) but the

-- compound observed value array
-- size shall not be dynamic
-- during an association
|3
ms-comp-no INT-U8 -- maximum number of components/elementsin
-- compound observed value, 0 if ms-struct is set to
-- ms-struct-simple

}
-- This attribute defines alist of Metriclds.
MetricldList ::= SEQUENCE OF OID-Type

-- The EnumPrintableString is the data type to report Enumeration Observed Valuesin the form of
-- ASCII printable strings.

EnumPrintableString ::= OCTET STRING -- string size shall be even
Personid ::= INT-U16 {

unknown-person-id(65535) -- OXFFFF
}
A.11.4 Scanner-related data types
HandleAttrValMap ::= SEQUENCE OF HandleAttrVaMapEntry
HandleAttrVaMapEntry ::= SEQUENCE {

obj-handle HANDLE,
attr-val-map AttrvValMap

}

HANDLEList ::= SEQUENCE OF HANDLE

©1S0 2010 - All rights reserved
121

ISO/IEEE 11073-20601:2010(E)

122

A.11.5 MDS services

-- The following definitions support the above definitions of EventReportArgumentSimple
-- and ActionArgumentSimple.

-- The Scan Report Info types are utilized as the result data types for the various

-- MDS-Dynamic-Data-Update* family of events (see 6.3.2.5 for more detail).

-- The ScanReport* definitions are used when reporting information about measurements that were

-- sampled. There are two vectors: A) single person or multiple person and B) variable format,

-- fixed format, or grouped format. Combinations of these vectors lead to the six top-level definitions:
-- ScanReportInfoVar, ScanReportl nfoFixed, ScanReportlnfoGrouped,

-- ScanReportinfoM PV ar, ScanReportInfoM PFixed, and ScanReportl nfoM PGrouped.

-- The SEQUENCE OF ObservationScan or ObservationScanFixed may contain multiple instances

-- of the same handle as long as there is a time stamp to distinguish between the instances.

-- In al cases, scan-report-no shall be initialized to zero at association time and monotonically

-- increasing by one until roll-over occurs.

ScanReportinfoVar ::= SEQUENCE {

data-reg-id DataRegld,
scan-report-no INT-U16, -- counter for detection of missing scan reports
obs-scan-var SEQUENCE OF ObservationScan

}

ScanReportInfoFixed ::= SEQUENCE {
data-reg-id DataReqld,
scan-report-no - INT-U16, -- counter for detection of missing scan reports
obs-scan-fixed SEQUENCE OF ObservationScanFixed

}

ObservationScanFixed ::= SEQUENCE {
obj-handle HANDLE, -- unique identification of metric object
obs-val-data OCTET STRING-- observed value data defined by obj-handle

}

-- obs-scan-grouped is a SEQUENCE OF so episodic measurements can combine more than
-- one report into a single scan report. Periodic reports should not need to place more than one
-- report in a single ScanReport.

ScanReportInfoGrouped ::= SEQUENCE {

data-reg-id INT-U16,
scan-report-no INT-U16, -- counter for detection of missing scan reports
obs-scan-grouped SEQUENCE OF ObservationScanGrouped

}

ObservationScanGrouped ::= OCTET STRING -- The format is defined by HandleAttrVaMap

ScanReportinfoMPVar ::= SEQUENCE {
data-reg-id DataRegld,
scan-report-no INT-U16, -- counter for detection of missing scan reports
scan-per-var SEQUENCE OF ScanReportPerVar

}

DataRegld ::= INT-U16 {

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

data-reg-id-manager-initiated-min(0), -- 0x0000
data-reg-id-manager-initiated-max(61439), -- OXEFFF
-- Values between data-reg-id-manager-initiated-min and

-- datarreg-id-manager-initiated-max, inclusive, shall be used in
-- manager-initiated measurement data transmission.

data-reg-id-agent-initiated(61440) -- OXxFO00
-- data-reg-id-agent-initiated shall be used in agent-initiated measurement
-- data transmission.

-- Values between 0xF001 and OxFFFF, inclusive, are reserved.

}

-- The value used for person-id is vendor determined (i.e., if an agent has two buttons
-- to distinguish between two people, the agent may use ID 1 and 2 or ID 35 and 97).
-- The process of mapping this ID to a specific person is outside the scope of this

-- standard.

ScanReportPerVar ::= SEQUENCE {
person-id Personld,
obs-scan-var SEQUENCE OF ObservationScan

}
ScanReportInfoM PFixed ::= SEQUENCE {
data-reg-id DataReqld,
scan-report-no INT-U16, -- counter for detection of missing scan reports
scan-per-fixed SEQUENCE OF ScanReportPerFixed
}
ScanReportPerFixed ::= SEQUENCE {
person-id Personld,
obs-scan-fixed SEQUENCE OF ObservationScanFixed
}
ScanReportl nfoM PGrouped ::= SEQUENCE {
data-reg-id INT-U16,
scan-report-no INT-U16, -- counter for detection of missing scan reports

scan-per-grouped SEQUENCE OF ScanReportPerGrouped

}
ScanReportPerGrouped ::= SEQUENCE {
person-id Personld,
obs-scan-grouped ObservationScanGrouped
}

-- The ConfigReport definition is used when reporting an agent’s configuration to a manager (see
-- Table 4)
ConfigReport ::= SEQUENCE {

config-report-id Configld,

config-obj-list ~ ConfigObjectList

© 1SO 2010 — All rights reserved
123

ISO/IEEE 11073-20601:2010(E)

124

ConfigObjectList ::= SEQUENCE OF ConfigObject

ConfigObject ::= SEQUENCE {

}

obj-class OID-Type, -- From the nom-part-obj partition

-- Subpartition MOC/BASE (MDC_MOC_VMD_*)
obj-handle HANDLE,
attributes AttributeList

ConfigReportRsp ::= SEQUENCE {

}

config-report-id Configld,
config-result ConfigResult

-- All unassigned " ConfigResult " values are reserved for future expansion and shall not be used.
ConfigResult ::= INT-U16 {

}

accepted-config(0),
unsupported-config(l),
standard-config-unknown(2)

DataRequest ::= SEQUENCE {

}

data-reg-id DataReq|d, -- Allows differentiation of
-- responses for multiple data
-- requests (if the
-- device alows for multiple
-- simultaneous data requests).
-- Mirrored back in
-- ScanReportInfo* data-reg-id

data-req-mode DataReqMode, -- Defines the mode by setting one
-- or more bits.
data-reg-time RelativeTime, -- Tellshow long the agent is

-- allowed to transmit data.
-- Thisis used only for
-- datarreg-mode-time-period.

data-reg-person-id INT-U16, -- OXFFFF all persons available
data-reg-class OID-Type, -- From the nom-part-obj partition
-- Subpartition MOC/BASE

-- (MDC_MOC_VMD_*)
data-reg-obj-handle-list HANDLEL st

-- All unassigned " DataRegMode " bit values are reserved for future expansion and shall be set to zero.
DataRegMode ::= BITS-16 {

data-reg-start-stop(0), -- start data request: 1 | stop data request: 0

data-reg-continuation(1), -- continuation of atimed data request.
-- Set to 1 to extend the time allocated to a data
-- transfer. If thisis set to 1, all other bits shall
-- beignored, and the settings from the initial
-- start command shall be used.

-- exactly one of the following data-reg-scope-* bits shall be set

data-reg-scope-al(4),

data-reg-scope-class(5),

data-reg-scope-handle(6),

-- exactly one of the following data-req-mode-* bits shall be set

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

data-reg-mode-single-rsp(8),
data-reg-mode-time-period(9),

data-reg-mode-time-no-limit(10),

data-reg-person-id(12)
}

DataReqM odeCapab ::= SEQUENCE {
data-reg-mode-flags
data-reg-init-agent-count INT-U8,

ISO/IEEE 11073-20601:2010(E)

-- response is directly embedded in DataResponse
-- time limited data request with

-- responses as event reports. The time period

-- is gpecified in data-reg-time in DataRequest.

-- time unlimited data request with

-- responses as event reports

DataRegM odeFlags,

-- maximum number of parallel agent initiated
-- data requests/ flows. Shall currently be
--setonlytoOor 1.

data-reg-init-manager-count INT-U8 -- maximum number of parallel manager

}

-- initiated data requests

-- All unassigned " DataRegModeFlags " bit values are reserved for future expansion and

-- shall be set to zero.
DataRegModeFlags ::= BITS-16 {

data-reg-supp-stop(0),
data-reqg-supp-scope-al(4),
data-reg-supp-scope-class(5),
data-reg-supp-scope-handle(6),

data-reg-supp-mode-single-rsp(8),

-- thisfield is used in the association to flag

-- data request capabilities

-- supports stopping a running data request

-- supports requesting all objects

-- supports requesting objects based on object class
-- supports requesting objects based on object handle
-- supports single response

data-reg-supp-mode-time-period(9), -- supports time limited data request
data-reg-supp-mode-time-no-limit(10), -- supports time unlimited data request

data-reg-supp-person-id(11),
data-reg-supp-init-agent(15)
}

-- agent uses agent-initiated data requests/flows

-- DataResponse is returned as a result of an MDS-Data-Request (see Table 3). However, the event-type

-- and event-info fields are filled in using the same parameters as found in MDS object events. See Table 4
-- for the legal event-type values and the corresponding event-info

-- structure; however, for this usage, ConfigReport shall not be used. Thus, event-info is

-- one of ScanReportlnfoFixed, ScanReportinfoVar, ScanReportl nfoM PFixed, or ScanReportinfoMPVar.

DataResponse ::= SEQUENCE {

rel-time-stamp RelativeTime,
data-reg-result DataRegResult,
event-type OID-Type,
event-info

}

-- set to OXFFFFFFFF if RelativeTime not supported

-- event-type and event-info are only
-- in case of data-reg-mode-single-rsp,
-- otherwise event-type shall be 0 and
-- event-info.length =0

-- From the nom-part-obj partition

-- Subpartition NOTI (MDC_NOTI_*)

ANY DEFINED BY event-type

-- The values in DataReqResult are used in a DataResponse data-reg-result field. Thisis returned
-- in response to a DataRequest. The agent shall return data-reg-result-no-error if the request

-- was successful. Otherwise, one of the defined errors shall be returned.

-- All unassigned " DataRegResult " values are reserved for future expansion and shall not be used.

DataRegResult ::= INT-U16 {
data-reg-result-no-error(0),

© 1SO 2010 — All rights reserved

125

ISO/IEEE 11073-20601:2010(E)

126

data-reg-result-unspecific-error(1),

-- The following error codes are returned when the manager request contains
-- aDataRegMode that is not supported by the agent.
data-reg-result-no-stop-support(2),

data-reg-result-no-scope-all-support(3),
data-reg-result-no-scope-class-support(4),
data-reg-result-no-scope-handle-support(5),
data-reg-result-no-mode-single-rsp-support(6),
data-reg-result-no-mode-time-period-support(7),
data-reg-result-no-mode-time-no-limit-support(8),
data-reg-result-no-person-id-support(9),

-- The following error codes are returned when the manager request contains
-- unknown values in the supporting fields (e.g., data-req-person-id).
data-reg-result-unknown-person-id(11),

data-reg-result-unknown-class(12),

data-reg-result-unknown-handle(13),

-- The following note a condition where the manager set more than one of the
-- scope or mode bhits.

data-reg-result-unsupp-scope(14), -- unsupported scope hits set
data-reg-result-unsupp-mode(15), -- unsupported mode bits set

data-reg-result-init-manager-overflow(16), -- manager has tried to establish more than
-- data-reg-init-manager-count flows
data-reg-result-continuation-not-supported(17), -- manager has attempted to continue
-- adatatransfer that is not running in
-- timed mode
data-reg-result-invalid-reg-id(18) -- manager has attempted to continue
-- adatatransfer on a nonexistent
-- data-reg-id.
}

A.11.6 Scanner services

See A.11.5 for MDS services type definitions that are reused for the scanner services, namely
ScanReportInfoVar

ScanReportlnfoFixed

ScanReportInfoGrouped

ScanReportInfoMPVar

ScanReportInfoM PFixed

ScanReportInfoM PGrouped

A.11.7 Numeric related data types

-- A simple numeric observed value is represented just by the floating point value.
SimpleNuObsValue ::= FLOAT-Type

-- A list type of SimpleNuObsValue

SimpleNuObsVaueCmp ::= SEQUENCE OF SimpleNuObsValue

-- In many cases, the basic numeric observed val ue can be expressed with a smaller floating point value.

BasicNuObsValue ::= SFLOAT-Type

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

-- A list type of BasicNuObsValue
BasicNuObsValueCmp ::= SEQUENCE OF BasicNuObsValue

A.11.8 PM-store and PM-segment related data types

-- The PM-Store-Capab attribute defines specific static capabilities and properties of the PM-store object
-- instance. The default value of this attribute is 0 (no bits set).
-- All unassigned " PmStoreCapab " bit values are reserved for future expansion and shall be set to zero.

PmStoreCapab ::=BITS-16 {

pmsc-var-no-of-segm(0), -- indicates that the number of PM-segments
-- contained in this PM-store is dynamic and may
-- change

pmsc-epi-seg-entries(4), -- Some/ al PM-segments contain

-- episodic/aperiodic entries and therefore have

-- to contain explicit time stamp information
pmsc-peri-seg-entries(5), -- Some/all PM-segments contain periodically

-- sampled entries and therefore the PM-segment

-- or PM-store shall support the

-- Sample-Period attribute

pmsc-abs-time-sel ect(6), -- PM-segments in the SegmSel ection data type can
-- be selected by defining an abs-time-range
pmsc-clear-segm-by-list-sup(7), -- clearing alist of segmentsis supported
pmsc-clear-segm-by-time-sup(8), -- clearing segments by time range is supported
pmsc-clear-segm-remove(9), -- if thisbit is set, the agent will completely remove

-- the specified PM-segment instance as part of the
-- Clear-Segment method. If this bit is not set, it will
-- just remove all entries from the specified
-- PM-segment.

pmsc-multi-person(12) -- The PM-store supports PM-segment for more
-- than one person

}

-- All entries in the segment shall follow the format defined by this attribute. First, the optional header

-- shall follow the description in segm-entry-header. This allows each entry in the segment to be preceded
-- by an optional header (e.g., for time stamp information) that is applicable to al elementsin an entry.

-- Next, the elements shall follow the format and order described in segm-entry-elem-list.

-- An element typically represents a measurement. For each element, the stored datais defined in the form
-- of an attribute value map, in the same way as metric objects.

PmSegmentEntryMap ::= SEQUENCE {
segm-entry-header SegmEntryHeader, -- defines optional elementsin front
-- of each entry
segm-entry-elem-list ~ SegmEntryElemList
}

-- The following bit string defines optional dataitemsthat are in front of each segment entry.

-- Multiple dataitems are definable. In this case, the dataitem with the lower bit number shall come

-- in front of items with higher bit numbers. The header allows definition of data items that are common

-- to al elementsin the entry. If all bits are zero, the segment entry event report shall begin with data

-- from the first element.

-- All unassigned " SegmEntryHeader " bit values are reserved for future expansion and shall be set to zero.

“© 1502010 ~All rights reserved
127

ISO/IEEE 11073-20601:2010(E)

128

-- If any bits are set to one beyond the expected bits (e.g., a new bit was added in a later version),
-- the data shall not be retrieved since the offset to the first data element cannot be calcul ated.

SegmEntryHeader ::= BITS-16 {

seg-elem-hdr-absol ute-time(0), -- entry preceded by absolute time
-- (data type AbsoluteTime)
seg-elem-hdr-relative-time(1), -- entry preceded by relative time

-- (datatype RelativeTime)
seg-elem-hdr-hires-relative-time(2) -- entry preceded by high resolution relative time
-- (data type HighResRelativeTime)

}
SegmEntryElemList ::= SEQUENCE OF SegmEntryElem

-- SegmEntryElem shall reference a metric object instance in the agent configuration

-- using its handle value. This referenced object shall exist in the agent

-- configuration, and the metric-type and class-id shall be equal to the corresponding attributes of the
-- referenced metric object.

SegmEntryElem ::= SEQUENCE {

class-id OID-Type, -- contains nomenclature code from OO nom-part-obj
-- partition defining the object class (e.g., numeric)

metric-type TYPE, --gpecific static TY PE of the stored element

handle HANDLE, -- handl e of referenced object

attr-val-map AttrValMap -- attribute value map describing the stored data

}

-- Request to start the transfer of the specified segment

TrigSegmDataXferReq ::= SEQUENCE {

seg-inst-no InstNumber
}
TrigSegmDataXferRsp ::= SEQUENCE {
seg-inst-no InstNumber,
trig-segm-xfer-rsp TrigSegmXferRsp
}

-- All unassigned " TrigSegmXferRsp " values are reserved for future expansion and shall not be used.
TrigSegmXferRsp ::= INT-U16 {

tsxr-successful (0), -- Agent will start transfer of segment
tsxr-fail-no-such-segment(1), -- segment 1D not found
tsxr-fail-clear-in-process(2), -- the storage mediais currently being cleared. No
-- accessis currently possible.

tsxr-fail-segm-empty(3), -- the segment being requested is empty
tsxr-fail-not-otherwise-specified(512)

}

-- the SegmentDataEvent

-- Notes:

-- - the agent shall transfer all segment entriesin order, first entry first (first in first out).

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

SegmentDataEvent ::= SEQUENCE {
segm-data-event-descr SegmDataEventDescr,
segm-data-event-entries OCTET STRING -- contains the specified segment
-- entries in an opaque data structure.
-- Only complete entries shall be
-- included in thisfield.

}

SegmentDataResult ::= SEQUENCE {
segm-data-event-descr SegmDataEventDescr

}
-- The Segment Data Event Descriptor defines which entries of the Segment Data are communicated in the
-- Event message.
SegmDataEventDescr ::= SEQUENCE {
segm-instance InstNumber, -- instance number of segment being transferred
segm-evt-entry-index INT-U32, -- array index of the first entry in this event
segm-evt-entry-count INT-U32, -- count of entriesin this event
segm-evt-status SegmEvtStatus

}

-- All unassigned " SegmEvtStatus " bit values are reserved for future expansion and shall be set to zero.
SegmEvtStatus ::= BITS-16 {

sevtsta-first-entry(0), -- this event contains the first segment entry
sevtsta-last-entry(1), -- this event contains the last segment entry (both first
-- and last bits can be set if all entriesfit in one event)
sevtsta-agent-abort(4), -- transfer aborted by agent (manager shall reply
-- with the same status)
sevtsta-manager-confirm(8), -- setin reply if segment was received correctly (if
-- not set in reply, agent shall repeat the last event)
sevtsta-manager-abort(12) -- sent in reply by manager (agent shall stop sending
-- messages)

}

SegmentStatistics ::= SEQUENCE OF SegmentStatisticEntry

SegmentStatisticEntry ::= SEQUENCE {
segm-stat-type SegmStatType,
segm-stat-entry OCTET STRING-- this attribute contains one segment entry in the
-- format defined by the PmSegmentEntryMap

}

-- All unassigned " SegmStatType " values are reserved for future expansion and shall not be used.
-- Values from 0xF000 to OxFFFF are reserved for manufacturer-specific extensions.
SegmStatType ::= INT-U16 {

segm-stat-type-undefined (0),

segm-stat-type-minimum(1),

segm-stat-type-maximum(2),

segm-stat-type-average(3)

©1S0 2010 — All rights reserved
129

ISO/IEEE 11073-20601:2010(E)

Annex B
(informative)

Scale and range specification example

B.1 General

The algorithm for defining the scale and range for an RT-SA is defined in 6.3.5.3, but is repeated here for

reference:
Y=MxX+B
where

Y = the converted absolute value

M = (upper-absol ute-value — lower-absol ute-value) / (upper-scaled-value — lower-scal ed-val ue)
B = upper-absolute-value — (M x upper-scaled-val ue)

X =the scaled value

Note that the term absolute-value does not refer to the mathematical absolute value in which al values are
positive, but rather to the actual, measured value.

The formula allows measured values with offset range and limited resolution to be replaced by an integer
scalar value that can reduce the amount of data that must be communicated between an agent and a
manager. The ScaleRangeSpec8, 16 and 32 structures, defined in A.3.4, convey both the upper and lower
absolute values and the upper and lower scaled values and allow the manager to determine the parameters
for the formula to convert the scaled values into their respective absolute val ues and to confirm the received
values fall within the expected range.

Within an agent, the scaled value that results from the actual measured value may be found from the
following:

X=(R-B)/M
where
R = actual measured value
A suitable value for M would provide scaled values to convey appropriate resolution for the absolute
mesasured values. In practice, the parameters M and B might be set by A/D resolution and other hardware
factors.
B.2 Thermometer example
The following example illustrates the agorithm. Readings from a thermometer capable of producing

Centigrade readings from —45 °C to 50 °C with a resolution of 0.5°C are to be transmitted as unsigned
samples using the Scal eRangeSpec8.

© I1SO 2010 — All rights reserved
130 © IEEE 2010 — Al rights reserved

The following values are used for the ScaleRangeSpec8 structure:

L ower-absolute-value = —-45.0
Upper-absolute-value = 50.0
Lower-scaled-value=0
Upper-scaled-value = 190

Giving

M= (50.0 — (~45.0))/(190 — 0) = 0.5
B = 50.0 — (0.5 x 190) = —45.0

ISO/IEEE 11073-20601:2010(E)

Some representative values are given in Table B.1 and Figure B.1 plots the scaled and converted values.

Table B.1—Conversion map

Scaled (x) | Converted (y)
0 —45.0
50 -20.0
100 5.0
150 300
190 50.0

200

150

100

50

-50

= = Scaled(x)

Converted (y)

Figure B.1—Graphical view of conversion

©1S0 2010 - Allrights reserved

131

ISO/IEEE 11073-20601:2010(E)

Annex C
(informative)

The PM-store concept

C.1 General

The PM-store concept provides a method for representing, accessing, and transferring large amounts of
metric data that are stored in the agent. The information is organized in a hierarchical object model with
capability to alow data to be stored with a structure appropriate to the nature of the data.

At atop level, the PM-store object is the primary access point for al information about the stored metric
data. An agent supporting persistently stored metric data may instantiate one or more PM-store objects. The
PM-store object is part of the device configuration and is directly accessed with the object access services
defined in this standard.

Each PM-store may contain 0, 1, or more PM-segments that are the actual data container objects. The
number of PM-segments may change as aresult of the operation of the agent. In other words, the agent may
create new PM-segments based on time intervals, size of the stored data, or even manual controls of the
user.

The PM-store concept provides an information model with a two-level hierarchy with multiple PM-segment
obj ects within multiple PM-store objects.

Typical-use cases for using multiple PM-stores include the following:

— If the agent stores data with different characteristics (e.g., aperiodic measurements versus periodic
measurements), separate PM-store objects are used to define optimized data types for the stored data
and thus conserve memory for the stored data.

Typical-use cases for using multiple PM-segments include the following:

— If the agent needs to structure the stored datain a more hierarchical form, it can use multiple instances
of PM-store objects with multiple instances of PM-segment objects to model this hierarchy (e.g., use
the PM-store to represent a training session, and then use the PM-segment to model individua
exercises within this training session).

For the actual data storage, the attribute value map concept as used for the metric attributes is used here. A
special mapping attribute allows defining the structure of the binary stored data and avoiding any overhead
for identification, length fields, etc., in the actual stored and transmitted binary data. This assumes that
stored data are essentially alarge array of equally formatted data.

The transfer of the stored data is triggered by the manager after inspecting the information in the PM-store
objects. The manager can select the data episodes to transfer. The actual transfer is then done by the agent
using acknowledged event report messages. The agent is expected to fill the SegmentDataEvent data
structure to the available maximum size.

© I1SO 2010 — All rights reserved
132 © IEEE 2010 — Al rights reserved

C.2 Persistent metric store object hierarchy

C.2.1 General
A persistent metric store consists of the following four key parts:

— PM-store—This object is at the top level, and it contains attributes about the storage object as well as

zero or more PM-segments.

— PM-segment — This object contains attributes that describe the segment as well as zero or more entries.

— Entry — Each entry holds an optional entry header and one or more elements.

ISO/IEEE 11073-20601:2010(E)

— Element — Each element holds data from one or more metric measurements.

Figure C.1 shows an example layout of these four parts, which are further described in the remainder of this

annex.

PM-Store

PM-Store
Attributes

PM-Segment 1

PM-Segment Attributes

PM-Segment-Entry-Map

Fix-SegmentData

Entry 1 | SegmentEntryHeader(opt) Element 1 Data Element 2 Data Element n Data
Entry 2 | SegmentEntryHeader{opt) Element 1 Data Element 2 Data Element n Data
Entry 3 | SegmentEntryHeader{opt) Element 1 Data Element 2 Data Element n Data
Entryn | SegmentEntryHeader(opt) Element 1 Data Element 2 Data Element n Data
PM-Segment 2
PM-Segment Attributes

PM-Segment-Entry-Map

Fix-SegmentData
Entry 1 | SegmentEntryHeader(opt) Element 1 Data Element 2 Data Element n Data
Entry 2 | SegmentEntryHeader({opt) Element 1 Data Element 2 Data Element n Data
Entry 3 | SegmentEntryHeader(opt) Element 1 Data Element 2 Data Element n Data
Entry n SegmentEntryHeader({opt) Element 1 Data Element 2 Data Element n Data

Figure C.1—PM-store with 2 PM-segments, fixed-segment-data within the segments

© 1SO 2010 — All rights reserved

133

ISO/IEEE 11073-20601:2010(E)

C.2.2 PM-store object

Support for the PM-store object is optional. Only agents that wish to store persistent metrics need to
provide support for the PM-store object, attributes, methods, and associated events. A manager becomes
aware of all supported PM-store objects as part of the agent configuration. Attributes of the PM-store
describe common characteristics of the stored data (e.q., if values are stored periodically or episodically).

An agent may provide more than one PM-store. Multiple stores are used to represent data with different
formats or with different characteristics or to group data into different logical buckets. The PM-store object
is also the access point for all methods related to the stored metrics (specifically, the manager retrieving the
stored data).

The agent controls the number of PM-segments that exist in a PM-store. A PM-store may have zero
elements when there are no data present. When data are present, the PM-store has one or more PM-segment
objects. As the number of PM-segments is dynamic, the PM-segment objects are not part of the agent
configuration. Instead, the PM-store object contains the information about available PM-segments in the
form of PM-store attributes that are queried using the GET service.

C.2.3 PM-segment object

The basic format of the PM-segment segment data is shown in Figure C.2.

Entry 1 | SegmentEntryHeader(opt) Element 1 Data Element 2 Data - Element n Data
Entry 2 | SegmentEntryHeader(opt) Element 1 Data Element 2 Data - Element n Data
Entry 3 | SegmentEntryHeader(opt) Element | Data Element 2 Data e Element n Data
Entry k SegmentEntryHeader(opt) Element 1 Data Element 2 Data e Element n Data

Figure C.2—PM-segment data format

The segment contains k entries. The format of an entry is defined by the PM-Segment-Entry-Map attribute
of the PM-segment. An entry represents the stored data at one particular point in time. Each entry is
preceded by an optional header (e.g., containing a time stamp) common to al elements of the entry. The
entry then contains n elements; the format of each element is defined by an attribute value map. An entry
typically contains a measurement (e.g., humeric and enumeration). The resulting data structure does not
contain any attribute ID or length fields and is, therefore, extremely compact.

The PM-segment typically represents one storage episode. This episode has a time context (i.e., data stored
in this segment is from 12:00 — 15:00), some related attributes, and a storage array that contains the actual
(measured) data for that episode contained in the Fixed-Segment-Data attribute (see Figure C.3).

© I1SO 2010 — All rights reserved
134 © IEEE 2010 — Al rights reserved

Entry 1

ﬂénentEntryHeader(opt)

Element 1 Data

Element 2 Data

Element n Data\

Entry

SegmentEntryHeader(opt)

Element 1 Data

Element 2 Data

Element n Data

Entry\3

SegmentEntryHeader(opt)

Element 1 Data

Element 2 Data

Element n Data

Element 1 Data

Element 2 Data

ISO/IEEE 11073-20601:2010(E)

Entry k %entEntryHeader(opt)

Element n Data/

Fix-Segment-Data Attribute

Figure C.3—Fixed-segment-data attribute containing actual stored data

A PM-store may contain zero or more PM-segments (i.e., zero if data are not yet stored; one or more
depending on the stored episodes and the capabilities of the agent).

For example, a running watch’s PM-segment could contain the stored data about one training cycle (e.g., a
5-mi run starting at 12:00). The device is able to store multiple segments (i.e., multiple such training
cycles).

C.2.4 PM-segment entry (within the fixed-segment-data)

The Fixed-Segment-Data attribute contains both entries and elements. The entry items are depicted as rows
in Figure C.4. All entries within a segment have the same data structure that is defined by the PM-Segment-
Entry-Map. This is very comparable to the Attribute-Value-Map that is defined for the metric objects.
However, it allows grouping multiple measurements in an entry item.

/
Entry 1 SegmentEntryHeader(opt) Element 1 Data Element 2 Data Element n Data
\
Entry 2 | SegmentEntryHeader(opt) Element 1 Data Element 2 Data Element n Data
Entry 3 | SegmentEntryHeader(opt Element 1 Data Element 2 Data Element n Data
Entry k SegmentEntryHeadey(opt) Element | Data Element 2 Data Element n Data

/

Fix-Segment-Data Entry

Figure C.4—Entry (array element in fixed-segment-data)

© 1SO 2010 — All rights reserved

135

ISO/IEEE 11073-20601:2010(E)

The PM-Segment-Entry-Map attribute defines the list of measurements stored in one entry. For each
measurement, the list of attributes that are stored is also defined. Additionally, a common header (e.g., to
include a common time stamp) that applies to the complete entry is optionally defined.

Using the running watch example from above, assume the agent stores the heart rate, the current running
speed, and a SpO2 value once every second. The only attribute stored from these measurements is the
numerical value (which is defined by the PM-Segment-Entry-Map). In this case, no entry header is required
because the measurements are periodic and a time stamp is not needed. For periodic measurements, the
time of aparticular stored measurement is calculated from the start and end time, the sample period, and the
index of the entry. Therefore, a separate time stamp for each measurement is not needed in this case, and a
header with time stamp information is not required.

Thus, each entry row has the following three elements:

HR Speed Spo2
120 10 98

C.2.5 PM-segment entry element

An element contains the binary representation of the defined attributes of one metric object (see Figure
C.5). The SegmEntryElem (see A.11.8) within the PM-Segment-Entry-Map defines each entry element.

Entry 1 | SegmentEntryHeader(opt) Element 1 Data Element 2 Data > Element n Data
Entry 2| SegmentEntryHeader(opt) Element 1 Data // Element 2 Data 90 Element n Data
Entry 3 | SegmentEntryHeader(opt) Elementl/Da{ Element 2 Data 2 Element n Data
Entry k SegmentEntryHeader(opt) Element 1 Data Element 2 Data 35 Element n Data

Fix-Segment-Data Element

Figure C.5—Element: the set of attributes for one measurement

In the running watch example, there are three metrics modeled in the entry. For each metric, only one single
attribute is defined, the numeric observed value. Therefore, the heart rate, the speed, and the SpO2 values
are each an element within an entry.

However, the PM-Segment-Entry-Map may contain attributes beyond just the observed value. For instance,
it is possible to include attributes such as validity, time stamps, unit codes, and so on.

© I1SO 2010 — All rights reserved
136 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

Annex D
(informative)

Transport profile types

D.1 General

This standard utilizes the concept of a “type” to group and differentiate the services offered by available
transport technologies that have been profiled for use by the ISO/IEEE 11073 family of standards.
Specifically, the ISO/IEEE 11073 family of standards recognizes the following transport profile types:

— Type 1: Transport profiles that contain both reliable and best-effort transport services. There will be
one or more virtual channels of reliable transport services and zero or more virtual channels of best-
effort transport services.

— Type 2: Transport profiles that contain only a unidirectional transport service.

— Type 3: Transport profiles that contain only a best-effort transport service. There will be 1 or more
virtual channels of best-effort transport services.

The reason the transport profile types are significant is that the different transport services offered by the
transport profile types have an effect on the implementation of some upper layer functionality. In particular,
they have an effect on the implementation of this standard’ s confirmed service mechanism.

For the confirmed service mechanism, the definition of confirmed is as follows:

— For the data plane (EVENT REPORT services): Allows the agent to know when the manager has
“accepted responsibility” for a piece of data so that the agent can delete that datum.

— For the control plane (ACTION, GET, and SET services): Allows the manager to know when the agent
has “completed” the requested transaction.

D.2 Type1l

The Type 1 transport profile provides both reliable and best-effort transport services. Considering the
definition and goals of the confirmed service mechanism, confirmed messages are certainly sensitive to
packet loss. Thus the reliable transport service is the appropriate service to use for al confirmed messages.

Additionally, the agent and manager state machines as defined in this standard (see 8.4) are synchronized
state machines. Having synchronized state machines implicitly assumes that there is a reliable transport
used between the two state machines that guarantees delivery of a message or indicates failure of delivery.
Thus, all association procedure related messages are delivered over areliable transport service. (For ease of
reference, the agent and manager state machines described in 8.4 will be referred to as Type 1 state
machines to correlate those state machines to the Type 1 transport profile.)

For unconfirmed messages, the application software is free to use, at its discretion, either a reliable or a
best-effort transport service (see Table D.1).

© 1SO 2010 — All rights reserved
137

ISO/IEEE 11073-20601:2010(E)

Table D.1—Type 1 transport profile usage

| EEE 11073-20601 messages

Association procedure &
Transport service Confirmed Unconfir med
Best-effort Not supported Supported
Reliable Supported Supported

For a transport profile to be considered a Type 1 profile, it must support one or more reliable virtual
channels and zero or more best-effort virtual channels.

D.3 Type 2

The Type 2 transport profile provides only a unidirectional transport service. Considering the definition and
goas of the confirmed service mechanism, confirmed messages are not able to be supported by a
unidirectional transport service. (The manager has no way to send confirmation messages back to the

agent.)

Asaunidirectional service, this serviceisinherently a best-effort transport service. The manager’ s transport
layer has no way to request a transport-level retransmission if a transport protocol data unit (PDU) is lost.
Thus, areliable transport service is not possible with a unidirectional transport service.

With the lack of a reliable transport service, the Type 1 state machine will not function correctly over a

Type 2 transport profile. Thus, there needs to be a Type 2 state machine specifically for the Type 2
environment (see Table D.2).

Table D.2—Type 2 transport profile usage

| EEE 11073-20601 messages

Association procedure &
Transport service Confirmed Unconfir med
Best-effort Not supported Supported
Reliable Not supported Not supported

D.4 Type 3

D.4.1 General

The Type 3 transport profile provides only best-effort transport service. This lack of a reliable transport
service presents some difficulties for using the Type 1 state machine and the confirmed service mechanism
as currently defined. There are different, and not mutually exclusive, solutions to these difficulties.

D.4.2 Type 3a

One method to handle this situation is to add a reliable transport service companion function to the best-
effort transport service. If this step were done, the Type 3 transport profile (best-effort-only) would, in
essence, become a Type 1 transport profile (reliable and best-effort). In this case, the Type 1 state machine
and the confirmed service mechanism would be applicable.

© I1SO 2010 — All rights reserved
138 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

Thus, Type 3atransport profileisjust considered a specia case of the Type 1 transport profile.

D.4.3 Type 3b
Another method to handle the best-effort-only transport service would be to migrate the functionality of the

reliable transport service up into the personal health device protocol. This approach would result in a
Type 3 state machine and a Type 3 confirmation service mechanism (see Table D.3).

Table D.3—Type 3b transport profile usage

| EEE 11073-20601 messages

Association procedure &
Transport service Confirmed Unconfir med
Best-effort Supported Supported
Reliable Not supported Not supported
D.4.4 Type 3c

A third method to handle the best-effort-only transport service would be to add a reliability-lite transport
service companion function to the best-effort transport service. This approach is similar to the Type 3a
strategy. However, in the Type 3c reliability-lite transport service, some the characteristics of the reliable
transport service are relaxed. The expectation is that relaxing some of the reliable transport service
characteristics into reliability-lite characteristics would result in a smaller and simpler reliability-lite
implementation when compared to a full reliable transport service

The actual characteristics of the reliable transport service that are relaxed will determine if the currently
defined Type 1 state machine and confirmed service mechanism would function correctly in a Type 3c
transport profile environment.

D.5 Summary

The descriptions of the transport profile types are summarized in Table D.4.

Table D.4—Transport profile types

Transoort Assoc. state Data
b Description “2x2" view machine & transfer
profile .
confirmed modes
. Cfm Uncfm
Type 1/3a Reliable & Best-effort NO ok Typel 3
best-effort -
Reliable ok ok
e Cfm Uncfm
Type 2 grz;l directional Best-effort NO ok TNs:/avz 1
y Reliable NO NO Y
Cfm Uncfm
Type 3b Eﬁ-effort- Best-effort ok ok Tysg 3 2
Reliable NO NO
.) Cfm Uncfm To be determined
Type 3c Relisblelite Best-effort NO ok (possibly 3
& best-effort
ok ok Type 1)

- ©1S0O 2010 = All rights reserved
139

ISO/IEEE 11073-20601:2010(E)

Annex E
(normative)

State tables

E.1 General

All the states used by the agent and manager state tables are shownin Table E.1.

Table E.1—States

State number State Used by agent Used by manager
1 Disconnected Y Y
2 Connected Unassociated Y Y
3 Connected Associating Y
4 Connected Associated Y
Configuring Sending Config

5 Connected Associated Y
Configuring Waiting
Approva

6 Connected Associated Y
Configuring Waiting

7 Connected Associated Y
Configuring Checking Config

8 Connected Associated Y Y
Operating

9 Connected Disassociating Y Y

E.2 Agent state table

The agent state machine shall be implemented as described in Table E.2, which uses the following
notations:

REQ — A request from the application software interfacing with the state machine

IND — A condition asserted by a lower layer of software through a well-defined application programming
interface

Rx — APDU that has arrived on the input data stream

Tx —APDU that is send on the output data stream

Table E.2—Agent state table

Signal . Event/input . . Tx stream
D Initial state Sream Next state Semantic behaviors/notes (output)/event
output

11 Disconnected IND Connected “Shall” indicate to application | None

Transport Unassociated layer.

connection
22 Connected IND Disconnected “Should” indicate to None

Unassociated Transport application layer.
disconnect

140

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Table E.2—Agent state table

Signal - Event/input . . Tx stream
Initial state Next state Semantic behavior s/notes (output)/event
1D stream
output
25 Connected REQ Assoc Connected Timeout=reset, retry=reset. Tx aarq
Unassoci ated Associating
2.6 Connected REQ Connected None. None
Unassociated AssocRel Unassociated
<no state
transition>
27 Connected REQ Connected Should not happen. Tx abrt
Unassociated AssocAbort Unassociated
<no state
transition>
28 Connected Rx aarq(*) Connected Agent-agent association. Tx aare(rejected-
Unassoci ated Unassoci ated permanent)
212 Connected Rx aare(*) Connected Should not happen. Tx abrt
Unassociated Unassociated
<no state
transition>
2.16 Connected Rx rlrq Connected Should not happen. Tx abrt
Unassociated Unassociated
<no state
transition>
217 Connected Rx rire Connected Should not happen. Ignore. None
Unassociated Unassociated
<no state
transition>
218 Connected Rx abrt Connected None. None
Unassociated Unassociated
<no state
transition>
219 Connected Rx prst(*) Connected Should not happen. Tx abrt
Unassociated Unassociated
<no state
transition>
32 Connected IND Disconnected None. None
Associating Transport
disconnect
33 Connected IND Timeout | Connected Timer=reset, retry++. Tx aarq
Associating and maximum | Associating <no
retry not state transition>
reached
34 Connected IND Timeout | Connected None. Tx abrt
Associating and maximum | Unassociated
retry reached
3.6 Connected REQ Connected None. Tx abrt
Associating AssocRel Unassociated
3.7 Connected REQ Connected None. Tx abrt
Associating AssocAbort Unassoci ated
38 Connected Rx aarq(*) Connected Agent-agent association. Tx aare(rejected-
Associating Unassociated permanent)
3.13 Connected Rx Connected This causes adirect transition | None
Associating aare(accepted | Associated to operating state.
) Operating
314 Connected Rx Connected The manager has accepted the | None
Associating aare(accepted | Associated association but does not have a
-unknown- Configuring configuration.
config) Sending Config

© 1SO 2010 — All rights reserved

141

ISO/IEEE 11073-20601:2010(E)

Table E.2—Agent state table

Signal . Event/input . . Tx stream
Initial state Next state Semantic behavior s/notes (output)/event
1D stream
output
3.15 Connected Rx Connected No further attemptsto connect. | None
Associating aare(rejected- | Unassociated
*
)
3.16 Connected Rx rlrq Connected Should not happen. Theagent | Tx abrt
Associating Unassociated has received arequest to
release the association, but it
has not yet established an
association.
317 Connected Rx rire Connected Should not happen. Tx abrt
Associating Unassoci ated
3.18 Connected Rx abrt Connected None. None
Associating Unassoci ated
3.19 Connected Rx prst(*) Connected Should not happen. Tx abrt
Associating Unassociated
4.2 Connected IND Disconnected None. None
Associated Transport
Configuring Disconnect
Sending Config
44 Connected IND Timeout | Connected No reply. Tx abrt
Associated Unassociated
Configuring
Sending Config
4.6 Connected REQ Connected Software requests association Tx rlrq(*)
Associated AssocRé (*) Disassociating release. Timeout=reset.
Configuring
Sending Config
4.7 Connected REQ Connected Software abort. Tx abrt
Associated AssocAbort Unassociated
Configuring
Sending Config
438 Connected Rx aarq(*) Connected Should not happen. Tx abrt
Associated Unassociated
Configuring
Sending Config
412 Connected Rx aare Connected Should not happen. Tx abrt
Associated Unassociated
Configuring
Sending Config
4.16 Connected Rx rlrq Connected None. Tx rlre(normal)
Associated Unassociated
Configuring
Sending Config
417 Connected Rx rire Connected Should not happen. Tx abrt
Associated Unassociated
Configuring
Sending Config
4.18 Connected Rx abrt Connected None. None
Associated Unassociated
Configuring
Sending Config
4.22 Connected Rx roiv-cmip- | Connected Manager allowed to probe rors-cmip-get.(MDS
Associated get, handle=0 | Associated MDS. See 6.3.2.6.1. Attributes)
Configuring Configuring
Sending Config Sending Config
<no state
transition>

142

.-.-...©1S0 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Table E.2—Agent state table

Signal . Event/input . . Tx stream
Initial state Next state Semantic behavior s/notes (output)/event
1D stream output
4.23 Connected Rx roiv-* but | Connected Not allowed until operating Tx roer (no-such-
Associated not (roiv- Associated state is reached. object-instance)
Configuring cmip-get, Configuring
Sending Config handle=0) Sending Config
<no state
transition>
4.26 Connected Rx (rors-*, Connected Should not happen. Tx abrt
Associated roer, or rorj) unassociated
Configuring
Sending Config
4.32 Connected REQ Connected The agent has aconfiguration | Tx
Associated Send(ConfigR | Associated that it has not yet tried with the | EventReport(Config
Configuring eport) Configuring manager. Report)
Sending Config Waiting
Approval
5.2 Connected IND Disconnected None. None
Associated Transport
Configuring Disconnect
Waiting Approva
54 Connected IND Timeout | Connected No reply. Tx abrt
Associated Unassociated
Configuring
Waiting Approval
5.6 Connected REQ Connected Software request association Tx rlrq(*)
Associated AssocRel (*) Disassociating release. Timeout=reset.
Configuring
Waiting Approval
5.7 Connected REQ Connected Software abort. Tx abrt
Associated AssocAbort Unassociated
Configuring
Waiting Approval
5.8 Connected Rx aarq(*) Connected Should not happen. Tx abrt
Associated Unassociated
Configuring
Waiting Approval
5.12 Connected Rx aare(*) Connected Should not happen. Tx abrt
Associated Unassociated
Configuring
Waiting Approva
5.16 Connected Rx rlrq Connected None. Tx rlre(normal)
Associated Unassociated
Configuring
Waiting Approval
5.17 Connected Rx rire Connected Should not happen. Tx abrt
Associated Unassociated
Configuring
Waiting Approva
5.18 Connected Rx abrt Connected None. None
Associated Unassociated
Configuring
Waiting Approval
5.22 Connected Rx roiv-cmip- | Connected Manager allowed to probe rors-cmip-get (MDS
Associated get, handle=0 | Associated MDS. See 6.3.2.6.1. Attributes)
Configuring Configuring
Waiting Approval Sending Config

© 1SO 2010 — All rights reserved

143

ISO/IEEE 11073-20601:2010(E)

Table E.2—Agent state table

Signal . Event/input . . Tx stream
Initial state Next state Semantic behavior s/notes (output)/event
1D stream
output
5.23 Connected Rx roiv-* but | Connected Not allowed until operating Tx roer (no-such-
Associated not (roiv- Associated state is reached. object-instance)
Configuring cmip-get, Configuring
Waiting Approva handle=0) Sending Config
5.27 Connected Rx rors-cmip- | Connected Manager has rejected the None
Associated confirmed- Associated configuration.
Configuring event-report Configuring
Waiting Approval (unsupported- | Sending Config
config)
5.29 Connected Rx rors-cmip- | Connected Manager has accepted None
Associated confirmed- Associated configuration.
Configuring event-report Operating
Waiting Approval (accepted-
config)
5.30 Connected Rx (rors-*, Connected Should not happen. Tx abrt
Associated roer, or rorj), Unassociated
Configuring but not Rx:
Waiting Approval rors-cmip-
confirmed-
event-report.
8.2 Connected IND Disconnected None. None
Associated Transport
Operating Disconnect
8.4 Connected IND Timeout | Connected No reply. Tx abrt
Associated Unassociated
Operating
8.6 Connected REQ Connected None. Timeout=reset. Tx rlrg(normal)®
Associated AssocRel Disassociating
Operating
8.7 Connected REQ Connected None. Tx abrt
Associated AssocAbort Unassociated
Operating
8.8 Connected Rx aarq(*) Connected Should not happen. Tx abrt
Associated Unassociated
Operating
8.12 Connected Rx aare(*) Connected Should not happen. Tx abrt
Associated Unassociated
Operating
8.16 Connected Rx rlrq Connected If the agent has any Tx rlre(normal)
Associated Unassociated outstanding invoke-ids, it shall
Operating assume that it shall receive no
response to its request.
8.17 Connected Rx rire Connected Should not happen. Tx abrt
Associated Unassociated
Operating
8.18 Connected Rx abrt Connected None. None
Associated Unassociated
Operating
8.21 Connected Rx roiv-* Connected Normal processing of Tx (rors-*, or roer, or
Associated Associated messages. Thisisthe normal rorj)
Operating Operating <no operating state.
state transition>

8 An AssocRel should not be sent until all outstanding invoke-ids are retired.

144

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Table E.2—Agent state table

Signal . Event/input . . Tx stream
Initial state Next state Semantic behavior s/notes (output)/event
1D stream
output
8.26 Connected Rx (rors-*, Connected Normal processing of None’
Associated roer, or rorj) Associated messages. Thisisthe normal
Operating Operating <no operating state.
state transition>
9.2 Connected IND Disconnected None. None
Disassociating Transport
Disconnect
9.4 Connected IND Timeout | Connected No reply. Tx abrt
Disassociating Unassociated
9.6 Connected REQ Connected Already disassociating. Ignore. | None
Disassociating AssocRel Disassociating
9.7 Connected REQ Connected Abort the graceful Tx abrt
Disassociating AssocAbort Unassociated disassociation process.
9.8 Connected Rx aarq Connected Should not happen. Tx abrt
Disassociating Unassociated
9.12 Connected Rx aare(*) Connected Should not happen. Tx abrt
Disassociating Unassoci ated
9.16 Connected Rx rlrq Connected Both sides releasing Tx rlre(normal)
Disassociating Disassociating connection. Respond and wait
<no state for ownrlre.
transition>
9.17 Connected Rx rire Connected Release process completed, None
Disassociating Unassociated exit to unassociated.
9.18 Connected Rx abrt Connected None. None
Disassociating Unassociated
9.21 Connected RX roiv-* Connected The manager sent an invoke None
Disassociating Disassociating message as the agent sent an
<no state rlrg. The agent has transitioned
transition> out of the Operating state and
therefore will not provide a
response.
9.26 Connected Rx (rors-*, Connected Example 1: Application layer Tx abrt
Disassociating roer, or rorj) Unassociated has outstanding invoke-ids but
has previously issued a
ReleaseRequest anyway.
Example 2: Unsolicited rors-*.

E.3 Manager state table

The manager state machine shall be implemented as described in Table E.3, which uses the following

notations:

REQ — A request from the application software interfacing with the state machine
IND — A condition asserted by alower layer of software through a well-defined API
Rx — APDU that has arrived on the input data stream
Tx —APDU that is send on the output data stream

° If an rors-* is received with an unknown invoke-id, then the application layer shall cause an Abort message to be sent to the manager
by sending an “REQ abrt” to the state machine.

© 1SO 2010 — All rights reserved

145

ISO/IEEE 11073-20601:2010(E)

Table E.3—Manager state table

Signal . Event/input . . Tx stream
Initial state Next state Semantic behavior s/notes (output)/event
1D stream
gener ated
11 Disconnected IND Transport | Connected "Shall” indicate to application None
connection Unassociated layer.
22 Connected IND Transport | Disconnected "Should” indicate to None
Unassociated disconnect application layer.
26 Connected REQ AssocRel | Connected Should not happen. Ignore. None
Unassociated Unassociated
<no state
transition>
27 Connected REQ Connected Should not happen. Ignore. None
Unassociated AssocAbort Unassociated
<no state
transition>
29 Connected Rx aarq Connected The device and configuration Tx aare(accepted)
Unassociated (acceptable associated are known to the manager.
and known operating
configuration)
210 Connected Rx aarq Connected The manager determines that Tx aare(accepted-
Unassociated (acceptable associated the connection is acceptable, unknown-config)
with unknown | configuring but does not have valid
configuration) | waiting configuration information for
the agent.
211 Connected Rx aarq Connected The manager determines that Tx aare(reject-*)
Unassociated (unacceptable | unassociated the connection is unacceptable.
configuration)
212 Connected Rx aare(*) Connected Should not happen. Tx abrt
Unassociated Unassociated
<no state
transition>
2.16 Connected Rx rirq Connected Should not happen. Tx abrt
Unassociated Unassociated
<no state
transition>
217 Connected Rx rlre Connected Should not happen. Ignore. None
Unassociated Unassociated
<no state
transition>
2.18 Connected Rx abrt Connected Should not happen. Ignore. None
Unassociated Unassociated
<no state
transition>
219 Connected Rx prst(*) Connected Should not happen. Tx abrt
Unassociated Unassociated
<no state
transition>
6.2 Connected IND Transport | Disconnected None. None
Associated disconnect
Configuring
Waiting
6.4 Connected IND Timeout Connected No reply. Tx abrt
Associated Unassociated
Configuring
Waiting
6.6 Connected REQ AssocRel | Connected None. Timeout=reset. Tx rlrg(normal)
Associated Disassociating
Configuring
Waiting

146

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Table E.3—Manager state table

Signal . Event/input . . Tx stream
Initial state Next state Semantic behavior s/notes (output)/event
1D stream
gener ated
6.7 Connected REQ Connected None. Tx abrt
Associated AssocAbort Unassociated
Configuring
Waiting
6.8 Connected Rx aarq(*) Connected Should not happen. Tx abrt
Associated Unassociated
Configuring
Waiting
6.12 Connected Rx aare(*) Connected Should not happen. Tx abrt
Associated Unassociated
Configuring
Waiting
6.16 Connected Rx rlrq Connected The manager has received a Tx rire(normal)
Associated Unassociated request to release the
Configuring association.
Waiting
6.17 Connected Rx rlre Connected Should not happen. Tx abrt
Associated Unassociated
Configuring
Waiting
6.18 Connected Rx abrt Connected None. None
Associated Unassociated
Configuring
Waiting
6.24 Connected RX roiv- Connected Event report containing None
Associated confirmed- Associated configuration from agent.
Configuring event-report Configuring
Waiting Checking
Config
6.25 Connected Rx roiv-* but Connected Not allowed. Tx roer (no-such-
Associated not (roiv- Associated object-instance)
Configuring confirmed- Configuring
Waiting event-report) Waiting <no
state transition>
6.26 Connected Rx(rors-*, Connected Manager may have sent a None™
Associated roer, or rorj) Associated roiv-cmip-get(handle=0).
Configuring Configuring See6.3.2.6.1.
Waiting Waiting <no
state transition>
7.2 Connected IND Transport | Disconnected None. None
Associated Disconnect
Configuring
Checking Config
7.4 Connected IND Timeout Connected No reply. Tx abrt
Associated Unassociated
Configuring
Checking Config
7.6 Connected REQ AssocRel | Connected None. Tx rlrq(normal)
Associated Disassociating
Configuring
Checking Config

01f an rors-* is received with an unknown invoke-id, then the application layer shall cause an Abort message to be sent to the agent
by sending an “REQ abrt” to the state machine.

'©1S0 2010 — All rights reserved

147

ISO/IEEE 11073-20601:2010(E)

Table E.3—Manager state table

Signal . Event/input . . Tx stream
Initial state Next state Semantic behavior s/notes (output)/event
1D stream
gener ated

7.7 Connected REQ Connected None. Tx abrt
Associated AssocAbort Unassociated
Configuring
Checking Config

7.8 Connected Rx aarq(*) Connected Should not happen. Tx abrt
Associated Unassociated
Configuring
Checking Config

712 Connected Rx aare(*) Connected Should not happen. Tx abrt
Associated Unassociated
Configuring
Checking Config

7.16 Connected Rx rlrq Connected The manager has received a Tx rire(normal)
Associated Unassociated request to release the
Configuring association.

Checking Config

7.17 Connected Rx rlre Connected Should not happen. Tx abrt 1
Associated Unassociated
Configuring
Checking Config

7.18 Connected Rx abrt Connected None. None
Associated Unassociated
Configuring
Checking Config

7.24 Connected RX roiv- Connected The agent is sending If not a config report,
Associated confirmed- Associated measurements before a then Tx roer (no-
Configuring event-report Configuring configuration is agreed to. such-object-instance)
Checking Config Checking

Config <no If config report, then
state transition> Tx abrt

7.25 Connected Rx roiv-* but Connected The agent only sends event Tx roer(no-such-
Associated not (roiv- Unassociated report messages. This should action)
Configuring confirmed- never happen.

Checking Config event-report)

7.26 Connected Rx(rors-*, Connected Manager might have sent a None
Associated roer, or rorj) Associated roiv-cmip-get(handle=0). See
Configuring Configuring 6.3.2.6.1.

Checking Config Checking
Config <no
state transition>

7.31 Connected REQ agent Connected None. TX rors-cmip-
Associated supplied Associated configuration-
Configuring unsupported Configuring event(unsupported-
Checking Config configuration Waiting config)

7.32 Connected REQ agent Connected None. TX rors-cmip-
Associated supplied Associated configuration-
Configuring supported Operating event(supported-
Checking Config configuration config)

8.2 Connected IND Transport | Disconnected None. None
Associated Disconnect
Operating

1 If an rors-* is received with an unknown invoke-id, then the application layer shall cause an Abort message to be sent to the agent
by sending an “REQ abrt” to the state machine.

148

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Table E.3—Manager state table

Signal . Event/input . . Tx stream
Initial state Next state Semantic behavior s/notes (output)/event
1D stream
gener ated
8.4 Connected IND Timeout Connected No reply. Tx abrt
Associated Unassociated
Operating
8.6 Connected REQ AssocRel | Connected None. Tx rlrq(normal) or Tx
Associated Disassociating rlrg(configuration-
Operating changed)®
8.7 Connected REQ Connected None. Tx abrt
Associated AssocAbort Unassociated
Operating
8.8 Connected Rx aarq(*) Connected Should not happen. Tx abrt
Associated Unassociated
Operating
8.12 Connected Rx aare(*) Connected Should not happen. Tx abrt
Associated Unassociated
Operating
8.16 Connected Rx rirq Connected None. Tx rire(normal)
Associated Unassociated
Operating
8.17 Connected Rx rlre Connected Should not happen. Tx abrt
Associated Unassociated
Operating
8.18 Connected Rx abrt Connected None. None
Associated Unassociated
Operating
8.21 Connected RX roiv-* Connected Normal processing of Tx (rors-*, or roer, or
Associated Associated messages. Thisisthe normal rorj)
Operating Operating <no operating state.
state transition>
8.26 Connected Rx (rors-*, Connected Normal processing of None®™
Associated roer, or rorj) Associated messages. Thisis the normal
Operating Operating <no operating state.
state transition>
9.2 Connected IND Transport | Disconnected None. None
Disassociating Disconnect
9.4 Connected IND Timeout Connected No reply. Tx abrt
Disassociating Unassociated
9.6 Connected REQ AssocRel | Connected Already disassociating. Ignore | None
Disassociating Disassociating
<no state
transition>
9.7 Connected REQ Connected Abort the graceful Tx abrt
Disassociating AssocAbort Unassociated disassociation process.
9.8 Connected Rx aarq(*) Connected Should not happen. Tx abrt
Disassociating Unassociated
9.12 Connected Rx aare(*) Connected Should not happen. Tx abrt
Disassociating Unassociated
9.16 Connected Rx rirq Connected Both sides releasing Tx rire(normal)
Disassociating Disassociating connection. Wait for own rire.
<no state
transition>
9.17 Connected Rx rlre Connected Release process completed. None
Disassociating Unassociated Exit to unassociated.

12 An AssocRel should not be sent until all outstanding invoke-ids are retired.

2 If an rors-* is received with an unknown invoke-id, then the application layer shall cause an Abort message to be sent to the agent
by sending an “REQ abrt” to the state machine.

© 1SO 2010 — All rights reserved

149

ISO/IEEE 11073-20601:2010(E)

150

Table E.3—Manager state table

Signal - Event/input . . Tx siream
D Initial state Sream Next state Semantic behavior s/notes (output)/event
generated
9.18 Connected Rx abrt Connected None. None
Disassociating Unassociated
9.21 Connected RX roiv-* Connected The agent sent an invoke None
Disassociating Disassociating message as the manager sent an
<no state rlrg. The manager has
transition> transitioned out of the
Operating state and therefore
will not provide any response.
9.26 Connected Rx (rors-*, Connected Example 1: Application layer Tx abrt™
Disassociating roer, or rorj) Unassociated has outstanding invoke-ids, but

has previously issued a
ReleaseRequest anyway .
Example 2: Unsolicited rors-*.

¥ If an rors-* is received with an unknown invoke-id, then the application layer shall cause an Abort message to be sent to the agent
by sending an “REQ abrt” to the state machine.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Annex F
(normative)

Medical device encoding rules (MDER)

F.1 General

This annex is duplicated from ISO/IEEE 11073-20101:2004 [B14], A.1 through A.4. They are replicated
here for implementation convenience.

This annex defines specialized MDER, which concerns presentation of sequential binary strings as they are
intended to appear on the network relative to organization in computer memory, to representation in
abstract syntax, i.e, programming language or abstract syntax, or in diagrams that are used in
specifications. This specification is intended to be consistent with respect to any and all 1SO/IEEE 11073
lower layer alternatives; thus, implementations in the upper layers may have to provide for transparency
based on a specific lower layer profile.

Significant goals for MDER include the ability to optimize formatting and parsing performance as well as
minimizing bandwidth utilization. Formatting optimization focuses on the ability of a data communication
processor to define pre-defined transmission templates in which only dynamically changing data need to be
included in relatively high-frequency messages, particularly waves.

F.2 Supported ASN.1 syntax

ASN.1 is a standard notation that is used for the definition of data types, values, and constraints on values.
This notation is used extensively in OSl standards and is used extensively in the ISO/IEEE 11073 family of
standards (e.g., in the DIM where all the data definitions are formalized using ASN.1).

To support the requirement for encoding and decoding performance and support of pre-defined
transmission templates, the MDER defines methods to transform ASN.1 syntax into a byte stream suitable
for communication.

In contrast to other ISO/OS| standards for ASN.1 encoding rules (e.g., BER and PER), MDER is optimized
for a subset of the ASN.1 only. MDER does not support the full set of ASN.1 data types, but only a defined
and restricted set of ASN.1 constructs.

The ISO/IEEE 11073 family of standards uses this restricted set of ASN.1 for the definition of data types
used within the managed objects only; therefore, MDER is suitable and sufficient for the encoding of data
structures within these standards.

The restricted set of ASN.1 used for ISO/IEEE 11073 PDU components is a strict subset of legal ASN.1
data types; therefore, other general standard encoding rules (e.g., XER, PER) may be used as well, as
negotiated during association.

Table F.1 defines the specialization of ASN.1 suitable for encoding with MDER. All ASN.1 PDU
components destined for encoding with MDER are subject to this specialization.

For each ASN.1 data type, this speciaization is indicated by | for included with restriction, R for
restrictions on use, or E for excluded.

© ISO 2010 — All rights reserved
151

ISO/IEEE 11073-20601:2010(E)

Table F.1—Supported ASN.1 data types

ASN.1type Status Comments
INTEGER R Size constraints shall be used for all INTEGER data types to define the
value range of the integer. Short names for the supported constraint types
are defined as follows:
INT-U8 ::= INTEGER(0..255)
INT-18 ::= INTEGER (-128..127)
INT-U16 ::= INTEGER (0..65535)
INT-116 ::= INTEGER (-32768..32767)
INT-U32 ::=INTEGER (0..4294967295)
INT-132 ::= INTEGER (-2147483648..2147483647)
Only the abbreviated, size-constrained INTEGER data types should be
used with data type definitions for encoding in MDER.
BIT STRING R Size congtraints shall be used for all BIT STRING data types to define the
value range of the bit string. Short names for the supported constraint types
are defined as follows:
BITS-8 ::= BIT STRING (SIZE(8))
BITS-16 ::= BIT STRING (SIZE(16))
BITS-32 ::= BIT STRING (SIZE(32))
Only the abbreviated, size-constrained BIT STRING data types should be
used with data type definitions for encoding in MDER.

OCTET STRING [—
SEQUENCE R May not use OPTIONAL, DEFAULT, or automatic tagging.
SEQUENCE OF I —
CHOICE R Implicit or explicit tagging may be used.
|

ANY DEFINED BY An ANY DEFINED BY shall identify a component within the data
structure (typically a SEQUENCE) that defines this data structure to a

decoder/ parser.

F.3 Byte order

Refer to Figure F.1, which shows how various binary strings are mapped between network and memory.
Network byte order (NBO) representation is used in diagrams. The following rules are numbered for
reference convenience:

1) Representation in diagrams uses the NBO format shown in Figure F.1.

2) No aignment is used in MDER. In other words, additional bytes are not added to byte
strings, e.g., to obtain lengths that are divisible by two or four. However, variable-length
data items, i.e., strings, should have an even length for performance reasons. For example,
because most data elements are 16-bit, they are not misaligned if strings are even length.

3) MDAP communicants are restricted to using the NBO (big-endian) convention.

4) The association protocol shall use ISO MDER to provide for universal interoperability
during negotiation of MDER conventions. All other PDUs exchanged in the life cycle of
device-host communication will be based in MDER, e.g., CMIP* and ROSE* PDUs. The
suffixed asterisk (*) indicates that MDER is used as an optimization of the 1SO protocol
that is based typically in binary encoding rules (BER).

Multibyte structures are mapped between network and computer memory and ordered in computer memory
in two basic ways, referred to as big endian and little endian. Big-endian format is consistent with NBO,
but little endian is not. For example, in the last example in Figure F.1, the structure ABCD would be
ordered DCBA. In this case, if big endian is the negotiated protocol, then a little-endian machine needs to
swap components of these structures both to and from memory, as appropriate. Program language macros
and machine-dependent byte-swapping instructions that typically facilitate normalizetion are
implementation issues, but are facilitated by non-normative definitionsin this and related standards.

© I1SO 2010 — All rights reserved
152 © IEEE 2010 — Al rights reserved

e NBO

ISO/IEEE 11073-20601:2010(E)

e Onebytehit string, i.e., octet

Bit sequence: in order of least significant bit (LSB) to most significant bit (MSB), eg. O, ..., 7 or
24, ..., 31; bit ordering isrepresenting in diagrams by the following notation, €——— ,in
which the arrow tip represents the last bit transferred:

7 .. 0
_

MSB LSB

e Multibytestring

Unstructured: an array of octets (i.e., an octet string)
e Bit sequence: for each byte, as defined for octet
e Byteseguence: generically numbered from [0] to [n-1], e.g., A[0] to A[n-1], where <n> =

length in octets.
7 A0 Of ... 7 Aln1 O

Structured: a multibyte ordering of bits, typically in multiples of two (e.g., ashort integer is 16
bits, along integer is 32 hits); floating point numbersin general are multiples of 16 hits,
although in this standard, only a 32 hbit FLOAT is defined. Two generic examples are given
(ABCD refersto byte order):
e 16 hit structure, e.g., short (integer)

e Bit sequence: each byte transferred as defined above for octet

e Byte sequence: transferred in order of most significant byte to least significant byte

e For signed integers, typically the MSB of the most signficiant byte isthe sign (s) hit.

15 A 87 B 0
< | €

Most Lesst

sig. byte sig. byte

e 32 hit structure, e.g., long (integer)
31 A 2423 B 16|15 ¢ 87 D 0

| €

&
€ | €

e By convention, multistructure compositions are shown in order of appearance in a serialized
string, e.g.,

15 A 87 B 0

AN

First in sequence

Next in sequence

Last in sequence

23 E 16|15 g 8

A~
T
o

Figure F.1—Binary string [re]presentation conventions—NBO

© 1SO 2010 — All rights reserved

153

ISO/IEEE 11073-20601:2010(E)

F.4 Encodings

F.4.1 General

In MDER, there is no tagging for simple types. Tags are used only where a decoder needs to distinguish
types (e.g., CHOICE). Length fields are used only for elements with variable length and are restricted to
16 bits (allowing 64k bytes), which should be sufficient for most purposes.

Simple types are defined to have fixed length to optimize overall encoded size.

SEQUENCE types have fixed length since OPTIONAL syntax components are not used.

F.4.2 INTEGER

The encoding of an integer value is primitive, and the octets represent the value using a twos-complement
binary representation for signed integers and the absolute value for unsigned.

For the size-constrained integer values supported by MDER, Figure F.2 defines octet encodings.™

e 8bit typesINT-US, INT-I18

87654321

MSB

e 16 bit types INT-U16, INT-116

87654321 87654321

MSB

e 32 bit types INT-U32, INT-132

87654321 87654321 87654321 87654321
MSB

Figure F.2—Integer encodings

The octets contain the twos-complement representation of the encoded integer value.

5 To promote C programming language standardization for these integer data types, 1SO/IEC 9899 definitions are used.

© I1SO 2010 — All rights reserved
154 © IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

F.4.3 BIT STRING

The encoding of abit string value is primitive, and the contents octets simply represent the bits set in the bit
string. Bit string lengths are constrained to 8-, 16-, or 32-bit lengths.

Bit 0 in the encoding is represented by the most significant bit (MSB), bit 1 is represented by the next bit in
the octet, etc.

For the size-constrained bit string values supported by MDER, Figure F.3 defines octet encodings.

e 8hittypesBITS8

87654321

MSB

e 16 bit typesBITS- 16

87654321 87654321

MSB

e 32bit typesBITS-32

87654321 87654321 87654321 87654321

MSB

Figure F.3—BIT STRING encodings

Example:

The following definition
state ::= BITS-16 { open(0), locked(1) }

is mapped to a C language type representation as follows:
short unsigned int state;
#definelocked 0x4000
#define open 0x8000

(similar for named bitsin BIT STRINGS).
F.4.4 OCTET STRING

The encoding of an octet string value is primitive, and the contents octets simply represent the elements of
the string. The encoding of the octets isinherent to the definition of the type of the string.

© 1SO 2010 — All rights reserved
155

ISO/IEEE 11073-20601:2010(E)

The octets may contain ASCII printable characters or may contain encapsulated binary data. OCTET
STRINGs containing ASCII printable characters shall be even length using a NULL character as padding.
Note that strings that are naturally even length may not be NULL terminated.

MDER distinguishes between the fixed-length (size-constrained) OCTET STRING and the variable-length
OCTET STRING as shown in Figure F.4:

e Fixed (size-constrained): OCTET STRING (SIZE(n))

87654321 87654321

Octet1 Octet 2 Octet n-1 Octet n

e Variable-length OCTET STRINGs

87654321 87654321 87654321 87654321

16bit Length;encoding Octet 1 | Octet 2 Octet n-1 | Octet m

Figure F.4—OCTET STRING encodings

Fixed OCTET STRING types are encoded without a length field and have only the content octets.

Variable-length OCTET STRING types are encoded with a 16-bit length field (unsigned integer, twos-
complement), followed by the specific number of content octets.

Example:

The following definitions
fixed-sized-label ::= OCTET STRING (SIZE(12))
variable-label .= OCTET STRING

can be mapped to C language type representations as follows:
typedef unsigned char fixed size label[12];

typedef struct {

unsigned short length;

unsigned char data[1]; /* thisisaplaceholder for an appropriately sized array */
} variable label;

F.4.5 SEQUENCE

A SEQUENCE is encoded by encoding each element of the SEQUENCE in the order in which it is defined
inthe ASN.1 SEQUENCE. No alignment is performed.

- - © I1SO 2010 — All rights reserved
156 © IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Example:

The following definitions
IdentType ::= SEQUENCE {

id INT-U16,
instance INT-U16
}

are mapped to C language type representations as follows:

typedef struct {
unsigned short id,
unsigned short instance
} ldentType;

and have the MDER encoding in Figure F.5.

87654321 87654321 87654321 87654321

Encoded INT-U16 (id) Encoded INT-U16 (instance)
| 1

Figure F.5— Sample encoding of a SEQUENCE

F.4.6 SEQUENCE OF

SEQUENCE OF is encoded by a header of a count field to specify the number of encoded elements, n, that
follow and a length field to specify the total number of octets, m, that follow. The length, m, shall be equal
to n x size, where size is the length of each encoded element. Note that length does not include the size of
the count and length elements. The header is followed by the encoded elementsin order. See Figure F.6.

87654321 87654321

Count - INT-U16 (nelem’s)
|

Length - INT-U16 (m octets)

Encoded
Element 1

S19100 W

Encoded
Element n

Figure F.6—Encoding of SEQUENCE OF

A count and length field with contents 0 indicates an empty list data structure and is an allowed value.

© 1SO 2010 — All rights reserved
157

ISO/IEEE 11073-20601:2010(E)

Example:

The following definition

Arrayl ::= SEQUENCE OF Entry

is mapped to a C language type representation as follows:

typedef struct {
unsigned short count;
unsigned short length;
Entry data[1];
} Arrayl;

F.4.7 CHOICE

[* placeholder for sufficient number of entries*/

CHOICE isencoded by a header of atag field to specify the encoding of the chosen alternative and alength
field to specify the number of octetsin the encoding of the chosen alternative that follows. See Figure F.7.

87654321

87654321

Tag - INT-U16
|

Length - INT-U16 (m octets)

Encoding of
chosen
alternative

S19100 W

Figure F.7—Encoding of CHOICE

Example:

The following definitions
ChoiceType ::= CHOICE {
one
two

}

OneType,
TwoType

are mapped to a C language type representation as follows:

typedef struct {

unsigned short choice id,;
unsigned short length;

union {
} data;
} ChoiceType;

#define one_type_chosen
#define two_type_chosen

Therules for tag values are defined as follows:

— Tagsareimplicit or explicit.

158

OneType one;
TwoType two;
1
2

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

— Theabstract syntax for implicit tags does not include an explicit choice number and, therefore, requires
arule for assigning choice _id field values. For implicit tags, choice_id field values shall start with the
value 1 and are sequential in order of the abstract syntax choices. In the example above, the choice id
field values for one_type chosen and two_type chosen fieldsare 1 and 2, respectively.

— The abstract syntax for explicit tags includes an explicit choice number, which is mapped directly to
the choice_id field in the encoding rule just defined. In this case, choices are sequential, but digoint,
depending on the application, as in the following example:

choice-type ::= CHOICE {
one [1] OneType, -- definestag value 1 in MDER
four [4] FourType -- definestag value 4 in MDER

F.4.8 ANY DEFINED BY and instance-of

The ANY DEFINED BY type (ASN.1 1988/90) or the instance-of type (ASN.1 1994) is encoded by a
header of a length field to specify the number of octets in the encoding of the selected value that follows.
See Figure F.8.

The type specified refers to embedded syntaxes that are specified using aregistered OID. Refer to Annex H
of ISO/IEEE 11073-20101:2004 [B14] for compatibility cases.

87654321 87654321

Length - INT-U16 (m octets)

Encoding of
selected value

SIP100 W

Figure F.8—Encoding of ANY DEFINED BY (instance-of)

Example:

The following definitions
TestType ::= SEQUENCE {

type-id OIDType,
value ANY DEFINED BY type-id
}
are mapped to a C language type representation as follows:;
typedef struct {
OIDType type-id,
unsigned short any_length;
char any_data; /* placeholder for encoded data type */
} TestType;

This example shows the byte encoding of the SEQUENCE containing a context-sensitive OID and the
value of an ANY DEFINED BY.

© 1SO 2010 — All rights reserved
159

ISO/IEEE 11073-20601:2010(E)

In the preceding mapping, the type-id field is a context-free OID. An application uses the ID field to cast
the any data field to the right data type. The character data type for the any data field is essentially
meaningless and provides the address of the field only. Note that length can be 0, which means the
any_datafield does not exist.

The instance-of type encodes the ASN.1 TYPE-IDENTIFIER construct and is identical to the ANY
DEFINED BY encoding for the purpose of backwards-compatibility.

F.5 Floating point numbers

The restricted subset of ASN.1 for MDER does not contain the ASN.1 data type FLOAT, and instead this
standard defines its own floating point types, FLOAT-Type and SFLOAT-Type.

F.6 Floating point data structure — FLOAT-Type

The FLOAT-Type is mapped as a 32-bit structure, formatted according to the medical device numeric
format (MDNF).

MDNF is a 32-bit word comprising a signed 8-bit integer exponent followed by a signed 24-bit integer
mantissa. See Figure F.9.

MSB exponent I(8 bit, signed) | magnitude (24'bit, signed) LSB
| |

MSB ! (magnitude,'conti nued) l LSB

| | |

Figure F.9—MDNF encoding

The number represented is (mantissa) x (10**exponent).'® Both the exponent and mantissa are in twos-
complement form. The mantissa and exponent are adjusted to denote the precision as described in F.8.

The special valuesthat are represented and displayed arein Table F.2.

Table F.2—MDNF special values

Special value M antissa Bit value
NaN (not a number) +(2**23 1) 0x007FFFFF
NRes (not at this resolution) —(2**23) 0x00800000
+ INFINITY +(2**23 -2) 0x007FFFFE
—INFINITY —(2**23-2) 0x00800002
Reserved for future use —(2¥*23-1) 0x00800001

In each of these special cases, the exponent shall be 0. This leaves the following ranges for normal number
representation:

— 128 < exponent < 127

18 The double asterisk (**) is used to represent the exponent operation.

© I1SO 2010 — All rights reserved
160 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

— —2(2**23-3) < mantissa< +(2**23 -3)
— NaN =+(2**23-1)

— NRes=—(2**23)

— +INFINITY = £(2**23 -2)

NaN shall be used to indicate an invalid result from a computation step or to indicate missing data due to
the hardware’s inability to provide a valid measurement, perhaps from sensor perturbation. The manager
should reflect thisinformation by blanking the display or some other appropriate means.

NRes shall be used to indicate that the value cannot be represented with the available range and resolution.
This situation could result from an overflow or underflow situation, when the number of required
significant digits exceeds the maximum or minimum range of the exponent, or when the number exceeds
the maximum or minimum range of the exponent.

To maintain a contiguous range of special values, the bit value 0x00800001 is reserved for future use.

F.7 Short floating point data structure — SFLOAT-Type

The SFLOAT-Type may be used to represent floating point numbers with very limited range and could
significantly reduce payload size.

The SFLOAT-Type is a 16-bit word comprising a signed 4-bit integer exponent followed by a signed 12-bit
mantissa. See Figure F.10.

| |
MSB exponent | MSB mantissa || mantissa(lo 8 ofI 12 hits, signed)
(4 bits, signed) " (hi 4 of 12 bits)

Figure F.10 - Short float layout

The number represented is (mantissa) x (10**exponent). Both the exponent and mantissa are in twos-
complement form. The mantissa and exponent are adjusted to denote the precision as described in F.8.

There special valuesthat are represented and displayed arein Table F.3.

Table F.3—SFLOAT-Type special values

Special value M antissa Bit value
NaN +(2**11-1) Ox07FF
NRes —(2**11) 0x0800
+ INFINITY +(2**11 -2) OxO7FE
—INFINITY —H2**11-2) 0x0802
Reserved for future use —(2**11-1) 0x0801

Special values are assigned to express.

© 1SO 2010 — All rights reserved
161

ISO/IEEE 11073-20601:2010(E)

162

— NaN [exponent O, mantissa +(2**11 -1) > 0x07FF]

— NRes[exponent 0, mantissa—(2**11) - 0x0800]

— + INFINITY [exponent 0, mantissa +(2**11 -2) - OxO7FE]
— —INFINITY [exponent O, mantissa—(2**11 -2) - 0x0802]

In each of the special cases, the exponent shall be 0. The use of the exponent to indicate valid digits in the
SFLOAT description arethe sameasin F.8.

To maintain a contiguous range of special values, the bit value 0x0801 is reserved, but does not represent a
specific numerical meaning.

F.8 Expression of precision of floating point numbers

A floating point number may be represented in a way that denotes the precision of the value by expressing
the mantissa in integer form to denote the number of significant digits in the floating point number and

adjusting the exponent accordingly. The following are examples:

— If the exponent < 0, then the integer value of the exponent shows the number of valid digits after the
decimal point. See the examplesin Table F.4.

Table F.4—Examples when exponent <0

Exponent M antissa Value
-3 32 000 32.000
-1 320 32.0

— If the exponent > 0, then the number of valid digits after the decimal point is zero, and the mantissa
represents the precision of the value. See the examplesin Table F.5.

Table F.5—Examples when exponent >0

Exponent M antissa Value
1 320 3200
2 32 3200

Vaues not needing expression to the right of the decimal point, such as a pulse rate, are expressed by
placing the value in the least significant byte of the mantissa and with an exponent value of 0. For example,
the value 72 would be represented as 0x00000048. An oxygen saturation percentage can be expressed as an
SFLOAT-Type similarly by placing the value in the least significant byte of the mantissa. For example, the
value 98 would be represented as 0x0062. Whereas if greater precision is available (e.g., a reading is
precise to 0.1 of a unit), then the value 72.0 would be represented as 720 x 10, giving a mantissa of
0x0002D0 and exponent of OxFF, with the final value being OxFF0002DO0. In the case of the SFLOAT-
Type, the value 98.0 would be represented as 980 x 10, giving a mantissa of 0x3D4 and exponent of OxF,
with the final value being OxF3D4.

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Annex G
(informative)

Encoded data type definitions

This annex provides an example header file definition that is generated from the ASN.1 definitions shown
in Annex A. This annex does not include any code required to convert these structures into binary
transmission buffersin a portable fashion for either big-endian or little-endian machines.

#i f ndef PHD_TYPES
#defi ne PHD_TYPES

/*
The followi ng typedefs may need to be changed dependi ng on the
Conpi |l er and machi ne architecture.

*/

t ypedef unsi gned char intus;

t ypedef unsigned short intul6;

t ypedef unsigned int intu32;

typedef struct Any

{

intul6 | ength;

intu8 value[l]; [* first elenent of the array */
} Any;

typedef intul6é O D Type;
typedef intul6 PrivateQ d;
typedef intul6é HANDLE;
typedef intul6 |nstNumber;

typedef intul6é NonmPartition;

#defi ne NOM_PART _UNSPEC 0
#defi ne NOM_PART_0OBJ 1
#defi ne NOM_PART_METRI C 2
#defi ne NOM_PART_ALERT 3
#defi ne NOM_PART_DI M 4
#defi ne NOM_PART_VATTR 5
#defi ne NOM_PART_PGRP 6
#def i ne NOM PART_SI TES 7
#defi ne NOM_PART_| NFRASTRUCT 8
#defi ne NOM_PART_FEF 9
#defi ne NOM_PART_ECG_EXTN 10
#def i ne NOM_PART_PHD DM 128
#def i ne NOM _PART_PHD HF 129
#defi ne NOM_PART_PHD_Al 130
#defi ne NOM_PART_RET_CODE 255
#defi ne NOM_PART_EXT_NOM 256
#def i ne NOM_PART_PRI V 1024

© 1SO 2010 — All rights reserved
163

ISO/IEEE 11073-20601:2010(E)

t ypedef struct TYPE

{
NonPartition partition;
O D _Type code;

} TYPE;

typedef struct AVA Type

O D Type attribute_id;
Any attribute_val ue;
} AVA Type;

typedef struct AttributeLi st
{

i ntulé count;

intul6 | ength;

AVA Type val ue[1]; /* first element of the array */
} Attributelist;

typedef struct AttributeldList
{

i ntul6é count;

i ntul6 | ength;

O D Type val ue[1]; /* first element of the array */
} AttributeldList;

typedef intu32 FLOAT Type;
typedef intul6 SFLOAT Type;
typedef intu32 RelativeTi ne;

typedef struct H ghResRel ativeTi ne
{

i ntu8 val ue[8];
} Hi ghResRel ati veTi ne;

t ypedef struct Absol uteTi meAdj ust
{

i ntu8 val ue[6] ;
} Absol ut eTi neAdj ust;

t ypedef struct Absol uteTi ne
{

ntu8 century;

ntu8 year;

nt u8 nont h;

ntu8 day;

nt u8 hour;

ntu8 m nut e;

nt u8 second;

ntu8 sec_fractions;
} Absol ut eTi ne;

typedef intul6 Operational State,;
#define OsS_DI SABLED 0
#define OS_ENABLED 1

T P PP © I1SO 2010 — All rights reserved
164 © IEEE 2010 — All rights reserved

#def i

ne

OS_NOT_AVAI LABLE

typedef struct octet _string

intul6 | ength;

i ntu8 val ue[1];

} octet _string;

t ypedef struct Systemivbdel

{

octet _string manufacturer;
octet _string nodel nunber;
} Syst emvbdel ;

t ypedef struct ProdSpecEntry

{

i ntul6é spec_type;

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne

UNSPECI FI ED
SERI AL_NUMVBER
PART NUMBER

HW REVI SI ON

SW REVI S| ON

FW REVI SI ON
PROTOCOL_REVI SI ON
PROD_SPEC_GVDN

PrivateG d conponent _id;
octet _string prod_spec;
} ProdSpecEntry;

t ypedef struct ProductionSpec

intul6é count;
intulé | ength;

Pr odSpecEntry val ue[1];

} Producti onSpec;

t ypedef

#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne

i ntulé Power St at us;
ON_MAI NS
ON_BATTERY
CHARGA NG_FULL
CHARG NG _TRI CKLE
CHARG NG_OFF

typedef struct Bat Measure

FLOAT_Type val ue;
O D Type unit;
} Bat Measur e€;

t ypedef

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne

i ntulé Measur enent St at us;
MS_I NVALI D
M5_QUESTI ONABLE
MS_NOT_AVAI LABLE
MS_CALI BRATI ON_ONGO NG
MS_TEST_ DATA
MS_DEMO _DATA
MS_VALI DATED DATA

© 1SO 2010 — All rights reserved

/* first element of the array */

~No oA~ WNEO

/* first element of the array */

0x8000
0x4000
0x0080
0x0040
0x0020

0x8000
0x4000
0x2000
0x1000
0x0800
0x0400
0x0080

ISO/IEEE 11073-20601:2010(E)

165

ISO/IEEE 11073-20601:2010(E)

166

#defi ne M5_EARLY_| NDI CATI ON
#defi ne M5S_NMSMTI_ONGO NG

typedef struct NuCbsVal ue

O D Type netric_id
Measur ement St at us st at e;
O D Type unit_code
FLOAT_Type val ue;

} NuGbsVal ue;

typedef struct NuCbsVal ueCmp
{

intul6é count;

i ntul6 | ength;

NuQobsVal ue val ue[1];
} NuCObsVal ueCnp;

t ypedef struct Sanpl eType
i ntu8 sanpl e_si ze;

i ntu8 significant_bits;
} Sanpl eType;

#defi ne SAMPLE_TYPE_SI GNI FI CANT_BI TS_SI GNED_SAMPLES 255

typedef intul6 SaFl ags;

#defi ne SMOOTH_CURVE
#defi ne DELAYED_CURVE
#defi ne STATI C_SCALE
#defi ne SA_EXT_VAL_RANGE

typedef struct SaSpec
{

intul6é array_si ze;
Sanpl eType sanpl e_type;
SaFl ags fl ags;

} SaSpec;

typedef struct Scal eRangeSpec8

{
FLOAT _Type | ower absol ut e_val ue;
FLOAT _Type upper _absol ut e_val ue;
i ntu8 | ower _scal ed_val ue;
i ntu8 upper_scal ed_val ue;

} Scal eRangeSpecs8;

t ypedef struct Scal eRangeSpecl6
FLOAT_Type | ower _absol ut e_val ue;
FLOAT_Type upper _absol ut e_val ue;
i ntul6é | ower_scal ed val ue;

i ntulé upper_scal ed val ue;
} Scal eRangeSpec1l6;
t ypedef struct Scal eRangeSpec32

FLOAT Type | ower absol ut e_val ue;

0x0040
0x0020

0x8000
0x4000
0x2000
0x1000

/[* first element of the array */

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

FLOAT Type upper _absol ut e_val ue;
i ntu32 | ower_scal ed_val ue;
i ntu32 upper_scal ed_val ue;

} Scal eRangeSpec32;

t ypedef struct Enunval
{
i ntulé choice;
i ntul6 | ength,;
#def i ne OBJ_| D_CHOSEN
#def i ne TEXT_STRI NG_CHOSEN
#def i ne Bl T_STR_CHOSEN
uni on
{
O D Type enum obj _id;
octet _string enumtext_string;
intu32 enumbit_str;
P
} Enunval ;

typedef struct EnumObsVal ue
O D Type netric_id;
Measur enent St at us state;
Enunval val ue;

} EnumObsVal ue;

typedef struct AttrVal MapEntry

O D Type attribute_id;
intulé attribute_len;
} AttrVal MapEntry;

typedef struct AttrVal Map
{

i ntul6é count;

i ntul6 | ength;

AttrVal MapEntry val ue[1] ;
} AttrVal Map;

t ypedef struct
HANDLE obj _handl e;

AttrVal Map attr_val _map;
} Handl eAttrVal MapEntry;

typedef intul6 Confirmvbde;
#defi ne UNCONFI RVED
#defi ne CONFI RVED

t ypedef struct
{

i ntul6é count;

i ntul6 | ength,;

Handl eAtt r Val MapEntry val ue[1];
} Handl eAttr Val Map;

Handl eAt t r Val Map

© 1SO 2010 — All rights reserved

Handl eAtt r Val MapEnt ry

ISO/IEEE 11073-20601:2010(E)

0x0001
0x0002
0x0010

/1 BITS 32

/* first element of the array */

0x0000
0x0001

/* first elenment of the array */

167

ISO/IEEE 11073-20601:2010(E)

168

t ypedef

#def
#def
#def
#def
#def
#def
#def
#def

ne
ne
ne
ne
ne
ne
ne
ne

i ntulé StoSanpl eAl g;

ST_ALG _NOS

ST_ALG_MOVI NG_AVERAGE
ST_ALG_RECURSI VE_
ST_ALG M N_PI CK
ST_ALG_MAX_PI CK
ST_ALG_MEDI AN
ST_ALG_TRENDED
ST_ALG_NO_DOANSAMPLI NG

typedef struct SetTi nel nvoke

{

Absol ut eTi ne date_tine;
FLOAT_Type accuracy;

} Set Ti mel nvoke;

typedef struct Segmnl dLi st

intul6é count;

i ntul6 | ength;

I nst Nunber val ue[1];
} Segmi dLi st;

t ypedef struct AbsTi mneRange

{

Absol ut eTi me
Absol ut eTi me
} AbsTi neRange;

fromtine;
to tinme;

typedef struct Segnentlnfo

| nst Nunber
AttributeLi st
} Segment | nf o;

seg_i nst_no;
seg_i nfo;

t ypedef struct Segnent| nfoli st

{

i ntulé count;
i ntul6 | ength;
Segnent I nfo val ue[1] ;

} Segmnent | nf olLi st ;

typedef struct SegnSel ection

{

i ntulé choice;
i ntul6 | ength;

#def i ne
#def i ne
#def i ne

uni on

{

ALL_SEGVENTS_CHOSEN
SEGM | D_LI ST_CHOSEN
ABS_TI ME_RANGE_CHOSEN

intulé all_segnents;
Segm dLi st segm.id_list;
AbsTi meRange abs_ti ne_range;

}ou

} Segntel ection

0x0000
0x0001
0x0002
0x0003
0x0004
0x0005
0x0200
0x0400

0x0001
0x0002
0x0003

/* first element of the array */

/* first element of the array */

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

typedef intul6 PMstoreCapab;

#defi ne PMSC_VAR_NO OF_SEGM 0x8000

#def i ne PMSC_EPI _SEG ENTRI ES 0x0800

#def i ne PMSC_PERI _SEG ENTRI ES 0x0400

#defi ne PMSC_ABS_TI ME_SELECT 0x0200

#defi ne PMSC_CLEAR_SEGM BY_LI ST_SUP 0x0100

#defi ne PMSC_CLEAR_SEGM BY_TI ME_SUP 0x0080

#def i ne PMSC_CLEAR_SEGM REMOVE 0x0040

#def i ne PMSC_MULTI _PERSON 0x0008
typedef intul6 SegnEntryHeader;

#defi ne SEG _ELEM HDR ABSOLUTE_TI ME 0x8000
#def i ne SEG ELEM HDR RELATI VE_TI ME 0x4000
#def i ne SEG ELEM HDR HI RES_RELATI VE_TI ME 0x2000

typedef struct SegnEntryEl em

O D Type class_id;
TYPE nmetric_type;
HANDLE handl e;

AttrVal Map attr_val _nmap;
} SegnEntryEl em

typedef struct SegnEntryEl enli st
{

i ntul6é count;

i ntul6 | ength,;

SegnEnt r yEl em val ue[1] ; /* first element of the array */
} SegnEntryEl enli st;

t ypedef struct PnBSegnent EntryMap

{
SegnEnt r yHeader segm entry_header;

SegnEnt r yEl enLi st segmentry_elemlist;
} PnBegnent Ent r yMap;

typedef struct SegnEl enStaticAttrEntry

{
A D Type class_id;
TYPE netric_type;
Attributelist attribute |ist;

} SegnEl enfStati cAttrEntry;
t ypedef struct PnSegnEl enfStati cAttrLi st
intul6é count;
i ntul6 | ength;
SegnEl enStati cAttrEntry value[l]; /* first elenent of the array */
} PnfegnEl enfSt ati cAttrList;
typedef struct Tri gSegnDat aXfer Req

I nst Nunber seg_i nst_no;
} TrigSegnDat aXf er Req;

typedef intul6 TrigSegnXferRsp;

© 1SO 2010 — All rights reserved
169

ISO/IEEE 11073-20601:2010(E)

#def i ne TSXR_SUCCESSFUL 0
#defi ne TSXR_FAI L_NO SUCH _SEGVENT 1
#define TSXR_FAIL_SEGM TRY_LATER 2
#defi ne TSXR_FAI L_SEGM EMPTY 3
#defi ne TSXR_FAI L_OTHER 512

typedef struct TrigSegnDat aXferRsp

I nst Nunber seg_i nst_no;

Tri gSegmXf er Rsp trig_segmxfer_rsp;
} TrigSegnDat aXf er Rsp;

typedef intul6 SegnEvt St atus;

#def i ne SEVTSTA FI RST_ENTRY 0x8000
#def i ne SEVTSTA_LAST_ENTRY 0x4000
#def i ne SEVTSTA_AGENT ABORT 0x0800
#def i ne SEVTSTA_MANAGER CONFI RM 0x0080
#def i ne SEVTSTA_MANAGER ABORT 0x0008

t ypedef struct SegnDat aEvent Descr

I nst Nunber segm i nst ance;

i ntu32 segm evt _entry_i ndex;
i ntu32 segm evt_entry_count;
SegnEvt St at us segm evt _stat us;

} SegnDat aEvent Descr ;

t ypedef struct Segment Dat aEvent
{
SegnDat aEvent Descr segm dat a_event _descr;
octet _string segm dat a_event _entri es;
} Segnent Dat aEvent ;

t ypedef struct Segnent Dat aResul t
{

SegnDat aEvent Descr segm dat a_event _descr;
} Segnent Dat aResul t ;

typedef intul6 Segnttat Type;

#defi ne SEGM STAT_TYPE MNIMUM 1
#def i ne SEGM STAT_TYPE _MAXI MUM 2
#def i ne SEGM STAT_TYPE_AVERAGE 3

typedef struct SegnmentStatisticEntry
{
Segntt at Type segm stat _type;
octet _string segm stat_entry;
} SegnentStatisticEntry;

typedef struct SegmentStatistics

intul6é count;

i ntul6 | ength;

Segnent St ati sticEntry val ue[1]; /* first element of the array */
} Segnent Statistics;

typedef struct (bservati onScan

I © 1SO 2010 — All rights reserved
170 © IEEE 2010 — All rights reserved

{
HANDLE obj _handl e;

AttributeList attributes;
} OoservationScan;
typedef O D Type Ti neProtocol ld;

typedef intu32 Associ ationVersion;
#def i ne ASSCC_VERSI ON1

typedef intu32 Protocol Version;

#defi ne PROTOCOL_VERSI ON1
t ypedef intul6é Encodi ngRul es;
#def i ne MDER 0x8000
#defi ne XER 0x4000
#defi ne PER 0x2000
typedef struct UUI D I dent

i ntu8 val ue[16];
} UUID Ident;

typedef intul6 DataProtold;
#defi ne DATA _PROTO | D 20601
#defi ne DATA PROTO | D_EXTERNAL

t ypedef struct DataProto

{
Dat aProtold data_proto_id;
Any data_proto_info;

} Dat aProto;

t ypedef struct DataProtolLi st

{

i ntul6é count;

i ntul6 | ength;

Dat aProt o val ue[1] ;
} DataProtoli st;

t ypedef struct AARQ apdu
{

Associ ati onVersi on assoc_ver si on;
Dat aProt oLi st data_proto_list;

} AARQ apdu;

typedef intul6 Associate result;

#def i ne ACCEPTED

#def i ne REJECTED PERMANENT

#def i ne REJECTED TRANSI ENT

#def i ne ACCEPTED_UNKNOWN_CONFI G

#def i ne REJECTED NO COVMON_PROTOCOL

#def i ne REJECTED NO COVMON PARAMETER

#def i ne REJECTED UNKNOMN

#def i ne REJECTED UNAUTHORI ZED

#def i ne REJECTED UNSUPPORTED_ ASSOC VERSI ON

© 1SO 2010 - All rights reserved

ISO/IEEE 11073-20601:2010(E)

0x80000000

0x80000000

20601
65535

/* first element of the array */

O~NOO U WNEO

171

ISO/IEEE 11073-20601:2010(E)

172

t ypedef struct AARE apdu
{

Associate result result;
Dat aProt o sel ect ed_dat a_pr ot o;
} AARE apdu;

typedef intul6 Rel ease_request _reason;
#defi ne RELEASE_REQUEST_REASON_NORMAL

t ypedef struct RLRQ apdu
{

Rel ease_request _reason reason;
} RLRQ apdu;

typedef intul6 Rel ease_response_reason;
#defi ne RELEASE_RESPONSE_REASON_NORMAL

typedef struct RLRE apdu

Rel ease_response_reason reason;

} RLRE_apdu;
typedef intul6 Abort_reason;
#def i ne ABORT_REASON_UNDEFI NED
#define ABORT_REASON_BUFFER_OVERFLOW
#defi ne ABORT_REASON_RESPONSE_TI MEQOUT
#defi ne ABORT_REASON_CONFI GURATI ON_TI MEQUT
typedef struct ABRT_apdu
{
Abort _reason reason;
} ABRT_apdu;

typedef octet _string PRST _apdu;
t ypedef intul6 | nvokel DType;

t ypedef struct Event Report Argunent Si npl e

{
HANDLE obj handl e;

Rel ati veTi ne event tine;
O D _Type event _type;
Any event _i nf o;

} Event Report Argurent Si npl e;

t ypedef struct Get Argunent Si npl e
HANDLE obj handl e;
AttributeldList attribute_id |ist;
} Get Argunent Si mpl e;

typedef intul6é ModifyQOperator;

#def i ne REPLACE 0
#def i ne ADD VALUES 1
#def i ne REMOVE_VALUES 2
#def i ne SET_TO DEFAULT 3

WNEFLO

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

typedef struct AttributeMdEntry

Modi f yQper at or nodi fy_operat or
AVA Type attribute;
} AttributeMdEntry;

typedef struct ModificationLi st
{

i ntul6é count;

i ntul6 | ength;

AttributeMdEntry val ue[1]; [* first element of the array */
} ModificationList;

t ypedef struct Set Argunent Sinple

HANDLE obj handl e;
Modi ficationList nodification_list;
} Set Argunent Si mpl e;

t ypedef struct ActionArgunentSinple

HANDLE obj _handl e;

O D Type action_type

Any action_info_args;
} ActionArgunent Si mpl e;

typedef struct Event ReportResultSinmple

HANDLE obj _handl e;
Rel ati veTi me currentTi ne;
O D Type event _type
Any event reply_info
} Event ReportResul t Si npl e;

typedef struct CGetResultSinple
{
HANDLE obj _handl e;
AttributelList attribute |ist;
} Get Resul t Si mpl e;

typedef struct TypeVer

A D _Type type;
i ntul6é version;
} TypeVer;

t ypedef struct TypeVerlLi st
{

i ntul6é count;

i ntul6 | ength,;

TypeVer val ue[1]; /* first elenment of the array */
} TypeVerlLi st;

typedef struct SetResultSinmple

HANDLE obj _handl e;
AttributelList attribute |ist;

© 1SO 2010 — All rights reserved
173

ISO/IEEE 11073-20601:2010(E)

} Set Resul t Si mpl e;

typedef struct ActionResultSinmple

HANDLE obj _handl e;

O D Type action_type;

Any action_info_args;
} ActionResultSinmle;

typedef intul6é ERROR,
#defi ne NO_SUCH OBJECT_| NSTANCE 1
#defi ne ACCESS_DENI ED 2
#defi ne NO_SUCH _ACTI ON 9
#def i ne | NVALI D_OBJECT | NSTANCE 17
#defi ne PROTOCOL_VI OLATI ON 23
#defi ne NOT_ALLONED BY_OBJECT 24
#defi ne ACTI ON_TI MED_OUT 25
#defi ne ACTI ON_ABORTED 26
t ypedef struct ErrorResult
{

ERROR error_val ue;

Any paraneter;
} ErrorResult;
typedef intul6 Rorj Probl em
#defi ne UNRECOGNI ZED_APDU 0
#defi ne BADLY_STRUCTURED_APDU 2
#defi ne UNRECOGNI ZED_OPERATI ON 101
#defi ne RESOURCE_LI M TATI ON 103
#defi ne UNEXPECTED_ERROR 303

t ypedef

Ror j Probl em probl em
} RejectResult;

t ypedef struct DATA apdu

{

struct RejectResult

I nvokel DType i nvoke_i d;

struct

{

ntul6 choi ce;
ntul6 | ength;

#defi ne RO V_CM P_EVENT_REPORT_CHOSEN

#def i ne RA V_CM P_CONFI RVED_EVENT _REPCORT_CHOSEN
#def i ne RA V_CM P_CGET_CHOSEN

#defi ne RA V_CM P_SET_CHOSEN

#defi ne RO V_CM P_CONFI RVED_SET_CHOSEN

#defi ne RO V_CM P_ACTI ON_CHOSEN

#def i ne RA V_CM P_CONFI RVED_ACTI ON_CHOSEN

#defi ne RORS_CM P_CONFI RVED_EVENT_REPORT_CHOSEN
#defi ne RORS_CM P_GET_CHOSEN

#defi ne RORS_CM P_CONFI RVED_SET_CHOSEN

#defi ne RORS_CM P_CONFI RVED_ACTI ON_CHOSEN

#defi ne ROER_CHOSEN

#def i ne RORJ_CHOSEN

174

0x0100
0x0101
0x0103
0x0104
0x0105
0x0106
0x0107
0x0201
0x0203
0x0205
0x0207
0x0300
0x0400

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

uni on

{

ISO/IEEE 11073-20601:2010(E)

Event Report Argunent Si npl e roi v_cmi pEvent Report;
Event Report Argunent Si npl e roi v_cm pConfirnmedEvent Report;

Get Argunent Si npl e roiv_cmi pCet;

Set Argunent Si npl e roiv_cm pSet;

Set Argunent Si npl e roiv_cm pConfirnedSet;
Act i onArgunent Si nmpl e roiv_cm pAction;

Act i onArgurent Si npl e roi v_cm pConfirmedActi on;
Event Report Resul t Si npl e rors_cmi pConfirnedEvent Report;

CetResultSinmple rors_cm pCet;

Set Resul t Si mpl e rors_cmi pConfirnmedSet;
ActionResultSinmple rors_cm pConfirnmedActi on;
ErrorResult roer;

Rej ect Result rorj;

}ou
} choi ce;
} DATA apdu;
t ypedef struct APDU
{
i ntul6é choice;
i ntul6 | ength;
#defi ne AARQ CHOSEN 0xE200
#defi ne AARE CHOSEN O0xE300
#defi ne RLRQ_CHOSEN 0xE400
#defi ne RLRE_CHOSEN 0xE500
#def i ne ABRT_CHOSEN 0xE600
#defi ne PRST_CHOSEN OxE700
uni on
{
AARQ apdu aarq;
AARE apdu aare;
RLRQ apdu rlraq;
RLRE _apdu rlre;
ABRT _apdu abrt;
PRST _apdu prst;
}ous
} APDUY,
t ypedef intu32 Nomencl at ureVersion;
#def i ne NOM_VERSI ON1 0x80000000
typedef intu32 Functional Units;
#defi ne FUN_UNI TS_UNI DI RECTI ONAL 0x80000000
#def i ne FUN_UNI TS HAVETESTCAP 0x40000000
#def i ne FUN_UNI TS_CREATETESTASSCC 0x20000000
typedef intu32 Systenilype;
#defi ne SYS_TYPE_NMANAGER 0x80000000
#defi ne SYS_TYPE_AGENT 0x00800000
typedef intul6é Configld;
#defi ne MANAGER_CONFI G_RESPONSE 0x0000
#defi ne STANDARD _CONFI G_START 0x0001
#defi ne STANDARD_CONFI G_END Ox3FFF
#defi ne EXTENDED_CONFI G_START 0x4000

© 1SO 2010 — All rights reserved

175

ISO/IEEE 11073-20601:2010(E)

176

#defi ne EXTENDED_CONFI G_END Ox7FFF
#defi ne RESERVED_START 0x8000
#defi ne RESERVED_END OxFFFF
typedef struct Dat aReqMbdeCapab

Dat aRegMbdeFl ags data_req_node_fl ags;

intu8 data_reqg_init_agent_count;

intu8 data_req_init_nanager_count;
} Dat aReqMbdeCapab;
typedef intul6 DataRegMdeFl ags;
#defi ne DATA_REQ SUPP_STOP 0x8000
#def i ne DATA REQ SUPP_SCOPE_ALL 0x0800
#def i ne DATA REQ SUPP_SCOPE_CLASS 0x0400
#defi ne DATA REQ SUPP_SCOPE_HANDLE 0x0200
#defi ne DATA REQ SUPP_MODE_SI NGLE_RSP 0x0080
#defi ne DATA _REQ SUPP_MODE_TI ME_PERI OD 0x0040
#def i ne DATA REQ SUPP_MODE TIME NOLIMT 0x0020
#def i ne DATA REQ SUPP_PERSON | D 0x0010
#defi ne DATA REQ SUPP_I NI T_AGENT 0x0001
t ypedef struct PhdAssoci ationl nformation

Pr ot ocol Ver si on protocol Versi on;

Encodi ngRul es encodi ngRul es;

Nonencl at ur eVer si on nomencl at ur eVer si on;

Functional Units functional Units;

Syst enifype systenilype,;

octet _string system.d;

intulé dev_config_ id;

Dat aRegMbdeCapab dat a_req_node_capab;

AttributeLi st optionList;
} PhdAssoci ati onl nformati on;
t ypedef struct Manuf SpecAssoci ati onl nf ormation

UUI D I dent data_proto_id_ext;

Any data_proto_info_ext;
} Manuf SpecAssoci ati onl nf ormati on;
typedef intul6 MiIsTi mneCapSt at e;
#def i ne MDS_TI ME_CAPAB_REAL_TI ME_CLOCK 0x8000
#defi ne MDS_TI ME_CAPAB_SET_CLOCK 0x4000
#defi ne MDS_TI ME_CAPAB_RELATI VE_TI ME 0x2000
#def i ne MDS_TI ME_CAPAB HI GH RES RELATI VE_TI ME 0x1000
#def i ne MDS_TI ME_CAPAB_SYNC_ABS_TI ME 0x0800
#def i ne MDS_TI ME_CAPAB _SYNC REL_TI ME 0x0400
#defi ne MDS_TI ME_CAPAB_SYNC HI _RES RELATI VE_TI ME 0x0200
#defi ne MDS_TI ME_STATE_ABS_TI ME_SYNCED 0x0080
#def i ne MDS_TI ME_STATE REL_TI ME_SYNCED 0x0040
#defi ne MDS_TI ME_STATE_HI _RES RELATI VE_TI ME_SYNCED 0x0020
#defi ne MDS_TI ME_MGR_SET_TI ME 0x0010

typedef struct MsTi mel nfo

MisTi neCapState nds_tinme_cap_state;

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

Ti meProtocol Id ti ne_sync_protocol ;

Rel ativeTine tine_sync_accuracy;

intul6é time_resolution_abs tine;

intul6e tine_resolution_rel tine;

intu32 time_resolution_high res_tineg;
} MisTi nmel nf o;

typedef octet_string EnunPrintabl eString;

typedef intul6 Personld;

#defi ne UNKNOWN_PERSON | D OxFFFF
typedef intul6 MetricSpecSmall;

#def i ne MBS_AVAI L_| NTERM TTENT 0x8000
#def i ne MBS_AVAI L_STORED DATA 0x4000
#defi ne MSS_UPD_APERI ODI C 0x2000
#defi ne MSS_NMSMT_APERI ODI C 0x1000
#defi ne MSS_MSMI_PHYS EV_|I D 0x0800
#def i ne MSS_MSMI BTB_METRI C 0x0400
#defi ne MBS _ACC MANAGER | NI TI ATED 0x0080
#defi ne MSS_ACC_AGENT_I NI TI ATED 0x0040
#defi ne MSS_CAT_MANUAL 0x0008
#defi ne MSS_CAT_SETTI NG 0x0004
#defi ne MSS_CAT_CALCULATI ON 0x0002

typedef struct MetricStructureSmall

intu8 ms-struct;
#define M5_STRUCT_SI MPLE O
#defi ne M5_STRUCT_COVPOUND 1
#defi ne M5_STRUCT_RESERVED 2
#defi ne M5_STRUCT_COVPOUND FI X 3
i ntu8 nB-conp-no;
} MetricStructureSnall;

typedef struct MetricldLi st
{

i ntulé count;

intul6 | ength;

O D Type val ue[1]; /* first element of the array */
} MetricldList;

typedef struct Suppl emental TypelLi st
{

i ntulé count;

i ntul6 | ength;

TYPE val ue[1] ; /* first elenent of the array */
} Suppl erment al TypelLi st ;

typedef struct ObservationScanLi st
{

intul6é count;

i ntul6 | ength;

nservati onScan val ue[1]; /[* first element of the array */
} QoservationScanlLi st;

© 1SO 2010 — All rights reserved
177

ISO/IEEE 11073-20601:2010(E)

178

t ypedef struct ScanReport Per Var
{

i ntulé person_id;
onservati onScanLi st obs_scan_var;
} ScanReport Per Var;

t ypedef struct ScanReport Per Var Li st

i ntulé count;

i ntul6 | ength;

ScanReport Per Var val ue[1] ; /[* first element of the array */
} ScanReport Per VarLi st ;

typedef intul6 DataReql d;

#def i ne DATA REQ | D_MANAGER | NI TIATED M N 0x0000
#def i ne DATA_REQ | D_MANAGER | NI TI ATED_MAX OXEFFF
#def i ne DATA_REQ | D_AGENT_I NI TI ATED 0xF000

t ypedef struct ScanReport | nfoMPVar

Dat aReql d data_req_id

i ntulé scan_report_no;

ScanReport Per Var Li st scan_per_var;
} ScanReport | nf oMPVar ;

typedef struct Observati onScanFi xed

HANDLE obj _handl e;
octet _string obs val data;
} Qoservati onScanFi xed,;

typedef struct Observati onScanFi xedLi st
{

intul6é count;

i ntul6 | ength;

ohservat i onScanFi xed val ue[1]; /* first element of the array */
} oservati onScanFi xedLi st ;

t ypedef struct ScanReport PerFi xed
{
intul6é person_id;
Observat i onScanFi xedLi st obs_scan_fi x;
} ScanReport Per Fi xed,;

typedef struct ScanReport PerFi xedLi st

intul6é count;

i ntul6 | ength;

ScanReport Per Fi xed val ue[1] ; /* first element of the array */
} ScanReport Per Fi xedLi st ;

t ypedef struct ScanReport | nf oMPFi xed

Dat aReql d data_req_id;

i ntulé scan_report_no;

ScanReport Per Fi xedLi st scan_per fi xed;
} ScanReport | nf oMPFi xed;

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

t ypedef struct ScanReport| nfoVar

Dat aReql d data req_id;

i ntulé scan_report_no;

ohservati onScanLi st obs_scan_var;
} ScanReport | nfoVar;

typedef struct ScanReport! nfoFi xed
{

Dat aReql d data_req_id;

i ntul6 scan_report_no;

(bservat i onScanFi xedLi st obs_scan_fi xed;
} ScanReport | nf oFi xed;

typedef octet_string Cbservati onScanG ouped,;

typedef struct ScanReport| nfoG oupedLi st
{

intul6é count;

i ntul6 | ength;

nservati onScanG ouped value[1]; [/* first elenent of the array */
} ScanReport | nf oG oupedLi st ;

t ypedef struct ScanReport| nfoG ouped

intulé data_req_id;

i ntulé scan_report_no;

ScanReport | nf oG oupedLi st obs_scan_gr ouped;
} ScanReport | nf oG ouped;

typedef struct ScanReport Per G ouped

Personl d person_id;
bservati onScanG ouped obs_scan_grouped;
} ScanReport Per G ouped,;

t ypedef struct ScanReport Per GroupedLi st
{

i ntulé count;

intul6 | ength;

ScanReport Per Grouped val ue[1]; /* first element of the array */
} ScanReport Per GroupedLi st ;

typedef struct ScanReport | nf oMPG ouped

intul6é data_req_id;

intulé scan_report_no;

ScanReport Per Gr oupedLi st scan_per _grouped,;
} ScanReport | nf oMPgr ouped;

t ypedef struct ConfigQObject

O D Type obj cl ass;

HANDLE obj _handl e;

AttributelList attributes;
} ConfigObject;

© 1SO 2010 — All rights reserved
179

ISO/IEEE 11073-20601:2010(E)

t ypedef
{

struct Confi gQObj ectLi st

intul6é count;
intulé | ength;

Confi gObj ect val ue[1];

} ConfigQObjectlList;

t ypedef
{

struct Confi gReport

Configld config_report_id;
ConfigQCbjectList config obj I|ist;
} Confi gReport;

t ypedef
#def i ne
#def i ne
#def i ne

t ypedef
{

i ntulé ConfigResult;
ACCEPTED_CONFI G
UNSUPPORTED_CONFI G
STANDARD_CONFI G_UNKNOWN

struct ConfigReportRsp

Configld config_report_id;
ConfigResult config_result;
} ConfigReportRsp;

t ypedef
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

t ypedef
{

i ntulé Dat aRegMbde;
DATA_REQ START_STOP
DATA_REQ CONTI NUATI ON
DATA_REQ SCOPE_ALL
DATA_REQ SCOPE_TYPE
DATA_REQ SCOPE_HANDLE
DATA _REQ MODE_SI NGLE_RSP
DATA REQ MCODE_TI ME_PERI OD
DATA_ REQ MODE_ TIME_NO LIMT
DATA_REQ MODE_DATA REQ PERSON | D

struct HANDLELI st

i ntulé count;
i ntul6 | ength;

HANDLE val ue[1] ;

} HANDLELI st ;

t ypedef
{

struct Dat aRequest

Dat aReql d data req_id
Dat aRegMbde dat a_req_node;
Rel ativeTine data req_ti ne;
i ntulé DataRequest_data_req_person_id;
O D Type data_req_cl ass;
HANDLELi st data req_obj _handl e |ist;
} Dat aRequest ;

t ypedef
#def i ne
#def i ne
#def i ne

180

i ntulé Dat aRegResult;
DATA _REQ RESULT_NO ERROR
DATA_REQ RESULT_UNSPECI FI C_ERRCR
DATA_REQ RESULT_NO_STOP_SUPPORT

/* first elenment of the array */

0x0000
0x0001
0x0002

0x8000
0x4000
0x0800
0x0400
0x0200
0x0080
0x0040
0x0020
0x0008

/* first element of the array */

N EF~ O

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def
#def

t ypedef struct

{

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ISO/IEEE 11073-20601:2010(E)

DATA_REQ RESULT_NO SCOPE_ALL_SUPPORT
DATA_REQ RESULT_NO_SCOPE_CLASS_SUPPORT
DATA_REQ RESULT_NO_SCOPE_HANDLE_SUPPORT
DATA_REQ RESULT_NO_MODE_SI NGLE_RSP_SUPPORT
DATA_REQ RESULT_NO_MODE_TI ME_PERI OD_SUPPORT
DATA_REQ RESULT_NO_MODE_TI ME_NO LI M T_SUPPORT
DATA_REQ RESULT_NO_PERSON_| D_SUPPORT
DATA_REQ RESULT_UNKNOWN_PERSON | D

DATA_REQ RESULT_UNKNOAN_CLASS

DATA_REQ RESULT_UNKNOAN_HANDLE

DATA_REQ RESULT_UNSUPP_SCOPE

DATA_REQ RESULT_UNSUPP_MODE

DATA_REQ RESULT_I NI T_MANAGER OVERFLOW
DATA_REQ RESULT_CONTI NUATI ON_NOT_SUPPORTED
DATA_REQ RESULT | NVALI D _REQ I D

Dat aResponse

Rel ativeTine rel tinme_stanp;
Dat aRegResult data req result;
O D Type event_type

Any event _info;

} Dat aResponse;

typedef FLOAT Type Si npl eNuGbsVal ue;

typedef struct SinpleNuGosVal ueCnp

intul6é count;
i ntul6 | ength;
Si mpl eNuObsVal ue val ue[1] ;

} Sinpl eNuGbsVal ueCnp;

typedef SFLOAT Type Basi cNuGCbsVal ue

t ypedef struct

{

i ntulé count;
intul6 | ength;
Basi cNuGbsVal ue val ue[1] ;

Basi cNuCbsVal ueCnp

} Basi cNuCbsVal ueCnp;

#endi f /*

© 1SO 2010 — All rights reserved

PHD_TYPES */

/* first element of the array */

[* first element of the array */

181

ISO/IEEE 11073-20601:2010(E)

Annex H
(informative)

Examples

H.1 General

This annex shows binary examples of messages exchanged between agent and manager.

H.2 Weighing scale

H.2.1 Association

H.2.1.1 Association request

The agent sends the following message to the manager. This example assumes the agent is an extended

weighing scale.

OxE2 0x00 APDU CHOICE Type (AargApdu)

0x00 0x32 CHOICE.length =50

0x80 0x00 0x00 0x00 assoc-version

0x00 0x01 0x00 Ox2A data-proto-list.count = 1 | length = 42
0x50 0x79 data-proto-id = 20601

0x00 0x26 data-proto-info length = 38

0x80 0x00 0x00 0x00 protocolVersion

0xA0 0x00 encoding rules= MDER or PER

0x80 0x00 0x00 0x00 nomenclatureVersion

0x00 0x00 0x00 0x00 functionalUnits— e.g., flag unsolicited event reporting capability
0x00 0x80 0x00 0x00 systemType = sys-type-agent

0x00 0x08 system-id length = 8 and value

0x88 0x77 0x66 0x55 0x44 0x33 0x22 0x11

0x40 0x00 dev-config-id

0x00 0x81 0x01 0x01 data-reg-mode-capab

0x00 0x00 0x00 0x00 optionList.count = 0 | optionList.length=0

H.2.1.2 Association response

The manager responds to the agent that it can associate but needs the agent’s configuration.

OxE3 0x00 APDU CHOICE Type (AareApdu)
0x00 0x2C CHOICE.length = 44

0x00 0x03 result = accepted-unknown-config
0x50 0x79 data-proto-id = 20601

0x00 0x26 data-proto-info length = 38

0x80 0x00 0x00 0x00 protocolVersion

0x80 0x00 encoding rules= MDER

T e © I1SO 2010 — All rights reserved
182 © IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

0x80 0x00 0x00 0x00 nomenclatureVersion

0x00 0x00 0x00 0x00 functional Units

0x80 0x00 0x00 0x00 systemType = sys-type-manager

0x00 0x08 system-id length = 8 and value

0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88

0x00 0x00 manager’ s response to config-id is always 0

0x00 0x00 0x00 0x00 manager’ s response to data-reg-mode-capab is always 0
0x00 0x00 0x00 0x00 optionList.count = O | optionList.length=0

H.2.2 Configuration information exchange

H.2.2.1 Remote operation invoke event report configuration

The agent reports its configuration to the manager.

OxE7 0x00 APDU CHOICE Type (PrstApdu)

0x00 0x70 CHOICE.length = 112

0x00 Ox6E OCTET STRING.length = 110

0x43 0x21 invoke-id = 0x4321 (start of DataApdu. MDER encoded.)
0x01 0x01 CHOICE(Remote Operation Invoke | Confirmed Event Report)
0x00 0x68 CHOICE.length = 104

0x00 0x00 obj-handle = 0 (MDS object)

0x00 0x00 0x00 0x00 event-time=0

0x0D 0Ox1C event-type= MDC_NOTI_CONFIG

0x00 Ox5E event-info.length = 94 (start of ConfigReport)

0x40 0x00 config-report-id

0x00 0x02 config-obj-list.count = 2 Measurement objects will be “announced”
0x00 0x58 config-obj-list.length = 88

0x00 0x06 obj-class= MDC_MOC_VMO_METRIC_NU

0x00 0x01 obj-handle=1 (=2 1% Measurement is body weight)
0x00 0x04 attributes.count =4

0x00 0x24 attributes.length = 36

0x09 Ox2F attribute-id = MDC_ATTR_ID_TYPE

0x00 0x04 attribute-value.length = 4

0x00 0x02 OxE1 0x40 MDC_PART_SCADA |[MDC_MASS BODY_ACTUAL
Ox0A 0x46 attribute-id = MDC_ATTR_METRIC_SPEC_SMALL
0x00 0x02 attribute-value.length = 2

0xDO 0x40 intermittent, stored data, msmt aperiodic, agent init, measured
0x09 0x96 attribute-id = MDC_ATTR_UNIT_CODE

0x00 0x02 attribute-value.length = 2

0x06 0xC3 MDC_DIM_KILO_G

0x0A 0x55 attribute-id = MDC_ATTR_ATTRIBUTE_VAL_MAP
0x00 0x0C attribute-value.length = 12

0x00 0x02 AttrValMap.count = 2

0x00 0x08 AttrvVaMap.length=8

Ox0A 0x56 0x00 0x04 MDC_ATTR_NU_VAL_OBS SIMP |vauelength=4
0x09 0x90 0x00 0x08 MDC _ATTR_TIME_STAMP_ABS |vauelength=8
0x00 0x06 obj-class= MDC_MOC_VMO_METRIC_NU

0x00 0x02 obj-handle=2 (2™ Measurement is body fat)

0x00 0x04 attributes.count = 4

0x00 0x24 attributes.length = 36

© 1SO 2010 — All rights reserved
183

ISO/IEEE 11073-20601:2010(E)

0x09 Ox2F attribute-id = MDC_ATTR_ID_TYPE

0x00 0x04 attribute-value.length = 4

0x00 0x02 OxE1 0x4C MDC_PART_SCADA |[MDC_BODY_FAT

Ox0A 0x46 attribute-id = MDC_ATTR_METRIC_SPEC _SMALL
0x00 0x02 attribute-value.length = 2

0xDO 0x42 intermittent, stored data, msmt aperiodic, agent init, cal culated
0x09 0x96 attribute-id = MDC_ATTR_UNIT_CODE

0x00 0x02 attribute-value.length = 2

0x02 0x20 MDC_DIM_PERCENT

Ox0A 0x55 attribute-id = MDC_ATTR_ATTRIBUTE_VAL_MAP
0x00 0x0C attribute-value.length = 12

0x00 0x02 AttrvValMap.count = 2

0x00 0x08 AttrVaMap.length = 8

Ox0A 0x56 0x00 0x04 MDC_ATTR_NU_VAL_OBS SIMP, 4

0x09 0x90 0x00 0x08 MDC_ATTR_TIME_STAMP_ABS, 8

H.2.2.2 Remote operation response event report configuration

The manager responds that it can utilize the agent’ s configuration.

OxE7 0x00 APDU CHOICE Type (PrstApdu)

0x00 0x16 CHOICE.length = 22

0x00 Ox14 OCTET STRING.length = 20

0x43 0x21 invoke-id = 0x4321 (start of DataApdu. MDER encoded.)
0x02 0x01 CHOICE (Remote Operation Response | Confirmed Event Report)
0x00 OxOE CHOICE.length = 14

0x00 0x00 obj-handle = 0 (MDS object)

0x00 0x00 0x00 0x00 currentTime =0

0x0D 0Ox1C event-type= MDC_NOTI_CONFIG

0x00 0x04 event-reply-info.length = 4

0x40 0x00 ConfigReportRsp.config-report-id = 0x4000

0x00 0x00 ConfigReportRsp.config-result = accepted-config

H.2.3 GET MDS attributes service

H.2.3.1 General

The GET MDS attributes isinvoked at any time when a Deviceisin associated state.

H.2.3.2 Get all MDS attributes request

The manager queries the agent for its MDS object attributes.

OxE7 0x00 APDU CHOICE Type (PrstApdu)

0x00 OxOE CHOICE.length = 14

0x00 0x0C OCTET STRING.length = 12

0x34 0x56 invoke-id = 0x3456 (start of DataApdu. MDER encoded.)
0x01 0x03 CHOICE (Remote Operation Invoke | Get)

0x00 0x06 CHOICE.length=6

0x00 0x00 handle = 0 (MDS object)

© I1SO 2010 — All rights reserved
184 © IEEE 2010 — Al rights reserved

0x00
0x00

0x00
0x00

ISO/IEEE 11073-20601:2010(E)

attribute-id-list.count = O (all attributes)
attribute-id-list.length =0

H.2.3.3 Get response with all MDS attributes

The agent responds to the manager with its attributes. This example assumes the agent supports
AbsoluteTime, but does not support RelativeTime. Further, some optional fields are communicated as

well.

OxE7
0x00
0x00
0x34

0x02
0x00
0x00
0x00
0x00
Ox0A
0x00
0x00
0x00
0x10
0x00
0x09
0x00
0x00
0x65
0x70
0x00
0x65
0x6C
0x09
0x00
0x00
0x0a
0x00
0x40
0x09
0x00
0x00
0x00
0x00
0x00
0x00
0x31
0x36
0x09
0x00
0x20
0x12

© 1SO 2010 — All rights reserved

0x00
Ox6E
0x6C
0x56

0x03
0x66
0x00
0x06
0x60
Ox5A
0x08
0x01
0x04
OxOF
0x01
0x28
Ox1A
Ox0A
0x43
0x61
0x0C
0x53
0x65
0x84
Ox0A
0x08
0x44
0x02
0x00
0x2D
0x12
0x01
OxO0E
0x01
0x00
0x08
0x32
0x37
0x87
0x08
0x07
0x05

0x54
Ox6F
Ox6E
0x54
0x63
0x41

0x88

0x44
0x34

0x02
0x00

0x68
0x6D
0x79
0x68
0x61
0x42

0x77

0x45
0x35

0x01
0x00

APDU CHOICE Type (PrstApdu)

CHOICE.length = 110

OCTET STRING.length = 108

invoke-id = 0x3456 (mirrored from request) (start of DataApdu. MDER
encoded.)

CHOICE (Remote Operation Response | Get)
CHOICE.length = 102

handle = 0 (MDS object)

attribute-list.count = 6

attribute-list.length = 96

attributeid = MDC_ATTR_SYS TYPE _SPEC LIST
attribute-value.length = 8

TypeVerList count =1

TypeVerList length=4

type= MDC_DEV_SPEC PROFILE_SCALE
version = version 1 of the speciaization
attribute-id = MDC_ATTR_ID_MODEL
attribute-value.length = 26

string length = 10 | “TheCompany”

string length = 12 | “TheScaleABC\0”

0x43 0x00

attribute-id= MDC_ATTR_SYS ID
attribute-value.length = 10

0x66 0x55 0x44 0x33 0x22 0x11 octet string length = 8 | EUI-64

attribute-id = MDC_ATTR_DEV_CONFIG_ID

attribute-value.length = 2

dev-config-id = 16384 (extended-config-start)

attribute-id = MDC_ATTR_ID_PROD_SPECN

attribute-value.length = 18
ProductionSpec.count = 1
ProductionSpec.length = 14
ProdSpecEntry.spec-type = 1 (serial-number)
ProdSpecEntry.component-id = 0

string length = 8 | prodSpecEntry.prod-spec = “DE124567"

attribute-id=MDC_ATTR_TIME_ABS
attribute-value.length = 8
Absolute-Time-Stamp = 2007-02-01T12:05:0000

185

ISO/IEEE 11073-20601:2010(E)

186

H.2.4 Data reporting

H.2.4.1 Agent-initiated measurement data transmission

The agent sends a spontaneous event report to the manager with measurement observations.

OxE7
0x00
0x00
0x43
0x01
0x00
0x00
0x00
0x0D
0x00
0xFO
0x00
0x00
0x00
0x00
0x00
OxFF
0x20
0x12
0x00
0x00
OxFF
0x20
0x12

0x00
Ox3A
0x38
0x21
0x01
0x32
0x00
0x00
0x1D
0x28
0x00
0x00
0x02
0x20
0x01
0oxo0C
0x00
0x07
0x10
0x02
0oxo0C
0x00
0x07
0x10

0x00 0x00

0x02 0x70
0x02 0x01
0x00 0x00

0x01 0x00
0x02 0x01
0x00 0x00

APDU CHOICE Type (PrstApdu)
CHOICE.length = 58
OCTET STRING.length = 56

invoke-id = 0x4321 (start of DataApdu. MDER encoded.)

CHOI CE(Remote Operation Invoke | Confirmed
CHOICE.length =50
obj-handle = 0 (MDS object)

event-time=0

Event Report)

event-type = MDC_NOTI_SCAN_REPORT_FIXED

event-info.length = 40
ScanReportlInfoFixed.data-reg-id = 0xFO00
ScanReportl nfolixed.scan-report-no = 0
ScanReportl nfoFixed.obs-scan-fixed.count = 2
ScanReportl nfolFixed.obs-scan-fixed.length = 32

ScanReportl nfoFixed.obs-scan-fixed.value[0] .obj-handle = 1
ScanReportl nfoFixed.obs-scan-fixed.valug 0]. obs-val-data.length = 12

Simple-Nu-Observed-Vaue = 62.4

Absolute-Time-Stamp = 2007-02-01T 12:10:0000

ScanReportl nfolixed.obs-scan-fixed.value] 1] .obj-handle = 2
ScanReportl nfoFixed.obs-scan-fixed.valueg[1]. obs-val-data.length = 12

Simple-Nu-Observed-Vaue = 25.6

Absolute-Time-Stamp = 2007-02-01T 12:10:0000

H.2.4.2 Response to agent-initiated measurement data transmission

The manager confirms receipt of the agent’s event report.

OxE7
0x00
0x00
0x43
0x02
0x00
0x00
0x00
0x0D
0x00

0x00
0x12
0x10
0x21
0x01
Ox0A
0x00
0x00
0x1D
0x00

0x00 0x00

APDU CHOICE Type (PrstApdu)
CHOICE.length = 18
OCTET STRING.length = 16

invoke-id = 0x4321 (start of DataApdu. MDER encoded.)
CHOICE(Remote Operation Response | Confirmed Event Report)

CHOICE.length =10
obj-handle = 0 (MDS object)
currentTime=0

event-type= MDC_NOTI_SCAN_REPORT_FIXED

event-reply-info.length =0

H.2.4.3 Remote operation invoke confirmed action data request single response mode

The manager requests an agent’s measurements in single response mode.

OxE7
0x00

0x00
Ox1E

APDU CHOICE Type (PrstApdu)
CHOICE.length =30

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

0x00 0Ox1C
0x76 0x54
0x01 0x07
0x00 0x16
0x00 0x00
0x0C 0x1B
0x00 0x10
0x01 0x00
0x84 0x80
0x00 0x00 0x00
0x00 0x00
0x00 0x06
0x00 0x00 0x00

0x00

0x00

ISO/IEEE 11073-20601:2010(E)

OCTET STRING.length =28

invoke-id = 0x7654 (start of DataApdu. MDER encoded.)
CHOICE(Remote Operation Invoke | Confirmed Action)
CHOICE.length = 22

obj-handle = 0 (MDS object)

action-type= MDC_ACT_DATA_REQUEST
action-info-args.length = 16

data-reg-id = 0x0100

data-reg-mode = Start | Scope Class | Mode Single Rsp
data-reg-time = not used in this mode

data-reg-person-id = not used in this mode
data-reg-class= MDC_MOC_VMO_METRIC_NU
data-reg-handle-list = not used in this mode (count = 0, length = Q)

H.2.4.4 Remote operation response confirmed action data request single response mode

The agent responds to the manager with its measurements.

OxE7 0x00
0x00 0x40
0x00 Ox3E
0x76 0x54
0x02 0x07
0x00 0x38

0x00 0x00
0x0C 0x1B
0x00 0x32

0x00 0x00 0x00
0x00 0x00
0x0D 0x1D
0x00 0x28
0x01 0x00
0x00 0x00
0x00 0x02
0x00 0x20
0x00 0x01
0x00 0x0C
OxFF 0x00 0x02
0x20 0x07 0x02
0x12 0x10 0x00
0x00 0x02
0x00 0x0C
OxFF 0x00 0x01
0x20 0x07 0x02
0x12 0x10 0x00

© 1SO 2010 — All rights reserved

0x00

0x70
0x01
0x00

0x00
0x01
0x00

APDU CHOICE Type (PrstApdu)

CHOICE.length = 64

OCTET STRING.length = 62

invoke-id = 0x7654 (start of DataApdu. MDER encoded.)
CHOICE (Remote Operation Response | Confirmed Action)
CHOICE.length = 56

ActionResultSimple

obj-handle = 0 (MDS object)

action-type= MDC_ACT_DATA_REQUEST
action-info-args.length = 50

DataResponse

rel-time-stamp

data-reg-result = 0

event-type= MDC_NOTI_SCAN_REPORT_FIXED
event-info.length = 40

ScanReportlnfoFixed.data-reg-id = 0x0100

ScanReportl nfoFixed.scan-report-no = 0

ScanReportl nfoFixed.obs-scan-fixed.count = 2

ScanReportl nfoFixed.obs-scan-fixed.length = 32
ScanReportl nfolFixed.obs-scan-fixed.valug 0] .obj-handle = 1
ScanReportl nfolFixed.obs-scan-fixed.valug[0]. obs-val-data.length = 12
Simple-Nu-Observed-Vaue = 62.4

Absolute-Time-Stamp = 2007-02-01T12:10:0000

ScanReportl nfoFixed.obs-scan-fixed.value] 1] .obj-handle = 2
ScanReportl nfoFixed.obs-scan-fixed.valueg[1]. obs-val-data.length = 12
Simple-Nu-Observed-Vaue = 25.6

Absolute-Time-Stamp = 2007-02-01T12:10:0000

187

ISO/IEEE 11073-20601:2010(E)

188

H.3 Pulse oximeter
Assumption:

It is a manager-initiated measurement data transmission, and the value of the data-reg-id field is set to 1 by
the manager.

Pleth Wave

SaSpec::array-size=5

SampleType::sample-size = 16
SampleType::significant-bits = 16

Sample Period = 20 ms

- Update Period of RTSA Observed Vaue = 100 ms

SpO2 Numeric
Update Period of Numeric 1 s

> every 10" message a SpO2 Numeric will be included.

The agent sends nine messages to the manager that follow, roughly, the format below changing only the
per-message information (e.g., the Invoke-id and scan-report-no change).

OxE7 0x00 APDU CHOICE Type (DataA pdu)

0x00 Ox2A CHOICE.length = 42

0x00 0x28 OCTET STRING.length =40

0x43 0x21 invoke-id = 0x4321 (start of DataApdu. MDER encoded.)

0x01 0x00 CHOICE (Remote Operation Invoke | Event Report)

0x00 0x22 CHOICE.length = 34

0x00 0x00 obj-handle = 0 (MDS object)

0x00 0x00 0x00 0x00 event-time=0

0x0D 0x1D event-type= MDC_NOTI_SCAN_REPORT_FIXED

0x00 0x18 event-info.length = 24

0x00 0x01 ScanReportInfoFixed.data-reg-id = 1

0x00 0x00 ScanReportl nfolFixed.scan-report-no = 0

0x00 0x01 ScanReportl nfoFixed.obs-scan-fixed.count = 1

0x00 OxOE ScanReportlnfoFixed.obs-scan-fixed.length = 14

0x00 0x01 ScanReportl nfolixed.obs-scan-fixed.val uef 0] .obj-handle = 1 Pleth Wave
0x00 0x0C ScanReportl nfolFixed.obs-scan-fixed.val ue 0] .obs-val-data.length = 12
0x00 OxO0A Simple-Sa-Observed-Vaue OCTET STRING length =10

0xSS 0xSS 0xSS 0xSS Samples

0xSS 0xSS 0xSS 0xSS Samples

0xSS 0xSS Samples

On every tenth message, the agent includes the SpO2 value as well.

OxE7 0x00 APDU CHOICE Type (PrstApdu)

0x00 0x32 CHOICE.length =50

0x00 0x30 OCTET STRING.length = 48

0x43 0Ox2A invoke-id = 0x432A (start of DataApdu. MDER encoded.)
0x01 0x00 CHOICE (Remote Operation Invoke | Event Report)
0x00 Ox2A CHOICE.length = 42

0x00 0x00 obj-handle = 0 (MDS object)

0x00 0x00 0x00 0x00 event-time=0

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

0x0D 0x1D
0x00 0x20
0x00 0x01
0x00 0x09
0x00 0x02
0x00 0x16
0x00 0x01
0x00 0x0C
0x00 O0xO0A
0xSS 0xSS 0xSS 0xSS
0xSS 0xSS 0xSS 0xSS
0xSS 0xSS
0x00 0x02
0x00 0x04
OxFF 0x00 0x03 OxDF

© 1SO 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

event-type= MDC_NOTI_SCAN_REPORT_FIXED
event-info.length = 32

ScanReportInfoFixed.data-reg-id = 1

ScanReportl nfolixed.scan-report-no = 9

ScanReportl nfoFixed.obs-scan-fixed.count = 2

ScanReportl nfolixed.obs-scan-fixed.length = 22

ScanReportl nfoFixed.obs-scan-fixed.value] 0] .obj-handle = 1 Pleth Wave
ScanReportl nfolFixed.obs-scan-fixed.value] 0] .obs-val-data.length = 12
Simple-Sa-Observed-Vaue OCTET STRING length = 10

Samples

Samples

Samples

ScanReportl nfolixed.obs-scan-fixed.value[1] .obj-handle = 2 SpO2
ScanReportl nfolixed.obs-scan-fixed.value[1] .obs-val -data.length = 4
Simple-Nu-Observed-Vaue = 99.1

189

ISO/IEEE 11073-20601:2010(E)

190

Annex |
(normative)

Nomenclature codes

This annex contains the nomenclature codes used in this standard.

They are either copied from

| SO/IEEE 11073-10101 [B12] or created for this standard and incorporated into 1SO/IEEE 11073-10101.

The format used here follows the one defined in ISO/IEEE 11073-10101.

/* Partition codes

#define MDC_PART_OBJ
#define MDC_PART_SCADA
#define MDC_PART _DIM
#define MDC_PART_INFRA
#define MDC_PART_PHD_DM
#define MDC_PART_PHD_HF
#define MDC_PART_PHD_Al
#define MDC_PART_RET_CODE
#defineMDC_PART_EXT_NOM

O ArNBE

128
129
130
255
256

/* Object Infrastr.

*/
*/

/* SCADA (Physio IDs */
/* Dimension */
/* Infrastructure */
/* Disease Mgmt */
/* Health and Fitness */
/* Aging Independently */
/* Return Codes */
/* Ext. Nomenclature */

/**

* From Object Infrastructure (MDC_PART_OBJ)

**/

#defineMDC_MOC_VMO_METRIC
#define MDC_MOC_VMO_METRIC_ENUM
#defineMDC_MOC_VMO_METRIC_NU
#defineMDC_MOC_VMO_METRIC_SA_RT
#define MDC_MOC_SCAN

#define MDC_MOC_SCAN_CFG

#define MDC_MOC_SCAN_CFG_EPI
#define MDC_MOC_SCAN_CFG_PERI
#defineMDC_MOC_VMS MDS SIMP
#define MDC_MOC_VMO_PMSTORE
#defineMDC_MOC_PM_SEGMENT
#defineMDC_ATTR_CONFIRM_MODE
#defineMDC_ATTR_CONFIRM_TIMEOUT
#defineMDC_ATTR_ID_HANDLE
#defineMDC_ATTR_ID_INSTNO
#defineMDC_ATTR_ID_LABEL_STRING
#defineMDC_ATTR_ID_MODEL
#defineMDC_ATTR_ID_PHYSIO
#defineMDC_ATTR_ID_PROD_SPECN
#defineMDC_ATTR_ID_TYPE

4
5

6

9

16
17
18
19
37
61
62
2323
2324
2337
2338
2343
2344
2347
2349
2351

#defineMDC_ATTR_METRIC_STORE_CAPAC_CNT 2369
#defineMDC_ATTR_METRIC_STORE_SAMPLE_ALG 2371 /*
#defineMDC_ATTR_METRIC_STORE_USAGE_CNT 2372

#defineMDC_ATTR_MSMT_STAT
#defineMDC_ATTR_NU_ACCUR_MSMT
#defineMDC_ATTR_NU_CMPD_VAL_OBS
#defineMDC_ATTR_NU_VAL_OBS
#defineMDC_ATTR_NUM_SEG
#defineMDC_ATTR_OP_STAT

2375
2378
2379
2384
2385
2387

ﬁ
ﬁ
ﬁ
ﬁ
ﬁ
ﬁ
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

#defineMDC_ATTR_POWER_STAT 2389 /* %
#defineMDC_ATTR_SA_SPECN 2413 [* */
#defineMDC_ATTR_SCALE_SPECN_|16 2415 [* */
#defineMDC_ATTR_SCALE_SPECN_|32 2416 [* x|
#defineMDC_ATTR_SCALE_SPECN_18 2417 [* %
#defineMDC_ATTR_SCAN_REP_PD 2421 [* %]
#defineMDC_ATTR_SEG_USAGE_CNT 2427 |* J
#defineMDC_ATTR_SYS ID 2436 /* x|
#defineMDC_ATTR_SYS TYPE 2438 [* *]
#defineMDC_ATTR_TIME_ABS 2439 [* %]
#defineMDC_ATTR_TIME_BATT_REMAIN 2440 [* */
#defineMDC_ATTR_TIME_END_SEG 2442 |* x|
#defineMDC_ATTR_TIME_PD_SAMP 2445 |* x|
#defineMDC_ATTR_TIME_REL 2447 [* x|
#defineMDC_ATTR_TIME_STAMP_ABS 2448 |* x|
#defineMDC_ATTR_TIME_STAMP _REL 2449 [* x|
#defineMDC_ATTR_TIME_START_SEG 2450 [* x|
#defineMDC_ATTR_TX_WIND 2453 [* x|
#defineMDC_ATTR_UNIT_CODE 2454 |* *
#defineMDC_ATTR_UNIT_LABEL_STRING 2457 |* %
#defineMDC_ATTR_VAL_BATT_CHARGE 2460 /* *
#define MDC_ATTR_VAL_ENUM_OBS 2462 |* %
#defineMDC_ATTR_TIME_REL_HI_RES 2536 /* *
#defineMDC_ATTR _TIME_STAMP_REL_HI_RES 2537 /* *
#defineMDC_ATTR_DEV_CONFIG_ID 2628 /* x|
#defineMDC_ATTR_MDS_TIME_INFO 2629 /* x|
#define MDC_ATTR_METRIC_SPEC_SMALL 2630 /* x|
#defineMDC_ATTR_SOURCE_HANDLE_REF 2631 /* x|
#defineMDC_ATTR_SIMP_SA_OBS VAL 2632 /* x|
#defineMDC_ATTR_ENUM_OBS VAL_SIMP_OID 2633 /* *]
#defineMDC_ATTR_ENUM_OBS VAL_SIMP_STR 2634 /* *
#defineMDC_ATTR_REG_CERT_DATA_LIST 2635 /* *
#defineMDC_ATTR_NU_VAL_OBS BASIC 2636 /* *
#defineMDC_ATTR_PM_STORE_CAPAB 2637 /* *
#defineMDC_ATTR_PM_SEG_MAP 2638 /* *
#defineMDC_ATTR_PM_SEG_PERSON_ID 2639 /* *
#define MDC_ATTR_SEG_STATS 2640 /* *
#define MDC_ATTR_SEG_FIXED_DATA 2641 /* *
#defineMDC_ATTR_PM_SEG_ELEM_STAT_ATTR 2642 /* %]
#define MDC_ATTR_SCAN_HANDLE_ATTR_VAL_MAP 2643 /* %]
#defineMDC_ATTR_SCAN_REP_PD_MIN 2644 |* %]
#defineMDC_ATTR_ATTRIBUTE_VAL_MAP 2645 [* J
#defineMDC_ATTR_NU_VAL_OBS SIMP 2646 /* x|
#defineMDC_ATTR_PM_STORE_LABEL_STRING 2647 /* *
#defineMDC_ATTR_PM_SEG_LABEL_STRING 2648 [* *
#defineMDC_ATTR TIME_PD_MSMT_ACTIVE 2649 /* J
#defineMDC_ATTR_SYS TYPE_SPEC LIST 2650 /* *
#defineMDC_ATTR_METRIC_ID_PART 2655 /* *
#defineMDC_ATTR_ENUM_OBS VAL_PART 2656 /* %
#define MDC_ATTR_SUPPLEMENTAL_TYPES 2657 /* *
#defineMDC_ATTR_TIME_ABS ADJUST 2658 /* %
#defineMDC_ATTR_CLEAR_TIMEOUT 2659 /* *
#defineMDC_ATTR_TRANSFER_TIMEOUT 2660 /* *
#defineMDC_ATTR_ENUM_OBS VAL_SIMP_BIT_STR 2661 /* x|
#defineMDC_ATTR_ENUM_OBS VAL _BASIC BIT_STR 2662 /* J
#defineMDC_ATTR_METRIC_STRUCT _SMALL 2675 [* J

© 1SO 2010 — All rights reserved
191

ISO/IEEE 11073-20601:2010(E)

192

#defineMDC_ATTR_NU_CMPD_VAL_OBS SIMP 2676 /*
#defineMDC_ATTR_NU_CMPD_VAL_OBS BASIC 2677 /*

#define MDC _ATTR_ID PHYSIO LIST 2678 [*
#defineMDC_ATTR_SCAN_HANDLE_LIST 2679 [*
/* Partition: ACT */

#defineMDC_ACT_SEG CLR 3084 /*
#defineMDC_ACT_SEG GET_INFO 3085 /*
#defineMDC_ACT_SET TIME 3095 /*
#define MDC_ACT_DATA_REQUEST 3099 /*
#define MDC_ACT_SEG TRIG_XFER 3100 /*
#define MDC_NOTI_CONFIG 3356 /*
#define MDC_NOTI_SCAN_REPORT_FIXED 3357 [*
#define MDC_NOTI_SCAN_REPORT_VAR 3358 /*
#define MDC_NOTI_SCAN_REPORT_MP_FIXED 3359 /*
#define MDC_NOTI_SCAN_REPORT_MP_VAR 3360 /*
#define MDC_NOTI_SEGMENT_DATA 3361 /*

#define MDC_NOTI_UNBUF_SCAN_REPORT VAR
#define MDC_NOTI_UNBUF_SCAN_REPORT_FIXED
#define MDC_NOTI_UNBUF_SCAN_REPORT_GROUPED
#define MDC_NOTI_UNBUF_SCAN_REPORT_MP_VAR
#define MDC_NOTI_UNBUF_SCAN_REPORT_MP_FIXED
#define MDC_NOTI_UNBUF_SCAN_REPORT_MP_GROUPED
#defineMDC_NOTI_BUF_SCAN_REPORT_VAR

#define MDC_NOTI_BUF_SCAN_REPORT_FIXED

#define MDC_NOTI_BUF_SCAN_REPORT_GROUPED
#define MDC_NOTI_BUF_SCAN_REPORT_MP_VAR
#define MDC_NOTI_BUF_SCAN_REPORT _MP_FIXED
#define MDC_NOTI_BUF_SCAN_REPORT_MP_GROUPED

3362 /*
3363 /*
3364 /*
3365 /*
3366 /*
3367 /*
3368 /*
3369 /*
3370 /*
3371 /*
3372 /*
3373 /*

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***

* From Medical supervisory control and data acquisition (MDC_PART_SCADA)

**/

#define MDC_TEMP_BODY 19292 /*TEM Pbody
#define MDC_MASS BODY_ACTUAL 57664 [*

/* Partition: SCADA/Other

#define MDC _BODY _FAT 57676 /%

*/
*/
*/
*/

/***

* From Dimensions (MDC_PART_DIM)

**/

#defineMDC_DIM_PERCENT 544 [+ %
#define MDC_DIM_KILO G 1731 /* kg
#define MDC_DIM_MIN 2208 /* min
#define MDC_DIM_HR 2240 /* h
#defineMDC_DIM_DAY 2272 * d
#define MDC_DIM_DEGC 6048 /* °C

*/
*/
*/
*/
*/
*/

/***

* From Communication Infrastructure (MDC_PART_INFRA)

**/

#define MDC_DEV_SPEC PROFILE_PULS OXIM 4100 /*

#define MDC_DEV_SPEC_PROFILE_BP 4103 /*
#defineMDC_DEV_SPEC_PROFILE_TEMP 4104 [*
#define MDC_DEV_SPEC_PROFILE_SCALE 4111 /*

#define MDC_DEV_SPEC_PROFILE_GLUCOSE 4113 [*
#defineMDC_DEV_SPEC_PROFILE_HF_CARDIO 4137 /*

*/
*/
*/
*/
*/
*/

© I1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

#define MDC_DEV_SPEC_PROFILE_HF_STRENGTH 4138 /* */
#define MDC_DEV_SPEC_PROFILE_AI_ACTIVITY_HUB 4167 /* */
#define MDC_DEV_SPEC_PROFILE_AI_MED_MINDER 4168 /* */

/* Placed 256 back from the start of the last Partition: Optional Packagel dentifiers (i.e., 8192-256). */
#define MDC_TIME_SYNC_NONE 7936 /* no time synchronization protocol supported */
#define MDC_TIME_SYNC_NTPV3 7937 /* RFC 1305 1992Ma obs: 1119,1059,958 */
#defineMDC_TIME_SYNC_NTPV4 7938 /* <under development at ntp.org> */
#define MDC_TIME_SYNC_SNTPV4 7939 /*RFC2030 19960Oct obs: 1769 */
#define MDC_TIME_SYNC_SNTPV4330 7940 /* RFC4330 2006Jan obs: 2030,1769*/
#define MDC_TIME_SYNC BTV1 7941 /* Bluetooth Medical Device Profile */

/***

* From Return Codes (MDC_PART_RET_CODE)

**/

#defineMDC_RET_CODE_UNKNOWN 1 [* Generic error code */
/* Partition MDC_PART_RET_CODE/OBJ Object errors */
#defineMDC_RET_CODE_OBJ BUSY 1000 /* Object isbusy so cannot handle the request */
/* Partition MDC_PART_RETURN_CODES/STORE Storage errors */
#defineMDC_RET_CODE_STORE_EXH 2000 /* Storage such asdisk isfull */
#defineMDC_RET_CODE_STORE_OFFLN 2001 /* Storage such asdisk is offline */

© 1SO 2010 — All rights reserved
193

ISO/IEEE 11073-20601:2010(E)

Annex J
(informative)

Derivation and modification history

J.1 General

Many aspects of the information, service, and communication models align with other ISO/IEEE 11073
standards. This annex describes the origins of the ASN.1 structures, nomenclature, and encoding rules as
well as any modifications made to tailor them to the personal health device domain. The intended audience

of this annex is primarily users who maintain the standards and ensure consistency across the
I SO/IEEE 11073 standards.

J.2 ASN.1 structures

The following ASN.1 structures were imported from ISO/IEEE 11073-10201:2004 [B13] without
modification:

INT-U8, INT-I8, INT-U16, INT-116, INT-U32, INT-I132, BITS-16, BITS-32, OID-Type, PrivateOid,
HANDLE, InstNumber, TYPE, AVA-Type, AttributeList, AttributeldList, FLOAT-Type, RelativeTime,
HighResRelativeTime, AbsoluteTime, OperationalState, SystemModel, ProductionSpec, ProdSpecEntry,
Power Status, BatMeasure, NuObsValue, NuObsValueCmp, SaSpec, SampleType, SaFlags, ScaleRangeSpec8,
ScaleRangeSpecl6, ScaleRangeSpec32, EnumObsValue, ConfirmMode, SetTimelnvoke, SegmSelection,
SegmidList, AbsTimeRange, SegmentinfoList, Segmentlnfo, ObservationScan, and TimeProtocolld.

The following ASN.1 dstructures were imported from ISO/IEEE 11073-10201:2004 [B13] with
modification:

NomPartition, StoSampleAlg, MeasurementStatus, and EnumVal.

The remainder of the ASN.1 structures were created specifically for this standard.

J.3 Medical device encoding rules (MDER)

The MDER are imported from 1SO/IEEE 11073-10101 [B12]. The majority of the changes made to the
imported rules were editorial; however, afew usages of must were converted to shall (e.g., in Table F.1).

The optimization and explanations described in F.7 and F.8 are specific to this standard.

J.4 Nomenclature codes

J.4.1 General

Subclauses J.4.2 through J.4.6 describe the origin of the codeslisted in Annex I.

© I1SO 2010 — All rights reserved
194 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

J.4.2 Partition codes

Four new partition codes were added: MDC_PART_PHD_DM, MDC_PART_PHD_HF, MDC_PART _
PHD_AIl, and MDC_PART_RET_CODE. All others originated from | SO/IEEE 11073-10101 [B12].

J.4.3 Object infrastructure codes

J.4.3.1 MDC_MOC

All nomenclature codes that begin with MDC_MOC_ originated from ISO/IEEE 11073-10101 [B12].

J.4.3.2 MDC_ATTR

The following codes beginning with MDC _ATTR were added: MDC ATTR DEV_CONFIG_ID,
MDC_ATTR_MDS TIME_INFO, MDC_ATTR_METRIC_SPEC SMALL, MDC_ATTR_SOURCE_
HANDLE_REF, MDC_ATTR_SIMP_SA_OBS VAL, MDC_ATTR_ENUM_OBS VAL_SIMP_OID,
MDC_ATTR_ENUM_OBS VAL_SIMP_STR, MDC_ATTR_NU_VAL_OBS BASIC, MDC ATTR_
PM_STORE_CAPAB, MDC _ATTR_PM_SEG MAP, MDC_ATTR PM_SEG PERSON_ID, MDC_
ATTR_SEG_STATS, MDC _ATTR_SEG FIXED_DATA, MDC _ATTR PM_SEG ELEM_STAT_
ATTR, MDC ATTR_SCAN_HANDLE ATTR VAL _MAP, MDC _ATTR SCAN_REP PD_MIN,
MDC ATTR ATTRIBUTE VAL_MAP, MDC _ATTR NU_VAL_OBS SIMP, MDC_ATTR _PM
STORE_LABEL_STRING, @ MDC ATTR PM_SEG LABEL _STRING, @ MDC_ATTR TIME PD_
MSMT_ACTIVE, MDC_ATTR _SYS TYPE SPEC LIST, MDC ATTR_METRIC _STRUCT_SMALL,
MDC _ATTR_NU_CMPD _VAL_OBS SIMP, MDC ATTR_NU_CMPD_VAL_OBS BASIC, MDC_
ATTR_ID_PHYSIO_LIST. All others originated from | SO/IEEE 11073-10101 [B12].

J.4.3.3 MDC_ACT

The following codes beginning with MDC _ACT were added: MDC ACT_DATA REQUEST,
MDC_ACT_SEG TRIG_XFER. All others originated from | SO/IEEE 11073-10101 [B12].

J.4.3.4 MDC_NOTI

All MDC_NOTI codes are newly created for this standard.

J.4.3.5 MDC_RET_CODE

All MDC_RET_CODE codes are newly created for this standard.

J.4.4 Medical supervisory control and data acquisition

MDC_BODY_FAT was added. All others originated from I SO/IEEE 11073-10101 [B12].

J.4.5 Dimension codes

All dimension codes originated from 1SO/IEEE 11073-10101 [B12].

© 1SO 2010 — All rights reserved
195

ISO/IEEE 11073-20601:2010(E)

J.4.6 Communication infrastructure codes

J.4.6.1 MDC_DEV_SPEC_PROFILE
The following codes beginning with MDC _DEV_SPEC PROFILE were added: MDC DEV_SPEC _
PROFILE_GLUCOSE, MDC _DEV_SPEC PROFILE HF CARDIO, MDC _DEV_SPEC PROFILE

HF_STRENGTH, MDC_DEV_SPEC PROFILE_AI_ACTIVITY_HUB, and MDC_DEV_SPEC_
PROFILE_AI_MED_MINDER. All others originated from | SO/IEEE 11073-10101 [B12].

J.4.6.2 MDC_TIME_SYNC

All MDC_TIME_SYNC codes are newly created for this standard.

© I1SO 2010 — All rights reserved
196 © IEEE 2010 — Al rights reserved

ISO/IEEE 11073-20601:2010(E)

Annex K
(informative)

Bibliography

[B1] IEEE P11073-10441™, Health informatics — Personal health device communication — Part 10441
Device specialization — Cardiovascular fitness and activity monitor.™” 81

[B2] IEEE P11073-10442™, Health informatics — Personal health device communication — Part 10442:
Device specialization — Strength fitness equipment.

[B3] IEEE Std 11073-10408™, Health informatics — Personal health device communication — Part 10408:
Device specialization — Thermometer.

[B4] IEEE Std 11073-10415™, Health informatics — Personal health device communication — Part 10415:
Device specialization — Weighing scale.

[B5] |EEE Std 11073-10471™, Health informatics — Personal health device communication — Part 10471
Device specialization — Independent living activity hub.

[B6] IEEE 100, The Authoritative Dictionary of IEEE Sandards Terms, Seventh Edition, New York,
Ingtitute of Electrical and Electronic Engineers, Inc.

[B7] ISO/IEC 646 (1991), Information technology — 1SO 7-bit coded character set for information
interchange.®

[B8] ISO/IEEE P11073-00103 (Draft 1, 13 Aug. 2007), Hedlth informatics — Personal health device
communication — Part 00103: Technical report — Overview.

[B9] ISO/IEEE P11073-10404, Health informatics — Personal health device communication — Part 10404:
Device specialization — Pul se oximeter.

[B10] ISO/IEEE P11073-10407, Health informatics — Personal health device communication — Part 10407:
Device specialization — Blood pressure monitor.

[B11] ISO/IEEE P11073-10417, Health informatics — Personal health device communication — Part 10417:
Device specialization — Glucose meter.

[B12] ISO/IEEE 11073-10101, Health informatics — Point-of-care medical device communication —
Part 10101: Nomenclature.

[B13] ISO/IEEE 11073-10201:2004, Health informatics — Point-of-care medical device communication —
Part 10201: Domain information model.

¥ |EEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.iece.org/).

'8 Numbers preceded by P are |IEEE authorized standards projects that were not approved by the IEEE-SA Standards Board at the time
this publication went to press. For information about obtaining drafts, contact the IEEE.

1 The |EEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
% |SO/IEC publications are available from the SO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20,
Switzerland/Suisse (http://www.iso.ch/). ISO/IEC publications are also available in the United States from Global Engineering
Documents, 15 Inverness Way East, Englewood, Colorado 80112, USA (http://global.ihs.conV). Electronic copies are available in the
United States from the American National Standards Ingtitute, 25 West 43rd Street, 4th FHoor, New York, NY 10036, USA
(http://www.ansi.org/).

© 1SO 2010 — All rights reserved
197

ISO/IEEE 11073-20601:2010(E)

[B14] ISO/IEEE 11073-20101:2004, Health informatics — Point-of-care medical device communication —
Part 20101: Application Profiles— Base Standard.

[B15] ISO 15225, Nomenclature — Specification for a nomenclature system for medical devices for the
purpose of regulatory data exchange.

[B16] ITU-T Rec. X.680 (Jul. 2002), Information technology — Abstract Syntax Notation One (ASN.1):
Specification of basic notation.”*

[B17] ITU-T Rec. X.691 (Jul. 2002), Information technology — ASN.1 encoding rules: Specification of
Packed Encoding Rules (PER).

[B18] ITU-T Rec. X.693 (Dec. 2001), Information technology — ASN.1 encoding rules: XML Encoding
Rules (XER).

2 |TU-T publications are available from the International Telecommunications Union, Place des Nations, CH-1211, Geneva 20,
Switzerland/Suisse (http://www.itu.int/).

. ©15002010 — All rights reserved
198 © IEEE 2010 — All rights reserved

ISO/IEEE 11073-20601:2010(E)

IEEE Notice to Users

Use of an |IEEE Standard is wholly voluntary. The |EEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special,
indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other |EEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any
implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. |EEE Standards
documents are supplied “AS1S.”

The existence of an | EEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the
scope of the |IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in
the state of the art and comments received from users of the standard. Every |IEEE Standard is subjected to review at least every five years for revision or reaffirmation.
When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the
present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the |EEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is the
IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon
the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is
brought to the attention of 1EEE, the Institute will initiate action to prepare appropriate responses. Since |[EEE Standards represent a consensus of concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, |EEE and the members of its societies and Standards
Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal
consideration. At lectures, symposia, seminars, or educational courses, an individual presenting information on |EEE standards shall make it clear that his or her views
should be considered the personal views of that individual rather than the formal position, explanation, or interpretation of the |EEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with |EEE. Suggestions for changes in documents
should be in the form of a proposed change of text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be
addressed to: Secretary, IEEE-SA Standards Board, 445 Hoes Lane, Piscataway, NJ 08854, USA.

Laws and regulations: Users of these documents should consult all applicable laws and regulations. Compliance with the provisions of this standard does not imply
compliance to any applicable regulatory requirements. |mplementers of the standard are responsible for observing or referring to the applicable regulatory requirements.
IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.
Copyrights: This document is copyrighted by the |EEE. It is made available for awide variety of both public and private uses. These include both use, by reference, in laws
and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making this document available for use and
adoption by public authorities and private users, the IEEE does not waive any rights in copyright to this document.

Updating of IEEE documents: Users of |EEE standards should be aware that these documents may be superseded at any time by the issuance of new editions or may be
amended from time to time through the issuance of amendments, corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether a given document is the current edition and whether it has been
amended through the issuance of amendments, corrigenda, or errata, visit the IEEE Standards Association Web site at http://ieeexplore.ieee.org/xpl/standards.jsp, or contact
the | EEE at the address listed previously.

For more information about the |EEE Standards Association or the |EEE standards development process, visit the IEEESA Web site at http://standards.ieee.org.

Errata: Errata, if any, for this and all other standards can be accessed at the following URL: http://standards.ieee.org/reading/ieee/updates/errata/index.html. Users are
encouraged to check this URL for errata periodically.

Interpretations: Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/index.html.

Patents: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this
standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE is not responsible for identifying Essentiaf
Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims or determining whether any licensing terms o[ri
conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this
standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Furthef
information may be obtained from the | EEE Standards Association. :
Participants: The list of |EEE participants can be accessed at the following URL:
http://standards.ieee.org/downloads/11073/11073-10415/11073-10415-2010_wg_participants.pdf. .
IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or environmental protection. | mplementers of the standard are responsible for
determining appropriate safety, security, environmental, and health practices or regulatory requirements.

This |EEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing
this document and may be found under the heading “Important Notice” or “Important Notices and Disclaimers Concerning |EEE Documents.” They can also be
obtained on request from | EEE or viewed at http://standards.ieee.org/l PR/disclaimers.html.

© 1SO 2010 — All rights reserved
© IEEE 2010 — All rights reserved

http://ieeexplore.ieee.org/xpl/standards.jsp
http://standards.ieee.org/
http://standards.ieee.org/reading/ieee/updates/errata/index.html
http://standards.ieee.org/reading/ieee/interp/index.html
http://standards.ieee.org/downloads/
http://standards.ieee.org/IPR/disclaimers.html

ISO/IEEE 11073-20601:2010(E)

Abstract: Within the context of the ISO/IEEE 11073 family of standards for device
communication, this standard defines a common framework for making an abstract
model of personal health data available in transport-independent transfer syntax
required to establish logical connections between systems and to provide presentation
capabilities and services needed to perform communication tasks. The protocol is
optimized to personal health usage requirements and leverages commonly used
methods and tools wherever possible.

Keywords: medical device communication, personal health devices

ICS 35.240.80
ISBN 978-0-7381-5826-6

Price based on 198 pages

© 1SO 2010 — All rights reserved

	IEEE Std 11073-20601
	Contents
	Foreword
	Introduction
	Important notice
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Context

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Guiding principles
	5. Introduction to IEEE 11073 personal health devices
	5.1 General
	5.2 Domain information model (DIM)
	5.3 Service model
	5.4 Communication model

	6. Personal health device DIM
	6.1 General
	6.2 Nomenclature usage
	6.3 Personal health object class definitions
	6.3.1 General
	6.3.2 MDS class
	6.3.3 Metric class
	6.3.4 Numeric class
	6.3.5 RT-SA class
	6.3.6 Enumeration class
	6.3.7 PM-store class
	6.3.8 PM-segment class
	6.3.9 Scanner classes

	6.4 Information model extensibility rules

	7. Personal health device service model
	7.1 General
	7.2 Association service
	7.3 Object access services
	7.4 Specific application of object access EVENT REPORT services for personal health devices
	7.4.1 General
	7.4.2 Confirmed and unconfirmed event reports
	7.4.3 Configuration event report
	7.4.4 Agent- and manager-initiated measurement data transmission
	7.4.5 Variable, fixed, and grouped format event reports
	7.4.6 Single-person and multiple-person event reports
	7.4.7 Temporarily stored measurements

	8. Communication model
	8.1 General
	8.2 System context
	8.3 Communications characteristics
	8.3.1 General
	8.3.2 Common communications characteristics
	8.3.3 Reliable communications characteristics
	8.3.4 Best-effort communications characteristics

	8.4 State machines
	8.4.1 Agent state machine
	8.4.2 Manager state machine
	8.4.3 Timeout variables

	8.5 Connected procedure
	8.5.1 General
	8.5.2 Entry conditions
	8.5.3 Normal procedures
	8.5.4 Exit conditions
	8.5.5 Error conditions

	8.6 Unassociated procedure
	8.6.1 General
	8.6.2 Entry conditions
	8.6.3 Normal procedures
	8.6.4 Exit conditions
	8.6.5 Error conditions

	8.7 Associating procedure
	8.7.1 General
	8.7.2 Entry conditions
	8.7.3 Normal procedures
	8.7.4 Exit conditions
	8.7.5 Error conditions
	8.7.6 Test association

	8.8 Configuring procedure
	8.8.1 General
	8.8.2 Entry conditions
	8.8.3 Normal procedures
	8.8.4 Exit conditions
	8.8.5 Error conditions

	8.9 Operating procedure
	8.9.1 General
	8.9.2 Entry conditions
	8.9.3 Normal procedures
	8.9.4 Exit conditions
	8.9.5 Error conditions

	8.10 Disassociating procedure
	8.10.1 General
	8.10.2 Entry conditions
	8.10.3 Normal procedures
	8.10.4 Exit conditions
	8.10.5 Error conditions

	8.11 Message encoding
	8.12 Time coordination
	8.12.1 General
	8.12.2 Absolute time
	8.12.3 Relative time
	8.12.4 High-resolution relative time

	9. Conformance model
	9.1 Applicability
	9.2 Conformance specification
	9.3 Implementation conformance statements (ICSs)
	9.4 General conformance
	9.4.1 General ICS
	9.4.2 Minimum requirements ICS
	9.4.3 Service support ICS

	9.5 Device additions/extensions ICS
	9.5.1 General additions/extensions ICS
	9.5.2 Personal health device DIM object and class (POC) ICS
	9.5.3 POC attribute ICS
	9.5.4 POC behavior ICS
	9.5.5 POC notification ICS
	9.5.6 POC nomenclature ICS

	Annex A (normative) ASN.1 definitions
	Annex B (informative) Scale and range specification example
	Annex C (informative) The PM-store concept
	Annex D (informative) Transport profile types
	Annex E (normative) State tables
	Annex F (normative) Medical device encoding rules (MDER)
	Annex G (informative) Encoded data type definitions
	Annex H (informative) Examples
	Annex I (normative) Nomenclature codes
	Annex J (informative) Derivation and modification history
	Annex K (informative) Bibliography

