INTERNATIONAL STANDARD ISO 9981 Second edition 1998-11-01 # Belt drives — Pulleys and V-ribbed belts for the automotive industry — PK profile: Dimensions Transmissions par courroies — Poulies et courroies striées pour la construction automobile — Profil PK: Dimensions This material is reproduced from ISO documents under International Organization for Standardization (ISO) Copyright License number IHS/ICC/1996. Not for resale. No part of these ISO documents may be reproduced in any form, electronic retrieval system or otherwise, except as allowed in the copyright law of the country of use, or with the prior written consent of ISO (Case postale 56, 1211 Geneva 20, Switzerland, Fax +41 22 734 10 79), IHS or the ISO Licensor's members. Reference number ISO 9981:1998(E) ISO 9981:1998(E) #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. International Standard ISO 9981 was prepared by Technical Committee ISO/TC 41, Pulleys and belts (including veebelts), Subcommittee SC 1, Veebelts and grooved pulleys. This second edition cancels and replaces the first edition (ISO 9981:1990), which has been technically revised. In particular, a subclause on the tolerances on the diameters over balls (3.3.4) has been added. Annex A of this International Standard is for information only. © ISO 1998 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher. International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet iso@iso.ch Printed in Switzerland © ISO ISO 9981:1998(E) #### Introduction A V-ribbed belt drive is composed of an endless belt with a longitudinally ribbed traction surface which engages and grips, by friction, pulley grooves of similar shape. The belt ribbed surface fits the pulley grooves to make nearly total contact. # Belt drives — Pulleys and V-ribbed belts for the automotive industry — PK profile: Dimensions #### 1 Scope This International Standard specifies the principal dimensional characteristics of V-ribbed pulley groove profiles, together with the corresponding endless V-ribbed belts of PK profile which are used predominantly for automotive accessory drive applications. The complete array of V-ribbed belts and pulleys of PH, PJ, PK, PL and PM profile for industrial and other non-automotive applications is the subject of ISO 9982. PK belt profile dimensions and tolerances are the same in both International Standards. #### 2 Normative references The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of the publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on the International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. ISO 254:1998, Belt drives - Pulleys - Quality, finish and balance. ISO 4287:1997, Geometrical product specification (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters. #### 3 Pulleys #### 3.1 Groove dimensions and tolerances The groove dimensions of PK pulleys are shown in figures 1 and 2, and given in table 1. ## **W**Alternative: Pulley tip profile The actual configuration of the tip profile may lie anywhere between the maximum and minimum indicated. Any configuration shall have a transitional radius c_1 corresponding to a 30° minimum arc tangent to the groove sidewall #### X Alternative: Pulley groove bottom Figure 1 — Cross-section of pulley grooves $d_{\rm e}$ = effective diameter d_0 = outer diameter K = diameter over balls or rods $d_{\mathsf{B}} = \mathsf{checking} \; \mathsf{ball} \; \mathsf{or} \; \mathsf{rod} \; \mathsf{diameter}$ Figure 2 — Pulley diameters Table 1 — Dimensions of PK pulley grooves Dimensions in millimetres | | Dimensions in millimetres | | |---|---------------------------|------| | Groove pitch, e | ± 0,05 ^{1) 2)} | 3,56 | | Groove angle, $\alpha^{(3)}$, for measuring | ± 0° 15' | 40° | | Groove angle, $lpha^{(3)}$, for testing and actual use | ± 1° | 40° | | $r_{\rm t}$ | min. | 0,25 | | r_{b} | max. | 0,5 | | Checking ball or rod diameter, $d_{\rm B}$ | ± 0,01 | 2,5 | | 2 <i>x</i> | nom. | 0,99 | | 2N ⁴⁾ | max. | 1,68 | | f | min. | 2,5 | - 1) The tolerance on e applies to the distance between the axes of two consecutive grooves. - 2) The sum of all deviations from the nominal value e for all grooves in any one pulley shall not exceed \pm 0,3. - 3) The centreline of the groove shall make an angle of $90^{\circ} \pm 0.5^{\circ}$ with the axis of the pulley. - 4) N is not related to the nominal diameter of the pulley but is measured from the actual ride position of the ball or rod in the pulley. #### 3.2 Minimum effective diameter The minimum recommended effective diameter, $d_{\rm e}$, for PK pulleys is 45 mm. #### 3.3 Tolerances on finished pulley #### 3.3.1 Checking conditions Profile, diameter and run-out tolerances shall be checked on the finished pulley without surface coating. #### 3.3.2 Groove-to-groove diameter tolerances The variation in diameters between the grooves in any one pulley shall not exceed 0,15 mm. This variation is obtained by comparing the diameters over balls or rods. #### 3.3.3 Radial and axial circular run-out Radial and axial circular run-outs shall not exceed 0,25 mm full indicator movement (FIM). Run-out in the two directions is measured separately with a ball mounted under spring pressure to ensure contact with the groove as the pulley is rotated. #### 3.3.4 Diameter over balls The tolerances on the diameters over balls (K) shall not exceed \pm 0,6 mm. #### 3.3.5 Groove finish The pulley grooves shall have a surface roughness $Ra \le 3.2 \ \mu m$. See ISO 254 and ISO 4287 for definitions and the method of measurement. ISO 9981:1998(E) © ISO #### 3.4 Pitch diameter, d_p The fit of a V-ribbed belt in the corresponding pulley is shown in figure 3. The true pitch diameter of a V-ribbed pulley is slightly larger than the effective diameter and its exact value is determined with the particular belt being used. A nominal value of the effective line differential, $b_{\rm e}$, of 2 mm may be used to calculate the speed ratio. If more precision is required, the belt manufacturer should be consulted. Further information is given in ISO 8370. Figure 3 — Determination of pitch diameter #### 3.5 Designation of pulleys A V-ribbed pulley for the automotive industry is characterized by the number of grooves, the profile and the effective diameter. It is designated by a series of numbers and letters as follows: - a) the first letter "P" means "Pulley"; - b) the first set of numbers indicates the number of grooves; - c) the second set of letters indicates the groove profile; - d) the second set of numbers indicates the effective diameter, in millimetres. #### **EXAMPLE** #### 4 Belts #### 4.1 Belt dimensions The dimensions of the PK belts are shown on figure 4 and given in table 2. Nominal width of the belt $D = n \times P_b$, where n is the number of ribs Y **Z**Alternative: Belt groove bottom Figure 4 — Cross-section of belt Table 2 — PK belt dimensions | | Dimensions in millimetres | | |------------------------|---------------------------|----------| | Rib pitch, $p_{\rm b}$ | | 3,56 | | r_{b} | min. | 0,5 | | r_{t} | max. | 0,25 | | Belt height, h | * | 4 to 6 | | | | <u> </u> | NOTE — Rib pitch and belt height are shown as reference dimensions only. Cumulative rib pitch tolerance is an important value but it is frequently affected by the tension at which the belt operates and the modulus of the tension member. ISO 9981:1998(E) © ISO #### 4.2 Measurement of the effective belt length #### 4.2.1 Measuring fixture (see figure 5) The effective belt length shall be determined by placing the belt on a measuring fixture composed of the following elements. **4.2.1.1** Two pulleys of equal diameter, one of which is fixed and the other movable. Their profile shall comply with figure 1 and table 1, and their recommended effective diameter shall be determined from the values given in table 3. #### 4.2.1.2 Device for applying a total measuring force to the movable pulley. #### 4.2.1.3 Device for measuring the centre distance between the two pulleys. Figure 5 — Measuring fixture to determine effective length #### 4.2.2 Measuring force The measuring force to be applied for measuring the effective length of belts is given in table 3. Table 3 — Measuring pulley and measuring force Pulley effective circumference (at level of effective diameter), $U_{\rm e}$ 300 Diameter over balls or rods, K \pm 0,13 96,48 Measuring force per rib, F 100 #### 4.2.3 Procedure To measure the effective length of a belt, rotate the belt at least two revolutions to seat it properly and to divide the total force equally between the two strands of the belt. Then measure the centre distance between the pulleys, \it{E} , and calculate the effective length, $\it{L}_{\rm e}$, of the belt using the following formula: $$L_{\rm e} = E_{\rm max} + E_{\rm min} + U_{\rm e}$$ where U_{e} is the effective circumference of the measuring pulleys; E_{max} is the maximum centre distance between the pulleys; E_{\min} is the minimum centre distance between the pulleys. © ISO ISO 9981:1998(E) #### 4.3 Designation of belts A V-ribbed belt for the automotive industry is characterized by the number of belt ribs, the profile and the effective length. It is designated by a series of numbers and letters as follows: - a) the first set of numbers indicates the number of belt ribs; - b) the letters indicate the belt profile; - c) the second set of numbers indicates the effective length, in millimetres. #### **EXAMPLE** ### Annex A (informative) ### **Bibliography** - [1] ISO 8370-2:1993, Belts drives Dynamic test to determine pitch zone location Part 2: V-ribbed belts. - [2] ISO 9982:1998, Belt drives Pulleys and V-ribbed belts for industrial applications PH, PJ, PK, PL and PM profiles: Dimensions. ISO 9981:1998(E) © ISO #### ICS 43.060.10 **Descriptors:** road vehicles, internal combustion engines, belt drives, pulleys, grooved pulleys, belts, power transmission belts, V-belts, dimensions, designation. Price based on 8 pages