INTERNATIONAL STANDARD ISO 9735-3 Second edition 2002-07-01 Electronic data interchange for administration, commerce and transport (EDIFACT) — Application level syntax rules (Syntax version number: 4, Syntax release number: 1) — Part 3: Syntax rules specific to interactive EDI Échange de données informatisé pour l'administration, le commerce et le transport (EDIFACT) — Règles de syntaxe au niveau de l'application (numéro de version de syntaxe: 4, numéro d'édition de syntaxe: 1) — Partie 3: Règles de syntaxe spécifiques à l'EDI interactif Reference number ISO 9735-3:2002(E) © ISO 2002 #### **PDF** disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. #### © ISO 2002 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch Printed in Switzerland | Cont | tents | Page | |---------|---------------------------------------------------------|------| | | ord | | | Introdu | uction | | | 1 | Scope | 1 | | 2 | Conformance | 1 | | 3 | Normative references | 2 | | 4 | Terms and definitions | 2 | | 5 | I-EDI interchange structure | 2 | | 6 | I-EDI message within a transaction | 3 | | 7 | Dialogue control | 5 | | Annex | A (informative) Examples illustrating segment sequences | 7 | | Annex | B (informative) I-EDI functions, states and events | 10 | Annex C (informative) A model of the I-EDI process.......16 Not for Resale ISO 9735-3:2002(E) #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this part of ISO 9735 may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 9735-3 was prepared by Technical Committee ISO/TC 154, *Processes, data elements and documents in commerce, industry and administration* in collaboration with UN/CEFACT through the Joint Syntax Working Group (JSWG). This second edition cancels and replaces the first edition (ISO 9735-3:1998). However ISO 9735:1988 and its Amendment 1:1992 are provisionally retained for the reasons given in clause 2. Furthermore, for maintenance reasons the Syntax service directories have been removed from all parts of the ISO 9735 series. They are now consolidated in a new part, ISO 9735-10. At the time of publication of ISO 9735-1:1998, ISO 9735-10 had been allocated as a part for "Security rules for interactive EDI". This was subsequently withdrawn because of lack of user support, and as a result, all relevant references to the title "Security rules for interactive EDI" were removed in this second edition of ISO 9735-3. Definitions from all parts of the ISO 9735 series have been consolidated and included in ISO 9735-1. ISO 9735 consists of the following parts, under the general title *Electronic data interchange for administration, commerce and transport (EDIFACT)* — *Application level syntax rules (Syntax version number: 4, Syntax release number: 1)*: - Part 1: Syntax rules common to all parts - Part 2: Syntax rules specific to batch EDI - Part 3: Syntax rules specific to interactive EDI - Part 4: Syntax and service report message for batch EDI (message type CONTRL) - Part 5: Security rules for batch EDI (authenticity, integrity and non-repudiation of origin) - Part 6: Secure authentication and acknowledgement message (message type AUTACK) - Part 7: Security rules for batch EDI (confidentiality) - Part 8: Associated data in EDI - Part 9: Security key and certificate management message (message type KEYMAN) - Part 10: Syntax service directories Further parts may be added in the future. Annexes A, B and C of this part of ISO 9735 are for information only. ISO 9735-3:2002(E) #### Introduction This part of ISO 9735 includes the rules at the application level for the structuring of data in the interchange of electronic messages in an open environment, based on the requirements of either batch or interactive processing. These rules have been agreed by the United Nations Economic Commission for Europe (UN/ECE) as syntax rules for Electronic Data Interchange for Administration, Commerce and Transport (EDIFACT) and are part of the United Nations Trade Data Interchange Directory (UNTDID) which also includes both batch and interactive Message Design Guidelines. This part of ISO 9735 may be used in any application, but messages using these rules may only be referred to as EDIFACT messages if they comply with other guidelines, rules and directories in the UNTDID. For UN/EDIFACT interactive messages, the message design rules for interactive usage apply. These rules are maintained in the UNTDID. Communications specifications and protocols are outside the scope of this part of ISO 9735. This is a new part, which has been added to ISO 9735. It provides for the exchange of EDIFACT messages in an interactive (conversational) EDI environment. Interactive EDI (I-EDI) is characterized by the following: - a formalized association between the two parties using a dialogue; - the ability, dynamically, to direct the course of the I-EDI transaction, depending upon the result of earlier exchanges within the dialogue; - short response times; - all the messages exchanged within one dialogue relate to the same business transaction; - a transaction is a controlled set of dialogues which can take place between two or more parties. These characteristics differentiate I-EDI from batch EDI which is specified in ISO 9735-2 (syntax rules specific to batch EDI). For consistency and in order to simplify the implementation of the standard for those users who wish to utilize both batch and interactive processing, this part of ISO 9735 has been aligned as far as possible with ISO 9735-2. # Electronic data interchange for administration, commerce and transport (EDIFACT) — Application level syntax rules (Syntax version number: 4, Syntax release number: 1) — ## Part 3: # Syntax rules specific to interactive EDI #### 1 Scope This part of ISO 9735 specifies syntax rules specifically for the transfer of interactive messages to be interchanged between computer application systems. For the transfer of packages in an interactive environment, see ISO 9735-8. #### 2 Conformance Whereas this part shall use a version number of "4" in the mandatory data element 0002 (Syntax version number), and shall use a release number of "01" in the conditional data element 0076 (Syntax release number), each of which appear in the segment UNB (Interchange header), interchanges continuing to use the syntax defined in the earlier published versions shall use the following Syntax version numbers, in order to differentiate them from each other and from this part: - ISO 9735:1988: Syntax version number: 1 - ISO 9735:1988 (amended and reprinted in 1990): Syntax version number: 2 - ISO 9735:1988 and its Amendment 1:1992: Syntax version number: 3 - ISO 9735:1998: Syntax version number: 4 Conformance to a standard means that all of its requirements, including all options, are supported. If all options are not supported, any claim of conformance shall include a statement which identifies those options to which conformance is claimed. Data that is interchanged is in conformance if the structure and representation of the data conforms to the syntax rules specified in this part of ISO 9735. Devices supporting this part of ISO 9735 are in conformance when they are capable of creating and/or interpreting the data structured and represented in conformance with the standard. Conformance to this part of ISO 9735 shall include conformance to ISO 9735-1 and ISO 9735-10. When identified in this part of ISO 9735, provisions defined in related standards shall form part of the conformance criteria. #### Normative references The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 9735. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 9735 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards. ISO 9735-1:2002, Electronic data interchange for administration, commerce and transport (EDIFACT) — Application level syntax rules (Syntax version number: 4, Syntax release number: 1) — Part 1: Syntax rules common to all parts ISO 9735-10:2002, Electronic data interchange for administration, commerce and transport (EDIFACT) — Application level syntax rules (Syntax version number: 4, Syntax release number: 1) — Part 10: Syntax service directories #### Terms and definitions For the purposes of this part of ISO 9735, the terms and definitions given in ISO 9735-1 apply. #### I-EDI interchange structure 5 The service string advice (if used) and the header and trailer service segments shall appear in an I-EDI interchange in the order shown in Figure 1. Figure 1 — I-EDI interchange structure In Figure 1, the lines to the left show the pairing of header and trailer segments. For simplicity, an interchange containing only one message is shown. For the specification of the service string advice, see ISO 9735-1:2002, annex A. For the specification of the interactive header and trailer segments, see ISO 9735-10. NOTE Segments for use in UN/EDIFACT messages are defined in the United Nations Trade Data Interchange Directory (UNTDID). # 6 I-EDI message within a transaction NOTE The default service characters are used for illustrative purposes. Figure 2 — I-EDI message within a transaction #### Legend: #### An I-EDI TRANSACTION contains: — Dialogue(s) #### A **DIALOGUE** contains: - an Initiator Interchange - a corresponding Responder Interchange #### An INITIATOR INTERCHANGE contains: - UNA, Service String Advice, if used - UIB, Interactive Interchange Header - message(s), if used - UIZ, Interactive Interchange Trailer #### A RESPONDER INTERCHANGE contains: - UIB, Interactive Interchange Header - message(s), if used - UIZ, Interactive Interchange Trailer #### A **MESSAGE** contains: - UIH, Interactive Message Header - a message body - UIT, Interactive Message Trailer #### A MESSAGE BODY contains: — segment(s) and/or segment group(s) #### A **SEGMENT GROUP** contains: - a trigger segment - segments(s) and possibly segment group(s) #### A **SEGMENT** contains: - a segment tag - stand-alone data element(s) and/or composite data element(s) and/or repeating stand-alone data element(s) and/or repeating composite data element(s) #### A REPEATING STAND-ALONE DATA ELEMENT is: - one or more occurrences of the same stand-alone data element #### A REPEATING COMPOSITE DATA ELEMENT is: — one or more occurrences of the same composite data element #### A COMPOSITE DATA ELEMENT contains: - two or more component data elements #### A COMPONENT DATA ELEMENT is: - a simple data element #### A STAND-ALONE DATA ELEMENT is: a simple data element #### A SIMPLE DATA ELEMENT contains: a single data element value Figure 2 — I-EDI message within a transaction (continued) # 7 Dialogue control An I-EDI transaction, which is an instance of a particular scenario, consists of one or more dialogues, occurring either concurrently or sequentially between two or more parties. A dialogue consists of an interleaved pair of EDIFACT interchanges; an initiator interchange and a responder interchange. The following transfers shall take place: - An initiator begins a dialogue by sending an interchange header segment to a responder, optionally preceded by a UNA, and optionally followed by a message. - The responder replies to the initiator with an interchange header segment, optionally followed by a message (note that the values of the UNA sent by the initiator also apply to the responder). - The initiator sends a guery message to the responder. - The responder replies to the initiator with a response message. - The initiator and responder exchange additional messages, as necessary. - The initiator ends the dialogue by sending an interchange trailer segment to the responder, optionally preceded by a message. - The responder replies to the initiator with an interchange trailer segment, optionally preceded by a message. The following variations are possible: For each message from the initiator to the responder there may be zero, one, or more than one message from the responder to the initiator, and vice versa. UIR service segments may be interleaved with messages. A dialogue can be prematurely terminated at any time by either party, by using a UIR service segment. A message or messages may be combined with: - the interchange header, or - the interchange trailer, or - both the interchange header and the interchange trailer (a complete dialogue). Whilst exchange of data controlled by the initiator is a common mode of operation for interactive applications, the I-EDI syntax does not exclude other modes of operation. See annex A for examples. Figure 3 shows a flow diagram of two interchanges which together form a dialogue. The arrows indicate the direction of data flow. Note that UNA is only sent by initiator. The status indicates Mandatory (M) or Conditional (C), together with an indication of allowed repetition. Figure 3 — Flow diagram of two I-EDI interchanges # Annex A (informative) # **Examples illustrating segment sequences** ``` Example a) Message pairs with first and final message combined with interchange header and trailer: Initiator UIB...UIH...Segment(s) and/or Segment Group(s)...UIT Responder UIB...UIH...Segment(s) and/or Segment Group(s)...UIT Initiator UIH...Segment(s) and/or Segment Group(s)...UIT Responder UIH...Segment(s) and/or Segment Group(s)...UIT UIH...Segment(s) and/or Segment Group(s)...UIT Initiator Responder UIH...Segment(s) and/or Segment Group(s)...UIT etc. UIH...Segment(s) and/or Segment Group(s)...UIT...UIZ Initiator UIH...Segment(s) and/or Segment Group(s)...UIT...UIZ Responder Example b) Message pairs with separate interchange header and trailer, and with UNA (note that UNA is only sent by initiator, and therefore also applies to responder): Initiator UNA...UIB Responder UIB Initiator UIH...Segment(s) and/or Segment Group(s)...UIT UIH...Segment(s) and/or Segment Group(s)...UIT Responder Initiator UIH...Segment(s) and/or Segment Group(s)...UIT UIH...Segment(s) and/or Segment Group(s)...UIT Responder Initiator UIH...Segment(s) and/or Segment Group(s)...UIT Responder UIH...Segment(s) and/or Segment Group(s)...UIT etc. Initiator UIZ Responder Example c) A single message combined with interchange header and trailer (a complete dialogue): Initiator UIB... UIH...Segment(s) and/or Segment Group(s)...UIT...UIZ UIB... UIH...Segment(s) and/or Segment Group(s)...UIT...UIZ Responder Example d) Multi-message sequences with final message combined with interchange trailer: Initiator UIB Responder UIB UIH....Segment(s) and/or Segment Group(s)...UIT Initiator UIH(F).Segment(s) and/or Segment Group(s)...UIT Responder ``` ``` UIH(L).Segment(s) and/or Segment Group(s)...UIT Initiator UIH....Segment(s) and/or Segment Group(s)...UIT...UIZ Responder UIH....Segment(s) and/or Segment Group(s)...UIT...UIZ Message pairs with separate interchange header and trailer, with UNA, and with embedded UIR Example e) pairs: Initiator UNA...UIB IITR Responder Initiator UIH...Segment(s) and/or Segment Group(s)...UIT Responder UIH...Segment(s) and/or Segment Group(s)...UIT etc. Initiator UIR...Report function, coded = 'n' (Query status) UIR...Report function, coded = 'n' (Status report) Responder Initiator UIH...Segment(s) and/or Segment Group(s)...UIT UIH...Segment(s) and/or Segment Group(s)...UIT Responder etc. Initiator UTZ Responder UIZ Message pairs with separate interchange header and trailer, and with UNA. UIR used to report Example f) severe error detected by Responder: Initiator UNA...UIB Responder UIB Initiator UIH...Segment(s) and/or Segment Group(s)...UIT Responder UIH...Segment(s) and/or Segment Group(s)...UIT UIH...Segment(s) and/or Segment Group(s)...UIT Initiator Responder UIH...Segment(s) and/or Segment Group(s)...UIT Initiator UIH...Segment(s) and/or Segment Group(s)...UIT UIR...Report function, coded = 'n' (Abort dialogue) Responder Reason code indicates problem area No further exchanges in this dialogue. Example g) Dialogue unable to start. UIR used by Responder to report Start Dialogue Reject: Initiator UNA...UIB UIR...Report function, coded = 'n' (Start dialogue reject) Responder Reason code indicates problem area No further exchanges in this dialogue. ``` # Example h) Message pairs with first and final message combined with interchange header and trailer, and using pause and continue: ``` UIB...UIH...Segment(s) and/or Segment Group(s)...UIT Initiator UIB...UIH...Segment(s) and/or Segment Group(s)...UIT Responder UIH...Segment(s) and/or Segment Group(s)...UIT Initiator UIH...Segment(s) and/or Segment Group(s)...UIT Responder Responder UIR...Report function, coded = 'n' (Pause dialogue) Reason code indicates reason for pause; e.g. low resources No more data flows in dialogue until:- Some time later... Responder UIR...Report function, coded = 'n' (Continue dialogue) UIH...Segment(s) and/or Segment Group(s)...UIT Initiator UIH...Segment(s) and/or Segment Group(s)...UIT Responder etc. Initiator UIH...Segment(s) and/or Segment Group(s)...UIT...UIZ UIH...Segment(s) and/or Segment Group(s)...UIT...UIZ Responder ``` ISO 9735-3:2002(E) # Annex B (informative) # I-EDI functions, states and events #### **B.1 I-EDI functions** In the following sections, the word "application" can mean either the main application program, or that part of the I-EDI handler which manages the I-EDI dialogue, depending upon the implementation. The word "association" here refers to a logical relationship between two applications, not to any other meaning which may be used in other standards. Note that the following function points do not necessarily map to a single service segment or message. #### Start dialogue request Allows an application to pass sufficient information to a remote application to enable an association between the two applications to be initiated. #### Start dialogue confirm Allows the remote application to pass sufficient information to an initiating application to inform it that the association has been accepted. #### Start dialogue reject Allows the remote application to pass sufficient information to an initiating application to inform it that the association cannot be initiated. #### Transfer data Allows an application to pass business information to another application. #### Request status Allows an application to request status or control information from the other application, in the association. #### Report status (reply) Allows an application to send status or control information to the other application in the association. This can be sent as a reply to a request status, or as an unsolicited incident report. #### Report error (reply) Allows an application to report a syntax error to the other application. It also allows an application error together with a start dialogue reject to be reported. #### Pause dialogue Allows an application to request that the dialogue be paused until the same application issues a continue dialogue. #### Continue dialogue Allows an application to request that the dialogue that it has previously paused be continued. #### Abort dialogue Allows an application unconditionally to end an association when it is unable to continue with that association. #### End dialogue request Allows an application to request the other application in the association to close the association, typically at the normal end of a business transaction. #### End dialogue confirm Allows a responding application to confirm to the requesting application that the association is terminated. #### Complete dialogue request Allows an application to pass sufficient information to a remote application to enable an association between the two applications to be initiated, data to be sent, and the association termination requested in a single transfer. #### Complete dialogue confirm Allows the remote application to pass sufficient information to an initiating application to inform it that the association has been accepted, data has been returned, and the association has been terminated in a single transfer. #### **B.2 Data requirements** Table B.1 indicates how the abstract I-EDI functions can be mapped to I-EDI service segments and messages. The S (Status) field indicates whether a segment is mandatory or conditional within an I-EDI function. The R field indicates the number of repetitions Table B.1 — Functions mapped to service segments | Functions | Segments | S | R | |---------------------------|-------------------------|---|---| | Start Dialogue Request | UNA | С | 1 | | | UIB | М | 1 | | | (UIH <data> UIT)</data> | С | n | | Start Dialogue Confirm | UIB | М | 1 | | | (UIH <data> UIT)</data> | С | n | | Start Dialogue Reject | UIR | М | 1 | | Transfer Data | UIH <data> UIT</data> | М | n | | Request Status | UIR | М | 1 | | Report Status | UIR | М | 1 | | Report Error | UIR | М | 1 | | Abort | UIR | М | 1 | | End Dialogue Request | (UIH <data> UIT)</data> | С | n | | | UIZ | М | 1 | | End Dialogue Confirm | (UIH <data> UIT)</data> | С | n | | | UIZ | М | 1 | | Complete Dialogue Request | UNA | С | 1 | | | UIB | М | 1 | | | (UIH <data> UIT)</data> | М | n | | | UIZ | М | 1 | | Complete Dialogue Confirm | UIB | М | 1 | | | (UIH <data> UIT)</data> | М | n | | | UIZ | М | 1 | ## **B.3 Sequencing of I-EDI functions** #### **B.3.1 General** The I-EDI protocol is described in the following diagram and tables in terms of the states the protocol can be in, and the events which cause a transition from one state to another. As each event occurs the protocol "machine" moves automatically from state to state. The number of valid states the I-EDI protocol can be in is finite. The dialogue state diagram (Figure B.1) shows the states of the I-EDI protocol, the events affecting the I-EDI protocol, and the transitions from state to state. This is further formalized as a state-event matrix (Table B.4) which is a two dimensional representation of the I-EDI protocol machine. The two dimensions are states and events, and the intersection of state and event gives the transition to the next state for that particular event; all other events are error conditions. #### B.3.2 State At any instant, the I-EDI protocol can be said to be in one of a finite number of states. Table B.2 lists the valid states for the I-EDI protocol and describes the purpose of the state. Table B.2 — States | State | Description | |----------|---------------------------------------------------------------------| | IDLE | No association exists and no responses are outstanding | | START_I | Waiting for 'Start Dialogue Confirm' from responder to initiator | | DATA_I | Waiting for 'Transfer Data' from responder to initiator | | DATA_R | Waiting for 'Transfer Data' from initiator to responder | | REPORT_I | Waiting for 'Report Status' from responder to initiator | | REPORT_R | Waiting for 'Report Status' from initiator to responder | | STOP_I | Waiting for 'End Dialogue Confirm' from responder to initiator | | CMPL_I | Waiting for 'Complete Dialogue Confirm' from responder to initiator | #### **B.3.3 Event** Table B.3 lists the valid events for the I-EDI protocol and describes the conditions attached to those events. These events are usually caused by data objects or control objects being transferred through the protocol handler. ### Table B.3 — Events | Event | Function | Direction | |-----------|---------------------------|-----------------------------| | SD_REQ_I | Start Dialogue Request | From Initiator to Responder | | SD_CNF_R | Start Dialogue Confirm | From Responder to Initiator | | SD_REJ_R | Start Dialogue Reject | From Responder to Initiator | | TR_DATA_I | Transfer Data | From Initiator to Responder | | TR_DATA_R | Transfer Data | From Responder to Initiator | | ED_REQ_I | End Dialogue Request | From Initiator to Responder | | ED_CNF_R | End Dialogue Confirm | From Responder to Initiator | | ABORT_I | Abort Dialogue | From Initiator to Responder | | ABORT_R | Abort Dialogue | From Responder to Initiator | | REQUEST_I | Request Status | From Initiator to Responder | | REQUEST_R | Request Status | From Responder to Initiator | | REP_ST_I | Report Status | From Initiator to Responder | | REP_ST_R | Report Status | From Responder to Initiator | | CD_REQ_I | Complete Dialogue Request | From Initiator to Responder | | CD_CNF_R | Complete Dialogue Confirm | From Responder to Initiator | #### Key $(F \cup I)$ First or Intermediate message (L) **L**ast message Figure B.1 — Dialogue state diagram Table B.4 — State-event matrix | Event | State | | | | | | | | |---------------------------------------------------------------|---------|---------|----------|----------|--------|--------|----------|-------------------| | Event | IDLE | START_I | DATA_I | DATA_R | STOP_I | CMPL_I | REPORT_I | REPORT_R | | SD_REQ_I | START_I | | | | | | | | | SD_CNF_R | | DATA_R | | | | | | | | SD_REJ_R | | IDLE | | | | IDLE | | | | TR_DATA_I(F∪I) | | | | DATA_R | | | | | | TR_DATA_I(L) | | | | DATA_I | | | | | | TR_DATA_R(F∪I) | | | DATA_I | | | | | | | TR_DATA_R(L) | | | DATA_R | | | | | | | ED_REQ_I | | | | STOP_I | | | | | | ED_CNF_R | | | | | IDLE | | |), a | | ABORT_I | | IDLE | IDLEa | IDLE | IDLEa | IDLE | IDLEa | IDLE | | ABORT_R | | | IDLE | IDLEa | IDLE | | IDLE | IDLE ^a | | REQUEST_I | | | | REPORT_I | | | | | | REQUEST_R | | | REPORT_R | | | | | | | REP_ST_I | | | | DATA_R | | | | DATA_I | | REP_ST_R | | | DATA_I | | | | DATA_R | | | CD_REQ_I | CMPL_I | | | | | | | | | CD_CNF_R | | | | | | IDLE | | | | Might not be possible if communication medium is half-duplex. | | | | | | | | | # Annex C (informative) # A model of the I-EDI process # C.1 Summary of I-EDI Interactive EDI is a series of exchanges of information between the applications of independent parties in order to accomplish a joint task, where subsequent exchanges may depend upon the results of previous exchanges. Strict timing constraints frequently apply. Applications which are inherently interactive include airline reservation systems; healthcare pharmacy, claims submission and eligibility verification; and remote automated teller machines for banks. Initially, Interactive EDI is aimed at those applications where the initiating party, sends data to the responder, and the responder sends data back in reply. This alternate exchange of data controlled by the initiator is by far the most common way of working among existing interactive applications, but the I-EDI syntax does not exclude other modes of working. The definition of interactive EDI depends upon the definition of EDI in general. The approach taken towards EDI in this document has been based on the "Report on the Open-edi Conceptual Model" prepared by the EDI Special Working Group of ISO/IEC JTC 1. Characteristics of the "Open-edi Conceptual Model" include: - generalizing EDI beyond trade; - defining EDI as "open" (available to all parties, according to standards and without requiring special bipartite agreements); - co-ordinating EDI with other International Standards in communications, modelling and open environments. Two major elements of the business context of EDI have made the development of interactive EDI necessary. The first is pressure from the market on many organizations (not just in the private sector) for more competitive, more responsive performance. Many fundamental processes must, in fact, be "remodelled" to respond to these pressures. The second element is the desire for standard solutions, in contrast to the current proprietary (and therefore "non-Open-edi") situations. The following guiding principles were adopted in defining I-EDI requirements: - Ease of user implementation is paramount and standards should define their elements accordingly. - Interactive EDI mechanisms should be fully compatible with and where possible identical to those for other forms of EDI. - The required functions should be available no matter what communications methods are used. - Wherever equivalent functions are available in the underlying communications protocols (e.g. X.25, OSI Transaction Processing) they may be used. - EDI standards should be fully harmonized with all other relevant International Standards. The business and functional models, and the contents of the information required in interactive EDI service segments, have been described below, to present the characteristics and requirements of interactive EDI independently of an underlying architecture. It is recommended though, but not mandatory, that the relevant ISO protocols be used to carry I-EDI data. ### C.2 Business requirements of Interactive EDI - Enable consistent completion of a single business transaction between two or more business partners. - Interactive conversational activities must be supported. - Provide for the handling of high volumes of business information, in a timely manner. - Provide the means for business information to be passed securely between business partners. # C.3 Functional requirements to support business requirements Within a business transaction: - Enable co-operation between applications. - Enable multiple bilateral conversations. - Enable the co-ordination of bilateral conversations. - Enable cascading of bilateral conversations. - Enable the two way exchange of I-EDI messages within a bilateral conversation. - Provide efficient mechanisms to allow for sub-second response times. - Support high transaction volumes through reduced overhead. - Security shall be provided by common UN/EDIFACT security, or other standards. #### C.4 Business model The I-EDI dialogue is separate from and independent of, dialogue as a term used in other ISO documents. Figure C.1 — Overview of types and instances A scenario is a formal specification of a group of business activities that take place between parties to achieve a particular business objective. A scenario models the relationships and interactions among the parties. A transaction is an instance of a scenario. When roles are played in a scenario to execute an actual business transaction, a transaction is created. Transactions are outlined here simply to clarify the context of the dialogue. In order to carry out a transaction, the various parties involved in the business transaction communicate bilaterally using dialogues for the I-EDI part of the transaction. Transactions have the potential of grouping a number of dialogues. But many scenarios can be modelled which contain only a single dialogue type between two parties, an instance of which is a transaction containing only a single dialogue between two parties. Figure C.2 — Illustration of a business transaction Dialogues can be grouped together within the same transaction. Multiple dialogues can take place between the same or different pairs of parties. # **C.5 Functional Model** Figure C.3 — Dialogue # **C.6 Minimum communication requirements** | | · | |------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | The | e communications shall: | | _ | be error free; | | _ | deliver data in the order in which it was transmitted; | | | allow bi-directional data flows; | | | provide detection and reporting of lost logical associations; | | _ | provide a persistent logical association between applications (e.g. session, conversation, etc.). Each I-EDI dialogue would then have its own unique logical association. If this requirement cannot be met, implementers will have to deal with problems associated with separators and character set recognition. | | C.7 | 7 Data requirements | | list | e following list is an attempt to provide a list of the data which are needed to perform the named functions. The was used for modelling the service segments but the presence of a function here does not necessarily trantee the existence of a unique service segment, as some service segments perform multiple functions. | | Sta | rt dialogue request; (UNA, UIB and optional message) | | | Separator characters | | | Character set | | _ | Syntax identifier | | _ | Dialogue reference | | _ | Business transaction reference | | | Scenario identifier | | | Dialogue identifier | | | Sender identifier | | _ | Recipient identifier | | | Date and time | | _ | Duplicate indicator | | _ | Test indicator | | | Security information | | Sta | rt dialogue confirm; (UIB and optional message) | | _ | Syntax identifier | | | Dialogue reference | | | Business transaction reference | | | Scenario identifier | | | Sender identifier | |-----|-------------------------------------------------| | | Recipient identifier | | | Date and time | | | Duplicate indicator | | | Test indicator | | | Response information | | | Security information | | Ser | nd data; (Message = UIH, query or command, UIT) | | | Message identifier or type | | | Message reference | | | Dialogue reference | | | Status of transfer | | | Date and time | | | Test Indicator | | Red | ceive data; (Message = UIH, response, UIT) | | | Message identifier or type | | | Message reference | | | Dialogue reference | | | Status of transfer | | | Date and time | | _ | Test Indicator | | Red | quest status; (UIR) | | | Dialogue reference | | | Function (= Query) | | | Date and time | | Rep | port status; (UIR) | | | Dialogue reference | | _ | Function (= Report) | | _ | Reason code | | _ | Other information from message in error | | | Date and time | | | | Dialogue identifier # ISO 9735-3:2002(E) | Sta | Start dialogue reject; (UIR) | | | | | |--------------------------------------------------|------------------------------------------------|--|--|--|--| | _ | Dialogue reference | | | | | | _ | Function (= Start dialogue reject) | | | | | | _ | Reason code | | | | | | _ | Other information from dialogue in error | | | | | | _ | Date and time | | | | | | Pau | se dialogue; (UIR) | | | | | | | Dialogue reference | | | | | | | Function (= Paused) | | | | | | _ | Reason code | | | | | | | Date and time | | | | | | Cor | ntinue dialogue; (UIR) | | | | | | | Dialogue reference | | | | | | | Function (= Continue) | | | | | | | Date and time | | | | | | Abo | ort; (UIR) | | | | | | _ | Dialogue reference | | | | | | | Function (= Abort dialogue) | | | | | | _ | Reason code | | | | | | _ | Other Information from message in error | | | | | | _ | Date and time | | | | | | End | I dialogue request; (optional message and UIZ) | | | | | | _ | Dialogue reference | | | | | | _ | Control count of messages sent | | | | | | _ | Duplicate indicator | | | | | | End dialogue confirm; (optional message and UIZ) | | | | | | | _ | Dialogue reference | | | | | | _ | Control count of messages sent | | | | | | | | | | | | ISO 9735-3:2002(E) ICS 35.240.60 Price based on 22 pages $\ensuremath{\texttt{©}}$ ISO 2002 – All rights reserved