INTERNATIONAL STANDARD ISO 9361-2 Second edition 2011-12-15 # Indexable inserts for cutting tools — Ceramic inserts with rounded corners — #### Part 2: # Dimensions of inserts with cylindrical fixing hole Plaquettes amovibles pour outils coupants — Plaquettes en céramique avec arrondi de pointe — Partie 2: Dimensions des plaquettes avec trou de fixation cylindrique #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2011 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 9361-2 was prepared by Technical Committee ISO/TC 29, Small tools, Subcommittee SC 9, Tools with cutting edges made of hard cutting materials. This second edition cancels and replaces the first edition (ISO 9261-2:1991), which has been technically revised. ISO 9361 consists of the following parts, under the general title *Indexable inserts for cutting tools* — *Ceramic inserts with rounded corners*: - Part 1: Dimensions of inserts without fixing hole - Part 2: Dimensions of inserts with cylindrical fixing hole ## Indexable inserts for cutting tools — Ceramic inserts with rounded corners — #### Part 2: ## Dimensions of inserts with cylindrical fixing hole #### 1 Scope This part of ISO 9361 specifies the dimensions of indexable ceramic inserts with rounded corners, with cylindrical fixing hole, with 0° normal clearance. These inserts are primarily intended to be mounted by top and hole clamping or hole clamping alone on external and internal turning tools. Ceramic cutting materials consist of a variety of oxides, nitrides and carbides. In contrast with hardmetals (including cermets), ceramics do not have a metallic binding matrix. Such ceramic materials are, for example, oxide ceramics (consisting primarily of aluminium oxide Al₂O₃), carboxide ceramics (consisting generally of a mixture of aluminium oxide and other materials, such as titanium carbide TiC) and nitride ceramics (consisting generally of a mixture of silicon nitride and other materials, such as yttrium oxide Y₂O₃ and aluminium oxide). #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 1832:2004, Indexable inserts for cutting tools — Designation ISO 9361-1, Indexable inserts for cutting tools — Ceramic inserts with rounded corners — Part 1: Dimensions of inserts without fixing hole #### 3 Types of inserts The types of indexable ceramic inserts specified in this part of ISO 9361 are the following: - TN: triangular inserts, with 0° normal clearance; - SN: square inserts, with 0° normal clearance; - CN: rhombic inserts, with 0° normal clearance and 80° included angle; - DN: rhombic inserts, with 0° normal clearance and 55° included angle; - VN: rhombic inserts, with 0° normal clearance and 35° included angle; - RN: round inserts, with 0° normal clearance. Inserts dealt with in this part of ISO 9361 are standardized without chip breakers. In general, the inserts are used with chamfered and rounded cutting edges (see Clause 6). Table B.1 gives the range of sizes for the inserts (see Annex B). #### 4 Tolerances The indexable ceramic inserts, which are the subject of this part of ISO 9361, are provided in tolerance classes in accordance with ISO 1832. Other tolerances are given in Tables 1 to 7. #### 5 Fixing hole In order to guarantee interchangeability when mounting the insert, the diameter, d_1 , of the fixing hole, is related to the diameter, d, of the inscribed circle of the insert according to Table 1. Table 1 — Fixing hole Dimensions in millimetres | d | | 9,525 | 12,7 | 15,875 | 19,05 | |---|--------|-------|------|--------|-------| | d | ± 0,08 | 3,81 | 5,16 | 6,35 | 7,94 | #### 6 Cutting edge #### 6.1 Cutting edge condition The cutting edge condition of the indexable ceramic inserts (see Figures 1 and 2) specified in this part of ISO 9361 shall be selected from those specified in ISO 1832. Figure 1 — Cutting edge condition 1 in this part of ISO 9361 related to ISO 1832 Figure 2 — Cutting edge condition 2 in this part of ISO 9361 related to ISO 1832 #### 6.2 Additional information The dimensions of chamfered cutting edges T, S, K or P may be specified, following the letter symbol for cutting edge condition in accordance with ISO 1832, namely symbols 8 and 10. NOTE In the case of cutting edge conditions K and P, the first chamfer, $b_{\gamma 1}$, defined in accordance with Figure 2, is at the manufacturer's discretion and is not part of the additional information (i.e. five-digit number) as described in 6.2. EXAMPLE A chamfered cutting edge T on an insert TN.A160412 with b_{γ} = 0,2 mm and $\gamma_{\rm b}$ = 20° is designated as follows, including the required additional information: TN.A160412T 02020 #### 7 Designation and marking #### 7.1 Designation The designation of the indexable ceramic inserts which form the subject of this part of ISO 9361 shall conform to ISO 1832. In addition to this designation, one or both of the following may be indicated: - the number symbol for the additional information on cutting edge dimensions, in accordance with 6.2; - the commercial designation of the ceramic grade. #### 7.2 Marking The following symbol, at least, shall be marked on the insert itself (except when this is difficult to carry out on smaller inserts): symbol of the commercial designation of the ceramic grade. #### 8 Measurement Annex A indicates the methods of measuring the dimension m of the indexable inserts covered by this part of ISO 9361. #### 9 Recommended dimensions #### 9.1 General The choice of the more common dimensions is restricted to the values given in Tables 3 to 7. It is strongly recommended that these standard inserts be used each time wherever possible (first preference). When other inserts are required, their dimensions shall be selected from the non-shaded areas of Table B.1 (second preference). Inserts corresponding to the dimensions given in the shaded areas of this table are not recommended. NOTE The m dimensions are calculated using the exact values, rounded off to the third decimal point, of the corner radius, r_{ϵ} , in accordance with Table 2. Table 2 — Values of r_{ε} used for calculation of dimension m | Designation of $r_{ m \epsilon}$ | 04 | 08 | 12 | 16 | 20 | 24 | |--|-------|-------|-------|-------|-------|-------| | Calculation value of r_{ϵ} , mm | 0,397 | 0,794 | 1,191 | 1,588 | 1,984 | 2,381 | #### 9.2 Triangular inserts Figure 3 — Triangular inserts Table 3 — Dimensions of triangular inserts Dimensions in millimetres | Insert | <i>l</i> ≈ | d | S | m | <i>r</i> ε
± 0,1 | <i>d</i> ₁ ± 0,08 | |------------|------------|-------|------|--------|---------------------|------------------------------| | TN.A160404 | | | | 13,891 | 0,4 | | | TN.A160408 | 40.5 | 0.505 | 4,76 | 13,494 | 0,8 | 3,81 | | TN.A160412 | 16,5 | 9,525 | | 13,097 | 1,2 | | | TN.A160416 | | | | 12,7 | 1,6 | | | TN.A220608 | | | 6,35 | 18,256 | 0,8 | | | TN.A220612 | 22 | 10.7 | | 17,859 | 1,2 | 5,16 | | TN.A220616 | 22 | 12,7 | | 17,463 | 1,6 | | | TN.A220620 | | | | 17,066 | 2 | | #### Square inserts 9.3 Figure 4 — Square inserts Table 4 — Dimensions of square inserts Dimensions in millimetres | Insert | d | , , , , , , , , , , , , , , , , , , , | 700 | r_{ϵ} | d ₁ | | | | |------------|--------|---------------------------------------|-------|----------------|----------------|-------|-----|------| | Insert | а | S | m | ± 0,1 | ± 0,08 | | | | | SN.A120404 | | | 2,466 | 0,4 | | | | | | SN.A120408 | 12,7 | 4.76 | 2,301 | 0,8 | 5,16 | | | | | SN.A120412 | 12,7 | 4,76 | 2,137 | 1,2 | 5,10 | | | | | SN.A120416 | | | 1,972 | 1,6 | | | | | | SN.A120608 | | 6,35 | 2,031 | 0,8 | | | | | | SN.A120612 | 12,7 | | 6 3 5 | 6 35 | 6 35 | 2,137 | 1,2 | 5,16 | | SN.A120616 | 12,7 | | 1,972 | 1,6 | 3,10 | | | | | SN.A120620 | | | 1,808 | 2 | | | | | | SN.A150612 | | | 2,795 | 1,2 | | | | | | SN.A150616 | 15,875 | 6,35 | 2,63 | 1,6 | 6,35 | | | | | SN.A150620 | | | 2,466 | 2 | | | | | ### 9.4 Rhombic inserts with 80° included angle Figure 5 — Rhombic inserts with 80° included angle Table 5 — Dimensions of rhombic inserts with 80° included angle Dimensions in millimetres | luna aut | l | | _ | a | <i>m</i> 2 | r_{ϵ} | d ₁ | |------------|------|--------|------|------------------|------------|----------------|----------------| | Insert | ≈ | d | S | $S \qquad m_1^a$ | | ± 0,1 | ± 0,08 | | CN.A120404 | | | | 3,308 | 1,818 | 0,4 | | | CN.A120408 | 12.0 | 10.7 | 4.76 | 3,088 | 1,697 | 0,8 | F 16 | | CN.A120412 | 12,9 | 12,7 | 4,76 | 2,867 | 1,576 | 1,2 | 5,16 | | CN.A120416 | | | | 2,647 | 1,455 | 1,6 | | | CN.A120608 | | 40.7 | 6,35 | 3,088 | 1,697 | 0,8 | | | CN.A120612 | 12,9 | | | 2,867 | 1,576 | 1,2 | 5,16 | | CN.A120616 | 12,9 | 12,7 | | 2,647 | 1,455 | 1,6 | 5,10 | | CN.A120620 | | | | 2,426 | 1,334 | 2 | | | CN.A160612 | | | | 3,749 | 2,061 | 1,2 | | | CN.A160616 | 16,1 | 15,875 | 6,35 | 3,529 | 1,393 | 1,6 | 6,35 | | CN.A160620 | | | | 3,308 | 1,818 | 2 | | ### Rhombic inserts with 55° included angle Figure 6 — Rhombic inserts with 55° included angle Table 6 — Dimensions of rhombic inserts with 55° included angle Dimensions in millimetres | Insert | l | d | | | r_{ϵ} | d_1 | |------------|------|------|------|-------|----------------|--------| | msert | ≈ | a | S | m | ± 0,1 | ± 0,08 | | DN.A150408 | | | | 6,478 | 0,8 | | | DN.A150412 | 15,5 | 12,7 | 4,76 | 6,015 | 1,2 | 5,16 | | DN.A150416 | | | | 5,552 | 1,6 | | | DN.A150608 | | | | 6,478 | 0,8 | | | DN.A150612 | 15,5 | 10.7 | 6.25 | 6,015 | 1,2 | 5,16 | | DN.A150616 | 13,3 | 12,7 | 6,35 | 5,552 | 1,6 | 5,10 | | DN.A150620 | | | | 5,09 | 2 | | ### 9.6 Rhombic inserts with 35° included angle Figure 7 — Rhombic inserts with 35° included angle Table 7 — Dimensions of rhombic inserts with 35° included angle Dimensions in millimetres | Insert | l | d | S | m | r_{ϵ} | <i>d</i> 1 | |------------|------|-------|--------|----------|----------------|------------| | Ilisert | ≈ | и | .5 | <i>m</i> | ± 0,1 | ± 0,08 | | _ | | | | 10,66 | 0,2 | | | VN.A160404 | 40.0 | 0.525 | - 4,76 | 10,152 | 0,4 | 3,81 | | VN.A160408 | 16,6 | 9,525 | | 9,229 | 0,8 | | | VN.A160412 | | | | 8,285 | 1,2 | | | _ | | | | 13,837 | 0,4 | | | VN.A220408 | 22.4 | 10.7 | | 12,907 | 0,8 | E 16 | | VN.A220412 | 22,1 | 12,7 | | 11,976 | 1,2 | 5,16 | | VN.A220416 | | | | 11,046 | 1,6 | | #### 9.7 Round inserts See Figure 8 and Table 8. Figure 8 — Round inserts #### Table 8 — Dimensions of round inserts Dimensions in millimetres | Insert | d | S | <i>d</i> ₁ ± 0,08 | |------------|--------|------|------------------------------| | RN.A120400 | 12,7 | 4,76 | 5,16 | | RN.A150600 | 15,875 | 6,35 | 6,35 | | RN.A190600 | 19,05 | 6,35 | 7,94 | ## Annex A (normative) #### Method of measurement of m dimension #### **A.1 Triangular inserts** Dimension m is related to the side opposite the corner which is being measured. The insert shall be placed on a surface plate, as shown in Figure A.1, and checked by means of a dial gauge zeroed with the aid of a gauge block corresponding to dimension m. The dial gauge then gives a reading of the error when applied to the inserts being measured. Figure A.1 — Triangular insert #### **A.2 Square inserts** Dimension m shall be checked with reference to the diameter, d, of a precision roller, where d corresponds to the nominal diameter of the inscribed circle of the insert. The insert shall be mounted on a 90° V-block, as shown in Figure A.2, and checked by means of a dial gauge, which shall be zeroed to dimension m by means of a roller with the aid of a gauge block. The dial gauge then gives a direct reading of the error when applied to the inserts being measured. Figure A.2 — Square insert #### **Rhombic inserts A.3** Dimension m shall be checked with reference to the diameter, d, of a precision roller, where d corresponds to the nominal size of the inscribed circle of the insert. The insert shall be mounted on a 35°, 55°, 80° or 100° V-block, as shown in Figure A.3, and checked by means of a dial gauge, which shall be zeroed to dimension *m* by means of a roller with the aid of a gauge block. The dial gauge then gives a direct reading of the error when applied to the inserts being measured. Figure A.3 — Rhombic insert #### **A.4 Round inserts** The diameter, d, shall be measured with a micrometer or similar device. ### **Annex B** (normative) # Inserts with rounded corners, with cylindrical fixing hole, with shapes covered by this part of ISO 9361 Table B.1 — Range of sizes Dimensions in millimetres | d | Designation | d/2 | Corner radius, r_{ϵ} | | | | | | |--------|-------------|--------------------------------|-------------------------------|-----|-----|-----|---|-----| | | Designation | arz | 0,4 | 0,8 | 1,2 | 1,6 | 2 | 2,4 | | 9,525 | TN.A 1604 | | + | + | + | + | | | | 42.7 | TN.A 2204 | $\mathbb{T} \times \mathbb{T}$ | | | | | | | | 12,7 | TN.A 2206 | $V \setminus$ | | + | + | + | + | | | 40.7 | SN.A 1204 | \ / | + | + | + | + | | | | 12,7 | SN.A 1206 | | | + | + | + | + | | | 15,875 | SN.A 1506 | $] \land$ | | | + | + | + | | | 19,05 | SN.A 1906 | $V \setminus$ | | | | | | | | 40.7 | CN.A 1204 | \ / | + | + | + | + | | | | 12,7 | CN.A 1206 | | | + | + | + | + | | | 15,875 | CN.A 1606 | | | | + | + | + | | | 19,05 | SN.A 1906 | $V \setminus$ | | | | | | | | 40.7 | DN.A 1504 | | | + | + | + | | | | 12,7 | DN.A 1506 | | | + | + | + | + | | | 12,7 | RN.A 120400 | + | | | | | | | | 15,875 | RN.A 150600 | + | | | > | << | | | | 19,05 | RN.A 190600 | + | | | | | | | | 9,525 | VN.A 1604 | | + | + | + | | | | | 12,7 | VN.A 2204 | | | + | + | + | | | ## **Annex C** (informative) ### Relationship between designations in this part of ISO 9361 and the ISO 13399 series #### **C.1** Relationship between designations For the relationship between designations in this part of ISO 9361 and preferred symbols according to the ISO 13399 series, see Table C.1. Table C.1 — Relationship between designations in this part of ISO 9361 and the ISO 13399 series | Symbol in this part
of ISO 9361 | Reference in
this part of
ISO 9361 | Property name in the ISO 13399 series | Symbol in the ISO 13399 series | Reference in the ISO 13399 series | |------------------------------------|--|---------------------------------------|--------------------------------|-----------------------------------| | | Clause 3 | Insert shape code | SC | ISO/TS 13399-2 | | _ | Clause 3 | ilisert shape code | 30 | 71CE7A9F0C79F | | | 6.1 | Cutting edge condition | CECC | ISO/TS 13399-2 | | _ | Figure 1 | code | OLOG | 71DD6C90953D8 | | d | Tables 1, 3, 4, 5, | Inscribed circle | IC | ISO/TS 13399-2 | | a | 6, 7, 8 | diameter | 10 | 71CE7A96D9F7D | | 4. | Tables 1, 3, 4, 5, | Fixing hole diameter | D1 | ISO/TS 13399-2 | | <i>d</i> 1 | 6, 7, 8 | Fixing note diameter | וט | 71CE7A968C8FE | | l | Tables 3, 5, 6, 7 | Cutting edge length | L | ISO/TS 13399-2 | | l l | | | L | 71DD6C95DA49B | | | Tables 2, 4, 6, 7 | m-dimension | M | ISO/TS 13399-2 | | m | Tables 3, 4, 6, 7 | m-dimension | IVI | 71CE7AA0972DB | | | Table 5 | m-dimension | M | ISO/TS 13399-2 | | m_1 | Table 5 | m-dimension | IVI | 71CE7AA0972DB | | | Table 5 | m2-dimension | M2 | ISO/TS 13399-2 | | m_2 | Table 5 | mz-dimension | IVIZ | 71CE7AA05C819 | | | Tables 2, 3, 4, 5, | Company and divis | DE | ISO/TS 13399-2 | | r_{ϵ} | 6, 7 | Corner radius | RE | 71DD6C8ACA503 | | | Tables 3, 4, 5, | Insert thickness | S | ISO/TS 13399-2 | | S | 6, 7, 8 | insert thickness | 3 | 71CE7A9F5308C | | L | 61.62 | Face land size code | EL SC | ISO/TS 13399-2 | | $b_{\gamma} + \gamma_{b}$ | 6.1, 6.2 | race land size code | FLSC | 71DD6C9371B86 | ## **Bibliography** - [1] ISO 883, Indexable hardmetal (carbide) inserts with rounded corners, without fixing hole Dimensions - [2] ISO 3286, Single point cutting tools Corner radii - [3] ISO 3364, Indexable hardmetal (carbide) inserts with rounded corners, with cylindrical fixing hole Dimensions - [4] ISO 3365, Indexable hardmetal (carbide) inserts with wiper edges, without fixing hole Dimensions - [5] ISO 13399 (all parts), Cutting tool data representation and exchange ICS 25.100.01 Price based on 13 pages