INTERNATIONAL STANDARD

ISO 9142

Second edition 2003-12-15

Adhesives — Guide to the selection of standard laboratory ageing conditions for testing bonded joints

Adhésifs — Guide pour la sélection de conditions normales d'essai de vieillissement en laboratoire des assemblages collés

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2003

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents Page

Forewo	ord	. iv
1	Scope	1
	Normative references	
3	Materials	2
4	Apparatus	2
5	Specimens	2
6	Procedure	
7	Expression of results	3
8	Test report	
Annex	A (normative) General conditions of ageing	5
	B (normative) Atmospheric conditions for single-variable ageing	
	C (normative) Atmospheric conditions for multi-variable ageing	
	D (normative) Atmospheric conditions for cyclic ageing	
	E (normative) Special procedures	
	F (normative) Exposure to chemical attack	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 9142 was prepared by Technical Committee ISO/TC 61, Plastics, Subcommittee SC 11, Products.

This second edition cancels and replaces the first edition (ISO 9142:1990), of which it constitutes a minor revision.

Adhesives — Guide to the selection of standard laboratory ageing conditions for testing bonded joints

1 Scope

This International Standard describes laboratory ageing conditions under which adhesive joints may be exposed to various environmental influences — climatic or chemical — for the purpose of assessing the effects of such influences on certain properties.

The ageing conditions are applicable to bonded assemblies and may be used to constitute a set of tests for the evaluation of an adhesive.

The results obtained using the procedures described in this International Standard are not necessarily applicable to the determination of the service life of a bonded assembly because there is no direct relation between the test results and the behaviour of a bonded assembly over a period of time under service conditions. However, for certain specific applications, experience with the procedures may enable a correlation to be established.

NOTE The ageing conditions should preferably be related to the specific application of the adhesive.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 175:1999, Plastics — Methods of test for the determination of the effects of immersion in liquid chemicals

ISO 291:1997, Plastics — Standard atmospheres for conditioning and testing

ISO 483:1988, Plastics — Small enclosures for conditioning and testing using aqueous solutions to maintain relative humidity at constant value

ISO 3205:1976, Preferred test temperatures

ISO 4587:2003, Adhesives — Determination of tensile lap-shear strength of rigid-to-rigid bonded assemblies

ISO 4588:1995, Adhesives — Guidelines for the surface preparation of metals

ISO 4892 (all parts), Plastics — Methods of exposure to laboratory light sources

ISO 6238:2001, Adhesives — Wood-to-wood adhesive bonds — Determination of shear strength by compression loading

ISO 9227:1990, Corrosion tests in artificial atmospheres — Salt spray tests

Materials

- 3.1 **De-ionized or distilled water**, having a conductivity less than 200 µS/m.
- 3.2 Materials for ageing tests under special environmental conditions (see appropriate annex).

Apparatus

- Conditioning chamber, meeting the requirements of ISO 483, capable of being maintained at a temperature of (23 ± 2) °C and a relative humidity of (50 ± 5) %.
- 4.2 Dry-heat chamber, ventilated and adjustable to a temperature between 20 °C and 200 °C.
- Humid chamber, meeting the requirements of ISO 483, adjustable to a relative humidity between 25 % 4.3 and 100 %. The chamber shall be equipped with
- a device to enable the temperature to be measured to within 1 °C;
- a device to enable the relative humidity to be measured to within 3 % R.H.
- **Cold chamber**, adjustable to temperatures of (-20 ± 3) °C and (-40 ± 3) °C. 4.4
- Controlled-pressure chamber, capable of operating at a pressure of 0,6 MPa¹⁾ and at an underpressure of 0,092 MPa.

Specimens 5

Number and type

The number of test specimens, and the type used, will depend on the properties to be measured and the required ageing conditions. The test specimens shall be prepared in accordance with the requirements of the appropriate ISO standard test method. Prepare a sufficient number of specimens to provide homogeneous sets of samples for testing and to provide control samples. The following International Standards, which do not constitute an exhaustive list, are applicable: ISO 4587, ISO 4588, ISO 6238.

5.2 Conditioning

Specimens shall be conditioned in the conditioning chamber (4.1) for a minimum duration of 24 h before being subjected to ageing. The conditioning shall be carried out after the adhesive has been cured in accordance with the materials specification or the methods specified by the manufacturer of the adhesive.

Procedure

6.1 Tests before ageing

Determine the properties required for the sample under test by the appropriate test method, using specimens conditioned in accordance with 5.2.

^{1) 1} MPa = 10 bar

6.2 Ageing

Expose conditioned specimens to the environmental conditions as defined in Annex A to Annex F, as required.

6.3 Tests after ageing

Determine the properties after ageing in accordance with the procedure(s) of the appropriate standard(s). Unless there are indications to the contrary in the Annexes, condition test specimens in the conditioning chamber (4.1)

- for (3 ± 1) h in the case of specimens exposed at a relative humidity higher than 50 %,
- for at least 24 h for all other specimens.

before determining the properties.

In addition to the test results, all changes visible during the ageing and testing periods, including mode of failure, shall be noted.

6.4 Controls

For control purposes, a representative group of specimens shall be kept in the conditioning chamber (4.1) for the period of time covered by the ageing conditions selected.

7 Expression of results

For properties that can be measured, the results obtained are expressed as either

- absolute values or
- a relative variation with respect to the initial value.

For properties that cannot be measured, the nature of the effects observed shall be noted, e.g. rupture between the substrate and adhesive, failure of cohesion of the adhesive joint due to partial or total corrosion of the substrate beneath the adhesive, etc.

NOTE It may be worth verifying that the variation in a measured property is caused only by the ageing process from the following three values:

- A the value of the property measured before accelerated ageing;
- *B* the value of the same property measured on the control specimen which has undergone only intrinsic ageing at (23 ± 2) °C and (50 ± 5) % R.H. (see 6.4);
- C the value of the property measured after ageing.

This can be done by calculating the following ratios:

- a) $[(A B)/A] \times 100$ (this ratio represents the intrinsic ageing during the period concerned);
- b) $[(A C)/A] \times 100$ (this ratio represents the overall ageing due to intrinsic ageing and the accelerated ageing under the conditions specified in this International Standard);
- c) $[(B-C)/A] \times 100$ (this ratio represents the degree of ageing due to ageing under the conditions specified in this International Standard).

ISO 9142:2003(E)

8 Test report

The test report shall include the following information:

- a) a reference to this International Standard;
- b) a description of the type of ageing carried out, with reference to the relevant Annex(es) and the duration of exposure and number of test cycles;
- c) the results of observations made in accordance with 6.3 (last paragraph) and Clause 7;
- d) details of any operations not laid down in this International Standard, as well as any incidents liable to have had an effect on the results.

Annex A

(normative)

General conditions of ageing

A.1 General

Whatever the type of ageing carried out, the temperature and duration of exposure, as well as the relative humidity, shall, as far as possible, be selected from the preferred values given below. Other values may be used if this is absolutely essential for technical reasons, but they shall be selected initially from the values given in ISO 291 or ISO 3205 (the latter gives temperatures only).

A.2 Preferred temperature

Preferred temperatures are given, together with tolerances, in Table A.1.

A.3 Preferred exposure periods

Hours: 1 — 2 — 3 — 4 — 6 — 16 — 24 — 48 — 72 — 96

Weeks: 1 — 2 — 3 — 4 — 6 — 8 — 12 — 16 — 26 — 52

The number of cycles shall be selected to approach, as closely as possible, these preferred exposure periods.

A.4 Preferred relative humidities

15 %; (25 ± 5) %; (50 ± 5) %; (65 ± 5) %; 90 % to 100 %.

Table A.1 — List of preferred temperatures and tolerances

Values in degrees Celsius

Temperature	Tolerances (to be used only in the absence of special indications calling, in particular, for stricter tolerances)
- 40	± 3
– 20	± 3
+ 20	± 2
+ 23	± 2
+ 30	± 2
+ 40	± 2
+ 50	± 2
+ 55	± 2
+ 60	± 2
+ 70	± 2
+ 90	± 2
+ 100	± 2
+ 105	± 3
+ 125	± 3
+ 175	± 3

Licensed to INALFA ROOF SYSTEMS/DEBORAH MONIER

ISO Store order #:846839/Downloaded:2007-09-10 Single user licence only, copying and networking prohibited

Annex B

(normative)

Atmospheric conditions for single-variable ageing

B.1 General

In this type of ageing, the effect on the test specimen of only one environmental variable (e.g. temperature) is considered, the other variables being fixed.

B.2 Set of conditions B1

The specimen is exposed to dry heat in the dry heat chamber (4.2), the temperature and period of exposure being selected from the lists of preferred values in Annex A.

B.3 Set of conditions B2

The specimen is exposed to cold in the cold chamber (4.4), the temperature and period of exposure being selected from the lists of preferred values in Annex A.

Annex C

(normative)

Atmospheric conditions for multi-variable ageing

C.1 General

In this type of ageing, the simultaneous effect of two or more environmental variables on the specimen is considered. In some cases, transfers from one chamber to another are necessary; unless otherwise specified, such transfers shall be carried out in less than 3 min.

C.2 Set of conditions C1

The specimen is exposed in the humid chamber (4.3) to the simultaneous action of heat and humidity. The temperature, exposure period and humidity are selected from the lists of preferred values in Annex A.

NOTE A further-accelerated ageing test using humid heat may be carried out at (70 ± 2) °C and 90 % to 100 % humidity for 1 000 h.

Annex D

(normative)

Atmospheric conditions for cyclic ageing

D.1 General

In this type of ageing, the specimen is exposed for several successive periods, under single-variable and/or multi-variable conditions, on a cyclic basis. In some cases, transfers from one chamber to another are necessary; unless otherwise specified, such transfers shall be carried out in less than 3 min.

The following cycles may be used:

- Cycle D1 Heat and humidity cycle
- Cycle D2 Heat, cold (thermal shock) and humidity cycle
- Cycle D3 Heat, cold and humidity cycle
- Cycle D4 Humid-heat and cold cycle
- Cycle D5 Dry-heat, humid-heat and cold cycle
- Cycle D6 Immersion in water and drying
- Cycle D7 Alternating immersion in water and drying
- Cycle D8 Immersion in boiling water and drying
- Cycle D9 Immersion in boiling water followed by drying, and then dry heat and re-immersion in boiling water
- Cycle D10 Immersion in boiling water followed by drying, and then re-immersion in boiling water
- Cycle D11 Immersion in water, exposure to cold and exposure to dry heat
- Cycle D12 Immersion in salt solution and drying

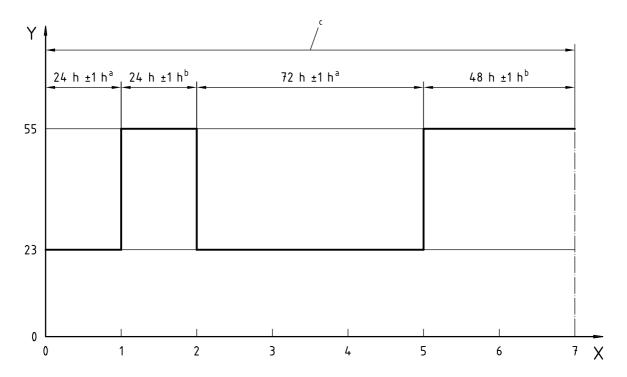
D.2 Cycle D1 — Heat and humidity cycle

Humidity and period of exposure are fixed, while the temperature is varied. Two temperatures θ_A and θ_B are selected from Table A.1 in Annex A.

The cycle requires two humid chambers (4.3) as follows:

- chamber A, kept at a temperature $\theta_{\rm A}$ °C and a relative humidity of no lower than 90 %;
- chamber B, kept at a temperature $\theta_{\rm B}$ °C and a relative humidity of not more than 30 %.

The cycle consists of the following exposure periods:


- a) (24 ± 1) h in chamber A;
- b) (24 ± 1) h in chamber B;

- c) (72 ± 1) h in chamber A;
- d) (48 ± 1) h in chamber B.

For the number of cycles, see Annex A, Clause A.3.

For conditioning after ageing, see 6.3.

A typical cycle, in which $\theta_{\rm A}$ is taken as (23 \pm 2) °C and $\theta_{\rm B}$ as (55 \pm 2) °C, is shown in Figure D.1.

Key

- X exposure period (days)
- Y temperature (°C)
- a Not less than 90 % R.H.
- b Not more than 30 % R.H.
- c Cycle repeated n times

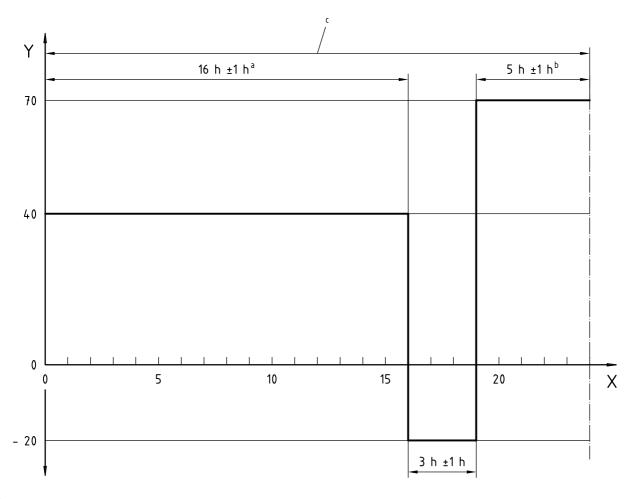
Figure D.1 — Typical conditions for cycle D1, in which $\theta_{\rm A}$ and $\theta_{\rm B}$ are taken as (23 ± 2) °C and (55 ± 2) °C, respectively

D.3 Cycle D2 — Heat, cold (thermal shock) and humidity cycle

This cycle requires three chambers, as follows:

- a humid chamber A (4.3), kept at a temperature θ_A of either (40 ± 2) °C or (70 ± 2) °C and at a relative humidity not lower than 90 %;
- a cold chamber B (4.4), kept at a temperature $\theta_{\rm B}$ of either (-20 ± 3) °C or (-40 ± 3) °C;
- a humid chamber C (4.3), kept at a temperature $\theta_{\rm C}$ of either (70 ± 2) °C or (100 ± 2) °C and at a relative humidity of (50 ± 5) %.

ISO 9142:2003(E)


The cycle consists of the following exposure periods:

- a) (16 ± 1) h in chamber A;
- b) (3 ± 1) h in chamber B;
- c) (5 ± 1) h in chamber C.

For the number of cycles, see Annex A, Clause A.3.

For conditioning after ageing, see 6.3.

A typical cycle, in which temperature θ_A is taken as 40 °C, θ_B as – 20 °C and θ_C as 70 °C, is shown in Figure D.2.

- X exposure period (h)
- Y temperature (°C)
- a Not less than 90 % R.H.
- b (50 ± 5) % R.H.
- c Cycle repeated *n* times

Figure D.2 — Typical conditions for cycle D2, in which θ_A , θ_B and θ_C are taken as 40 °C, - 20 °C and 70 °C, respectively

D.4 Cycle D3 — Heat, cold and humidity cycle

This cycle requires a programmable humid chamber (4.3) capable of maintaining the required conditions of temperature and humidity and able to change the conditions in the time specified in each case.

The cycle consists of the following operations:

- a) expose for (15 ± 1) h at a temperature of either (40 ± 2) °C or (70 ± 2) °C and at a relative humidity not lower than 90 %;
- b) change, in (60 ± 20) min, the temperature to (-20 ± 3) °C or (-40 ± 3) °C and expose for (2 ± 1) h;
- c) change, in (60 ± 20) min, the temperature to (70 ± 2) °C or (100 ± 2) °C and the relative humidity to (50 ± 5) % and expose for (4 ± 1) h;
- d) change, in (60 ± 20) min, the temperature to (40 ± 2) °C or (70 ± 2) °C and the relative humidity to not lower than 90 %.

At the end of the final cycle, change from the conditions in d) to the conditioning atmosphere (see 4.1) in (60 ± 20) min.

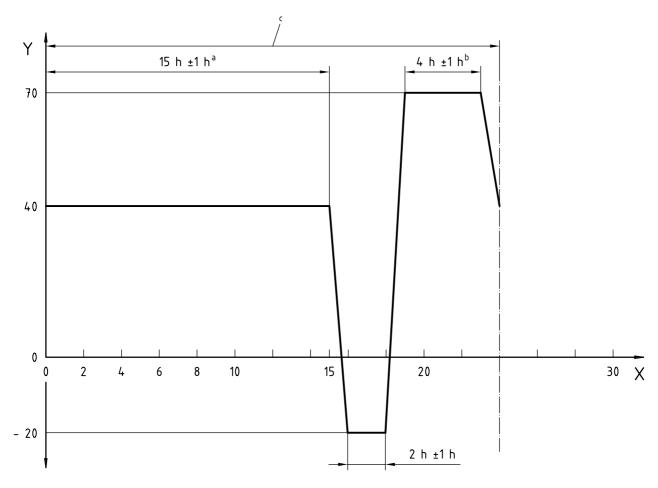
For the number of cycles, see Annex A, Clause A.3.

For conditioning after ageing, see 6.3.

A typical cycle, in which the temperature of the first stage is taken as 40 $^{\circ}$ C, that of the second stage as – 20 $^{\circ}$ C and that of the third stage as 70 $^{\circ}$ C, is shown in Figure D.3.

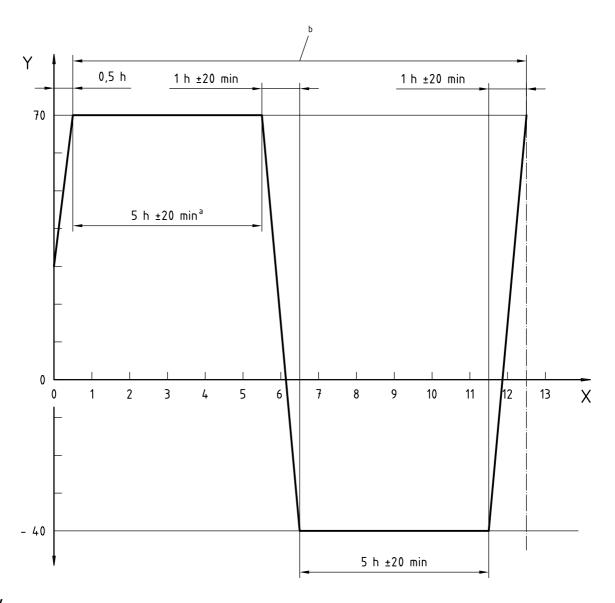
D.5 Cycle D4 — Humid-heat and cold cycle

This cycle requires a programmable humid chamber (4.3) capable of maintaining the required conditions of temperature and humidity and able to change the conditions in the time specified in each case.


The cycle consists of the following operations:

- a) increase the temperature from ambient to (70 ± 2) °C in 30 min (this operation is carried out at the beginning of the first cycle only);
- b) expose for 5 h \pm 20 min at (70 \pm 2) °C and at a relative humidity not lower than 90 %;
- c) change the temperature, in (60 ± 20) min, to (-40 ± 3) °C and expose for 5 h \pm 20 min;
- d) change the temperature, in (60 ± 20) min, to (70 ± 2) °C.

For the number of cycles, see Annex A, Clause A.3.


For conditioning after ageing, see 6.3.

The cycle is shown in Figure D.4.

- X exposure period (h)
- Y temperature (°C)
- a Not less than 90 % R.H.
- b (50 ± 5) % R.H.
- ^c Cycle repeated *n* times

Figure D.3 — Typical conditions for cycle D3, in which the temperatures of the first, second and third stages are 40 $^{\circ}$ C, – 20 $^{\circ}$ C and 70 $^{\circ}$ C, respectively

Key

- X exposure period (h)
- Y temperature (°C)
- a Not less than 90 % R.H.
- b Cycle repeated *n* times

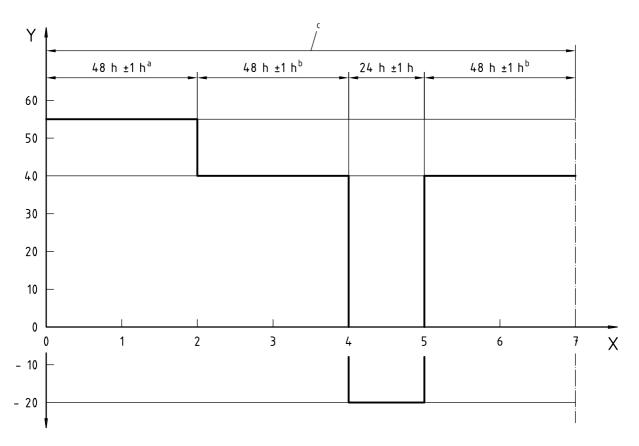
Figure D.4 — Humid-heat and cold cycle (cycle D4)

D.6 Cycle D5 — Dry-heat, humid-heat and cold cycle

This cycle requires three chambers, as follows:

- a dry-heat chamber A (4.2), kept at a temperature of (55 ± 2) °C and at a relative humidity lower than 15 %;
- a humid chamber B (4.3), kept at a temperature of (40 \pm 2) °C and at a relative humidity not lower than 90 %;
- a cold chamber C (4.4), kept at a temperature of (-20 ± 3) °C.

ISO 9142:2003(E)


The cycle consists of the following exposure periods:

- a) (48 ± 1) h in chamber A;
- b) (48 ± 1) h in chamber B;
- c) (24 ± 1) h in chamber C.
- d) (48 ± 1) h in chamber B.

For the number of cycles, see Annex A, Clause A.3.

For conditioning after ageing, see 6.3.

The cycle is shown in Figure D.5.

- X exposure period (days)
- Y temperature (°C)
- a Less than 15 % R.H.
- b More than 90 % R.H.
- c Cycle repeated n times

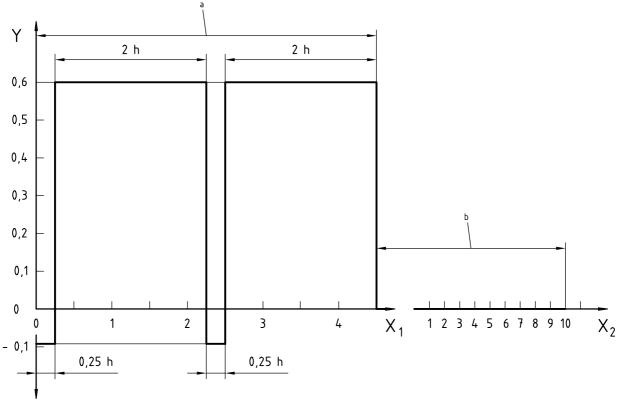
Figure D.5 — Dry-heat, humid-heat and cold cycle (cycle D5)

D.7 Cycle D6 — Immersion in water and drying

NOTE This cycle is recommended for ageing porous materials (e.g. wood).

This cycle requires two chambers, as follows:

- a controlled-pressure chamber A (4.5), kept at a temperature of (23 ± 2) °C and a pressure that can be increased to an overpressure of 0,6 MPa and lowered to an underpressure of 0,092 MPa;
- a humid chamber B (4.3), kept at a temperature of (23 ± 2) °C and at a relative humidity of (30 ± 5) %.


The cycle consists of the following operations:

- a) expose the test specimens, immersed in water, for 15 min in chamber A at an underpressure of 0,092 MPa;
- b) change the pressure to an overpressure of 0,6 MPa and expose for 2 h;
- c) change the pressure to 0,092 MPa and expose for 15 min;
- d) change the pressure to an overpressure of 0,6 MPa and expose for 2 h;
- e) transfer to chamber B and expose for 10 days.

For conditioning after ageing, see 6.3.

For materials whose moisture content changes slowly (e.g. wood), mechanical tests shall be carried out, if required, either by taking account of the moisture content of the material at the time of test or extending the conditioning time to obtain a given moisture content.

The cycle is shown in Figure D.6.

Key

- X₁ exposure period (h)
- X₂ exposure period (days)
- Y over/under pressure (MPa)
- Exposure period in chamber A: 4 h + 30 min.
- Exposure period in chamber B: 10 days at (30 ± 5) % R.H.

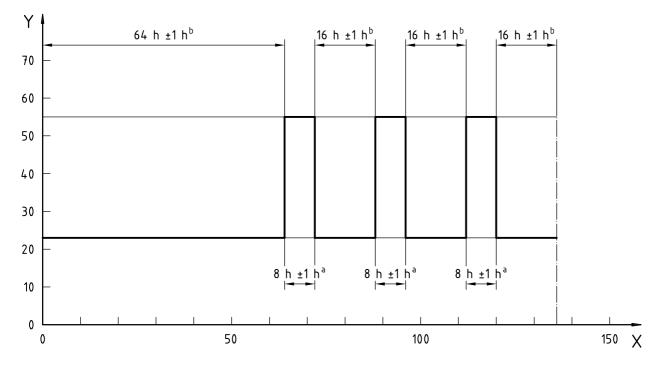
Figure D.6 — Cycle D6 for immersion in water and drying

Licensed to INALFA ROOF SYSTEMS/DEBORAH MONIER ISO Store order #:846839/Downloaded:2007-09-10 Single user licence only, copying and networking prohibited

D.8 Cycle D7 — Alternating immersion in water and drying

NOTE This cycle is recommended for ageing porous materials (laminates, etc.).

This cycle requires two chambers, as follows:


- a dry-heat chamber A (4.2), kept at a temperature of (23 \pm 2) °C;
- a humid chamber B (4.3), kept at a temperature of (55 ± 2) °C and at a relative humidity of less than or equal to 25 %.

The cycle consists of the following operations:

- a) expose the test specimens immersed in water for 64 h in chamber A;
- b) expose for (8 ± 1) h in chamber B;
- c) expose, re-immersed in water for (16 \pm 1) h in chamber A;
- d) expose for (8 ± 1) h in chamber B;
- e) expose, re-immersed in water for (16 \pm 1) h in chamber A;
- f) expose for (8 ± 1) h in chamber B;
- g) expose, re-immersed in water for (16 \pm 1) h in chamber A.

Conditioning after ageing: none; test the specimens immediately on completion of stage g), i.e. in the wet condition.

The cycle is shown in Figure D.7.

- X exposure period (h)
- Y temperature (°C)
- a Drying
- b Immersion in water

Figure D.7 — Cycle D7 for alternating immersion in water and drying

D.9 Cycle D8 — Immersion in boiling water and drying

NOTE This cycle is recommended for ageing porous materials, in particular laminates bonded with phenolic adhesives.

This cycle requires three test chambers, as follows:

- a dry-heat chamber A (4.2), kept at a temperature of (100 ± 2) °C (since water boils at 100 °C only at an atmospheric pressure of 0,1 MPa, the temperature of the boiling water is a variable and shall be reported);
- a humid chamber B (4.3), kept at a temperature of (55 ± 2) °C [when testing laminates, a temperature of (50 ± 2) °C shall be used in order to ensure commonality with existing procedures] and at a relative humidity of (30 ± 5) %;
- a dry-heat chamber C (4.2), kept at a temperature of (23 \pm 2) °C.

The cycle consists of the following operations:

- a) expose the test specimens, immersed in boiling water, for $(4 \pm 0,1)$ h in chamber A;
- b) expose for (20 ± 1) h in chamber B;
- c) expose, re-immersed in water, for (4 ± 0.1) h in chamber A;
- d) expose for $(1 \pm 0,1)$ h in chamber C.

Conditioning after ageing: none; test the specimens immediately on completion of stage d), i.e. in the wet condition.

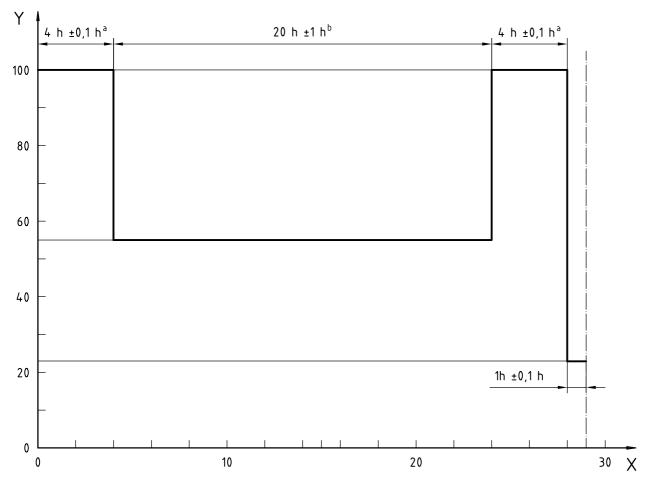
The cycle is shown in Figure D.8.

D.10 Cycle D9 — Immersion in boiling water followed by drying, and then dry heat and re-immersion in boiling water

NOTE This cycle is recommended for testing wood laminates.

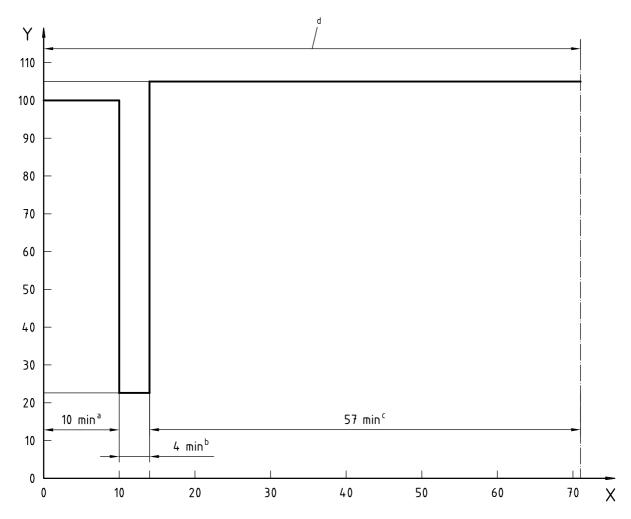
This cycle requires three dry-heat chambers (4.2), as follows:

- chamber A, kept at a temperature of (100 ± 2) °C (since water boils at 100 °C only at an atmospheric pressure of 0,1 MPa, the temperature of the boiling water is a variable and shall be reported);
- chamber B, kept at a temperature of $(23\pm2)\,^{\circ}\text{C}$ and provided with a controlled air-flow of $(1,75\pm0,3)\,\text{m/s};$
- chamber C, kept at a temperature of (105 ± 3) °C and provided with a controlled air-flow of $(1,75 \pm 0,3)$ m/s.


The cycle consists of the following operations:

- a) expose the test specimens, immersed in water, for 10 min in chamber A;
- b) expose for 4 min in chamber B;
- c) expose for 57 min in chamber C.

For the number of cycles, see Annex A, Clause A.3.


Conditioning after ageing: at the end of the final cycle, transfer to water at (23 \pm 2) °C and maintain for at least 3 days. Testing shall be carried out on wet specimens.

The cycle is shown in Figure D.9.

- X exposure period (h)
- Y temperature (°C)
- a Immersion in water
- b Drying

Figure D.8 — Cycle D8 for immersion in boiling water and drying

Key

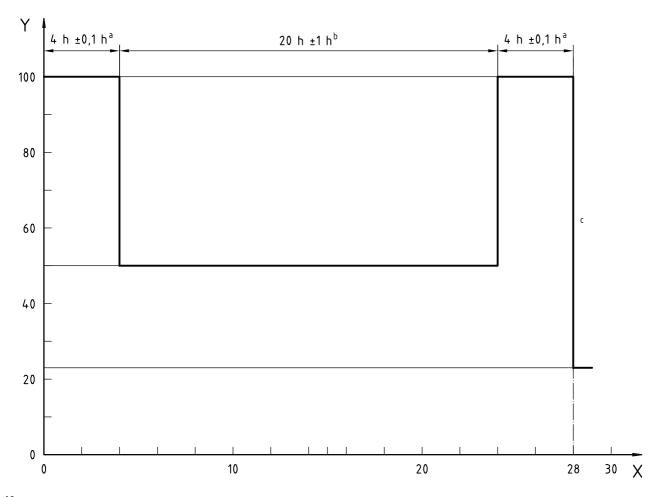
- X exposure period (min)
- Y temperature (°C)
- a Immersion in water.
- b Drying.
- c Dry heat.
- d Cycle repeated *n* times.

Figure D.9 — A typical cycle for immersion in boiling water followed by drying, and then dry heat and re-immersion in boiling water

D.11 Cycle D10 — Immersion in boiling water followed by drying, and then re-immersion in boiling water

This cycle requires three dry-heat chambers (4.2), as follows:

- chamber A, kept at a temperature of (100 ± 2) °C (since water boils at 100 °C only at an atmospheric pressure of 0,1 MPa, the temperature of the boiling water is a variable and shall be reported);
- chamber B, kept at a temperature of $(50\pm2)\,^{\circ}\text{C}$ and provided with a controlled air-flow of $(1,75\pm0,3)\,\text{m/s};$
- chamber C, kept at a temperature of (23 ± 2) °C.


Licensed to INALFA ROOF SYSTEMS/DEBORAH MONIER ISO Store order #:846839/Downloaded:2007-09-10 Single user licence only, copying and networking prohibited

The cycle consists of the following operations:

- a) expose the test specimens, immersed in water, for $(4 \pm 0,1)$ h in chamber A;
- b) expose for (20 ± 1) h in chamber B;
- c) expose, re-immersed in water, for (4 ± 0.1) h in chamber A;
- d) keep in chamber C, still immersed in water, until a temperature of 23 °C is reached.

Conditioning after ageing: none; test the specimens immediately on completion of stage d), i.e. in the wet condition.

The cycle is shown in Figure D.10.

- X exposure period (h)
- Y temperature (°C)
- a Immersion in water.
- b Drying.
- c Cooling in water.

Figure D.10 — Cycle D10 for immersion in boiling water followed by drying, and then re-immersion in boiling water

D.12 Cycle D11 — Immersion in water, exposure to cold and exposure to dry heat

NOTE This cycle is recommended for testing wood particle board.

This cycle requires three chambers, as follows:

- a dry-heat chamber A (4.2), kept at a temperature of (23 \pm 2) °C;
- a cold chamber B (4.4), kept at a temperature of (-20 ± 3) °C;
- a dry-heat chamber C (4.2), kept at a temperature of (70 ± 2) °C.

The cycle consists of the following operations:

- a) expose the test specimens, immersed in water, for (72 ± 1) h in chamber A;
- b) expose for (24 ± 1) h in chamber B;
- c) expose for (72 ± 1) h in chamber C.

Conditioning after ageing: none; test the specimens immediately on completion of the cycle.

The cycle is shown in Figure D.11.

D.13 Cycle D12 — Immersion in salt solution and drying

D.13.1 Materials and apparatus

D.13.1.1 Salt solution, 5 % by mass.

Dissolve (5 \pm 1) parts by mass of sodium chloride in (95 \pm 1) parts of water.

The sodium chloride shall not contain more than 0,1 % by mass of sodium iodide or more than 0,5 % by mass of other impurities. The pH of the solution shall lie between 6,5 and 7,2.

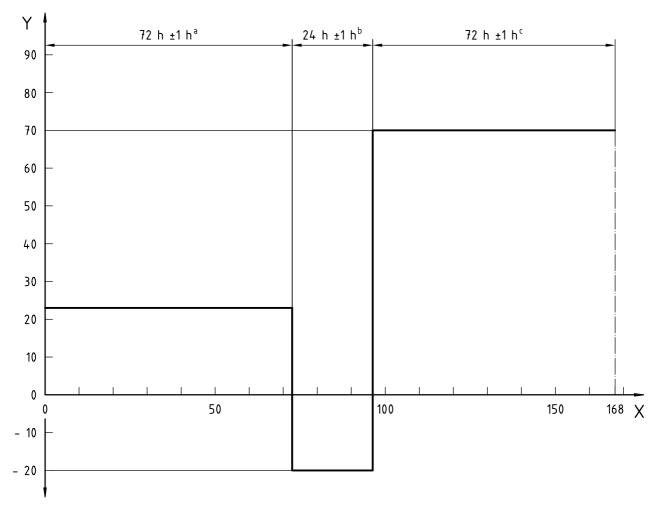
D.13.1.2 Compressed air, oil-free, at a pressure of 0,5 MPa.

D.13.1.3 Corrosion-resistant vessel, of sufficient size to contain the test specimen(s) immersed in salt solution (D.13.1.1), capable of being maintained at (23 ± 2) °C, and fitted with a corrosion-resistant aeration tube leading down to the bottom of the vessel and across the bottom. The end of the tube shall be closed and the horizontal part perforated to allow streams of compressed air (D.13.1.2) to be passed through the salt solution.

D.13.2 Procedure

The cycle consists of the following operations:

- a) immerse the test specimen(s) in the salt solution (D.13.1.1) for (8 ± 1) h at (23 ± 2) °C in the vessel (D.13.1.3), passing compressed air (D.13.1.2) through the solution continuously;
- b) suspend in air at a temperature of (23 \pm 2) °C for (16 \pm 1) h.


Repeat the cycle five times.

On completion of the fifth cycle, immerse the test specimen(s) for (48 \pm 1) h at (23 \pm 2) °C in the salt solution in the vessel.

All transfers from one medium to another shall be carried out in less than 3 min.

For conditioning after ageing, see 6.3.

"Licensed to INALFA ROOF SYSTEMS/DEBORAH MONIER ISO Store order #:846839/Downloaded:2007-09-10 Single user licence only, copying and networking prohibited

- X exposure period (h)
- Y temperature (°C)
- a Immersion in water.
- b Cold.
- c Exposure to dry heat.

Figure D.11 — A typical cycle for immersion in water, exposure to cold and exposure to dry heat

Annex E

(normative)

Special procedures

E.1 Procedure E1 — Exposure to neutral salt spray

Expose the specimens to salt spray under the conditions specified for the NSS (neutral salt spray) test in ISO 9227.

The period of exposure shall be selected from those given in Annex A. Condition the exposed specimens at (23 ± 2) °C and (50 ± 5) % R.H. for 24 h before measuring the property of interest.

E.2 Procedure E2 — Exposure to water in a damp compress

This procedure requires two chambers, as follows:

- a dry-heat chamber A (4.2), kept at a temperature of (70 ± 2) °C;
- a cold chamber B (4.4), kept at a temperature of (-20 ± 3) °C.

The procedure also requires purified cotton wool, weldable polyethylene bags and de-ionized water.

Produce the damp-surface contact conditions by wrapping the test specimens in cotton wool and placing them in one of the weldable bags. Saturate the cotton wool with de-ionized water and seal the bag by welding.

For exposure periods of longer than 14 days, open the bag and re-saturate the cotton wool every 14 days. Reseal.

Expose the specimens, for an exposure period selected from those given in Annex A, in chamber A.

Transfer the specimens from chamber A to chamber B in less than 3 min.

Keep the specimens in chamber B for 15 h. At the end of this period, remove the bag from the chamber and allow it to thaw out. Then remove the contents from the bag, discard the cotton wool and condition the specimens at (23 ± 2) °C and (50 ± 5) % R.H. for 24 h before measurement of the property of interest.

E.3 Procedure E3 — Exposure to laboratory light sources

Expose the specimens to artificial light in accordance with the relevant part of ISO 4892.

E.4 Procedure E4 — Exposure to neutral salt spray and elevated temperature and humidity

Expose the specimens for an exposure period selected from those given in Annex A to salt spray under the conditions specified for the NSS (neutral salt spray) test in ISO 9227.

After this, transfer the specimens to a humid chamber (4.3), kept at (40 ± 2) °C and a relative humidity between 90 % and 100 % for a further exposure period selected from those given in Annex A. Condition the specimens at (23 ± 2) °C and (50 ± 5) % R.H. for 48 h before measuring the property of interest.

Annex F (normative)

Exposure to chemical attack

For these procedures, consult ISO 175:1999. Attention is drawn to Annex A "Types of test liquid" of that International Standard.

ISO 9142:2003(E)