INTERNATIONAL STANDARD ISO 9129 Second edition 2008-05-15 ## **Motorcycles — Measurement methods for moments of inertia** Motocycles — Méthodes de mesure des moments d'inertie Reference number ISO 9129:2008(E) #### PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below #### **COPYRIGHT PROTECTED DOCUMENT** #### © ISO 2008 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | Cor | ntents | Page | | |-------|--------------------------------------------------------------------|----------|--| | Fore | orewordi | | | | Intro | duction | v | | | 1 | Scope | | | | 2 | Normative references | 1 | | | 3 | Terms and definitions | 1 | | | 4 | Measurement conditions | 2 | | | 5 | Measuring instruments | 2 | | | 6 | Measuring procedure | 3 | | | 6.1 | Measurement of location of centre of gravity | 3 | | | 6.2 | Roll moment of inertia about x-axis (physical pendulum principle) | 3 | | | 6.3 | Pitch moment of inertia about y-axis (physical pendulum principle) | 7 | | | 6.4 | Yaw moment of inertia about z-axis (bifilar pendulum principle) | 11 | | | 7 | Test results | 16 | | | Anne | ex A (normative) Format for measurement results | 17 | | ISO 9129:2008(E) #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 9129 was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 22, *Motorcycles*. This second edition cancels and replaces the first edition (ISO 9129:1988), which has been technically revised. #### Introduction The stability of a motorcycle is a very important element of its active safety. The motorcycle/rider combination and the environment in which this combination is used form a unique closed-loop system. However, the evaluation of motorcycle/rider combination stability is extremely complex because of interaction of the intrinsic motorcycle stability, the influence of the position of the rider and his response to continuously changing conditions. In the evaluation of motorcycle stability, the determination of the kinetic characteristics of the motorcycle/rider combination is considered an important part of the design parameters of the vehicle itself. The test procedure described in this International Standard deals with one aspect of the kinetic characteristics: the determination of the moments of inertia of the motorcycle and of the motorcycle/rider combination. ## Motorcycles — Measurement methods for moments of inertia #### 1 Scope This International Standard specifies a measuring method for determining the moments of inertia of the motorcycle and of the motorcycle/rider combination. It applies to two-wheeled motorcycles. Other measuring methods can be used if it is demonstrated that the results are equivalent. Measurement results obtained exclusively by the method described in this International Standard (see Annex A) cannot be used for an evaluation of vehicle stability because they deal with only one aspect of this very complex phenomenon. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 3779, Road vehicles — Vehicle identification number (VIN) — Content and structure ISO 9130, Motorcycles — Measurement method for location of centre of gravity 49 CFR Part 572 Subpart B [Code of Federal Regulations, issued by the National Highway Traffic Administration (NHTSA)] #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 #### motorcycle-fixed axis system (x, y, z) right-hand orthogonal axis system fixed in the motorcycle, such that when the motorcycle is moving in a straight line on a level road, the x-axis is substantially horizontal, points forwards and is in the longitudinal plane of symmetry of the motorcycle, the y-axis points to the rider's left side and the z-axis points upwards - NOTE 1 This coordinate system performs translation motion and rotational motion together with the motorcycle. - NOTE 2 Assuming that the motorcycle is fixed to a platform, the coordinate system is also applied to the platform. #### 3.2 #### earth-fixed axis system (X, Y, Z) right-hand orthogonal axis system fixed on the Earth, such that the X-axis and the Y-axis are in a horizontal plane and the Z-axis points upwards ISO 9129:2008(E) #### **Measurement conditions** 4 - Measurement conditions for a motorcycle shall be as follows: 4.1 - the motorcycle shall be guite clean and free from mud and deformation, and shall operate normally; a) - the fuel shall be filled up to the top level specified in the operation manual; b) - lubricating oil and cooling water, for water-cooled engines, shall be filled up to the level specified in the c) operation manual; - tyre pressure shall be as specified in the operation manual; d) - tools shall be provided at the regular storage positions; e) - front and rear suspension systems shall be fixed at a static position; f) - the front wheel shall be positioned along the x-axis. If the conditions are to be modified depending on the object of measurement, the modified conditions shall be recorded in the measurement results (see Annex A). - 4.2 Measurement conditions when a rider is on the motorcycle shall be as follows: - measurement conditions of the motorcycle shall be as specified in 4.1; a) - a test dummy as specified in 49 CFR Part 572 Subpart B (or equivalent), with a mass of 73,4 kg, or an b) equivalent human being, shall be used as the rider; - the rider shall be positioned as follows: - positioned on the vertical centre surface of the motorcycle; 1) - sitting on the seat, holding the handle bar by both hands, with both feet placed on the foot rests; 2) - with an angle of posture formed by the line connecting the point S (indicating the centre of rotation of the torso and the arms of the rider) and point H (indicating the centre of rotation of the torso and femoral regions of the rider) and the x-axis: - 4) at a seating position that is the distance between the front axle and the point H along the x-axis. However, if the conditions are to be modified depending on the object of measurement, the modified conditions shall be recorded in the measurement results (see Annex A). #### 5 Measuring instruments Measuring instruments to measure the moments of inertia shall be as follows or shall have equivalent functions and accuracy: - a precision square level that can measure up to 0,1 mm/1 m (\approx 20"); a) - a steel tape measure with a tolerance of $\pm [0.3 + 0.1(L 1)]$ mm at the length of L m; b) - weighing stands with enough accuracy to weigh the object up to 0.1 kg; C) - a stop watch that can measure up to 0,01 s, used for measuring the oscillation time; d) - e) a platform with the highest possible rigidity, and of light weight; - f) a knife edge, where the roundness at the edge shall be below 1 mm in radius, and an edge angle below 90 degrees is recommended; NOTE The roundness at the edge is the form of the edge finished sharply when rounded with the load. g) weights, to incline the platform. #### 6 Measuring procedure #### 6.1 Measurement of location of centre of gravity Calculate the mass and location of centre of gravity of the platform, motorcycle, and the platform with the motorcycle placed on it, in accordance with ISO 9130. #### 6.2 Roll moment of inertia about x-axis (physical pendulum principle) #### 6.2.1 Roll moment of inertia about AB-axis for empty platform Inertia moment about the AB-axis for the empty platform shall be measured in the procedure described below (see Figure 1). - a) Place the knife edges A and B on the stay so that they can freely oscillate around the AB-axis. - b) Oscillate the platform gently around the AB-axis. It is desirable to keep total oscillating angle below 5°. - c) Make sure that the platform oscillates in a stable way and measure the time required for the platform to oscillate 50 times by a stop watch. Repeat this process 3 times and obtain the average value of 3 average cycle times. The result shall be the period. - d) Calculate the inertia moment of the platform about the AB-axis, $I_{\rm xp}$, expressed in kgm², using Equation (1): $$I_{xp} = \left(\frac{T_{xp}}{2\pi}\right)^2 \sqrt{c_p^2 + y_p^2} m_p g \tag{1}$$ where $T_{\rm xn}$ is the period for the platform to oscillate around the AB-axis, in s; $c_{\rm p}$ is the distance along the z-axis from the knife edge to the centre of gravity of the platform, in m; y_p is the distance along the y-axis from the knife edge to the centre of gravity of the platform, in m; $m_{\rm p}$ is the mass of the platform, in kg; g is acceleration due to gravity (9,81 m/s 2). - distance along the z-axis from the knife edge to the centre of gravity of the platform - mass of platform - distance along the y-axis from the knife edge to the centre of gravity of the platform Figure 1 — Measurement procedure for roll moment of inertia of empty platform (procedure with physical pendulum principle) #### 6.2.2 Roll moment of inertia of motorcycle about x-axis Roll moment of inertia of the motorcycle about the x-axis shall be measured in the procedure described below (see Figure 2). NOTE This measurement applies to both the empty motorcycle and the motorcycle with a rider. - a) Place the motorcycle on the platform and fix it so that it cannot move. The lateral inclination angle of the motorcycle to the platform shall be $0^{\circ} \pm 0.5^{\circ}$. - b) Place the knife edges A and B on the stay so that they can freely oscillate around the AB-axis. - c) Oscillate the motorcycle/platform combination gently around the AB-axis. It is desirable to keep total oscillating angle below 5°. - d) Make sure that the platform oscillates in a stable way and measure the time required for the platform to oscillate 50 times by a stop watch. Repeat this process 3 times and obtain the average value of 3 average cycle times. The result shall be the period. - e) Calculate the inertia moment of the motorcycle about the x-axis, I_{xm} , expressed in kgm², using Equation (2): $$I_{xm} = \left(\frac{T_{xT}}{2\pi}\right)^2 \sqrt{c_T^2 + y_T^2} m_T g - I_{xp} - m_m \left(c_m^2 + y_m^2\right)$$ (2) where T_{xT} is the period for the platform with the motorcycle on it to oscillate around the AB-axis, in s; - c_{T} is the distance along the z-axis from the knife edge to the centre of gravity of the motorcycle/platform combination, in m; - y_T is the distance along the y-axis from the knife edge to the centre of gravity of the motorcycle/platform combination, in m; - $m_{\rm T}$ is the mass of motorcycle/platform combination, in kg; - $I_{\rm xn}$ is the inertia moment of the platform about the AB-axis, in kgm² [see Equation (1)]; - g is acceleration due to gravity (9,81m/s²); - $m_{\rm m}$ is the mass of motorcycle, in kg; - $c_{\rm m}$ is the distance along the z-axis from the knife edge to the centre of gravity of the motorcycle, in m: - $y_{\rm m}$ is the distance along the y-axis from the knife edge to the centre of gravity of the motorcycle, in m. - distance along the z-axis from the knife edge to the centre of gravity of the motorcycle - distance along the z-axis from the knife edge to the centre of gravity of the platform - distance along the z-axis from the knife edge to the centre of gravity of the motorcycle/platform combination c_{T} - m_{m} mass of motorcycle - mass of platform - mass of motorcycle/platform combination - distance along the y-axis from the knife edge to the centre of gravity of the motorcycle - distance along the y-axis from the knife edge to the centre of gravity of the platform y_{p} - distance along the y-axis from the knife edge to the centre of gravity of the motorcycle/platform combination Figure 2 — Measurement procedure for roll moment of inertia of the motorcycle (procedure with physical pendulum principle using a platform) #### 6.3 Pitch moment of inertia about y-axis (physical pendulum principle) #### 6.3.1 Pitch moment of inertia about CD-axis for empty platform Inertia moment about the CD-axis for the empty platform shall be measured in the procedure described below (see Figure 3). - a) Place the knife edges C and D on the stay so that they can freely oscillate around the CD-axis. - b) Oscillate the platform gently around the CD-axis. It is desirable to keep total oscillating angle below 5°. - c) Make sure that the platform oscillates in a stable way and measure the time required for the platform to oscillate 50 times by a stop watch. Repeat this process 3 times and obtain the average value of 3 average cycle times. The result shall be the period. - d) Calculate the inertia moment of the platform about the CD-axis, I_{yp} , expressed in kgm², using Equation (3): $$I_{yp} = \left(\frac{T_{yp}}{2\pi}\right)^2 \sqrt{c_p^2 + x_p^2} m_p g$$ (3) where $T_{\rm vp}$ is the period for the platform to oscillate around the CD-axis, in s; $c_{\rm p}$ is the distance along the z-axis from the knife edge to the centre of gravity of the platform, in m; $x_{\rm p}$ is the distance along the x-axis from the knife edge to the centre of gravity of the platform, in m; $m_{\rm p}$ is the mass of the platform, in kg; g is acceleration due to gravity (9,81m/s²). - distance along the z-axis from the knife edge to the centre of gravity of the platform - mass of platform - distance along the x-axis from the knife edge to the centre of gravity of the platform Figure 3 — Measurement procedure for pitch moment of inertia of empty platform (procedure with physical pendulum principle) b) Rear view #### 6.3.2 Pitch moment of inertia about motorcycle about y-axis Pitch moment of inertia of the motorcycle about the x-axis shall be measured in the procedure described below (see Figure 4). NOTE This measurement applies to both the empty motorcycle and the motorcycle with a rider. - a) Place the motorcycle on the platform and fix it so that it cannot move. The lateral inclination angle of the motorcycle to the platform shall be $0^{\circ} \pm 0.5^{\circ}$. - b) Place the knife edges C and D on the stay so that they can freely oscillate around the CD-axis. - c) Oscillate the motorcycle/platform combination gently around the CD-axis. It is desirable to keep total oscillating angle below 5°. - d) Make sure that the platform oscillates in a stable way and measure the time required for the platform to oscillate 50 times by a stop watch. Repeat this process 3 times and obtain the average value of 3 average cycle times. The result shall be the period. - e) Calculate the inertia moment of the motorcycle about the y-axis, I_{ym} , expressed in kgm², using Equation (4): $$I_{ym} = \left(\frac{T_{yT}}{2\pi}\right)^2 \sqrt{c_T^2 + x_T^2} m_T g - I_{yp} - m_m \left(c_m^2 + x_m^2\right)$$ (4) where $T_{\rm vT}$ is the period for the platform with the motorcycle on it to oscillate around the CD-axis, in s; - c_{T} is the distance along the z-axis from the knife edge to the centre of gravity of the motorcycle/platform combination, in m; - x_T is the distance along the x-axis from the knife edge to the centre of gravity of the motorcycle/platform combination, in m; - $m_{\rm T}$ is the mass of the motorcycle/platform combination, in kg; - $I_{\rm VD}$ is the inertia moment of the platform about the CD-axis, in kgm² [see Equation (3)]; - g is acceleration due to gravity (9,81m/s²); - $m_{\rm m}$ is the mass of the motorcycle, in kg; - $c_{\rm m}$ is the distance along the z-axis from the knife edge to the centre of gravity of the motorcycle, in m; - $x_{\rm m}$ is the distance along the x-axis from the knife edge to the centre of gravity of the motorcycle, in m. - distance along the z-axis from the knife edge to the centre of gravity of the motorcycle - distance along the z-axis from the knife edge to the centre of gravity of the platform - distance along the z-axis from the knife edge to the centre of gravity of the motorcycle/platform combination c_{T} - mass of motorcycle - mass of platform m_{p} - mass of motorcycle/platform combination - distance along the x-axis from the knife edge to the centre of gravity of the motorcycle x_{m} - distance along the x-axis from the knife edge to the centre of gravity of the platform x_{p} - distance along the x-axis from the knife edge to the centre of gravity of the motorcycle/platform combination Figure 4 — Measurement procedure for pitch moment of inertia of the motorcycle (procedure with physical pendulum principle using a platform) #### 6.4 Yaw moment of inertia about z-axis (bifilar pendulum principle) #### 6.4.1 Yaw moment of inertia about vertical central axis for empty platform Inertia moment about the vertical axis passing through the centre, E, of the bottom surface of the empty platform shall be measured in the procedure described below (see Figure 5). a) Set up a weight of mass m_{d1} so that the centre of gravity of the platform is on the perpendicular line passing the centre, E, of the platform. Calculate the weight set-up position by using Equation (5): $$x_{d1} = \frac{m_{p}x_{p}}{m_{d1}}$$ $$y_{d1} = \frac{m_{p}y_{p}}{m_{d1}}$$ (5) where x_{d1} is the distance along the x-axis from the centre of the platform to the weight of mass m_{d1} , in m; y_{d1} is the distance along the y-axis from the centre of the platform to the weight of mass m_{d1} , in m; $m_{\rm p}$ is the mass of the platform, in kg; x_p is the distance along the x-axis from the centre of the platform to the centre of gravity of the platform, in m; y_p is the distance along the y-axis from the centre of the platform to the centre of gravity of the platform, in m; $m_{\rm d1}$ is the mass of the weight provided for adjusting the location of the centre of gravity of the platform, in kg. NOTE When the centre, E, and the centre of gravity of the platform coincide with each other, the value of all the distances is zero. - b) Suspend the platform with 2 wires of the same length. - c) Oscillate the entire platform around the vertical axis passing point E. It is desirable to keep total oscillating angle below 5°. - d) Make sure that the platform oscillates in a stable way and measure the time required for the platform to oscillate 50 times by a stop watch. Repeat this procedure 3 times and obtain the average value of 3 average cycle times. The result shall be the period. - e) Calculate the inertia moment of the platform about the z-axis, I_{zp} , expressed in kgm², using Equation (6): $$l_{p}^{2} = x_{p}^{2} + y_{p}^{2}$$ $$l_{d1}^{2} = x_{d1}^{2} + y_{d1}^{2}$$ $$I_{zp} = \left(\frac{T_{zp}}{2\pi}\right)^{2} \frac{ab}{h} \left(m_{p} + m_{d1}\right) g - m_{p} l_{p}^{2} - m_{d1} l_{d1}^{2}$$ (6) #### where - $l_{\rm p}$ is the distance from the centre of the platform to the centre of gravity of the platform only, in m; - l_{d1} is the distance from the centre of the platform to weight m_{d1} , in m; - T_{zp} is the period for the platform to oscillate around the vertical axis passing point E, in s; - *a* is half the distance between the lower fixing points of the wires suspending the platform, in m; - b is half the distance between the upper fixing points of the wires suspending the platform, in m; - *h* is the distance along the z-axis between the upper and lower fixing points of the wires suspending the platform, in m; - g is acceleration due to gravity (9.81m/s^2) . Figure 5 (continued) - a half the distance between the lower fixing points of the wires suspending the platform - b half the distance between the upper fixing points of the wires suspending the platform - h distance along the z-axis between upper and lower fixing points of the wires suspending the platform - $\it m_{\rm d1}$ mass of weight provided for adjusting the location of the centre of gravity of the platform - $m_{\rm p}$ mass of the platform - $x_{\rm d1}$ distance along the x-axis from the centre of the platform to the weight of mass $m_{\rm d1}$ - $x_{\rm p}$ distance along the x-axis from the centre of the platform to the centre of gravity of the platform - $y_{\rm d1}$ distance along the y-axis from the centre of the platform to the weight of mass $m_{\rm d1}$ - $y_{\rm p}$ distance along the y-axis from the centre of the platform to the centre of gravity of the platform - E centre of the bottom surface of the empty platform Figure 5 — Measurement procedure for yaw moment of inertia of empty platform (procedure with bifilar pendulum principle) #### 6.4.2 Yaw moment of inertia of motorcycle about z-axis Yaw moment of inertia of the motorcycle about the z-axis shall be measured in the procedure described below (see Figure 6). NOTE This measurement applies to both the empty motorcycle and the motorcycle with a rider. - a) Place the motorcycle on the platform and fix it so it cannot move. Lateral inclination of the motorcycle to the platform shall be $0^{\circ} \pm 0.5^{\circ}$. - b) Position the motorcycle so that the point of its centre of gravity is on the perpendicular line of point E of the platform. If it cannot be adjusted, set up the weight of mass m_{d2} as shown in Figure 6. - c) Calculate the weight set-up position using Equation (7): $$x_{d2} = \frac{m_{m}x_{m}}{m_{d2}}$$ $$y_{d2} = \frac{m_{m}y_{m}}{m_{d2}}$$ (7) where x_{d2} is the distance along the x-axis from the centre of the platform to the weight of mass m_{d2} , in m; y_{d2} is the distance along the y-axis from the centre of the platform to the weight of mass m_{d2} , in m; $m_{\rm m}$ is the mass of the motorcycle, in kg; $x_{\rm m}$ is the distance along the x-axis from the centre of the platform to the centre of gravity of the motorcycle, in m; $y_{\rm m}$ is the distance along the y-axis from the centre of the platform to the centre of gravity of the motorcycle, in m; $m_{\rm d2}$ is the mass of the weight provided for adjusting the location of the centre of gravity of the motorcycle, in kq. NOTE When the centre, E, and the centre of gravity of the motorcycle coincide with each other, the value of all the distances is zero. - d) Oscillate the motorcycle/platform combination around the perpendicular axis passing point E. It is desirable to keep the total oscillating angle below 5°. - e) Make sure that the platform is oscillating in a stable way and measure the time required for the platform to oscillate 50 times by a stop watch. Repeat this process 3 times and obtain the average value of 3 average cycle times. The result shall be the period. - f) Calculate the inertia moment of the motorcycle about the z-axis, I_{zm} , expressed in kgm², using Equation (8): $$l_{\text{m}}^{2} = x_{\text{m}}^{2} + y_{\text{m}}^{2}$$ $$l_{\text{d2}}^{2} = x_{\text{d2}}^{2} + y_{\text{d2}}^{2}$$ $$I_{\text{zm}} = \left(\frac{T_{\text{zT}}}{2\pi}\right)^{2} \frac{ab}{h} \left(m_{\text{p}} + m_{\text{d1}} + m_{\text{m}} + m_{\text{d2}}\right) g - I_{\text{zp}} - m_{\text{m}} l_{\text{m}}^{2} - m_{\text{d2}} l_{\text{d2}}^{2}$$ (8) #### where - $l_{\rm m}$ is the distance from the centre of platform to the centre of gravity of the motorcycle, in m; - $l_{\rm d2}$ is the distance from the centre of the platform to weight $m_{\rm d2}$, in m; - T_{zT} is the period that the platform with the motorcycle placed on it takes to oscillate, in s; - a is half the distance between the lower fixing points of the wires suspending the platform, in m; - b is half the distance between the upper fixing points of the wires suspending the platform, in m; - h is the distance along the z-axis between the upper and lower fixing points of the wires suspending the platform, in m; - $m_{\rm p}$ is the mass of the platform, in kg; - $m_{\rm d1}$ is the mass of the weight provided for adjusting the location of the centre of gravity of the platform, in kg; - g is acceleration due to gravity (9.81m/s^2) ; - I_{zp} is the inertia moment of the platform about the z-axis, in kgm² [see Equation (6)]. Figure 6 (continued) y_{d2} - half the distance between the lower fixing points of the wires suspending the platform а - half the distance between the upper fixing points of the wires suspending the platform b - distance along the z-axis between upper and lower fixing points of the wires suspending the platform h - mass of the weight provided for adjusting the location of the centre of gravity of the platform m_{d1} - mass of the weight provided for adjusting the location of the centre of gravity of the motorcycle m_{d2} - mass of the motorcycle m_{m} - mass of the platform m_{p} - distance along the x-axis from the centre of the platform to the weight of mass $m_{\rm d2}$ x_{d2} - distance along the x-axis from the centre of the platform to the centre of gravity of the motorcycle x_{m} - distance along the y-axis from the centre of the platform to the weight of mass $m_{\rm d2}$ - distance along the y-axis from the centre of the platform to the centre of gravity of the motorcycle y_{m} - Ε centre of the bottom surface of the empty platform Figure 6 — Measurement procedure for yaw moment of inertia of the motorcycle (procedure with bifilar pendulum principle using a platform) #### **Test results** Record the measurement results in the report as shown in Annex A. Round the measurement values of the inertia moment to 3 significant digits. ## (normative) #### Format for measurement results The format shown in this annex shall be used to record the measurement results of moments of inertia for motorcycles, calculated in accordance with this International Standard. | | Motorcycle – Moments of inertia – Measurement results calculated in accordance with ISO 9129 | | | | | |---|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--| | 1 | Vehic | Vehicle identification | | | | | | 1.1 | Make, model, type: | | | | | | 1.2 | Year model: | | | | | | 1.3 | Vehicle Descriptor Section (VDS) (see ISO 3779): | | | | | l | 1.4 | Tyre pressure: front:kPa / rear:kPa | | | | | | 1.5 | Suspension setting (if adjustable): | | | | | | 1.6 | Suspension fixing position: front ^a : rear ^b : | | | | | | 1.7 | Other conditions c: | | | | | 2 | Test | est conditions | | | | | | 2.1 | Date of test: | | | | | | 2.2 | Place of test: | | | | | | 2.3 | Measured by: | | | | | | 2.4 | Rider ^d : None / Dummy / Human being | | | | | | 2.5 | Dummy reference (if applicable): | | | | | | 2.6 | Seating position e: | | | | | | 2.7 | Posture angle f: degrees | | | | | | 2.8 | Measuring condition of period ^g : | | | | | 3 | Test | Fest results | | | | | | 3.1 | Roll moment of inertia about the x-axis of the motorcycle, $I_{\rm xm}$:kgm ² | | | | | | 3.2 | Pitch moment of inertia about the y-axis of the motorcycle, I_{ym} :kgm ² | | | | | | 3.3 | Yaw moment of inertia about the z-axis of the motorcycle, $I_{\rm zm}$:kgm² | | | | | а | Dieta | ance from the centre of the head nine to the ground. If this distance cannot be measured, record the reference point on the | | | | ^a Distance from the centre of the head pipe to the ground. If this distance cannot be measured, record the reference point on the springing portion of the motorcycle front side and measure the distance from this point to the ground. - See Clause 4: record the added or changed measuring conditions. - Delete from the list ("None", "Dummy", or "Human being") those which are not applicable. - e Distance from the front axle to the point H along the x-axis. The point H is the centre of rotation of the trunk of the body and femoral region of the rider. - f Angle formed by the line connecting the point S and the point H and the x-axis. Point S is the centre of rotation of the trunk of the body and arms of the rider. - 9 If period was measured by a different method from the one described in ISO 9129, record those conditions. b Distance from the centre of the bolt mounting the upper side of the rear suspension to the ground. If this distance cannot be measured, record the reference point on the springing portion of the rear side of the motorcycle and measure the distance from this point to the ground. ICS 43.140 Price based on 17 pages