INTERNATIONAL STANDARD ISO 8721 Second edition 2010-09-01 # Road vehicles — Measurement techniques in impact tests — Optical instrumentation Véhicules routiers — Techniques de mesure lors des essais de chocs — Instrumentation optique #### PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. #### COPYRIGHT PROTECTED DOCUMENT #### © ISO 2010 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland #### **Contents** Page Forewordiv 2 3 Terms and definitions1 4 Symbols......5 5 Performance......7 5.1 5.2 5.3 Time base system......8 Performance of the optical data channel8 5.4 5.5 Accuracy of the optical data channel......10 5.6 Types of procedure11 5.7 Conformity statement13 5.8 5.9 6 Annex B (informative) Measurements methods.......42 Annex D (informative) Dependences between the indices and the variables46 Bibliography.......47 ISO 8721:2010(E) ## **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 8721 was prepared by Technical Committee ISO/TC 22, Road vehicles, Subcommittee SC 12, Passive safety crash protection systems. This second edition cancels and replaces the first edition (ISO 8721:1987), which has been technically revised. ## Road vehicles — Measurement techniques in impact tests — Optical instrumentation ## 1 Scope This International Standard defines performance criteria for an optical data channel used in impact tests on road vehicles, when numerical time and space data are taken from images to analyse impact test results. The objective of this International Standard is to facilitate comparison between results obtained by different laboratories by specifying minimum quality criteria. Annexes A, B, C and D present a method of measuring several indices like quality parameters of subprocesses of the optical data channel, using a calibration target, reference distances and analysis systems. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 6487, Road vehicles — Measurement techniques in impact tests — Instrumentation #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 ## analysis system system to measure and collect the coordinates of target points in image space as a function of time NOTE The calculation results of the analysis system are 3D coordinates in object space, whereas in the case of 2D analysis, the depth of the target points is known and considered. #### 3.2 #### cell size distance of neighbouring pixels on the sensor of an image recording device NOTE If there are different distance values in the two main directions of the image, the cell size is the maximum of these values. #### 3.3 #### control point point that was determined with a higher accuracy and is further accepted as an error-free point ## ISO 8721:2010(E) #### 3.4 #### frame rate f_{r} frequency of renewal of information for a given point, expressed in renewals per second, or in images per second if all points of the image are renewed simultaneously #### 3.5 #### image recording device system composed of a camera/lens unit together with a recording system #### 3.6 #### location accuracy a_{loc} desired accuracy of the object or target being measured #### 3.7 #### optical data channel system composed of one or more image recording devices and a system for analysing the images, including any analysis procedure and data correction that validate and modify the content of the data #### 3.8 #### reference distance known distance between a validation target pair #### 3.9 #### synchronism device device to identify the synchronism effect in two or more corresponding image recording devices #### 3.10 #### time base system device allowing determination of the time interval elapses between any two recorded events for each image recording device #### 3.11 ## time origin identification device device to identify the instant chosen as the time origin, usually the contact between the test objects #### 3.12 #### validation target pair pair of targets placed in the field of view so that the distance separating them remains constant NOTE Both of them are visible during the impact test. #### 3.13 #### accuracy value value that represents the relative overall accuracy of any point measurement within the optical data channel when the performance value is satisfied #### 3.14 ## accuracy value limit user-defined limit for the accuracy value that represents the relative overall accuracy of any point measurement within the optical data channel when the performance value is satisfied #### 3.15 #### camera position calculation index l_{CPC} index that gives the possibility to evaluate whether the accuracy of the optical data channel determined from one time step is representative for the entire sequence #### 3.16 #### camera set-up index $i_{\sf CS}$ index that makes it possible to evaluate whether the set-up of the camera with respect to the movement plane permits a reliable analysis NOTE Only for 2D film analysis. #### 3.17 ## control point distribution index $i_{\rm cpc}$ index that makes it possible to evaluate whether the distribution of the control points in the image permits a reliable orientation of the used images #### 3.18 #### distortion index i_{d} index that makes it possible to evaluate whether the interior orientation parameters of the used camera are still valid #### 3.19 ## focal length index i_{fl} index that makes it possible to evaluate whether the focal length of the used image recording device is still valid #### 3.20 ## index value value that is determined by the index calculation equation NOTE 1 See Annex A. NOTE 2 The index value is the result of the index determination and is a floating point number. #### 3.21 ## index condition condition of the check of the index NOTE The index condition can be true (value 1) or false (value 0). The condition true means that the index check is fulfilled and the condition false means that the index check is not fulfilled. #### 3.22 #### intersection index i: index that makes it possible to evaluate the intersection geometry of the rays from the image recording devices to the object points NOTE Only for 3D film analysis. #### 3.23 ## length measurement error value that represents the absolute overall accuracy of any point measurement within the optical data channel when the performance value is satisfied ## ISO 8721:2010(E) #### 3.24 #### motion blur index index that allows one to evaluate whether the exposure time used in the test is small enough with respect to the appropriate object movement, in order to ensure a reliable point identification and point measurement in the images #### 3.25 #### performance value value that guarantees suitable general conditions for the estimation of the accuracy of the optical data channel It is derived from all indices which describe the performance of the optical data channel. #### 3.26 ## plane scale index i_{ps} index that makes it possible to evaluate whether there is the possibility to calculate the scale in each movement plane NOTE Only for 2D film analysis. #### 3.27 #### point motion index index that makes it possible to estimate whether the selected frame rate is high enough, in order to correspond to the test requirements #### 3.28 #### scale index
i_s index that gives the possibility to evaluate whether there are enough independent reference distances to control the system scale #### 3.29 #### synchronism index l_{SY} index that makes it possible to estimate whether the data produced in the test can be regarded as synchronous NOTE Only for 3D film analysis. ## 3.30 #### target detection index index that makes it possible to evaluate whether the measuring accuracy of the image coordinates is small enough, in order to correspond to the test requirements ## 3.31 #### target size index index that makes it possible to evaluate whether the signalized points, used in the test, are large enough, in order to ensure a reliable point identification and point measurement in the images #### 3.32 ## time base index index that makes it possible to evaluate whether the time accuracy of the used time base system corresponds to the test requirements ## time origin identification index l_{toi} index that makes it possible to evaluate whether the time accuracy of the used time origin identification device corresponds to the test requirements ## 4 Symbols | Symbol | Definition | |-----------------|--| | A_{cf} | control point formed area | | A_{i} | image area | | а | accuracy value of the optical data channel | | $a_{\sf alaid}$ | allowed location accuracy in depth | | $a_{ m clad}$ | current location accuracy (distortion) | | a_{claf} | current location accuracy (focal length) | | a_{clai} | current location accuracy (intersection) | | $a_{ m claid}$ | current location accuracy in depth | | a_{clat} | current location accuracy (target) | | $a_{ m clatb}$ | current location accuracy (time base) | | $a_{ m clatoi}$ | current location accuracy (time origin identification) | | a_{d} | distortion accuracy | | a_{fl} | focal length accuracy | | a_{fr} | frame rate accuracy | | a_{loc} | location accuracy | | $a_{refdist,r}$ | accuracy value of the reference distance, r | | a_{td} | target detection accuracy | | d | object distance | | e | exposure time | | f | focal length | | f_{r} | frame rate | | $i_{\sf cpc}$ | camera position calculation index | | $i_{\sf cpd}$ | control point distribution index | | $i_{\sf CS}$ | camera set-up index | | $i_{\sf d}$ | distortion index | | i _{fl} | focal length index | | i_{\dagger} | intersection index | | $i_{\sf mb}$ | motion blur index | | $i_{\sf pm}$ | point motion index | | $i_{\sf ps}$ | plane scale index | | Symbol | Definition | |------------------|--| | i_{S} | scale index | | i _{sy} | synchronism index | | i _{tb} | time base index | | i _{td} | target detection index | | i_{toi} | time origin identification index | | i _{ts} | target size index | | ΔL | length measurement error of the optical data channel | | Δl_r | length measurement error of reference distance, r | | l _{aed} | asynchronism effect in viewing direction | | l _{aep} | asynchronism effect perpendicular to the viewing direction | | $l_{\sf apm}$ | allowed point motion between two sequenced images in object space | | $l_{C,r}$ | calibrated length of reference distance, r | | l_{cb} | camera base | | $l_{\sf cmbv}$ | current motion blur value | | $l_{\sf cpm}$ | current point motion between two sequenced images in object space | | $l_{ t cs}$ | cell size | | l_{ctd} | current target diameter | | $l_{\sf dco}$ | distance camera base to object | | l_{fpd} | fix point distance | | l_{ih} | image height | | I_{iw} | image width | | $l_{m,r}(t)$ | measured length of reference distance, r , as a function of time | | $l_{\sf mdi}$ | maximum displacement in image space | | $l_{\sf mdo}$ | maximum displacement in object space | | I _{rtd} | required target diameter | | $I_{ m ttd}$ | theoretical target diameter | | p | 3D performance value of the optical data channel | | $p_{\sf cpa}$ | control point area | | $p_{\sf cpd}$ | control point distribution | | $p_{dtp,i}$ | distance to plane of motion <i>i</i> | | $p_{\sf np}$ | number of planes of motion | | $p_{rd,r}$ | reference distance | | $p_{rd,i}$ | reference distance in direction i | | $p_{rdp,i}$ | reference distance in plane of motion <i>i</i> | | p_{siap} | scale information in all planes of motion | | $p_{sip,i}$ | scale information in plane of motion <i>i</i> | | Symbol | Definition | |------------------|--| | p_{syd} | synchronism index in viewing direction | | p_{syp} | synchronism index perpendicular to the viewing direction | | $p_{t,i}$ | target in image section i | | $p_{\sf tpc}$ | type of camera set-up | | $p_{\sf tpd}$ | type of position determination | | Q | performance value of the optical data channel | | q_i | 2D performance value of the image recording device i | | r _{aar} | allowed accuracy relation | | r _{avl} | accuracy value limit | | r _{car} | current accuracy relation | | t_{b} | beginning of the analysed time interval | | t_{C} | user-defined time within the analysed time interval | | $t_{\sf ca}$ | current asynchronism | | $t_{\sf dtz}$ | difference between t_0 -image and -signal | | t_{e} | end of the analysed time interval | | t_{int} | time interval | | $t_{\sf td}$ | time drift | | <i>t</i> ttd | total time drift | | ν | velocity | #### 5 Performance ## 5.1 General requirements The performance of the optical data channel shall be evaluated initially to establish performance levels. This evaluation shall be repeated whenever the system is modified to an extent which could cause a change in accuracy. This shall be done with an offline procedure. It is also possible to measure the performance of the optical data channel during an impact test. This is called the online procedure. The performance of the optical data channel shall be estimated using 2D performance values, or 3D performance values, or both. These values consist of different performance indices depending on the test constellation. To verify the estimated performance values, an accuracy value shall be determined using two or more reference distances. If a film analysis is carried out using the image sequences of onboard cameras, the used equipment (camera and lens) shall correspond to the expected shock. #### 5.2 Reference distance The reference distances shall be determined ten times more precisely than the desired location accuracy. The determination of the reference distances should be done before the test. The reference distances shall be located on approximately perpendicular (90 \pm 10)° lines (see A.3.2). For 3D analysis, all three directions in space shall be covered. ## Time base system The time base shall be determined ten times more precisely than the desired time accuracy. ## Performance of the optical data channel #### 5.4.1 General The performance of the optical data channel consists of different indices (see Table 1). The determination depends on the application (2D or 3D). #### 5.4.2 Performance indices Each index value shall be at least 0,5. If this minimum requirement is not fulfilled for every index, then the impact test does not conform to this International Standard. The index condition of a certain index is 0 if the requirements for this index (see Annex A) are not fulfilled; otherwise the index condition is 1. Table 1 — Performance indices | Index | 2D | 3D | Number per optical
data channel | Comment | |----------------------------------|----|----|------------------------------------|---------------------------------------| | Focal length index | а | а | one per image recording device | in a suitable image | | Distortion index | а | а | one per image recording device | in a suitable image | | Target detection index | а | а | one per image recording device | worst target used in the analysis | | Target size index | а | а | one per image recording device | worst target used in the analysis | | Motion blur index | а | а | one per image recording device | at maximum object speed | | Point motion index | а | а | one per image recording device | at maximum object speed | | Control point distribution index | а | а | one per image recording device | in a suitable image | | Time base index | а | а | one per image recording device | _ | | Time origin identification index | а | а | one per image recording device | _ | | Camera set-up index | а | b | one per image recording device | _ | | Plane scale index | а | b | one per image recording device | _ | | Intersection index | b | а | one | best pair of image recording devices | | Synchronism index | b | а | one | worst pair of image recording devices | Index value is used for the performance value. #### 5.4.3 2D performance value The performance value for every image recording device is estimated by all 2D related index conditions (see Table 1). The 2D performance value, q_i , is the ratio of the achieved sum to the possible sum of index conditions with respect to the test requirements, and is calculated as shown in Equation (1): $$q_i = \frac{\sum_{j=1}^{n} x_{ji}}{n} \tag{1}$$ Index value is not used for the performance value. #### where - *i* is the image recording device number; - *j* is the 2D performance index number; - x_{ii} is the index condition of the 2D performance index, j, of the image recording device, i; - *n* is the number of 2D performance indices (2D film analysis: n = 11; 3D film analysis: n = 9). #### 5.4.4 3D performance value The 3D performance value of the optical data channel, p, is calculated as shown in Equation (2): $$p = \sum_{k=1}^{m} y_k \tag{2}$$ where - *k* is the 3D performance index number; - y_k is the index condition of the 3D performance index, k, of the optical data channel; - m is the number of 3D performance indices (m = 2). ## 5.4.5 Performance value of the optical data channel For 2D analysis, the performance value of the optical data channel, Q, is
identical to the 2D performance value, q_1 , as shown in Equation (3): $$Q = q_1 \tag{3}$$ For 3D analysis with only one image recording device, the intersection index and the synchronism index are not defined. In this case, the performance value of the optical data channel, Q, is equal to the 2D performance value, q_1 . For 3D analysis, the performance value of the optical data channel, Q, is the ratio of the achieved sum to the possible sum of all index conditions, calculated according to Equation (4): $$Q = \frac{\left(n \times \sum_{i=1}^{u} q_i\right) + \left(p \times u\right)}{\left(n \times u\right) + \left(m \times u\right)} = \frac{\left(\frac{n}{u} \times \sum_{i=1}^{u} q_i\right) + p}{n + m} \tag{4}$$ where - *i* is the image recording device number; - q_i is the 2D performance value of the image recording device, i; - *u* is the number of image recording devices; - n is the number of 2D performance indices (2D film analysis: n = 11; 3D film analysis: n = 9); - *m* is the number of 3D performance indices (m = 2); - p is the 3D performance value of the optical data channel. ## Accuracy of the optical data channel ## 5.5.1 Accuracy indices The accuracy indices are shown in Table 2. Table 2 — Accuracy indices | Index | Number per optical data channel | Comment | |-----------------------------------|---------------------------------|---------------------| | Camera position calculation index | one per image recording device | _ | | Scale index | one | indispensable index | #### 5.5.2 Length measurement error and accuracy value of a reference distance The length measurement error and accuracy value of a reference distance are defined as follows: - the length measurement error, Δl_r , of the reference distance, r, is the maximum difference between the measured length, $l_{\rm m} r(t)$, and the calibrated length, $l_{\rm c} r$, within the analysed time interval; - the accuracy value, $a_{\text{refdist},r}$, of the reference distance, r, is the maximum relative difference between the measured length, $l_{m,r}(t)$, and the calibrated length, $l_{c,r}$, within the analysed time interval. All used image recording devices shall be used for the calculation of the reference distances. If the index condition of the camera position calculation index, $i_{\rm cpc}$, of all used image recording devices is fulfilled, the length measurement error, Δl_r , can be determined at a single time step within the analysed time interval. If the index condition of only one image recording device is not fulfilled, the length measurement error, Δl_r , shall be calculated for every time step within the analysed time interval. The accuracy value, $a_{\text{refdist},r}$, of the reference distance, r, is the ratio between the length measurement error, Δl_r , and the calibrated length, $l_{c,r}$. If every $i_{\text{coc},i} \ge 1$, then the length measurement error, Δl_r , is calculated according to Equation (5): $$\Delta l_r = \left| l_{\mathsf{m},r}(t_{\mathsf{C}}) - l_{\mathsf{C},r} \right| \tag{5}$$ where is the index value of the camera position calculation index of the image recording device, i; $i_{\mathsf{cpc},i}$ is the image recording device number; is the reference distance number; is the measured length of reference distance, r, as a function of time; $l_{\mathsf{m},r}(t)$ is the calibrated length of reference distance, r. $l_{\mathsf{c},r}$ If any i_{CDC} i < 1, then the length measurement error, Δl_r , is calculated according to Equation (6): $$\Delta l_r = \max \left| l_{\mathsf{m},r}(t) - l_{\mathsf{c},r} \right|_{t_{\mathsf{b}}}^{t_{\mathsf{e}}} \tag{6}$$ where *t*_b is the beginning of the analysed time interval; $t_{\rm e}$ is the end of the analysed time interval; $t_{\rm C}$ is a user-defined time within the analysed time interval. The accuracy value, $a_{refdist,r}$, is calculated according to Equation (7): $$a_{\text{refdist},r} = \frac{\Delta l_r}{l_{\text{C},r}} \tag{7}$$ #### 5.5.3 Length measurement error and accuracy value of the optical data channel - The length measurement error of the optical data channel, ΔL , is the maximum of the length measurement errors, Δl_r , of all reference distances, r. - The accuracy value of the optical data channel, a, is the maximum of the accuracy values, $a_{\text{refdist},r}$, of all reference distances, r $$\Delta L = \max(\Delta l_r) \tag{8}$$ $$a = \max(a_{\mathsf{refdist},r}) \tag{9}$$ ## 5.6 Types of procedure ## 5.6.1 General Conformity with this International Standard can be verified by different types of procedure, depending on the desired complexity. The different types of procedure are shown in Table 3. Table 3 — Types of procedure | Type of | Before the i | real impact test | During the real impact test | | | |-----------|-------------------|--|--|--|--| | procedure | Performance value | Accuracy value | Performance value | Accuracy value | | | Online | _ | _ | <i>Q</i> ≥ 0,7 | $\Delta L \leqslant a_{loc}$ $a \leqslant r_{avl}$ | | | Offline | <i>Q</i> ≥ 0,8 | $\Delta L \leqslant a_{loc}$ $a \leqslant r_{aVI}$ | Synchronism index $i_{\text{sy}} \geqslant 1$ (only 3D analysis) | $\Delta L \leqslant a_{loc}$ $a \leqslant r_{avl}$ | | ## Key Q performance value of the optical data channel ΔL length measurement error of the optical data channel a accuracy value of the optical data channel rayl user-defined accuracy value limit of the optical data channel $a_{\rm loc}$ user-defined location accuracy of the optical data channel ISO 8721:2010(E) #### 5.6.2 Type of procedure — Online **5.6.2.1** The online procedure is of the highest complexity. All work shall be done for every impact test. The performance and the accuracy of the optical data channel can be checked during the test. This procedure can be used, if the equipment of the optical data channel will often be changed essentially between the impact tests, or if no prior information about the optical data channel is available. The user has the possibility to evaluate every component of the optical data channel for every impact test. - **5.6.2.2** Tasks during the impact test are specified below. - All described performance and accuracy indices shall be calculated during the real impact test. - All described performance index values shall be at least 0,5. - The performance value of the optical data channel, *Q*, shall be greater than 0,7. - The length measurement error of the optical data channel, ΔL , shall be lower than the location accuracy, a_{loc} . - The accuracy value of the optical data channel, a, shall be lower than the accuracy value limit, $r_{\rm avl}$. #### 5.6.3 Type of Procedure — Offline **5.6.3.1** The offline procedure is of middle complexity. The main part of the calculation shall be done once in the preliminary test. The performance of the optical data channel can only be checked in this test. During the impact test, only the accuracy can be calculated. For a 3D analysis, the synchronism shall be checked. This procedure can be used if the equipment of the optical data channel will not be changed, or if only minor changes will be done. The user has the possibility to evaluate every component of the optical data channel once in the preliminary test. For every impact test, the user only has the possibility to evaluate the overall result of the optical data channel. - **5.6.3.2** Tasks in the preliminary test are specified below. - The lighting and the frame rates of the image recording devices in the preliminary test shall be similar to an impact test. The using of a VDI/VDE 1634 Part 1 artefact is recommended (see Reference [2]). The size of the artefact should correspond to the size of the measuring area of the impact test. - All described performance index values shall be at least 0,5. - The performance value of the optical data channel, Q, shall be greater than 0,8. - The length measurement error of the optical data channel, ΔL , shall be lower than the location accuracy, $a_{\rm loc}$. - The accuracy value of the optical data channel, a, shall be lower than the accuracy value limit, r_{avi} . - **5.6.3.3** Tasks during the impact test are specified below. - For 3D analysis, the synchronism index shall be fulfilled, $i_{sv} \ge 1$. - The length measurement error of the optical data channel, ΔL , shall be lower than the location accuracy, a_{loc} . - The accuracy value of the optical data channel, a, shall be lower than the accuracy value limit, r_{avl} . ## 5.7 Conformity statement The accuracy value represents the overall accuracy of any point measurement within the optical data channel when suitable general conditions are valid. This is guaranteed by the performance value. An optical data channel conforms to this International Standard if the index value of the scale index is 1 and the accuracy value and the performance value fit the requirements of the used procedure. ## 5.8 Derived quantities For derived computed quantities, the requests for the digital signal processing of a data channel shall be considered in accordance with ISO 6487. #### 5.9 User-defined variables The user is able to influence the results of the testing procedure by the specification of user-defined variables. The conformity or non-conformity of this International Standard depends on these user-defined variables. They shall be listed in the inspection record. With these variables, the user specifies his desired measurement accuracy. User-defined variables are given in Table 4. Table 4 — User-defined variables | Variable | Symbol | Definition | Unit | |---------------------------|------------------
--|-------------| | location accuracy | a_{loc} | desired accuracy of the object or target being measured (target detection index, focal length index, distortion index, motion blur index, length measurement error) | length unit | | allowed point motion | $l_{\sf apm}$ | allowed point motion between two sequenced images in object space (point motion index) | length unit | | allowed accuracy relation | ^r ааг | allowed accuracy relation between the accuracy perpendicular to
the camera base in the direction to the object and the accuracy in
the other two directions (intersection index) | _ | | accuracy value limit | r _{avl} | desired accuracy relation of the reference distances being measured (accuracy value) | _ | ## 6 Documentation For the interpretation of the accuracy and performance values, it is necessary to specify the used type of procedure (online/offline), the type of analysis (2D/3D), the number of image recording devices and the time interval used for the evaluation. All user-specific input values and all index values shall be recorded. If the frame rate is not constant over the time interval, the time vector shall be recorded. For the documentation of the performance of an optical data channel, an inspection record is recommended (see Clause A.4). ## Annex A (normative) ## Index determination methods ## A.1 2D performance indices ## A.1.1 Focal length index, i_{fl} The focal length index determines the influence of an incorrect focal length on the location accuracy. The accuracy of the determined focal length is calculated by algorithms determining the camera internal parameters. For a 2D film analysis using a perpendicular set-up of the camera with respect to the movement plane (see A.1.8), and if reference distances are available in each motion plane (see A.1.9), the index value of the focal length index is 1. Otherwise, the index value shall be calculated by Equations (A.1) and (A.2), using the parameters in Table A.1. **Definition Parameter Symbol** Unit focal length focal length of the used image recording device length unit Input parameters object distance d distance between object and image recording device length unit focal length accuracy accuracy of the determined focal length length unit a_{fl} **User-defined** desired accuracy of the object or target being location accuracy length unit a_{loc} variables measured current location **Derived values** current accuracy of the object or target being measured length unit a_{claf} accuracy Table A.1 — Parameters to determine focal length index The functional connection is as shown in Equation (A.1): $$a_{\text{claf}} = \frac{d}{f} \times a_{\text{fl}}$$ (A.1) The requirement for the parameter focal length index, i_{fl} , is as shown in Equation (A.2): $$i_{fl} = \frac{a_{loc}}{a_{claf}} \geqslant 1 \tag{A.2}$$ **EXAMPLE** If $$f = 16$$ mm, $d = 5~000$ mm, $a_{loc} = 10$ mm and $a_{fl} = 0.02$ mm, then $$a_{claf} = (5\ 000\ mm/16\ mm) \times 0.02\ mm = 6.25\ mm$$ $$i_{\rm fl} = 10 \text{ mm/6,25 mm} = 1,6$$ ## A.1.2 Distortion index, i_{cl} The distortion index determines the influence of incorrect distortion parameters of the interior orientation on the location accuracy. The distortion accuracy is the remaining maximum residual of the process of determining the internal camera parameters. The distortion index value shall be calculated by Equations (A.3) and (A.4), using the parameters in Table A.2. **Parameter Symbol Definition** Unit focal length focal length of the used image recording device length unit object distance d length unit distance between object and image recording device accuracy of the determined distortion parameters Input parameters distortion accuracy pixel a_{d} (maximum residuals) length cell size cell size of the digital image l_{cs} unit/pixel **User-defined** desired accuracy of the object or target being length unit location accuracy a_{loc} variables measured current location **Derived values** current accuracy of the object or target being measured length unit a_{clad} accuracy (distortion) Table A.2 — Parameters to determine distortion index The functional connection is as shown in Equation (A.3): $$a_{\mathsf{clad}} = \frac{d}{f} \times a_{\mathsf{d}} \times l_{\mathsf{cs}} \tag{A.3}$$ The requirement for the parameter distortion index, i_d , is as shown in Equation (A.4): $$i_{\rm d} = \frac{a_{\rm loc}}{a_{\rm clad}} \geqslant 1 \tag{A.4}$$ EXAMPLE If $$f = 16$$ mm, $d = 5$ 000 mm, $a_{loc} = 10$ mm, $a_{d} = 1$ pixel and $l_{cs} = 0.016$ mm/pixel, then $a_{\rm clad}$ = (5 000 mm/16 mm) × 1 pixel × 0,016 mm/pixel = 5 mm $i_d = 10 \text{ mm/5 mm} = 2.0$ $i_d \geqslant 1$ ## A.1.3 Target detection index, i_{td} The target detection index determines the influence of the target detection accuracy on the location accuracy. The worst target used in the analysis shall be used for the determination of the target detection index. The target detection index value shall be calculated by Equations (A.5) and (A.6), using the parameters in Table A.3. Table A.3 — Parameters to determine target detection index | Parameter | | Symbol | Definition | Unit | |------------------------|------------------------------------|--------------|---|----------------------| | | focal length | f | focal length of the used image recording device | length unit | | | object distance | d | distance between object and image recording device | length unit | | Input parameters | target detection accuracy | $a_{\sf td}$ | target detection accuracy (e.g. determined by measurement on similar target type and target size of known location) | pixel | | | cell size | l_{CS} | cell size of the digital image | length
unit/pixel | | User-defined variables | location accuracy | a_{loc} | desired accuracy of the object or target being measured | length unit | | Derived values | current location accuracy (target) | a_{clat} | current accuracy of the object or target being measured | length unit | The functional connection is as shown in Equation (A.5): $$a_{\mathsf{clat}} = \frac{d}{f} \times a_{\mathsf{td}} \times l_{\mathsf{cs}} \tag{A.5}$$ The requirement for the parameter target detection index, i_{td} , is as shown in Equation (A.6): $$i_{\rm td} = \frac{a_{\rm loc}}{a_{\rm clat}} \geqslant 1$$ (A.6) **EXAMPLE** If $$f$$ = 16 mm, d = 8 000 mm, a_{loc} = 10 mm, a_{td} = 0,1 pixel and l_{cs} = 0,016 mm/pixel, then $a_{\mathrm{clad}} = (8\ 000\ \mathrm{mm/16\ mm}) \times 0.1\ \mathrm{pixel} \times 0.016\ \mathrm{mm/pixel} = 0.8\ \mathrm{mm}$ $i_{td} = 10 \text{ mm}/0.8 \text{ mm} = 12.5$ $i_{td} \geqslant 1$ ## A.1.4 Target size index, i_{ts} The target size index compares the current and the required diameter of the targets in object space. The worst target used in the analysis shall be used for the determination of the target size index. The target size index value shall be calculated by Equations (A.7) and (A.8), using the parameters in Table A.4. Table A.4 — Parameters to determine target size index | Parameter | | Symbol | Definition | Unit | |------------------|-----------------------------|--------------------|---|----------------------| | | focal length | f | focal length of the used image recording device | length unit | | | object distance | d | distance between object and image recording device | length unit | | Input parameters | required target
diameter | l_{rtd} | required target diameter in image space (required by the analysis system developer) | pixel | | | cell size | l_{CS} | cell size of the digital image | length
unit/pixel | | | current target diameter | l_{ctd} | real target diameter in object space | length unit | | Derived values | theoretical target diameter | l_{ttd} | theoretical target diameter in object space | length unit | The functional connection is as shown in Equation (A.7): $$l_{\text{ttd}} = \frac{d}{f} \times l_{\text{rtd}} \times l_{\text{cs}} \tag{A.7}$$ The requirement for the parameter target size index, i_{ts} , is as shown in Equation (A.8): $$i_{ts} = \frac{l_{ctd}}{l_{ttd}} \geqslant 1$$ (A.8) **EXAMPLE** If $$f$$ = 25 mm, d = 5 000 mm, $l_{\rm rtd}$ = 10 pixel and $l_{\rm cs}$ = 0,016 mm/pixel and $l_{\rm ctd}$ = 35 mm, then $$l_{\text{ttd}} = (5~000~\text{mm}/25~\text{mm}) \times 10~\text{pixel} \times 0,016~\text{mm/pixel} = 32~\text{mm}$$ $$i_{ts} = 35 \text{ mm}/32 \text{ mm} = 1,09$$ ## A.1.5 Motion blur index, i_{mh} The motion blur index determines the influence of the motion blur on the location accuracy. The motion blur index value shall be calculated by Equations (A.9) and (A.10), using the parameters in Table A.5. Table A.5 — Parameters to determine motion blur index | Parameter | | Symbol | Definition | Unit | |------------------------|---------------------------|------------|---|-----------------------------| | Input parameters | object speed | v | maximum speed of the object perpendicular to the optical axis | length
unit/time
unit | | | exposure time | e | exposure time of the used image recording device | time unit | | User-defined variables | location accuracy | a_{loc} | desired accuracy of the object or target being measured | length unit | | Derived values | current motion blur value | l_{cmbv} | current motion blur value at the object | length unit | The functional connection is as shown in Equation (A.9): $$l_{\text{cmbv}} = 0.5 \times v \times e \tag{A.9}$$ The requirement for the parameter motion blur index, i_{mb} , is as shown in Equation
(A.10): $$i_{\rm mb} = \frac{a_{\rm loc}}{l_{\rm cmbv}} \geqslant 1 \tag{A.10}$$ **EXAMPLE** If $$v = 18$$ m/s, $e = 0.4$ ms and $a_{loc} = 5$ mm, then $$l_{cmby} = 0.5 \times 18 \text{ mm/ms} \times 0.4 \text{ ms} = 3.6 \text{ mm}$$ $$i_{\rm mb} = 5.0 \text{ mm}/3.6 \text{ mm} = 1.39$$ $$i_{\mathsf{mb}} \geqslant 1$$ \checkmark ## A.1.6 Point motion index, i_{pm} The point motion index determines the current point motion between two images of a sequence with respect to the test requirements. The point motion index value shall be calculated by Equations (A.11) and (A.12), using the parameters in Table A.6. | Parameter | | Symbol | Definition | Unit | |------------------------|----------------------|------------------|---|-----------------------------| | Input parameters | object speed | v | maximum speed of the object perpendicular to the optical axis | length
unit/time
unit | | | frame rate | f_{r} | frame rate of the image recording device during the test | 1/time unit | | User-defined variables | allowed point motion | l _{apm} | allowed point motion between two sequenced images in object space | length unit | | Derived values | current point motion | $l_{\sf cpm}$ | current point motion between two sequenced images in | length unit | Table A.6 — Parameters to determine point motion index The functional connection is as shown in Equation (A.11): $$l_{\text{cpm}} = v \times \frac{1}{f_r} \tag{A.11}$$ The requirement for the parameter point motion index, i_{pm} , is as shown in Equation (A.12): $$i_{pm} = \frac{l_{apm}}{l_{cpm}} \geqslant 1 \tag{A.12}$$ If $$v = 14$$ m/s, $f_r = 1$ 000 Hz and $l_{apm} = 15$ mm, then $$l_{\text{com}} = 14 \text{ mm/ms} \times 1 \text{ ms} = 14 \text{ mm}$$ $$i_{pm} = 15 \text{ mm}/14 \text{ mm} = 1,07$$ ## A.1.7 Control point distribution index, i_{cpd} The control point distribution index determines the number of control points in the different image sections (see Figure A.1) and the percentage coverage of the control point area over the image. Figure A.1 — Sections of the image (specifications in accordance with Clause A.12 and Figure A.2) For a 2D film analysis using a perpendicular set-up of the camera with respect to the movement plane (see A.1.8), the index value of the control point distribution index is 1. Otherwise, the index value shall be calculated by Equations (A.13) and (A.14), using the parameters in Table A.7. Table A.7 — Parameters to determine control point distribution index | Parameter | | Symbol | Definition | Unit | |------------------|----------------------------------|---------------|--|----------------------| | | target in image section <i>i</i> | $p_{t,i}$ | presence of targets in the special image sections | _ | | Input parameters | image width | l_{iw} | width of the digital image | pixel | | input parameters | image height | l_{ih} | height of the digital image | pixel | | | control point formed area | A_{cf} | area which is formed by the control points (e.g. a triangle, if three points are used) | $pixel \times pixel$ | | | control point distribution | $p_{\sf cpd}$ | parameter for the distribution of the control points | _ | | Derived values | control point area | $p_{\sf cpa}$ | parameter for the area of the control points | _ | | | image area | A_{i} | area of the digital image | $pixel \times pixel$ | The functional connection is as shown in Equation (A.13): $p_{t,i}$ = 1 if at least one target exists in image section i $p_{t,i} = 0$ if no target exists in image section i $$p_{\text{cpd}} = p_{\text{t,1}} + p_{\text{t,2}} + p_{\text{t,3}} + p_{\text{t,4}}$$ $$A_{i} = l_{iw} \times l_{ih}$$ if $$\frac{A_{\rm cf}}{A_{\rm i}}$$ > 10 % , then $p_{\rm cpa}$ = 1 if $$\frac{A_{\rm cf}}{A_{\rm i}} \leqslant$$ 10 % , then $p_{\rm cpa}$ = 0 (A.13) The requirement for the parameter control point distribution index, i_{cpd} , is as shown in Equation (A.14): $$i_{\text{cpd}} = \frac{p_{\text{cpd}} \times p_{\text{cpa}}}{3} \geqslant 1 \tag{A.14}$$ EXAMPLE During the exposure, five control points are visible in the image: one is in section 2 ($p_{t,2} = 1$), one in section 3 ($p_{t,3} = 1$), two are in section 4 ($p_{t,4} = 1$) and one is in the centre of the image in section 0 (no effect). If $$l_{iw} = 768$$ pixel, $l_{ih} = 512$ pixel and $A_{cf} = 122 290,3$ pixel², then $$p_{cod} = 0 + 1 + 1 + 1 = 3$$ $A_{i} = 768 \text{ pixel} \times 512 \text{ pixel} = 393 216 \text{ pixel}^{2}$ $$\frac{A_{\rm cf}}{A_{\rm i}} = \frac{122\,290\,{\rm pix}^2}{393\,216\,{\rm pix}^2} = 0.311 = 31.1\,\% > 10\,\% : p_{\rm cpa} = 1$$ ## ISO 8721:2010(E) $$i_{\rm cpd} = (3 \times 1)/3 = 1$$ ## **A.1.8 Camera set-up index**, i_{cs} (only for 2D film analysis) The camera set-up index describes the requirements to the orientation of the camera with respect to the plane of motion, which can be perpendicular or non-perpendicular. Using the perpendicular set-up, the camera shall be oriented precisely perpendicular to the plane of motion. A non-perpendicular set-up of the motion plane with respect to the optical axis of the camera is only allowed if all measured objects only move in the considered plane of motion. Using the non-perpendicular set-up the camera position and orientation shall be calculated with respect to the plane of motion and a perspective correction of the measurements shall be carried out. Furthermore, the control point distribution index and the focal length index shall be calculated and fulfilled. The camera set-up index value shall be calculated by Equations (A.15) and (A.16), using the parameters in Table A.8. **Parameter Symbol Definition** Unit type of camera type of the set-up of the camera with respect to the plane p_{tpc} set-up of motion (perpendicular or non-perpendicular) index value of the all parameters for the focal length index (see A.1.1) i_{fl} Input parameters focal length index index value of the all parameters for the camera position calculation index control point i_{cpd} (see A.1.7) distribution index Table A.8 — Parameters to determine camera set-up index The functional connection is as shown in Equation (A.15): $p_{\rm tpc}$ = 1 if the camera set-up is perpendicular to the plane of motion $$p_{\text{tpc}} = 0$$ if the camera set-up is non-perpendicular to the plane of motion (A.15) The requirement for the parameter camera set-up index, i_{cs} , is as shown in Equation (A.16): $$i_{fl} \geqslant 1$$ and $i_{cod} \geqslant 1$ $$i_{cs} = p_{tpc} + (i_{fl} \times i_{cpd}) \geqslant 1$$ (A.16) ## **A.1.9 Plane scale index**, i_{DS} (only for 2D film analysis) The plane scale index describes the requirements to the scale information in each plane of motion. If not all objects are moving in one plane of motion, the scale information shall be determined in each additional plane of motion. Then the scale information can be obtained by the use of an additional reference distance in that plane. The other possibility is to use the precise distance between the additional plane of motion and the reference plane to obtain the scale information. The plane scale index value shall be calculated by Equations (A.17) and (A.18), using the parameters in Table A.9. Table A.9 — Parameters to determine plane scale index | Para | meter | Symbol | Definition | Unit | |------------------|--|----------------|---|------| | | number of planes of motion | $p_{\sf np}$ | number of additional planes of motion | _ | | Input parameters | reference distance in plane of motion <i>i</i> | $p_{rdp,i}$ | $p_{rdp,i}$ presence of a reference distance in the plane of motion | | | | distance to plane of motion <i>i</i> | $p_{dtp,i}$ | distance between the additional plane of motion and the reference plane | | | Derived values | scale information in plane of motion <i>i</i> | $p_{sip,i}$ | parameter for the availability of the scale information in the plane of motion | _ | | Derived values | scale information in all planes of motion | $p_{\sf siap}$ | parameter for the availability of the scale information in all planes of motion | _ | The functional connection is as shown in Equation (A.17): $p_{\text{rdp }i} = 1$ if a reference distance is present in the plane of motion $p_{\text{rdp},i} = 0$ if no reference distance is present in the plane of motion $p_{\mathrm{dtp},i}$ = 1 if the distance between reference plane and plane of motion has been measured $p_{\mathrm{dtp},i} = 0$ if the distance between reference plane and plane of motion has not been measured if $$p_{\text{rdp},i} = 1$$ or $p_{\text{dtp},i} = 1$, then $p_{\text{sip},i} = 1$ if $p_{\mathsf{rdp},i} = 0$ and $p_{\mathsf{dtp},i} = 0$, then $p_{\mathsf{sip},i} = 0$ $$p_{\mathsf{siap}} = \sum_{i=1}^{p_{\mathsf{np}}} p_{\mathsf{sip},i} \tag{A.17}$$ The requirement for the parameter plane scale index, i_{ps} , is as shown in Equation (A.18): $$i_{ps} = \frac{p_{siap}}{p_{np}} = 1 \tag{A.18}$$ EXAMPLE Using 2D film analysis, two object points are measured which move in two planes parallel to the reference plane. In the plane in which the first object point moves, a reference distance is placed. In the plane in which the second point moves, no reference distances are available, but the distance to the reference plane is measured precisely. If $$p_{np} = 2$$, $p_{rdp,1} = 1$, $p_{dtp,1} = 0$, $p_{rdp,2} = 0$, $p_{dtp,2} = 1$, then $$p_{\text{sip,1}} = 1$$, $p_{\text{sip,2}} = 1$, $p_{\text{siap}} = 2$ $$i_{ps} = 2/2 = 1$$ ## A.1.10 Time base index, i_{tb} The time base index determines the influence of the time base accuracy on the location accuracy. The time base index value shall be calculated by Equations (A.19) and (A.20), using the parameters in Table A.10. Table A.10 — Parameters
to determine time base index | Parameter | | Symbol | Definition | Unit | |---------------------|--|--------------------|--|-----------------------------| | | frame rate | f_{r} | frame rate of the image recording device during the test | 1/time unit | | Input parameters | object speed | v | maximum speed of the object | length
unit/time
unit | | | time interval $t_{\rm int}$ analysed time interval of the test | | time unit | | | | frame rate accuracy | a_{fr} | accuracy of the frame rate | _ | | User-defined values | location accuracy | a_{loc} | desired accuracy of the object or target being measured | length unit | | | current location accuracy (time base) | a _{clatb} | current accuracy of the object or target being measured | length unit | | Derived values | time drift | $t_{\sf td}$ | time drift of each time step | time unit | | | total time drift | t _{ttd} | time drift of the entire time interval | time unit | The functional connection is as shown in Equation (A.19): $$t_{\rm td} = \frac{1}{f_{\rm r}} \times a_{\rm fr}$$ $$t_{\text{ttd}} = t_{\text{td}} \times t_{\text{int}} \times f_{\text{r}}$$ $$a_{\text{clatb}} = t_{\text{ttd}} \times v$$ (A.19) The requirement for the parameter time base index, i_{tb} , is as shown in Equation (A.20): $$i_{\text{tb}} = \frac{a_{\text{loc}}}{a_{\text{clatb}}} \geqslant 1$$ (A.20) **EXAMPLE** If $$f_{\rm r}$$ = 1 000 Hz, v = 18 m/s, $a_{\rm loc}$ = 10 mm, $t_{\rm int}$ = 140 ms and $a_{\rm fr}$ = 0,003, then $$t_{\rm td} = 1/1~000~{\rm Hz} \times 0{,}003 = 0{,}003~{\rm ms}$$ $$t_{\rm ttd} = 0{,}003~{\rm ms} \times 140~{\rm ms} \times 1~000~{\rm Hz} = 0{,}42~{\rm ms}$$ $$a_{clatb} = 0,42 \text{ ms} \times 18 \text{ m/s} = 7,56 \text{ mm}$$ $$i_{th} = 10 \text{ mm}/7,56 \text{ mm} = 1,32$$ $$i_{\text{tb}} \geqslant 1$$ \checkmark ## A.1.11 Time origin identification index, i_{toi} The time origin identification index determines the influence of the time origin identification accuracy on the location accuracy. The time origin identification index value shall be calculated by Equations (A.21) and (A.22), using the parameters in Table A.11. Table A.11 — Parameters to determine time origin identification index | Parameter | | Symbol | Definition | Unit | |---------------------|--|------------------|--|-----------------------------| | | frame rate | f_{r} | frame rate of the image recording device during the test | | | Input parameters | nput parameters object speed v maximum speed of the object | | maximum speed of the object | length
unit/time
unit | | | difference between t_0 -image and -signal | t _{dtz} | time difference between the t_0 -image and the t_0 -signal | time unit | | User-defined values | location accuracy | a_{loc} | desired accuracy of the object or target being measured | length unit | | Derived values | current location accuracy (time orig.) | $a_{ m clatoi}$ | current accuracy of the object or target being measured | length unit | The functional connection is as shown in Equation (A.21): $$a_{\mathsf{clatoi}} = t_{\mathsf{dtz}} \times v$$ If t_{dtz} is unknown $$a_{\text{clatoi}} = \frac{1}{f_{\text{r}}} \times v$$ (A.21) The requirement for the parameter time origin identification index, i_{toi} , is as shown in Equation (A.22): $$i_{\text{toi}} = \frac{a_{\text{loc}}}{a_{\text{clatoi}}} \geqslant 1$$ (A.22) **EXAMPLE** If $$f_{\rm r}$$ = 1 000 Hz, v = 18 m/s, $a_{\rm loc}$ = 10 mm, and $t_{\rm dtz}$ = 0,2 ms, then $$a_{\rm clatoi}$$ = 0,2 ms × 18 mm/ms = 3,6 mm $$i_{\text{toi}} = 10 \text{ mm/3,6 mm} = 2,78$$ ## A.1.12 Sections of the image For the distortion index and the control point distribution index, the image shall be divided into five sections. The arrangement of these sections of the image is shown in Figure A.2. #### Key l_{iw} image width l_{ih} image height Figure A.2 — Definition of the image sections ## A.2 3D performances indices ## A.2.1 Intersection index, i_i The intersection index compares the current and the allowed location accuracy in the direction to the object. The worst triangulation configuration for one object point should be used for index calculation. If this worst constellation consists of three or more cameras, the pair with the best configuration should be used. The intersection index value shall be calculated by Equations (A.23) and (A.24), using the parameters in Table A.12. Table A.12 — Parameters to determine intersection index | Paran | Parameter Symbol Definition | | Definition | Unit | |---------------------|--|--------------------------------|---|----------------------| | | distance camera base to object | $l_{\sf dco}$ | distance between the object and the middle of the camera base | length unit | | | camera base | l_{cb} | length of the camera base | length unit | | Input parameters | target detection accuracy | a_{td} | target detection accuracy (e.g. indicated by the developer of the detection algorithm and/or effect of compression – decompression) | pixel | | mput parameters | object distance of camera 1/2 | d ₁ /d ₂ | distance between object and image recording devices | length unit | | | focal length of camera 1/2 | $f_1 I f_2$ | focal length of the used image recording devices | length unit | | | cell size of camera 1/2 | $l_{\rm cs,1}/l_{\rm cs,2}$ | cell size of the digital images | length
unit/pixel | | User-defined values | allowed accuracy relation | r _{aar} | allowed relation between the accuracy perpendicular to the camera base in the direction to the object and the accuracy in the other two directions (worst case) | - | | | location accuracy | a_{loc} | desired accuracy of the object or target being measured | length unit | | | current accuracy relation | r_{car} | current relation between the accuracy perpendicular to the camera base in the direction to the object and the accuracy in the other two directions | _ | | Derived values | current location
accuracy
(intersection) | $a_{\sf clai}$ | current accuracy of the object or target being measured | length unit | | | allowed location accuracy in depth | $a_{\sf alaid}$ | allowed accuracy in the direction to the object | length unit | | | current location accuracy in depth | $a_{ m claid}$ | current accuracy in the direction to the object | length unit | The functional connection is as shown in Equation (A.23): $$r_{\text{car}} = \frac{2 \times l_{\text{dco}}}{l_{\text{cb}}}$$ $$a_{\text{clai}} = \max \left[\left(\frac{d_1}{f_1} \right) \times \left(a_{\text{td}} \times l_{\text{cs,1}} \right); \left(\frac{d_2}{f_2} \right) \times \left(a_{\text{td}} \times l_{\text{cs,2}} \right) \right]$$ $a_{\text{claid}} = r_{\text{car}} \times a_{\text{clai}}$ $$a_{\mathsf{alaid}} = a_{\mathsf{loc}} \times r_{\mathsf{aar}}$$ (A.23) The requirement for the parameter intersection index, i_i , is as shown in Equation (A.24): $$i_{\rm i} = \frac{a_{\rm alaid}}{a_{\rm claid}} \geqslant 1$$ (A.24) EXAMPLE If $d_1 = 8~000$ mm, $f_1 = 16$ mm, $l_{\rm cs,1} = 0.016$ mm/pixel, $d_2 = 7~800$ mm, $f_2 = 20$ mm, $l_{\rm cs,2} = 0.016$ mm/pixel, $a_{\rm td} = 0.1$ pixel, $a_{\rm loc} = 10$ mm, $l_{\rm dco} = 7~900$ mm, $l_{\rm cb} = 1~500$ mm and $r_{\rm aar} = 3$, then $$r_{\rm car} = (2 \times 7 \ 900 \ {\rm mm})/1 \ 500 \ {\rm mm} = 10{,}533$$ $a_{\rm clai} = \max[(8~000~{\rm mm/16~mm}) \times (0.1~{\rm pixel} \times 0.016~{\rm mm/pixel}); \\ (7~800~{\rm mm/20~mm}) \times (0.1~{\rm pixel} \times 0.016~{\rm mm/pixel})] = 0.8~{\rm mm}$ $$a_{\text{alaid}} = 10 \text{ mm} \times 3 = 30 \text{ mm}$$ $i_{\text{i}} = 30 \text{ mm/8,427 mm} = 3,56$ $i_{\text{i}} \geqslant 1 \quad \checkmark$ $a_{claid} = 10,667 \times 0.8 \text{ mm} = 8,427 \text{ mm}$ ## A.2.2 Synchronism index, $i_{\rm SV}$ The synchronism index determines the influence of the asynchronism between the cameras on the location accuracy. The measurements of the image coordinates can also be corrected by interpolation with respect to a known asynchronism. Then the current asynchronism is the accuracy of the calculated asynchronism. At least the worst pair of image recording devices shall be used for the determination of the synchronism index. The synchronism index value shall be calculated by Equations (A.25) and (A.26), using the parameters in Table A.13. **Parameter Symbol Definition** Unit length object speed maximum object speed ν unit/time unit current current asynchronism between the image recording time unit t_{ca} asynchronism devices (e.g. measured with a time base system) Input parameters distance camera distance between the object and the middle of the length unit $l_{\sf dco}$ camera base base to object camera base l_{cb} length of the camera base length unit desired accuracy of the object or target being location accuracy a_{loc} length unit measured **User-defined** allowed relation between the accuracy perpendicular values allowed accuracy to the camera base in the direction to the object and $r_{\rm aar}$ relation the accuracy in the other two directions (worst case) allowed location allowed accuracy in the direction to the object length unit a_{alaid} accuracy in depth asynchronism effect asynchronism effect perpendicular to the viewing perpendicular to the length unit l_{aep} direction to the object viewing direction asynchronism effect **Derived values** asynchronism effect in viewing direction to the object length unit l_{aed} in viewing direction synchronism index synchronism index perpendicular to the viewing perpendicular to the
p_{syp} direction to the object viewing direction Table A.13 — Parameters to determine synchronism index The functional connection is as shown in Equation (A.25): synchronism index in viewing direction p_{syd} $$a_{\mathsf{alaid}} = a_{\mathsf{loc}} \times r_{\mathsf{aar}}$$ $$l_{\text{aep}} = \frac{t_{\text{ca}} \times v}{2}$$ $$l_{\text{aed}} = \frac{t_{\text{ca}} \times v \times l_{\text{dco}}}{l_{\text{cb}}}$$ synchronism index in viewing direction to the object $$p_{\text{syp}} = \frac{a_{\text{loc}}}{l_{\text{aep}}}$$ **EXAMPLE** $$p_{\text{syd}} = \frac{a_{\text{alaid}}}{l_{\text{aed}}} \tag{A.25}$$ The requirement for the parameter synchronism index, i_{sy} , is as shown in Equation (A.26): $$i_{sv} = \min(p_{svp}; p_{svd}) \ge 1$$ (A.26) If v = 18 m/s, $t_{ca} = 0.2$ ms, $a_{loc} = 10$ mm, $l_{dco} = 8$ 000 mm, $l_{cb} = 2$ 000 mm; $r_{aar} = 3$, then $$a_{\mathsf{alaid}} = 10 \; \mathsf{mm} \times 3 = 30 \; \mathsf{mm}$$ $$l_{\text{aep}} = (0.2 \text{ ms} \times 18 \text{ m/s})/2 = 1.8 \text{ mm}$$ $l_{\rm aed} = (0.2 \text{ ms} \times 18 \text{ m/s} \times 8 000 \text{ mm})/2 000 \text{ mm} = 14,4 \text{ mm}$ $$p_{\text{svo}} = 10 \text{ mm/1,8 mm} = 5,56$$ $$p_{\text{svd}} = 30 \text{ mm}/14,4 \text{ mm} = 2,08$$ $$i_{sv} = min (5,56; 2,08) = 2,08$$ $$i_{sy} \geqslant 1$$ \checkmark ## A.3 Accuracy indices ## A.3.1 Camera position calculation index, i_{cpc} The camera position calculation index determines the influence of the camera position calculation method on the location accuracy. The camera position calculation index value shall be calculated by Equations (A.27) and (A.28), using the parameters in Table A.14. Table A.14 — Parameters to determine camera position calculation index | Para | meter | Symbol | Definition | Unit | |---------------------|---|---------------|---|----------------------| | | type of position determination | ptpd | type of the determination procedure of the position of the image recording device (static or dynamic) | _ | | Input parameters | maximum
displacement in
image space | $l_{\sf mdi}$ | maximum displacement of a fix point in image space | pixel | | | cell size | l_{cs} | cell size of the digital image | length
unit/pixel | | | fix point distance | l_{fpd} | distance between the camera and a fix point | length unit | | | focal length | f | focal length of the used image recording device | length unit | | User-defined values | location accuracy | a_{loc} | desired accuracy of the object or target being measured | length unit | | Derived values | maximum
displacement of a fix
point in object space | $l_{\sf mdo}$ | maximum displacement of a fix point in object space | length unit | The functional connection is as shown in Equation (A.27): p_{tpd} = 1 if the position of the image recording device is determined dynamically $p_{tod} = 0$ if the position of the image recording device is determined only in one image $p_{tod} = 0$ if the position of the image recording device is not determined in a 2D film analysis $$l_{\text{mdo}} = \frac{l_{\text{mdi}} \times l_{\text{cs}} \times l_{\text{fdp}}}{f}$$ (A.27) The requirement for the parameter camera position calculation index, i_{cpc} , is as shown in Equation (A.28): if $$p_{tod} = 1$$, then $i_{cpc} = 1$ if $$p_{\text{tpd}} = 0$$, then $i_{\text{cpc}} = \frac{a_{\text{loc}}}{l_{\text{mdo}}} \geqslant 1$ (A.28) **EXAMPLE** The position of the image recording device is determined only in one image. If $$l_{\text{mdi}} = 1.3$$ pixel, $l_{\text{cs}} = 0.016$ mm/pixel, $l_{\text{fnd}} = 5~000$ mm, $f = 25$ mm and $a_{\text{loc}} = 5$ mm, then $$p_{tod} = 0$$ $$l_{mdo} = (1.3 \text{ pixel} \times 0.016 \text{ mm/pixel} \times 5 000 \text{ mm})/25 \text{ mm} = 4.16 \text{ mm}$$ $$i_{\text{CDC}} = 5 \text{ mm/4,16 mm} = 1,20$$ $$i_{cpc} \geqslant 1$$ ✓ ## A.3.2 Scale index, i_s The scale index determines the existence of the required reference distance in the different object space directions. For a 2D film analysis, at least two reference distances are required which should be perpendicular to each other (90° ± 10°). They define a reference plane and shall be placed within the plane of motion or at a well known distance parallel to the plane of motion. For a 3D film analysis, at least three reference distances which are perpendicular to each other (90° ± 10°) shall be placed in the measuring volume. The scale index value shall be calculated by Equations (A.29) and (A.30), using the parameters in Table A.15. Table A.15 — Parameters to determine scale index | Paran | neter | Symbol | Definition | Unit | |------------------|--|--------|---|------| | Input parameters | reference distance in direction <i>i</i> | n | presence of calibrated reference distances in the specified object space directions | | The functional connection is as shown in Equation (A.29): $p_{rd,i}$ = 1 if at least one reference distance exists in direction i $p_{rd,i} = 0$ if no reference distance exists in direction i $$i_{s} = p_{rd,1} + p_{rd,2} + p_{rd,3}$$ (A.29) The requirement for the parameter scale index, i_s , is as shown in Equation (A.30): for 2D analysis, $i_s \geqslant 2$ for 3D analysis, $$i_s = 3$$ (A.30) EXAMPLE In a 3D analysis, a system scale is specified in the images; furthermore, three more reference distances are visible in the images and are located in the object area at an angle of in each case 80° to each other. If $$p_{rd,1} = 1$$, $p_{rd,2} = 1$ and $p_{rd,3} = 1$, then $$i_s = 1 + 1 + 1 = 3$$ $$i_s = 3$$ ## A.4 Inspection record #### A.4.1 General The inspection record shall document all required aspects which are needed to control and reproduce the results of the testing procedure in accordance with this International Standard. The inspection record consists of the following parts: - main part with results; - performance values (2D/3D); - length measurement error and accuracy value; - indices of all image recording devices; - 3D indices (for 3D analysis only). #### A.4.2 Main part with results In this main part of the inspection record, the main information and the main results of the testing procedure are represented as shown in the example below. ## EXAMPLE Main part Laboratory test ref. number: FR123456 Laboratory name: Crash Inc. Date of the test: 2003-09-10 Type of procedure: Online ## ISO 8721:2010(E) Type of analysis: 3D Number of image recording devices: Time interval: 0 ms to 140 ms User-defined variables: $a_{loc} = 10 \text{ mm}$ Location accuracy: $l_{\text{apm}} = 18 \text{ mm}$ Allowed point motion: $r_{\rm aar} = 3$ Allowed accuracy relation: $r_{\text{avl}} = 0.01$ Accuracy value limit: Results and requirements with respect to the type of procedure and type of analysis: Scale index: $i_{s} = 3$ ok (= 3) Performance value: Q = 0.94ok (≥ 0.7) Length measurement error: $\Delta L = 4,43 \text{ mm}$ ok (≤ 10 mm) Accuracy value: a = 0.003ok (≤ 0.01) Conformity with this International Standard: ok #### A.4.3 Performance value In this part of the inspection record, the determination of the 2D/3D performance value is listed in detail, as shown in the example below and summarized in Table A.16. #### **EXAMPLE** Performance value Type of procedure: Online Type of analysis: 3D Number of image recording devices: u = 6 Number of 2D performance indices: n = 10 Number of 3D performance indices: m = 2 Number of index values ≤ 0.5 : $N = \mathbf{0}$ ok (= 0) Performance value of the optical data channel: Q = 0.924ok (≥ 0.70) Table A.16 — Example of an overview of the performance value | ID | Name of image recording device | 2D performance value $\boldsymbol{q_i}$ | Number of index values ≤ 0,5 | Minimum
requirement
fulfilled | |----|--------------------------------|---|------------------------------|-------------------------------------| | 1 | Left_Total.avi | 1,00 | 0 | ok | | 2 | Left_Front.avi | 1,00 | 0 | ok | | 3 | Top.avi | 0,80 | 0 | ok | | 4 | Right_Total.avi | 1,00 | 0 | ok | | 5 | Right_Rear.avi | 0,80 | 0 | ok | | 6 | Front_Top.avi | 1,00 | 0 | ok | ## A.4.4 Length measurement error and accuracy value In this part of the inspection record, the determination of the length measurement error and the accuracy value are listed in detail, as shown in the example below. ## **EXAMPLE** Length measurement and accuracy value Number of reference distances: i = 3 Beginning of the analysed time interval: $t_h = 0$ ms End of the analysed time interval: $t_e = 140 \text{ ms}$ Time of the accuracy calculation: $t_c = 0 \text{ ms}$ Length measurement error of the optical data channel: $\Delta L = 4,43 \text{ mm}$ ok ($\leq 10 \text{ mm}$) Accuracy value of the optical data channel: a = 0.003 ok (≤ 0.01) Table A.17 — Example of an overview of the length measurement error and accuracy value | Reference distance | Calibrated length $l_{C,r}$ | Measured length $l_{m,r}(t)$ | Length measurement error Δl_r | Accuracy value $a_{refdist,r}$ | |--------------------|-----------------------------|------------------------------|---------------------------------------|--------------------------------| | 1 | 1 136,79 mm | 1 139 mm | 2,21 mm | 0,001 9 | | 2 | 2 674,43 mm | 2 670 mm | 4,43 mm | 0,000 9 | | 3 | 861,22 mm | 859 mm | 2,22 mm | 0,002 6 | Camera position calculation indices: The type of camera position calculation is reliable. The lengths of the reference distances can be measured at an arbitrary time step. Table A.18 — Example of an overview of the camera position calculation indices | Image recording device | Type of position calculation | $\begin{array}{c} \textbf{Maximum displacement} \\ \textbf{in object space} \\
\textit{$l_{\rm mdo}$} \end{array}$ | Camera position calculation index | Result value | |------------------------|------------------------------|--|-----------------------------------|--------------| | 1 | dynamic | | 1,000 | ok | | 2 | dynamic | | 1,000 | ok | | 3 | dynamic | | 1,000 | ok | | 4 | static | 5,607 | 1,783 | ok | | 5 | dynamic | _ | 1,000 | ok | | 6 | dynamic | _ | 1,000 | ok | Input parameters: camera (1): $l_{\mathsf{mdi}} = -$ camera (2): camera (3): $l_{\mathsf{mdi}} = --$ $l_{\rm mdi} = 0,800$ pixel $l_{\rm fpd} = 7 \ 600 \ {\rm mm}$ camera (4): camera (5): $l_{\text{mdi}} =$ $l_{\mathsf{fpd}} = --$ camera (6): $l_{\mathsf{mdi}} = l_{\text{fpd}} = -$ #### A.4.5 2D indices In this part of the inspection record, all parameters and results of the image recording devices are represented in summary. For each image recording device, there shall be one paragraph, as shown in the examples below. #### **EXAMPLE** ## 2D indices of image recording device 1 Table A.19 — Example of an overview of 2D indices of an image recording device | | Index | Index value | Requirement | Index condition | |---|----------------------------------|-------------|-------------|-----------------| | 1 | Focal length index | 1,078 | ≥ 1 | 1 | | 2 | Distortion index | 1,348 | ≥ 1 | 1 | | 3 | Target detection index | 13,480 | ≥ 1 | 1 | | 4 | Target size index | 1,078 | ≥ 1 | 1 | | 5 | Motion blur index | 3,210 | ≥ 1 | 1 | | 6 | Point motion index | 1,011 | ≥ 1 | 1 | | 7 | Control point distribution index | 1,333 | ≥ 1 | 1 | | 8 | Time base index | 1,338 | ≥ 1 | 1 | | 9 | Time origin identification index | 5,618 | ≥ 1 | 1 | ### Results: Sum of the index conditions s=9 Number of 2D performance indices n=9 2D performance value of image recording device 1 $q_1=1,0$ ### User-defined variables: location accuracy $a_{\rm loc} = 10,0 \; {\rm mm}$ allowed point motion $l_{\rm apm} = 18,0 \; {\rm mm}$ ### Input parameters: focal length f = 17,254 mm object distance d = 8 000 mm focal length accuracy $a_{\rm fl}$ = 0,02 mm cell size $l_{cs} = 0.016 \text{ mm/pixel}$ distortion accuracy $a_d = 1.0$ pixel target detection accuracy $a_{td} = 0.1$ pixel required target diameter $l_{\rm rtd} = 5$ pixel $l_{\rm ctd} = 40 \ {\rm mm}$ current target diameter v = 17.8 m/sobject speed e = 0.350 msexposure time frame rate $f_{\rm r} = 1\,000\,{\rm Hz}$ $p_{\rm t,1} = {\rm true}$ target exists in section 1 target exists in section 2 $p_{t,2} = \text{true}$ target exists in section 3 $p_{t,3} = true$ $p_{\rm t,4} = {\rm true}$ target exists in section 4 $l_{\rm iw} = 512$ pixel width of the digital image height of the digital image $l_{\rm ih} = 384$ pixel control point formed area $A_{cf} = 58 530,7 \text{ pixel}^2$ time interval $t_{ m int} = 140~{ m ms}$ frame rate accuracy $a_{ m fr} = 3~{ m ppm}$ time difference between t_0 -image and t_0 -signal $t_{dtz} = 0,100 \text{ ms}$ ### 2D indices of image recording device 2 ... ---,,---,,,,------,,-,,-,,-,-, ### A.4.6 3D indices In this part of the inspection record, the 3D indices are listed in detail. This part of the inspection record is only needed if the type of analysis is 3D, as shown in the example below. ### **EXAMPLE** ### 3D indices of the optical data channel Table A.20 — Example of an overview of 3D indices of the optical data channel | | Index | Index value | Requirement | Index condition | | | |---|--------------------|-------------|-------------|-----------------|--|--| | 1 | Intersection index | 4,676 | ≥ 1 | 1 | | | | 2 | Synchronism index | 4,242 | ≥ 1 | 1 | | | #### Results: 3D performance value of the optical data channel p = 2 Number of 3D performance indices m = 2 User-defined variables: location accuracy $a_{loc} = 10,0 \text{ mm}$ allowed accuracy relation $r_{\mathsf{aar}} = 3$ Input parameters: $l_{dco} = 8 000 \text{ mm}$ distance camera base (4 - 5) to object $l_{ch} = 2 014 \text{ mm}$ camera base (4 - 5) current asynchronism (4 - 5) $t_{ca} = 0.10 \text{ ms}$ ### A.5 Examples ### A.5.1 Type of procedure — Online/3D ### A.5.1.1 Test description A 3D film analysis of a vehicle impact crash test shall be verified for conformity with this International Standard. Image sequences of six digital high-speed cameras in a circular set-up are used for the 3D film analysis of the frontal crash test. The user-defined variables for this analysis are as follows: $a_{loc} = 10 \text{ mm}$ location accuracy: allowed point motion: $l_{apm} = 18 \text{ mm}$ allowed accuracy relation: $r_{\text{aar}} = 3$ accuracy value limit: $r_{\rm avl} = 0.01$ The input parameters of the six digital high-speed cameras are listed in Table A.21. Table A.21 — Example of an overview of the input parameters of six digital high-speed cameras | Input parameters | | | Camera 1 | Camera 2 | Camera 3 | Camera 4 | Camera 5 | Camera 6 | |-----------------------------|-------------------------|--------------------|----------|----------|----------|----------|----------|----------| | focal length | f | mm | 8 | 10 | 16 | 17 | 16 | 17 | | object distance d mm | | 2 500 | 5 000 | 8 000 | 8 000 | 8 000 | 8 000 | | | focal length accuracy | a_{fl} | mm | 0,02 | 0,02 | 0,02 | 0,02 | 0,02 | 0,02 | | cell size | l_{CS} | mm/pixel | 0,016 | 0,016 | 0,016 | 0,016 | 0,016 | 0,016 | | distortion accuracy | a_{d} | pixel | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 | | target detection accuracy | a_{td} | pixel | 0,1 | 0,1 | 0,1 | 0,1 | 0,1 | 0,1 | | required target diameter | l_{rtd} | pixel | 5 | 5 | 5 | 5 | 5 | 5 | | current target diameter | l_{ctd} | mm | 40 | 40 | 40 | 40 | 40 | 40 | | object speed | v | m/s | 17,6 | 17,6 | 17,6 | 17,6 | 17,6 | 17,6 | | exposure time | e | μs | 250 | 250 | 250 | 250 | 250 | 250 | | frame rate | f_{r} | Hz | 1 000 | 1 000 | 1 000 | 1 000 | 1 000 | 1 000 | | target exists in section 1 | <i>p</i> _{t,1} | _ | true | true | true | true | true | true | | target exists in section 2 | $p_{t,2}$ | _ | false | true | true | true | false | true | | target exists in section 3 | <i>p</i> _{t,3} | _ | true | true | false | true | true | true | | target exists in section 4 | <i>p</i> _{t,4} | _ | false | false | true | true | true | true | | width of the digital image | l_{iw} | pixel | 512 | 512 | 512 | 512 | 512 | 512 | | height of the digital image | l_{ih} | pixel | 384 | 384 | 384 | 384 | 384 | 384 | | control point formed area | A_{cf} | pixel ² | 58 530,7 | 58 520,7 | 58 540,7 | 58 510,7 | 58 550,7 | 58 560,7 | | time interval | t _{int} | ms | 150 | 150 | 150 | 150 | 150 | 150 | | frame rate accuracy | a_{fr} | ppm | 3 | 3 | 3 | 3 | 3 | 3 | | time difference t_0 | t _{dtz} | ms | 0,1 | 0,1 | 0,1 | 0,1 | 0,1 | 0,1 | ### A.5.1.2 Determination of the test results The determination of the conformity check can be subdivided into three main parts. a) Calculation of the performance of the optical data channel (see 5.4). The performance of the optical data channel shall be calculated using the following workflow: - calculation of all 2D performance indices of each camera (see 5.4.2 and Clause A.1); - calculation of the 3D performance indices for the test (see 5.4.2 and Clause A.2); - calculation of the 2D performance value of each camera (see 5.4.3); - calculation of the 3D performance value for the test (see 5.4.4); - calculation of the performance value of the optical data channel (see 5.4.5). ISO 8721:2010(E) b) Calculation of the accuracy of the optical data channel (see 5.5). The accuracy of the optical data channel shall be calculated using the following workflow: - calculation of all accuracy indices (see 5.5.1 and Clause A.3); - calculation of the length measurement error and the accuracy value of each reference scale (see 5.5.2); - calculation of the length measurement error and the accuracy value of the optical data channel (see 5.5.3). - c) Conformity check for the impact test. The decision of the conformity check for the impact test shall be made with respect to the limits of the online procedure (see 5.6.1 and 5.6.2). ### A.5.1.3 Documentation of the conformity check results The results should be documented in an inspection record (see Clause A.4). Extracts of the inspection record of this conformity check are shown in Clause A.4. ### A.5.2 Type of procedure — Offline/3D ### A.5.2.1 Test description The same impact test as described in A.5.1 is analysed using an offline procedure. A preliminary test is carried out acquiring a test artefact as described in Reference [2]. The equipment and the camera constellation used in the impact test shall be the same as in the preliminary test. The user-defined variables for this analysis are as follows: - location accuracy: $a_{loc} = 10 \text{ mm}$ - allowed point motion: $l_{anm} = 18 \text{ mm}$ - allowed accuracy relation: $r_{aar} = 3$ - accuracy value limit: $r_{avl} = 0.01$ The input parameters of the six digital high-speed cameras are listed in Table A.21. ### A.5.2.2 Determination of the results of the preliminary test The conformity check of the preliminary test can be subdivided into three main parts. a) Calculation of the performance of the optical data channel (see 5.4). The performance of the optical data channel shall be calculated using the following workflow: - calculation of all 2D performance indices of each camera (see 5.4.2 and Clause A.1); - calculation of the 3D performance indices for the test (see 5.4.2 and Clause A.2); - calculation of the 2D performance value of each camera (see 5.4.3); - calculation of the 3D performance value for the test (see 5.4.4); - calculation of the performance value of the optical data channel (see 5.4.5). - b) Calculation of the accuracy of the optical data channel (see 5.5). The accuracy of the optical data channel shall be calculated using the following workflow: - calculation of all accuracy indices (see 5.5.1 and Clause A.3); - calculation of the length measurement
error and the accuracy value of each reference scale (see 5.5.2); - calculation of the length measurement error and the accuracy value of the optical data channel (see 5.5.3). - c) Conformity check for the impact test. The decision of the conformity check for the preliminary test shall be made with respect to the limits of the offline procedure (see 5.6.1 and 5.6.3). ### A.5.2.3 Determination of the results of the impact test The conformity check of the impact test can be subdivided into three main parts. - a) Calculation of the synchronism index (see A.2.2). - b) Calculation of the accuracy of the optical data channel (see 5.5). The accuracy of the optical data channel shall be calculated using the following workflow: - calculation of all accuracy indices (see 5.5.1 and Clause A.3); - calculation of the length measurement error and the accuracy value of each reference scale (see 5.5.2); - calculation of the length measurement error and the accuracy value of the optical data channel (see 5.5.3). - c) Conformity check for the impact test. The decision of the conformity check for the impact test shall be made with respect to the limits of the offline procedure (see 5.6.1 and 5.6.3). For a conformity check of an offline procedure, the preliminary test and the impact test shall fulfil the conformity requirements. ### A.5.2.4 Documentation of the conformity check results The results of the preliminary test and of the impact test should be documented in inspection records (see Clause A.4). ### A.5.3 Type of procedure — Online/2D ### A.5.3.1 Test description A 2D film analysis of a vehicle impact crash test shall be verified for conformity with this International Standard. The movement of the steering wheel during a 0° passive frontal crash shall be measured. Only one camera with the total view from the left side was analysed for this test. — location accuracy: $a_{loc} = 10 \text{ mm}$ — allowed point motion: $l_{apm} = 15 \text{ mm}$ — accuracy value limit: $r_{avl} = 0.01$ The input parameters of the digital high-speed camera are listed in Table A.22. Table A.22 — Example of an overview of the input parameters of a digital high-speed camera | Input parameters for the | indices | | Camera 1 | |-------------------------------------|-------------------------|----------|---------------| | Focal length | f | mm | 36,1 | | Object distance | d | mm | 8 360 | | Cell size | $l_{\mathtt{cs}}$ | mm/pixel | 0,012 | | Distortion accuracy | a_{d} | pixel | 0,099 | | Target detection accuracy | a_{td} | pixel | 0,2 | | Required target diameter | l _{rtd} | pixel | 8 | | Current target diameter | l_{ctd} | mm | 60 | | Object speed | ν | m/s | 13,3 | | Exposure time | е | μs | 250 | | frame rate | f_{r} | Hz | 1 000 | | Time interval | <i>t</i> _{int} | ms | 150 | | frame rate accuracy | a_{fr} | ppm | 100 | | Time difference t ₀ | t_{dtz} | ms | unknown | | Type of camera set-up | p_{tpc} | _ | perpendicular | | Number of planes of motion | $p_{\sf np}$ | _ | 1 | | Reference distance in plane 1 | $p_{rdp,1}$ | _ | yes | | Scale information in plane 1 | $p_{dtp,1}$ | _ | yes | | Additional input parameters for the | accuracy indices | | Camera 1 | | Type of position determination | p_{tpd} | _ | dynamic | | Fix point distance | l_{fpd} | mm | _ | | Maximum displacement in image space | l _{mdi} | pixel | _ | | Reference distance in direction 1 | <i>P</i> rd,1 | _ | yes | | Reference distance in direction 2 | P _{rd,2} | _ | yes | ### A.5.3.2 Determination of the test results The determination of the conformity check can be subdivided into three main parts. a) Calculation of the performance of the optical data channel (see 5.4). The performance of the optical data channel shall be calculated using the following workflow: - calculation of the 2D performance indices of the camera (see 5.4.2 and Clause A.1); - calculation of the 2D performance value of the camera (see 5.4.3); - calculation of the performance value of the optical data channel (see 5.4.5). Table A.23 gives an example of an overview of the 2D performance indices. Table A.23 — Example of an overview of the 2D performance indices | | Index | Index value | Requirement | Index condition | |----|----------------------------------|-------------|-------------|-----------------| | 1 | Focal length index | 1,96 | ≥ 1 | 1 | | 2 | Distortion index | 36,35 | ≥ 1 | 1 | | 3 | Target detection index | 17,99 | ≥ 1 | 1 | | 4 | Target size index | 2,70 | ≥ 1 | 1 | | 5 | Motion blur index | 6,02 | ≥ 1 | 1 | | 6 | Point motion index | 1,13 | ≥ 1 | 1 | | 7 | Control point distribution index | 1,00 | ≥ 1 | 1 | | 8 | Time base index | 50,13 | ≥ 1 | 1 | | 9 | Time origin identification index | 0,75 | ≥ 1 | 1 | | 10 | Camera set-up index | 1,00 | ≥ 1 | 1 | | 11 | Plane scale index | 1,00 | ≽ 1 | 1 | The results are as follows: — sum of the index conditions: s = 11 — number of 2D performance indices: n = 11 — 2D performance value of image recording device 1: $q_1 = 0.92$ — performance value of the optical data channel: $Q = q_1 = 0.92$ ok (≥ 0.7) b) Calculation of the accuracy of the optical data channel (see 5.5). The accuracy of the optical data channel shall be calculated using the following workflow: - calculation of all accuracy indices (see 5.5.1 and Clause A.3); - calculation of the length measurement error and the accuracy value of each reference scale (see 5.5.2); - calculation of the length measurement error and the accuracy value of the optical data channel (see 5.5.3). Table A.24 gives an example of an overview of the accuracy indices. The reference coordinate system is dynamic. Table A.24 — Example of an overview of the accuracy indices | | Index | Index value | Requirement | Index condition | | | |---|-----------------------------------|-------------|-------------|-----------------|--|--| | 1 | Camera position calculation index | 1,00 | ≥ 1 | 1 | | | | 2 | Scale index | 2 | ≥ 2 | 1 | | | ### ISO 8721:2010(E) The length measurement and accuracy values are as follows: number of reference distances i = 3 beginning of the analysed time interval $t_{\rm b} = 0 \; {\rm ms}$ end of the analysed time interval $t_{\rm p} = 150 \; {\rm ms}$ time of the accuracy calculation $t_{\rm c} = 0 \, {\rm ms}$ length measurement error of the optical data channel $\Delta L = 3.0 \text{ mm} (\leq 10 \text{ mm})$ accuracy value of the optical data channel a = 0.005 (≤ 0.01) Table A.25 — Example of an overview of the length measurement and accuracy value | | Reference distance $p_{\mathrm{rd},r}$ | Plane | Calibrated length l _{c,r} mm | Measured length $l_{\mathrm{m},r}(t)$ mm | Length measurement error Δl_r mm | Accuracy value | |---|--|----------------|--|--|--|----------------| | | 1 | Reference | 604,0 | 607,0 | 3,0 | 0,005 0 | | ſ | 2 | Reference | 599,0 | 597,0 | 2,0 | 0,003 3 | | | 3 | Moving plane 1 | 160,0 | 160,3 | 0,3 | 0,001 9 | ### Conformity check for the impact test. The decision of the conformity check for the impact test shall be made with respect to the limits of the online procedure (see 5.6.1 and 5.6.2). ### A.5.3.3 Documentation of the conformity check results The results should be documented in an inspection record (see Clause A.4). The main part of the inspection record should be as follows: Laboratory test ref. number: FR123456 Laboratory name: Crash Inc. Date of the test: 2008-06-04 Type of procedure: Online Type of analysis: 2D Number of image recording devices: 1 Time interval: 0 ms to 150 ms User-defined variables: $a_{loc} = 10 \text{ mm}$ Location accuracy: $l_{\text{apm}} = 15 \text{ mm}$ Allowed point motion: $r_{\text{avl}} = 0.01$ Accuracy value limit: Results and requirements with respect to the type of procedure and type of analysis: Scale index: $i_s = 2$ ok ($\geqslant 2$) Performance value: Q = 0.92 ok ($\geqslant 0.7$) Length measurement error: $\Delta L = 3 \text{ mm}$ ok ($\leq 10 \text{ mm}$) Accuracy value: a = 0.005 ok (≤ 0.01) Conformity with this International Standard: ok The other parts of the inspection record are shown in A.5.3.1 and A.5.3.2. ### Annex B (informative) ### Measurement methods ### **B.1 Online procedure** ### **B.1.1 Validation target points** There is no test target provided, but reference distances shall exist in any direction which should be analysed. ### **B.1.2 Test method** There is no test target provided, but reference distances shall exist in any direction which should be analysed. ### **B.2 Offline procedure** ### B.2.1 2D analysis ### B.2.1.1 Test target There is no test target provided, but using the SAE J211-2 artefact is possible (see Reference [1]). ### B.2.1.2 Test method The reference distances shall not move. A suitable adjustment procedure shall be used for the object point determination. ### B.2.2 3D analysis ### B.2.2.1 Test target There is no test target provided, but using a VDI/VDE artefact is possible (see Reference [2]). **EXAMPLE** A VDI/VDE test target is placed in the measuring volume. In this case, there are several reference distances in all directions. Furthermore, the dynamic components of the test constellation are checked, either by moving some reference distances with the velocity similar to a real impact test, or by using an instrument for a synchronization check of the image recording devices, e.g. an impact clock. #### B.2.2.2 Test method The control points can be used for reference distances. Distances between certain points shall be used as reference distances. A suitable adjustment procedure shall be used for the object point determination and the other determinations. # Annex C (informative) ### **Clarification of parameters** ### C.1 Compilation of the variables This annex clarifies which parameters are related to the hardware (cameras, optics characteristics, etc.), to the test
conditions or to the software used, and those that can be defined by a user. All parameters, including a description of how to get their values, are listed in the Tables C.1 and C.2. ### C.2 User-defined values Parameters that can be defined by a user are listed in Table C.1. Table C.1 — User-defined parameters | Short
cut | Short text | Long text | How to get
the values | Туре | |------------------|---------------------------|---|--------------------------|------| | a_{loc} | location accuracy | desired point measuring accuracy of the object | definition by the user | user | | l _{apm} | allowed point motion | maximum allowed point motion between two sequenced images in object space | definition by the user | user | | r _{aar} | allowed accuracy relation | maximum allowed relation between the accuracy perpendicular to the camera base in the direction to the object and the accuracy in the other two directions (worst case) | definition by the user | user | | r _{avl} | accuracy value limit | limit for the accuracy value, which represents the relative overall accuracy of any point measurement within the optical data channel | | user | ### C.3 Input values All input variables are listed in Table C.2. Table C.2 — Input values | Short
cut | Short text | Long text | How to get the values | Туре | |--------------------|---|---|--|-------| | A_{cf} | control point formed area | area that is formed by the control points (a triangle, if three points are used) | measured | input | | a_{d} | distortion accuracy | accuracy of the determined distortion parameters | camera calibration | input | | a_{fl} | focal length accuracy | accuracy of the determined focal length | camera calibration | input | | a_{fr} | frame rate accuracy | accuracy of the frame rate | temporal calibration (manufacturer) | input | | a_{td} | target detection accuracy | predefined by the developer of the analysis system | input | | | d | object distance | distance between object and image recording device | measured | input | | e | exposure time | exposure time of the used image recording device | setting of the camera | input | | f | focal length | focal length of the used image recording device | camera calibration
(properties of the
camera) | input | | f_{r} | frame rate | frame rate during the test | properties of the camera (manufacturer) | input | | l_{cb} | camera base | length of the camera base | measured | input | | l_{cs} | cell size | cell size of the digital image | properties of the camera (manufacturer) | input | | l_{ctd} | current target diameter | real target diameter in object space | measured | input | | $l_{\sf dco}$ | distance camera base to object | distance between object and the middle of the camera base | measured | input | | l_{fpd} | fix point distance | distance between a camera and the fix point | measured | input | | l_{ih} | image height | height of the digital image | properties of the camera (manufacturer) | input | | l_{iw} | image width | width of the digital image | properties of the camera (manufacturer) | input | | $l_{\sf mdi}$ | maximum
displacement in
image space | maximum displacement of a fix point in image space | measured | input | | l_{rtd} | required target diameter | required target diameter in image space (required by the analysis system developer) | predefined by the
developer of the
analysis system | input | | $p_{dtp,i}$ | distance to plane of motion <i>i</i> | distance between the additional plane of motion and the reference plane | project properties/
measured | input | | $p_{\sf np}$ | number of planes of motion | number of additional planes of motion | project properties | input | ### Table C.2 (continued) | Short cut | Short text | Long text | How to get the values | Туре | |------------------|---|---|---------------------------------|-------| | $p_{rd,i}$ | reference distance in direction <i>i</i> | presence of calibrated reference distances in the specified object space directions | measured | input | | $p_{rdp,i}$ | reference distance in plane of motion <i>i</i> | presence of a reference distance in the plane of motion <i>i</i> | project properties/
measured | input | | $p_{t,i}$ | target in image section <i>i</i> | presence of targets in the special image sections | measured | input | | p_{tpc} | type of camera set-up | type of the set-up of the camera with respect to the plane of motion | project properties/
measured | Input | | p_{tpd} | type of position determination | type of the determination procedure of the position of the image recording device (static or dynamic) | project properties/
measured | input | | t _{dtz} | $\begin{array}{c} \text{difference} \\ \text{between } t_0\text{-image} \\ \text{and } t_0\text{-signal} \end{array}$ | current point measuring accuracy of the object | measured | input | | t_{int} | time interval | analysed time interval of the test | project definition | input | | v | object speed | speed of the object perpendicular to the optical axis | measured | input | ## **Annex D** (informative) ### Dependences between the indices and the variables Table D.1 presents which variable is used in which index calculation procedure and how exactly the different values shall be measured. Table D.1 — Dependences between indices and the variables | Short cut | Туре | i_{cpc} | $i_{\sf cpd}$ | i_{CS} | i_{d} | i_{fl} | i_{i} | i_{mb} | $i_{\sf pm}$ | i _{ps} | i_{S} | i_{Sy} | i_{tb} | i_{td} | i_{toi} | its | |-------------------|-------|-----------|---------------|----------|---------|----------|---------|----------|--------------|-----------------|---------|----------|----------|----------|-----------|-----| | a_{loc} | user | Х | | Х | Х | Х | Х | Х | | | | Х | х | х | х | | | $l_{\sf apm}$ | user | | | | | | | | Х | | | | | | | | | r _{aar} | user | | | | | | х | | | | | Х | | | | | | r_{avl} | user | | | | | | | | | | | | | | | | | A_{cf} | input | | х | Х | | | | | | | | | | | | | | a_{d} | input | | | | Х | | | | | | | | | | | | | a_{fl} | input | | | Х | | Х | | | | | | | | | | | | a_{fr} | input | | | | | | | | | | | | Х | | | | | $a_{\sf td}$ | input | | | | | | х | | | | | | | х | | | | d | input | | | Х | Х | Х | Х | | | | | | | х | | х | | e | input | | | | | | | х | | | | | | | | | | f | input | х | | Х | Х | Х | х | | | | | | | х | | х | | f_{r} | input | | | | | | | | х | | | | Х | | х | | | $l_{\sf cb}$ | input | | | | | | х | | | | | Х | | | | | | $l_{\mathtt{CS}}$ | input | х | | | Х | | х | | | | | | | х | | х | | l_{ctd} | input | | | | | | | | | | | | | | | х | | $l_{\sf dco}$ | input | | | | | | х | | | | | Х | | | | | | l_{fpd} | input | х | | | | | | | | | | | | | | | | l_{ih} | input | | х | Х | | | | | | | | | | | | | | $l_{\sf iw}$ | input | | х | х | | | | | | | | | | | | | | $l_{\sf mdi}$ | input | х | | | | | | | | | | | | | | | | l_{rtd} | input | | | | | | | | | | | | | | | х | | $p_{dtp,i}$ | input | | | | | | | | | х | | | | | | | | $p_{\sf np}$ | input | | | | | | | | | х | | | | | | | | $p_{rd,i}$ | input | | | | | | | | | | х | | | | | | | $p_{rdp,i}$ | input | | | | | | | | | х | | | | | | | | $p_{t,i}$ | input | | Х | Х | | | | | | | | | | | | | | $p_{\sf tpc}$ | input | | | Х | | | | | | | | | | | | | | $p_{\sf tpd}$ | input | Х | | | | | | | | | | | | | | | | $t_{\sf dtz}$ | input | | | | | | | | | | | | | | х | | | t _{int} | input | | | | | | | | | | | | х | | | | | ν | input | | | | | | | Х | Х | | | Х | Х | | Х | | ### **Bibliography** - [1] SAE J211-2, Instrumentation for Impact Test Part 2: Photographic Instrumentation - [2] VDI/VDE 2634 Part 1, Optical 3D measuring systems Part 1: Imaging systems with point-by-point probing - [3] LUHMANN, T., ROBSON, S., KYLE, S., HARLEY, I., *Close Range Photogrammetry*, Whittles Publishing, 2006 - [4] KRAUS, K., Photogrammetry, Vol.1, Fundamentals and Standard Processes, 1999 ISO 8721:2010(E) ICS 43.020 Price based on 47 pages