

INTERNATIONAL STANDARD ISO 8085-3:2001 TECHNICAL CORRIGENDUM 2

Published 2008-09-15

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION • МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ • ORGANISATION INTERNATIONALE DE NORMALISATION

Polyethylene fittings for use with polyethylene pipes for the supply of gaseous fuels — Metric series — Specifications —

Part 3: **Electrofusion fittings**

TECHNICAL CORRIGENDUM 2

Raccords en polyéthylène pour utilisation avec des tubes en polyéthylène pour la distribution de combustibles gazeux — Série métrique — Spécifications —

Partie 3: Raccords électrosoudables

RECTIFICATIF TECHNIQUE 2

Technical Corrigendum 2 to ISO 8085-3:2001 was prepared by Technical Committee ISO/TC 138, *Plastics pipes, fittings and valves for the transport of fluids*, Subcommittee SC 4, *Plastics pipes and fittings for the supply of gaseous fuels*.

Page 2, Clause 2

Replace the Normative reference to ISO/TR 10837:1991 with the following:

"ISO 11357-6, Plastics — Differential scanning calorimetry (DSC) — Part 6: Determination of oxidation induction time (isothermal OIT) and oxidation induction temperature (OIT)"

ICS 75.200; 83.140.30

Ref. No. ISO 8085-3:2001/Cor.2:2008(E)

© ISO 2008 - All rights reserved

ISO 8085-3:2001/Cor.2:2008(E)

Page 8, Table 1

Replace the column headings; replace the third row beginning with: "Thermal stability"; replace table footnote b, as follows:

Property	Unit	Requirement	Test parameters	Test method
Isothermal OIT	min	> 20	200 °C	ISO 11357-6 ^b

Test specimens shall be prepared from the raw material by cutting disc-shaped pieces to obtain specimens of thickness (650 ± 100) µm. The purge gas shall be nitrogen, and the oxidizing gas shall be oxygen, both with a flow rate of (50 ± 5) ml/min. The test may be carried out at 210 °C provided that there is clear correlation with the results at 200 °C. In case of dispute, the reference temperature shall be 200 °C. The tangent method of analysis as described in ISO 11357-6 shall be used as the measuring technique.

Page 16, Table 8

Replace the existing Table 8 with the following Table 8, of which the column headings, the first row and table footnote a have been corrected:

Table 8 — Physical characteristics of fittings

Property	Unit	Requirement	Test parameters	Test method
Isothermal OIT	min	> 20	200 °C	ISO 11357-6 ^a
Melt mass-flow rate (MFR)	g/10 min	The MFR of the material of the manufactured fitting shall not differ by more than \pm 20 % from the MFR of the batch compound from which the fitting was manufactured	190 °C/5 kg (set of conditions T)	ISO 1133

Test specimens shall be prepared from the finished fitting by cutting disc-shaped pieces to obtain specimens of thickness (650 ± 100) µm. The purge gas shall be nitrogen, and the oxidizing gas shall be oxygen, both with a flow rate of (50 ± 5) ml/min. The test may be carried out at 210 °C provided that there is clear correlation with the results at 200 °C. In case of dispute, the reference temperature shall be 200 °C. The tangent method of analysis as described in ISO 11357-6 shall be used as the measuring technique.