INTERNATIONAL STANDARD ISO 7905-4 > First edition 1995-02-01 Corrected and reprinted 1996-04-01 # Plain bearings — Bearing fatigue — # Part 4: Tests on half-bearings of a metallic multilayer bearing material Paliers lisses — Fatigue des paliers — Partie 4: Essais sur demi-coussinets en matériau antifriction métallique multicouche Reference number ISO 7905-4:1995(E) #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. International Standard ISO 7905-4 was prepared by Technical Committee ISO/TC 123, *Plain bearings*, Subcommittee SC 2, *Materials and lubricants, their properties, characteristics, test methods and testing conditions*. ISO 7905 consists of the following parts, under the general title *Plain bearings* — *Bearing fatigue*: - Part 1: Plain bearings in test rigs and in applications under conditions of hydrodynamic lubrication - Part 2: Test with a cylindrical specimen of a metallic bearing material - Part 3: Test on plain strips of a metallic multilayer bearing material - Part 4: Tests on half-bearings of a metallic multilayer bearing material Annex A forms an integral part of this part of ISO 7905. Annex B is for information only. © ISO 1995 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher. International Organization for Standardization Case Postale 56 • CH-1211 Genève 20 • Switzerland Printed in Switzerland # Plain bearings — Bearing fatigue — ## Part 4: Tests on half-bearings of a metallic multilayer bearing material #### 1 Scope This part of ISO 7905 specifies a method for the determination of the endurance limit in fatigue of half-bearings of multilayer bearing materials. #### 2 Normative references The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 7905. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 7905 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. ISO 4386-3:1992, Plain bearings — Metallic multilayer plain bearings — Part 3: Non-destructive penetrant testing. ISO 7905-3:1995, Plain bearings — Bearing fatigue — Part 3: Test on plain strips of a metallic multilayer bearing material. #### 3 Test specimens The test specimens shall be half-bearings ready for use. Normally, as a result of the loading conditions, the major stresses are located in the crown area of the bearing. Care should be taken before and during the test not to damage the surface mechanically or by corrosion. The advantage of this method is the presence of residual stress associated with the bearing manufacturing process. #### 4 Test methods The test principle is illustrated in figure 1. The specimens shall be clamped at one end and loaded at the other end by force or displacement applied radially at the relief parting line runout. The load shall fluctuate from tension to compression within the running surface. Additionally a tensile or compressive prestress may be applied in order to evaluate dependency upon mean stress. The test equipment is preferably located in a chamber containing a lubricant at fixed levels of temperature to \pm 2 °C. Alternatively tests may be conducted in air at fixed levels of temperature \pm 2 °C. Bending stress may be measured by a strain gauge on the back of the bearing at the crown (midperipheral length). The required stress in the lining can be calculated if the steel and lining thicknesses and Young's modulii are known. Alternatively, the radial force at the clamping end F can be measured by load cell or calculated from cantilever beam theory and the value of stress in the lining calculated according to annex A. The values are critically dependent upon the lining and steel thickness which shall be determined by microsection after the tests. The test frequency shall have a range of 50 Hz to 80 Hz. Crack detection shall be performed by dye penetrant method (see ISO 4386-3) or by microscope. © ISO - 1) Frame - 2) Hydraulic cylinder - 3) Connecting shaft - 4) Seal - 5) Sample receptacle - 6) Strip heater - 7) Testing fluid - 8) Half bearing - 9) Hinged clamping beam - 10) Load cell - 11) Rollers on radial line - 12) Fulcrum clamping beam Figure 1 — Test principle ISO 7905-4:1995(E) The amplitude shall be controlled by force (F) or displacement (s). For detecting crack initiation in thicker layers, the reduction of gauge strain may be used to determine failure onset, see ISO 7905-3. ### 5 Evaluation and presentation of results The endurance limit stresses should be presented in the form of σ_{el} -N curves at a predetermined temperature (\pm 2 °C) against a detailed description of the bearing material. Normally σ_{el} -N curve testing is terminated for practical considerations at 50 \times 10 stress cycles. The endurance limit stress may be quoted at a specified number of cycles, e.g. 3×10^6 , 10×10^6 , 25×10^6 or 50×10^6 . A specimen without failure during fatigue testing to a specified endurance should be identified in the report. Due to the scatter of test results normally experienced and the statistical nature of the fatigue limit, it is recommended that the results be evaluated on the basis of a statistical method. Another presentation of the endurance limit stress may be effected by means of the Haigh diagram which plots stress amplitude against mean stress. Metallographic examination will provide detailed evidence of the damage mechanism, corrosive attack and diffusion resulting from thermal effects. # Annex A (normative) ## **Evaluation of stress** #### A.1 Evaluation of stresses A half-bearing system is described in figure A.1 by radial dimensions r_4 , thickness s_1 and related to Young's modulus $E_{2,0} = 50 \times 10^3$ MPa and to nominal stress $\sigma_{\rm nom}$. $$\bar{r}=(r_3+r_4)\times 0.5$$ $$\sigma_{\text{nom}} = \frac{6 \times F \times \overline{r}}{b \times s^2}$$ $$s^* = 2 \times \frac{r_4 - r_3}{r_4 + r_3}$$ $$s_1^* = \frac{r_4 - r_2}{r_4 - r_3}$$ $$E_2^* = E_2/50 \times 10^3$$ Figure A.1 — Half-bearing system The solution is given in figure A.2 for a two-layer bearing. It is self-explanatory. An approximation for the stress in the overlay of a three-layer bearing is also given in figure A.2. ## A.2 Symbols | Symbol | Definition | Unit | |-----------------------|--|-------------| | A_1 | coefficient of stress at the bear-
ing backing | | | $a_{1,i}$ | 3 coefficients at the outside of the bearing back with $i = 0, 1, 2$ | | | <i>A</i> ₂ | coefficient of stress at the sur-
face of the lining | <u> </u> | | $a_{2,i}$ | 3 coefficients at the surface of the lining with $i = 0, 1, 2$ | _ | | b | bearing width | mm | | <i>B</i> ₁ | coefficient of stress at the bear-
ing backing | _ | | $b_{1,i}$ | 3 coefficients at the outside of the bearing back with $i = 0, 1, 2$ | _ | | B_2 | coefficient of stress at the sur-
face of the lining | _ | | $b_{2,i}$ | 3 coefficients at the surface of the lining with $i = 0, 1, 2$ | | | E | Young's modulus | MPa | | E* | dimensionless Young's modulus, $E^* = E_2/E_{2,0}$ | | | E_1 | Young's modulus, steel bearing backing, $E_1 = 210 \times 10^3$ | MPa | | E_2 | Young's modulus, lining | Pa | | $E_{2,0}$ | Young's modulus for figure A.2,
$E_{2,0} = 50 \times 10^3$ | MPa | | E_3 | Young's modulus, overlay | Pa | | F | radial force | N | | <i>r</i> ₂ | radius of interface between the bearing backing and lining | mm | | r_3 | radius of running surface (overlay thickness negligible) | mm | | r ₄ | outer radius of bearing steel back | mm | | Symbol | Definition | Unit | |-----------------------|---|----------| | s | total thickness of bearing | mm | | s* | dimensionless total thickness,
see figure A.1 | _ | | <i>s</i> ₁ | thickness of steel backing | mm | | s_1^* | dimensionless steel backing thickness, see figure A.1 | _ | | t | time | s | | σ | stress | Pa | | σ^{*} | dimensionless stress, $\sigma^* = \sigma/\sigma_{\text{nom}}$ | _ | | σ_{el} | endurance limit stress | Pa | | σ_{nom} | nominal stress | Pa | | σ_1 | stress at the outside of the bearing back | MPa | | σ_1^* | dimensionless stress at the bear-
ing steel back | <u> </u> | | σ_2 | stress at the surface of the lining | MPa | | σ_2^* | dimensionless stress, lining sur-
face | _ | | σ_3 | stress in overlay | Pa | | σ_3^* | dimensionless stress, overlay | | ### A.3 Example Given data for a half-bearing: $$b = 30 \text{ mm}$$ $$E_1 = 210 \times 10^3 \text{ MPa}$$ $$E_2 = 69 \times 10^3 \text{ MPa}$$ $$E_3 = 22 \times 10^3 \text{ MPa}$$ $$F = 100 \text{ N}$$ $$r_2 = 49,10 \text{ mm}$$ $$r_3 = 48,52 \text{ mm}$$ $$r_4 = 51,50 \text{ mm}$$ It is assumed that since the overlay (PbSn11) is relatively thin (0,02 mm) it does not affect the stresses in the other layers. #### A.3.1 To calculate related dimensions See figure A.1. $$s^* = 0.06$$ $$s_1^* = 0.8$$ $$E^* = 1.38$$ #### A.3.2 To calculate nominal stress See figure A.1. $$\sigma_{\text{nom}} = 111,1 \text{ MPa}$$ ### A.3.3 To calculate or read the coefficients a and b See figure A.2. Running surface: $$a_{2.0} = 0.016$$ $$a_{2,1} = 0.495$$ $b_{2,1} = 0.339$ $$a_{2,2} = -0.086$$ $b_{2,2} = -0.079$ $$b_{2,0} = 0.033$$ Bearing back: $$a_{1,0} = 1,572$$ $a_{1,1} = -0,296$ $a_{1,2} = 0,049$ $$a_{1,2} = 0.049$$ $$b_{1.0} = -0.440$$ $b_{1.1} = -0.095$ $b_{1.2} = 0.034$ $$b_{1,1} = -0.09$$ $$b_{1,2} = 0.034$$ ## A.3.4 To calculate the coefficients A and B Running surface: $$A_2 = 0.535$$ $$B_2 = 0.350$$ Bearing back: $$A_{*} = 1.257$$ $$A_1 = 1,257$$ $B_1 = -0,506$ #### A.3.5 To calculate the dimensionless stress Running surface: $\sigma_2^* = 0.556$ Bearing back: $\sigma_1^* = 1,227$ #### A.3.6 To calculate real stress Running surface: $\sigma_2 = 61.8 \text{ MPa}$ Bearing back: $\sigma_1 = 136,3 \text{ MPa}$ #### A.3.7 Approximation for stress in overlay $$\sigma_3 = 19,7 \text{ MPa}$$ ISO 7905-4:1995(E) © ISO Approximation for stress in overlay: $\sigma_3 = \sigma_2 \times E_3/E_2$ Figure A.2 — Stress evaluation in two- and three-layer bearings # Annex B (informative) # **Bibliography** - [1] ISO 3548:1978, Plain bearings Thin-walled half bearings Dimensions, tolerances and methods of checking. - [2] ISO 4378-1:1983, Plain bearings Terms, definitions and classification Part 1: Design, bearing materials and their properties. # ICS 21.100.10 Descriptors: bearings, plain bearings, tests, fatigue tests. Price based on 7 pages