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Foreword 

IS0 (the international Organization for Standardization) is a worldwide federation of 
national standards bodies (IS0 member bodies). The work of preparing International 
Standards is normally carried out through IS0 technical committees. Each member 
body interested in a subject for which a technical committee has been established has 
the right to be represented on that committee. International organizations, govern- 
mental and non-governmental, in liaison with ISO, also take part in the work. IS0 
collaborates closely with the International .Electrotechnica! Commission (IEC) on all 
matters of electrotechnical standardization. 

Draft International Standards adopted by the technical committees are circulated to 
the member bodies for approval before their acceptance as International Standards by 
the IS0 Council. They are approved in accordance with IS0 procedures requiring at 
least 75 % approval by the member bodies voting. 

International Standard IS0 7055-2 was prepared by Technical Committee ISO/TC 30, 
Measurement of fluid flow in closed conduits. 

Users should note that all International Standards undergo revision from time to time 
and that any reference made herein to any other International Standard implies its 
latest edition, unless otherwise stated. 

@ International Organization for Standardization, 1988 0 

Printed in Switzerland 
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INTERNATIONAL STANDARD IS0 7066-2 : 1988 (E) 

Assessment of uncertainty in the calibration and use 
of flow measurement devices - 

Part 2: 
Non-linear calibration relationships 

0 Introduction 

The method of fitting a straight line to flow measurement 
calibration data and of assessing the uncertainty in the calibra- 
tion are dealt with in IS0 7066-I. IS0 7066-2 deals with the case 
where a straight line is inadequate for representing the calibra- 
tion data. 

1 Scope and field of application 

This part of IS0 7066 describes the procedures for fitting a 
quadratic, cubic or higher degree polynomial expression to a 
non-linear’) set of calibration data, using the least-squares 
criterion, and of assessing the uncertainty associated with the 
resulting calibration curve. It considers only the use of 
polynomials with powers which are integers. 

Because it is generally not practicable to carry out this type of 
curve fitting and assessment of uncertainty without using a 
computer, it is assumed in this part of IS0 7066 that the user 
has access to one. In many cases it will be possible to use stan- 
dard routines available on most computers; as an alternative 
the FORTRAN program listed in annex C may be used. 

Examples of the use of these methods are given in annex D. 

Extrapolation beyond the range of the data is not permitted. 

Annexes A, B, C, D and E do not form integral parts of this part 
df IS0 7066. 

2 References 

IS0 5168, Measurement of fluid flow - Estimation of uncer- 
tainty of a flow-rate measurement. *I 

IS0 7066-1, Assessment of uncertainty in the calibration and 
use of flow measurement devices - Part 1: Linear calibration 
relationships. 3, 

3 Definitions 

For the purposes of this part of IS0 7066, the following defini- 
tions apply. 

3.1 method of least squares: Technique used to compute 
the coefficients of a particular form of an equation which is 
chosen for fitting a curve to data. The principle of least squares 
is the minimization of the sum of squares of deviations of the 
data from the curve. 

3.2 polynomial (function): For a variable x, a series of 
terms with increasing integer powers of X. 

3.3 regression analysis: The process of quantifying the 
dependence of one variable on one or more other variables. 

NOTE - Many of the available computer programs suitable for curve 
fitting have the word “regression” in the title. For the purposes of this 
part of IS0 7066, the terms regression and least squares may be 
regarded as interchangeable. 

3.4 standard deviation: The positive square root of the 
variance. 

3.5 variance: A measure of dispersion based on the mean of 
the squares of deviations of values of a variable from its 
expected value. 

4 Symbols and abbreviations 

r)j coefficient of Xj 

cjb element of the inverse matrix 

1) These procedures are also suitable for a linear set of calibration data. 

2) At present at the stage of draft. (Revision of IS0 5168 : 1978.) 

3) At present at the stage of draft. 
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IS0 7069-2 : 1999 E) 

e,( ) random uncertainty of variable contained in paren- 
theses’) 

e,( ) systematic uncertainty of variable contained in paren- 
theses’) 

e(9.J total uncertainty of calibration coefficient’) 

0 coefficient of jth orthogonal polynomial 

m degree of polynomial 

n number of data values 

pj(x) jth orthogonal polynomial 

s( 1 

sr 

I 

X 

x* 

x 

xi 

3 

xji 

Y 

B 

u^ 

3 
n 
A 

V 

5 

experimental standard deviation of variable contained in 
parentheses 

residual standard deviation of data values about the 
curve 

Student’s t 

the independent variable 

arbitrary specified value of x 

arithmetic mean of the data values Xi 

value of x at the ith data point 

jth independent variable (in multiple linear regression) 

value of Xj at the ith data point 

the dependent variable 

arithmetic mean of the data values yi 

value of y predicted by the equation of the fitted curve 

value of y at the ith data point 

valueofy^atx = Xi 

number of degrees of freedom 

Curve fitting 

5.1 General 

Before attempting polynomial curve fitting, consideration 
should be given to whether a simple transformation of the x 
variable or the y variable or both may effectively linearize the 
data to enable the straight line methods described in IS0 7666-l 
to be used. Some appropriate transformations are suggested in 
IS0 7666-l I 

If it is not possible to establish a straight line, then the objective 
is to find the degree and coefficients of the polynomial function 
which best represents a set of n pairs of (Xi, yi) data values 
obtained from calibration. If, for example, a quadratic expres- 
sion is chosen, the curve will be of the form 

u^ = bo + b,x + b& 0 . , (I) 

The general polynomial expression is 

.? = bo + blx + . . . + bid -I- . . . + b,P 

or 

ji = 2 bj$ 
j=O 

. . . (2) 

By applying the least-squares criterion, the coefficients bj are 
computed to minimize the sum of squares of deviations of the 
data points from the curve: 

” 

c 
t.Yi - piI2 

i=l 

where pi is the value predicted by equation (2) at x = xF 

In some cases, the degree m of the polynomial will be predeter- 
mined; for example, it may be known from experience that the 
calibration data will be satisfactorily represented by a cubic 
(m = 3) expression. Otherwise, the degree of fit is chosen by 
increasing the degree until an optimum is achieved (see 5.3). 

If in increasing the degree of fit beyond a moderate degree 
significant improvements in the fit, as described in 5.3, con- 
tinue to occur, then it is likely that the functional dependence is 
not suitable for representation by a polynomial; further, if the 
equation fitted has too many terms, the curve may display 
spurious oscillations. A not uncommon example is data which 
are virtually constant over most of the x range, but which vary 
strongly close to one end of the range. 

In such cases, it is appropriate to divide the range into sections 
(see IS0 7666-l) which either are linear or can be fitted by a 
low-degree polynomial. Alternatively, transforming one or both 
variables may lead to a linear or low-degree polynomial func- 
tion; transforming the independent variable to its reciprocal 1 lx 
will in some cases result in adequate linearity. 

The least-squares methods described in this part of IS0 7666 
may not be appropriate if the effect of the random uncertainty 
e,(x) of the data values Xi is not negligible in comparison with 
that of the random uncertainty e,(y) of the y values. As in 
IS0 7666-1, if the magnitude of the slope2) of the calibration 
curve is always less than one-fifth of e,(y) /e,(x), the methods 
may be regarded as appropriate; where this does not apply the 

11 In some International Standards, the symbols U and E have been used instead of e. 

2) “Slope” here means the derivative dy/dx = b, + 2bzx + . . . . 

2 
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mathematical treatment is outside the scope of this part of 
IS0 7666. If therefore the normal practice in calibrating any 
particular meter is to plot the variables in such a way that the 
above condition does not hold, then either the conventional 
choice of abscissa and ordinate is to be reversed or this part of 
IS0 7666 cannot be used. 

If either variable is transformed before fitting, then the uncer- 
tainties referred to above, and later (clause 61, relate to the new 
transformed variables. If, as a result of transforming the depen- 
dent variable, the random uncertainty e, Iyj cannot be regarded 
as constant over the range, then a weighted least-squares 
method should be used. The weighted least-squares method is 
not described in this part of IS0 7666 but many computer 
library routines allow the data to be weighted. 

5.2 Computational methods 

Standard library routines for least-squares curve fitting are 
available on most computers. The method for fitting a straight 
line described in IS0 7966-l is commonly known as linear or 
simple linear regression: the equivalent method for fitting a 
polynomial may be described as polynomial or curvilinear 
regression, which is a special type of multiple linear regression. 
Annex A gives further information on regression methods and 
how to use them. 

As an alternative to the standard regression routines, the or- 
thogonal polynomial method described in annex B may be 
used: this method is particularly suitable when the degree of fit 
is not known beforehand. Annex C lists an appropriate 
orthogonal polynomial computer program. 

When a computer is not available and thexvalues are uniformly 
spaced, a finite-difference method (see annex Ej may be used 
to provide a quick indication of what degree of fit may be 
appropriate to represent the data. The coefficients of a 
polynomial representing the data may also be calculated, but 
this will not be the least-squares polynomial. The calculation of 
uncertainty using this method is beyond the scope of this part 
of IS0 7666. 

5.3 Selecting the optimum degree of fit 

The optimum fit is determined by trying increasing values of the 
degree m, either up to a specified maximum or until no further 
significant improvement occurs. The residual standard devi- 
ation sr should be computed for each degree (sr is the square 
root of the residual variance) using the equation 

n 
sr2 = 

c 
(yi-~f)2/(n -m -l) . . . 

i= 1 

where yi is the value predicted by the polynomial expression 
[equation (211 at x = xi. 

NOTE - sr2 is equivalent to the term s2@,x) used in IS0 7066-l. 

The degree m should always be much less than the number n of 
data points. 

If the data are well represented by a polynomial of degree m, 
then s, will decrease significantly until the degree m is reached; 
thereafter s, will remain approximately constant. In general, 
however, the degree at which the decrease in s, ceases to be 
significant is not obvious, and an objective test of significance 
should be used as an aid to finding the optimum degree of fit. 

Increasing the degree from m - 1 to m is regarded as providing 
a statistically significant improvement in the fit if the new coef- 
ficient &.,, differs significantly from zero, i.e. if b, + tgg s&J 
and b, - tg5 s(b,) (the 95 % confidence limits of b,) do not 
include zero. 

This condition may be expressed as 

bm I I - ‘f95 
db,,,) 

where fg5 is the Student’s f value for the 95 % confidence level 
withv = n - m -1. 

The value of ts as a function of the number of degrees of 
freedom v can be computed from the following empirical 
equation : 

ts = I,96 + 2,36/v + 3,2/v2 + 5,2/v3tM . . . (4) 

For the orthogonal polynomial coefficient g, (see annex Bj, the 
condition is 

Expressions for the variances of the coefficients s2(b,) and 
s2(gmj are given in annex A and annex B respectively. 

It is important to test the effect of increasing the degree at least 
one degree beyond that which first shows no significant im- 
provement, since it is often the case that either only the odd 
terms or only the even terms produce a significant improve- 
ment. 

From a statistical point of view, the highest degree which pro- 
duces an improvement in the fit which is significant at the 95 % 
confidence level may be regarded as the optimum degree. 
However, before this degree is selected as providing the most 
suitable expression to represent the data, other factors should 
be considered. These factors include any knowledge of the 
expected shape of the curve, the desirability of having a func- 
tional form which is not too complex, the range which it is 
necessary to represent, and the accuracy which is sought. 

In assessing these factors, it is always advisable to plot graphs 
showing the data and the possible curves; these graphs will 
also highlight other possible problems. For example, if the 
degree is too low, then the curve will fail to represent a real 
trend in the data, and the predicted value y^ may have a bias 
over some of the range. If the degree is too high, the curve may 
be fitting the scatter of the data rather than the underlying 
trend. 

The examples given in annex D illustrate the application of 
some of these principles. 
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6 Uncertainty 

The random component,of the uncertainty, at the 95 % con- 
fidence level, of a predicted value j, is given by 

erV) = 195d3 

where sC.$V is the square root of the variance &?I of 9. Expres- 
sions for $@I are given in annexes A and B; in general, &j? 
may be expressed as a polynomial function of x of degree 2m. It 
is important to ensure that enough significant figures are used 
in the computation of &El to avoid large rounding errors which 
result from subtraction. 

It should be noted that the estimate of uncertainty provided by 
e,(Y) will only be valid to the extent that the polynomial expres- 
sion chosen is a good approximation to the true functional rela- 
tionship between y and x. 

The 95 % random confidence limits for the true value of y are 

y f e,@) 

As in IS0 7056-1, the uncertainty in the calibration coefficient is 
given by 

where e,(j) is the systematic component of the uncertainty 
in 9. 

NOTE - In the revised version of IS0 5168, in preparation, guidelines 
are provided for using either the linear addition or the root-sum-square 
combination of random and systematic errors. 

If the dependent variable has been transformed, then all the 
above uncertainties refer to the transformed variable. 
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Annex A 

Regression methods 

(This annex does not form an integral part of the standard.) 

A.1 Introduction 

Regression methods for curve fitting are widely available under various names as standard routines in computer libraries. The 
documentation provided with these routines tends to assume a certain level of knowledge of regression analysis. The purpose of this 
annex is to provide a general description of the methods and terminology of regression curve fitting as a background to the documen- 
tation of the library routines. 

The most widely available regression technique, apart from simple linear regression, is multiple linear regression; curve fitting can be 
carried out using a special type of multiple linear regression known as polynomial or curvilinear regression. If a polynomial regression 
routine is not available, then a multiple linear regression method can be used, although it is less convenient. “Stepwise” and 
“backwards elimination” or “back solution” are special types of multiple linear regression methods which may be used. 

A.2 Multiple linear regression 
n 

In the following, the summation sign c is used to represent 
c 

unless otherwise noted. 
i=l 

A dependent variable y is assumed to be related linearly to m independent variables x1, x2, . ,., x,,~ by 

y = po + p,x, + &x2 + **. + p,x, + u . . . (5) 

PO to P, are the unknown regression coefficients; 

U is a measure of the random effects which cause the dependence of y on the m independent variables to depart from exact 
linearity. 

From the n sets of observations 

(Yit Xlir X2in -.., X&r i = 1, 2, ,.., ?I 

the estimates of the regression coefficents are 

bo, bl, . ..t b, 

so that the estimate u^ of the true value corresponding to the ith set of observations of the independent variables is 

$i = bo + blX,i + es* + b,Xmi . . . (6) 

The application of the least-squares procedure to minimize CCyi - jii,2 leads to a set of m + 1 simultaneous equations, commonly 
known as the “normal equations”: 

nbo + X(Xli) bl + Z(X2ilb2 + mm. + C(Xmil b, = Zyi 

C(Xli)bO + C(Xli12bl + *ma + C(XliXmi)bm = Z(Xliyi) 

C(Xmi) bo + E(X~iXli) bl + mm- + C(X,J2bm = C(XmiYi) 

These can then be solved for the m + 1 unknowns bo, bl, . . . . 6,. 

. . . (7) 
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A.3 Polynomial (curvilinear) regression 

When a relationship between two variables is not linear, but may be fitted by a polynomial function 

j = b. + b,x + b2X2 + ,a. f b,x”’ 

there is said to be a polynomial or curvilinear regression of y on x. This can be treated as a multiple linear regression with the indepen- 
dent variables xl, x2, ,, ., x,,, replaced by x, 9, . . ., xm, 

In clauses A.4 and A.6, any of the multiple linear regression expressions may be transformed to the equivalent polynomial regression 
expressions by replacing the jth independent variable Xj by xj, and the corresponding data values Xji by x,j, 

A.4 Computation of coefficients and variances 

Consider the multiple linear regression equation with m = 2 

y^ = b. + b,xl + b2x2 

which is equivalent to 

j = b. + b,x f b2x2 

in the polynomial regression case. 

When the least-squares criterion is applied, the normal equations are 

. * * (8) 

. , I (9) 

nbo + C(Xli) 61 + X(X,) b2 = C(yi) . * . (IO) 

X:CXli) bo + C(XlJ2bl + C(XliXu) b2 = C(Xl;Yi) . * * (11) 

Ih~)bo + C(Xzxli)bl + C(x2iI2b2 = C(x2iYi) . . * (12) 

The traditional method for solving the normal equations involves computing the inverse of the 3 x 3 matrix of coefficients of bo, b, 
and b,. If the elements of this inverse matrix are 

then 

b. = Cm CYi + CO1 C(X,iYi) -t CO2 x(X2iYi) 

bl = Cl0 CJJi + Cl1 C(xliYi) + Cl2 Z:(X~YJ 

b2 = C2iJ Cyi + C21 E:(XJiYi) -t Cz Il(X2;Yi) 

or, in generalized form, 

bj = g [ Cjk x(XkiYi)] 
k=O 

where xk; = 1 fork = 0. 

Note that since the matrix from the normal equations is symmetric, the inverse matrix is also symmetric. 

. . . (13) 

Copyright International Organization for Standardization 
Provided by IHS under license with ISO 
No reproduction or networking permitted without license from IHS

-
-
`
,
`
`
,
,
,
`
`
`
,
,
`
`
`
`
`
`
`
`
`
,
`
`
`
`
`
`
,
`
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-



IS0 7066-2 : 1988 (El 

The variances of the coefficients are 

where the residual variance, s,*, is given as in 5.3 by 

2 _ U.Yj - -Fii,* 
Sr - n-m-l 

Because the inverse matrix is symmetric, 

co1 = Cl0 

c, = c, . . . (14) 

Cl2 = c21 

These non-diagonal terms are used to calculate the covariances ‘1 between the coefficients bj; using COV to denote covariance, 

COV(bo, b,) = sr2Co, 

COV(bo, b2) = sr2C02 

COWb,, b2) = s,2C,* 

At specified values x1 = XI* and x2 = x2*, the value predicted by the regression equation is 

u^ = b. + b,x,* + b2x2* 

The variance of this value of jj is given by 

S(y^) = s,* c, + c,,(x,*)* + cz(x**)* + 220,x,*+ 2c,*x** + 2c,*x,*x** C 1 
The factor of 2 arises because Cjk = Ckj for each j, k. 

The general formula is 

In 

s*cy, = s,* 
zc. 

( CjkXj*Xk* I 
j=O k=O 

wherexj*, xk* = 1 forj, k = 0. 

For polynomial regression, Xj” = (x*pand xk* = (x*Ik, and SO 

Adapting this expression to the form of a polynomial of degree 2m gives 

* . . (15) 

. . . (16) 

* . . (17) 

. 1 . (18) 

. . . (19) 

1) The covariance of two coefficients indicates the effect of a change in one on the magnitude of the other. The inverse matrix multiplied by the 
scalar sr2 is known as the variance, covariance, or variance-covariance matrix. 
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A.5 Centred formulation 

The least-squares or regression analysis is sometimes expressed in “centred” form, in which each variable is replaced by its deviation 
from its mean. In this form, equation (8) is replaced by 

y^ - p= bl lx, -IF,, -I- b*k*--3 * . I (20) 

where the bar over a symbol is used to denote the mean value of the quantity represented by the symbol for the n measurements. 

A.6 Numerical techniques used in computer libraries 

For the least-squares or regression computations discussed in this annex, a computer library routine may make use of one of a variety 
of numerical techniques. The main numerical techniques used by computers for regression and least-squares matrix manipulations are 

a) Gauss or Gauss-Jordan elimination, 

b) Cholesky decomposition, and 

c) orthogonal decompositions (usually Householder or modified Gram-Schmidt). 

The particular technique used is in general not of importance to the user. However, it should be noted that elimination methods are 
susceptible to the build-up of rounding error, SO that the computed coefficients bj may be significantly in error for a high-degree 
polynomial; for a moderate degree, up to m = 3 or 4, this should not be a problem. 
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Annex B 

Orthogonal polynomial curve fitting 

(This annex does not form an integral part of the standard.) 

This annex describes the main features of orthogonal polynomial curve fitting in relation to the regression methods discussed in 
annex A. Orthogonal polynomial curve fitting is particularly efficient when the degree of fit is unknown, and it is not subject to the 
rapid build-up of rounding error which can occur with elimination methods (see annex A, clause A.6). 

The results of orthogonal polynomial curve fitting will be identical, apart from rounding error, to those produced by the regression 
methods described in annex A. 

Computer library routines using orthogonal polynomials do not in general provide enough information to allow uncertainty to be easily 
computed: the program listed in annex C, however, provides full information on uncertainty. 

n 
In the following, the summation sign x is used to represent 

c 
unless otherwise noted. 

i=l 

With the orthogonal polynomial method, the polynomial 

r^ = b. + b,x + b2x2 + . . . + b,xm 

is replaced by an equivalent form 

r^ = gopo(xl + g1 P,(X) + &P*(X) + . . . + g,p,(x) 

where 

. . . (21) 

Pj(XI are polynomials of degree j which obey for all j # k the orthogonality condition 

C [Pj(XJPk(XJ] = 0 

PI)(X) = 1 

. . . (22) 

These polynomials are described as orthogonal over the data points Xi; the coefficients which define them are derived using a three- 
term recurrence relation, given by Forsythetll. 

Because of the ot-thogonality condition, all the elements in the matrix and inverse matrix derived from the normal equations (see 
clause A.4), except for those on the diagonal (j = k), are zero, and the coefficients gj are obtained directly from the normal equations 
as 

* . . 

The variances of the coefficients are obtained from the inverse matrix elements, as in annex A: 

2 
S*(gj) = Sr*Cjj = 

sr 

ZIPjCXi)l* 
. . . 

At a specified value x = x*, since the covariances are zero, 

s2vl = S*(gOl + Ipl(X*)l*S*(gl) + -mm + [Pm(X*)l*S*(gm) 

(23) 

(24) 

2 
= “r + s,* m [Pj(X*)l* 

n c 
j=l 

UPj(XJl* 
. . . (25) 
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IS0 7666-2 : 1666 (EI 

Because the coefficients gj are computed simply from equation (231, as the degree of fit is increased, the previous coefficients are 
unchanged: it is this feature that makes orthogonal polynomial curve fitting particularly convenient when the degree of fit is not 
known beforehand. When the optimum degree has been finally chosen, however, it is necessary to convert the orthogonal polynomial 
form for 9 [equation (2111 

y^ = gOpO(X) + glPj(Xl -I- &P*(X) + * 1. + g&m(X) 

to the more convenient simple power series 

u^ = b. -I- b,x -I- b2$ + .,. + b,P 

using the coefficients defining the orthogonal polynomials derived using the original recurrence relation. 

Bibliography 

[l] FORSYTHE, G.E. Generation and use of orthogonal polynomials for data fitting with a digital computer, J. Sm. lnd. Appl. Maths, 
5 (2) (19571, pp. 14-88. 
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IS0 7066-2 : 1966 (E) 

Annex C 

Computer program using orthogonal polynomials 
(This annex does not form an integral part of the standard.) 

C.l Input and output 

The program operates interactively, requesting input as required. The initial input is the maximum degree of fit (which should be at 
least two degrees higher than is expected to be required), the number of data values, and the data, which are entered as one pair of 
(Xi, yJ values per line. 

The residual standard deviation s, and the percentage significance are then printed for each degree up to the maximum, and the 
highest degree for which the coefficient is significant at the 95 % confidence level is suggested as the optimum degree of fit. 

The user then selects and enters a degree of fit, which may be different from the suggested optimum degree, and the coefficients of 
the least-squares polynomial and the coefficients of the polynomial for the square of the random uncertainty are then printed. Finally, 
a table of data values (xi, yi), predicted valuesjjb deviations yi - yh and random uncertainties tsas(?) is printed. Another degree may 
then be entered, or - 1 may be entered to terminate the execution. 

C.2 Program description 

After the input has been entered, the data are fitted using subroutine ORFIT up to a maximum degree MAXDl; the percentage 
significance of each coefficient is obtained from function PCTSQ. With a specified degree JDEGl, subroutine POWSER is used to 
compute the coefficients POLCO of the least-squares polynomial and the coefficients UVCO of the polynomial for the un-normalized 
variance [s*(~)/s,* from equation (25)). With JDEG = JDEGI + 1, fs5 is computed at N - JDEG degrees of freedom using equation 
(4), and sr2 from D(JDEG) / (N - JDEG). The coefficients UVCO are then multiplied by t2sr2 to obtain USQCO, which are the coeffi- 
cients of the polynomial representing the square of the random uncertainty. 

The code used is that of standard FORTRAN IV except for the use of the arc cosine function ACOS in PCTSQ. 

C.3 Possible modifications 

The program can be used as listed, but in general it will be more convenient to make some modifications, particularly to the input and 
output. 

Most implementations of FORTRAN allow data to be input in free format; this is more convenient than the fixed format required by 
standard FORTRAN. 

The output provided by the listed program is for illustration purposes only; the most useful way of presenting the output will depend 
on what output devices are to be used. If a plotting or graphics device is available, then a plot which includes the curve, the data 
values and the 95 % confidence limits? + e,CF), as illustrated in annex D, can be produced. If no such device is available, a printer can 
be used to give an approximate plot of, for example, the deviations yi - ji of the data from the curve. 

The number of data values allowed in the listed program is IO, and the maximum permitted degree of fit mmax is 7. At degrees of fit 
above about 7, the computation of random uncertainty from the polynomial coefficients USQCO may be subject to large rounding 
errors. Note that the arrays A, B, G, D, E and POLCO are dimensioned mmax + 1, and UVCO and USQCO are dimensioned 
2m mm + 1. 
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ORTHOGONAL POLYNOMIAL COMPUTER,PROORAM 

C ORTHOOONAL POLYNOMIAL CURVE-FITTINO - MAIN PROGRAM; 
C SUBROUTINES ORFIT AND POWSER, AND FUNCTION PCTSQ, ARE REQUIRED. 
C 

DOUBLE PRECISION A,B,G,D,E,FAC,POLCO,USQ,USQCO,UVCO,X,Y,YPOL 
DIMENSION A(8), B(8), G(8), D(8), E(B), POLCO(8) 
DIMENSION X(lOO),,Y(lOO), UVCO(lS), -USQCO(lS) 

C 
C ARRAYS: 
C 
C A ALPHA COEFFICIENTS IN ORTHOGONAL POLYNOMIAL RECURRENCE RELATION 
C B BETA COEFFICIENTS IN ORTHOGONAL POLYNOMIAL RECURRENCE RELATION 
C G COEFFICIENTS OF ORTHOGONAL POLYNQMIAL SERIES 
C D RESIDUAL SUM OF SQUARES 
C E SQUARE OF COEFFICIENT G/VARIANCE OF 6, FOR SIGNIFICANCE TESTING 
C 
C POLCO COEFFICIENTS OF SIMPLE POLYNOMIAL FOR Y 
c uvco COEFFICIENTS OF POLYNOMIAL FOR UNNORMALISED VARIANCE OF Y 
C USQCO COEFFICIENTS OF POLYNOMIAL FOR SQUARE OF RANDOM UNCERTAINTY 
C 
C 8w*+!t INITIAL INPUT t**** 
C 

WRITE (6,120) 
READ (5,130) MAXDl 
IF ~~tlAXDloGT,f) MAXD1=7 
WRITE (6,140) 
READ 15,150) N 
IF (N,LE,lOO) GO TO 10 
WRITE (6,160) 
60 TO 110 

10 WRITE (6,170) N 
MAXD=tlAXDl+l 
IF (MAXD.OT,N) MAXD=N 
DO 20 I=l,N 

20 READ (5,180) X(II,Y(I) 
C 
C f**tt PRELIMINARY FITTING f**** 
C 

CALL ORFIT (X,Y,A,B,G,D,E,N,MAXD) 
WRITE (6,190) 
J OPT=0 
DO 30 J=l,MAXD 

IF (J.GE,N) 60 TO 40 
Jl=J-1 
SD=DSQRT(D(JlIFLOAT(N-J)) 
SE=E(J) 
PC=PCTSQ(SE,N-J) 

C PC IS PERCENTAGE SIGNIFICANCE OF COEFFICIENT 
IF (PC.GEa95,) JOPT=Jl 

JO WRITE (b,200) Jl,SD,PC 
40 WRITE (6,210) JOPT 

C 
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ISO7OW2:1988(E) 

ORTHOGONAL POLYNOMIAL COMPUTER PROGRAM (CONTINUED) 

C *CW+Q INFORMATION FOR A SPECIFIED DEGREE OF FIT ***** 
C 
C ENTER DEGREE 
C 

50 WRITE (6,220) 
READ (5,130) JDEGl 
IF (JDEGl.LT.0) GO TO 110 
JDEG=JDEGltl 
IF (JDEG.LE.tlAXD) 60 TO 60 
WRITE (6,230) 
GO TO 50 

C 
C COMPUTE POWER SERIES (SIMPLE POLYNOMIAL) COEFFICIENTS 
C 

60 CALL POWSER (A,B,G,JDEG,N,POLCO,UVCO) 
C 

WRITE (6,240) 
WRITE (6,250) (POLCO(J),J=l,JDEG) 

C 
C COMPUTE NORMALISING FACTOR FOR SQUARE OF RANDOM UNCERTAINTY 
C FROM RECIPROCAL OF DEGREES OF FREEDOM RDF, RESIDUAL SUM OF SQUARES 
C IN D, AND EMPIRICAL EQUATION FOR STUDENT T 
C 

RDF=l./FLOAT(N-JDEG) 
FAC=D(JDEG)*RDF~(1,96+2,36wRDFt3.2~RDFww2t5.2~RDF~~3.84)~~2 
MDEG=2*JDEG-1 
DO 70 J=l,MDEG 

70 USQCO(J)=UVCO(J)*FAC 
WRITE (6,260) 
WRITE (6,250) (USQCO(J),J=l,MDE61 

C 
C TABULATE DATA VALUES, DEVIATIONS AND UNCERTAINTY 
C 

WRITE (6,270) 
C 

DO 100 I=l,N 
YPOL=O,ODO 
DO 80 J=l,JDEG 

JJ=JDEGtl-J 
80 YPOL=YPOLtX(I~+POLCO(JJI 

USQ=O,ODO 
DO 90 J=l,MDEG 

JJ=MDEG+l-J 
90 USQ=USQ*X(I)+USQCO(JJ1 

YDEV=Y (I)-YPOL 
RUNC=O,O 
IF (USQ.GT.O.ODO) RUNC=DSQRT(USQ) 
xX=x(I) 
YY=Y(I) 
YP=YPOL 

100 WRITE (6,280) XX,YY,YP,YDEV,RUNC 
GO TO 50 

110 WRIT'E (6,290) 
STOP 
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ISO7066-2:1966(E) 

ORTHOGONAL POLYNQMIAL COMPUTER PROGRAM (CONTINUED) 

C 
120 FORMAT (lH0,32HENTER MAXIMUM DEGREE OF FIT .(12)) 
130 FORMAT (121 
140 FORMAT (33H ENTER NUMBER OF DATA VALUES (13)) 
150 FORMAT (13) 
160 FORMAT (21H TOO MANY DATA POINTS) 
170 FORMAT (7H ENTER ,13,29H PAIRS OF (X,Y) VALUES (2FlO)) 
180 FORMAT (2F10.5) 
190 FORMAT (lHO,37HDEGREE RESIDUAL STANDARD PERCENTAGE/12X,27HDEVIAT 

1ION SIGNIFICANCE) 
200 FORMAT (15,618.6,Fl3.2) 
210 FORMAT (18H SUGGESTED DEGREE-,12) 
220 FORMAT (lHO,32HENTER DEGREE (121, OR -1 TO EXIT1 
230 FORMAT (16H DEGREE TOO HIGH) 
240 FORMAT (59H POLYNOMIAL COEFFICIENTS, LISTED IN I'NCREASING POWERS 0 

1F X-1 
250 FORMAT (4616.8) 
260 FORMAT (47H COEFFICIENTS FOR SQUARE OF RANDOM UNCERTAINTY-) 
270 FORMAT (1HO,lOX,4HDATA,lOX,36HPOLYNOMIAL RESIDUAL RANDOtl UNC 

1lbOH X Y Y Y - Y(POL) OF Y(POL)) 
280 FORMAT (4612,5,012,4) 
290 FORMAT (lHO,l'IH END OF EXECUTION) 

C 
END 

REAL FUNCTION PCTSQ (TSQ,NU) 
C 

E 
TSQ CONTAINS THE RATIO OF THE SQUARE OF A COEFFICIENT TO ITS 
VARIANCE (CORRESPONDING TO THE SQUARE OF THE STUDENT T): PCTSQ 

C IS THE PERCENTAGE LEVEL AT WHICH THE COEFFICIENT CAN BE SAID TO 
C DIFFER SIGNIFICANTLY FROM ZERO, 
C 

ANU=FLOAT(NU) 
X=ANU/tTSQ+ANU) 
RTX=SQRT(X) 
NUODD=NU-NU/2*2 
SUtl=O, 
IF (NU.EQ.1) GO TO 30 
TERM=l, 
DO 10 J=2,NU,2 

IF (SUM,GT,TERM+l,ElO) GO TO 20 
SUM=SUMtTERtl 

10 TERM=TERM*Xw(l.-l,/FLOAT(JtNUODD)) 
20 SUM=SUMwSQRT(l,-X1 
30 IF (NUODDoGT.0) SUM=O,636619772*(ACOS(RTX)+SUtl*RTX) 

PCTSQ=lOO, *SUM 
RETURN 

C 
END 
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ORTHOGONAL POLYNOMIAL COMPUTER PROGRAM (CONTINUED) 

SUBROUTINE ORFIT (X,Y,A,B,G,D,E,N,MAX) 
C 
C METHOD FROM G.E.FORSYTHE, 'GENERATION AND USE OF ORTHOGONAL 
C POLYNOMIALS FOR DATA FITTING WITH A DIGiTAL COMPUTER', 
C J,S.I.A.H,, VOL 5, 2, JUNE 1957, PP 74-88 
C 

DOUBLE PRECISION X,Y,P,A,B,G,D,E,Q,R,S,SA,SB,SB,SD,RN 
DIMENSION X(N), Y(N), P(lOO), Q(lOO), R(100) 

G(MAX1, D(MAX), E(MAX) DIMENSION AM?, B(ilAX), 
C 

SA=O.ODO 
SG=O.ODO 
SD=O.ODO 
RN=l,ODO/N 
DO 10 I=l,N 

-P(I)=l.ODO 
Q(I)=O.ODO 
SA=SAtX(I) 
SG=SGtY (I) 

10 SD=SDtY (I)*Y (11 
C 

A(l)=SA*RN 
B(l)=O,ODO 
G(l)=SG*RN 
D(l)=SD-G(l)*SG 
E(l)=l,OD20 
IF (D(l),GT.O.ODO) E(l)=G 
SD=N 
J=l 

C 
20 IF (J.GE,MAX) RETURN 

SA=O,ODO 
SB=O.ODO 
SG=O.ODO 
DO 30 I=l,N 

R(Il=Q(I) 
Q(I)=P(I) 

(l)*SG*(N-l)/D( 1) 

P(I)=(X(I)-A(J))*Q(I)-B(J)*R(I) 
S=P(I)*P(II 
SA=SAtX(I)wS 
SB-SBtS 

30 SG=SG+Y(I)rP(I) 
C 

J=Jtl 
A(J)=SAISB 
B(J)=SB/SD 
G(J)=SG/SB 
D(J)=D(J-I)-G(J)*G(J)*SB 
E(J)=l.OD20 
IF (D(J).GT,O.ODOl E(J)=G(J)wSG*(N-J)/D(J) 
SD=SB 
GO TO 20 

C 
END 

15 Copyright International Organization for Standardization 
Provided by IHS under license with ISO 
No reproduction or networking permitted without license from IHS

--`,``,,,```,,`````````,``````,`-`-`,,`,,`,`,,`---



ISO7666-2: 1966(E) 

ORTHOGONAL POLYNOMIAL COMPUTER PROGRAM (CONTINUED) 

SUBROUTINE POWSER (A,B,G,MAX,N,COEF,UVCO1 
DOUBLE PRECISION A,B,G,COEF,F,H,UVCO,SCO,VCO 
DIMENSION AtMAX), B(MAX), G(MAX), COEF(MA&), 

C 
C INITIALISE 
C 

DO 10 J=l,MAX 
DO 10 L=J,MAX 

10 F(L,J)=O.ODO 
F(l,l)=l,ODO 
F(l,21=-A(11 
F(2,2)=l,ODO 
K=MAX-1 
IF (K,LT,2) 60 TO 30 

C 

UVCO(151, F(B,BI 

C USING THE RECURRENCE RELATION, COMPUTE THE COEFFICIENTS 
C f(L,JI OF THE J-TH ORTHOGONAL POLYNOMIAL 
C 

DO 20 J-2,K 
H=O,ODO 
JJ=Jtl 
DO 20 L=l,JJ 

F(L,JJ)=H-F(L,J)*A(J)-F(L,J-l)tB(Jl 
20 H=F(L,J) 

C 
C POLYNOMIAL COEFFICIENTS FOR Y 
C 

30 DO 40 L=l,MAX 
COEF(L)=O,ODO 
DO 40 J=L,MAX 

40 COEF(L)=COEF(Ll+F(L,J)tG(J) 
C 
C POLYNOMIAL COEfiICIENTS FOR UNNORMALISED VARIANCE OF Y 
C 

MU=2*MAX-1 
DO 50 L=l,MU 

50 UVCO(L)=O,ODO 
VCO=l,ODO/FLOAT(N) 
uvco(1)=vco 

C 
IF (MAXsLE, 1) RETURN 
DO 70 J=‘L,MAX 

VCO=VCO/B(J) 
M=2*J-1 
DO 70 L=l,M 

SCO=Os ODO 
Kl=l 
IF (L,GT.MAX) Kl=ltL-MAX 
K2=L+l-Kl 
DO 60 K=Kl,KZ 

60 SCO=SCOtF(K,J)*F(L-Ktl,J) 
70 uvco (L) =uvco (L) +SCOtVCO 

c 
RETURN 

C 
END 
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IS0 7066-2 : 1966 (E) 

Annex D 

Examples 

(This annex does not form an integral part of the standard.) 

This annex contains three examples - two on the calibration of flow-meters for use in pipes and one on the calibration of a river 
gauging station using current-meters. 

The data given in tables I,2 or 3 may be used to test the operation of the program listed in annex C, or any other appropriate program. 
The precision with which the results are computed will depend on the method used and on the accuracy of the computer used: the 
results in this annex were obtained using double-precision arithmetic equivalent to 18 decimal digits, 

D.l Example 1: Calibration of a differential pressure flow-meter 

Table 1 lists 12 pairs of data values obtained from the calibration of a differential pressure device. Figure 1 shows the data plotted with 
y as the discharge coefficient and x as the pipe Reynolds number divided by 106. 

To check first that the least-squares methods described in this part of IS0 7066 are appropriate for approximating the functional 
relationship between y and x, it is necessary first to show that the random error in x can be neglected. In this case the methods of 
IS0 5168 give values of approximately 0,001 3 and 0,005 for e&I and e,(x) respectively, so that e,(y) /e,(x) is 0,26. By inspection of 
figure 1, it can be seen that the magnitude of the slope of any fitted curve will not exceed about 0,015, which is less than one-fifth of 
erb) /e,(x), and so the least-squares methods are appropriate. 

Any method described in annex A or annex B may be used to fit the data: they will all give results which are identical apart from the 
rounding error. Using the orthogonal polynomial computer program listed in annex C to fit the data in table 1 up to a maximum degree 
of 5 gives the following output. 

DEGREE RES I Dil4L STPtND4RD ?ZCEYT4GE 
DEVI4TION. SI GNI FI CANCE 

0 .150309-02 100.00 
1 l 126028-02 96.11 
2 l 643462-‘33 99.96 
3 0641446-03 66.60 
4 .673795-03 36.77 
5 .727772-03 1.14. 

SClGGESTED DEGREE- 2 

ENTER DEGaIEE (1211 OR -1 TO EXIT 
> 

NOTE - Some numbers are output by the computer in “scientific notation”; 
“.I50303-02” which is equivalent to 0,150 303 x 10e2 or 0,001 503 03. 

for example, the first residual standard deviation is printed as 

Instead of testing whether or not each new coefficient, as the degree of fit is increased, differs significantly from zero at the 95 % 
confidence level, as described in 5.3, this program prints the percentage significance level at which the coefficient differs from zero, 
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In this example, the improvement obtained between degrees 1 and 2 is highly significant (9996 %), whereas at higher degrees, there 
is no significant improvement, and so the suggested degree 2 is appropriate. Entering the degree 2 to obtain details of the fit gives 

POLYNOMIAL COEFFICIENTS, LISTED IN INCREASING POWERS OF X- 
.?7273?64+000 LLL -.11333161-001 .85781873~002 

COEFFICIENTS FOR SBUARE OF RANDOM UNCERTAINTY- 
.38?7?504-005 -.21527711-004 . 45708054-004 
.128332?9-004 

DATA 
X Y 

.22000 .?7046 

.30800 . 97031 

.35500 .?6?45 

.45000 .?6?8? 

.56200 . ?6?27 

. 65700 . 96841 

. 76800 

.88800 
:?&I?54 97042 

.??800 .?6?11 
1.1480 .97131 
1.2490 ,?7174 
1 .3850 ‘97407 

ENTER DEGREE (12), OR 
>-1 

END OF EXECUTION 
> 

POLYNOMIAL 
Y 

. 97069 

.?7010 

.?6?84 

.96943 

.?6?14 

.?6?07 

. ?6?18 

.?6?54 

. ?7008 

.?7116 

. 97211 

.97365 

-1' TO EXIT 

RESIDUAL 
Y - Y(POL) 
-.225?5-03 

-21303-03 
-. 38684-03 

.4,$325-03 

. 12785-03 
-.65?44-03 

m 12394-02 
I 13637-05 

-.?7383-03 
. 14818-03 

-.3&,514-03 
.41816-03 

-.40537128-004 

RANDOM 
UNCERTAINTY 

.?862-03 
-7311-03 
.&373-03 
.5465-03 
.5663-03 
.6157-03 
I 6529-03 
.6471-03 
.6126-03 
-6180-03 
-7493-03 
I 1134-02 

In the print-out, the polynomial coefficients are listed in sequence, and so the expression for the curve is 

u^ = 0,97274 - 0,011 22x + 0,008578x2 

The five “coefficients for square of random uncertainty” listed in the fifth and sixth lines define the fourth-degree polynomial which 
represents the square of the random uncertainty e,@i as a function of x. It can be seen in the print-out and in figure 1, that the random 
uncertainty varies between 0,000 55 and 0,000 65 for most of the range, reaching up to 0,001 13 at the extremes. If the range of the 
calibration data is wider than the range over which the calibration is required, then the increase in random uncertainty at the extremes 
will not be important; for example, it can be seen from the print-out that the random uncertainty is within 0,000 75 over the range of x 
values from 0,30 to 1,25. 

D-2 Example 2: Calibration of a turbine meter 

In the previous example, the choice of the best degree of fit was straightforward since the significance of the coefficients fell abruptly 
from 9996 % to values much less than 95 %. In general, however, the situation is less clear-cut. Table 2 lists calibration data for a tur- 
bine meter; x is the frequency (in hertz) and y is the meter coefficient (in pulses per cubic metre). 
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IS0 7066-2 : 1966 (E) 

When the orthogonal polynomial computer program is used to process these data, the preliminary fitting process gives 

DEGREE RES I D’14L STANDARD PERCENTAGE 
DEVIATION SIGNIFICANCE 

0 1.05171 100.00 
1 .929832 98.58 
2 l 532487 100.00 
3 l 448948 99.30 

4 .455227 50.25 
5 .416441 95.13 
6 .438974 11.37 

SUGGESTED DEGREE- 5 

The degree 5 fit is just significant at the 95 % confidence level, and so this degree is suggested. If the data had been slightly different, 
then the percentage significance might well have been less than 95 % for degree 5, and degree 3 would have been suggested. In this 
situation, it is more difficult to choose the optimum degree. The fifth-degree polynomial gives a better fit to the data, but it is not cer- 
tain that such a high-degree polynomial will provide a better approximation to the true underlying functional relationship between y 
and x. 

In the end, the choice of degree is a matter of judgement. It is easiest to apply judgement if each curve is plotted out, together with its 
confidence limits and the data points. Figure 2 and figure 3 show the effect of fitting the data with a degree 3 curve and a degree 5 
curve respectively. 

From experience, it is known that the turbine meter coefficient tends to decrease fairly steeply below a certain flow-rate: higher in the 
range, the trend is level. The degree 3 curve follows this pattern better, and it is simpler, so it is the better choice. 

D.3 Example 3: Calibration of a stream flow station 

Table 3 lists 44 pairs of data from a stream flow station giving stage values and corresponding current-meter discharge values. 

The computer program in annex C gives the following output when the data in table 3 are fitted up to a maximum degree of 5. 

DEGREE RES I DiJ4L STAND4RD ?E!ICEI\ITAGE 
DEVIATION S I GN I FI C4NCE 

0 15107.8 100.00 
1 59x7.44 100*00 
2 1539.71 100.00 
3 534.002 100.00 
4 503.890 98*04 
S 499.663 79 l 50 

SlJGGESTED DEGREE- 4 

ENTER DEGREE (12)s OR -1 TO EXI7 
> 

Entering the degree 4 to obtain details of the fit gives the following output: 

> 4 
POLYNOMIAL COEFFICIENTSI LISTED IN I?JCREASI?JG POKERS OF X- 

.48004925+004 -.37421273+004 .10730031+004 -.12228391+003 

.6079344S+OOl 
COEFFI CI ENTS FOR SQUAI1E OF RANDOM UNCERTAINTY- 

.49518928+009 -.86129348+qO9 l 3 56898B 7+009 -.83190923+908 
l 11933195+008 -.10799425+007 l 6009 1427+OOS -. 18852659+QO4 
.25524470+002 
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4,?500 
5,050o 
501500 

2 % 
5: 4700 
5.5000 
5.5800 
5.6100 
5.7300 
5.8100 

6,900O 

;# $0,; 
7: go00 
7.5000 
7,bOOO 

EZ 
7: 9000 
709000 
8.0000 

%“K 
10: 500 

k% 
12: 100 
12,600 
15.200 
13.500 
13,500 
13.800 

DATA 

13;*. 0 

E*8 
;:;;I; 

1750: 0 

t Ki 
2000: 0 

%2 ii 
il*bO: 0 
2270.0 
2500.0 
2750.0 
2950,O 
3300.0 
3410.0 
3800.0 
3810.0 
4800.0 
4500,o 
5100.0 
5300.0 
5220.0 
5400.0 
6100.0 
6500.0 
6100.0 
6900.0 
7350.0 
8900.0 
10100. 
12200. 
14000. 
14600, 
22500. 
28700, 
31500. 
36000, 

%:i* 
51000: 
56000. 

EII’TER DEGREE (12) I OR 
>-1 

END OF EXECUTION 
) 

POLYNOMIAL 

1311 5 
1386: b 
1472.2 
1560.9 
1615.5 
1699.5 
1865.0 
1895.1 
1976.9 
2008.1 
2135.9 
2223.7 
2325.2 
2561.2 
2748.3 
3080.8 
3367.4 
3674.3 
4003.4 
4177,o 
4357,O 
473789 
493983 
5148.6 
5366.1 
559282 
5592.2 
5827.3 
6071.9 
6866.9 

10762, 
11210. 
13735, 
16143, 
23096, 
28061, 
30302. 
36614, 
45682. 
50898, 
50898, 
56613, 

-1 TO EXIT 

NOTE - The number of zeros does not reflect the precision of the test data. 

The expression for the curve is 

u^ = 4800 - 3742x -I- 1073,0x2 - 122,289 + 6,079x4 

RESIDUAL 
Y - Y(POL) 

28,502 
63,402 
27,774 
39,132 
34.496 
50,491 

-44.990 
-5.1311 

23,091 
1.8932 

-35.856 
-63.710 
-55.194 
-61.201 

1.7459 
-130.84 
-67,434 
-264.25 
-203.35 
-366.97 

442.95 
-237.86 

160‘70 
151.43 

-146.06 
-192.17 

507.83 
672.69 
28,104 
33,126 

-102.60 
123879 

-662.29 
990.24 
265.28 

-1542. b 
-596.44 

639.21 
1198.1 

-614.14 
-681.72 

1101.9 
101.88 

-612,90 

RANDOM UNC 
OF Y(POL) 

481.8 
459.1 
392.1 
338. b 
313.1 
284,2 
256,9 
255.1 
253.8 
254.3 
259.8 
265.2 
271.6 
283.2 
287. b 
286,2 
278.5 

Z’i 
250: 6 
246.3 
24103 
241.0 
242.3 
245.1 
249.4 

;5:* i 
261:2 
284.3 
300.4 
328.8 
351.0 
353.8 
363.9 
375.4 
435.5 
460.2 
473.1 
452.3 
41081 
483.3 
483.3 
694.9 

The fitted curve, together with its random uncertainty limits at the 95 % confidence level, is shown in figure 4. 

NOTE - Normal plotting practice requires dependent variables to be on the vertical axis but it is normal practice in hydrology to produce the plot as 
shown in figure 4. 
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IS0 7066-Z : 1988 (E) 

Table 1 - Calibration data for a differential pressure flow-meter 

Reynolds number (X 103 Discharge coefficient 

0.220 0,970 46 
0,308 0,970 31 

0,= 0,969 45 
0,450 0,969 89 

0,562 0,969 27 
0,657 0,968 41 

0,769 0,97042 

0,888 0,969 54 
0,998 0,969 11 
1,148 0,971 31 
1,249 0,971 74 
1.385 0,974 07 

Table 2 - Calibration data for a turbine meter 

Frequency 
HZ 

Meter coefficient 
pulse/m3 

28,24 573,76 
32,12 574,71 
35,58 575,14 
40,16 574,&l 

@,48 575,74 

48,82 576,20 
52,06 576,50 
54,36 576,44 

w= 575,61 
56,48 576,40 
58,18 575,54 

=G@ 576,67 
60,92 575.94 
64,72 575,41 
67,74 575,Ol 
71,72 574,51 
76,52 574.88 

=sJ 574,42 

83.06 574,05 

wm 574,88 
91,94 573,69 
96,94l 573,25 

=wfJ 573,07 
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Table 3 - Calibration data for a stream flow station 

Stage 
m 

Discharge 
mVs 

4,92 1390 
4,95 1450 
5,05 1500 

5,15 1600 
5,21 1650 

530 1750 
5,47 1820 

59 1880 

5,58 2000 
5,61 2010 
5,73 2 100 
5,81 2160 

5,90 2 270 
6,lO 2600 
6,25 2750 

6,50 2950 
6,70 3300 

WC’ 3410 
7,lO 3800 
7,20 3810 

7,30 4800 

7,50 4500 

7,60 5100 
7,70 5300 

7,80 5220 

7,90 5400 

7,90 6100 

WQ 6500 
8,lO 6100 

EM0 6900 

WI 7350 

9,w 8900 

930 IO 100 

9,6fJ 12200 
10,lO 14 ooo 
1030 14600 
11&l 22500 
11,80 28700 
12,lO 31 500 
12,60 36ooo 
13,20 45aOO 
13,50 52 Wil 
139 51 ooo 
13,80 so00 
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Annex E 

Finite-difference method 

(This annex does not form an integral part of the standard.) 

When a computer is not available and the x values are uniformly spaced, a finite-difference table may be used to provide a quick 
indication of what degree of fit may be appropriate to represent the data. The coefficients of a polynomial representing the data may 
also be calculated, although this will not be the least-squares polynomial. Calculation of uncertainty using this method is beyond the 
scope of this part of IS0 7066. 

The finite-difference table is constructed as shown in the example below. First, second and third differences, A(l), A(*) and A a, for a 
set of n values (Xi, vi), are given by 

A/” = yi+l - yi for i = 1 to n - 1 

A/*) = A\$ _ A/l) fori = 1 to n - 2 

,i(3) = A/:), _ Ai(*) for i = 1 to n - 3 

The values obtained are given in table 4. 

The arithmetical mean value for each column of figures E, z d(l), z(*) and i(3)) is given at the foot of table 4. 

Table 4 - Finite-difference table 

X Y A”’ 4’2’ 4'3' 

0,06 3622 
40 

0,07 3662 -15 
25 28 

0.08 3687 14 
39 -28 

0,09 3726 -14 
25 4 

0,lO 3751 -10 
15 20 

0.11 3766 10 
25 -25 

0,12 3791 -15 
10 18 

0.13 3 801 3 
13 -19 

0,14 3814 -16 
-3 23 

0.15 3811 7 
4 -16 

0,16 3815 -9 
-5 8 

0,17 3 810 -1 
-6 -4 

0,18 3804 -5 
-11 4 

0,19 3793 -1 
-12 -10 

0,20 3781 -11 
-23 7 

0,21 3758 -4 
-27 6 

022 3731 2 
-25 

0,23 3706 

xc ji= $1' = p.) = ;r(3l = 

0,145 3 757,17 4,9412 -4,0625 1,133 3 
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IS0 7056-2 : 1988 (E) 

In table 4, the A(l) column shows a clear trend, from positive to negative. In the A (*I column, although there are significant fluctua- 
tions, the average of any three or four consecutive values is never very different from the mean value for the column of -4,062 5. In 
the AI31 column, the fluctuations are larger, but negative and positive numbers are generally balanced, and no clear trend away from 
zero is discernible. In this case, because the third differences are fluctuating about a value close to zero, a polynomial of degree 2 is 
appropriate. 

The coefficients of the degree 2 polynomial can be calculated from 

bo=y+ 
(!I* - I) la(*) if(l) x + a,,-* -- - 

24 dx wx* 

~(2)~ 
b,=$!?-- 

x dx* 

$2, 
b2 = - 

ux* 

where d, is the difference between consecutive x values. 

The polynomial is then 

y^ = 3 313,12 t 6 364,74x - 20 312,5x* 

For comparison, the least-squares polynomial for the same set of data is 

j = 3 306,97 -I- 6 464,63x - 20 663,7x* 

In the case of data for which the second differences fluctuate randomly about zero, a linear expression may be used; the coefficients 
are then 

a(lly 
bo=~------ 

4 

a(l) 
b, = d 

X 

The finite-difference method works best with data in which the random scatter is relatively small. 

UDC 581.121.87 : 532.575 

Descriptors: flow measurement, liquid flow, calibration, flow rate, error analysis. 

Price based on 28 pages 
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