INTERNATIONAL STANDARD

ISO 7005-3

First edition 1988-02-15

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ORGANISATION INTERNATIONALE DE NORMALISATION МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ

Metallic flanges -

Part 3:

Copper alloy and composite flanges

Brides métalliques -

Partie 3: Brides en alliages de cuivre et brides composites

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 7005-3 was prepared by Technical Committee ISO/TC 5, Ferrous metal pipes and metallic fittings.

Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies its latest edition, unless otherwise stated.

Cc	ontents	Page
0	Introduction	1
1	Scope and field of application	1
2	Definitions and designation	2
3	Pressure/temperature (p/T) ratings	2
4	Materials	2
5	Dimensions	3
6	Joint facings and surface finish	3
7	Drilling and spot-facing	3
8	Tolerances	3
9	Marking	4
10	Inspection and test	4
11	Information to be supplied by the purchaser	4
12	Limitations for flanges attached by soft solder or silver brazing	22
Bik	oliography	25
An	nex	
Αp	plication and installation	26

Metallic flanges —

Part 3:

Copper alloy and composite flanges

0 Introduction

Various flange systems based on differing design criteria have been in use throughout the world for many years. Given the increasing difficulties arising from such a situation, this International Standard has been based on a single series of metallic flanges. ISO 7005 will be published in four parts as follows:

Part 1: Steel flanges

Part 2: Cast iron flanges

Part 3: Copper alloy and composite flanges

Part 4: Aluminium and aluminium alloy flanges

This part of ISO 7005 is based on the American and European copper alloy flange systems which have been combined to produce one International Standard with some changes to the dimensions specified in the two systems.

The flanges specified in this part of ISO 7005 are intended, in general, for use with copper or copper alloy tubes and pipework system components. Integral flanges are also intended for use with steel and cast iron pipework system components.

In the American system, flanges are designated by a Class rating but in this part of ISO 7005 the relevant Class ratings are designated by nominal pressure (PN) ratings.

The equivalent designations are as follows:

Class 150: ISO PN20 Class 300: ISO PN50

The ratings for ISO PN20 and ISO PN50 flanges are those based on American standards, established for use in copper alloy pipework systems. The ratings used in the European system remain as ISO PN6, ISO PN10, ISO PN16, ISO PN25 and ISO PN40.

In this part of ISO 7005, ISO copper alloys, in wrought and cast forms, have been specified where they are comparable with the American and European materials. In addition, an American specification has been retained for a ferrous backing flange

material and work is proceeding within ISO to prepare steel material specifications suitable for flange applications.

Flange details in all four parts of ISO 7005 are such that flanges having the same PN and nominal size (DN) values and compatible flange facings will mate together.

Users of this part of ISO 7005 should satisfy themselves that the flanges comply with any statutory requirements.

1 Scope and field of application

This part of ISO 7005 for a single system of flanges specifies requirements for circular copper alloy and composite flanges in the following nominal pressure ratings:

Series 1*	Series 2*
ISO PN10	ISO PN6
ISO PN16	ISO PN25
ISO PN20	ISO PN40
ISO DNEO	

Attention is drawn to the need to refer to the pressure/temperature (p/T) ratings in tables 10, 10a), 10b) and 10c) for the maximum permissible working pressures and temperatures, particularly for ISO PN20 and ISO PN50 flanges and for ISO PN6, ISO PN10, ISO PN16 and ISO PN25 flanges attached by soft solder or silver brazing.

This part of ISO 7005 specifies the types of flanges and their facings, dimensions, tolerances, bolt sizes (including copper alloy), flange face surface finish, marking, testing, inspection and materials.

NOTES

- 1 Dimensions of gaskets will be the subject of a future International Standard.
- 2 For guidance, information on the application and installation of flanges is given in the annex, which does not form an integral part of this part of ISO 7005.

^{*} Series 1 ratings are the basic ratings; series 2 ratings have limited application.

2 Definitions and designation

2.1 Definitions

2.1.1 nominal size (DN): A numerical designation of size which is common to all components in a piping system other than components designated by outside diameters or by thread size. It is a convenient round number for reference purposes and is only loosely related to manufacturing dimensions.

NOTES

- 1 Nominal size is designated by "DN" followed by the appropriate number.
- 2 This definition is in accordance with that given in ISO 6708.
- **2.1.2 nominal pressure (PN):** A numerical designation which is a convenient rounded number for reference purposes.

All equipment of the same nominal size (DN) designated by the same PN number shall have compatible mating dimensions.

NOTES

- 1 The maximum allowable working pressure depends on materials, design and working temperatures and should be selected from the tables of pressure/temperature ratings given in this part of ISO 7005.
- 2 In this part of ISO 7005, nominal pressure is designated by the letters "ISO PN" followed by the appropriate reference number.
- 3 This definition of nominal pressure is in accordance with that given in ISO 7268.

2.2 Designation of types and facings

Figure 1 shows the basic commonly used flanges identified according to type.

- 01 Plate flange in copper alloy for brazing or welding.
- 02 Loose flange in ferrous material with a plate collar in copper alloy for brazing or welding.
- 04 Loose flange in ferrous material with a welding neck collar in copper alloy for welding.
- 05 Blank flange in copper alloy or in ferrous material clad with the jointing face in copper alloy.
- 07 Loose flange in ferrous material with a slip-on collar in copper alloy for soft soldering, brazing or welding.
- 11 Welding neck flange in copper alloy.
- 12 Hubbed slip-on flange in copper alloy for soft soldering, brazing or welding.
- 14 Hubbed slip-on flange in copper alloy for soft soldering, brazing or welding and supplied with tube-stops, the dimensions and locations of which shall be at the discretion of the manufacturer or as specified by the purchaser. In addition, integral grooves for preplaced soft-solder or brazing alloy rings may be machined in the sockets, the dimensions and locations of which shall be at the discretion of the manufacturer or as specified by the purchaser.
- 21 Integral flange in copper alloy as part of some other equipment or component.

3 Pressure/temperature (p/T) ratings

3.1 General

The pressure/temperature ratings of the materials specified in 4.1 shall be the maximum allowable non-shock working pressures at the temperatures given in tables 10, 10a), 10b) and 10c), as appropriate. Linear interpolation is permitted for intermediate temperatures.

3.2 Rating of flanged joints

Where two flanges in a flanged joint do not have the same pressure/temperature rating, the rating of the joint at any temperature shall not exceed the lower of the two flange ratings at that temperature.

3.3 Temperature

NOTE — The temperature shown for a corresponding pressure rating is considered to be the same as that of the contained fluid. Use of a pressure rating corresponding to a temperature other than that of the contained fluid is the responsibility of the user, subject to the requirements of any applicable code or regulation.

4 Materials

4.1 Range of materials

Flanges shall be manufactured from the materials specified in tables 11 and 11a) as appropriate.

NOTES

- 1 Each national standards organization has the responsibility of determining the national materials comparable with the materials specified in this part of ISO 7005.
- 2 Where there is an appropriate application standard, it is the responsibility of the purchaser to ensure compliance with the requirements of that standard.

4.2 Gaskets

The various types, dimensions and materials used for gaskets are not within the scope of this part of ISO 7005.

4.3 Bolting

The materials of the bolting shall be chosen by the user according to the pressure, flange material and the selected gasket so that the flanged joint remains tight under the expected operating conditions.

NOTES

- 1 For the purposes of this part of ISO 7005, either metric or inch bolting may be used for ISO PN20 and ISO PN50 flanges in conjunction with gaskets manufactured from sheet materials.
- 2 For flange types 01, 05 (when it is copper alloy only), 11, 12, 14 and 21, where copper alloy bolting is used, the recommended bolting materials are ISO 428 I/28A or I/28B for temperatures up to and including 120 °C. (See table 11 for an explanation of the abbrevlated alloy designations.)
- 3 For flange types 02, 04, 05 (when it is ferrous with copper alloy cladding) and 07, ferrous bolting should be used and reference should be made to ISO 7005-1.

5 Dimensions

5.1 Range of nominal sizes

The range of nominal sizes applicable to each flange type and to each pressure rating shall be as specified in table 2.

NOTE — The sizes of copper and copper alloy tubes are designated by reference to the outside diameter in millimetres.

5.2 Dimensional details

Dimensions of flanges shall be in accordance with the following tables, as appropriate:

table 3 for ISO PN6 flanges

table 4 for ISO PN10 flanges

table 5 for ISO PN16 flanges

table 6 for ISO PN20 flanges

table 7 for ISO PN25 flanges

table 8 for ISO PN40 flanges

table 9 for ISO PN50 flanges

NOTES

- 1 The bore sizes of type 21 flanges are usually equal to the nominal size of the pipe, valve or fitting of which they form a part and the actual bore sizes are usually given in the appropriate product standard.
- 2 Where type 07, 12 and 14 flanges are for use with soft soldering techniques only, then reference should be made to ISO 2016 for socket depths.
- 3 For type 04 and 11 flanges the recommended weld preparation angle is $37.5^{\circ}\pm2.5^{\circ}$ when butt welding to pipe with thicknesses of 3 mm and greater.

6 Joint facings and surface finish

6.1 Types 01, 11, 12, 14 and 21 flanges shall be supplied with flat faces for use with full-face gaskets.

NOTES

- 1 Notes at the foot of table 3 (ISO PN6), table 4 (ISO PN10), table 5 (ISO PN16) and table 7 (ISO PN25) indicate which sizes may be used in conjunction with inside bolt circle gaskets and type 02, 04, 05 and 07 flances.
- 2 Where type 21 flanges in table 3 (ISO PN6), table 4 (ISO PN10), table 5 (ISO PN16) and table 7 (ISO PN25) in sizes up to and including DN 100 are required for bolting to flanges with raised faces, then the appropriate flange thickness (C_1^*) given in table 8 (ISO PN40) applies.
- **6.2** Where type 01, 11, 12 and 14 flanges in sizes above DN 50, and type 21 flanges in sizes above DN 100 are required to be bolted to existing raised face type steel or cast iron flanges, then the raised faces shall be removed.
- **6.3** Where type 01, 11, 12, 14 and 21 flanges for ISO PN20 and ISO PN50 are required to be bolted to existing raised face type steel or cast iron flanges, then the raised faces on all sizes shall be removed.

6.4 All flange jointing faces shall be finished in accordance with table 1. The faces shall be compared by visual or tactile means with reference specimens which conform to the R_a and R_7 values given in table 1.

NOTES

- 1 It is not intended that instrument measurements are taken on the flange faces, and the $R_{\rm a}$ and $R_{\rm z}$ values as defined in ISO 468 relate to the reference specimens.
- 2 Other finishes may be agreed between the manufacturer and purchaser

Table 1 — Surface finish of flanges

Values in micrometres

Manufacturing process	R _a	R_{z}
Turning ¹⁾	3,2 to 12,5	12,5 to 50
Other ²⁾	3,2 to 6,3	12,5 to 25

- 1) "Turning" covers any method of machine operation producing either serrated concentric or serrated spiral grooves.
- 2) Processes other than turning are permissible provided that they give a surface finish in compliance with the $R_{\rm a}$ and $R_{\rm z}$ values specified.
- **6.5** Flange rims are permitted to be machined or left unmachined.
- **6.6** Composite flanges shall be machine finished, or have a surface equivalent to that obtained by machining on all locating diameters, bores and abutment faces. The abutment faces shall be flat and square to the bore axis.

7 Drilling and spot-facing

- **7.1** Unless otherwise specified by the purchaser, all bolt holes shall be equally spaced on the pitch circle diameter, K. In the case of integral flanges, the bolt holes shall be positioned off-centre.
- **7.2** Bearing surfaces for the nuts shall be parallel to the flange jointing face within 1° and shall be capable of accepting a normal series washer complying with the requirements of ISO 887.
- **7.3** Any back-facing or spot-facing required to accomplish this shall not reduce the flange thickness to less than the minimum specified.
- **7.4** When a bossed or integral flange is back-faced, it is permissible for the fillet to be reduced but the fillet shall not be eliminated entirely.

8 Tolerances

Flanges shall be manufactured to comply with the tolerances specified in table 12.

ISO 7005-3: 1988 (E)

9 Marking

Flanges other than integral shall be clearly marked as follows:

- a) the nominal size (DN) and the nominal pressure rating (ISO PN);
- b) material designation (for copper alloy and ferrous material designations, see table 11);
- c) manufacturer's name or trademark.

Examples:

Copper alloy component: **DN 300 ISO PN20 I/29A XXXX** (e.g. for CuNi10Fe1Mn)

Ferrous component:
DN 300 ISO PN20 A105 XXXX

Copper alloy flanges shall be clearly and permanently marked by vibro or electrolytic etching or by other suitable means. Stamping with steel stamps shall not be used. The manufacturer's name or trademark together with other relevant marking may be produced during casting or forging operations.

NOTE — Ferrous flanges may be marked round the rim of the flange using round-nosed steel stamps.

10 Inspection and test

ISO PN20 and ISO PN50 flanges specified are designed to be interchangeable with, but not identical to, comparable flanges to ANSI B16.24.

NOTES

- 1 It is recommended that these flanges be accepted by inspectors as complying with the dimensions specified in ANSI B16.24.
- 2 This part of ISO 7005 does not make provision for routine inspection or pressure testing of separate flanges. However, flanges may be required to be pressure tested after attachment to a pipe or other equipment. The test pressure is then dependent on the requirements of the appropriate standard or code of practice in accordance with which the equipment has been manufactured (see the annex).

11 Information to be supplied by the purchaser

The following information should be supplied by the purchaser in the enquiry and/or order:

- a) number of this part of ISO 7005, i.e. ISO 7005-3;
- b) nominal size DN followed by the appropriate number;
- c) nominal pressure ISO PN followed by the appropriate number;
- d) flange type number (and whether thicker flanges are required; see 6.1);
- e) material designations (for both the copper alloy and the ferrous component, where applicable);
- f) any protective coating (galvanizing, painting) of the ferrous flanges, subject to agreement between the purchaser and manufacturer;
- g) whether flange rims are to be machined or unmachined (see 6.5);
- h) the bore of the flange and/or collar where flanges can be made to suit more than one tube diameter (see tables 3 to 9).

Type 01Plate flange for brazing or welding

Type 02

Loose flange with plate collar for brazing or welding

Type 04
Loose flange with welding neck collar for welding

Type 05 Blank flange

Type 07
Loose flange with slip-on collar for soft soldering, brazing, or welding

Type 11 Welding neck flange

Type 12
Hubbed slip-on flange for soft soldering,
brazing or welding

Type 14
Hubbed slip-on flange for soft soldering,
brazing or welding with tube-stops

Type 21 Integral flange

Figure 1 — Types of flanges (concluded)

Table 2 - Synoptic table for copper alloy and composite flanges

				_															,	_												
Type No.		Table	DN ISO PN	10	15	20	22	32	9	20	92	80	100	125	150	175	200	250	300	350	400	450	200	009	700	800	006	1 000	1 200	1 400	1 600	1 800
12.223		3	6						_	\equiv															_		-	_	_		Н	
		4	10						_	=	_	\equiv													二	_						
		5	16												_													-			H	$\overline{}$
 -		6	20	-	_				_	=							_	\vdash							-	\vdash	_	-	_	_		
			25	П																						Г		-			\Box	
200			40					-													-			-	-	H	\vdash					_
222	01		50				_				\vdash				-									\vdash		lТ	<u> </u>		-			
P2723		Ħ	6								┢		_										_						_		\vdash	\dashv
		_	10								-													-		\vdash	-		_		\vdash	\dashv
			14				\vdash			-	 													_		├		<u> </u>				
- -			20	<u> </u>					_	\vdash			_		_								-		_	\vdash	-			┢		_
		7	25																					\vdash		┢					\vdash	
		8	40																					_			\vdash				\vdash	
777	02	۳	50	 			\vdash	\vdash	ŀ۰	-				\vdash		\vdash		\vdash	H		-			-		┢╌					\vdash	_
P27271		3	6																	_								-	-		Н	_
		4	10				\sqsubseteq																							-	\vdash	-
		5	16	<u> </u>		<u> </u>					<u> </u>													 		1	H		<u> </u>	Н	Н	-
		6	20	L			<u> </u>				\vdash													<u></u>						\vdash	$\vdash \vdash$	
77777		7	25	Ħ		=		<u> </u>	L									-							-	\vdash	 				$\vdash \vdash$	
		Ė	40		П		<u> </u>				\vdash							-		-	-		\vdash		 	\vdash					H	-
222	04	9	50	E				二	ᆮ	二	—				<u> </u>										\vdash	-			\vdash		$\vdash \vdash$	-
[7773]		3	6	Ħ		=							=																=	=	\blacksquare	彐
		4	10				_								_										_				=		П	
		5	16	F									_						\equiv			_				T	_					
<u>, 1</u>		6	20	-		_											_		_							<u> </u>						
		7	25	_							_	_						-								T -			_			
		8	40		H						_	_							—	_												
	05	9	50			_	_	Ε.				\vdash	_																		П	\Box
222		3	6	-						_				F												_	-	=	=		Ħ	\exists
5222		4	10	\vdash			_																				-			_	\blacksquare	=
X		5	16																												П	
 		6	20	\vdash		_					-																					
3233			25	L																												
			40	L																						Ĺ						
	07	9	50							_								<u> </u>														
2222			6	_				<u> </u>			<u> </u>						_	<u> </u>								<u>L</u>						
<u> </u>			10	<u> </u>				ļ	<u> </u>		<u> </u>							L					_	ļ		_					Ш	Ш
		<u> </u>	16	┡		_	ļ	<u> </u>	ļ	_	<u> </u>									_			<u> </u>			ļ			<u> </u>			Щ
<u> </u>		6	20						-		<u> </u>				_								_			ļ		<u> </u>			Ш	
		<u></u>	25	-		<u> </u>	 	<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>		 		<u> </u>	<u> </u>			\vdash	\vdash	<u> </u>	_				\sqcup	
<u> </u>	11	<u> </u>	40	1	Н	-	├	<u> </u>	 	\vdash	<u> </u>					 	_	\vdash		<u> </u>			<u> </u>	 -		<u> </u>	_	<u> </u>	_	 	\sqcup	
97771		9	50	E				Е				E			Е					F			<u> </u>		1			-	_	_	$\vdash \vdash$	
		<u>3</u>	6 10	E								Ē						E					E	\vdash	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	\vdash	\vdash	-
		5	16															E	F						F		-		-		$\vdash \vdash$	-
<u> </u>		6	20																								L		<u> </u>	\vdash	Н	-
		7	25 25																\vdash	-	\vdash	H	一	\vdash	 	 	 		-	 		
		<u> </u>	40	\vdash		Ι .		i			<u> </u>		\vdash			<u> </u>	Г			\vdash			 	 		\vdash	\vdash			\vdash	H	
222	12	9	50	匚				<u> </u>								=					\sqsubseteq				\vdash	 			-			-
<i>E222</i> 3		3	6	\vdash						E					=	=							E	=		<u> </u>			=		〓	=
		4	10	 		_	<u> </u>	\vdash	-	<u> </u>	<u> </u>	=	_			<u> </u>	F									F					口	二
		5	16	F			Ë					F		Ë		!		\vdash				_									\vdash	\neg
 -		6	20	E		E	E	E			_				\vdash	<u> </u>			F		\vdash					<u> </u>				П	П	
1		7	25		E	E	E		Ė			Е																				
1			40		\Box																											
<u> </u>	14	9	50					E		E	E				\sqsubseteq	E	E	E	E													
222		3	6								E	F						E								Е						\equiv
		4	10	-			_									E		E								E	F				\boxminus	\exists
	22	5	16	1		<u> </u>	=	\vdash			=		_													<u>L. </u>	Ĺ				Ш	
' 		6	20	E						<u> </u>		_		_		E	<u> </u>	_		<u> </u>			<u>L</u> .			_	<u>L</u>	<u> </u>			Ш	
		7	25	\vdash			 								-					-		_				丄	<u> </u>		_		Ш	
	21	8	40	=		F		Ε.		<u> </u>	Ι			<u> </u>	ļ	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>			<u> </u>	_		 	_	<u> </u>			Ш	
	41	9	50		<u> </u>							 		 		t	\vdash	1		L	<u></u>		<u>L</u>	I.	l	1 _		ı				, 1

Table 3 — Dimensions of ISO PN6 flanges

				· -						
	Chamfer		<u>8 p</u>	E			4 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
	Bore of flange		0.07	B ₂	832488388	857	151 178 213 238/296 345 345 345 442 442 480 533	623	743 846	950 1 050 1 262 1 468 1 672 1 876
			40	_	5488488	18 8 E	138 164 200 225 225 330 374 426 465 616	619	721	11111
	or collar		 5 4 5 4	B ₁	7,50 20,03 30,08 30,08 44,6 7,73	76,33 89,13 108,38	133,63 159,63 194,63 220,03 ,137,274,13 385,03 389,13 420,13 468,33 509,13	12	13	916 222 422 622 822
	Bore of flange		00		75 8 2 8 2 4 2 2 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3	=	268 267 27 27 27 27 27 27 27 27 27 27 27 27 27 2	9	~ ∞	000408
ı	Collar or raised face diamete		05 07	D_1	88888888	108 124 144	174 199 229 254 254 363 363 463 568	- 667	- 772 - 878	978 1 295 1 510 1 710 1 918
	Cladding thickness		22		വവവവവവവ	ນູດູດ		ري ا	<u>ا ا</u>	20202020
	Collar flange thickness	ē	04 07 05 04	F	യവവവവവ	999	0 8 8 8 8 5 5 5 5 5 5	4	14 14 15	11111
	20011101111 12110	Flange type	4	S_2	22,55 22,55 23,55	8 4 4 5 2 4	4 4 4 4 0 0 0 0 0 0 τό τό τό τό τό τό	6,5		
	Collar thickness	Flang	2	S _{1min}		2 25 25	0,0,0,0,0,4,4,4,4 run run run run run run run run run run	ស	မ မ	11111
	hub or collar		20	H ₂	5558800	222	228828884	22		868885
	Length through		27 4	H_1	6665555 8844444	17 45 17 50 20 50	325 38 38 38 38 38 38 38 38 38 38 38 38 38	- 6	88	1
			70				235 235 235 242 3386 3386 438 439 530 530 530 530 530 530 530 530 530 530	637	74. 848	948 1 259 1 465 1 873
	Collar diameter		8	N	822228 848 7,	78 110	135 161 196 221 289/275 326 370 421 459	612	713 815	11111
	Neck diameter		27	N ³	528838 <u>2</u>	85 116	155 209 234 234 336 336 442 546	646	748	954 1 054 1 260 1 466 1 672 1 876
	1939msib duH		5 4		22 28 33 24 25 25 26 27	8 4 5 5 5	148 175 235 235 285 386 439 477 530	ı		
	-		01 21 12 14	Ç	000000 <u></u>	25 25 25	88888888888888888888888888888888888888	30	1 1	
	Flange thickness		04 05 01 21 07 12 14	3	555555	544	<u> </u>	98	84	
SE	stlod to exis IsnimoN	•			MMMMM 1010 112 122 123 123 123 123 123 123 123 123	M12 M16 M16	M16 M16 M16 M20 M20 M20 M20 M20 M20	M24	M24 M27	M27 M30 M33 M33 M33
sior	Number				444444	444	8367778888			
men	Diameter of bolt holes			7	<u> </u>	<u>4</u> ∞ ∞	8888888888	26	ਖ਼ਖ਼	888888
Mating dimensions	Diameter of bolt circle			×	02 8 8 8 9 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0	865	220 225 225 230 230 250 250 250 250 250 250 250 250 250 25	705	810 920	1 020 1 340 1 340 1 760 1 970
Mati	Outside diameter of flange		,	D	£885 <u>55</u> 84	160 190 210	240 285 285 285 240 240 258 268 268 268 268 268 268 268 268 268 26	735	860 975	1 075 1 175 1 405 1 830 2 045
	Tube outside diameter			4	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	76,1 88,9 108	133 159 193,7 219,1 267/273 323,9 368 419 457,2 508	610	711 813	914 1 016 1 220 1 420 1 620
	esis lanimol/l			NO	5588888	885	250 250 250 250 250 250 250 250 250 250	00	88	8000000 800000000000000000000000000000

1 For type 21 flanges in sizes up to and including DN 100 and type 12 (and 14) flanges up to and including DN 50 for bolting to flanges with raised faces, the appropriate thickness (C₁*) in table 8 (ISO PN40) shall apply. (See 6.1.)

² Type 21 flanges in sizes DN 125 to DN 1 800 may be used with inside bolt circle gaskets and type 04, 05 and 07 flanges. (See 6.2.)

³ For type 12 and type 14 flanges of all nominal sizes, $\alpha=4^{\rm o}$ max.

⁴ Dimension E is given for information only.

Table 4 — Dimensions of ISO PN10 flanges

	Chamfer		86	E	$\alpha\alpha\alpha\alpha\alpha\alpha\alpha$	$ www44mm_{C}^{R} L L L L L L D D D D D D D D$
	Bore of flange		20	B_2	822888888888888888888888888888888888888	88 106 1125 1127 1128 238 238 238 345 345 345 346 346 346 346 347 1053 11672 11672
	0240]3 30 040 2		8	T	65 43 88 44 84 85 84 84 84 84 84 84 84 84 84 84 84 84 84	81 1138 1138 1138 1200 225 225 330 330 330 330 1025 11025 11025 11025
	Bore of flange or collar		12 44	B_1	16,07 20,08 25,08 30,08 38,08 44,6 57,23	76,33 89,13 1108,38 1133,63 1159,63 194,63 220,03 325,03 325,03 325,03 325,03 420,13 420,13 612 612 916 018 815 815 815 815 822
	andelt to over		07		15,07 18,07 22,08 28,08 35,09 42,09	268
	Collar or raised face diameter		9 8 6	D_1	41 46 56 65 76 84 89	118 122 122 122 123 133 133 134 135 135 135 135 135 135 135 135 135 135
	Cladding thickness		8	F_{min}	വവവവവവവ	വവവ വവ വവവവവവവവവവവവവവവ
	Collar flange thickness	ě	04 07	F	യയമാവവവ	0
	Collar thickness	ge type	•			8,4444400000000000000000000000000000000
		Flange		S ₁ min		20000000000000000000000000000000000000
	hub or collar		07	H ₂	91 91 81 81 61	
	Length through		12 04		8844488	40000000000000000000000000000000000000
-			07		22 28 33 24 24 24 25 26 26 26 27 28 27 28 27 28 28 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	28 28 28 28 28 28 28 28 28 28 28 28 28 2
	Collar diameter		8	N_1	222288 54822288 54	78 110 110 1135 161 161 161 226 326 330 330 330 421 459 612 612 612 1 018
	Neck diameter		21	N ₃	62883828	79 116 116 117 118 127 127 127 127 127 127 127 127 127 127
	Hub diameter		27 47		23 28 33 34 64 64 64	87 1104 1173 1173 1174 1174 1174 1174 1174 117
			12 T	r.	888805-E	\$5.6.5.6.5.0.27.86.86.86.86.86.1.1.1.1.1.1.1.1.1.1.1.1.
	Flange thickness		04 07 01 21 05 12 12 14	3	444666	0.00 1 1 1 1 1 1 1 1 1
s	र stlod to esis lanimoli	<u>. </u>	_		MMMM2727222222222222222222222222222222	M16 M16 M20 M20 M20 M24 M24 M24 M24 M24 M20 M30 M30 M30 M30 M30 M30 M30 M30 M30 M3
sion	Number 5 silon for size of bolts				444444	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
nen	Diameter of bolt holes			7	4444888	EEEEUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
Mating dimensions	Diameter of bolt circle			X	88 x 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	145 160 180 270 270 270 270 270 270 270 270 270 27
Mat	Outside diameter of flange			D	885 1 555	185 200 220 220 220 220 335 335 335 335 345 365 615 615 115 115 115 115 115 115 115 1
	Tube outside diameter			A	7 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	76,1 88,9 108 1133 159 193,7 219,1 223,9 323,9 323,9 323,9 419 457,2 508 610 711 813 1 220 1 420 1 120
	ezie IsnimoM			N N	5588888	65 80 110 110 110 110 110 110 110
					<u> </u>	

1 For type 21 flanges in sizes up to and including DN 100 and type 12 (and 14) flanges up to and including DN 50 for bolting to flanges with raised faces, the appropriate thickness (C1*) in table 8 (ISO PN40) shall apply. (See 6.1.)

² Type 21 flanges in sizes DN 125 to DN 1800 may be used with inside bolt circle gaskets and type 04, 05 and 07 flanges. (See 6.2.) 3 For type 12 and type 14 flanges of all nominal sizes, $\alpha = 4^{\circ}$ max. 4 Dimension E is given for information only.

Table 5 — Dimensions of ISO PN16 flanges

	Chamfer	ļ	9.6	E	322	ოოოო	ოოო	4466/7	777
	Bore of flange		07	B_2	23 33 33	8248	8 5 5 5	151 178 213 238 288/296	[][
	Prop of flance		40	g	19 24 28	£ 4 8 62 8 4 33	28 £	138 164 200 225 278/284	330 374 426 —
	ve Gollar		14	.	16,07 20,08 25,08	27.4 23.08 23.08 23.08	76,33 89,13 108,38	133,63 159,63 194,63 220,03 268,13/274,13]-[] [
	Bore of flange		12	B	15,07 18,07 22,08	82 82 42 82 82 82 82 82 82	98 T	133 159 194 202 208,13,	325,03 369,13 420,13
	Tetemaib east besish to ralloD		04 07 05 05	D_1	41 46 56	8528	118 132 156	184 211 242 266 319	370 – 429 – 480 –
	Cladding thickness	1	8		១១១	ນບບບ	ខានា	വവവവവ	ឧឧឧ
	Collar flange thickness		04 05 07	F	2 2 2	စ်စည်ည	9 / /	~ o o o o	1111
		type		S2	2,5 2,5 5,5	2,2,2, 2,5,5 5,5,5	3,5 4 4	4 4 4 4 4 rú rú rú	6,5 7,5 9
	Collar thickness	Flange type		$S_{1 \text{min}}$	<u>-</u> rú	<u> </u>	2,5 2,5	2,2,8 4 4 3,55	5 6 7,5 —
			02	۲۷	(δ (ත් ත් ව ව	13 21 21	ដ្ឋឧដ្ឋ	
	hub or collar		8	H ₂	원 원 8	8888	588	2222	1 20 20
	Length through		12 04 07	H_1		<u> </u>	888	44488	1111
	Collar diameter		60	N_1	25 31	88 22 50	842	148 175 210 235 285/291	1111
	notomali relico		<u></u>	V.	8222	848 ré	86 10 10	135,5 161,5 197 222 269/275	327 371 422 -
	Neck diameter		21	N ₃	873	8432	£ 8 1 5 1 5 1 5 1 5 1 5 1 5 1	822288 882288	312 396 448 552
	Hub diameter		5 4	~	282	85 51 67	5 4 4 8	233 233 233 234 235 235 235 235 235 235 235 235 235 235	1111
			72		မ မ	∞∞∞=	5 5 5	20400	8888
			12 12 14	ان	∞ ∞ ∞	e515		ឧឧឧឧឧ	1111
	Flange thickness		04 07 05	3		5 5 5 5		88222	1111
\vdash	10		<u>8</u> 8	Ľ					22728 8288 I
2	astlod to existentimol				ΣΣΣ	2525		M20 M20 M20 M24	
Si	Митрет				4 4 4	4444	4 ∞ ∞		
ne	Diameter of bolt holes			7	4 4 4	4 8 8 8	<u>∞</u> <u>∞</u> ∞	28888	8888
Mating dimensions	Diameter of bolt circle			×	888	8552	2 6 8	240 270 270 355 355	410 470 525 650
Mat	Outside diameter of flange			Q	ខ្លួនន	55 25 25 25 25 25 25 25 25 25 25 25 25 2	\$ 8 8	250 285 340 405	460 520 580 715
	τetemsib ebistuo eduΤ			¥		5 3 3 3 4 4 5 2 4 4 5 5 7 4 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	76,1 88,9 100	133 159 193,7 219,1 267//273	323,9 368 419 508
				-		88842	W.C.C.	10.010.0	0000
	9zie IsnimoM			S	= = ×	12/29/4 12/	ಹಜ್ಜ	25 15 20 20 20 20 20 20 20 20 20 20 20 20 20	8848

1 For type 21 flanges in sizes up to and including DN 100 and type 12 (and 14) flanges up to and including DN 50 for bolting to flanges with raised faces, the appropriate thickness (C₁*) in table 8 (ISO PN40) shall apply. (See 6.1.)

² Type 21 flanges in sizes DN 125 to DN 250 and type 12 (and 14) flanges in sizes DN 65 to DN 250 may be used with inside bolt circle gaskets and type 04, 05 and 07 flanges. (See 6.2.)

³ For type 12 and type 14 flanges of all nominal sizes, $\alpha=4^{\rm o}$ max.

⁴ Dimension E is given for information only.

Table 6 — Dimensions of ISO PN20 flanges

		т—		·	
	Chamfer]	<u>4</u> 0	E	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
			07		888488811111111111111111
	Bore of backing flange		8	B2	28 28 28 28 28 28 28 28 28 28 28 28 28 2
	Bore of flange or collar		120 07 27 47	B_1	16,07 25,08 30,08 30,08 46,6 46,6 47,23 76,33 89,18 133,63 159,03 220,03 220,03 325,03 335,03 3420,13 420,13 420,13 420,13 420,13 420,13 411,13
	Collar or raised face diameter		286	D_1	22 23 25 25 25 25 25 25 25 25 25 25 25 25 25
	Cladding thickness		<u>ਲ</u>		വ വ വ വ വ വ വ വ വ വ വ വ വ വ വ വ വ വ വ
			07 05	H.	
	Inner collar wall thickness		4		22, 22, 25, 25, 25, 25, 25, 25, 25, 25,
			8	S _{2min}	2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
	Inner flange collar thickness	type	<u>8</u> =	S _{1min}	
		Flange	=======================================		82878784658885547544754475
	hub or collar	"	<u>70</u>	H_2	
	Length through		8		8444448888888888888888888888888888888
			2 4	H_1	2448888844444886666888886
			02		228,832,2
	Collar diameter		2	Ņ,	18 27 27 46 59 19 110 1135,5 1615,5 1615,5 222 222 222 327 327 460 460 460 460 460 4613 613 921
	Neck diameter		72	۳,	88 48 88 88 88 88 88 88 88 88 88 88 88 8
	Hub diameter		1	N ₃	22 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	··		21		8 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1
			<u> </u>	び	88888888888888888888888888888888888888
	Flange thickness		2		111111118888837100000
	to hit well		0.7	3	111111111111111111111111111111111111111
L			ຊ ጼ	Ĺ	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
	র estod to esis lanimoM				M14 M14 M14 M14 M14 M17 M17 M17 M17 M16 M16 M16 M16 M16 M16 M17
Suc	क्ष TedmuM हिं stlod to exis lanimoM				444444488888121215188888 828 828 828 828 828 828 828 828 82
nensi	Diameter of bolt holes			7	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Mating dimensions	Diameter of bolt circle			×	88 88 74 76 74 76 76 76 76 76 76 76 76 76 76 76 76 76
Ĕ	egnelî îo retemeib ebistuO			Q	250 250 250 250 250 250 250 250 250 250
	Tube outside diameter			4	16 25 33 33 33 34 159 159 159 159 159 159 159 159 159 159
	ezis lsnimoN			Z	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

1 For type 12 and type 14 flanges of all nominal sizes, $lpha=4^{
m o}$ max.

² Dimension E is given for information only.

Table 7 — Dimensions of ISO PN25 flanges

			Mat	ing di	men	sio	ns																	\Box
Nominal size		lube outside diameter	Outside diameter of flange	Diameter of bolt circle	Diameter of bolt holes	Number	Nominal size of bolts ੱਸ		Flange thickness	Hub diameter	Neck diameter	Collar diameter	Length through	hub or collar	Collar thickness		Collar flance thickness		Cladding thickness	Collar or raised face diameter	Bore of flange	or collar	Bore of flange	Chamfer
								02 04 05	12 21 14	12 14	21	04	12 14	04	Flange 0		02	04	05	02 04 05	02	12 14	02 04	04
DN	•	4	D	K	L			C_2	C ₁	Λ	I_3	N ₁	H_1	H_2	S_{1min}	S _{2min}		F		D_1	В	1	B ₂	E
10 15 20 25	15 18 22 28	16 20 25 30	90 95 105 115	60 65 75 85	14 14 14 14	4	M12 M12 M12 M12	16 16 16 18	8 8 8 9	21 26 31 36	16 21 28 35	18 22 27 32	.20 20 24 24	35 35 40 40	1,5 1,5 1,5 1,5	2,5 2,5 2,5 2,5	12 12 14 14	5 5 5 5	5 5	40 45 58 68	15,07 18,07 22,08 28,08	16,07 20,08 25,08 30,08	18 22 28 33	2 2 3 3
32	35	38	140	100	18	4	M16	18	10 9	45	42	40	26	40	1,5	2,5	14	5	5	78	35,09	38,08	42	3
40	42	44,5	150	110	18	4	M16	18	11	51	52	46,5	26	45	1,5	2,5	14	6	5	88	42,09	44,6	50	3
50	54	57	165	125	18		M16	20	13 11	67	64	59	28	45	2	3	16	6	5	102	54,09	57,23	62	3
65 80 100		6,1 18,9 18	185 200 235	145 160 190	18 18 22	8	M16 M16 M20	20 22 22	22 13 24 14 26 17	103 114 137	79 94 116	78 91 110	32 34 40	45 50 50	2,5 3,5 4	4 4,5 5	16 18 20	6 7 7	5	122 138 162		5,33 1,13 3,38	94 113	3 3 3
125	13		270	220	26		M24	24	26	160	165	135,5	44	50	5	6,3	22	7	- 1	188	133		138	4
150	15		300	250	26		M24	24	28 26	186	192	161,5	48	50	.5	6,3	22	9	5	218	159		164	4
175 200 250	21	9,1 9,273	330 360 425	280 310 370	26 26 30	12 12 12	M24 M24 M27	26 30	28 30 32	216 246 296	217 246 295	197 222 269/275	50 50 54	50 50	-4 6 7	5,5 7,5 8,5	23 24 26	9 9	5 5	278 335	194 220 268,13		200 225 278	5 5/7
300 350 400 500	32 36 41 50	9	485 555 620 730	430 490 550 660	33 36		M27 M30 M33 M33	34 38 42 50	- 32 - 36 - 38 - 42	_ 	348 404 458 564	327 	 -	50 	8 - -	9,5 - - -	28 32 34 38	11 — —	5 5 5	395 450 505 615	420	,13	329 374 426 517	7 - -

NOTES

¹ For type 21 flanges in sizes up to and including DN 100 and type 12 (and 14) flanges up to and including DN 50 for bolting to flanges with raised faces, the appropriate thickness (C_1^*) in table 8 (ISO PN40) shall apply. (See 6.1.)

² Type 21 flanges in sizes DN 125 to DN 250 and type 12 (and 14) flanges in sizes DN 65 to DN 250 may be used with inside bolt circle gaskets and type 02, 04, 05 and 07 flanges. (See 6.2.)

³ For type 12 and type 14 flanges of all nominal sizes, $\alpha = 4^{\circ}$ max.

⁴ Dimension E is given for information only.

This diagram illustrates the arrangement but not necessarily the correct number of bolt holes.

Refer to the column "number of bolts" in table 8 for the actual number.

Table 8 — Dimensions of ISO PN40 flanges

			Mating	dime	nslons			-							
Nominal size	Tube outside diameter	Outside diameter of flange	Diameter of bolt circle	Diameter of bolt holes	Number	ਨ Nominal size of bolts ਨ		Flange thickness		Neck diameter	Collar flange thickness	Cladding thickness	Collar or raised face diameter	Bore of flange or collar	Bore of flange
										F	lange	type			
							02 05	2	1	21	02	05	02 05	02	02
DN	A	D	K	L			C_2	C ₁	C ₁ *	N ₃	1	7	D_1	B ₁	<i>B</i> ₂
10	16	90	60	14	4	M12	16	9	12	16	12	5	40	16,07	18
15	20	95	65	14	4	M12	16	9	12	21	12	5	45	20,08	22
20	25	105	75	14	4	M12	16	9	12	28	14	5	58	25,08	28
25	30	115	85	14	4	M12	18	11 11	14 15	35 42	14 14	5 5	68 78	30,08	33 42
32	38	140 150	100 110	18 18	4	M16 M16	18 18	13	16	42 52	14	5 5	78 88	38,1 44,6	50
40 50	44,5 57	165	125	18	4	M16	20	13	17	64	16	5	102	57,23	62
65	76,1	185	145	18	8	M16	20	14	17	79	16	5	122	76,33	81
80	88,9	200	160	18	8	M16	22	16	19	94	18	5	138	89,13	94
100	108	235	190	22	8	M20	22	19	21	116	20	5	162	108,38	113
125	133	270	220	26	8	M24	24				22	5	188	133,63	138
150	159	300	250	26	8	M24	24	l –			22	5	218	159,63	164
200	219,1	375	320	30	12	M27	30	_		_	26	5	285	220,03	225
250	267/273	450	385	33	12	M30	36	_			30	5	345	268,13/274,13	278
300	323,9	515	450	33	16	M30	40	1 —		_	34	5	410	325,03	329
350	368	580	510	36	16	M33	46	-			38	5	465	369,13	374
400	419	660	585	39	16	M36	50			l –	42	5	535	420,13	426

NOTE — Type 21 C_1^* thicknesses shall be used when required with a raised face of 1,6 mm or when required to be used with inside bolt circle gaskets or type 04, 05 and 07 flanges. (See 6.1.)

Table 9 — Dimensions of ISO PN50 flanges

	Chamfer		2,72	E	2	7	က	က	က	3	က	က	က	4	4	5	5/7	7	7	7	7	7	6
			02		ಜ	g	æ	47	නු	8	8	l	1	I	ı	I	ļ	I	1	١	١	١	
	Bore of backing flange		8	B_2	19	8	g	41,5	8	83	<u>∞</u>	8	113	138,5	164	225	278	330	374	426	465	517	618
	Bore of flange or collar		00 21 4	l _B	16,07	25,08	30,08	38,08	46,6	57,23	76,33	89,18	108,38	133,63	159,63	220,03	268,13/274,13	325,03	369,13	420,13	458,33	509,13	611.13
,	tejemsib eost besist to tslloO		486	D_1	8	8	88	78	88	102	12	138	128	8	212	268	320	370	430	482	530	282	82
	Cladding thickness	1	ය		ß	വ	Ŋ	വ	വ	ល	IJ	Ŋ	ro	വ	ស	ro	5	ß	Ŋ	Ŋ	വ	2	ĸ
	Inner flange collar thickness]	04 05 07	Ħ	2	Ŋ	D	гO	9	9	9	7	7	7	တ	တ	6	7	11	12	12	12	14
			8	S_{2min}	2	2,5	2,5	2,5	2,5	ო	3,5	3,5	4	4	4,5	9	7	8,5	9,5	10,5	11	12,5	14.5
	Inner collar flange thickness	lype	<u>8</u>	S ₁ min	1,5	7,5	7,	1,5	ر کر	7	2,5	2,5	ო	ო	3,5	4,5	5,5	7	œ	တ	9,5	=	13
		Flange type	=		_	2	8	89	88	2	92	ଚ	8	8	8	111	117	93	143	146	159	162	168
	hub or collar	E	6	H_2	16	16	8	ឧ	ฆ	প্ল	33	ı	ı	1	1	ī	- 	1	1	 	1	 	
	բույսուրյու բանար արևորություն		04 07		_				_	₹ 					යි	ය	ය	20	20	2	2	20	-09
			5 4	H_1						8									_				
	·	1	02		17	31	98	45	2	67	8	1	1	1	1	ı	1	1	ı	1	1	<u> </u>	<u> </u>
	Collar diameter		2	N ₁	18							_		135,5	161,5	222	269/275	327	371	422	460	511	613
	Neck diameter		21	. 8	೫	æ	\$	ස	හි	28	8	18	33	<u>\$</u>	192	246	1	1	ı	1	ı	1	_
	Yesemeter		5 4	N_3	21	ઝ	စ္တ	45	ટ્ય	67	<u>ස</u>	114	137	8	98	246	88	380	83	88	25	382	710
		1	12 21 41		13	73	15	16	8	19	7	প্র	22	8	ಣ	33	ı	ı	İ	ı	ı	ī	ī
			<u>± 5 4</u>	ري ا	6	Ξ	7	12	3	13	2	74	8	8	8	၉	36	42	46	22	72	28	22
	Flange thickness		02		14,5	16	17,5	19,5	드	22,5	3,55	ı	ı	1	ı	I	l	1	ſ	Ī	l	1	ı
			4 R	3	14,5		17,5	19,5	77	22,5	25,5	ឧ	32	33	37	41,5	48	51	72	57,5	60,5	83,5	- 02
(য় stlod to exis lanimoM				M14	116	116	116	120	M16	420	120	120	120	120	124	127			133	M33	133	8
Ö	₩ redmu/N still				_					8		_	_			72		_			<u>24</u>		
Mating dimensions	Diameter of bolt holes			7	16	18	<u>~</u>	<u>~</u>	ឧ	8	ឧ	ឧ	ឧ						32,5	35,5	35,5	35,5	42
9	elircle			<u>.</u>						127											628,5		
Matin	Diameter of bolt			×																_		_	
Ш	egnelf to retemaib ebistuO			D	8	72	123	135	- 5	165	<u>—</u> 호	210	<u> </u>	8	ਲ -	× ×	<u></u>	22	86	93	715	715	915
	Tube outside diameter			7	16	22	8	æ	4,5	21	76,1	88 6 6	92	133	139 20	219,1	267/273	323,9	368	419	457,2	208	610
\vdash	ezis Isnimo V			N	2	্	KS KS	8	8	ନ୍ଥ	ક્ક —	8	8	RS ES	ය	8	<u>ස</u>	8	ය	8	යි	8	ح.

NOTES

1 For type 12 and type 14 flanges of all nominal sizes, $lpha=4^{
m o}$ max.

2 Dimension E is given for information only.

Table 10 — Pressure/temperature (p/T) ratings— General application

Nominal				Т	emperature, °	C			
pressure	- 10 to 65	100	1201)	150	180	2002)	220	250	260
ISO PN			Maxim	um permissil	ole working p	ressure, bar ³⁾ (gauge)		
6	6	6	6	6	6	5	4	2,5	2
10	10	10	10	10	10	8,5	7	5	4
16	16	16	16	16	16	13,5	11,3	8	7
204)	15,5	14,6	13,9	13,3	12,4	11,8	11,3	10,7	10,3
25	25	25	25	25	25	21,2	17,5	12,2	10,5
40	40	40	40	38,5	34	30	25,5	19,5	17,5
504)	34,4	32,3	31,1	29,3	27,4	26,2	24,9	23,1	22,4

- 1) ISO PN6, ISO PN10, ISO PN16, ISO PN25 and ISO PN40 flanges larger than DN 250 are limited to a maximum temperature of 120 °C.
- 2) Flanges in alloy 1/26A are limited to a maximum temperature of 200 °C.
- 3) 1 bar = 0.1 MPa
- 4) Table 10 does not apply to ISO PN20 flanges larger than DN 300 and ISO PN50 flanges larger than DN 200 [see table 10b)].

Table 10a) - Pressure/temperature ratings applicable to ISO alloys I/38D and I/29B only

Nominal						Tempera	iture, °C			_			_
pressure	- 10 to 65	100	1201)	150	180	200	220	250	260	280	300	320	350
ISO PN	Maximum permissible working pressure, bar ²⁾ (gauge)												
6	6	6	6	6	6	5,5	5	4,5	4	3,5	3	2,5	2
10	10	10	10	10	10	9,5	8,5	7,5	7	6,5	6	5	4
16	16	16	16	16	16	15	14	13	12	11	10	8,5	7
2031	15,5	15	14,5	14	13,7	13,5	13	12,7	12,5	12	11,5	11	10,3
25	25	25	25	25	25	24	22	19	18,5	16,5	14,5	13	10,5
40	40	40	40	38,5	35,5	33,5	31	28	26,5	24,5	22,5	20,5	17,5
503)	34,4	33	32,5	30,5	29	28,5	27,5	26,5	26	25	24,5	23,5	22,4

- 1) ISO PN6, ISO PN10, ISO PN16, ISO PN25 and ISO PN40 flanges larger than DN 250 are limited to a maximum temperature of 120 °C.
- 2) 1 bar = 0.1 MPa
- 3) Table 10a) does not apply to ISO PN20 flanges larger than DN 300 and ISO PN50 flanges larger than DN 200 [see table 10b)].

Table 10b) — Pressure/temperature ratings — ISO PN20 and ISO PN50 flanges (large sizes).

	Temperature, °C						
Nominal pressure	- 20 to 100	120					
ISO PN	Maximum permissible pressure, bar ²⁾ (gauge)						
20	14	13,9					
50	20	19,8					

¹⁾ Table 10b) is applicable to ISO PN20 flanges in nominal sizes DN 350 to DN 900 and to ISO PN50 flanges in nominal sizes DN 250 to DN 600.

2) 1 bar = 0.1 MPa

Table 10c) — Pressure/temperature ratings applicable to ISO alloy I/38A for ISO PN20 and ISO PN50 flanges 1)

	Temperature, °C											
Nominal pressure	- 10 to 65	180	200	220								
ISO PN	Maximum permissible pressure, bar ²⁾ (gauge)											
20	15,5	15,5 14,3 13,4		12,4 11,5		10,6	9,8					
50	34,4	31,3	29,3	26,9	23,8	22,1	20,2					

¹⁾ Table 10c) does not apply to ISO PN20 and ISO PN50 flanges larger than DN 300 [see table 10b)].

2) 1 bar = 0.1 MPa

12 Limitations for flanges attached by soft solder or silver brazing

ISO PN6, ISO PN10, ISO PN16, ISO PN20, ISO PN25 and ISO PN50 flanges used in conjunction with copper tubes to ISO 274 up to and including DN 50 and attached by soft solder shall be limited to the following maximum operating temperatures and/or pressures:

6 bar at 110 °C

10 bar at 65 °C

16 bar at 30 °C

For all flanges attached by silver brazing to copper alloy tubes the maximum operating temperature shall not exceed 200 $^{\rm o}$ C.

Table 11 — Copper alloy materials

			Methods of attachment							
Copper alloy standard	Form	Abbreviated alloy	Soft solder ²⁾	Silver brazing	Fusion welding					
		designation 1)	Slip-on	Slip-on	Slip-on or butt welded					
ASTM B61: UNS C92200		C922	Х	Х						
ISO 1338:										
CuPb5Sn5Zn5		1/38A	X	x						
CuSn8Pb2	Cast	I/38B	X	X						
CuAl10Fe3		I/38C			X					
CuAl10Fe5Ni5		I/38D			X					
ISO 426-1:										
CuZn20Al2		I/26A		x	x					
ISO 428:										
CuAl10Fe3	-	1/28A			×					
CuAl10Ni5Fe4	Forged	I/28B			Х					
ISO 429:										
CuNi10Fe1Mn		1/29A		×	×					
CuNi30Mn1Fe		I/29B	•	X	X					

¹⁾ Owing to the length of ISO copper alloy designations, the abbreviated form shall be used.

Table 11a) — Ferrous materials

Form	Ferrous alloy standard
Plate (for composite and clad blank flanges)	ISO 630: Fe360B
Forging (for composite and clad blank flanges)	ASTM A105

²⁾ Applicable to attachment to copper tubes to ISO 274 and appropriate to sizes up to and including DN 50.

Table 12 — Tolerances

Dimensions and tolerances in millimetres

r 														rance			
Symbol reference	Feature	Туре	v 망 용	8 6	125	150	200		DI SS 84 Tolera	200 420	88	3 8	3 8	1 000	1 200	1 400	80
		O1 ¹⁾	+0,05		+0,1 0		+0,25 0 +1,5 +2 0 0										
B ₁		021)	+0,05		+0	,1		+1,	+ 0,2! 0	+2 0							
		02	+	+1 +1,						+2							
B ₂	Bore diameter	04	+	-1			-1,5 0			+		******	****	**************************************	‱∞ 4 ∩		
B ₁		07 1)	+0,05	+0,05 +0,			0,1		+0,25 0 +1,5 0 +2 0 0		+3			<u> </u>			
B ₂		07	+	1 0	+1,		1,5 0			+2			+			**********	
B ₁		12 ¹⁾ 14 ¹⁾	+0,05 +0,1		+0,25 0 +1,5 +2 0 0 .				+3								
H ₂		04	±1,5	L.,	16				±2	+2,5) E	
112	Length through hub or collar	07	+1,5 0							+3,5							
H_1		12;14	+	1,5 0				+2,5 0					+3,5 0				
N ₁		04 07	±0,5	±1 ±1		±		1,5		то	±	2			. 1		
	Hub, neck or collar diameter	12;14	±0,5 ±0,5	4	<u> </u>	-		±2 ±2				±3 ± ±3					
N ₃		21	+1,5		2,5		+3,5		+5		+10		10				
D	Outside diameter of flange	All machined unmachined			±1 ±2			±1,5 ±2	±2 ±3					:2 :5			
C ₁ , C ₂	Flange thickness	C ₁ : 01; 11; 12; 14; 21 C ₂ : 02; 04; 05; 07		C ₂ < 2 +3,5 0	25	25 <	< C ₁ ,	$\begin{array}{c cccc} C_2 < 50 & 50 < C_1, C_2 \\ \hline 5 & +7,5 \\ 0 & 0 \end{array}$									75
		02	+1				+2			+3							
ا ۾ ا	Collar or raised face diameter	04	±1) 					±		_1000000		<u>.</u>	******			
D_1	raised face diameter	05	±1						±	2							±3
		07	+1	l			+2						-	-3 0			-
		02		±0,5				±1									
$\mid F \mid$	Facing height	04 05	<u> </u>	+0,5	±0,3	-03		±1			ــــــــــــــــــــــــــــــــــــــ	£ 0,6	± 1,	5		***	
	r wonig noight	07	+1	l			+	 2 0			T			+;	3		
			<u> </u>	o M24	l M2	7 to 1		<u> </u>									
_	Pitch circle diameter	All	±	0,9	1412	± 1,4											
K	Centre to centre	All),45 N 100	Ļ	±0,7											
	Eccentricity	As given	±	:1		±2											
L	Bolt hole diameter	All	+(20 0,5 0		> 22 +1 0	:										
_	Bolt bearing surfaces shal machined: ±1° unmachined: ±2°	l be parallel to the flange jo	pinting f	ace as	follo	WS:											

¹⁾ Types 01, 02, 07, 12 and 14 can be attached by soldering (up to DN 50), silver brazing or fusion welding. The smaller tolerances shall be used for soldering and brazing.

ISO 7005-3: 1988 (E)

NOTES TO TABLE 12

- 1 The tolerances are applicable to ISO PN6, ISO PN10, ISO PN16, ISO PN25 and ISO PN40 only.
- 2 The eccentricity given is between K and any machined diameter.
- 3 Miscellaneous radii chamfers should be regarded as maxima unless otherwise specified. Tolerances on the pitch circle diameter and centre-to-centre of adjacent bolt holes are determined by the differences between the bolt and the bolt hole diameter which, in conjunction, cannot exceed the clearance together with any tolerance on the diameter of the bolt hole.

Bibliography

The following publications are referred to in this part of ISO 7005.

ISO 274, Copper tubes of circular section - Dimensions.

ISO 426-1, Wrought copper-zinc alloys — Chemical composition and forms of wrought products — Part 1: Non-leaded and special copper-zinc alloys.

ISO 428, Wrought copper-aluminium alloys — Chemical composition and forms of wrought products.

ISO 429, Wrought copper-nickel alloys — Chemical composition and forms of wrought products.

ISO 468, Surface roughness — Parameters, their values and general rules for specifying requirements.

ISO 630, Structural steels.

ISO 887, Plain washers for metric bolts, screws and nuts — General plan.

ISO 1338, Cast copper alloys — Composition and mechanical properties.

ISO 2016, Capillary solder fittings for copper tubes — Assembly dimensions and tests.

ISO 6708, Pipe components — Definition of nominal size.

ISO 7268, Pipe components - Definition of nominal pressure.

ANSI B16.24, Bronze pipe flanges and flanged fittings, Class 150 and 300.

ASTM A105, Forged carbon steel.

ASTM B61, Steam or valve bronze castings.

Annex

Application and installation

(This annex does not form an integral part of the standard.)

- A.1 When using bolting materials other than copper alloy the purchaser should take into account the pressure, flange material and the related gasket so that the joint remains tight under the expected operating conditions.
- A.2 Application of the ratings to flanged joints at either high or low temperature should consider the effect of the risk of leakage due to forces and movement developed in the connecting pipes.
- A.3 Flanges may be required to be pressure tested after attachment of a pipe or other equipment or when forming an integral part of such equipment. The test pressure is then dependent on the requirements of the appropriate standard or code of practice in accordance with which the equipment has been fabricated or manufactured. Any test pressure should not exceed 1,5 times the allowable pressure at 20 °C, rounded up to the next whole bar increment.

ISO 7005-3 : 1988 (E)	

UDC 621.643.412: 669.35

Descriptors: metal tubes, pipe joints, copper products, pipe flanges, specifications, dimensions, marking.

Price based on 26 pages