# INTERNATIONAL STANDARD ISO 6971 Second edition 2002-09-15 ## Cranked-link drag chains of welded construction, attachments and sprockets Chaînes racleuses en acier, de construction soudée, à maillons coudés, plaques-attaches et roues dentées Reference number ISO 6971:2002(E) #### PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. #### © ISO 2002 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch Printed in Switzerland ## **Contents** Page | Forev | word | iv | |-------|----------------------|----| | 1 | Scope | 1 | | 2 | Normative reference | 1 | | 3 | Chains | 1 | | 3.1 | General | | | 3.2 | Nomenclature | 1 | | 3.3 | Dimensions | 1 | | 3.4 | Tensile strength | 2 | | 3.5 | Length accuracy | 2 | | 3.6 | Designation | 2 | | 3.7 | Marking | 2 | | 4 | Attachments | 6 | | 4.1 | Types | 6 | | 4.2 | Dimensions | 6 | | 5 | Sprockets | 9 | | 5.1 | Diametral dimensions | | | 5.2 | Tooth gap form | | | 5.3 | Rim profile | | | 5.4 | Tolerances | | | 5.5 | Marking | | iii ISO 6971:2002(E) #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 6971 was prepared by Technical Committee ISO/TC 100, Chains and chain wheels for power transmission and conveyors. This second edition cancels and replaces the first edition (ISO 6971:1982), which has been technically revised. In particular, the references and terminology have been revised to bring them into conformity with other International Standards and current practice. Furthermore, in clause 5, the pitch line clearance of sprockets has been altered for consistency with current industry practice. ## Cranked-link drag chains of welded construction, attachments and sprockets #### 1 Scope This International Standard specifies the characteristics of cranked-link<sup>1)</sup> drag chains of welded construction suitable for conveying bulk materials, together with associated attachments and chain sprockets. The chain dimensions specified in this International Standard ensure interchangeability of both complete chains and individual links for repair purposes. This International Standard is applicable to sprockets with between 5 and 20 teeth. Specifications are also given for five types of attachment for use with the conveyor chains conforming to this International Standard. #### 2 Normative reference The following normative document contains provisions which, through reference in this text, constitute provisions of this International StandardInternational Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard International Standardare encouraged to investigate the possibility of applying the most recent edition of the normative document indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards. ISO 286-2, ISO system of limits and fits — Part 2: Tables of standard tolerance grades and limit deviations for holes and shafts #### 3 Chains #### 3.1 General The chain is designed to operate with the closed end of each link in the forward direction to produce the maximum scraping action against the material to be conveyed. #### 3.2 Nomenclature The nomenclature of the chains and their component parts is specified in Figures 1 and 2. #### 3.3 Dimensions Conveyor chain dimensions shall conform to those given in Table 1 (see Figure 3). Both maximum and minimum dimensions are specified to ensure interchangeability of links made by different chain manufacturers. Although these represent limits for interchangeability, they shall not necessarily be regarded as limits of tolerance for manufacture. <sup>1)</sup> In the USA, the term "offset sidebar" is used in place of "cranked link". #### 3.4 Tensile strength #### 3.4.1 Minimum tensile strength The minimum tensile strength is that value which shall be exceeded when a tensile force is applied to a sample which is tested to destruction in accordance with 3.4.2. NOTE This minimum tensile strength is not a working force. It is intended primarily as a comparative figure between chains of different construction. For application information, it is necessary to consult the manufacturers or their published data. #### 3.4.2 Tensile testing A tensile force, not less than the minimum tensile strength specified in Table 1, shall be applied slowly to the ends of a chain, containing a minimum of three free pitches, by means of shackles so designed as to allow universal movement. The actual test method is at the discretion of the manufacturer. Failure shall be considered to have occurred at the first point where increasing extension is no longer accompanied by increasing force, i.e. the summit of the force/extension diagram. Any test in which failure occurs adjacent to the shackles shall be disregarded. #### 3.5 Length accuracy Finished chains shall be measured either in the dry state or after light lubrication. The standard nominal length for measurement shall be that nearest to 3 048 mm. The chain shall be supported throughout its length and the measuring force specified in Table 1 shall be applied. The finished chain length shall be equal to the nominal chain length $^{+}$ 0,32 % . Chains that work in parallel may be matched by agreement between the purchaser and the manufacturer. #### 3.6 Designation The designation numbers for welded-steel-type cranked link drag chains are based on the ISO chain numbers given in Table 1. These numbers are derived from those given to the cast type which they replace and have been given the prefix WD to indicate that they are of welded design. #### 3.7 Marking The chains shall be marked with the manufacturer's name or trademark and in addition should be marked with the appropriate ISO chain number given in Table 1. The marking of the chain shall not be obscured by the attachments. NOTE The illustration does not define the actual form of the cranked link. Figure 1 — Cranked link chain assembly ### Key - 1 Cranked plate - 2 Barrel - 3 Connecting pin NOTE The illustration does not define the actual form of the cranked link. Figure 2 — Typical cranked link components The overall width of connecting links is Łj $b_4 + b_5$ , when there is a fastener at $b_5 + b_6$ , when riveted ď one side $2b_{4}$ , when there is a fastener at both 7-7 The line of cranking, or offset, between $I_1$ and $I_2$ is straight. ٤p d d 14 1 $p_{\rm S}$ $p_{\epsilon}$ $p_{t}$ <sup>ζ</sup>P φ 91 $\phi d_{j}^{a}$ The illustration does not define the actual form of the cranked link. NOTE Direction of travel (ref.) Pitch line Figure 3 — Chain dimensions and symbols (see Table 1) Table 1 — Chain dimensions, measuring forces and tensile strengths | Tensile strength | betsert treated | | min. | | 245 | 245 | 245 | 245 | 253 | 262 | 351 | 351 | 351 | | |----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------------------------------------------------------------------------------------| | Tensile | Pin heat treated | | min. | kN | 170 | 170 | 170 | 170 | 213 | 245 | 311 | 311 | 311 | | | | Measuring force | | | | 2,7 | 1,8 | 3,1 | 2,7 | 3,6 | 3,6 | 2,8 | 4 | 4,4 | | | | Chain plate thickness | С | nom. | | 2'6 | 2,6 | 2,6 | 2,6 | 12,7 | 2,6 | 12,7 | 12,7 | 12,7 | | | | Width over rivet to centreline | $9_q$ | max. | | 127,8 | 94 | 157,5 | 157,5 | 165,1 | 205,2 | 220 | 162,1 | 193,8 | | | 6 | Width over pin head to centreling | $p_{5}$ | max. | | 117,6 | 87,4 | 151,1 | 151,1 | 157,2 | 200,7 | 211,1 | 152,4 | 184,2 | | | əui | Width over pin fastening to centrel | $b_4$ | max. | | 127,8 | 94 | 157,5 | 157,5 | 165,1 | 205,2 | 220 | 162,1 | 193,8 | | | р | Width between plates at outer en | $p_3$ | min. | | 197,6 | 137,4 | 264,4 | 264,4 | 270,7 | 359,6 | 378,7 | 261,1 | 324,6 | dual links. | | | Width over link at inner end | $b_2$ | тах. | | 1,261 | 136,9 | 263,9 | 263,9 | 270,2 | 359,1 | 378,2 | 260,6 | 324,1 | οf indivic | | | ו ומנפ בוות בובמומונים חווובוים וווי | 1/4 | max. | | 25,4 | 25,4 | 25,4 | 25,4 | 25,4 | 28,4 | 35 | 35 | 35 | inspection | | | Plate end clearance dimensions | ار3 | max. | | 25,4 | 25,4 | 25,4 | 25,4 | 25,4 | 28,4 | 35 | 35 | 31,7 | use in the | | | CIONSI ANIM ANIM MANA MINIMANA | $l_2$ | min. | | 25,6 | 25,6 | 25,6 | 25,6 | 25,6 | 28,7 | 35,3 | 35,3 | 35,3 | nded for u | | Crank clearance dimensions | | ۲, | min. | | 25,6 | 25,6 | 25,6 | 25,6 | 25,6 | 28,7 | 35,3 | 35,3 | 32 | is not inte | | | Barrel diameter or plate depth | $h_2$ | max. | mm | 38,12 | 38,12 | 38,12 | 38,12 | 38,12 | 45,21 | 51,8 | 51,8 | 51,8 | is and sprocket dimensions, and is not intended for use in the inspection of individual links | | | Chain path depth | $h_1$ | max. | | 39,6 | 39,6 | 39,6 | 39,6 | 39,6 | 46 | 52,3 | 52,3 | 52,3 | ocket dimer | | | Connecting pin body diameter | $d_2$ | max. | | 19,13 | 19,13 | 19,13 | 19,13 | 22,3 | 19,13 | 22,3 | 22,3 | 22,3 | | | 1: | Width between plates for sprocke contact at inner end | $b_1$ | min. | | 162 | 104,6 | 228,6 | 228,6 | 228,6 | 330,2 | 336,5 | 222,2 | 282,4 | The pitch, $ ho$ is a theoretical reference dimension used in the calculation of chain lengt | | | | 8/ | max. | | 19,6 | 19,6 | 19,6 | 19,6 | 19,6 | 22,6 | 25,9 | 25,9 | 25,9 | alculation | | | | 4 | | | 17,5 | 17,5 | 17,5 | 17,5 | 17,5 | 20,6 | 23,9 | 23,9 | 23,9 | d in the co | | shape | | 9, | | | 14,2 | 14,2 | 14,2 | 14,2 | 15,7 | 16 | 20,6 | 20,6 | 20,6 | nsion use | | Barrel shape | Plate hole for barrel bore | $d_3$ | min. | | 19,25 | 19,25 | 19,25 | 19,25 | 22,43 | 19,25 | 22,43 | 22,43 | 22,43 | ence dime | | | Z-Z noitoes of | | тах. | | 39,1 | 39,1 | 39,1 | 39,1 | 39,1 | 45,2 | 51,8 | 51,8 | 51,8 | tical refere | | | Width accross the barrel with respect | d, | nom. | | 38,1 | 38,1 | 38,1 | 38,1 | 38,1 | 44,45 | 8'09 | 8'09 | 8,03 | s a theore | | Pitch | | $p^{\mathbf{a}}$ | | | 127 | 152,4 | 152,4 | 203,2 | 152,4 | 203,2 | 203,2 | 203,2 | 203,2 | pitch, p, is | | OSI | chain<br>number | _ | | | WD102 | WD104 | WD110 | WD112 | WD113 | WD116 | WD118 | WD122 | WD480 | a The | | | | | | | | | | | | | | | | | #### **Attachments** #### 4.1 **Types** This International Standard specifies five types of attachment designated C1, C3, C4, RR and wing with the following characteristics: - C1, C3, and C4: have a scraper bar attached to the barrel perpendicular to the direction of travel, as shown in Figure 4; - RR: has a triangular spur attached to each cranked plate, as shown in Figure 5; - wing: has an angle section attached to the outer face of each cranked plate, as shown in Figure 6. #### **Dimensions** 4.2 The respective dimensions of the attachments shall be as specified in Tables 2 to 6. NOTE The actual form of the attachments is at the discretion of the manufacturer. Figure 4 — C1, C3 and C4 attachments (see Tables 2, 3 and 4) ### Table 2 — Dimensions of C1 attachment #### Dimensions in millimetres | ISO chain number | $c_2$ | $b_7$ max. | h <sub>3</sub><br>max. | |------------------|-------|------------|------------------------| | WD102 | 9,7 | 197,1 | 62 | | WD104 | 9,7 | 136,9 | 62 | | WD110 | 9,7 | 263,9 | 62 | | WD112 | 9,7 | 263,9 | 62 | | WD116 | 9,7 | 359,2 | 68,1 | #### Table 3 — Dimensions of C3 attachment #### Dimensions in millimetres | ISO chain number | c <sub>2</sub> | b <sub>7</sub><br>max. | h <sub>3</sub><br>max. | |------------------|----------------|------------------------|------------------------| | WD110 | 12,7 | 263,9 | 58,7 | | WD113 | 12,7 | 270,3 | 58,7 | | WD118 | 12,7 | 378,2 | 77,7 | | WD480 | 12,7 | 324,1 | 77,7 | ### Table 4 — Dimensions of C4 attachment #### Dimensions in millimetres | ISO chain number | $c_2$ | $b_7$ max. | $h_3$ max. | |------------------|-------|------------|------------| | WD102 | 9,7 | 197,1 | 96,8 | | WD104 | 9,7 | 136,9 | 96,8 | | WD110 | 9,7 | 263,9 | 96,8 | | WD112 | 9,7 | 263,9 | 96,8 | | WD113 | 12,7 | 270,3 | 122,2 | | WD116 | 9,7 | 359,2 | 125,5 | | WD480 | 12,7 | 324,1 | 128,5 | Figure 5 — RR attachment (see Table 5) Table 5 — Dimensions of RR attachment Dimensions in millimetres | ISO chain number | h <sub>3</sub><br>max. | c <sub>2</sub> | |------------------|------------------------|----------------| | WD102 | 65 | 9,7 | | WD104 | 65 | 9,7 | | WD110 | 65 | 9,7 | | WD112 | 65 | 9,7 | | WD113 | 65 | 12,7 | | WD116 | 77,7 | 9,7 | | WD118 | 79,2 | 12,7 | | WD480 | 84,1 | 12,7 | Figure 6 — Wing attachment (see Table 6) Table 6 — Dimensions of wing attachment Dimensions in millimetres | ISO chain number | c <sub>2</sub> | $b_7$ max. | h <sub>2</sub><br>max. | |------------------|----------------|------------|------------------------| | WD102 | 9,7 | 365,3 | 39,6 | | WD104 | 9,7 | 295,1 | 39,6 | | WD110 | 9,7 | 434,8 | 39,6 | | WD112 | 9,7 | 434,8 | 39,6 | | WD113 | 9,7 | 434,8 | 39,6 | | WD116 | 9,7 | 561,8 | 46 | | WD480 | 9,7 | 561,8 | 52,3 | ## 5 Sprockets ### 5.1 Diametral dimensions #### 5.1.1 General The sprocket diametral dimensions are shown in Figure 7 and specified in 5.1.2 to 5.1.6. #### Key - tooth side relief - tooth width - pitch circle diameter d - tip diameter $d_{\mathsf{a}}$ - root diameter - maximum chain clearance diameter $d_{\mathsf{g}}$ - chordal pitch, equal to chain pitch - tooth flank (topping radius) - barrel seating radius - pitch line clearance - number of teeth - pressure angle - а Working face - Centreline of tooth Figure 7 — Diametral dimensions and tooth form #### 5.1.2 Pitch circle diameter, d $$d = p \times p_{cf}$$ where $p_{cf}$ is the pitch diameter factor according to the number of teeth, as specified in 5.2.4 and Table 7. #### 5.1.3 Tip diameter, $d_a$ $$d_{a} = (p \times d_{gf}) + h_{2}$$ where $d_{of}$ is the chain clearance diameter and outside diameter factor according to the number of teeth, as specified in 5.2.5 and Table 7. The tip diameter may be increased to give a full height tooth when the top of the chain is clear of flights, pans, buckets, etc. #### 5.1.4 Measuring pin diameter, $d_R$ $$d_{\mathsf{R}} = d_{\mathsf{1}}$$ where $d_1$ is the width across the barrel, as specified in Table 1. #### 5.1.5 Root diameter, $d_{\rm f}$ $$d_f$$ max. = $(p \times p_{cf}) - d_1$ NOTE Root diameters exceeding the maximum obtained from this equation result in improper chain and sprocket action and excessive chain loads. #### 5.1.6 Measurement over measuring pins, $M_R$ The measurement over measuring pins is illustrated in Figure 8. $M_R$ for even numbers of teeth = $d + d_R$ min. $$M_{\rm R}$$ for odd numbers of teeth = $d \cos \frac{90^{\circ}}{z} + d_{\rm R}$ min. For a sprocket having an even number of teeth, measurement shall be made over the appropriate pins inserted in diametrically opposed tooth spaces. For a sprocket having an odd number of teeth, measurement shall be made over pins inserted in the two tooth spaces most nearly diametrically opposite with respect to each other. During measurement, the pins shall remain in contact with the root diameter of the corresponding teeth. #### Key - d pitch circle diameter - d₅ root diameter - $d_{R}$ diameter of measuring pins - $M_{\mathsf{R}}$ measurement over measuring pins - p chordal pitch, equal to chain pitch - a Even number of teeth - b Odd number of teeth Figure 8 — Measurement over measuring pins #### ISO 6971:2002(E) #### 5.2 Tooth gap form #### 5.2.1 General The tooth gap form shall have tooth flanks or a profile defined by the tooth flank (topping radius) $r_{\rm e}$ , the working face length and the barrel seating radius $r_i$ with a smooth blending from one portion to the next. #### 5.2.2 Working face The working face is the functional part of the tooth form. It shall not extend beyond the line through the adjacent pitch point which is perpendicular to the working face. The length of the working face shall be equal to $0.01p \times z$ . NOTE The working face length provides for approximately 6 % chain pitch elongation. #### 5.2.3 Pressure angle, $\theta$ The pressure angle is the angle between the pitch line of the chain link and the line perpendicular to the working face at the point of barrel contact. The pressure angle at any point on the working face shall be in accordance with Table 7. #### 5.2.4 Pitch diameter factor, $p_{cf}$ $$p_{\rm cf} = {\rm cosec}\bigg(\frac{180^{\circ}}{z}\bigg)$$ Values for $p_{cf}$ are given in Table 7. ## 5.2.5 Chain clearance diameter and outside diameter factor, $d_{\mathrm{qf}}$ $$d_{\mathsf{gf}} = \cot\left(\frac{180^{\circ}}{z}\right)$$ Values for $d_{qf}$ are given in Table 7. #### **5.2.6** Pitch line clearance, s $$s = 0.3 p$$ #### 5.2.7 Barrel seating radius, $r_i$ $$r_{i}$$ max. = 0,5 $d_{1}$ #### 5.2.8 Tooth flank (topping radius), $r_e$ $$r_{\rm e} = 0.5 \, p$$ Table 7 — Pitch diameter factor, chain clearance diameter and outside diameter factor and pressure angles | Number of teeth | Pitch diameter factor | Chain clearance diameter and outside diameter factor | Pressure angle | |-----------------|-----------------------|------------------------------------------------------|----------------| | z | $p_{cf}$ | $d_{gf}$ | heta° | | 5 | 5 1,701 | | 8 | | 6 | 2,000 | 1,73 | 9 | | 7 | 2,304 | 2,07 | 10 | | 8 | 2,613 | 2,41 | 11 | | 9 | 2,923 | 2,74 | 12 | | 10 | 3,236 | 3,07 | 13 | | 11 | 3,549 | 3,40 | 14 | | 12 | 3,863 | 3,73 | 15 | | 13 | 4,178 | 4,05 | 16 | | 14 | 4,494 | 4,38 | 17 | | 15 | 4,809 | 4,70 | 18 | | 16 | 5,125 | 5,03 | 19 | | 17 | 5,442 | 5,35 | 20 | | 18 | 5,758 | 5,67 | 20 | | 19 | 6,075 | 5,99 | 21 | | 20 | 6,392 | 6,31 | 21 | ## 5.3 Rim profile #### 5.3.1 Tooth width, $b_f$ $$b_{\rm f}$$ max. = 0,95 $b_{\rm 1}$ Values for $b_1$ are given in Table 1. ### 5.3.2 Tooth side relief, $b_a$ $$b_{a} = 0.12 b_{f}$$ $b_{\rm a}$ shall not exceed 9,6 mm. ## 5.3.3 Maximum chain clearance diameter, $d_{\rm q}$ $$d_{g} = p \left( d_{gf} - 0.05 \right) - h_{2}$$ The circle corresponding to this diameter defines the limit beyond which no portion of the hubs, beads, lugs or fillets shall extend in the proximity of the chain side plates. #### 5.4 **Tolerances** #### 5.4.1 Radial run-out The radial run-out between the bore and the root diameter shall not exceed the values given in Table 8. #### 5.4.2 Axial run-out The axial run-out, measured with reference to the bore and the flat part of the side face of the teeth, shall not exceed the values given in Table 8. #### 5.4.3 Bore Unless otherwise specified by agreement between the manufacturer and purchaser, bores shall be machined to the H9 limits specified in ISO 286-2. Table 8 — Tolerances Dimensions in millimetres | Pitch circle diameter | Root diameter radial run-out | Tooth side face axial run-out | | |-----------------------|------------------------------|-------------------------------|--| | d | | | | | < 305 | 1,524 | 2,286 | | | 305 to 609 | 3,048 | 3,81 | | | 610 to 914 | 5,08 | 5,334 | | | 915 to 1 219 | 7,62 | 6,858 | | | 1 220 to 1 524 | 8,382 | 8,382 | | | 1 525 to 1 830 | 9,144 | 9,906 | | #### 5.5 Marking It is recommended that sprockets be marked with the following information: - manufacturer's name or trademark; - number of teeth; b) - ISO chain number (see Table 1). c) Copyright International Organization for Standardization Provided by IHS under license with ISO No reproduction or networking permitted without license from IHS ICS 21.220.30 Price based on 14 pages © ISO 2002 - All rights reserved