INTERNATIONAL STANDARD

ISO 6930-2

First edition 2004-03-01

High yield strength steel plates and wide flats for cold forming —

Part 2:

Delivery condition for normalized, normalized rolled and as-rolled steels

Tôles et larges-plats en acier à haute limite d'élasticité pour formage à froid —

Partie 2: Conditions de livraison des aciers dans les états normalisé, de laminage normalisant et brut de laminage

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO 2004

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents

Page

Forew	vord	. iv
1	Scope	1
2	Normative references	1
3	Terms and definitions	2
4 4.1 4.2 4.3 4.4 5 5.1 5.2	General requirements Steelmaking process Method of deoxidation Production process Delivery condition Technical requirements Chemical composition Mechanical properties	2 2 3 3
5.3 6 6.1 6.2 6.3	Technical properties Inspection and testing General Test unit Position and orientation of sample	5 5 5
7 7.1 7.2 7.3 7.4	Test methods Tensile test Impact test Chemical analysis Retests	6 6 7
8	Inspection documents	7
9	Sorting and reprocessing	7
10	Marking	7
11	Information to be supplied by the purchaser	7
Anne	x A (informative) Bending and cold edging of steel plates and wide flats for cold forming	9
Biblio	graphy	11

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 6930-2 was prepared by Technical Committee ISO/TC 17, Steel, Subcommittee SC 3, Steels for structural purposes.

This first edition, together with ISO 6930-1:2001, cancels and replaces ISO 6930:1983 all clauses of which have been technically revised.

ISO 6930 consists of the following parts, under the general title *High yield strength steel plates and wide flats for cold forming*:

- Part 1: Delivery conditions for thermomechanically-rolled steels
- Part 2: Delivery condition for normalized, normalized rolled and as-rolled steels

High yield strength steel plates and wide flats for cold forming —

Part 2:

Delivery condition for normalized, normalized rolled and as-rolled steels

1 Scope

1.1 This part of ISO 6930 specifies the requirements for weldable high yield strength steels for cold forming.

This part of ISO 6930 applies to plates and wide-flats, hot-rolled on reversing mills, both having a thickness between 4 mm and 50 mm (inclusive) and supplied in the normalized, normalized rolled and as-rolled delivery condition.

- **1.2** This part of ISO 6930 does not apply to weldable structural steels, whether or not of special quality, which are covered by other International Standards, namely:
- high yield strength steel products for cold forming delivered in thermomechanically rolled condition (ISO 6930-1);
- structural steels (ISO 630);
- high yield strength flat steel products (ISO 4950-1, ISO 4950-2 and ISO 4950-3);
- hot-rolled steel sheet of higher yield strength with improved formability (ISO 5951).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 148, Steel — Charpy impact test (V-notch)

ISO 377, Steel and steel products — Location and preparation of samples and test pieces for mechanical testing

ISO 404:1992, Steel and steel products — General technical delivery requirements

ISO 2566-1:1984, Steel — Conversion of elongation values — Part 1: Carbon and low alloy steels

ISO 6892, Metallic materials — Tensile testing at ambient temperature

ISO 7438, Metallic materials — Bend test

ISO/TR 9769, Steel and iron — Review of available methods of analysis

---,,---,,,,------,,-,,-,,-,,-

ISO 10474, Steel and steel products — Inspection documents

ISO 14284, Steel and iron — Sampling and preparation of samples for the determination of chemical composition

Terms and definitions 3

For the purposes of this document, the following terms and definition apply.

3.1

as-rolled steel (AR)

steel without any special rolling and/or heat treatment condition

3.2

normalized steel (N)

steel obtained by a normalizing treatment, i.e. heat treatment consisting of austenitizing followed by cooling in

3.3

normalized rolled steel (N)

steel obtained by normalizing rolling

3.4

normalizing rolling (N)

rolling process in which the final deformation is carried out within a certain temperature range leading to a material condition equivalent to that obtained after normalizing so that the specified values of the mechanical properties are retained even after normalizing

3.5

wide flat

finished flat product of width greater than 150 mm and a thickness generally over 4 mm, always supplied in lengths, i.e not coiled and whose edges are sharp

The wide flat is hot-rolled on the four sides (or in box passes) or produced by shearing or flame-cutting wider flat products. Wide flats rolled on all four sides are sometimes termed universal plates.

[ISO 6929:1987]

General requirements

4.1 Steelmaking process

Unless otherwise specified at the time of the enquiry and the order, the steelmaking process is left to the discretion of the manufacturer; it shall, however, be possible to disclose it to the purchaser, if he so requests, at the time of the delivery.

Method of deoxidation 4.2

The steels shall be fully killed and made to a fine grain practice.

4.3 Production process

Unless otherwise specified at the time of the enquiry and the order, the production process is left to the discretion of the manufacturer.

4.4 Delivery condition

Plates and wide flats are supplied in the normalized, normalized rolled or as-rolled delivery condition.

Unless specially agreed at the time of enquiry and order, the products are generally supplied with their surface as-rolled. On request, they may be delivered with descaled surfaces. However, it is necessary to take into account the fact that certain descaling processes are liable to modify the cold forming properties.

By agreement with the purchaser, descaled products may be delivered with their surfaces protected.

The type of protection shall be agreed upon at the time of the enquiry or order.

5 Technical requirements

5.1 Chemical composition

5.1.1 Ladle analysis

The composition limits for the ladle analysis are given in Table 1.

Table 1 — Chemical composition of normalized, normalized rolled and as-rolled steels (ladle analysis, mass fracion)

	С	Mn	Si	Р	S	Al _{total}	Nd	V	Ti
Grades	% max.	% max.	% max.	% max.	% max. ^a	% min. ^b	% max. ^c	% max. ^c	% max. ^c
FeE 260	0,16	1,20	0,50	0,025	0,020	0,015	0,09	0,10	0,15
FeE 315	0,16	1,40	0,50	0,025	0,020	0,015	0,09	0,10	0,15
FeE 355	0,18	1,65	0,55	0,025	0,015	0,015	0,09	0,10	0,15
FeE 420	0,20	1,65	0,55	0,025	0,015	0,015	0,09	0,10	0,15
FeE 490	0,20	1,65	0,55	0,025	0,015	0,015	0,09	0,10	0,15
FeE 550	0,20	1,65	0,55	0,025	0,015	0,015	0,09	0,10	0,15

a If agreed upon at the time of enquiry and order, the sulfur content (mass fraction) shall be decreased to a maximum value of 0,010 % (ladle analysis).

5.1.2 Product analysis

If requested by the purchaser at the time of enquiry and order, a product analysis shall be carried out.

Table 2 gives the permissible deviations of the product analysis from the specified limits of the ladle analysis given in Table 1.

b If agreed upon at the time of enquiry and order, the minimum content of total aluminium (mass fraction) does not apply when other grain-refining elements are present in sufficient quantity.

The sum of niobium, vanadium, titanium contents (mass fractions) shall be a maximum of 0,22 %.

Table 2 — Permissible deviations for the product analysis in relation to the specified ladle analysis

Element	Specified limits %	Permissible deviation ^a
С	≤ 0,20	+ 0,02
Mn	≤ 1,65	+ 0,10
Si	≤ 0,55	+ 0,05
Р	≤ 0,025	+ 0,005
S	≤ 0,020	+ 0,002
Al _{total}	≥ 0,015	- 0,005
Nb	≤ 0,09	+ 0,01
V	≤ 0,10	+ 0,02
Ti	≤ 0,15	+ 0,01

The deviations apply either above or below the specified limits of the range, but not simultaneously. When maxima only are specified, the deviations are positive only.

Mechanical properties 5.2

The mechanical properties given in Table 3 apply to plates and wide flats supplied in the delivery condition given in 4.4 and are determined on test pieces in accordance with Clause 6.

The mechanical properties for products having a thickness greater than 20 mm shall be the subject of agreement at the time of enquiry or order.

If agreed upon at the time of the enquiry and order, the impact energy value shall be verified at 5.2.2 - 20 °C and shall meet a minimum average value of 40 J based on full size (10 mm × 10 mm) test piece (see 7.2). If the thickness is not sufficient for the preparation of full size impact test pieces, test pieces of smaller width shall be taken and the applicable values shall be decreased proportionally.

Table 3 — Mechanical properties for thicknesses up to 20 mm

Grade	Minimum yield strength	Tensile strength	Minimum percentage elongation at fracture		
			A %, with		
	R _{eH} N/mm ²	R _m N/mm ²	$L_0 = 5,65 \sqrt{S_0}$	L ₀ = 200 mm	
FeE 260 N	260	370 to 490	30		
FeE 315 N	315	430 to 550 27	20		
FeE 315 AR	313	≥ 390	21	20	
FeE 355 N	355	470 to 610	25	18	
FeE 355 AR	333	≥ 430	23	10	
FeE 420 N	420	530 to 670	23	15	
FeE 420 AR	420	≥ 490	23	15	
FeE 490 AR	490	≥ 550	18	12	
FeE 550 AR	550	≥ 620	15	10	

5.3 Technical properties

5.3.1 Weldability

The steels are weldable by all the appropriate processes when following the rules of technology.

A maximum value of the carbon equivalent (CEV) based on the ladle analysis can be agreed upon at the time of enquiry and order. The carbon equivalent value shall be determined using the following formula:

$$CEV = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$$

5.3.2 Bending and cold-edging ability

Information about bending and cold-edging ability is given in Annex A.

6 Inspection and testing

6.1 General

The product covered by this part of ISO 6930 shall be the subject of specific inspection and testing in accordance with the conditions specified in Clause 8 of ISO 404:1992 relating to the chemical composition and mechanical properties of the product.

6.2 Test unit

6.2.1 General

The verification of product analysis and mechanical properties shall be per cast (heat).

6.2.2 Tensile properties

A test unit shall contain products of the same form, grade and delivery condition and be from the same thickness range.

For a test unit not exceeding 50 t, one tensile test shall be carried out. For a test unit exceeding 50 t, two tensile tests shall be carried out.

6.2.3 Impact tests

A test unit shall contain products of same form, grade and delivery condition.

For a test unit not exceeding 50 t, one set of impact tests shall be carried out. For a test unit exceeding 50 t, two sets of impact tests shall be carried out.

Tests shall be carried out at $-20\,^{\circ}\text{C}$ using sub-surface specimens from the thickest product. (See 5.2.2 for impact energy values).

6.3 Position and orientation of sample

6.3.1 General

Sampling shall be carried out in such a way that the axis of the test piece is approximately equidistant from the centre line and the edge of the rolled product. See ISO 377.

6.3.2 Plate and wide flat of width at least 600 mm

The axis of the tensile test pieces shall be transverse to the direction of rolling if not otherwise agreed upon at enquiry;

The axis of the impact test pieces shall be parallel to the direction of rolling.

6.3.3 Wide flat less than 600 mm in width

The axis of the test pieces shall be parallel to the direction of rolling. However, if agreed upon for widths between 450 mm and 600 mm, a transverse test piece may be used.

Test methods

7.1 Tensile test

Normally the test piece used shall be a proportional prismatic or cylindrical test piece and have an original gauge length, L_0 , given by the formula:

$$L_0 = 5,65\sqrt{S_0}$$

where S_0 is the original cross-sectional area of the gauge length. See ISO 6892.

The prismatic test piece of rectangular cross-section shall have a maximum width on the gauge length portion of 40 mm, its thickness being that of the product.

A non-proportional test piece with fixed original gauge length may be used. In such a case and, if values have not been fixed, reference shall be made to the conversion table in ISO 2566-1:1984. However, in case of dispute, only the results obtained on a proportional test piece shall be taken into consideration.

The yield strength specified in Table 3 is the upper yield stress, $R_{\rm eH}$. If the yield phenomenon is not visible either the 0,2 % proof stress, $R_{\rm p0.2}$, or the 0,5 % total elongation $A_{\rm t0.5}$ may be used.

The specification of the materials is complied with in this respect if either value satisfies the specified value of yield strength. In cases of dispute, the 0,2 % proof strength, $R_{p0.2}$, shall be determined.

7.2 Impact test

The impact test shall normally be carried out on products having a thickness ≥ 12 mm or a diameter > 16 mm. The test piece shall be machined so that the face nearest to the rolled surface is not more than 1 mm from it; the notch shall be perpendicular to the rolling skin.

If agreed upon at the time of enquiry and order, impact tests may be carried out on products having a thickness between 6 mm and 12 mm (inclusive). The dimensions of the test pieces shall be in accordance with the requirements of ISO 148, i.e. $10 \text{ mm} \times 7.5 \text{ mm}$ or $10 \text{ mm} \times 5 \text{ mm}$ or be $10 \text{ mm} \times t$, where t is the product thickness.

The minimum required energy value for the smaller test pieces shall be decreased proportionally to the test piece width.

The test shall be carried out using a V-notch test piece supported at both ends (see ISO 148), the value to be taken into account being the average of the results obtained from three test pieces adjacent to each other from the same product, unless there are reasons for a retest (see 7.4).

7.3 Chemical analysis

7.3.1 If a product analysis is specified on the order, one sample shall be taken per cast unless otherwise specified on the said order.

The samples may be taken from the test pieces used to check the mechanical properties or from the full thickness of the product at the same place as the test pieces. In case of dispute, only the analysis of material from the full thickness of the product shall be taken into consideration.

For the selection and preparation of samples for chemical analysis, the requirements of ISO 14284 shall be applied.

7.3.2 In case of dispute about analytical methods, the chemical composition shall be determined in accordance with a reference method of ISO standards listed in ISO/TR 9769. If no standard exists, the method to be used shall be agreed upon by the parties concerned.

7.4 Retests

If, during inspection, a test does not give the required result, additional tests in accordance with ISO 404 shall be carried out.

8 Inspection documents

The type of inspection documents with respect to specific inspection and testing shall be chosen from those defined in ISO 10474 and specified in the order.

9 Sorting and reprocessing

The requirements of Clause 9 of ISO 404:1992 shall apply.

10 Marking

Unless otherwise agreed upon at the time of order, products shall bear the following marks:

- the identification symbols for the grade of steel;
- the brand of the manufacturer;
- symbols, letters and numbers which relate the inspection document test pieces and products to each other.

In the case of products of small unit mass and which are consigned in bundles, the above information may be marked on a tag securely attached to each bundle (or it may be marked on the topmost item in the bundle, if appropriate).

11 Information to be supplied by the purchaser

In addition to the information mentioned in ISO 404, the following information shall be also given if applicable:

- a) the particular steelmaking process required (4.1);
- b) the particular production process required (4.3);

- if product analysis is required (5.1.2) and the number of samples required (7.3.1);
- if impact tests are required (6.2.3); d)
- the type of inspection document required (Clause 8); e)
- other type of marking required (Clause 10). f)

Non-specified points shall not be taken into consideration by the manufacturer.

Annex A (informative)

Bending and cold edging of steel plates and wide flats for cold forming

A.1 General

In general terms, and more particularly in the case of difficult bending operations, it is in the interests of the user to consult the manufacturer as to the choice of the quality of steel and the conditions of use.

Furthermore, certain customary precautions shall be taken for grade FeE 550 (removal of the shearing cross-section at right angles to the folds).

A.2 Choice of the bending radius

The bending radius of the products depends on the practical conditions of fabrication, and it is difficult to give a specific minimum bending radius to be respected. However, under normal conditions of use, a bending radius can be provided in accordance with Table A.1.

Table A.1 — Minimum inside bend radii for normal conditions of use

Grade	Minimum inside bend radii for bend angle 180° ^{a, b} mm			
	4 ≤ <i>t</i> ≤ 6	6 < <i>t</i> ≤ 20		
FeE 260 N	0,5 t	1,0 t		
FeE 315 N	0,5 t	1,0 <i>t</i>		
FeE 315 AR	1,0 <i>t</i>	1,0 <i>t</i>		
FeE 355 N	0,5 t	1,0 <i>t</i>		
FeE 355 AR	1,5 <i>t</i>	1,5 <i>t</i>		
FeE 420 N	1,0 <i>t</i>	1,5 <i>t</i>		
FeE 420 AR	1,5 <i>t</i>	1,5 t		
FeE 490 AR	1,5 <i>t</i>	1,5 t		
FeE 550 AR	1,75 t	1,75 t		
a The values applies to transverse t	est pieces.			
t = thickness, in millimetres, of the test piece for bend test.				

Attention is drawn to the fact that these values may, under certain conditions, be

- increased if the products are subjected to certain descaling processes (e.g. shot-blasting);
- reduced or increased to take into consideration the practical conditions of use (length of the folds, preparation, etc.).

---,,,---,,,,,-------,,,-,,-,,-,,--

A.3 Test unit

One bend test shall be carried out by means of the test unit defined in 6.2.

A.4 Test piece

The test piece shall be of rectangular cross-section with a width ≥ 30 mm, and a thickness equal to that of the product. The longitudinal axis of the test piece shall be transverse to the direction of rolling.

A.5 Test method and interpretation

The test shall be carried out in accordance with ISO 7438. The small cracks on the edges of the test pieces, for the detection of which magnification is necessary, shall not be taken into consideration.

Bibliography

- [1] ISO 630:1995, Structural steels Plates, wide flats, bars, sections and profiles
- [2] ISO 4950-1:1995, High yield strength flat steel products Part 1: General requirements
- [3] ISO 4950-2:1995, High yield strength flat steel products Part 2: Products supplied in the normalized or controlled rolled conditions
- [4] ISO 4950-3:1995, High yield strength flat steel products Part 3: Products supplied in the heat-treated (quenched + tempered) condition
- [5] ISO 5951:2001, Hot-rolled steel sheet of higher yield strength with improved formability
- [6] ISO 6929:1987 Steel products Definitions and classification

ICS 77.140.50

Price based on 11 pages