International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION●MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ●ORGANISATION INTERNATIONALE DE NORMALISATION

Plain bearings — Pressed bimetallic half thrust washers — Features and tolerances

Paliers lisses — Demi-flasques de butée bimétalliques découpés à la presse — Caractéristiques et tolérances

First edition - 1983-12-15

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been authorized has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 6526 was developed by Technical Committee ISO/TC 123, Plain bearings, and was circulated to the member bodies in May 1982.

It has been approved by the member bodies of the following countries:

Austria Brazil

Germany, F.R. India Italy

Sweden United Kingdom

Czechoslovakia Egypt, Arab Rep. of Poland

USA USSR

Romania France

No member body expressed disapproval of the document.

Plain bearings — Pressed bimetallic half thrust washers — Features and tolerances

1 Scope and field of application

This International Standard specifies the main features and lays down tolerances for pressed bimetallic half thrust washers having an outside diameter up to 160 mm.

NOTES

- 1 All the linear dimensions and tolerances are expressed in millimetres.
- 2 The main dimensions for the half thrust washers are not the subject of an International Standard,

2 Symbols

The following symbols are used in this International Standard:

D = outside diameter of the washer

d = inside diameter of the washer

 H_D = washer height

 $e_{\rm T}$ = total washer thickness

 $E_{\rm D}$ = height at lug top

 F_{D} = height at lug root

A = lug width

 α = groove side angle

 $G_W = groove width$

 $G_{\rm E}$ = wall thickness at the back of the groove

 G_{X} = distance between groove and the washer axis

 r_1 = width of back chamfer or radius

r₂ = lug and joint face radius and lug fillet radius

 r_3 = width of sliding surface chamfer or radius

 $L_{\rm J}$ = scalloped toe width at joint face

t = depth of the sliding surface relief

l = height of of the sliding relief

 β = sliding surface relief angle at joint faces

p = flatness limit

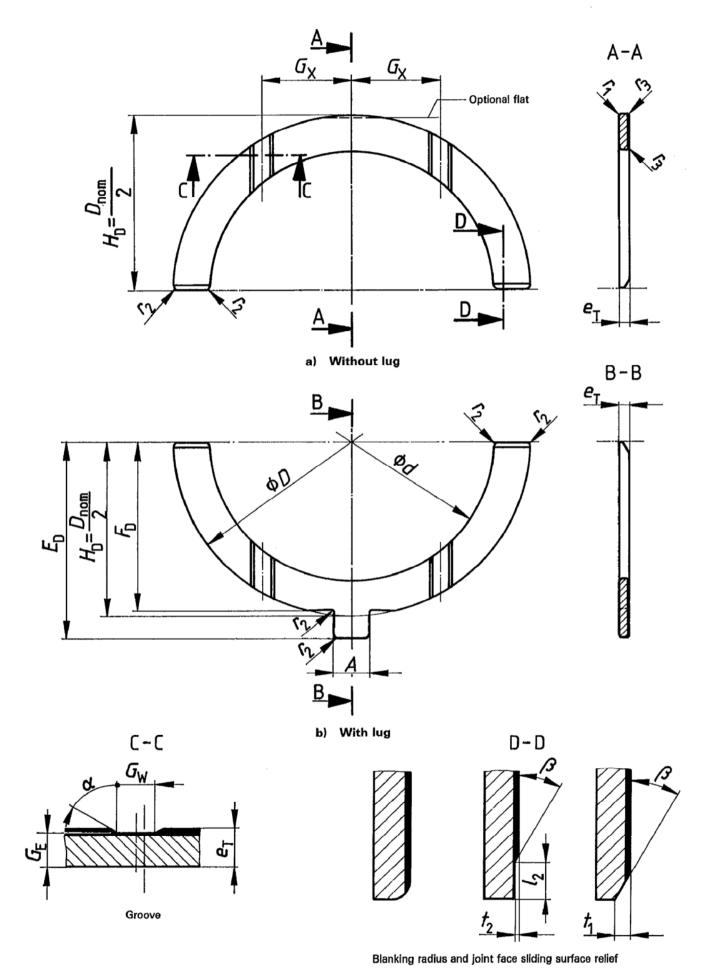


Figure 1 - Half thrust washers with and without lug

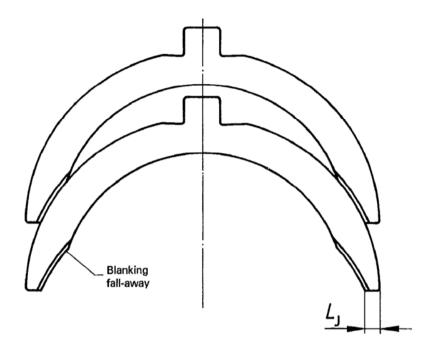


Figure 2 - Blanking fall-away for scalloped toe thrust washers

3 General tolerances

For dimensions without tolerance indication, the following values apply:

linear dimensions: ± 0,25 mm

angular dimensions: ± 5°

4 Tolerances for diameters and for heights

4.1 Tolerance for the outside diameter, D

Table 1

	Tolerance	
Above	Up to and including	loierance
_	120	0 - 0,25
120	160	0 -0,35

4.2 Tolerance for the inside diameter, d

Table 2

Above	Up to and including	Tolerance for d
	120	+ 0,25 0
120	160	+ 0,35 0

NOTE — The difference D-d should be greater than 7 imes e_{T}

4.3 Tolerances for heights H_D and F_D

Table 3

Above	D Up to and including	Tolerance for H_{D}	Tolerance for $F_{\rm D} = H_{\rm Dmin} - (r_{\rm 2max} + 0.5)$
_	120	0 -0,20	0
120	160	0 - 0,25	-0,5

5 Total thickness, e_{T}

Table 4

	D		e_{T} Preferred dimensions (original size)			Tolerance for e _T
Above	Up to and including	1,75	2	2,5	3.	
_	80	х	x			0 -0,05
80	120		x	×		0 -0,06
120	160			×	×	0 -0,07

NOTE — For over-sizes it is recommended to increase the total thickness by a 0,10 step to which the same tolerance as for the corresponding original size is applied.

6 Locating lug

6.1 Lug width, A

Table 5

	D		4
Above	Up to and including	Preferred dimension	Tolerance
	80	8	
80	120	10	- 0,25 - 0,50
120	160	12	5,25

6.2 Notch recess

The notch recesses to be mostly manufactured with a tolerance J_s13.

6.3 Lug length

The length of the lug is determined by dimension E_{D} given in table 6.

Table 6

	D	E_{D}
Above	Up to and including	Preferred dimension*
	80	H _D + 5
80	160	H _D + 8

^{*} Dimension $E_{\rm D}$ is left without a tolerance because it is the difference of two dimensions for which the normal tolerance of \pm 0,25 mm would apply.

NOTE — Lug design is usually as shown in figure 1 b), but washers can also be provided with an offset locating lug in order to avoid incorrect assembly.

7 Grooves

7.1 Groove width, G_W

Table 7

D		G _W	
Above	Up to and including	Preferred dimension	Tolerance
_	60	3,5	+0,50
60	160	4,5	0

7.2 Wall thickness at the back of the groove, G_E

Tolerance for $G_{\rm E}$: $\begin{array}{c} 0 \\ -0.30 \end{array}$

7.3 Groove position (with respect to the axis), G_X

Table 8

D		
Above	Up to and including	Tolerance for G_{X}
	60	± 1,5
60	160	± 2,5

8 Joint faces

Joint face forms are shown in figure 1 and also in figure 2 for scalloped toe where $L_{\text{Jmin}} = \frac{D-d}{4}$ or 3 mm whichever is the wider.

9 Fillet radii and chamfers

9.1 Radius on lug and joint faces and lug fillet radius, r_2

Table 9

e_{T}		Preferred maximum radius
Above	Up to and including	^r 2max
_	2,59	1
2,59	_	1,5

9.2 Joint face relief (Figure 1, section D-D)

It can be either a blanking radius or a relief the depth of which, t, should not exceed 30 % of the total thickness $e_{\rm T}$. Another design is shown in figure 1 (centre, section D-D).

The angle β should not exceed 30°.

9.3 Chamfer or radius between the sliding surface and side faces, r_3

Table 10

e _T Up to and including		Maximum width of chamfer or radius on sliding surface, "3max
. –	2,59	$0.1 \times \frac{(D-d)}{2}$
2,59	_	$0.15\times\frac{(D-d)}{2}$

9.4 Chamfer or radius between back and external side face, r_1

It can be either a blanking radius or a chamfer whose sharp edges shall be free of burrs. The latter can be at 45° and its width range can be $0.3 < r_1 < 0.6$ with a tolerance of ± 0.20 .

NOTES

- 1 Tool scoring due to chamfering operation is permissible on the lug and its depth can be equal to 0,15 mm over the maximum chamfer height.
- 2 The chamfer between the back and the inside face is not specified. It shall only be free of burrs.

10 Flatness

Half washers shall slide (under gravity) between parallel plates set at $e_{\mathsf{Tmax}} + p$ where p is given in table 11.

Table 11

D		Flatness limit
Above	Up to and including	p
_	80	0,10
80	120	0,12
120	160	0,15

11 Surface roughness

No mention is made of surface roughness due to the wide range of materials used.