# INTERNATIONAL STANDARD ISO 6182-3 Third edition 2012-12-01 # Fire protection — Automatic sprinkler systems — Part 3: # Requirements and test methods for dry pipe valves Protection contre l'incendie — Systèmes d'extinction automatiques du type sprinkler — Partie 3: Exigences et méthodes d'essai des postes de contrôle sous air Reference number ISO 6182-3:2012(E) ISO 6182-3:2012(E) #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2012 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland | <b>Contents</b> | | | | | | |-----------------|---------|--------------------------------------------------------------------------------------------|-----|--|--| | Fore | word | | iv | | | | Intro | duction | 1 | v | | | | 1 | | ) | | | | | _ | - | ative references | | | | | 2 | | | | | | | 3 | Term | s and definitions | 1 | | | | 4 | Requ | irements | | | | | | 4.1 | Nominal sizes | | | | | | 4.2 | Connections | | | | | | 4.3 | Rated working pressure | | | | | | 4.4 | Bodies and covers | | | | | | 4.5 | Strength (see 6.9) | | | | | | 4.6 | Access for maintenance | | | | | | 4.7 | Components | | | | | | 4.8 | Leakage (see 6.8) | 5 | | | | | 4.9 | Non-metallic components (excluding gaskets, seals and other elastomeric parts) (see & 6.5) | | | | | | 4.10 | Sealing assembly elements (see 6.3) | 6 | | | | | 4.11 | Clearances | | | | | | 4.12 | Hydraulic friction loss (see 6.7) | 8 | | | | | 4.13 | Endurance (see 6.6) | | | | | | 4.14 | Operational performance (see 6.11) | 9 | | | | | 4.15 | Drains | | | | | | 4.16 | Alarms (see 6.11) | 10 | | | | | 4.17 | Valve impairment | | | | | 5 | Prod | uction testing and quality control | 10 | | | | 6 | Tests | | 10 | | | | | 6.1 | Samples | 10 | | | | | 6.2 | Spring and diaphragm test (see 4.7) | 10 | | | | | 6.3 | Sealing element tests (see 4.10) | | | | | | 6.4 | Warm water ageing test for non-metallic components (excluding gaskets and seals) (s | see | | | | | 6.5 | Air ageing test for non-metallic components (excluding gaskets and seals) (see 4.9) | 12 | | | | | 6.6 | Endurance test (see 4.13) | | | | | | 6.7 | Hydraulic friction loss test (see 4.12) | | | | | | 6.8 | Valve leakage and deformation test (see 4.8) | 12 | | | | | 6.9 | Body strength test (see 4.5) | | | | | | 6.10 | Operational test (see 4.14) | 13 | | | | | 6.11 | Anti-reseating test (see 4.7.7) | 15 | | | | | 6.12 | Quick release (see 4.7.8) | 15 | | | | | 6.13 | Salt mist corrosion test | 16 | | | | 7 | Mark | ing | 16 | | | | 8 | Manu | ıfacturer's installation instructions | 17 | | | | Anne | x A (no | rmative) <b>Tolerances</b> | 18 | | | | Bibli | ograph | y | 19 | | | #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 6182-3 was prepared by Technical Committee ISO/TC 21, *Equipment for fire protection and fire fighting*, Subcommittee SC 5, *Fixed firefighting systems using water*. This third edition cancels and replaces the second edition (ISO 6182-3:2005), which has been technically revised. ISO 6182 consists of the following parts, under the general title *Fire protection — Automatic sprinkler systems*: - Part 1: Requirements and test methods for sprinklers - Part 2: Requirements and test methods for wet alarm valves, retard chambers and water motor alarms - Part 3: Requirements and test methods for dry pipe valves - Part 4: Requirements and test methods for quick-opening devices - Part 5: Requirements and test methods for deluge valves - Part 6: Requirements and test methods for check valves - Part 7: Requirements and test methods for early suppression fast response (ESFR) sprinklers - Part 8: Requirements and test methods for pre-action dry alarm valves - Part 9: Requirements and test methods for water mist nozzles - Part 10: Requirements and test methods for domestic sprinklers - Part 11: Requirements and test methods for pipe hangers - Part 12: Requirements and test methods for grooved-end components for steel pipe systems ### Introduction This part of ISO 6182 is one of a number of International Standards prepared by ISO/TC 21 covering components for automatic sprinkler systems, including the following: - a) Carbon dioxide systems (ISO 6183); - b) Explosion suppression systems (ISO 6184). An International Standard covering foam systems is planned. ### Fire protection — Automatic sprinkler systems — #### Part 3: ## Requirements and test methods for dry pipe valves #### 1 Scope This part of ISO 6182 specifies performance, requirements, methods of test and marking requirements, for dry pipe valves and manufacturer's specified relevant trim used in dry pipe automatic fire protection systems. Performance and test requirements for other auxiliary components or attachments to dry pipe valves are not covered by this part of ISO 6182. Quick opening devices, including accelerators, used with dry pipe valves are covered in 6182-4. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 898-1, Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws and studs with specified property classes — Coarse thread and fine pitch thread ISO 898-2, Mechanical properties of fasteners made of carbon steel and alloy steel — Part 2: Nuts with specified property classes — Coarse thread and fine pitch thread #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 #### alarm device mechanical or electrical device to sound an alarm upon operation of the valve #### 3.2 #### automatic drain normally open device that automatically drains water from and vents the intermediate chamber of a valve to the atmosphere when the valve is in the ready position, and limits water flow from the chamber after the valve has tripped #### 3.3 #### clapper type of sealing element NOTE See also 3.18. #### 3.4 #### corrosion-resistant material metallic material of bronze, brass, Monel $^{1)}$ metal, austenitic stainless steel, or equivalent, or plastic material conforming with the requirements of this part of ISO $6182\,$ <sup>1)</sup> Monel is an example of a suitable product available commercially. This information is given for the convenience of users of this part of ISO 6182 and does not constitute an endorsement by ISO of this product. #### 3.5 #### differential ratio of service pressure to system air pressure (expressed as gauge pressures) at the trip point See also 3.24. NOTE #### 3.6 #### differential-type valve type of valve in which air pressure in the system acts directly and/or indirectly on the sealing assembly to maintain it in the closed position The air seat of the sealing assembly is of equal or larger diameter than the diameter of the water seat of the sealing assembly, with the two separated by an intermediate chamber maintained at atmospheric pressure. #### 3.7 #### dry pipe system automatic fire protection system in which the piping contains air or nitrogen under pressure, the release of which allows water from a water supply to discharge through the system #### 3.8 #### dry pipe valve valve that controls the flow of water into a dry pipe sprinkler system and incorporates provision for actuation of an alarm under specified conditions #### 3.9 #### flow velocity speed of water flow through a valve expressed as the equivalent water velocity through a pipe of the same nominal size as the valve #### 3.10 #### intermediate chamber that part of a valve which separates the air and/or water sealing assembly seating surfaces and is at atmospheric pressure when the valve is in the ready condition #### 3.11 #### leak point system air pressure for a specific service pressure at which water begins to flow from the intermediate chamber, automatic drain valve or alarm connection #### 3.12 #### mechanical-type valve type of valve in which the air pressure in the system acts on the sealing assembly and linking mechanism to maintain it in the closed position #### 3.13 #### minimum opening pressure minimum pressure when water begins to pass through the valve #### 3.14 #### priming water water used to seal a sealing assembly and prevent cementation of working parts #### 3.15 #### rated working pressure maximum service pressure at which a valve is intended to operate #### 3.16 #### ready (set) condition state of a valve with the sealing assembly in the closed or set position with service and system pressure applied #### 3.17 #### reinforced elastomeric element element of clapper, clapper assembly or seat seals in a composite of an elastomeric compound with one or more other components #### 3.18 #### sealing assembly main movable sealing element (such as a clapper or diaphragm) of the valve which prevents the reverse flow of water and which maintains air pressure in the system piping #### 3.19 #### sealing assembly seat ring main fixed sealing element of a valve which prevents the reverse flow of water and which maintains air pressure in the system piping #### 3.20 #### service pressure static water pressure at the inlet to a valve when the valve is in the ready condition #### 3.21 #### system air pressure static air pressure in the system piping when the valve is in the ready condition #### 3.22 #### system pressure static water pressure at the main outlet of a valve when the valve is in the ready condition #### 3.23 #### trim external equipment and pipework, excluding the main installation pipework, fitted to valve installation assembly #### 3.24 #### trip point point at which a valve operates, admitting water into the system, measured in terms of the system air pressure at a given service pressure #### 3.25 #### water motor alarm hydraulically driven device which provides a local audible alarm as a result of a flow through a valve #### 4 Requirements #### 4.1 Nominal sizes The nominal size of a valve shall be the nominal diameter of the inlet and outlet connections, i.e. the pipe size for which the connections are intended. Sizes shall be 40 mm, 50 mm, 65 mm, 80 mm, 100 mm, 125 mm, 150 mm, 200 mm, 250 mm or 300 mm. The diameter of the waterway through the sealing assembly seat ring may be less than the nominal size. #### 4.2 Connections - **4.2.1** All connections shall have been designed for use at the rated working pressure of the valve. - **4.2.2** The dimensions of all connections shall conform with the applicable requirements of International Standards. If International Standards are not applicable, national standards shall be permitted to be used. - **4.2.3** An opening not smaller than 15 mm nominal diameter shall be provided for an alarm line connection. #### ISO 6182-3:2012(E) - **4.2.4** If priming water is required to seal the downstream side of the sealing assembly, an external means shall be provided to introduce the priming water. - **4.2.5** Means shall be provided to prevent or drain water columning and to check the level of priming water (if required). - **4.2.6** Suitable means shall be provided to facilitate testing of alarms without tripping the valve. - **4.2.7** For differential-type valves, suitable means shall be provided to vent water from the intermediate chamber and to prevent a partial vacuum between the upstream and downstream sealing elements of the sealing assembly. #### 4.3 Rated working pressure - **4.3.1** The rated working pressure shall be not less than 1,2 MPa (12 bar). - **4.3.2** Inlet and outlet connections shall be permitted to be machined for lower working pressures to match installation equipment provided the valve is marked with the lower working pressure. See 7.3 f). #### 4.4 Bodies and covers - **4.4.1** The body and cover shall be made of a material having corrosion resistance at least equivalent to cast iron. - **4.4.2** Cover fasteners shall be made of steel, stainless steel, titanium, or other materials with equivalent physical and mechanical properties. - **4.4.3** Non-metallic materials other than gaskets, diaphragms and seals or metals with a melting point less than $800\,^{\circ}\text{C}$ shall not form part of the valve body or cover. - **4.4.4** It shall not be possible to assemble the valve with the cover plate in a position which either improperly indicates flow direction or prevents proper operation of the valve. #### 4.5 Strength (see 6.9) - **4.5.1** An assembled valve, with the sealing assembly blocked open, shall withstand, without rupture, an internal hydrostatic pressure of four times the rated working pressure for a period of 5 min, when tested as specified in 6.9. - **4.5.2** If the test in accordance with 6.9 is not done with standard production fasteners, the supplier shall provide documentation showing that the calculated design load of any standard production fastener, neglecting the force required to compress the gasket, does not exceed the minimum tensile strength specified in ISO 898-1 and ISO 898-2, when the valve is pressurized to four times the rated working pressure. The area of the application of pressure shall be calculated as follows. - a) If a full-face gasket is used, the area of application of pressure is that extending out to a line defined by the inner edge of the bolts. - b) If an "O"-ring seal or ring gasket is used, the area of application of force is that extending out to the center line of the "O"-ring or gasket. #### 4.6 Access for maintenance Means shall be provided to permit access to working parts and removal of the sealing assembly. Any method adopted shall permit ready maintenance by one person with a minimum of down time. #### 4.7 Components - **4.7.1** Any component which may normally be disassembled during servicing shall be designed so that it can not be reassembled improperly without providing an external visual indication, when the valve is returned to service. - **4.7.2** With the exception of valve seats, all parts intended for field replacement shall be capable of being disassembled and reassembled using tools normally employed by the trade. - **4.7.3** All components shall be non-detachable during normal operation of the valve. - **4.7.4** Failure of the sealing assembly diaphragms or seals shall not prevent the valve from opening. - **4.7.5** Sealing surfaces of sealing assemblies, including the sealing assembly seat ring, shall have corrosion resistance equivalent to brass or bronze and have sufficient width of surface contact to withstand ordinary wear and tear, rough usage, compression stresses and damage due to pipe scale or foreign matter carried by the water. - **4.7.6** Springs and diaphragms shall not fracture or rupture during 5 000 cycles of normal operation, when tested in accordance with 6.2. - **4.7.7** There shall be no sign, on visual examination, of damage to the sealing assembly after testing for the operational requirements of 4.14 in accordance with 6.11 and 6.12. - **4.7.8** When wide open, the sealing assembly shall bear against a definite stop. The opening of the valve or the reaction of the water shall not permanently twist, bend or fracture valve parts. - **4.7.9** Where rotation or sliding motion is required, the part or its bearing shall be made of a corrosion-resistant material. Materials lacking corrosion resistance shall be fitted with bushings, inserts or other parts made of corrosion-resistant materials at those points where freedom of movement is required. - **4.7.10** A valve having a differential of the sealing assembly exceeding 1,16 to 1 for a service pressure range of 0,14 MPa (1,4 bar) to rated working pressure shall be provided with an anti-seat latch that prevents the valve from resetting automatically. The valve shall require manual means to return the valve to the ready (set) condition. It shall not be possible to return the valve to the ready (set) condition before draining the pipe work. - **4.7.11** A valve having a differential of 1,16 to 1 or less over a service pressure range of 0,14 MPa (1,4 bar) to rated working pressure shall be provided with means to prevent the valve from automatically returning to the ready (set) condition and to permit draining of the pipework after the valve has tripped. Manual or external means shall be provided to return the valve to the ready (set) condition. #### 4.8 Leakage (see 6.8) - **4.8.1** There shall be no leakage, permanent distortion or rupture of a valve, when an internal pressure of twice the rated working pressure is applied for 5 min with the sealing assembly open in accordance with 6.8.1. - **4.8.2** No leakage shall be permitted across the sealing assembly into the intermediate chamber or into the alarm port, when tested in accordance with 6.8.2. There shall be no leakage, permanent distortion or rupture of a valve at an internal pressure of twice the rated working pressure applied to the upstream side of the sealing assembly for 2 h with the downstream end pressurized in accordance with 6.8.2 - **4.8.3** Mechanical type valves shall show no signs of leakage, permanent distortion or structural failure when subjected to an internal hydrostatic pressure of twice the rated working pressure applied for a period of 2 h to the upstream end of the valve with the sealing assembly closed and the downstream end vented in accordance with 6.8.3. Following this test, the valve shall operate in accordance with 4.14, when tested once in accordance with 6.11.2 at a service pressure of 0,2 MPa (2 bar). - **4.8.4** Valves fitted with a latch shall withstand, without leakage, permanent distortion or structural failure, an internal hydrostatic pressure of twice the maximum air pressure specified by the manufacturer for a period of 5 minutes applied to the downstream side of the valve with the sealing assembly closed and the upstream end vented in accordance with 6.8.4. Following this test, the valve shall operate in accordance with 4.14, when tested once in accordance with 6.11.2 at a service pressure of 0,2 MPa (2 bar). - **4.8.5** Valves not fitted with a latch shall withstand, without leakage, permanent distortion or structural failure, an internal hydrostatic pressure of twice the rated working pressure for a period of 5 min applied to the downstream side of the valve with the sealing assembly closed and the upstream end vented in accordance with 6.8.4. Following this test, the valve shall operate in accordance with 4.14 when tested once in accordance with 6.11.2 at a service pressure of 0,2 MPa (2 bar). # 4.9 Non-metallic components (excluding gaskets, seals and other elastomeric parts) (see 6.4 & 6.5) Non-metallic valve parts that may affect proper valve function as defined in this International Standard shall be subjected to the applicable ageing of its non-metallic parts as described in 6.4 and 6.5 using separate sets of samples, as applicable. After ageing, a valve shall meet the requirements of 4.8, 4.13 and 4.14, when tested in accordance with the applicable tests described in 6.6, 6.8 and 6.11. #### 4.10 Sealing assembly elements (see 6.3) - **4.10.1** A seal made of elastomeric or other resilient materials shall not adhere to the mating surface when tested in accordance with 6.3.1. Where the same design of seat is used for more than one size of valve, it shall be permitted to only test the size with the highest stress on the seating surface. - **4.10.2** Sealing surfaces shall prevent leakage of water into the alarm port, when the valve is tested in the ready position in accordance with 6.11. #### 4.11 Clearances The requirements in 4.11 are applicable to hinged, clapper-type valves only. - **4.11.1** The radial clearance between a hinged sealing assembly and the inside walls in every position except wide open shall not be less than 12 mm for cast iron bodies and shall not be less than 6 mm if the body and sealing assembly are of cast iron or steel with corrosion protective coatings tested in accordance with 6.14, non-ferrous material, stainless steel or materials having equivalent physical, mechanical and corrosion-resistant properties. See Figure 1 a). - **4.11.2** There shall be a diametrical clearance [see Figure 1b)] between the inner edges of the seat ring and the metal parts of the sealing assembly when in the closed position (excluding any latching mechanisms) as follows: - a) for compression snap-type sealing assemblies of corrosion-resistant materials, the diametrical clearance shall be not less than 0,7 mm; - b) for other types of sealing assemblies, the diametrical clearance shall be not less than 3 mm. - **4.11.3** Any space in which the sealing assembly can trap debris beyond the seat shall be not less than 3 mm deep. - **4.11.4** The diametrical clearance between hinge pins and their bearings shall be not less than 0,125 mm. - **4.11.5** The total axial clearance between the clapper hinge and adjacent valve body bearing surfaces shall be not less than 0,25 mm. See Figure 1 c) or Figure 1 d). - **4.11.6** Any reciprocating guide components, which are essential to allow a valve to open, shall have a minimum diametrical clearance of not less than 0,7 mm in that portion over which the moving component enters the fixed component and of not less than 0,05 mm in that portion of the moving component continuously in contact with the fixed component in the ready (set) position. - **4.11.7** Sealing assembly guide bushings or hinge-pin bearings shall project a sufficient axial distance to maintain not less than 1,5 mm (bushing projection) clearance between ferrous metal parts. See Figure 1. Clearance less than 1,5 mm shall be permitted where adjacent parts are of bronze, brass, Monel metal, austenitic stainless steel, titanium, or similar corrosion-resistant materials. When corrosion resistance of steel parts is provided by a protective coating, the parts shall show no visible signs of deterioration of the coating such as blistering, delamination, flaking or increased resistance to movement when tested in accordance with 6.13. - **4.11.8** If provided, a compensator shall be designed such that deposits or sediment will not readily accumulate to an extent sufficient to interfere with its proper operation. There shall be sufficient clearances between the working parts to allow proper sealing of the main and any auxiliary valves. a) Radial clearance, $C_R = R_2 - R_1$ **b)** Diametrical clearance, $C_D = D_2 - D_1$ c) Total axial clearance, $C_{TA}$ $C_{TA}$ = $L_2$ – $L_1$ ; Bushing projection = $(L_3 - L_2)/2$ d) Total axial clearance, $C_{TA}$ $C_{TA}$ = $L_2$ - $L_4$ ; Bushing projection = $(L_3 - L_2)/2 + (L_4 - L_1)/2$ #### Key - valve body 1 - 2 pin - 3 sealing assembly - bushings Figure 1 — Types of clearances ### 4.12 Hydraulic friction loss (see 6.7) The pressure loss across the valve at the appropriate flow given in Table 1, when tested by the method of 6.7, shall not exceed the pressure loss published in the manufacturer's installation instructions. See 8.1. Table 1 — Required flow rates for pressure drop determination | Nominal size | Flow rate | |--------------|-----------| | mm | l/min | | 40 | 380 | **Table 1** (continued) | Nominal size<br>mm | Flow rate<br>l/min | |--------------------|--------------------| | 50 | 590 | | 65 | 1 000 | | 80 | 1 510 | | 100 | 2 360 | | 125 | 3 680 | | 150 | 5 300 | | 200 | 9 920 | | 250 | 14 720 | | 300 | 21 200 | #### **4.13 Endurance (see 6.6)** The valve and its moving parts shall show no sign of distortion, cracks, loosening, separation or other sign of failure, following 30 min of water flow in accordance with 6.6. #### 4.14 Operational performance (see 6.11) - **4.14.1** A dry pipe valve with associated trim shall operate and provide an indication of operation at any service pressure within the ranges of 0,14 MPa (1,4 bar) to rated working pressure with the mechanical and/or electrical alarm devices pressurized to at least 0,05 MPa (0,5 bar), when tested in accordance with 6.11. The alarm devices shall sound for more than 50 % of the time for all flow conditions through a tripped valve. - **4.14.2** A differential-type valve shall have a working differential within the range of 5:1 to 8,5:1 at 0,14 MPa (1,4 bar) service pressure and within the range of 5:1 to 6,5:1 at all higher service pressures, when tested in accordance with 6.11. - **4.14.3** A mechanical-type dry pipe valve shall operate at an air pressure between 0,025 MPa (0,25 bar) and a fifth of the rated working pressure for all water pressures from 0,14 MPa (1,4 bar) to the rated working pressure, when tested in accordance with 6.11. #### 4.15 Drains - **4.15.1** The valve shall be provided with a tapped opening to drain water from the valve body, when the valve is installed in any position specified or recommended by the manufacturer. The minimum opening size shall be 20 mm nominal. - **4.15.2** The valve shall be provided with a drain on the downstream side of a minimum 15 mm nominal size, which may be the same drain as provided in 4.15.1. - **4.15.3** Drain openings on valves shall be permitted to be used for draining the system pipework, when sized in conformance with applicable system installation standards. - **4.15.4** Means shall be provided to automatically drain the piping between the valve, or any alarm shut-off valve, and any alarm device attached to the alarm line. - **4.15.5** An intermediate chamber of a valve shall be provided with an automatic drain. ISO 6182-3:2012(E) **4.15.6** Flow or velocity-type automatic drain valves shall close (i.e. substantially restrict flow) when tested in accordance with 6.11. Such valves shall remain closed during drainage of the system until pressure effective at the sealing mechanism becomes less than 0,03 MPa (0,3 bar) and shall open at a pressure between 0,0 035 MPa (0,035 bar) and 0,03 MPa (0,3 bar). **4.15.7** The flow through the drain shall not exceed 0,63 l/s at any service pressure up to the rated working pressure. #### 4.16 Alarms (see 6.11) **4.16.1** A valve shall actuate its associated mechanical and electrical alarm devices at flow velocities through the valve up to 5 m/s, based on nominal pipe size, at inlet supply pressures of 0,14 MPa (1,4 bar) to the rated working pressure, when tested for operation in accordance with 6.11. **4.16.2** The valve shall provide at least a pressure of 0,05 MPa (0,5 bar) at its alarm port at a service pressure of 0,14 MPa (1,4 bar) while supplying a nozzle with a k-factor of 10, when tested in accordance with 6.10. #### 4.17 Valve impairment **4.17.1** While the valve is in the ready condition, it shall not be possible to interfere with the valve operating mechanism by external tampering. **4.17.2** A valve capable of being pressurized without its cover plate in place shall have some means of signaling a "cover off" condition. #### 5 Production testing and quality control **5.1** It shall be the responsibility of the manufacturer to implement and maintain a quality control program to ensure that his production continuously meets the requirements of this part of ISO 6182 in the same manner as the originally tested samples. **5.2** Every manufactured valve shall pass a hydrostatic body test for a period not less than 1 min at twice the rated working pressure without leakage. **5.3** Following the hydrostatic body test in 5.2, every manufactured valve shall pass an operation test for correct functioning, including latching of the clapper upon tripping, if appropriate, and flow from the alarm port. **5.4** Every manufactured valve shall withstand, without leakage at the valve seat, an internal hydrostatic pressure of twice the rated working pressure applied upstream of the clapper. #### 6 Tests #### 6.1 Samples A representative sample of each size of valve shall be subjected to the following tests. #### 6.2 Spring and diaphragm test (see 4.7) Subject the spring or diaphragm in the normal mounting to 5 000 cycles of normal operation in air or water. The components shall not be operated at a rate exceeding 6 cycles per minute. For sealing assembly springs, the sealing assembly shall be rotated off the seat to a 45° angle and slowly return to the closed position. For internal bypass springs, the bypass shall be operated from the fully open position to the closed position. Diaphragms shall be flexed from the normally open to the normally closed position. #### 6.3 Sealing element tests (see 4.10) #### 6.3.1 Release test Prior to conducting this test the minimum opening pressure of the valve needs to be determined. With the valve in a normal working position and the sealing assembly in the closed position, a hydrostatic pressure of 0,35 MPa (3,5 bar) shall be applied to the outlet end of the valve for a period of 90 days. During this period, the water temperature shall be maintained at $87 \pm 2$ °C by an immersion heater or other suitable heating device. Provisions shall be made to maintain the water in the inlet end of the valve at atmospheric pressure. Upon completion of this period of exposure, the water shall be drained from the valve and the valve shall be allowed to cool to ambient temperature for at least 24 h. With the outlet end of the valve at atmospheric pressure, a hydrostatic pressure of 0,035 MPa (0,35 bar) above the minimum opening pressure shall be gradually applied to the inlet end of the valve. The sealing assembly shall move off the seat and no piece of the seal other than colour shall adhere to the mating surface. Where the same design of a seal is used for more than one size of valve, only a sample of the size with the highest stress on the seating surface shall be tested. # 6.4 Warm water ageing test for non-metallic components (excluding gaskets and seals) (see 4.9) Four untested samples of each component shall be immersed in tap water at 87 ± 2 °C for 180 days. If a material cannot withstand the temperature indicated without excessive softening, distortion, or deterioration, a water ageing test shall be conducted at a lower temperature, but not less than 70 °C, for a longer period of time. The duration of exposure shall be calculated from Equation (1): $$t = 74.857 e^{-0.0693T}$$ (1) where - t is the exposure duration, expressed in days; - e is the base of natural logarithms (= 2,718 3); - *T* is the test temperature, expressed in degrees centigrade. NOTE This equation is based on the 10 °C rule, i.e. for every 10 °C rise, the rate of a chemical reaction is approximately doubled. When applied to plastic ageing, it is assumed that the life at a temperature, T, in °C, is half the life at (T-10) °C. The samples shall be removed from the water and allowed to cool to room temperature for examination for a minimum of 24 h. The components shall be examined for cracking, warping, creep, or other signs of deterioration which would preclude the proper operation of the device. The parts are then to be assembled into valves and shall comply with the requirements of 4.8.1 and 4.14 when tested in accordance with 6.8 and 6.11. #### Air ageing test for non-metallic components (excluding gaskets and seals) (see 4.9) 6.5 Four untested samples of each component shall be aged in an air oven at 120 ± 2 °C for 180 days. The samples shall be tested in contact with the mating materials under stresses comparable to the intended use at rated working pressure. The components shall be supported so that they do not touch each other or the sides of the oven. If a material cannot withstand the temperature indicated without excessive softening, distortion or deterioration, a water aging test shall be conducted at a lower temperature, but not less than 70 °C, for a longer period of time. The duration of exposure shall be calculated from Equation (2): $$t = 737\ 000\ e^{-0.069\ 3T}$$ (2) where - is the exposure duration, expressed in days; t - is the base of natural logarithms (= 2,718 3); - Tis the test temperature, expressed in degrees centigrade. This equation is based on the 10 °C rule, i.e. for every 10 °C rise, the rate of a chemical reaction is NOTE approximately doubled. When applied to plastic ageing, it is assumed that the life at a temperature, T, in °C is half the life at (T-10) °C. The samples shall be removed from the oven and allowed to cool to room temperature for examination for a minimum of 24 h. The components shall be examined for cracking, warping, creep, or other signs of deterioration which would preclude the proper operation of the device. The parts are then to be assembled into valves and shall comply with the requirements of 4.8.1 and 4.14, when tested in accordance with 6.8 and 6.11. #### 6.6 Endurance test (see 4.13) Using the test apparatus, adjust the flow rate to the appropriate value given in Table 1, with a tolerance of $^{+5}_{0}$ %. Sustain a water flow through the valve at this rate for $(30^{+5})$ min. Examine the valve for compliance with the requirements of 4.13. #### 6.7 Hydraulic friction loss test (see 4.12) Install the valve in a test apparatus using piping of the same nominal diameter (see 4.1). Use a differential pressure-measuring device accurate to ± 2 % of value. Measure and record the differential pressure across the valve at a range of flows above and below the flows shown in Table 1. Replace the valve in the test apparatus by a section of pipe of the same nominal size and measure the differential pressure over the same range of flows. Using graphical methods, determine the pressure drops at the flows shown in Table 1. Record the hydraulic friction loss as the difference between the pressure drop across the valve and the pressure drop across the replacement pipe. #### Valve leakage and deformation test (see 4.8) 6.8 #### 6.8.1 Body leakage test Install the valve in a pressure test apparatus with the sealing assembly in the open position. Seal all openings in the valve body. Apply hydrostatic pressure of twice the rated working pressure for a period of 5 min and inspect the valve during this time for signs of leakage. The valve shall conform to the requirements of 4.8.1. #### 6.8.2 Sealing assembly test (below to above sealing assembly) With the sealing assembly in the closed position, prime the valve body when required by the manufacturer's instructions. Apply air pressure at a rate not exceeding 0,14 MPa/min (1,4 bar/min) up to a pressure of 0,07 MPa (0,7 bar) above the trip point for the valve at its rated working pressure. Apply a hydrostatic pressure equal to the rated working pressure upstream of the sealing assembly and maintain this pressure for 2 h. During the application of hydrostatic pressure there shall not be leakage: - a) across the sealing assembly; - b) into the intermediate chamber (differential type); - c) into the alarm port (mechanical type). The valves shall conform to the requirements of 4.8.2. #### 6.8.3 Sealing assembly test (mechanical type valves) Fill the upstream end of the valve with water, while keeping the sealing assembly closed by the application of pressure on the appropriate devices and parts. Isolate these, if necessary, from the downstream end of the valve and keep this end vented. Increase hydrostatic pressure to the upstream end from zero to twice rated working pressure at a rate not exceeding 0,14 MPa/min (1,4 bar/min). Maintain this pressure for 2 h. Examine for leakage, deformation and structural failure. The valve shall conform to the requirements of 4.8.3. #### 6.8.4 Leakage test for latched valves (above to below sealing assembly) With the sealing assembly in the closed position, fill the valve body downstream of the sealing assembly with water. Apply hydrostatic pressure downstream of the sealing assembly at a rate not exceeding 0,14 MPa/min (1,4 bar/min) up to a pressure of twice the maximum manufacturer's specified installation air pressure. Maintain the hydrostatic pressure for 5 min. The valve shall conform to the requirements of 4.8.4. #### 6.8.5 Leakage test for unlatched valves (above to below sealing assembly) With the sealing assembly in the closed position, fill the valve body downstream of the sealing assembly with water. Apply hydrostatic pressure downstream of the sealing assembly at a rate not exceeding 0,14 MPa/min (1,4 bar/min) up to a pressure of twice the rated working pressure. Maintain the hydrostatic pressure for 5 min. The valve shall conform to the requirements of 4.8.5. #### 6.9 Body strength test (see 4.5) For the purpose of this test, standard production bolts, gaskets and seals may be replaced by components capable of withstanding the test pressure. The valve inlet and outlet connections and all other openings shall be sealed. There shall be a connection for hydrostatically pressurizing the assembled sample valve at the inlet connection and a means of venting air and pressurizing fluid at the outlet connection. With the sealing assembly blocked open, the sample valve assembly shall be internally hydrostatically pressurized at four times the rated working pressure, but not less than 4,8 MPa (48 bar), for a period of 5 min. The sample valve shall be assessed in accordance with 4.5.1. #### 6.10 Operational test (see 4.14) #### **6.10.1** General Subject the valve to a series of operational tests at water service pressures of 0,14 MPa (1,4 bar) and from 0,2 MPa (2 bar) to the rated working pressure in increments of 0,1 MPa (1 bar), using the test installation shown in Figure 2. #### Kev - 1 150 mm quick-opening valve - 2 dry pipe valve under test - 3 shut-off valve - 4 water reservoir - 5 pressure gauge $NOTE \qquad Remove all air from piping between quick-opening device and inlet side of dry pipe valve prior to each test. \\$ - a To atmosphere. - b Supply of 1,9 m<sup>3</sup> capacity. - c Air. - d Water (typical). - e Water capacity (see Table 1). Figure 2 — Installation for operational and anti-reseating tests #### 6.10.2 Dry pipe valve installation Before each test, clean sealing assembly seats and seat rings and all other operating parts. Seat the main sealing assembly member properly and, when applicable, place the lever mechanism in the set position. Bolt the cover plate in place. Establish the priming water level and system air pressure in accordance with the manufacturer's requirements. Then fully open the main water supply valve, and check for leakage into the alarm port. Install the dry pipe valve in the test apparatus generally depicted by Figure 2. Fully open the main water supply valve, check for leakage into the alarm port and trip the dry pipe valve under normal operating conditions. Record the following pressures: - a) water supply; - b) initial system air; - c) valve leak point; - d) valve trip point; - e) alarm port. Record the position of the valve sealing assembly with relation to any anti-reseat latching mechanism, if provided, after each operation. Compute and record the differential of a differential-type dry pipe valve from the data and check for compliance with 4.14.2. For mechanical type valves, record air and service pressures and check for compliance with 4.14.3. #### 6.11 Anti-reseating test (see 4.7.7) - **6.11.1** Install a valve in the system piping in its normal installation position. Install a second valve of the quick-opening type of 150 mm nominal size as shown in Figure 2, with a discharge to atmosphere through 150 mm diameter piping. Connect the outlet of the test valve to a reservoir with a volume of at least 1,9 m<sup>3</sup> using piping with diameter not less than the test valve size. - **6.11.2** Set the sealing assembly of the test valve in the open position, with the sealing assembly on the lowest latch, and where appropriate refit the cover plate. Fill the system and test valve, exclusive of the 1,9 m³ reservoir volume, fully with water. Fill the reservoir with air and water in accordance with one set of the values shown in Table 2. Close the supply valve and trip the quick-opening valve causing flow past the test valve sealing assembly. **CAUTION** — Make sure that the reservoir is fully depressurized before examining the test valve. **6.11.3** Repeat the test at each set of values given in Table 2. | <b>Service pressure</b><br>MPa (bar) | Water percentage of reservoir volume % | |--------------------------------------|----------------------------------------| | 0,7 (7) | 45 | | 0,10 (10) | 30 | | 0,10 (10) | 15 | | 0,12 (12) | 25 | Table 2 — Reservoir conditions - **6.11.4** Inspect the sealing assembly to determine that it has not returned to its ready position, nor sustained any distortion, cracks, separation or other signs of failure. - **6.11.5** Following this test, the valve shall comply with the requirements of 4.14 at a service pressure of 0,14 MPa (1,4 bar), when tested on time in accordance with 6.10. The test may be stopped when all of the water has passed the valve under test. #### 6.12 Quick release (see 4.7.8) - **6.12.1** Set the test apparatus to give a volume of 1,5 m<sup>3</sup> upstream of the valve. Provide priming water if recommended by the manufacturer. Trip the valve using twice the maximum recommended air pressure, but not less than 0,69 MPa (6,9 bar) downstream and upstream of the sealing assembly. Trip the test valve by rapidly releasing the air pressure downstream of the sealing assembly through a 50 mm valve. - **6.12.2** Inspect the sealing assembly and valve to determine that they have not sustained any distortion, cracks, separation or other signs of failure. **6.12.3** Verify the valve function in accordance with 6.10 and check for compliance in accordance with 4.7.8. #### 6.13 Salt mist corrosion test #### 6.13.1 Reagents Sodium chloride solution, consisting of (20 ± 1) % by weight sodium chloride in distilled water, pH between 6,5 and 7,2 and having a density between 1,126 g/ml and 1,157 g/ml at $(35 \pm 2)$ °C. #### 6.13.2 Apparatus **6.13.2.1 Fog chamber**, of minimum volume 0,43 m<sup>3</sup>, fitted with a recirculating reservoir and aspirating nozzles to deliver a salt spray, and means for sampling and controlling the atmosphere in the chamber. #### 6.13.3 Procedure Remove the cover (if fitted) from the alarm valve. Support the alarm valve and alarm valve cover in the fog chamber in such a way that solution does not collect in any cavities and expose them to a salt spray by supplying the sodium chloride solution through the nozzles at a pressure of between 0,07 MPa (0.7 bar) and 0.17 MPa (1.7 bar), while maintaining the temperature in the exposure zone at $(35 \pm 2)^{\circ}$ C. Ensure that solution running off the component parts under test is collected and not returned to the reservoir for recirculation. The cover can be omitted from the test if none of the sealing assembly bushings, bearings or their clearances are associated with the cover. Collect salt mist from at least two points in the exposure zone and measure the rate of application and the salt concentration. Ensure, for each 80 cm<sup>2</sup> of the collection area, at a collection rate of 1 ml/h to 2 ml/h over a period of 16 $^{+0,25}_{0}$ h. Expose the component parts for a period of $10^{+0.25}$ days. After exposure, remove the alarm valve and cover (if under test) from the fog chamber and allow to dry for 7 $^{+0,25}_{0}$ days at a temperature not exceeding 35 °C and at a relative humidity not greater than 70 %. After the drying period, examine the corrosion protected steel parts for visible signs of deterioration of the coating, such as blistering, delamination, flaking or increased resistance to movement. #### **Marking** - Dry pipe valves shall be marked either directly on the body with raised or depressed cast letters, or on a permanent metal label attached mechanically (such as with rivets or screws). Metal labels shall be made of corrosion-resistant materials. - 7.2 Cast body markings shall be in letters and figures at least 9,5 mm high. The height of the marking may be reduced to 5 mm for 50 mm and smaller valves. Cast body letters and figures shall be raised or depressed by at least 0,75 mm. Letters on an etched or stamped permanent label shall be a minimum of 2 mm high. - Dry pipe valves shall be marked with the following: 7.3 - a) name or trade mark of the manufacturer or vendor; - b) distinctive model number, catalogue designation or an equivalent marking; - name of the device, such as "dry pipe valve"; - d) indication of flow direction; - e) nominal size; - f) rated working pressure in MPa (or bar). If inlet and/or outlet connections are machined for lower working pressures as in 4.3.2, the lower pressure limit shall be marked; - g) serial number or year of manufacture. Valves produced in the last three months of a calendar year may be marked with the following year as the date of manufacture; valves produced in the first six months of a calendar year may be marked with the previous year as the date of manufacture; - h) mounting position, if limited to vertical or horizontal position; - i) factory of origin, if manufactured at two or more factories. #### 8 Manufacturer's installation instructions - **8.1** A copy of the manufacturer's installation instructions shall be supplied with each dry pipe valve. The instructions shall include an illustration showing the valve trim function, cross-section assembly views to explain the valve operation, and friction loss value (e.g. in the form of the equivalent lengths of pipe). - **8.2** The instructions shall include recommendations for care and maintenance and shall detail the method for setting the valve. # Annex A (normative) ## **Tolerances** Unless otherwise stated, the tolerances given in Table A.1 shall apply. Table A.1 — Tolerances | Parameter | Tolerance | |-------------|-----------------------| | Angle | ± 2° | | Length | ± 2% of value | | Volume | ± 5% of value | | Pressure | ± 3% of value | | Temperature | ± 5% of value | | | +5 seconds | | Ti | $_{0}^{+0,1}$ minutes | | Time | <sup>+0,1</sup> hours | | | +0,25<br>0 days | # **Bibliography** - [1] ISO 6183, Fire protection equipment Carbon dioxide extinguishing systems for use on premises Design and installation - [2] ISO 6184, Explosion protection systems ICS 13.220.20 Price based on 19 pages