INTERNATIONAL STANDARD **ISO** 5832-6 Second edition 1997-07-15 ## Implants for surgery — Metallic materials — ## Part 6: Wrought cobalt-nickel-chromium-molybdenum alloy Implants chirurgicaux — Produits à base de métaux — Partie 6: Alliage corroyé à base de cobalt, de nickel, de chrome et de molybdène #### ISO 5832-6:1997(E) | Co | Contents | | |----|-----------------------|---| | 1 | Scope | 1 | | 2 | Normative references | | | 3 | Chemical composition | 1 | | 4 | Microstructure | 2 | | 5 | Mechanical properties | 2 | | 6 | Test methods | | #### © ISO 1997 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher. International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet central@iso.ch X.400 c=ch; a=400net; p=iso; o=isocs; s=central Printed in Switzerland #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. International Standard ISO 5832-6 was prepared by Technical Committee ISO/TC 150, *Implants for surgery*, Subcommittee SC 1, *Materials*. This second edition cancels and replaces the first edition (ISO 5832-6:1980), which has been technically revised. ISO 5832 consists of the following parts, under the general title *Implants for surgery* — *Metallic materials*: - Part 1: Wrought stainless steel - Part 2: Unalloyed titanium - Part 3: Wrought titanium 6-aluminium 4-vanadium alloy - Part 4: Cobalt-chromium-molybdenum casting alloy - Part 5: Wrought cobalt-chromium-tungsten-nickel alloy - Part 6: Wrought cobalt-nickel-chromium-molybdenum alloy - Part 7: Forgeable and cold-formed cobalt-chromium-nickelmolybdenum-iron alloy - Part 8: Wrought cobalt-nickel-chromium-molybdenum-tungsten-iron alloy - Part 9: Wrought high nitrogen stainless steel - Part 10: Wrought titanium 5-aluminium 2,5-iron alloy - -- Part 11: Wrought titanium 6-aluminium 7-niobium alloy - Part 12: Wrought cobalt-chromium-molybdenum alloy ### Introduction No known surgical implant material has ever been shown to cause absolutely no adverse reactions in the human body. However, long-term clinical experience of the use of the material referred to in this part of ISO 5832 has shown that an acceptable level of biological response can be expected, when the material is used in appropriate applications. the first search with the second of seco ## Implants for surgery — Metallic materials — ### Part 6: Wrought cobalt-nickel-chromium-molybdenum alloy ## 1 Scope This part of ISO 5832 specifies the characteristics of, and corresponding test methods for, wrought cobalt-nickel-chromium-molybdenum alloy for use in the manufacture of surgical implants. NOTE — The mechanical properties of a sample obtained from a finished product made of this alloy may not necessarily comply with the specifications given in this part of ISO 5832. #### 2 Normative references The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 5832. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 5832 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. ISO 643:1983, Steels — Micrographic determination of the ferritic or austenitic grain size. ISO 6892:—1), Metallic materials — Tensile testing at ambient temperatures. ## 3 Chemical composition The heat analysis of a representative sample of the alloy when determined in accordance with clause 6 shall comply with the chemical composition specified in table 1. Table 1 — Chemical composition | Element | Compositional limits, % (m/m) | |------------|-------------------------------| | Nickel | 33,0 to 37,0 | | Chromium | 19,0 to 21,0 | | Molybdenum | 9,0 to 10,5 | | Iron | 1,0 max. | | Titanium | 1,0 max. | | Manganese | 0,15 max. | | Silicon | 0,15 max. | | Carbon | 0,025 max. | | Phosphorus | 0,015 max. | | Sulfur | 0,010 max. | | Cobalt | Balance | ¹⁾ To be published. (Revision of ISO 6892:1984) $\label{eq:continuous} || f(x) - f(x$ #### 4 Microstructure The microstructure of the alloy shall be uniform. The grain size, determined in accordance with clause 6, shall not be coarser than grain size No. 4. #### 5 Mechanical properties The tensile properties of the alloy, when tested in accordance with clause 6, shall comply with the values specified in table 2. NOTE 1 The mechanical properties of this material can be altered by cold-working and cold-working plus ageing processes. Should any of the test pieces not meet the specified requirements, or should they break outside the gauge limits, two further test pieces representative of the same batch shall be tested in the same manner. The alloy shall be deemed to comply only if both additional test pieces meet the specified requirements. NOTE 2 However, the manufacturer may re-heat-treat the material and resubmit it for testing in accordance with the requirements of this part of ISO 5832. | Condition | Tensile strength | Proof stress of non-
proportional elongation | Percentage elongation after fracture ¹⁾ | |-----------|------------------|---|--| | | R_{m} | $R_{\rm p}$ 0,2 | Α | | | min. | min. | min. | | | MPa | MPa | % | | Annealed | 800 | 300 | 40 | | Medium | | | | | Hard | 1 000 | 650 | 20 | | Hard | 1 200 | 1 000 | 10 | Table 2 — Mechanical properties #### 6 Test methods The test methods to be used in determining compliance with the requirements of this part of ISO 5832 shall be those given in table 3. Representative test pieces for the determination of mechanical properties shall be prepared in accordance with ISO 6892. | Table 3 — Test methods | |------------------------| |------------------------| | Parameter | Relevant clause | Test method | |-----------------------|-----------------|--| | Chemical composition | 3 | Recognized analytical procedures (ISO methods where these exist) | | Grain size | 4 | ISO 643 | | Mechanical properties | 5 | ISO 6892 | #### ICS 11.040.40 Descriptors: medical equipment, surgical implants, metallurgical products, cobalt alloys, nickel containing alloys, chromium containing alloys, molybdenum containing alloys, specifications, materials specifications, chemical composition, microstructure, mechanical properties, tests. Price based on 2 pages