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Foreword

ISO (the International Organization for Standardization) is a worldwide
federation of national standards bodies ({SO member bodies). The work of
preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which
a technical committee has been established has the right to be rep-
resented on that committee. International organizations, governmental and
non-governmental, in liaison with 1SO, also take part in the work. ISO
collaborates closely with the International Electrotechnical Commission
{IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are
circulated to the member bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the member bodies casting
a vote.

International Standard 1SO 5479 was prepared by Technical Committee
ISO/TC 69, Applications of statistical methods, Subcommittee SC 6,
Measurement methods and results.

Annexes A and B of this International Standard are for information only.
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Introduction

Many of the statistical methods recommended in International Standards,
such as those described in 1ISO 285411, are based on the assumption that
the random variable(s) to which these methods apply are independently
distributed according to a normal distribution with one or both of its
parameters unknown.

The following question therefore arises. Is the distribution that is
represented by the sample sufficiently close to the normal distribution that
the methods provided by these International Standards can be used
reliably?

There is no simple yes or no answer to this question which is valid in all
cases. For this reason a large number of “tests of normality” have been
developed, each of which is more or less sensitive to a particular feature of
the distribution under consideration; e.g. asymmetry or kurtosis.

Generally the test used is designed to correspond to a predetermined a
priori risk that the hypothesis of normality is rejected even if it is true {error
of the first kind). On the other hand, the probability that this hypothesis is
not rejected when it is not true (error of the second kind) cannot be
determined unless the alternative hypothesis (i.e. that which is opposed to
the hypothesis of normality) can be precisely defined. This is not possible
in general and, furthermore, it requires computational effort. For a distinct
test, this risk is particularly large if the sample size is small.
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Statistical interpretation of data — Tests for departure from
the normal distribution

1 Scope

1.1 This International Standard gives guidance on methods and tests for use in deciding whether or not the
hypothesis of a normal distribution should be rejected, assuming that the observations are independent.

1.2 Whenever there are doubts as to whether the observations are normally distributed, the use of a test for
departure from the normal distribution may be useful or even necessary. In the case of robust methods, however
(i.e. where the results are only altered very slightly when the real probability distribution of the observations is not a
normal distribution), a test for departure from the normal distribution is not very helpful. This is the case, for
example, when the mean of a single random sample of observations is to be checked against a given theoretical
value using a t-test.

1.3 It is not strictly necessary to use such a test whenever one refers to statistical methods based on the
hypothesis of normality. It is possible that there is no doubt at all as to the normal distribution of the observations,
whether theoretical (e.g. physical) reasons are present which confirm the hypothesis or because this hypothesis is
deemed to be acceptable according to prior information.

1.4 The tests for departure from the normal distribution selected in this International Standard are primarily
intended for complete data, not grouped data. They are unsuitable for censored data.

1.5 The tests for departure from the normal distribution selected in this International Standard may be applied
either to observed values or to functions of them, such as the logarithm or the square root.

1.6 Tests for departure from the normal distribution are very ineffective for samples of size less than eight.
Accordingly, this International Standard is restricted to samples of eight or more.

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions of this
International Standard. At the time of publication, the edition indicated was valid. All standards are subject to
revision, and parties to agreements based on this International Standard are encouraged to investigate the
possibility of applying the most recent edition of the standard indicated below. Members of IEC and ISO maintain
registers of currently valid International Standards.

ISO 3534-1:1993, Statistics — Viocabulary and symbols — Part 1: Probability and general statistical terms.
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3 Definitions and symbols
3.1 Definitions

For the purposes of this International Standard, the definitions given in 1ISO 3534-1 apply.

3.2 Symbols

a; coefficient of the Shapiro-Wilk test
A auxiliary quantity for the Epps-Pulley test
by  empirical kurtosis
‘/BT empirical skewness
B auxiliary quantity for the Epps-Pulley test
E expectation
G;  auxiliary quantity for the joint test using several independent samples
h number of consecutive samples
Hg  null hypothesis
Hy alternative hypothesis
k within the sample, arranged in non-decreasing order, the number of the observed value x
m;  central moment of order j of the sample
n sample size

probability associated with the p-quantile of a distribution

probability
P, probability associated with X
hY auxiliary quantity for the Shapiro-Wilk test
T test statistic
Tep test statistic of the Epps-Pulley test
p-quantile of the standardized normal distribution
vj auxiliary quantity for the joint test using several independent samples
w test statistic of the Shapiro-Wilk test
W;  auxiliary quantity for the joint test using several independent samples
x value of X
X random variable
x4 jM value in the sample, arranged in non-decreasing order
xp k" value in the sample, arranged in non-decreasing order

arithmetic average

=

o significance level
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B probability of an error of the second kind
B> kurtosis of the population
B>-3 excess of the population

\/’B? skewness of the population

y auxiliary quantity for the joint test using several independent samples
ymy  coefficient of the joint test using several independent samples

] auxiliary quantity for the joint test using several independent samples
dn  coefficient of the joint test using several independent samples

€ auxiliary quantity for the joint test using several independent samples
gy  coefficient of the joint test using several independent samples

H expectation

Uy variance of the population

U3 central moment of the third order of the population

H4  central moment of the fourth order of the population

o standard deviation of the population (= 1/;12)

4 General

4.1 There are several categories of tests for departure from normality. In this international Standard, graphical
methods, moment tests, regression tests and characteristic function tests are considered. Chi-squared tests are
appropriate for grouped data only but, because grouping results in a loss of information, they are not considered in
this International Standard.

4.2 If no additional information about the sample is available, it is recommended first to do a normal probability
plot; i.e. to plot the cumulative distribution function of the observed values on normal probability graph paper
consisting of a system of coordinate axes where the cumulative distribution function of the normal distribution is
represented by a straight line.

This method, which is described in clause 5, allows one to “see” immediately whether the distribution observed is
close to the normal distribution or not. With this additional information it can be decided whether to carry out a
directional test, or to carry out either a regression test or a characteristic function test, or no test at all. In addition,
although such a graphical representation cannot be considered as a rigorous test, the summary information that it
provides is an essential supplement to any test for departure from the normal distribution. In the case of rejection
of the null hypothesis it is often possible to envisage by this means the type of alternative that might be applicable.

4.3 A test for departure from the normal distribution is a test of the null hypothesis that the sample consists of n
independent observations coming from one and the same normal distribution. It consists of the calculation of a
function T of the observations, which is called the test statistic. The null hypothesis of a normal distribution is then
not rejected or rejected depending on whether or not the value of T lies within a set of values near to the expected
value that corresponds to the normal distribution.
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4.4 The critical region of the test is the set of values of T that leads to the rejection of the null hypothesis. The
significance level of the test is the probability P of obtaining a value of T within the critical region when the nuli
hypothesis is correct. This level gives the probability of erroneously rejecting the null hypothesis (error of the first
kind). .

The boundary of the critical region is (or, in the case of a two-sided test, the boundaries of the critical region are)
the critical value(s) of the test statistic.

4.5 The power of the test is the probability of rejecting the null hypothesis when it is incorrect. A high power
corresponds to a low probability of not rejecting the null hypothesis erroneously (error of the second kind).

It should be emphasized that the power of a test (i.e. for a given situation, the probability that the null hypothesis of
a normal distribution will be rejected if it is wrong) increases as the number of observations increases. For
example, a departure from the normal distribution which would become apparent when using a test for departure
from the normal distribution on a large sample might not be detected by the same test if there were fewer
observations.

4.6 A distinction is made between two categories of tests for departure from the normal distribution. When the
form of departure from the normal distribution is specified in the alternative hypothesis, then the test is a
directional test. However, when the form of departure from the normal distribution is not specified in the
alternative hypothesis, the test is an omnibus test.

In a directional test, the critical region is determined in such a way that the power of the test reaches its maximum
value. In an omnibus test, it is necessary to divide the critical region in such a way that the critical region consists
of those values of the test statistic which lie far away from the expected value.

If assumptions are present about the type of departure from the normal distribution, i.e. when a distribution is
envisaged whose asymmetry or kurtosis is different from that of the normal distribution, a directional test should
be applied, because its power is greater than the power of an omnibus test.

4.7 Note that a directional test is essentially one-sided. In the case of asymmetry, for example, it centres either
on positive asymmetry or on negative asymmetry. However, when several alternatives are considered jointly, the
test is multidirectional. This is the case particularly when a non-null asymmetry and a kurtosis different from that of
the normal distribution are considered together.

4.8 Tables 8 to 14 and figure 9 allow the tests to be performed for the most usual levels of ¢; i.e. @ = 0,05 and
a = 0,01. The level of significance has to be stipulated before the test is performed. Note that a test may result in
the rejection of the null hypothesis at the 0,05 level and the non-rejection of this same hypothesis at the 0,01 level.

4.9 During computation of test statistics, it is necessary to use at least six significant digits. Subtotals, inter-
mediate results and auxiliary guantities shall not be rounded to less than six significant digits.

5 Graphical method

5.1 The cumulative distribution function of the observed values is plotted on normal probability graph paper. On
this paper, one of the axes (in this International Standard it is the vertical axis) is non-linearly scaled according to
the area under the standardized normal distribution function and is marked with the corresponding values of the
cumulative relative frequency. The other axis is linearly scaled for the ordered values of X. The cumulative
distribution function of the variable X then approximates to a straight line.

Sometimes these two axes are interchanged with each other. Furthermore, if a normalizing transformation of the
variable X is made, the linear scale may be replaced by a logarithmic, quadratic, reciprocal or other scale.

Figure 1 gives an example of normal probability graph paper. On the vertical axis the values of the cumulative
relative frequency are given as percentages, while the horizontal axis has an arbitrary linear scale.

4
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A sheet of blank normal probability graph paper is provided in annex A.

If a plot on this paper gives a set of points that appears to be scattered around a straight line, this provides crude
support for the assumption that the sample can reasonably be regarded as having come from a normal distribution.

However, if there is a systematic departure from the straight line, the plot often suggests the type of distribution
to be taken into consideration.

The importance of this approach is that it easily provides visual information on the type of departure from the
normal distribution.

If the graph indicates that the data come from a shaped distribution (e.g. if the graph of the cumulative distribution
function is as shown in figure 5 or 6), a transformation of the data might result in a normal distribution.

If the graph indicates that the data do not come from a simple homogeneous distribution, but rather from a mixture
of two or more homogeneous subpopulations (e.g. if the graph of the cumulative distribution function is as shown
in figure 7), it is recommended that the subpopulations be identified and the analysis on each subpopulation be
continued separately.

It should be kept in mind that such a plot is in no way a test for departure from the normal distribution in the strict
sense. In the case of small samples, pronounced curves may occur for normal distributions, whilst for large
samples slight curves may indicate non-normal distributions.

5.2 The graphical procedure consists of arranging the observed values (x1), x(2). ... Xy} in NON-decreasing order,
and then plotting

Py = (k—3/8)/(n + 1/4) o M
against xj;) on normal probability graph paper.

NOTE 1 Commonly used alternatives to equation (1) are

Py = (k= 1/2)/n
and
Pk = k/(n + 1)

These are poorer approximations to the normal distribution function of the expected order statistics, F [E(X)], and their use is
not recommended.

5.3 An example of how normal probability graph paper is used is shown in figure 2.
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Table 1 shows the values xy, in non-decreasing order of the result of a series of 15 independent rotating-bend
fatigue tests.

Table 1 - Results, x;) of a series of 15 rotating-bend fatigue tests
and corresponding values of Ig (10 x()

k P= I; j//j g 19(10xy)
1 0,041 0,200 0,301
2 0,107 0,330 0,519
3 0,172 0,445 0,648
4 0,238 0,490 0,690
5 0,303 0,780 0,892
6 0,369 0,920 0,964
7 0,434 0,950 0,978
8 0,500 0,970 0,987
9 0,566 1,040 1,017
10 0,631 1,710 1,233
11 0,697 2,220 1,346
12 0,762 2,275 1,357
13 0,828 3,650 1,662
14 0,893 7,000 1,845
15 0,959 8,800 1,944

NOTE 2 In table 1 and the following examples, the units for the observations are omitted because they are not relevant for
the tests in this International Standard.

By associating the probability

Pr = (k—3/8)/(n + 1/4)
with the kth smallest xyy, the series of points shown in figure 2a) is obtained. It is immediately seen from
this graph that these points do not form a straight line. However, if xy is replaced by Ig(10 xy), the new graph

[figure 2b)] leads to a series of points which this time lie acceptably close to a straight line.

The hypothesis of a normal distribution of the logarithm of the observations therefore seems adequate.

5.4 It should be noted that extreme observed values have greater variance than middle values. Therefore, and
since the scale for the cumulative relative frequency widens towards the extremes, a few values at either end of
the cumulative distribution which distinctly depart from the straight line defined by the middle values cannot be
regarded as indicators of departure from the normal distribution.

The larger the sample size, the more reliable are the conclusions that can be derived from the shape of the graph.

If the graph of the cumulative distribution function of the observed values is such that the large values tend to be
well below the straight line defined by the other values, a transformation such as

y=logx
or
y=+x
will generally lead to a graph that conforms more to a straight line [see figure 2b) and figure 5.

The upper parts of figures 3 to 7 show the cumulative distribution function in comparison with the corresponding
density function shown in the lower part of each figure.
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If the graph of the cumulative distribution function of the observed values is as shown in figure 3 or 4, the
corresponding frequency distribution is of kurtosis in default (platykurtic) or of kurtosis in excess (leptokurtic),
respectively.

The graphs of the cumulative distribution functions shown in figures 5 and 6 correspond to a density function with
positive skewness and negative skewness respectively.

Figure 7 shows the cumulative distribution function and the density function of a superposition of two different
density functions.

Cumulative relative frequency, %
Cumul ative relative frequency, %

Frequency
Frequency

Figure 3 — Density function with Figure 4 — Density function with
kurtosis in default kurtosis in excess
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Cumulative relative frequency, %

Frequency

Figure 7 — Superposition of two different
density functions

6 Directional tests

6.1 General

X

ISO 5479:1997(E)

6.1.1 The directional tests considered here concern solely the characteristics either of skewness or of kurtosis
of the distribution of observations. They are based on the fact that in the case of a normal random variable X with

mean u = E(X), the central moment of the third order is
p3=ElX-m3=0

the standardized central moment of the third order is

o\
JE—:E[( o#) }“:33/2:#—3:0

and the standardized central moment of the fourth order is
B2 = ualug? =3
where
po=El(X — 1)?]

pa=ElX ~ )4

. (2)

. (3)

. (4)

.. (B)

..(6)

1
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,fﬂ1 is the skewness of the population and may be greater than, equal to, or less than zero;
B is the kurtosis of the population and is always positive;

B, -3 is the excess of the population;
2
the inequality 85 2(J[i_1) +1 always holds.

6.1.2 In a skewness test, the alternative hypothesis is either
Hyuz>0
or, equivalently,
Jﬁ;> 0
which means positive skewness (see figure 5), or
Hypuz <0
or, equivalently,
,/E <0
which means negative skewness (see figure 6).

Generally, a distribution with positive skewness has a higher dispersion amongst the high values of the variable
than amongst the low ones; the contrary is the case for negative skewness.

6.1.3 In a kurtosis test, the alternative hypothesis is either
Hy:Bo>3

which means a kurtosis in excess (leptokurtic density function) (see figure 4), or
Hy: B <3

which means a kurtosis in default (platykurtic density function) {see figure 3).

Compared with the normal distribution, a distribution with kurtosis in excess tends to have a preponderance of
values of the variable both close to the average and towards both extremes. The contrary is the case for a kurtosis
in default.

6.1.4 The use of a directional test is justified only when there is specific information about the way in which the
real distribution may differ from the normal distribution. This information may come from the physical nature of the
data or the kind of disturbance that may affect the generating process.

For example, the fact that a variable is non-negative, with a mean close to zero in comparison with the value of the
standard deviation, may be a physical reason for positive skewness of the real distribution. Similarly, any
disturbance in a generating process that produces a mixture of normal populations of the same mean but of
different variances results in a non-normal distribution with S > 3.

6.1.5 In any case, the choice of a directional test should be based on general considerations regarding the nature
of the observations or the process that produces them and not on the particular form of the distribution of the
values observed. In this latter case, only the result of an omnibus test can be considered to be objective.

12
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6.1.6 If xq, x, ..., x, designates the series of observations, then
T 12 % o (7)
"
m-=12(x,~—f)f .. (8)
/ n*-
il

wherej=2, 3,4

and the test statistics for skewness and kurtosis respectively are the guantities

mg
_ .. 19)
‘[b_1 m23/2
and
by =4 .. (10)
ny

6.2 Directional test for skewness using /b,

This test is applicable for n = 8; however, for practical reasons, table 8 is limited to » < 5000.

If the alternative hypothesis consists of positive skewness, the test should be carried out only if m3 > 0. On the
other hand, if the alternative hypothesis consists of negative skewness, the test should be carried out only if

m3<0.

In the two cases of skewness, the conclusion is in favour of the rejection of the null hypothesis at the significance
level ¢ if the statistic |\/b—1 I exceeds the p-quantile forp = 1- a.

Table 8 shows for this test statistic the p-quantite for p = 1- e where ¢ = 0,05 and a = 0,01
and for the sample size n = 8(1)10,12,15(5)50(10)100(25)200(50)1000(200)2000(500)5000.

EXAMPLE 1

An example of the use of the directional test for skewness using ,/b_1 is as follows. Table 2 gives 50
independent measurements of the depth of the sapwood in pieces of wood intended for use as telegraph poles.
As the depth of sapwood is a characteristic having essentially non-negative values close to zero, positive
skewness may be assumed. It is therefore necessary to perform the appropriate directional test with the
alternative hypothesis '

Hq: J—ﬂ_1>0

Thus, from the observed values listed in table 2, the following are calculated:

¥ =(1,25 + 1,35 + ... + 5,10)//50 = 2,873
my  =101,25-2,873)2 + ... + (5,10 - 2,873)2)/50 = 0,937 921
m3  =1[(1,256-2,873)3 + ... + (5,10 - 2,873)31/50 = 0,254 559

13
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Hence
,/b1 =—23 = 0,280
m23/2

For the significance level ¢ = 0,05, i.e. p = 1 - a = 0,95, and n = 50, the critical value of the test statistic is 0,53
(see table 8). This value is greater than the calculated |‘/EI ; thus the null hypothesis of a normal distribution is

not rejected at the significance level chosen.

Table 2 -~ Depth of sapwood

1,25 2,05 2,60 3,10 4,00
1,35 2,10 2,60 3,15 4,00
1,40 2,15 2,70 3,15 4,05
1,50 2,16 2,75 3,20 4,05
1,65 2,15 2,75 3,30 4,10

1,60 2,20 2,80 3,45 4,20
1,76 2,25 2,95 3,60 4,45
1,75 2,35 2,95 3,50 4,50
1,85 2,40 3,00 3,80 4,70
1,95 2,65 3,05 3,90 5,10

NOTE — Series arranged according to the non-
decreasing values of 50 observations.

6.3 Directional test for kurtosis using b,
This test is applicable for n = 8; however, for practical reasons, table 9 is limited to n < 5 000.
In a test for kurtosis in excess, the alternative hypothesis is

Hy:B;>3

The null hypothesis shall be rejected at the predetermined significance level of, for example, a = 0,05 or 0,01 if the
calculated value b, exceeds the critical value of the test statistic corresponding to the pquantile forp =1 - a =
0,95 0rp = 1- = 0,99 and the sample size n.

In a test for kurtosis in default, the alternative hypothesis is
Hy: <3
The null hypothesis shall be rejected at the predetermined significance level of, for example, ¢ = 0,05 or 0,01 if the

calculated value by is less than the critical value of the test statistic corresponding to the p-quantile for p = a = 0,05
or p = o= 0,01 and the sample size a.

Table 9 shows the critical values of the test statistic b, for p = 0,01, 0,05, 0,95 and 0,99 and the sample size
n = 8(1}10,12,15(5)50(25)150(50}1000{200)2000(500)5000.

EXAMPLE 2

An example of the use of the directional test for kurtosis using b, is as follows. Table 3 shows a series of 50
independent measurements some of which are suspected of having been affected by a defect in the measuring
device, a defect resulting in a variation in the dispersion of these measurements.

Since, owing to the fault mentioned, it can be assumed that 8, > 3 for the distribution of the observations, the
corresponding directional test is applied; the alternative hypothesis is

H1Zﬁ2>3

14
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Table 3 — Series of 50 observations suspected of being
affected by a variation in the dispersion of measurements

9.5
14,4
10,2

4,2
17.1

4,4

45

8,5

9.9

7.7

51
5,8
9,2
12,9
6,3
3.1
12,9
1.9
11.4
59

5,7
10,8
22,5

55

8.6

7.4

6.9

7.9

3.6

7.3

16,6
20,9
21,5

9.1
11,9
12,9
26,6

7.5

54
32,0

12,9
13,3
8,5
3,3
1.4
12,9
16,3
15,6
11.4
6,0

Thus, from the observed values listed in table 3, the following are calculated:

X =(9,5+ 14,4 + ... + 6,0)/50 = 10,542
my  =1[(9,5-10,542)2 + ... + (6,0 — 10,542)2)/50 = 37,996 4
ms  =109,5-10,542)% + ... + (6,0 - 10,542)4)/50 = 7 098,04
Hence
by=—4=4916
my

ISO 5479:1997(E)

For the significance level o = 0,05, i.e. p = 1 — a = 0,95, and sample size n = 50, the critical value of the test
statistic is 3,99 (see table 9). As the calculated value b, = 4,916 is greater than this critical value, the null
hypothesis is rejected in favour of the alternative hypothesis at the significance level o = 0,05. That means the

distribution of these observed values is disturbed and shows a kurtosis in excess.

In addition, as the critical value at significance level a = 0,01 is 4,88, the rejection of the null hypothesis is
confirmed at this level. Due to this, the existence of a real disturbance seems even more likely.

7 Joint test using 5, and b; (multidirectional test)

This test is applicable for 20 < n < 1000.

7.1 In this case the alternative hypothesis is that of a distribution whose skewness is not zero and/or whose
kurtosis differs from that of the normal distribution, without the direction of either departure being specified:

H1.-Jl>_1¢0 andfor By #3
The different combinations

JB1#0 and By =3

or

‘/E=O and B, #3

or

JB1#0 and B #3

cannot be distinguished.

15



ISO 5479:1997(E) @IS0

The test is multidirectional since it is intended to bring out the combination of non-null skewness (,/m #0) and/or

kurtosis B = 3.

Note that, owing to the choice of statistics, this joint test cannot be considered to be an omnibus test in the strict
sense. As for the directional tests, its use can only be justified by considerations as to the nature of the
observations or the process that produces them.

7.2 The test statistic of this test is formed by the pair of |‘/E| and b, defined in equations (9) and {10} (in 6.1.6).
Under the null hypothesis of normality, in a system of coordinate axes in I\/al and by, regions around the point
{0; 3) may be drawn in which the point (I\/E l, by}, falls with probability p. Curves delineating these regions are given in
figure 9a) (p = 0,95) and figure 9b) (p = 0,99) for the sample size n = 20(5)65(10)85,100,120,150(50)300,500,1000.

At the significance level a = 1 — p, the critical region of the test is formed by the points lying outside the curve
corresponding to the sample size n.

EXAMPLE 3

The joint test using ‘/31- and by may be applied to the data of example 2.

From the observed values listed in table 3, the following are calculated:
m3 = [(9,5 - 10,542)3 + ... + (6,0 - 10,542)3)/50 = 308,106

Hence
Jbr = myymy®2 = 1,315

The point (l‘/l—)‘—l = 1,315; by = 4,916) lies far outside the curve corresponding to the sample size n = 50 in figure

9b) for the significance level a = 0,01.

The null hypothesis of a normal distribution is therefore rejected at this significance level in favour of the
alternative hypothesis. This means that the distribution of the measured characteristic is concluded not to be a
normal distribution.

8 Omnibus tests

8.1 General

8.1.1 When no substantial a priori information exists regarding the type of departure from the normal distribution
to be assumed, the use of an omnibus test is recommended.

8.1.2 Two omnibus tests are presented in this International Standard: the Shapiro-Wilk test and the Epps-Pulley
test. There is little to choose between them. A rule of thumb is to select the Shapiro-Wilk test when past history is
available that suggests as an alternative hypothesis an approximately symmetric distribution with kurtosis in
default (e.g. |ﬁﬂ| < ¥ and B, < 3) or from an asymmetric distribution (e.g. I,/El > %), otherwise to select the
Epps-Pulley test.
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8.2 Shapiro-Wilk test

This test is applicable for 8 =< n =< 50. Small samples, with n < 8, are not very effective in detecting departures
from the normal distribution.

The Shapiro-Wilk test is based on the regression of the order statistics upon their expected values. It is an analysis
of variance type test for a complete sample. The test statistic is the ratio of the square of a linear combination of
the sample order statistics to the usual estimate of variance.

This test is based on ordered observations. If, as in 5.3, the series of n independent observations arranged in non-
decreasing order is designated by x(1), x(2), ..., X(»), then the quantity § is calculated:

S =Zap Ix(n 4 1 -1 — xp)} . (11)
where the index k has values of 1 to n/2 or of 1 to (n — 1)/2 according to whether r is even or odd, and where the
coefficients a, have special values for the sample size n. The values a, are listed in table 10 and the test statistic is
the quantity

W = 52/(nmy) .. {12)
where, as previously,

_ =2

nmy = X{x; - X)

If some observations are equal, the ordered series is enumerated by repeating the equal observations as many
times as they occur in the original series.

At the significance level a = p, the critical region of the test is formed by values less than the p-quantile for p = a.
Table 11 shows the p-quantiles of the test statistic Wforp = a= 0,01 andp = a = 0,05.

EXAMPLE 4

An example of use of the Shapiro-Wilk test is as follows. Table 4 shows the ordered series of 44 independent
annual amounts of rainfall collected at a meteorological station.

To facilitate the calculation, the values

Xk} Xin 41— &) @A X(n 4 1 — k) — X(k)

have been shown on the same line. From table 4 the following are calculated:
X =2xy) /44 =34545/44=785114
nmy = Zlxyy - X1° = 630872
The coefficients g taken from table 10 for n = 44 and reproduced in table 4 therefore give
S =Zaglxp 4+ 1 -0~ xp] =0,387 2 x 554 + 0,266 7 x 500 + ... + 0,004 2 x 9 = 787,263
Hence

2
w =S— = (787,262 7)%/630 872,43 = 0,982
nmy

Table 11 shows that the p-quantile for n = 44 and p = a = 0,05 is equal to 0,944. As this value is less than the
value of W, the null hypothesis is not rejected at the significance level 0,05.
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Table 4 — Annual amount of rainfall collected at a weather station

k X(g) X+ 1=k | Fn+1-0 @ ai
1 520 1074 554 0,387 2
2 556 1056 500 0,266 7
3 561 963 402 0,2323
4 616 952 336 0,207 2
5 635 926 291 0,186 8
6 669 922 253 0,1695
7 686 904 218 0,154 2
8 692 900 208 0,1405
9 704 889 185 01278
10 707 879 172 0,116 0
1 711 873 162 0,104 9
12 713 862 149 0,094 3
13 714 851 137 0,084 2
14 719 837 118 0,074 5
15 727 834 107 0,065 1
16 735 826 91 0,056 0
17 740 822 82 0,047 1
18 744 821 77 0,038 3
19 745 794 49 0,0296
20 | 750 791 41 0.021 1
21 776 786 10 . 00126
22 777 786 9 0,004 2
NOTE — Ordered series of 44 observations and corresponding
“ay, values.

8.3 Epps-Pulley test

See references [2] to [5]. This test is applicable for n = 8. Small samples, with n < 8, are not very effective in
detecting departures from the normal distribution.

The Epps-Pulley test is an omnibus test which has high power against many alternative hypotheses. The test uses
a weighted integral of the squared modulus of the difference between the characteristic functions of the sample
and of the normal distribution.

From n observations x; (j = 1, 2, ..., n) the following quantities are calculated:

.
x=;j§xj .. (13)
and
T —o

The test statistic is

n —-—
Tep =1+—/ +—22ex {( xk) J_Zexp ();m:) ... {(15)

k=2 j=1

The order of the observed values is optional but particular attention is drawn to the fact that the order chosen has
to remain unchanged throughout the whole computation.
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The program flowchart for the computation of the test statistic Tgp is shown in figure 8.

Start

Store sample size n

Store sample values x;

Compute and store

1<
mean:x=-5;x,-

and second central

1 n
moment of sample: m; = ~ Z (x; - %32
=

Compute and store

n - (x; - X)?
A=VZ exp{/—\r
; 4 my

Put k=234 ..n

Compute

- (Xj - Xk)z
exp —2 my

for 1< j =<{k - 1) and add
all these n {n - 1}/2 terms

Compute

n

k=2 j=3

2 L - (X = xg)?
8-23 5 oo {4

Compute

Tp=le—=+8-4A

3

End

ISO 5479:1997(E)

Figure 8 — Flow chart for the computation of the test statistic 7cp of the Epps-Pulley test
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The null hypothesis is rejected if the calculated value of the test statistic Tgp exceeds the p-quantile for the given
significance level o and the sample size n. The p-quantiles of the test statistic Tgp for p = 1 - a = 0,90; 0,95; 0,975
and 0,99 are listed in table 12.

EXAMPLE 5

An example of the 'use of the Epps-Pulley test is as follows. Table 5 shows the series of 25 values x; of the
breaking strength of a rayon yarn, measured under standard conditions in arbitrary units. Additionally the
transformed values z; = Ig (204 - x;) are given, which appear to be scattered around a straight line on normal
probability graph paper.

Table 5 — Breaking strength of rayon yarn

Measured | Transformed | Measured | Transformed

Xj %j Xj g
147 1,756 39 2,021
186 1,255 156 1,681
141 1,799 176 1,447
183 1,322 160 1,643
190 1,146 174 1,477
123 1,908 153 1,708
155 1,690 162 1,623
164 1,602 167 1,668
183 1,322 179 1,398
150 1,732 78 2;100
134 1,845 173 1,491
170 1,631 168 1,556
144 1,778

From table 5

Tep(o = 0,612
is found using a short and simple calculator program. For n = 25 it is found by interpolating in table 12 that the
p-quantile for p = 1 - &= 0,99 is equal to 0,567. The calculated value Tgp(, exceeds this critical value. Therefore
the null hypothesis is rejected at the significance level 0,01 for the values x;.
Furthermore from table 5

Tepiy = 0,008

is found using the same calculator program. As this value is less than the critical value for n = 25 interpolated
from table 12, the null hypothesis is not rejected for the values z;.

EXAMPLE 6
The following example illustrates in detail how to calculate the test statistic Tgp according to equation (15).

The second column of table 6 shows n = 10 values x; for which the Epps-Pulley test has to be conducted. In
accordance with equations (13) and (14}, ¥ = 10,4 and my = 11, 858 0 are calculated.

The double sum in the third term of equation {15) is a finite series of (n — 1) subseries, the first of which has one
term and the last of which has (n — 1) terms.
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For the first subseries, the fixed index is k = 2 and the only term of this series is

2
exp {—(x;’;:z) }

which is obtained for j = 1. In the second subseries the fixed index is k = 3; this series has two terms

_ 2 _ _ 2
exp{—(x‘ x3) }and exp{ (xg ~ x3) }
2m2 2m2

which are obtained for j = 1 and j = 2. For the last subseries the fixed index is k = 10 and the nine terms are

exp {M} o XD {M}
sz 2m2

which are obtained forj=1,2,3, ..., 9.
The terms for the n — 1 = 9 subseries are listed in the third to eleventh column of table 6.

The twelfth column shows the n = 10 terms for the sum in the fourth term of equation {15).

Table 6 — Breaking strength of rayon yarn — Calculation of the test statistic 7T:p

2 -2
—{x; —xg) ~{x; -Xx)
exp _!—k exp R At
2my 4my
k=2 =3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
j 5 | j=1 i=12|j=13]j=1.4]j=15|j=1.6]|j=17]j=18[j=129 j=1.10
1 4.9 0,9996 | 0,8977 | 0,2192 | 0,2083 | 0,1684 | 0,0769 | 0,0587 | 0,0304 | 0,0205 0,5285
2 5,0 - 0,9095 | 0,2304 | 0,2192 | 0.1778 | 0,0821 | 0,0629 | 0,0329 | 0,0222 0,5407
3 6,5 - - 0,4421 | 0,4258 | 0,3633 | 0,1977 | 0,1593 | 0,0933 | 0,0673 0,7257
4 10,9 - - - 0,0996 | 0,9895 | 0,8723 | 0,8154 | 0,6668 | 0,5790 0,9947
15) 11,0 - - - - 0,9933 | 0,8853 | 0,8303 | 0,6842 | 0,5966 0,9924
6 11,4 - - - - - 0,9312 | 0,8853 | 0,7520 | 0,6668 0,9791
7 12,7 - - - - - - 0,9933 | 0,9312 | 0,8723 0,8945
8 13.1 - - - - - - - 0,9664 | 0,9207 0,8575
9 14,0 - - - - - - - - 0,9895 0,7609
10 14,5 - - - - - - - - - 0,7016
Sum | 104,0 | 0,9996 | 1,8072 | 0,8916 | 1,8528 | 2,6923 | 3,0455 | 3,8052 | 4,1 5;73 4,7350 7,9757
Grand 23,9865
total

For each of the last ten columns of table 6 their sum is calculated and entered at the bottom of the column.

All 45 terms belonging to the sum in the third term of equation (15) are added up to the grand total

10 k=1 (x _xk)
ex = 23,9865

k=2 j=1
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Finally equation (15) is evaluated as

10 2
TEP =1+ ﬁ + ('ﬁ X 23,9865] - (\/E X 7,9757) =0,2914

For n = 10 table 12 shows that the p-quantile for p = 1 — & = 0,95 is equal to 0,357. The calculated value Tegp =
0,2914 does not exceed this critical value. Therefore the null hypothesis is not rejected at the significance level
0,05 for this example.

9 Joint test using several independent samples

The test is applicable for several samples each of the same size n with n = 8, however, for practical reasons,
table 13 is limited to » < B0. It is based on the assumption that independent samples are drawn from the same
population.

In many cases it is necessary to test the departure from the normal distribution using several independent samples
because each separate sample is far too small to detect even a considerable departure from the normal
distribution. In this situation a modified Shapiro-Wilk test is applied.

For k consecutive samples drawn from the same population each of sample size n, the values W; {j = 1, 2, ..., h) are
calculated according to equation (12). For the joint test the corresponding values G; are calculated from the
following relationship:

Gj=7vln) + v ... (18)
where
W, —
v =|n{—’ﬂ} . (17)
1—-W]~ .

The coefficients ¥(n), 8ln) and &ln) for converting W; to the variate G; are taken from table 13.

in the case where the underlying distribution is normal, the variable G; follows approximately the standardized
normal distribution. The mean value of the variate G; is

h
— 1
G=ZZ_G]- .. (18)

and the test statistic is V& xG.

The null hypothesis is rejected at the significance level o if
VExG <—uy_g .. (19)

where u, = uj_ o is the p-quantile of the standardized normal distribution.
EXAMPLE 7

An example of the use of the joint test using several independent samples is as follows. & = 22 random samples
each of size n = 20 are drawn from the same population and the characteristic X of these 20 items is measured.
This characteristic is not supposed to be normally distributed. For each of these samples the corresponding
values of W; (j = 1, 2, ..., 22) are calculated according to equation (12). In table 7 the 22 values of W; are listed.
From table 13 the following coefficients are taken:

y (20) = - 5,153; &20) = 1,802; £20) = 0,2359
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Using these figures the corresponding 22 values of G; are calculated according to equations (16) and (17) and
listed in table 7 too.

According to table 11 the critical value of the W-statistic is 0,868 for n = 20 at the significance level a = 0,01.
From table 14 the critical value for YvAX G is

—U g =" Ug99 =~ 2,326

at the significance level @ = 0,01.

Table 7 — Values of W; and G; for 22 samples
of size n = 20 drawn from the same population

Samp!e No. W G;
J
1 0,9543 -0,189
2 0,9645 +0,292
3 0,9148 - 1,413
4 0,8864 —2,008
5 0,9573 — 0,059
6 0,9158 -1.,389
7 0,9462 —0,503
8 0,9277 —1,083
9 0,9639 + 0,260
10 0,9363 — 0,833
11 0,9067 — 1,598
12 0,9218 —1,240
13 0,9551 — 0,155
14 0,9338 - 0,909
15 0,9584 — 0,009
16 0,9088 - 1,652
17 0,9028 —1,683
18 0.8947 —1,849
19 0,9488 - 0,407
20 0,9445 — 0,563
21 0,9471 -0,470
22 0,9451 —0,542
Sum - 17,902

If any of these 22 samples is treated alone, none of the samples can reveal the departure from the normal
distribution at the given significance level a = 0,01 because none of the values W; is less than the critical value
0,868, and none of the values G; is less than the critical value - 2,326.

However, the joint evaluation of all 22 samples together yields

G =-17902/22=-0,814

and
JhxG =-382
This value is compared with the critical value -u, = — 2,326 at the given significance level a = 0,01. As the

calculated value — 3,82 lies well below this critical value, the null hypothesis is rejected at the significance level
a=0,01.
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10 Statistical tables

24

Table 8 — Test for skewness, JBT (p-quantiles

of I‘/'bT] forp=1-a=0,95and 0,99)

p p
n n

0,95 0,99 0,95 0,99

8 0,99 1,42 400 0,20 0,28

9 097 1.41 450 0.19 0.27

10 0,95 1,39 500 0,18 0,26
12 0,91 1,34 560 0.17 0,24
15 0,85 1,26 600 0.16 0.23
20 0.77 1,15 650 0,16 0.22
25 0.71 1,06 700 0,15 0,22
30 0.66 0,98 750 0,15 0,21
35 0,62 0,92 800 014 0,20
40 0,69 0,87 850 0,14 0,20
45 0,56 0,82 800 0,13 0,18
50 0,63 0,79 950 0,13 0,18
60 0,49 0,72 1000 0,13 0,18
70 0.46 0,67 1200 0,12 0.16
80 0,43 0,63 1400 0,11 0,15
90 0.41 0,60 1600 0,10 0,14
100 0,39 0,57 1800 0,10 0,13
125 0,35 0,51 2000 0,09 0,13
150 0,32 0,46 2500 0,08 0.1
175 0,30 0.43 3000 0,07 0,10
200 0,28 0,40 3500 0,07 0,10
250 0,26 0,36 4000 0.06 0.09
300 0,23 0,33 4500 0,06 0,08
350 021 0,30 5000 0,06 0,08

NOTE — Taken from references [6] and [7].
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Table 9 — Test for kurtosis, b, (p-quantiles of b, for
p=0=001and0,05andp =1- a=0,95and 0,99)

0,01 0,05 0,95 0,99

8 1,31 1,46 3,70 4,53

9 1,35 1,63 3.86 4,82
10 1,39 1,56 3,95 5,00
12 1,46 1,64 4,05 5,20
15 1,65 1,72 413 5,30
20 1,65 1,82 4,17 5,36
25 1,72 1,91 4,16 5,30
30 1.79 1,98 4,11 521
35 1,84 2,03 4,10 513
40 1,89 2,07 4,06 5,04
45 1,83 21 4,00 4,94
50 1,95 2,15 3,99 4,88
75 2,08 2,27 3.87 4,59
100 2,18 2,35 3,77 4,39
125 2,24 2,40 3.71 4,24

150 2,29 2,45 3,65 4,13
200 2,37 2,51 3,67 3.98
250 2,42 2,55 3,62 3.87
300 2,46 2,59 3,47 3.79

350 2,50 2,62 3,44 3.72
400 2,52 2,64 3.41 3.67
450 2,65 2,66 3,39 3,63
500 2,57 2,67 3,37 3,60
550 2,58 2,69 3,35 3,57

600 2,60 2,70 3,34 3,54
650 2,61 2,71 3,33 3,62
700 2,62 2,72 3,31 3,60
750 2,64 2,73 3.30 3.48
800 2,65 2,74 3.29 3,46

850 2,66 2,74 3.28 3,45
900 2,66 2,75 3.28 3.43
950 2,67 2,76 3,27 3.42
1000 2,68 2,76 3,26 3.41
1200 2,71 2,78 3.24 3,37

1400 2,72 2,80 3,22 3,34
1600 2,74 2,81 3.21 3,32
1800 2,76 2,82 3.20 3,30
2000 2,77 2,83 3.18 3,28
2500 2,79 2,85 3,16 3,25

3000 2,81 2,86 3,15 3,22
3500 2,82 2,87 3,14 3,21
4000 2,83 2,88 3.13 3.19
4500 2,84 2,88 3,12 3,18
5000 2,85 2,89 3,12 3,17

NOTE — Taken from references {7] and [8].

ISO 5479:1997(E)
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Table 10 — Shapiro-Wilk test coefficients g, for calculating the test statistic W
k
8 9 10
1 — — —_ — —_— — — 060562 | 05888 | 05739
2 — — — — — — — 03164 | 03244 | 0,3291
3 — — — — — — — 01743 | 0,1976 | 0,214 1
4 — — — - — — — 0,061 | 0,0947 | 0,1224
5 — — —_ — — — — — — 0,039 9
11 12 13 14 15 16 17 18 19 20
1 0,560 1 05475 | 0,5359 | 05251 051560 | 05056 | 0,4968 | 04886 | 04808 | 04734
2 03315 | 03325 | 03325 | 03318 | 03306 | 03290 | 03273 | 03263 | 0,3232 | 0,321 1
3 02260 | 02347 | 02412 | 0,2460 | 0,2495 | 0,252 1 02540 | 0,2553 | 0,256 1 0.256 5
4 0,1429 | 0,586 | 0,707 | 0,1802 | 0,1878 | 0,1939 | 0,1988 | 0,2027 | 0,2059 | 0,2085
5 0,06965 | 00922 | 0,1099 | 0,1240 | 0,1353 | 0,1447 | 0,1524 | 00,1587 | 0,164 1 0,168 6
6 — 00303 | 00639 | 00727 | 0,0980 | 0,005 | 0,1109 | 0,1197 | 0,127 1 01334
7 — — — 0,0240 | 00433 | 0,0693 | 0,0725 | 0,0837 | 00932 | 0,101 3
8 — — — - — 0,0196 | 00359 | 0,0496 | 0,0612 | 0,0711
9 — — — — —_ — - 0,0163 | 0,0303 | 0,0422
10 — — — — — — — — — 0,014 0
21 22 23 24 25 26 27 28 29 30
1 04643 | 04590 | 04542 | 04493 | 04450 | 04407 | 04366 | 0,4328 | 0,4291 0.425 4
2 03185 | 03166 | 0,3126 | 03098 | 03069 | 0,3043 | 03018 | 0,2992 | 0,2968 | 0,294 4
3 0,2678 | 0,257 1 02663 | 02554 | 02543 | 02633 | 0,2522 | 0,2510 | 0,2499 | 0,2487
4 0,2119 | 02131 02139 | 02145 | 0,2148 | 0,2151 02152 | 0,2151 02150 | 0,2148
5 01736 | 01764 | 0,1787 | 0,807 | 01822 | 0,1836 | 0,1848 | 0,1857 | 0,1864 | 0,1870
6 01399 | 01443 | 01480 | 01512 | 0,1539 | 0,1563 | 0,1584 | 0,160 1 01616 | 0,163 0
7 01082 | 01150 | 0,1201 0,1245 | 0,1283 | 0,1316 | 0,1346 | 0,1372 | 0,1395 | 0,141 5
8 00804 | 00878 | 0,0941 00997 | 01046 | 0,089 | 0,1128 | 0,1162 | 01182 | 0,121 9
9 00530 [ 00618 | 00696 | 00764 | 0,0823 | 00876 | 0,0923 | 0,0965 | 0,1002 | 0,1036
10 00263 | 00368 | 00459 | 0,0639 | 00810 | 00672 | 0,0728 | 00778 | 0,0822 | 0,0862
11 — 00122 | 0,0228 | 0,0321 0,0403 | 00476 | 0,0540 | 00598 | 00650 | 0,0697
12 — — — 00107 | 0,0200 | 00284 | 0,03568 | 00424 | 0,0483 | 0,0837
13 — — - — — 0,0094 | 00178 | 00253 | 0,0320 | 0,0381
14 — — — — — — — 0,0084 | 00159 | 0,0227
15 — — — — — — — — — 0,007 6
31 32 33 34 35 36 37 38 39 40
1 04220 | 04188 | 04156 | 04127 | 0,4098 | 0,4068 | 0,4040 | 0,4015 | 0,3989 | 0,396 4
2 0,2921 02898 | 02876 | 02854 | 0,2834 | 02813 | 0,2794 | 02774 | 0,2755 | 0,2737
3 0,2475 | 0,2463 | 0,2451 02439 | 02427 | 0,2415 |} 0,2403 | 0,2391 02380 | 0,2368
4 0,2145 | 0,2141 02137 | 02132 | 02127 | 0,212 1 02116 | 0,2110 | 0,2104 | 0,2098
5 01874 | 0,1878 | 0,1880 | 0,1882 | 0,1883 | 0,1883 | 0,1883 | 0,188 1 01880 | 0,1878
6 0,164 1 0,165 1 01660 | 01667 | 0,673 | 0,1678 | 0,1683 | 0,1686 | 0,1689 | 0,169 1
7 01433 | 01448 | 0,463 | 0,1475 | 0,1487 | 0,496 | 0,1505 | 0,1513 | 0,1520 | 0,1526
8 0,124 3 01265 0,128 4 0.1301 0,131 7 0,133 1 0,134 4 0,1356 0,136 6 0,137 6
9 0,106 6 0.1093 01118 01140 0,1160 | 0,117 9 01196 0,121 1 01225 01237
10 0,0899 | 0,0931 0.096 1 0,0988 | 0,013 | 0,1036 | 0,1056 | 0,1075 | 0,092 | 0,1108
11 0,0739 | 00777 | 00812 | 0,0844 | 00873 | 0,0900 | 00924 | 0,0947 | 00967 | 0,0986
12 0,0585 | 00629 | 0,0669 | 0,0706 | 00739 | 0,0770 | 00798 | 0,0824 | 0,084 8 | 0,0870
13 0,0435 | 0,0485 | 0,0530 [ 0,0672 | 0,0610 | 0,0845 | 00677 | 0,0706 | 0,0733 | 00759
14 0,0289 | 0,0344 | 0,0395 | 0,0441 00484 | 00623 | 0,0659 | 0,0692 | 0,0622 | 0,0651
15 0,014 4 0,020 6 0,031 4 0,036 1 0,040 4 0,044 4 0,048 1 0,0515 0,054 6

0,026 2
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Table 10 — (concluded)
k
31 32 33 34 35 36 37 38 39 40
16 — 0,0068 | 0,0131 0,0187 | 0,0239 | 00287 | 0,0331 0,0372 | 0,0409 | 0,044 4
17 — — —_ 0,0062 | 00119 | 00172 | 00220 | 0,0264 | 0,0305 | 0,0343
18 — — —_ — —_ 00067 | 00110 | 0,0158 | 00203 | 0,024 4
19 — — — — — — — 0,0053 | 0,0101 0,014 6
20 — — — — — — — — — 0,004 9
41 42 43 44 45 46 47 48 49 50
1 03940 ¢ 03917 | 03834 | 03872 | 03850 | 0,3830 | 0,3808 | 03789 | 0,3770 | 0,3751
2 0,2719 | 0,270 1 0,2684 | 0,2667 | 0,2651 0,2635 | 0,2620 | 0,2604 | 02589 | 0,257 4
3 0,2357 | 0,2345 | 0,2334 | 0,2323 | 0,2313 | 0.2302 | 0.2291 0,228 1 0,227 1 0,226 0
4 0,2091 0,2085 | 02078 | 0,2072 | 0,2065 | 0,2058 | 0,2062 | 0,2045 | 0,2038 | 0,2032
5 0,1876 | 0,1874 | 0,187 1 0,1868 | 0,7868 | 0,1862 | 0,869 | 0,1855 | 0,185 1 0,184 7
6 01693 | 0,1694 | 0,165 | 0,1695 | 0,1695 | 0,1695 | 0,1695 | 0,1693 | 0,169 2 0,169 1
7 0,153 1 0,535 | 0,1539 | 0,1542 | 01545 | 0,1548 | 0,1650 | 0,155 1 0,15563 | 0,1554
8 0,1384 | 01392 | 0,138 | 0,1405 | 01410 | 01415 | 0,1420 | 0,1423 | 0,1427 | 0,1430
9 0,1249 | 01259 | 01269 | 0,1278 | 0,1286 | 0,1293 | 0,1300 | 0,1306 | 0,1312 | 0,131 7
10 01123 | 0,1136 | 0,1149 | 0,1160 | 01170 | 0,1180 | 0,11892 | 0,1197 | 0,1205 | 0,121 2
1 0,100 4 0,102 0 0,103 5 0,104 9 0,106 2 0,107 3 0,108 5 0,109 5 0,1105 0,111 3
12 0,089 1 0,0809 | 00927 | 0,0943 | 00959 | 0,0972 | 0,0986 | 0,0898 | 0,1010 | 0,1020
13 0,0782 | 0,0804 | 00824 | 0,0842 | 00860 | 00876 | 0,0892 | 0,0906 | 0.0919 | 0,0932
14 0,0677 | 0,0701 0,0724 | 0,0745 | 0,0765 | 0,0783 | 0,080 1 0,0817 | 0,0832 | 0,0846
15 0,0575 | 0,0602 | 0,0628 | 0,0651 0,0673 | 0,0684 | 00713 | 0,073 1 0,0748 | 0,076 4
16 0.0476 | 0,0506 | 005634 | 0,0560 | 0,0584 | 0,0607 | 00628 | 00648 | 0,0667 | 0,0685
17 0,0379 | 00411 0,0442 | 0,0471 0,0497 | 00522 | 0,0046 | 00568 | 0,0588 | 0,0608
18 00283 | 00318 | 00352 | 00383 | 00412 | 0,0439 | 00465 | 0,0489 | 0,0511 0,053 2
19 0,0188 | 0,0227 | 0,0263 | 0,0296 | 00328 | 0,0357 | 0,0385 | 0,041 1 0,0436 | 00459
20 0,0084 | 0,0136 | 0,0175 | 0,0211 0,0245 | 00277 | 00307 | 00335 | 0,0361 0,038 6
21 —_ 0,0045 | 00087 | 0,0126 | 0,0163 | 0,0197 { 00229 | 0,0259 | 0,0288 | 0,031 4
22 — — — 0,0042 | 0,008 1 0,0118 | 0,0163 | 0,0185 | 0,0215 | 0,024 4
23 — _ —_ — — 0,003 9 0,007 6 0,011 1 0,014 3 0,017 4
24 — — — — — — — 0,0037 | 0,007 1 0,010 4
25 — — — — — — — — — 0,003 5
NOTE — Taken from reference {10].

29



ISO 5479:1997(E)

30

Table 11 — Shapiro-Wilk test: p-quantiles of the test statistic W

forp= a=0,01and 0,05

n P n
0,01 0.05 0.01 0,05
26 0,891 0,920
27 0,894 0,923
28 0,896 0,924
29 0,898 0,926
30 0.900 0,927
31 0,902 0,929
32 0,804 0,930
8 0,749 0.818 33 0,906 0,931
9 0,764 0,828 34 0,908 0,933
10 0,781 0,842 35 0,910 0,934
11 0,792 0,850 36 0,912 0,935
12 0,805 0,859 37 0.8914 0,936
13 0,814 0,866 38 0,916 0,938
14 0,825 0,874 39 0,97 0,939
15 0,835 0,881 40 0,919 0,940
16 0,844 0,887 41 0,920 0,941
17 0,851 0,892 42 0,922 0,942
18 0,858 0,897 43 0,923 0,943
19 0,863 0,901 44 0,924 0,944
20 0,868 0,905 45 0,926 0,945
21 0,873 0,908 46 0,927 0,945
22 0,878 0,911 47 0,928 0,946
23 0,881 0,914 48 0,929 0,947
24 0.884 0,916 49 0,929 0,947
25 0,888 0,918 50 0,930 0,947

NOTE — Taken from reference [10].

For extension to sample sizes 51 < n < 99,
see reference [11].

Table 12 — Epps-Pulley test: p-quantiles of the test statistic T¢p
forp=1- a=0,90;0,95; 0,975 and 0,99

1-a

n
0,90 0,95 0,975 0,99
8 0,271 0,347 0,426 0,526
9 0,275 0,350 0,428 0,637
10 0,279 0,357 0,437 0,545
15 0,284 0,366 0,447 0,560
20 0,287 0,368 0,450 0,564
30 0,288 0,371 0,459 0,569
50 0,290 0374 0,461 0,574
100 0,291 0,376 0,464 0,583
200 0,290 0,379 0,467 0,590

NOTE — Taken from reference [5].
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Table 13 — Joint test using several independent

samples: Coefficients for converting Wto a
standardized normal variate for » = 8(1)50

Table 14 — Quantities Uy of the standardized

ISO 5479:1997(E)

normal distribution

P

n 7in) 8n) eln) % a up
8 -2,696 1,333 0,4186 80,0 0,10 1,282
9 -2,968 1,400 0,3900 95,0 0,05 1,645

10 -3,262 1,471 0,3660 975 0,025 1.960

1 -3,485 1,515 0,3451 99.0 232

12 -3,731 1,571 0,3270 ‘ 001 326

13 -3,936 1,613 0,3111 99.5 0,005 2,576

14 -4,155 1,655 0,2969

15 -4,373 1,695 0,2842

16 —4,567 1,724 0,2727

17 -4,713 1,739 0,2622

18 -4,885 1,770 0,2528

19 -5,018 1,786 0,2440

20 -5,153 1,802 0,2359

21 -5,291 1,818 0,2264

22 -5,413 1,835 0,2207

23 -5,508 1,848 0,2167

24 -5,605 1,862 0,2106

25 -5,704 1,876 0,2063

26 -5,803 1,890 0,2020

27 -5,905 1,905 0,1980

28 -5,988 1,919 0,1943

29 -6,074 1,934 0,1907

30 —6,150 1,949 0,1872

31 —6,248 1,965 0,1840

32 -6,324 1,976 0,1811

33 -6,402 1,988 0,1781

34 -6,480 2,000 0,1755

35 -6,559 2,012 0,1727

36 -6,640 2,024 0,1702

37 -6,721 2,037 0,1677

38 -6,803 2,049 0,1656

39 -6,887 2,062 0,1633

40 -~6,961 2,075 0,1612

41 -7,035 2,088 0,1591

42 -7,111 2,101 0,1572

43 -7,188 2,114 0,1552

44 ~7,266 2,128 0,1534

45 -7.345 2,141 0,1516

46 7,414 2,155 0,1499

47 -7,484 2,169 0,1482

48 —-7,655 2,183 0,1466

49 -7,615 2,198 0,1451

50 -7,677 2,212 0,1436

NOTE — Taken from reference {12].
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Annex A
(informative)

Blank normal probability graph paper
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